DCCUMENT RESURE

. BD:- 153 603 : 1IE 065 781
AUTHOR Kearsley, Greg P.
TITLE - Programming Errors in AFl.
INSTIIUTION Alberta Univ., Edméntcr. Div. cf Educaticral Research
¢ o Segv;ces,
?TBEPORI NC RIR-78-1
. PUB DAIF 77
L NOTE 19p.; Document is marginally legikle Gue tc Erint
- guality
: ¥
> ‘EDRS. PRICE HF-$0.83 Plus Postage., HC Bct Availatle 1zom EDES.
;ZDESCnIPTORS: ,ompUter 501ence Educatlon, *ECICr Patterns;
z *Programlng, *Progranlzg Languages
f,IDENTIPIERS ~ *AF1 (Programing Languace)
'f“*‘BSTRACI'”" T e T T T T T ToTX TS TTTTT T o T e T et s -7 - i T -

: St o - This paper d1<cu<<e< arnd pzcv1de scme preliminary
w.data~cn errors in AFL programming. Eatc WEre - ottalnec ty analy21ng
'illstlngs of 148 -ccspléte and partial AEI .sessicrs collected from

- student terminal rooms at the Un1vers:ty cf Alherta. Ereguenc1e< of
; -erfors: for ‘the various error ‘messagés aie takulated. The data,:
lghonever, are llxlted hecause they prcvlde e detalled 1nfcrnat10n on
: ‘how each eérrcr-type. was caused and do. nct.. chlude lcglc €Ircrs. The
. data 1nd:.cate that a<51gnment €IICIS ar€ the ncct cCcERORn type° and
:}that syntactic and cemantlc €rrcrs are€ abcut- egually freguent.
%,(VT)

& i - =

********************##******#*******##*#####**###########i*#*#****#****

'*#‘ - Reproductlonswsupplled by EDRS ar€ the best that car ke made *

o from the original -dccument. *
B L T T R TR e P e e

¥ PO

: EKC

t‘:r o Povidod b G

3 [PV S VA

P

R

'

v

FCRR TP LT

W,

U $.DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTEOF

EDUCATION ~

THIS DOCUMENT HAS BEEN REPRO-
OUCEQ EXACTLY-AS RECEIVEQ -FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT -POINTS OF VIEW OR OPINIONS
STATEO DO NOT NECESSARILY ‘REPRE-
SENTOFFICIL’ = NATIONAL INSTITUTE OF
EOUCATION POSITION OR POLICY

C e e e e - - A e deeme e SU -
S ™)

x

BEST-COPY AVAILABLE

RIR-=78~1

Programming Errors in -APL

‘ * “PERMISSION TO "REPRODUCE. THIS -
MATERIAL IN MICROFICHE ONLY’
HAS BEEN GRANTED BY- C

Greg P. Kearsley TO THE EDUCATIONAL-RESOURCES. .
i INFORMATION CENTER {ERIC) AND- -
1JSERS OF THE ERIC SYSTEM.”

FE ,.,".ﬁ

Di!ision of Educational Research Services
University of Alberta

» k3
.
.
-
. i -

. : 0y !
24 o N e - .
i
¥y
- +

Tl s e At 1t Pt) - A

Aled ik e s

A b s

b

v e By e e

VR I

B T AR S e

M ey e

. P
faw 2. et

-

RV e
R N

A d Y e

Programming Errors in APL

. 6reg P. Kearsley
Division of Educational Research Services -

University of -Alberta

In tecent years there has been considerable interest in
the study o computer prograsziag by cognitive

- e atems “ I

psychologists,

cbupﬁféfﬁ (ééiéntists, and hqn;n factors
- “*’“*;*ﬁ“féﬁééiaTiStS}i - Psychologists ~ THave beeli inteiéstéd ~ ia
: M pragtamming§ as a -complex problen-solv;ng task nhiCh reveals
é' . important aspects of human infurmation processing capability

z o

ﬁ(lither in individuals or groups) . Con@uter»sciehtiSts have
- wainly focused on those aspects which pertain to language

design and implementation. Himan factor specialists have

B e

Ve -

been concerned vith impfoving the productivity..and quality
ol proyramsing activity (e.gﬁ; training, error reduction).

