RD 144 - 8.36
a TITLE

EnSTITOTION
SPONS AGENCT: POB DATE NOPE

- EDRS PRICE' ©DESCRİPTORS

Beatty, Leslie; And Others
Mathematicis for the Elementary School; Book 1. Teacher's Commentary, Onit No. 53. Revised Edition.
Stanford Univ.; Calif. "Ṣchool Mathenatics Study Group:
National Science, Foundation, Hashingtion, D.C. 64
459p.; For related docùment.s, see SE 0.23 139-143
MF-\$0.83 GC-\$24.77.Elus Postage.
Curriculum Guides; Blementay Education; *Elementary School Matheratics; Grade 1; Instruction; *Instructional materials; *Lesson Plans; Mathematics Educátion; *Number Concepts; Primary Education; *Teaching Guides
*School Mathematics Study Group
IDENTIEIERS

abS TRACT

This teacher's guide for the SMSG text materials for grade 1 considers' ten chapters: sets and numbers, numerals and the number iine, sets of ten; introduction to addition and subtraction, recognizozing geometric figures, place value and numération, addition ánd subtraction, arrays and multiplication, partitions and rational numbers, and linear measurement: Kathenatical background is presented for each:chapter followed by. lesson plans detailing suggested activitiès and questions: objectives, needed materials, vocabularye. and answers to worksheets areincluded. (MS).

* Documents acquired by ERIC include nany informal unpublished
(* materials not available from other sources. ERIC makes every effort
* to obtain.the best copy available. Mevertheless, items of marginal
* reproducibility are often encountered and this affects the quality.
* of the microfiche and hardcopy reproluctions. ERIC makes available:
* Via the ERIC Document Reproduction Service (EDRS). EDRS is not
* responsible for the quality of the original document. Reprdactions *
* supplied by EDRS are the best that can be made from the original.

School Mathematics Study Group

Mathematics for the Elementary School

Book 1.
\therefore

Unit 53

Mathematics for the Elementary School

 Book 1Teacher's Commentary

REVISED EDITION

Prepared under the supervision of the
Panel on Elementary School Mathematics of the School Mathematics Study Group:

New Haven and London, Yale University Press, ins 95.

Copyright © 1963° and 1964 by The Board of Trustees of the Leland Stanford Junior University.
Printed in the United States of America.
All rights resetved. This book may not be reproduced in whole or in part, in any form, without written permission from 'the publishers.
Financial support for the School Mathematics Study Group has been provided by the National Science Foundation.

PRERACE
The increasing contribution of mathematics.to the culture of the modern, world, as well as (its -importance as \& vital part of scientific and humanistic education, haśs made it. essential that the mathematics in our schools be"both well selected and well taught-at aIl levels., from. the kindergarten through the graduate school.

With this in mind, mathematical. organizations in the United States coperated in the formation of the shenool Mathematics Study Group (SMSG). The general objective of ${ }^{-}$ SMSG is the imprọvent of the teaching of mathematics in grades K-12 in the schools of this country. The National Science Foundation has provided, substantial funds for the, support of this endeavor.

* One of the prerequisites for the improvement of the teaching of methematics in our schools is an improved curriculum-one which takes account of the increasing use © mathematics in écience and technology and in other areas: of ktowledge, dind at the, same time one which reflects recent advances In mathematics itself, Among the projects undertaken by SMSG has been that of enlistint a-group of outstanding mathematiciaks, educators, and mathematics feachers • to prepare a series of femple textbooks which would in ilustrate such an improved cufriculum. This is one of the publications in that series.
- The development of mathematical ideas atoong young childrén mist be grounded in appyopriatee experisençes with things from the physical world and the immediate environment. The thext materials formrades K-3 provide for young children an introduction to the study of mathematics tha't reflects dearly this point of view, in which growth is from the concrete to the abstract, from the specific to the general. Major emphasis is given to the explosation and progressive

[^0]These texts for grades K-3 were developed following - the completion of texts for grades 4-6. The dynamic nature of SMSG permitter serious reconsideration of several crucial issues and resulted -in some modification of earlier points of view. The texts for grades K-3 include.approache's to mathematics which appear to be promising as well as approaches whose" efficacy has been demonstrated through classroom use

It is not intekded that this book be regarded as the only definitive way of introducing good mathematics to onildren at, this level. Instead, it should be thought of es a sample of the kind of improved, curriculum that we need and as a soupce if suggestions for the authors of commercial textbooks'. It is sincerely hoped that this and other texts prepared by SMSG will lead the way toward. inspiring a more meaningful teaching of Mathematics, the Queen and Servant of the Sciences.

Based or the teaching experiencé of elementary teachers in all parts of the counitry ant the estimates of the authors of the revisions, it is suggested, that teaching time be approximately as follows:

TABLE OF CONTENTS

Chapter

I. \cdot SETS AND NUMBERS $1 "$
I- 1. Set and Member 7
-I- ? . The Empty Set 12
I- 3. . Pairing and Equivalence 13
I-: 4: Comparison of Sets 21
I- 5. Set with One Member 28
I- 6. Review 30
I. 7.. Counting Sets 35
I- 8: The Number Zero 37
I.- 9.. : Number Perception, Without Counting 38.
I- 10. Numbers and Equivalence 40.
I- 11. Comparison of Numbers 42 .
II. NMMERALSS AND THE NUMBER LINE. 45
II- 1. Arranging Sets in Stuccession 48
II- z. The.Numerals 0 Through 9 55
II- 3.- The Number Line 84
III. SETS OF TEN 92
III- 1.' 'Sets of Ten 93
III- 2. Naming Multiples of.Ten 97
IIİ- 3. Application:` Money 101
©, IIT- 4. Problem Solving with Sets of Ten 105
IV. INTRODUCTION TO ADDITION AND SUBTRACTION 109°
IV $=1$. Joining 113
IV- 2. Joining ${ }^{4}$ Sets and Counting 117
IV- 3. Joining Sets and Adding Numbers 121
IV- 4. .Subsets 130
IV- 5. Removing Sets, and the Remainipg Set 136
IV- $6^{\circ} \cdot$ Removing Sets and Subtracting Numbers 138
IV- 7. Doing and Undoing 149
IV- 8., Problem. Solving 155°
V. RECOGNIZING GEOMESRIC FIGURES 161
V- 1. Familiar Three-Dimensional Shapees 170
V_{\rightarrow} 2. Simple ${ }^{\circ}$ Closed Curves 177
V- 3. Polygons 182
V- 4. Classifying Regions $\cdot 188$
V* 5. Fitting Regions 196霊
Chapter
VI. ${ }^{\prime}$ pLace' value and numeràtion 205.
VI- 1. Cóunting'By Tens and Ones 210
VI-- 2. Spoken Names of the Numbers $\boldsymbol{0}^{2}$
21 Throught 99 213
VI-. 3.- The Kritten Numerals 20° Through . 99°. 215
VI- 4. Eleven, Twelve, and the Teens 222
VI- 5. Order Relations for Numbers
0 Through 99 228
VII- 6. The Hundreds (Optional) 235
VI-. 7. Hañd Numerals ('Optiohál) 239
VI- 8. Application: Money 244
VII. ADDITTION AND SUBTRAC̣TION 25.7
VIF- 1. Partitions and Additions 261
VII- 2. Partitions and Subtraction 274
VII- 3.. Addition, and Sultraction on the .Number Line 297
VII- 4. How Many More? 309
VII- 5. Problem Solving and Equations 319
VII- 6. Addition and Subtraction:
Numbers Greater Than Ten 334
VIII. MRRAYS AND MULTIPLICATION 339
VIII-1. Arrays 341
VIII-2. Multiplication 352
VIII-3. Simple Properties of Multiplication 359
IX.' 户̇ARTITIONS AND RATTIONAL NUMBERS 367
IX- f. Partitioning Sets tnto Equivalent Subsets 370
IX- 2. Partitioning Into a Given Number of 378
IX- 3'. One-half 383
IX- 4. Halves and T'wo Times 390
IX- 5. Onerthird 395
IX- 6. Parts of Regions 401 401
X. LINEA REASUREMENT 407
X- 1. Line Segment, Straightedge $.410^{\circ}$
X- 2. Comparing Line Segments 418
X- 3. Measurement of Line Segments 429
X- 4. Construction of a Ruler 434
X- 5. Telling Time 438

