
!.-: -- DCCUMERT RESUME
z -','

ED 153- _603 IR 005 181

, AOTR6R- Kearsley, Greg P.
ITLE_ . Programming Errors in AEI.

..- -,INSTITUTION Alberta -Univ. ,_ Edaiontcn. Div. of Educaticral Research
_' -- Services.

Tggpoo NO iiia-18-1
PUE-DAT_E 77

1_ NOTE- 19-p.; Document is marginally= legitle due t-c print .i

quality

ELI-IIS, :PRICE 81,--$0.63. Plus _Postage.. EC lit,t Ay-al 141e- 'from. EDES.
IDESCRIpTORS. Computer _Science Education; *Eriti _Patterns;

F *PrcigraMing-; *P_iograzirg- Language's
.IDENTIFIERS *API -(Programing,:Language)

--_ This ,paper- -discusses and _provides:- .scse -preliminary
data on errorS. in _API; :programming: Data were attained 1y analyzing
listings of 148 complete and :partial_ AFI-.Sestsitns- -c011ected- from
Siudent terminal rooms at the University cf. ulterta. ireOenties- Of
-errors: for the various error -messages are tarulated. The data,:

Lhowever, are 10ited because they .pitvide, LC_ detailed '. inftrmation on
how each etrci'tyPe. was -caused- and do. fitt,_irclUde ltgic eircis-, The-

--data- indicate that assignment errors'. are -the most ctmiecin type; _ and
-that syntactic and semantic errors are abcut,egbally. fregrent.
0-4=-

r:-4cAL*41414441#4141****#4141441*3044#414141*****41444441430.****#****4*44***4****44#*#*###
:11r Reproductionssupplied by EDES are the best that Oar te made *

'i:----4- -froth- -the_ otiginal-dctuient._ *

U S. DEPARTMENT OF HEALTH_ .

EDUCATION &WELFARE
NATIONAL-INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS SEEN REPRO.
OUCEO EXACTLY- AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIGIN
ATING IT -POINTS OF,VIEW OR OPINIONS
STATEO 00 NOT NECESSARILY 'REPRE-
SENT OFFICI; NATIONAL INSTITUTE OF
EOUCATION POSITION OR POLICY

BEST-COPY MILO

RIR-7&-1

fa93EAlkiRa Errors AU

Greg P. Kearsley

"PERMISSION TO "REPRODUCE ,THIS

MATERIAL IN MICROFICHE ONLY'
HAS BEEN GRANTED BY-

TO THE EbUCATIONAL RESOUFIC-ES
INFORMATION CENTER' (ERIC) ANIS

USERS OF THE ERIC SYSTEM;'

Division of Educational Research Services

University of Alberta

Programming Errors in 'in

Greg P. Kearsiey

Division of Educational Research Services'

University of -Alberta

In recent years there has been considerable interest in

the study of computer program: tiny by cognitive

psychologists, computer scientists, and human factors

PsychologistS halie 'been -itterefte-d- in

pregramming; as a-Complex probleasolVing task r'hiCh reveals

iMpOrtant aspects of Milian- infuriation processing capability

(either in individuals or groups). Computer-scientists have

lainly focused on those aspects which pertain to language

design and implementation'. Rdaan fiCtor specialists have

been concerned with improving the productivity and quality

or programming activity (e.g'., training, error reduction).

while each group of scientists has a somewhat different

perspective due to their particular orientation, there has

been considerable interaction as research interests

transgress traditional disciplinary boundaries.

The study al programming errors is an example of a

topic within this research area which has interested

cognitive psychologists, computer scientists and human

factor specialists. As a consequence, a number of different

approaches have been employed. grown & Sampson (1973)

suggest some techniques for avoiding or reduce programming

1. Two pioneering works in this area' were Sackman (1970) and
Wienbery 41971).

2

errors on the basis of experience in business.. Youngs (1974)

collected various types of protocol data from a group of

novice and experienced programmers on assigned tasks in

ALGOL, BASIC, COBOL, FORTRAN and PL/1. A comparison of the

relative- -importance of different types of errors for the

different languages and in terms of programming experience

was made. Miller (1974) used an experimental language and

non-programmers-to test the relative difficulty of certain

control structures (conjunctive vs. disjunctive, affirmative

vs. negative tests). Gould (1975) studied the debugging

processes of experienced FORTRAN programmers and compared

the debug times and errors missed for different types of

errors. Mayer (1975) studied the effects of using diagrammic
Al

models during the teaching of a simplfied version of

FORTRAN.