‘®aile each group of scientists has a somewhat different

perspective due to their particular orientation, there has
- . !
been considerable interaction as research iaterest:s
transgress tradiational disciplinary bounaaries.

/

The study oz progranminQAerrors is an example of a
;r _ topic within this research area which has interested
v cognitive ps;chologists, computer scientists and huugn
facror specialists. As a consequence, a number of different

- apfroaches have been e:ployed; Brown & Saxpson (1973)

- suggest some techniques for z2voiding or reduce programming

. .- . -« - *

;v intio pioneéring vorks in this area were Sackman (1970) and
Wienberyg .(1971).

.errors on the basis of experience in business. Youngs (1974)

collected various types of protocol data from a group of
novice and experienced programmers on assigned tasks in
ALGOL, BASIC, COBOL, FORTRAN anit PL/1. A comparison of the
relative -importance of differeat types of errors for the
different languages and in terms of prograaming experience
vas made. HMiller (1974) used Qn experimental language and
non-prograshers to test the relative difficulff“\ot certain

control structures (conjunctive vs. disjunctive, affirmative

vs. neygative tests). Gould (1975) studied the debugyging

processes of experienced FORTHRAN programmérs and compared

the debug ti;es and errors missed for different types of
errors. Mayer (1975) studied the effects of using diagrammic
‘models during the tégching of a simplfied version of
PORTRAN. - L

These- studies are representative of the current

approaches to the study of programaing errors in coding and

PO

debugging. A number of major variables have been identified;
the two most important being programming experience and the
nature of the task or problem. Different types and patterns
of errors arise¢ from inexperienced and experienced
programwers, and also from diﬁfetent application or problem
domains. Other variables such as time-sharing versus batch

prograpnin§,~use of programmaing aids, or use of CRT versus

hardcopy are -also -known to atfect the nature oi prograsming

errors. Some attempts have been madc to formulate theories
of programming (e.gdg., Gould, 1975; Shneiderman, 1977) and to

relate the study of programming behavior to geheral

t

R *_“,.(_..,.4,4

o e

e

LEas

- - ——3APL-errors::should- -be ‘particularly interesting -because of the

X

psychological research (e.g., Cooke & Buht, 1975).

-

While sany languages (both real and experisental) bhave
been studied, errors in APL proyramming apparently have not

received attention. This is somewhat suprising since APL is
H

commonly considered one of the most powerful of the .

presently existing high level langauges. Cerrainly, it is

one of the mostly widely used landauges today. Purthermore,

. canonical nature of the erfor message types. Saal- & Weiss

(1977) provide é=conp;ehensivé and interesting study of APL

usage; however, they did not report error data in this

study. The present paper 'provides a discussion and some

preliminary data on errors in APL programsing.

£rror Types in AfL

Youngs (1974) classified prograsming errors into 4
broad categories:

(a) syntax errors which result from expressions which are
incorrect reyardless of the context in which they
appear (e.g., an unsatched parenthesis)

(b)- semantic errors Vhich - -~derive ‘CCOR invalid
cokbinations of cperatioﬁs

(©) Logical errors which prodncer@pcq;tect results bntééo
aot &éuse inLnnction~oi'tﬁe btograi

. . . < - . o e A “\
(@) clericali eérrors due to oversight or carelesSness such

as mispunched cards, aissing - cards, exceeding

page/line liaits, etc.