SETS AND NUMBERS,

Why sets? We know that most of an elementary mathematics. "program is concerned with arithmetic, and that this lbegins with counting and addition and subtraction. Why not begin With counting and"addition? Why start with thè idea of sets? These are 'questions that you may, ask before beginning, to teach this chapter, and.such question's demand an answer.
\ count: We count ' 6 cats, or $\div \frac{6}{}$ boys, or σ ice cream cones. Yet the concept of the number, 6 "does not depend on cats, or boys, or tre cream cones. The thing that is common Wo afl of the collections of objects which we count is that they are sets. The notion of set will recur throughout the entire ,mathematical program and it is wise to introduce the term early and to use if effectively in building the notion of number. We shall also see that the simplest despriptions, of additions and subtraction--indeed the classical descriptions-are in terms of manipulation of sets of physical objects.

- The basic notion is that of a set of physical objects. Thus we consider the set of all children in a room, a set (or a bunch) of 'grapes, or, a set of books.' A set is completely specified when its members are specified, and the members of a set belong to it. Thus John may belong to the set of pupils in the classroom, and the teacher is a member of the set of. people in the room. There need be no relation between the mepibers of a set. We may have a set consisting of tivo oranges, an apple, arid an umbrella,

There îs one very speciat set. Suppose a club is going to have a program and the "èmbers are volunteering for the various committees: :Then a, number of sets are automaticafly created: the set of volunteers for the "refreshments committee, the set" of voluntee'rs for the decorations committee, and so on. But what of the set of volunteers for the clean-up committee? We all know
this may often be the empty set. There are no members in, this set. The empty set has many "other descriptions. It is the set of purple cows, or the set of green-haired boys. There is Just one empty' set. Later we will say that 0 妾 the number of members of the empty set.

Another curious sort of set is a set which has just one member. We need to consider se ts of this kind because we are going to use the number one. If Alexander, Balthazar and Constantine are the member's' of a set and Constantine and Alexander leave in a huff, the set which remains has just one member. We will eventually relate this situation to the number sentence: $3-2=1$.

The next task is to prepare for the concept of number. To understand how we do this let us consider a related problem. How do we convey' the notion of red! 'Suppose a. child is beginning to learn about color; and we want to explain the color red. We would surely point to, or touch, all of the red objects around, trying to lead him to conceive of the color red as the property which is shared by all of these objects.

What is our conception of the number $7 ?^{\circ}$ It is surely the \because. property which is shared by all of the sets having '? members*. But this raises a difficulty', Can we talk about - all of the sets having a certain number of members"witheit having the notion of number? 'Even simpler: 'can we decide when two sets have the same number 'os' members without knowing how to count them 2 Can you"discover whether there A are the same number of boys and girls in a room without counting? Can you find out whether there are the same

[^1]

事

number of cups and saucers on a shelf without counting?. The solution to our problem, is clear." He can pair each, boy. with a giirl, : and we can pair each cup with a saucer. In fact, there is ${ }^{\text {a }}$ way of deciding whether or not two sets have the same number of members without knowing anything about number. This procèss is our next-concern. .

Suppose we are given two séts which we wish to compare We may pair each member of the first set with a member of the second set as long as possible. If we run out, of members.
K .; of the first set but not of the second we know. that there are fewer members in the first set than the second; if both sets aré exhausted at the come time we say the first has, as many members as the second, and that the second has as many members as the first, or that the sets are equivalent *; and if the second set is used up first we say there are more members in the first set than in the second. We can describe. these possibilities in a slightiy different way: We try to set up"a one-to-one correspondence fleween the sets. If. we succeed, the sets are equivalent.

For example, if we want to compare the, set of boys-in the delassroom with the set of girls, we can. form coupfes as long as possible. If we run out of boys first, there are fewer boys than girls; if werrun dit of girls first, there are more boys, than firls; if everybody has a partner, then there are as many boys as girls, and the set of boys is equivalent to the set of girls. Notice that counting is. not necessary.

[^2]These manipulations with sets are'ㄹntended to establish the concept of number, Children frequently come to the first grade able to "count" to a hundred or more"; but they may have failed completely to connect the words for the numbers with sets of the appropriate size. our concept of number is just this:. The number of mepbers of a set, or just the number of a sèt, is that property common to all sets equiv"blent to it. To us, four is the property common to all setts equivalentsto

orieto

We see from the pictures above that the set of cat's is equiyalent to thé set of mice-it is easy to. 'set up a one-to-one correspondence between these sets. However, these two sets are not equal. A set of cats is a very: aferent thing from a set of mice. The number of cass is equal (not equivalent) to the number of mice,
$\%$ The notion of equivalence thus únderlies our concept of number, We will see that the notions of "more than" and "Hess than" lead us in a natural way to the idea of Snequality of number:

After the vocabulary and the necessary' notions of set manipulation have been established we begin the process' of assigning spoken names to the numbers ${ }^{\circ}$ (He sometimes call these oral numerals, "This proceeds roughly as follows : We first learn by sheer memory'; (sow rote' drill, at last!)
 sequence of words-which at first is really $\dot{\text { s }}$ sequence of nonsense syilables=-by"toluching successively the members "or' a set, saying the words in succession until every
 word spoken names the number, of the set. Later we replace touching by pointing or just looking, and we think of the names 'rather than saying them. This. entire procedure $\dot{j} \dot{s}$ called counting; and is considerably easier to learn than to explain. The mathematical foundation is simple. For example, ${ }^{*}$ is the number of members in the set. $\left(1,{ }^{*} 2\right.$, $3,4,5,6,7,8\}$.

We develop skill in counting by counting many sets, and we hope that, at this stage, the children will learn to count sets of at most ten object is with relatively few errors. For the smaller numbers, 0, 1, 2, 3, 4, ind 5, we hope fora stronger identification. With enough practice children can perceive, without counting, the number of members in a set having no more than five members. We try to build this perceptive ability by many examples of such sets arranged in different sorts of patterns.

There are two important facts which children should discover in connection with counting. First, the order in which-a set is counted is imamate the same set but starting with a different member and proceeding, in a different order will get the same number. Second, if two set's are equivalent it, counting will yield the same result. . This last fact shows us that the name we assign by counting a settreally depend $\dot{\dot{s}}$ only on the number of there set.

We may notice (but not necessarily point out to the children) that, essentially, we never count beyond ten. Because of our very clever system of numeration we can name the number of members of "any set by repeated il counting setts of ten.