These studies are representative of the current

approaches to the study of programming errors in coding and

debugging. A number of major variables have been identified;

the two most important being programming experience and the

nature of the task or problem. Different types and patterns

of errors arise from inexperienced and experienced

programmers, and also from different application or problem

domains. Other variables such as time-sharing versus batch

programming, use of programming aids, or use of -CRT versus

hardcopy are to affect tife nature of programing'

errors. Some attempts have been made to formulate theories

of programming a(e 0,0, Gould, 1975; Shneiderman, 1977) and to

relate the study of programming behavior to general

--4

3

psychological research (e.g., Cooke S Bunt, 1975).

While many languages (both real and experimental) have

been- studied, errors in APL programming apparently nave not

received attention. This is somewhat suprising since APL is

dohnonly considered one of the most powerful of the

preSently existing high level langauges. Certainly, it is

one of the mostly widely used langauges today. Furthermore,

--A-P14-erroisshould. be 'particularly Interesting -because' of the-

.cahOnical_nature-of.the,ertor message types. Saal- & Weiss

(-1577) provide a.comprehensive and interesting study of APL

Usage; honeWer, they aid hot report error data in this-

study. The present paper--provid-eS--a discussion and sone

preliminary data on errors in APL programing.

Error Types in APL

Youngs (1974) classified programming errors into 4

broad categories:

(a) syntax errors which result from expressions which are

incorrect regardless of the context in which they

appear (e.g., an unmatched parenthesis)

(b)} senantic errors which- -derive -fro' invalid

combinations of operations

(0 logical errors which produce incorrect results but do

aot cause malLunction-ot the program

(d) clerical errors due to oversight or carelessness- such

as mispunched cards, missing cards, exceeding

page/line liaits, etc.

In APL, s/ntactic, semantic, and most clerical errors occur

as one of three different types:

(l) immediate execution errors which produce one of the

eight explicit error messages: SYNTAX, VALUE, INDEX,

RANK, LENGTH, DOMAIN, DEFN, or ENTRY ERROR, as well

as an indication of their location in the expression.

For example:

(A -8 +C

SYNTAX ERROR_

(A-B+C

(2) errors during the execution of defined function:.

These, errors produce an explicit error message as in

and also suspend execution of the function at the

line in which the error Vas detedted. For example:

SYNTAX ERROR

DEMO(1 (A-B+C

(3) errors in the use of system coimands or variables.

These errors are concerned with manipulating

workspaces, functions or variables or resource

allocation. The explidit error messages are:

INCORRECT COMMAND

VS/OBJECT NOT FOUND

NOT `SA

TABLWVS FULL

SV IMPLICIT ERROR

The fors of these error messages differs

between versions of APL and installations (i.e.,

these are the most 44ten dependent aessages) .

6

It is interesting that a language with a relatively

large number of defined primitives has a relatively small

number of error messages. However, thesix,messagesu VALUE,

RANK, DOMAIN, LENGTH, INDEX, ana DEIN cover the basic

seliantic. errors possible. A major reason for this is their

generality across the major data ,types (i.e., scalars,

vectors, and matrices) ,as well as across' constants aad

literals. Thus while errors due to invalid data types are

possible in other languages (e.g. DECLARE or REAL

statements) , they are not in APL because of the dynamic

allocation of variable types. Since APL has no special

statements tor subroutine calls, errors of this type cannot

-arise. If a subroutine is given incorrect arguments (the

equivalent of an incorrect-Iparameter VALDE error

would
, occur. Other errors such a bad branch (e.g., to a

missing label) or failure to initialize a loop counter will

also result in. VALUE errors.

Because of this generality, multiple causality of error

messages is common in APL. Figure 1 illustrates this

problem. In Figure 1A, a student defined a nonadic function

A with the argument FIB (which does not appear in the

function. Upon executing A, -a SYNTAX error was produced

since the occurrence of A in line 1 lacks an argument. The

student then tries executing the argument of the functiOn

but again receives a SYNTAX error, this time because there

is ao function relating the two constants. Although the same

error message was generated, the naturefof the errors are

different. 1Furthermore, this error message does not reveal

the real problem, namely that the student doesn't understand

tunction headers. Figure 1(b) shows another example with

system commands. Both of these .errors are examples of

clerical errors although they generate different error

messages.

AFL Error Frequencies

Bata ,oir -errorfrequencies- in--APL- -was--obtaised-by-

analiziug liStings-of 148-complete-and-partial APL sessions

collected from student terminal rooms at the University of

Alberta.2 These listings included the work of both novice

and experienced programmers and a variety of applications

areas. The sean duration of these sessions was 31.4-Minutes

(maximum: 246.6 minutes, laniMAA: minutes) . The mean CPU

tise per session was 2:6 seconds (maximum: 52.2 seconds,

minimum: 0.1 second). There was an average of 8.36

errors/session.