9

cmm— N F

) 1. ‘ S
E ' ‘Iu APL, -symtactic, seiagtic, and most clerical errors occur ‘ ‘e
as one of three diiferent types: 7 i
t1) immediate execution errors which é:odnce one of the ;
eight explicit error messages: SQHTAX, iaLuzﬂ, INDEX, é
KANK, LENGTH, DOMAIN, DEFN, or ENTRY ERROR, gs wvell
! A as an indication of their location in the expressioa.]
. ror exawples v Q,i
. (A-B+C
© sysTax EkwoR T
(A-B+C
(2) errors during the execution of u defined function.
Phese - errors produce an explicit error message as in
) (1) and also suspena exeggtioﬂ of the function at the
; iine in which thé erfor was detécted. For example: .
g SYNTAX ERROK ;
%” DENO{ 1] (A-B+C | ;f
% (3) errors in the use of systen coamands or variables. 3 ;
These errors are conceried yith' manipulating un - ;
vorksvaces, functions or variables or résource ’
: allocation. The explicit error messagyes are: e
; INCORRECT COMMAMND ‘ :
Mﬁ 7 WS/0BJECT NOT FOUND
{A L NOT ‘SAVED - -
; SYMBOL TABLE/NS PULL | ' ;
L ” SV INPLICIT ERROK ’ o
? o \\\\\;ihe““érﬁpt' fora of these error nmessages differs :
- Fetveen versions of APL and installations (i-e.,
; . these are the most Systes dependent Ressages) . ?
= 6

3

It 1is interesting that a languaye with a relatively
large number of defined primitives has a relatively small
nurber of error messages. However, tne‘siz;nességes” YALUE, —

BANK, DOMAIN, LENGTH, INDEX, ana DEFN cover the basgic .

- #

semantic. errors possible. A major reason for tﬁgs is their
genezalitf acCross éhe Tlajor data .types (di.e., scalafs,
vectors, and matrices) .as ueli. as’ acgoss’congtantg and
literals. Thus while errors due to invalid data types aré
possible in other languages (e.g- DECLARE or REAL
statemgntsi, they are not in APL because of ;ne.‘dynalic
allocation of variable types. Since APL has n6 special

-

Statements tsr subroutine calls, <irors of this type cannot

<arise. If a suntou§ine is given incorrect arguments (the
eguivalent of an ;ncorgecéwparalgter list).,. a. VALUE errog
_would occur. Other errors such a bad branck (e.g., to a
missing label) or failure to initialize a loop counter will

also result in VALUE errors.

-
Because of this generality, multiple causality of error
" "messages 1s comnon in APL. PFiqure 1 illustrates this
problem. In Pigure 1a, a student defined a momadic function
A with the argument FIB (which does not appear in the
~ function. Upon executin§ A, ‘a SYNTAX error was produced
since the)occurrence of A in line 1 lacks an argument. The
student then tries executing the argument of the function
but again receives a SYARTAX error, this tise because there
is ac¢ function relating the two constants. Although the same
error aessage was generated, the naturé:of' the errors are

different. Purthermore, this error message does not reveal

-

the real problem, namely that the student doesn't understand

tunction headers. Figure 1(b) shows another example with
system commands. Both of these :errors are examples of
clericat errors althougbh they geverate different error

BRessSdgdes.

APL Error Frequencies

bata -om -error - frequencies- in-—APL -was -obtained by

analizing listings of 148 compliete and partial APL sessions

collected iZrom student terminal rooms at the University of

Alberta.? These 1listings included ihe work of both novice

and experienced programmers and a variety of applications
areas., The mean dutatlon of these sessions was 31.“ ‘miflutes

(waxinuw: 246.6 minutes, minimum: 2. minutes). The nean cpB
}

. . 1 - -
tlle per session was 2:;6 seconds (maximum: 52.2Z seconds,

e

ainikum: U.1 second). There was an average of 8.36

eITers/£ession.

Table 1 presents the frequencies of errors for the

variouérwernon,.nessagés%n FPirst of all. it can be seen that
?

all -error ‘iessages vhile vorkspace error messagdes (due to

~-Systea. coxmands) accounted.for.less..than 9%._.of. the total.