The ordering of sets shows us how to order number. We say that ;5 is greater than 3, and that 3 is less than 5 because, if the members of a set of 3 , are paired off with the members of a set of 5 , there with \rightarrow be members of the latter set left over. Not that if one set has more members than another, then ${ }^{*}$ the number of the first set is greater than the number of the second set; if the first set has fewer members, then the number of the first set is less than that of the second; and if sets are equivalent then they have the same number. The words "more than," "fewer than," and "equivalent" refer to sets. The corresponding words for number are "greater than," "less than, "and "equals:"

3
4. I-1: Set and member

Objective: To introduce the ideas of set and member of set and the use of "these terms" to describe thing is we observe around us.

Vocabulary: Set, member.
Background ${ }^{\circ}$ Mote:
A set is just a bunch of thilasse The things are called members of the set and we say that they belong to the set. 'If there is a pencil, a book'and papers on a teacher's desk, then a pencil is a member of the set of objects on the teacher ts desk, but a chair is not a member of this set. The members of a set may have nothing to do with each other. Thus, te may have a set whose members are an apple, an orange, and an umbrella.

Materials:

1. A variety of small objects: books, blocks, pencils, crayons, sheets of paper," paint brushes, scissors, game boxes, beads, pegs, balls, clothes pins, ceramic tiles, bottle. caps.
2. A variety of flannel board objects: animals, fruit, stars; trees, storybook characters; stick figures, etc., (Exclude geometric shapes at this time.)
4
3. Magazine pictures of collections: family, -- automobiles, telephones, clothing, food, toys, planes, trains and any other appropriate illustration.

Suggested Procedure:
Use the terms "set" and "member" informally but systematically
with the children before any formal class work on sets. For example:

This is our set of books.
Is this your set of sea shells? Is this shell a member of your set?
$*^{\prime} \quad$ Is John a member of the set of children playing ball?

Children are familiar with sets of dishes, silverware;'blocks, tinker, toys, etc. Use these examples when first developing; meaning of the term set. : The followind may be helpful as a guide.

Which childrent helped to'get the table ready for dinner last night?

What do you put 'on the table? (flates, 'glasses, silverware, etc.)
We usually have to be careful with the set of dishes be'cause dishes can break. What do you have. in your set of dishes at home, Angie?
(plates, cups, squcers, etc.)
Angie's set of dishes is a collection of several objects-干--plates, cups, etc..

While Angie lists the objects, you may have flannel board materials ready and place them on the flannel board as each is Mentioned. This activity should keep the ciass's attention and provide reinforcement. Show the children - a collection and ask for descriptions of other collections. The replies may include collections of stamps, coins, sea shells, butterflies. Refer to each of these as a set as well as a collection. Ask the children to look around the rom and describe sets of objects they see. matifirst the children may hesitate because of the new vocabulary. Help them by describing sets and having them guess what they are. Note the game "I'm Thinking of a Set" under "Further Activities" of this lesson. ..Some of the following sets may be desćribed: chairs, tables, books, paint brushes, 'crayons', science-table dịslays, game boxës. These descriptions of stets should be explicit.

We have many books in our room. How can we
talk about these dooks? (A'set
or collection of books in our room).
Let's slqok at this set-of books in the room.
What books do you see? (Set of reading books, library books, etc.)

There is Aittle difficulty in introducing the term
"member" The children are members of the class; they belong toit. Some children hay belong to community recreatifon groups. Soldiers are members of the Army. Each child is a member of hif family. The family ist a collect on of people; each person in the family is. a member of his family.

The idea's of set and member should be used throughout the day in classroom activities. The vocabulary can be use - as "opportunities artise. $^{\text {b }}$

Furthef Activities:

1. Art activity: Have children draw pictures of sets and orplly name their members. Suggestions: child's own fahily, story-book family, toys, things that grow in fe yard.
2. Orfl reading of a story dealing with a family or set " "of some sort.
3. A dass project of creating a science-table display with collections of rocks, sea shells; leaves, andं butgerflies.
4. Game: (This is time-consuming.) The teacher says,

- "I'm thinking of a set of - - - ?" If the answer is correct, the child becomes the leader and thinks of a set If he is incorrect, further, description is , given until the setis identified.
5: Captions posted around the rdom:
Here is a set of things that grow.
This is a set of shells.
Here is a set of rocks.
This is picture of the members of Sue's family.
 vocabulary introduced. (The set of days in the week, the set of days we go to school.)

7. Four or five children are assigned a show-box or cigar box as "homeWork". They are to bring a set. which san be used for the classwork the following day. Some discussion may be needed conc̀erning size, quantity, etc., of tems witich could be brought for this purpose. This actis ity is helpful in providing a variety of materials usedzand serves in a small way to familiarize parents with the "childis work.

> The following gesson is suggested in conjunction with the family" preserited in most children? s readers. Use illustrations and make references to this family to clarify the discussion.

We. read a story aboutia femily today." The family is a.collection of people. Is that a set? (Yes.) Who were the members of this family? (Use.flannel board material or pictures to \}uggest mother, father, etc.) Each 'one in the family is an important member of it. Just as each person in the family is a member of that set, so is each thing in any set called a member (e.g., children are members of our class.) Let's think of some of the sets we found in our room and name thein members. (Review the sets, previousiy discussed and decide what their members are. First describe the set; then name its members..)/

Point out that some things are not members of some sets, For instance: The oooks are not members or the set or paint brushes; Johnny is not a member of the set of girls. Children enjoy answering such questions as: "Is the flag a member of; the set of books?"
Bos sure to emphasize that the members of a set need not be the same kind of objectes. You might use a flannel, board illustration of the follawing sort.

I-2. The empty set.

Background Wote: "
:Zero is the number of members of the' empty set.
Materialis: 1. Small objects: disks, paper clips, beys or like material.
2: 'Four containers (cavered boxes; bass) in which to place collections of materidis?

Suggested Procedure:
$\rangle_{A}{ }^{\circ}$ concept of the set with no members can be developed. through an activity such as the following:

Place collections of materials in three of the four boxes. Beginf the fesson'by observing the four boxes and saying that weare looking for a special set. in one of the boxes. Hiave one child at a'time select the box that he thinks is the : one that. they are trying to identify, Ask him to ope the box and describe the set of objects in the box and aiso to name the members of the set. (Sets may consist of members which are very dissimilar, they may be dissimilar only in. color, e.g., red, yellow, and blue pencils, or the members may be similar.) . The "special" box will have a set which. has no members. After, all bodxes are open, observe the sets in the four boxes.

What box contained a set with no members? (Indicate the box.)

When there are no members'in a set, if is.
境 1^{-}called the empty set.
Then ask the children to iescribe other sets in the room, \cdots
which have no members, for example, the set of grandfathers, ${ }^{\circ}$. the set of watermelons, the set of tigers. You may wish to use children's pockets instead of boxe's or bags, to repeat the kind of activity and again observe the set with no memberst,

Objectives: To introduce the idea of pairing members of sets 'apd the idea of equivalence of sets.

Vocabulary:
Pair, equivalent, as many as.
Background Note:

- *. Two sets aree equivalent if we can pair each member of the fisst set with just on member .ofo the second set in such a Way that every member of the second set is used. The notion of equivalent sets is fundamental in building number concept, and the most important fact about counting is that if two sets have the sqme number of members.then they are equiv-alent.-

$$
\begin{array}{ll}
\text { Materials: } & 9^{\prime \prime} \times 12^{\prime \prime} \text { paper, crayons, name cards, } \\
\text { materials for the flannel board, small } \\
& \text { objects for individual use. }
\end{array}
$$

Suggested Procedure:
The following lesson concerns pairing the members of a set of children with the members'of a set. of' name cards. You may prefer to use a set of boys and a set of girls, or \check{a} set of cups and a set of saucers, or a set of children and a set of chairs, or some other one of the many pairing n situations which occur in the classroom.
-Have name .cards for' orly those children present so that sets of cards and children are equivalent.