Table 1 presents, the frequencies of errors for the

k,variou.-error ,,messages:i First of all, it can be seen that

1

the 8 immediate executionterrors accounted for over 90 of

all error Messages while workspace-error-messages (due to

,-systemcommands) accounted,for-less-than_9%of

Within the first category,- VALUE and SYNTAX error messages

account for over half of the-messages. DEFN and ENTRY error

-MeSsayez; were also relatively common. DOMAIN, LENGTH, RANK,

2.-The version of APL-was 01.0 r_ unning on an AMDAHL V6
under the- ATS operating,-sySiem.

7

Jhd INDEX error aessages occurred relatively infrequently.

As far as the workspace etror messages are concerned,

INCORRECT COMMAND accounts for about half of these errors

with US NOT FOUND accounting for about 25% of the total.

There were no instances of systea variable error aessages in

the sample.

Many instances of some error aessages were due to the

same -- err-or.- Tor-example-e,a- large-percentage of-DEPN-errorS

have to do with the closing square bracket of the function

line number. It is comaonly omitted or a round bracket used

oy mistake (this, being the sate key shifted) . The majority

of INCORRECT COMMAND errors are due spelling or spacing

errors and aust WS NOT FOUND errors appear to occur due to a
1

forgotten Erkseace naae (VS AOT FOUNDS errors are typically

followed by)LIB) . A large percentage of DOMAIN errors are

atteapts to divide by 0. On the other hand, VALUE and SYNTAX

errors arise from a number of different probleas and this

probably accounts to sone extent for their popularity.

The failure to assign values to variables (which result

in VALUE errorts) and unmatched parenthesis (SYNTAX error)

were two coaaon probleas. any errors were due to

tisunderstandings about the header in defined functions.

These misunderstandings included (i) the unneccesary

duplication of the function name in the first line or

elsewhere in the function (soaetiaes resulting in unexpected
20- " "

recursion), (ii) the use of different variable nukes in the

liody of the function than-those Used in the header, (iii)

9

6

putting the arguments in the wrong position in the header''-

producing a tunction with an unexpected name (see Figure

la), (iv) the redundant use of quad for input when the

tunction arguments already assigned values to those

variables, (v) the ouput of function results when they here

automatically produced due to the explicit result form of

the hinder. These misconceptions can result in almost any of

the expIicit-error.aessages4-although typically they produce

either a VALUE or SYNTAX error.

A number of debugging strategies were observed in the

analysis of the data. The most common strategy was the

systematic decomposition of expressions, i.e., testing each

set of operations working from right to lett. Another common

technique in debugging defined functions was to rebuild new

ienctions using working parts of earlier functions. Various

types of "retry" behavior were observed quite frequently.

The most common one was simply to retype exactly the

expression which produced the error to see if it generates

the error again. Another "retry" behavior was to)CLEAE or

sign-off and then start over again. This later approach was

common for novice programmers.

Conclusions

The data presented in the preceeding section is quite

limited in what it relb'eals about errors in APL. It provides

no detailed inforsation on how each error type was caused,

say in terms of particular operations or algorithms. More

10

importantly, this data awes nut include logic errors (which

generally do not produce error messages) . Because the

characteristics of the piograsaers was not known (i.e.,

Lneir experience) nor the nature of the programming problem,

the effects oi these variables is not known. Finally, it

---likely that the errors generate&t in a student prograaming

environment would differ from a commercial or prodnction

environtelA.

The data aoes indicate that assignment errors (which

-wold generate VALUE errors) are probably the- most common

type of error Lade in APL as ia other languages. It also

aipears that syntactic and semantic errors are about equally

frequent in APL. the data also reveals that DEial errors are

much more cotton than one would expect while RANK, DONAIN,

LeNGH, and INDEX errors are less common than anticipated,._

although the present data does not firmly establish this

conclusion. it seems possible that the syntactic complexity

of APL expressions leads to more syntactic errors than in

otper languages., In so far as subscripting is a frequent

operation, in APL, it is interesting that INDEX errors are

not more common (although errors in subscripting could

generate rank or length errors). The misunderstandings

associated with the functiOn header in defined functions

seems a unique problem of AFL without an exact parallel in

other languages perhaps suggesting a need for language

design changes.