Wwithin the first cateqory, VALUB and S!NTAX 8rror messages

account for over half of the messages. DEPN and ENTRY error

‘Aessades Were also relatively common. DONAIN, LENGTH, RARK,

4

2. The verslon of A?L”vas APLYS running on an AMDAHL V6
under the 4TS operating systen.

-y

[—

4

dand INDEX error aessages occurred relatively infregquently.
As far as the vorkspace eiror messages are concerned,
1RCORRECT COMMAND accounts for about half of these errocs
. with W#S NOT FOUND accounting for about 2§% of the total.
l There were no instahces oI system variable error Ressages in

the sawple.

Many instances of some error léssages were due to the
gor— -~ - ..SaRe—.eCLOC. FOL -example, a large percentage of DEPN ‘erx.:or§ S
have to do with the closing square bracket of the function
line number. It is commonly onitted or a round'brackét nse&

oy uwistake (this being the same key shifted) . The majority

oi INCORKECT COMMAND errors are due spelling or spacing
eLTOrs and nusf WS NOT POUND eirors appear to qccur due to a
foryotten w(rkspace name (NS #OF FOUNDS errors are typically
followea by)LIB) . A large percentage of DOMAIN errors are
attexpts to divide by O. On the other hand, VALOUE and SYNTAX -

Y errors arise from a number of different problems and this

probably accounts to some extent' for their popularcity.

The failure to assign values to variables {vhich result
in VALOE errorrs) and unmatchec parenthesis (SYNTAX error)
were two coamon problems. Many errors were due to

g sisunderstandings about the header in defined functions.

’ These misunderstandings . included (i) the unneccesary
duplication of the function name in the first Iine or
elsewhere in the function (gometimes resulting in unexpected

goo— - SRNGNNEA o Sh , S sttt et ee stk Aot A

recursion), (ii) the use of different variable pames in the

boay of the function than “those dsed in the header, (iii)

putting tne argusents in the wrong position in the header *

prqducing a tunction with an unexpected name (see Pigure
ta), (iv) the redundant use of guad tor input when the
fuynction arguaents already assigned values Vio those
variables, (v) the¢ ouput of function results vhen they were

automatically produced due to the explicit result form of

the heéader. These misconceptions can result in almost any of

the explicit -error -sessages; -adthough typically they produce

cither a VALUE or SYNTAX error.

~ .

A number of debugging strategies were observed in the
analysis of the data. The most common strategy was the
systematic decomposition of expressions, i.e., testing each
sct of operatiohs working froa tight to leir. Another comzon
techniqugvin debugaing detined functions was to rebuild new
iunctions using working parts of earlier functioas. Various
types of "retry" behavior were obsérved quite frequently.
The wcst coxmon one was sSikply to retype exactly the
expression which producea the error to see if it generates
the error again. Another "retry" behavior was to)CLEAR or

sagn—-off and then start over agair. This later approach was

COmmON iOr NOovice pProyrammers.

Conclusions

The data presented in the preceeding section is gquite

Limited in what it revials apout errors in APL. It provides

e g - . - % € Vit A Y . tewsy s S g

R .,
s -

. - . , {
no detailed information on how each error type uas!caused,

say in terms of particular operations or algorithss. More

iaportantly, this data does pot include loyic errors (which
generally do not produce error aessayes). Because the
charactg;istics ?i the wvioyrasmers was not known (i.e.,
their experience) nor the nacture of the programaing problea,
the erfects oi these variables is not known. Finally, it
10k¥ly that the errors generated in a student programming
environment would differ frou & cosmercial or prodnction

-

enpvironpeut,

-

The data aoes indicate that assignsent errors (vhich
world geherate VALUE errors) are probably the most cosmon
type of error wnade in APL as in other languages. It also
;ppears tha;tsyn;actlc ;nd seganticC errors are about eguallyr
frequent in AéL. The data also reveals that DESH errors are

such more cowuon than one would expect vhile RANK, DOMNAIN,

LENGTH, and INDEX errors are lLess comsmon than anticipated, .’
althougn the present datra does not firmly establish this

concliusion. It scemws possible that the syntactic cosplexity

1471

oX APL expressions leads to aore syntactic errors than in
other languages. In so far as subscripting is a frequent
. operation. in APL, it is intecesiin& that INDEX errors are
not aore cormon (although errors in subscripting could
generate rank or lenqgth errors). The sisunderstandings
ff“’ - T associated with the functian header in defined functions
scen:s ‘a unigue problem of AFL ‘without an exact parallel in
other ldanguages perhaps suggesting a mneed for langquage

design changes.