I had a set of name cards for the children in our class.". I have removed the set of * $\because-\because$ cards of the children who are absent. What cards do I have now? (The set of name cards of the children here.)

Ask the children to suggest ways that the cards might be passed out.

As I hold up your card, please come; get the card and put it on your desk.

We say that each member' of the set of cards - is paired with a member of the sét of children. Is each name card paired with a childs (y̌es.) Is'each child paired with a name card?. (Yes.) When members of one set are paired with members of another set and there are no members left over, wैe say that there are just as nany members in the first.set as there are in the second set. We- call these equivalent sets.

At the top of the flannel board put a set of objects. This.
: 1.. - set.might consist of two bananas, two apple's, an orange and a lemon; also, another set of geometric shapes consisting of two circles, two triangles and two squares. Have the two sets described.

> Let's see if. we have equivalert. sets of fruit and geometric shapes. What can we do to find: out? (Pair the fruit with the shapes.)
> Alice, will you please start the pairing using one member of each set? Chopse any geometric shape and any kind of fruit that you would like.

Continue this process until the sets are paired. Stress the fact that here it makes no difference which member of one set you-choose to pair with a member of the other set.

Are the sets equivalent? (Yes.)
On the flannel boakd, place a set of five rees and directly below a set. of seven cireles so that the first five members i of. each set afe obviousily paired. Haye the sets described.

Is the'set of trees equivalent to the set $\ddot{\vdots}, \quad$ óf clrcles? (No)

What can you 'do to make the. set of trees equivalent to the set of circles? (Supply more trees to pair with the circles, or remove some of the circles.)

- * Each child will rued $\$$ or seven set objects on his
desk. You win steed an equal number of objects for the flannel board.

Let's see if you can pair the members of a set' on your desk with the members of a set I put on the flannel board.
Then you should place one object (rabbit) on the flannedtboard.
Ask the children'to, put 'their equivalent sets in: the middle of their desks 'so that you can 'quickly' see them.

I will put another object with my set. Now I have a new set. Is your set equivalent to my new set? What will you need to do to your set?

Remove the objects and start again with a set of two rabbits. This time, remove a member of your set and continue ẫ before... Use no bore than two or three members in your set so that the child can, see it without counting.

- Distribute $9^{\prime \prime} \times 12^{\prime \prime}$ papers that have been folded into thirds. Have each child make a picture of a set on the left third of his paper and fold that third so that his work does not show. The paper is then passed to another child who makes a set on the right third without looking at the other set.

The illustrations can then be collected and used for group work in finding sets which are equivalent. If desirable,

- they could be marked.

[^3]Pupil's book, pages . $1 ;$ 2, 3: Pair members of the sets by dräwingilines. Decide whether or not the set's are. equivalent:
pupil's boo roget: Show a set of things on. the right Which is equivalent to the set on the left t. Children. may use ${ }^{\text {n }}$.s for members of the set.
Further Activities:
'Many classroom situations offer examples of pairing:' the pairing of chairs and enflym, the pairing of books and children in the reading circle,' the pairing of children for singing g ames and for relays.

Are-the sets equivalent?

Are the sets equivalent?

20
Show eqüivalent sets.

I-4. Comparison of sets ${ }^{\text {C }}$,

Objective: To introduce the idea 'that a set may have more' or fewer members than another ¿et.

Vocabülary: More than, fewer than, not as many as.
Be"ckground Note:
'This lesson continues the work on' pairing members of sets. If sets are not equivalent, we find that one set has more members than another, and that the latter has not as many members as, or fewer members than, the former. This is preparation for the concept of inequality of numbers. We shall later say that a number is greater than anather if a set corresponding to the former has more members than a set corresponding to the látter. We shall say that a number is less than another if a set corresponding to the former"has Fewer members than a set corresponding to the latter. We use the terms "greater than" añ "less than" for nupbers, and the terms "morie than" an风 "fewer, than" for sets, These distinctions need not be emphasized with the pupils, but you should be reasonably consistent in your use of these words in this way.

Materials: Buttons, clothes pins, or other small, objects, pictures of four story-book characters (Goldilocks and the Three Bears).

Sugges'ted Procedure:
You "may want to introduce the concept of "more than" first, waiting a day or two before considering "fewer than". Give each child a handful of buttons and clothes pins,
have these already placed in the individual boxes orm envelopes. Include a greater number of buttons. Have "the children describe the sets and ask that the members of the sets be paired on their desks. . Offer no help except when the pairing idea is misunderstood.

Were you able to pair all the members of your set of,buttons with all the members of your set of clothes pins? (No, there were some buttons lef't over.). Yes, we say that your set" of buttons has more members than your set of clothes pins. - Your set of:ciothes pins does not have as many members as your set of buttons. Which set has more members, your set of buttons or your set of clothes pins? which set does not have as many, mem--bers as the other set? We say there are fewer buttons. Let's look around our room. Can you see a set that has more members than another set? Fewer members than another set? Pupil's "book, pages 5, 6:' In each box on the right, show a picture of a set that, has more members than the set in the box on the left.

Pupil's book, pagels 7, 8: In each box on the right, show 'a picture of a get with fewer members than the set in the box on, the left.

Further Activities:

1. Ask three children to stand by the flannel board. Ask añother child to. give a story character picture to each of the three children: (There should be four pictures.)

Is there a child for each character in the story?' (No.) ' B
Are there more children than there are story characters? (No.)

Are there as many children as there are story characters? (NO .)
Are there fewer children than story charact (Yes.).:
Ask the three children to put. the pictures back on the flannel board and have another child give the piotures to the three children. Encourage this child to pair the pictures and the children in a different order.

Do we now have as many children as story book " characters? (NO_{4})

Are there fewer, children than story characters? (Yes.)

I How many more story characters than children do we have? (One.)
2. Choose some set of objects in the room and ask the children to look around for sets that are equivalent, for sets that have more•members, and for sets that have fewer members.

3: Ask each child to fold a piece of paper, and to draw a set on one half of the paper. Then ask each to pass his paper to another pupil. That pupil is asked to draw a
 set with more (or fewer) members.

I-5. Set with one member

Objective: To introdace the idea of a set with one member.
Vocabulary: (No new words.)
Materials: Small objects, chalkboard illustrations, materials to be used on the flannel board.
Sfiggested Procedure
-. The concept of a one-member set can be easily introduced if it has not been considered in previous discussions. The following activity may be helpful.

Today, let's 'have all the girls wearing red stand. (The teacher should now be seated on a chair.) Now, will the set of bcys. stand? set Firls stand?' set of teachers stand? (Reactions at this point will appear from the class.) Let's all be seated.

Yes, I am the only ${ }^{2}$ member of the set of teachers in this room (assuming that there is not more than one teacherl. Your sets have many members but my. set has just one member. Can you think of any other sets. in our rocm with just one member?i (The set of pianos, the set of teacher!s desks,. etc.) Sets can have many members such as the set of the children in our school; or they can have just a few members or just one member or no members at all. Is the set of elephants in our room, a set with one member? (NO: There aren't any. elephants in here. It's the empty set!)