As well as contributing to a better understanding of

the programming process and the of computer

languages, information about programming has two m4jde

practical uses. The iirst use is in the teaching of the

programming language. Foreiaiple, the present data on APL

errors, suggests that increased attention should be given to

the presentation ot assignment and the form of function

arguments. The second use is in the coding and debugging of

APL proyrams.-Given a knowledge of the cost likely errors,

increased effort can be made during the coding and checking

of proyrams to prevent these problems. While at some point

the future we may have automatic correction of errors and

program proving, at the present time, both of these uses of

informatiOn on programming errors is of sole importance.

12

REFEEPNCES

Brown, A.1.. Sampson, V.A. Program debuduing:

prevention and cure of program etrokS. 'New York: AseriCan

Elsevier, 1973.

Cooke, J.E. & Bunt, P.P. Human errors in programaing: The

need to 'study the individual programmer. INFOR 1975,

296-307.

Gould, J.D. Some pSychcaogical eiridence. on how people debug

-coMputet-programs-. 'Journal Nan4achine Studies ; 19754

,71, 151A82.

R.E. _Diffetent___prOblea..4.oIving__:,coapetencies

estanlished in learning computer ipi;ograaming with and

meaningful: models. Journ4 of Educational10 *tit °lit

Psychology , 1975 67 , 725-734:-

Miller, L.A. Programming by non-programmers. Journal. of Ban-

eachine Studies , 1974, 6 , 237,!260.:

Saai, 11.J. & Reiss, Z. An elipiricai study of APL programs.

Computer Language , 1917, 2 47-59.

SaCkwan, i. Nan-computer problem solving. New York:

Auerbach, 1970.

Shheiderman, B. deasuring computer program quality and

cOmprehension. Journal of tan-Machine Studies , 1977, 9 ,

465-478.

Youngs, E.A. Human errors in programming. Joninal of Man-,

lagiAlag-Studies- -19744-6- 361-376-

Weinberg, G. The psirchcilogi of computer programming. Mew

1:

Yort: Van NOstrand Reinhold, 1971.

13

12

V13-A- FIB
[1314-B/A

A!' 0

SYNTAX ERROR
4[11 A:

A

FIB 0
SYNTAX ERROR
FIB '0

.A

Figure la. An example_ of the same error for different reasons.

)LOAD WS.
WS NOT FOUND

)LOADWS1
INCORRECT COMMAND

)LOAD =WS

SAVED 10:52:30 01101/78

Figure lb. An example of tha same error producing-different
error messages.

14

kPL error frequencies.

Total Error Percentage

.Unction Execution 1131 91.8
-_VALUE, 317 -256
'SYNTAX, 314- . -25.4
DEPk _217- 1745
aaRY 137- 11:1,

--_DOi-X-IN:---
LE N ciTa 34 , 47.

34- -- -2-.7

-Workspace- nanagebient 106 8.2
INCORRECT COREAND 52 4.2
W5- NOT -TOOND 28 2.1
NOT SA1ED 9 0.7
NOT- FOUND 7 0.5
WS -PULL 5 0.4
STACK PULL 3 0-.2
NOT COPIED 2 0.1
SYMBOL TABLE PULL 2 0.1

15

13

APPENOR

ThiS report is part of a- study of API:- ,programming
intended to .provide -the _foundation, for 'copiputer, ;batted -APL-
problem Solving laboratory. such a laboratory ,would Permit
thee- student Write- -dna' -_ debug -or priig =ails Hadar =the`
control- of- a powerful APL tutorial SySten.: -The -4anford
Wasic instructional ,grogram .(8 1P) system_ prOvideS one :Model
of how such a, systen can be -designed and what capabilities

-The--kg---systelm, feature-3
(a) a ionittired BASIC interpetertiiritt-eli which

allows the instructional. ,sifsten, complete inioreation
about .student.'eftTorTS:

(b) a curricitium. Infatuation Network .(CIN)- which'
deSoribes a. large- number Of -programming.- PrcibleitS- in
ter-ES of the basic skilLs4 involved: in each. -Problems
forSointion:,__Are:_;Seleated:_from._-.1dIt using a 3aodel,, of
the -Student- as ,preirieuS1 y :adgaired:

(c) a .hint/helP OyStei- which gives graphic and textual
aid during probleim Salving. _

Another .approach i-FTheITOOM,systeit -which is a,
table-driven diagnostic compiler/interpreter. CAPS resembles
batch diagnostic compilers -(SUch, as iPL/C)- except that
instead of trying- to recover Elva detected "errors, it
reports errors and attempts- to help- the student 'repair then
interactively . ec a use---C-A P I e -driven
to haie GAPS vcikks, for all language to which tableis
At present_ tableS exist for -E*TRAII,- .an&-00BOL. The
CAPS system consists of an -edit-Aime and OnT_t-iice- =error
analizer, an editoi,, a file Manager-, and the -error table aid-
interpreter for each langOage. It also leatarea: a acoMmon
misconception table": -which contains:information 'about-the
language which is a potential, trouble. spot and templates _for
the help to be proiiided_ if that -problen, arises.