As well as contributing to a better understanding of

10

the programming process and the design of cosputer
Linguayes, inrformation about programming has two asajor”
practical uses. The tirst use is in the teaching of the
progremming language. For example, the present data on APL
eLrrTors, suyuests that increased attention should be given to
the presentation ol assignment and the form of fuaction
argumentse. The seconu use is in the coding and debugging of
APL proyrams. Given a kuowledge of the most likely errors,
increased etfort can be made during the coding and checkiny
of proyrams to prevent'these probleas. While at some point
in the future we may hava automsatic correctior of errors and
trograw proving, at the present time, both of these uses ot

iniormation on proyramaing errors is ot soke importance.

‘

S

"

4

REFERENCES

fBroun, RoKa & ”Sagpson, V.A. Ptoggal‘ debugaing; the

M - - . R 3

preventlon and cure of program ertors.nﬂggfXQEKQJQEQQSQQM»

Elsevier, 1973.. - I
Covke, J.E. & Bunt,’R;B. Husan errors. in programming: The A
—____ neéed to study the individual prégrasmer. INFOR , 1975, j;;
+ 296-307. ' . '
Goulal Jd. D. So;e psybnol;glcal evxdence on how people debug ‘
© "CORpuUter -programss Journal ot Han-ﬂachlge Studxes i 1975; S <4f%

71, 151=182. B ' - a"

;Qﬁjgtbmwwmﬁgz&_wmmDiffe;Enn_JMpfoplen:éoltipghw;colpetencies;www,“ﬁa”;ué

estaplished in learning bonphter ,pgogréuning with - and

without vleaningful‘ lodels. Joufpal of Rlucatiopal

-

“Esvcholoay , 975 61 , 7257385 ‘ ' -
Miller, L.A. Prograsring by non-programmers. Jourpal of Man-

Bachine Studies , 1974, 6 , 237-260-

saal, H.J. & Weiss, Z. An empirical “study of AFL progiams. E
Computer Langiage , 1977, 2 , 47-59.
Sackman, He. Man-computer problea solving. New York: :
_%ffu - _Auerbach, 1970. o o _m“~ww;
Shheiderwan, B. fieasuring computer program qnality";nd
coapreheusion. Joufhdi#éi ha;;ﬁ;éhine~$tud;e§ . 1977,“2 ’ I .
465-475. . ,;é
Younys, E.A. HuRan errors in prograsming. gggigg; of Han- \
‘*nquinq:Studieéi;uagﬁﬁ;'Q'; 361-376. ' ‘“"%

Velnberg, G. Q p51ch01091 of co!guter ro Ripg. New

Cern D an wma e e o e e g mah e e AL o e 38 ok b e pa e 5 Y T TP

York: Yan NOstrand- Relnhold, 1971. 5

—— o o o E e E e e v ol

o,
i

T - 2
VA«A FIB
. (1) -ReB/A
. o T T[2i v
SYNTAX ERROR
Al1) ReB/A :
A ~ o

FIB 0 '
F - SYNTAX ERROR :
P FIB 0

_ - A i
’ ' . Figure la. An example of the samé error for different reasons.
0 Z-Té S T R
Bl et © .)LOAD ¥S. '
WS NOT FOUND
-)LOADWS1]
INCORRECT COMMAND =