The following activities may be fored for further development of the objective.
$\$$

38

Further Actiyties:

部
θ

Objectives: To review the concepts of pairing, equivalent, more than and fewer than.
(No new words.)
Materials: Pencils, scissors, or small objects.

- Suggested Procedure:
- Your children do not need this lesson if they understand clearly that they can always decide whether one set is equivalent to another, and whether one set has more or fewer members than, another, by, pairing members. If the children compare sets by counting accept their answers but continue until they are sure that the comparison can be made without counting.

On a deal by the door, place as many pencils as there are boys in the class and as many scissors' as 'there are girls in the class. As the children enter the room, ask each boy to take a pencil and put it on his desk and each.girl to 'take scissors and put them on her desk.

We discovered the other day when we paired, our set of name cards with the set of childrem in our room that we had just as many members in one set as we had in the other set. Do -you remember what we said about these sets? (Yes: equivalent.) We also discovered that two sets area', tramways equivalent. We know that a set may have more members than another set or fewer members than that set. Let's check today to see if our get of boys is equivalent to the set of girls. If the two sets are not equivalent, then we can say that the set of boys has more or fewer members than the set of girls.

Have, the children pair the members of the two sets. (pencils and scissors) by asking 'a boy and a girl to. go to the teacher's' desk together and place their materials side by side. Continue until all children have gone to the desk. In case there are more boys or more girls, of c.ourse, they will not be able to go in pairs.

We have said that sets are equivalent when there are just as many members in one set as there are in the other. Do we have equivalent sets of boys ańd girls?

Is the set of pencils equivalent to the set of boys?

Is the set of scissors equivalent to the setor girls?
${ }^{4}$ Is the set of pencils equivalent to the set of, scissors?

If the answer is "No," continue, with these questions.
Can we say that the set of pencils has more

1. . members than the set of scissors?

Which set has more members?
How can you tell?
Can we säy that one set has fewer members
than the other set?
Which set has fewer members?
How "can you tell?

- Fupil's book, page 9 Show set on the right equivalent to the set on the left.
-rupil's book, page 10: Mark the set with more members.

Pupil's bpok, page 11: Mark the set with more members.
. ${ }^{*}$ Give each child a large handful of beans and a handful of. toothpicks por peas, pebbles, or acorns) and ask them, to compare the sets.

32
Show ạn equivalent set.

ERIC.

Mark the set with fewer members.

Objective: To help children learn to count sets of as many as ten members.

Background Note:
This lesson begins the process of naming the numbers. The counting process developed in this lesson enables us to find the name for the number of members of any set of at most - ten members. Care should be taken that this is more than a rote 'process:" It is necessary to take particular pains in this and the following lessons to bring out the underlying concepts. The number of members of as et is the property common to all sets equivalent to it. Thus 3 is-

* the property common to all sets equivalent to

and "three" is the name of this property. Counting is essentially a way of remembering the name of the number. of members of a set. The important facts about number, that equivalent sets have the same number of members and that sets having the same number of members are equivalent, must be continually emphasized.
? For many classes this lesson is entirely unnecessary. "In ". any case; this is the appropriate time to check children's ability to count sets of at least five, and preferably ten, objects and to help those children who need further practice. The lesson below is given in abbreviated form because many classes will need little or no practice of this kind.
-Vocabulary: (No new terms)
Materials: Sets of small objects.
- Suggested Procedure:

An important step in" developing, ability to count is to know, In order, the spoken names of the numbers from one to ten. There are many ways of aiding the memorization process. Such nursery rhymes and songs as "One little, two little, three kitle Indians," "One, two, three, four, . five, I caught a hare alive" and: "One, two, buckle my shoe" are very usefui. At any rate, the child must learn to say" the words in sequence. For many children; the rhymes are primarily nonsense rhymes at the early stage; even after attaining perfection in Saying the words a child may have little conception of the meaning of, say, eight.

In beginning to count sets of objects a child must touch each member of "a set in sequence, saying in sequence the names of the numbers. (The child is actually pairing the members of the set with members of a set of numbers.)
The name spoken when the last member of a set is touched designates the number pf members in the set. Later comes the "point and say" stage, next- the stage of pointing and thinking and finally, the "look and think" stage.
During counting practice the child should be led to realize that the arrangement of the set being counted does not matter, That is, if he counts the set, then rearranges it "and counts in another way, the same number is obotained. The relationship between number and equivalence' should be constantly emphasized: , If two sets are equivalent then they havé the same number of memqers, and if two sets have the same number of members then they are equivalent. Thus, if a group of boys is counted and the same number of giris is counted, we are sure that we can form couples with no one*'ieft over.
This entire, development is accomplished by a great deal of practice which should not be confined to the period set aside' for the mathematics lesson. Children shoủd adont sets of chairs, sets of children, sets of toys, setis of desks, and so on as part of their everyday classroom activities.

I-8. The number zero
Objective: To understand that zero, is the number of members of the empty set, !
Zerom.
Materials: A. -set of five' objects; egg., pencil, crayons eraser.

Suggested procedure:

Place the set of objects on a demonstration table. Have children grouped around where all can see." Question children concerning the number of the set (five). Ask a child to come up and take an object to his chair. Repeat, each time asking for the number of the set that remains.

When the last object ' is removed, ask about the set remaining on the table.
," "What set do we have now on the table? (The empty set.)
Do you know a number that tells hot many things there are in the empty set? (zero.) . Zero, is the number that tells us how many things there are in the empty set. 。

Continue with illustrative questions, egg.:
What is the number: of giraffes in our room today? (zero.)

What is the number of bays in this room who have green hair? (Zero.)

- Count a set of objects and put them in a grocery bag. Remove one object at a time and ask a child to tell the number of objects still in the bag. Continue until there are no objects in the bag. Reinforce the idea that . A; zero is a number.

4

I-9. Number perception, without counting
Objective: To help children perceive, without counting,

- the number of objects in a set of no more than five mëmbers.

Vocabulary: (${ }^{(N o}$ - new words.)
Materials: Perception cards, in various patterns, sets zero through five; flannel board materials.,

Suggested Procedure:
Use perception cards (without numerals) of sets of from, zero خ through five members. Perception cards should have different arrangements of the members of the sets:

Give each child five objects. Show a card and have the child put of his desk a set equivalent to that displayed. on the card.

Put a set of objects on the flannel bpard. Have ghildren show equivalent sets at their desks.
Display a perception card very quickly; then conceal it and have children show equivalent sets at their desks.
Display a card, cover $1^{\prime \prime} t$, and have a child give orally ${ }^{\infty}$ the number of the set that was shown.

Further Activities:
There are, many opportunities to point out equivalent sets in the classroom and to 'encourage children to perceive the number of the set without counting. For instance, if there are two sides of an easel, two children can paint. If there are four balls for the recess period, foür children may take out balls. If there are three fish.in a fish.bowl, put, three books about fish on the table beside them-and encourage children to see "three," rather than "one, two, threé"

NOTES

- I-10. Numbers and equivalence

Objective: To use simple story problems to emphasizés the

* fact that equivalent sets have the same nu number of members are equivalent.

Vocabulary: (No new words.)
Materials: Set of small objects for the children.
Suggested Procedure:
The problems given are samples. "There will be no difficulty in devising other similar problems. Small objects and dramatization can be used to involve all of the children. The problems are to be read or told to the children.