---IreegardlesS of Which approach is 'timed in the design of
a, problem solving _labOta-ry, a, -considerable mount of
detailed information about -programming -error* in the target
language.-Lust"be-tnown.- -means a"
reasonably complete list of the of the-skills involve_ d_ in
learning I.PL. Table 2 provides such a lint. ThiS:Viill list
-provides a baSiS fOr the :Pragraiiiingr'PrObielin- to be
thvelopeo and the concepts /procedures -to be taught. It also
forms the basis for the deriiiatiOn of -a 'Set_ .o.t' errors- which
could arise in learning or perietling, these 11.01. skills:. This
sRi of -error rules will be the next step in the denelopaent
.uf an API. 'prpgramaing' Laboratory.

16

,-
1. Simple Operations

11)Se arithMetia-priiitives
.arithileticAapaii.tives.

Use arithaetic primitives
Use aritheitic priMitiveS

Table 2
Skills in APL

alone (Scalars)
im.combinationS-Astalarsy
alone (Vectors)
ih combinations (scalars)

Sir tAle AsSigment A§calars and vectors)
-sio-huMeric:staltiS:tto -Variables_
Display nUmeric,Scalats

il-Pa§4-§4-1.011140-sca-lars
ASsigh-nuMeric vedtors.to variables
Display. nuietic WeCtors.

1001.7#
Assign literal-strings Avettors) o.varlables
OiSi4a1 4t4'14-144444s--

3. SiMple Indexing. (Vectors)
--Dlsplay-alrl-element6-ot-vector----

Replace (reassign) selected elements of vector

4. :hire Complicated Assignmek4and Indexing
AsSign mimetit:values to matrices
Displa nuaeralues_in_matrides-

-Replace-numeric-values, in-matrides--
Assign literal values= in matrices
bisplay literal values in Matrices
Replace literal values in matrices

5. pure Complicated Operations.
Numerj.c

Find min/max
Find lloot/ceiling
Fina powers/square roots
Find absolute value /residue
Find combinations/factorials
Generate_random_nuabers
Sort.in-ascending/descending order

Selection
. Select using meibersnip/index
Select using grade up/grade down
Select using take/drop.d.
Select ,using compress/expand

Restructuring
kestructure using reshape
Restructure using catenate
ReStracture using laminate.
Restructure using transpose
Restructure using rotate
Restructure using reverse

Relations .

Compare numeric arrays using egualitieWimegualities
Compare literal arrays,Using eguaiiiiet/imegUalities
,Compare..numerit.,airalis-UsinTIOgiCal.----relations-
Coitpare literal arrays using logiCal relations

--Translation-
Translate :number bases- using-encode /decode
Translate data structures using execute/format

5. Algorithmz
-fIter eiecutiOhlirder using parentheses
Rewrite expressiont to remove parentheses-
Write algorithm to coipute means
Write algorithm to do sorts
write algorithms-to produce graphs
-Write -algoriths to do-text editing
Write algorithms for statistical functions

'4.. Defined= 'riinetiont
?Unction Definition-

Create and execute niladic function
Creat&-atd-Wadate without explicit result
Create and execute-monadic-fanction-with.eiplicIt result
Create and execute-dyadic function without explicit:result
Create and-eXecute dyadic funCtion with explicit result

Display &
Dispkal entire-function
1d4iay'_teiitiateklinet
Bodify lines and display
Delete, lines- .and display-
Insert lines and-display
Add lines and display

Branching-
Use Slash for unconditional .branch to line umber
bse tiaticfcir-ConditiOnal brana-tb line,:nukber
bEe slash- for-conditional-branCh-to-label
Use .arrow for conditional -branch to label_ _
Use n -Way conditional" branch
Use *imputed tTanch to line -number

-teration
1Build -single loop using-line nulbers

Build' single loop using labelS
laild nested loot*
lemonstrate.recursion 74

Eliminate brandhing via structured programing
Input/Output

Ute quad for input
Uke-guadtor-output
Use -quOteguad.:for Input
Use guote'"guad for ouput

18

7. Workspaces
Save workspace
Load workspace
Copy variables, functions frost workspace
Copy VariableS, functions fro'', public library
.Cle.ar. workspace _

Drop workspace
itenaae workspace using WS1D
Use Lib, VAS, loNS
Change printing -precision
Change page width
Change index origin

4

4
_t