YLOAD WS - T
SAVED 10:52:30 01/01/78
AV

=

Figure 1b. An example of the Same error ﬁibaﬁciiiilavfffe?éﬁt - ‘
error messages. _ _ . %

o o m———— o et

- e - * . em

B e

2 :
;;*"*" e T o - Tab]:e*—-l:* T e - s T T T o e "*:‘“‘“‘"“‘
APL error frequencies.
- ‘rpti;il Errors ‘P:éi.:,(:eytége- -
Function Execuition - 1131 91.8 o
VALUE. 3w 25:6
‘SYHTAX. 314 r 254
) _DEFR. _ 237 17.5 R e
ENTRY 137 111 T
B St o -DOMKIN 50 30
: - LERGTA 3# ~ 2.7
I BRE K ' . 34 L m T T
T TR T T 2T B
- Sorkspace Managewent 106 8.2 E
s INCORRECT COBBAND 52 Ge2 :
. #5 NOT -FQUND 26] 2.1 /
e ROE~SAVED 9 USSR Y | -
NOTE- FOUND 7 0.5 i :
¥S FULL 5 0.4
: STACK FULL 3 0.2 :
NOT COPiED 2 0.1
SYMBOL TABLE FULL 2 0.1 ;
e :
ol -

P,

APPESDIX -

This report is part of a- study of APL programming
Lntended to-.provide. the toundatxon Yor.a. conputer‘based -AAPL. e
probléa solviny laboratory. Such a laboratory ‘would permit :
The Stideiit 6~ Write dnd _debuy " APL TPTOgILams 'nnd*’“ﬂtﬁe“‘““‘ B
contfol of a powerful APL tutorial systes. The Stanford
Basic Instructional f£rogram {B1P) SthEl provides one :model
of how such a byoten can be uee1gned and what capabxlitieb
‘can, BEWprov1ded “The-BIP--systes. ieatures' :

(a) a mOnitéred BASIC interpeter "WELtten inSAIL which -1
aliows the xnstructlonal’systel colplete 1ntornation ‘
about student. effofsg — T Y
b a Cgrtlchlul Intornatxon Network (CIH) which
describes a. Large nuaber -of ptogtanlxng prohlens in :
teras of the pasic skilis involved in--eachs -Probléms Cow
mrsuumnamﬁdmmdﬁmﬁuuawaaﬁaoi :
the Student®s previously: acqu1red skillse |
(©) a hint/help system which gives graphic "and textual .
33 during problem solv1ng. - -3
~ 7 'Another approach is the PIATO IV CAPS system which is a .’j
table-driven diagnostic conpxler/xnterpreter. CAPS reselhleb.
patch diagnostic cunplleta (such as PL/C) except that ?{
instead of trying to recover fiom deteéected etrors, 1t
reports errocrs and atteapts to help the student repair theén
rnterdctivéLYW*5eC&use*CA?S"ib“tﬂble‘Qtlven“*tt*IS“*pOSblbsc
to have CAPS works. for all language for which tables exist.
At present. tables exist for PORTRAI, PL/A,. -and.- .COBOL. The
Cars system consists of -an -edit-time and. rin=time error
anvalizer, an editor, a file manager, and the ‘error table and
interpreter for each language. It also features a ®common
wisconceptior table™ -which contains: 1nfbt-at10n about the
langvage which is a potential trouble spot and templates for :
the help to be provxded if that problem. arlses.)

o e

P N IR TN

-Irfégardless of which approach is used in the design of :
a’ proolem -solving .laborary, af'con51derahle asmount of e
. detailed information about programming errors: in the. target : -
- Tanguage ‘must be known. In-the- present- case,““th1s ‘means” a " R
reéasonably co-plete list of the of the skills 1nvolveu in
learning APL. Table 2 prov1des such. a llst. Thls skill 1list
' provides a bagis “for the " APL programming probledis to bé
developeu and the concepts/procedires to be taught. It also :
forms the basis for the derivation of a ‘Set of errors which ;
cuvuld drise in learning or perfotllng these APL skills. This :
set of error fules will be the next step in tfie developaent :
of an 4L progqrawming Laboratory. o

o ¥R

= 52 % ot a7

DRI YD

Sxa gy

ar

s Amm® . L x

Table 2
Skills in APL

1.7Simple Operations

DSe arithmetic primitives alone (Scalars)
Usie axlthnetlcmprlnltlves.1nnc0-b1nat10ns~4scaldtsy -
Use arithmatic primitives alone (vectors)

7 Us= aritheidtic primitives in combinations (scalars)

4. Simple Assigzent {scalars and vectois)

*hbalgn numeTic scalars 'to variables -~

Display numeric scalars = - !