1. There were 6 cups on the table, and there was a saucer under each qup. How many saucers were on the table? (Six.)
2. Fiv children were going to draw pictures and - each child wanted a pencil. "How many pehcils did the children need? . (Five.).
3. Nape were seven children at a partz. Each
 eqchthato How many feathers were there?
4. . Three tithle girls had a otes natify: The set of girls was equivalent to the set of dolls, How many dolls were there?. (Thrge.)
 each cat had a rat; and each.rat had a mouse. How many mice were there? (Four.) orat thei set of mice equivalent to: the set of dats? (Yes.) \because
5. John had three guinea pigs, semen marbles, and two tops . 大David had as many mice as Johrf ha márbles. How many mice did David have? (Seven:).
6. ' on the table are a set of bottles and an equivalent set of straws. There are. 8 bottles. How many straws are there? (Eight.). Is there a straw for each bottle? (Yes.)
7. Six toy soldiers are on the table. . Six toy guns are on the floor. Is the set of guns equivalent to the set oof soldiers? (Yes.)
8. Wow many balloons are in a set of balloons which is equivalent to a seton 7 chaldaren? (Seven.)
fo. H $\phi \mathrm{w}$ many bows are in a set of bows if there Is only one bow for each girl and there are $5^{\circ} 4^{\wedge}$. girls?. (Five.) Is the set of bow's equivalent
to the set of girls?. (Yes.)
9. Six boys are playing with boats. The set. of boats has ten members. Is the set of boats equivalent to the set of boys? (No.) sam
10. Sue had 4 . bracelets. Three girls came to play with Sue. Is the set of bracelets equivalent to the set of girls? (Yes.)
11. Each child has at least one crayon, and some children Have two crayons. Is the set
of crayons equivalent to the set of - children? (NO_{o})

- 14. Jinks class has this set of animals: a turtle, \& guinea pi\$, a hamster and a rabbit. The class has 5 cages. Is the set of cages equivalent to the set of animals? (No.)

Further Activities:

Ask the children to make up their own story problems about
: 'numbers and equivalence, and dramatize these.

I土11. 'Comparison of numbers

Objective: To introduce the concepts of greater than, less than.

Vocabulary: Greater than, less than.

Background Note:

To compare two numbers, say 6 and $\overline{3}$, we choose a set of 6 members and a set of 3 members and by pairing find that the first set' has more members than the second. We therefore say that 6 , is greater than 3 and that 3 is less than 6. We use the terms "more than" and "fewer than" in connection with sets, and "greater than" and "les's than".. in connection with numbers. You skald not overemphasize linguistic precision' with the children, but \qquad should be precise in your ow use of these words.

Materials: Sets of small objects for the children.

Suggested Procedure:

Have the children build sets, with 2 and 3 members. Ask the children. to put the sets at the front of their desks."

Which set has more members? (The set of * 3 members.) Why do we say the set of 3° members has ̀ more members? . (If we pair members of this set with' those of the . set of $̀$, we have a member left over.) Since a set of 3 things has more members than a set of 2 things, we say that the number 3 is greater than the number 2. Next, notice that the set of 2 has fewer members than the set of ${ }^{*} 3$.

Why do we say the set of, 2 members has 1 fewer Members? (If wen pair members of this set with those of a set of ${ }^{-1}$ things, m we run out of members before we have finished pairing.). When a set has fever
members than another; we say the number
.for that set is less than the other
number. Is 2 less than. 3? (Yes.)
${ }_{\text {Repeat }}$ with several other examples.

- Ask the children to close their eyes. Then ask them to think of numbers greater than 2; Do not limit them to the number '9 but insist that each child explain why his number is greater. (It is the number of a set with pore members than 2.)
Ask for a number less than ${ }^{9}$, and why it is less. Repeat with other numbers.
- Have the children use small objects to dramatize the - solving of word problems. (These are supposed to be, both vocabulary drill and mathematics.) For example:

1. Johnny has 3 marbles and Jim has 5 marbles. Which boy has the greater. number of marbles? ('jim). If we paired John's marbles with Jims marbles, which boy would have some marbles left over? (Jim)
2. Sue has four dolls. Sharon has fewer dolls than Sue. . How many dolls does Sharon have? (Three, or two, or one; or zero r)
3. Max has 4 marbles and Frank, has Gs marbles. Jim has fewer marbles than Frank, büteridim has a greater number of marbles than Max. How many marbles does JIm have? (Five.)

$$
\begin{aligned}
& \text { 4. Matilda has one bracelet, The number } \\
& \text { of bracelets Jane has is less than the } \\
& \text { number of bracelets Matilda has. How' } \\
& \text { many bracelets does Jane have? (Zero.) }
\end{aligned}
$$

Chapter II

＇NUMERALS AND THE NUMBER LINE

Backğround

This chapter has several objectives．First，we wish to teach children to recognize and to，write the numerals： $0,{ }^{\prime} 1,2,3,-4,5,6,7, \times 8$ ，9．Each of these symbols must be connected with the correct spoken word and with those sets having the correct number of members． It is worth noticing that children in the fIrst and second grades＂have to establish the association of four different sorts＇of objects＇with each number．For example，they
 eight members，with the symbol＂ 8 ＂，with the written word＂eight＂，and with the spoken word＂ate＂．At the same time children are learning other names for 8 ，such as i $4+4$ ， $9-1$ ，and so on．Each of these associations must be established by many different experiences．

Second，we wish to reinforce the connection between
\rightarrow comparison of sets and comparison of numbers．＇We recall that one set ${ }^{\circ}$ has fewer members than another if＇，when the
 members of the first set are paired with the members of the second，there are members of the latter left over． This relationship，between sets leads to a relationship
－．between numbers．We say that 5 is greater than 3， and that 3 is less than 5 because if the members of＊ a set of 3 are paired with the members of a set of －5，there will be members of the latter＂set left over．？ Recall，that if one set has more members than another， then the number of members of the first set is greater： than the number of members of the second set；if the first set has fewer members＇，then the number of members of the first set＇is less than that of the second；and if sets are equivalent then they have the same number of members． The：words＂more than＂，＂fewer＂than＂，and＂equivalent＂
refer to sets. The words" "greater than", "less than", and "equal" refer to numbers.

Lastly, this chapter begin's the development of the concept of the number line. At. this ${ }^{*}$ stage we are trying to help children think of the numerals $0,,^{\prime} 2, \ldots 3 ; 0^{\prime}$ $4,5,6_{4}, 7$, 8 and 9 as equally spaced labels on a line. We put arrows on the ends of the line we draw to * help children. understand that, a line extends indefinitely in both directions, but the picture we want to give now is the following:
"oms

Be sure that the understand that the numerals are associated with the number of steps from 0 . The "starting point" is 0 ; and each number is the number of "steps from the starting point".

$\because 4 \times 2=8$

Without going into details, these pictures indicate that the number line will be used to motivate the introduction of negative numbers, to motivate the introduction of rational numbers, to emphasize that one member may have many names, to illustrate the notion of addition and its properties, and to give an interpretation of multiplication. We use the number line, in -this chapter primarily to : - reinforce understanding of the natural ordering of the numbers, but there are many other pedagogical uses for the concept. There are also profound mathematical. reasons for the early introduction of the number line. We are associating an algebraic object ('a number) with "a'geobetric object (a point'), and this foreshadows' the close connection between algebra and geometry winch was. discovered by Descartes. and called analytic geometry: IMPORXANT NOTE: This chapter does not require that the children be able to "rite numerals, but they will be required to write numerals in Chapter 'III. You shotila teach the writing of the numerals. in the, writing periods but not until. children hose the understandings and abilities developed by -the end of Section II-2.

$1 \quad \therefore 1$

II-1. Arranging sets in succession

Objective: To put sets with 0 "through 10 , members in order so that each non-empty set has one more member than the set which precedes it:
Vocabulary: (Review) order, more than, fewer than.
Materials
Materials to be used on flannel board, includeIng numerals and pairing symbols or pieces of string (or similar materials for the bulletin board or the magnetic board); sets of objects - for children; pennies (real or play money).

Suggested Procedure:
Place five sets of objects ̈ ranging from, one to five members on the flannel board in some such arrangment as sets of three, one, two, five, and four members. Use a left to right arrangement.

Ask which" set has fewest members. Agree that. the set with one member can be at the left.

Next. point to the set with three members.
Does this set (the set"with three members) have more members than the set with one member? (Yes.). Let's place it at the right of the set with one' member.

Is there a set which has more members than this set (indicating the set with one member) and fewer members than this set (indicating the set with three members)?

Ask where the set with two members belongs. Bringo.out by pairing that it has one more member than the set with onermember, and one fewer member than the set with three members. Place the set with two members between that'. with one member and that with three members.

Complete the arrangement as show, using the techniques suggested above. You may want to look for the set with the most members next, and then fit in the remaining sets. Use a flannel pairing symbol or a piece of yarn to show the pairing between members of the set with one member and the set with two members. Cover the set with one member and the pairing sycol, and ask about the set of two and the set of 年hree, Proceed in the same way until the display, is complete.

Ask if there is any set with fewer members than the set with one member. Try to bring out that the empty set belongs on'the left-hend side. (No picture, of course.)

Pupil's book, page 12: Missing'sets are-to'be drawn:
Further Activities:
'Give each child fifteen pennies (real or play money). Ask him to make a set of one, and then make, to the right of this.set, 'a'set of three. Ask if there is a set missing between the set of one and the set of three z_{2} Continue working until each child has arranged sets of penniés as follows:

Ask the children-if, they" know a coin that is worth five cents. Bring out that five cents is worth just as much as one nickel:
CAUPION: I not say that five centis equals one nickel. We use "equal." only in sense of logical identity. "

Draw the missing seets.

			$\begin{array}{r} 0 \\ \therefore 0 \\ 0 \end{array}$		$\begin{gathered} 0.0 \\ 0.0 \end{gathered}$

61

- Now extend the ordering, of sets to include those with' 6, 7; 8, 9 and" 10 members". Use a procedure similar to the one you followed for sets with not more than 5 members.

Pupil's book, page 13: In each row there is a set missing Draw a set that fits..

- As a further activity, scatter a set of objects with $\%$, $7,8,9$, or 10 members on a small rug of towel." Ask . a child to pick up a subset which he can name immediately and begin his counting from that number. Each child should be, encouraged to pick up the subset he identifies first rather than to look for a particular subset. Some children might pick up the first set and then recognize the remainder set without counting and then add the two numbers. Some children will also determine how many members in a set, by recognizing three subsets and adding these three numbers.
- The teacher can make cards that show sets' of 6,$7 ; 8$, : 9, and 10 in a variety of arrangements.. Each set should have a minimum of six arrangements so that children do not. . just learn a particular pattern. Sets -should be constructed on the same color of card, preferably with the objects dram alike to prevent association of a given set with ${ }^{\circ}$ a given object shape on card color.

$\because:$	\%oo:	\because
\because	\because	\because
\%	$\vdots:$	\%

Display the cards in the same way that the flannel $\frac{1}{}$ board objects were shown in the earlier lesson. - At times when' this work is being done 'ask a child to "think out loud". while he is finding out how many. Children may be encouraged to use these cards in an activity period on their own time and develop some of their own games that will help them learn to recognize these sets.

II-2. The numerals "O through 9

Objective: Tot associate the written numerals 0 "through $\dot{9}$ with their corresponding numbers, and to order these numerals.

Vocabulary: Numeral.
Background Note:
This serateon has been divided into three parts: the numerals
0 through, 5 , the numerals 6 through, 9 , and the words for numers'from zero through ten. You nay wish
to introduce the complete set of numerals, 0 thru ugh 9, "at one time rather than in two parts. Feel rue to make this modification if appropriate for your class.

Materials: Peg board, flannel board, numeral cards (0 - 9), blocks; books, counters, brushes.

Suggested Procedure:
Part I- The numerals. 0 through 5
Tell the children that many kinds of marks can be used to tell how many. Make a set of marks (/////) and tell :

- $\dot{\xi}$ child to bring a set of books with that many members to the front of the room. Ask another child to bring a set of blocks whose number of members is the same as this set of marks $\left(0^{\circ} 0^{\circ} 0\right)$. Ask another child to bring th th th th counters. Ask another child to get $\Delta \Delta \Delta \Delta \Delta \Delta$
- brushes. Identify the number in each sot as it is brought to you. (5.)
Ask each child to place on his desk a set of objects which has as many members as the one displayed.
Introduce a numeral card for 5. Explain that the
figure is called ̀ a numeral, that it is a special mark for the number five, and that it is read "five".
- Show a word card with Betty (or the story character from your reading series) on it.

Is this word readiy' Betty? Does the word have curly yellow hair and a smiling.face? (No.)
It is just betty ${ }^{\text {s }}$ s name.
A numeral is the name of a number. This
(pointing at the numeral cara) is a name for
five. "Five",(written on the chalkboarḍ) is.
aņôther name for five.
. - Have ordered sets from 1 to 5 on the peg baard. .Leave some space at the left. Have children locate a set of 4 'spools on the board. Have the numeral placed below the set © of 4. Continue with the introduction of other sets and the numeral cards 1 to 5 . Ask where the numeral for the empty set belongs. Place it to the lef't of the numeral. 1 . on the peg board. The flannel board and Akboard can be. used to vary the procedure. Order the sebs from left to right. Use peg board or spool board displays to relate sets and "numer'als.
Pupil's book, page 14: Ask the children to draw a line from each set to the numeral that names . the number, of the set.
Pupil's book, page 15: Ask the children-to draw a line from Pupil's book, page, 16: Ask the chilidren to ring the numeral that names the number of the, set.
Pupilis book, page 17: Ask the children to ring the correct numeral.

Ask the children to mark the numerals for numbers greater than that named in the lefthand box.
Papil's book, pages 20 and 21: As for 18 and 19, but 1 "less than".,
Pupil's book, page 22 : * As for 18 , and 19. Pupil's book, page 23: As for 20 and 21.

Ring thé coffrect numeral.

3	2	2	x
4	0	5	
1	2	4	0
5	4	0	1
0	3	5	2
2	0	4	1

Which numbers are greater?

3	2	5	4
4	0	5	$木$
1	2	4	0
5	4	0	3
0	3	5	2
2	6	4	3

$$
\begin{array}{|l|llll|}
\hline 4 & 2 & 1 & 0 \\
3 & 5 & 2 & 1
\end{array} \left\lvert\, \begin{array}{llll}
1 & 2 & 0 & 3 \\
3 & 1 & 3 & 0 \\
\hline 0 & x & 6 & 0 \\
3 & 5 & 2 & 3
\end{array}\right.
$$

4	2	x	x
3	5	2	$木$
	2	0	4
3	3		
5	3	0	
	1	4	0

Part II - The numerals 6 through' $\underline{6}$

If you did not introduce the numerals for $6,7,8$ and
9 at the beginning of the lesson you'should now repeat the same, sort of procedure you used there. In either case, you should keep a display on the chalkboard, flannel boardor bulletin board of the following sort.