Rea;blgn“nu-exlc -scalars'

A3sign -tumeric vectors. to variables

Display numeric vectots

Reassign -numeric vectors

Abblgn llteral strxngs (vectors) to.variables

ispldy Iiteral Strings’

,Rgdssxgn lltemal .strings

3. Siaple Indexlng (Vectors) .

~_~~««DLQplaywaLLMelements»oﬂmvector~ﬂww~wwﬁ~ e -
keplace (reassign) selected elements of vector

b. dore Conpllcated Assignment and Indexing
kssign numeric: values to matrices

su ww

PRIy

e e e e < OEDELATE,_random. numbers...

TP

I

Display numeric_values_ 1nwna¢£1cesummmwwwwww~v~vw«~mw»
--Replace -numeric--values in ldtflC&b)

Assign ilteral values: in natrzces

Lisplay literal values in matrices

Replace literal values in matrices

5. More Compiicated Operationmns.
Rureric
¥ind min/max
Find iloor/ceiling
FPind powers/square roots
Pind absolute value/residue
Find corbinations/factoridls

Sort. in -ascending/aescending order
. Selection

-Select using -.membersnip/index

Select using grade up/grade down

Seiect using take/drop

Select using cowmpress/cxpand
Restructuring

kestructure using reshape

Restructure using catenate

Rééffdctuté‘u51ng laminate.

Restructure using transpose

Restructure using rotate

Restructure using reverse

17

- s |

4 3

e

. lelations

o Compare numeric arrays ns1ng equal;tzos/znequaIJtles

. ‘Compare literal arrays using aqnalities/inequalitles -

AN - Compare..numeric. .airays using. logical -relations S
Compare literal arrays using legical relations .

PETEREN - ” - - JRU

% v Moot e i =

© oo orm s pranslation e o
Translate ‘number babeb us;ng‘encodq/aecode
Translate data structures using executée/forsat

-
I]

5. AlgOIlthﬂa '
Alter execution ‘oraer usxng parentheses A
hRewrxte expressions to rewove parentheses:

Write
Write
Krite

algorithm to compute means :

algoritha to do serts
algorlthns to produce graphs

Write algoritlis to do- text éditing
: B Write algorithas for statn.t:.cal functioans
ST . 6. Defined punctions |
: Panction Definition
Create ahd execute niladic tunction
e Creaté and executeé mouadic. function without expl1c1t result
Create and execute monadic fanction with explicit résult
. Create and execute dyadic function without explicit result
) Create and

execute dyulic function with explicit result
Display & Editing .

Dlsplay“entire“functlon
: DiSplay selected lines
Modity lines and dlspiay
Delete lines and display
Insert lines and dispiay
Add lines and display
- * branching-
. - Use Siash for unconditional branch to line number
- : Use~slash-for conditional branch to line nuaber
- USe slash for-conditional -branch: to- label -
: Use .arrow for conditional branch to label . _ . _
Use n-way conditional btanch
Use computed branch to iine numbec
Tteration ""'T’“'
Build single loop u51nq line numbers -
Build single loop using labels
‘Build pested loops
Demonstrate . recursion
Elininate branching via structured programsming
Input/0utput
T Use guad for input
Use quad for output
Use .quote=quad. for input
Usa guote-guad for ouput

-

18 -

USSRV 1

7. Workspaces
A Save workspace -~
* Load wvorkspace
: Copy variables, functions froa workspace
Copy variables, functions froa public llbrary

- -w.. KLlear workspace = _ .. . ; S
Drop workspace ’
Rename workspace using WS1D -
Use LIb, VARS, PNS
Change ‘printiag -precision
Change ‘page width
Change index origin
k]
N
B e —_— .
¢
] .