For this lesson it is essential for children to be able to count on from a gi.ven number so that when a set is recognized the chitadean count the adaitional members of the set without stayting again at one.
Drestribute $\overline{7}$ to 20 objects to each chila. Have chila exrange the set on his desk so that mefloers of the set are not touching: Without moving any of the objects; ask: chilaren to frame -30 members of: the set then count. the rest of the set. "Frame 3, 4, or ? members of the vet on the denk:- Increase or decrease the number of objects with which a chije is working-and repeat/the work. Continue the work by asiking a-child to fiame the Aumber of members which he cariname without counting. Then ask the child to push thoseosjects aside and count the rest of the set. Some chilarren mayy push as ạe tae first set and recognize the nimber of members stinion the desk and in effect, add the nümbers.

Pupil's book, pages 24 and 25: Ask the child to ring a subset within each set whose number he can recognize without counting. Then, he identifies'. the number of the set and writes the numeral for that number in the space provided: (You can expect a child to recognize no . more than 4 objects without counting.)
Pupilis book, page 26: Instruct the children to connect each set with the appropriate numeral.
Pupils book, pages 27, 28, 29, 30, 31:
Have the children ring the correct numeral;

- Pupil's book, page 32: In each box of two numerals, ring the one which names the greater number.
"Pupil: ${ }^{\text {colok}}$, page 33: In each box of two numerals, ring

Pupil's book, page 34: Read the numeral at the center of the doughnut. Mark each numeral which names a greater number.

Pupil's book, page 35: Read the numeral at the center of the doughnut. Mark each numeral which names a lesser number.

Ring the correct numeral.

Ring the correct numeral.
\because

Ring the.correct numeral:

1	1	6
1	1	8

Which number is greater?

32
10

Which number is less?

$$
\begin{aligned}
& \begin{array}{r}
17 \\
268 \\
5 \\
5
\end{array} \begin{array}{r}
2 \\
\hline
\end{array}
\end{aligned}
$$

Further Activities:

1. The following game may be made for use by two children \because as $d r i m$:

- Make \hat{a} sets or cards $c^{\prime \prime} \times 3^{3} . "$. which have the "mmèrais 0 to $\dot{9}$ on one side; one set will have : X. on the reverse side and one set will have 0 on - the reverse side. Make a tick tack toe chart approximately $9^{\prime \prime} \times 12^{\prime \prime}$. Fill in the boxes with nine of the words zero to nine. One word must be left off on each card but the numeral should be included $2 n$ the cards..
 cr 0. showing. If. a word has already been used the $7^{\text {hilda }}$, gets another \ddagger urn. A score is made when one chili has 3 XI or 3 orts in a row -a sin tick tack. tole.

\cdots

2. Give each child a se: un numeral cards. Show sets of objects on the flannel board or on the chalk board, describe sets. in the room or show pictures of sets, and haveach child show the correct numeral card.
3. Pass out sheets of paper, each with a numeral "written on it. Ask the children to tray a- set with etnas many members.

 5, 6, 7, \&, $;$ on the pace. The numerals should be scatted all over the page, and each child ts page will probably be differed. . Display a set of cbiects.on the filatpel board. "Ass the children t: find the numeral which tolls the number of members in the set. They "show" the numeral by-framang t with; their hands.

5	\vdots	$\cdot 9$	\cdots
1	0		2
$\%$	-	7	
\vdots	\ddots	3	3

1T-3. The number line
 Vocabulary: Pr .t, lune.

Backgrouma Note:
75
This lesson Atroduces, the member In e: Eventuelinwe shall use the muser line for addition, for subtraction", and to introduce rational numbers. In this les of, the principal use of the mirbert line tais to reinforce tito chitren's concept of inëguatitýa s
Materials: Stronstring, paper clips, a printed number line ant two sets of numeral cards shape as sham:

1

Suggested Procedure:
Have one set of numeral cards in rand prater an the chalk ledge. Ask a chiclets come to the front of the room. Tell children, "Today we ara going to supt and conto the jumps." Mark, on the floor, a starting print.:

- . Susie, you stand at our starting point.

Place the zero card"by the child's feet with the point toward hex feet. Tel her to take a sump and stop.

$$
\begin{aligned}
& \text { * (Io Susie:) How many. jumps have you taken } \\
& \text { from the starting point? (None,) } \\
& \text { What number tells how many jumps you have } \\
& \text { taken? }{ }^{\circ}(0 .)
\end{aligned}
$$

Have chian choose the numeral card and plage it at How many jumps from, the starting point Vive you taken now? (1.)

Sugiets fox a dontme with the same procedure until θ
 fane sliced jumps. Keep emphasizing f hat the mo card tells how many jumps from the starting point.

Would we have to stop with 9 if we had more cards? (No. We could go on and on.)'

Remove the humeral cards from the floor and tell the children to thiamine that jumps had been taken on the chalkboard. Gey child indicate the starting point and nine jumps. Mane a dot to show these points. Ask what numeral to write for the fount that shops the starting point. (0.)
Continue to number the points through. 5.- Have child action at unnumbered points, and ask one to come up and put the pointer on the point where he tins the next imp would be. Ask if points could continue to be made ir this direction. Draw an arrow to show in what direction we would go if inc jumps are taken. (We begin with dots and an arrow and friutlly build the picture of the number line.)

Fry to establish for the rildren, using further experiences if necessary, the picture of equally spaced dots extending indefinitely to the right, with each dot asscigited with a number. Repeat that the numeral. james the number of Jumps . .品 from, the starting point.

- Now help tee children to understand the resection between inequality of numbers and order on the mummer. line.

Is 3 .less than 5 ? (Yes.) " ". "
Which side of the " 5 " is $\vdots .6$ "
in our picture?
*
("3" is to the left of " 5 ".) 4 3

Continue, bringing out that "less than" corresponds to
\because fo' the left of" and "greater than" correspondsto "to 0 ". " "thevright for".
day* or two later, have two children, one at each end, pull the piece of strinftitghty Ask children to pretend to watch. a' frog jumping 'access a tight. rope. Suggest a spot on the string (to the f heft as the ias sees it) where it begins, and ask what numedal to use at this point. Clap the zero card, th the strums (yong paper cine at the o top of the card).

HAe, a, child come up and stand"by the string at that point, take a single "ump and" "stop" there. Place numerals after. cinildren tell you winch one for eacidfump.
Ask children tofimajine a inge, long tight rope on which
'many jumps can be taker, Suggest that it' be thought. of T^{\prime} as'a line cf numbered jumps, all ot the same length, or ${ }^{\circ}$. a "number line". . \quad "

Dispense with the stine and draw a lIne on the board. Mark points and label as shown.?

- Instead of using a' tight rope for out" number line, lett use a line on tine board. How is this numb line different from the one we made on .t: tight, rope? (It doesn't have all the numerals. It does' ${ }^{\prime}$ show the first jump.)
 what numeral to write there, and to tell why the decided on that numeral. (Names the number of Jumps from the starting point.) Have children not zee that although not pall the
 of the orts already written'.

Have the other points named and write the numerals fnot beyond 9 however). Emphasize" that 0 is the starting point, and 'that each numeral tells how' many jumps from the starting point.

Use the line for children to point to the numeral before "5", the numeral after " 1 ", before " 1 ", etc.
The niuneral just before ".5" names the "nugiber, that is one less than j; the numeral dust after 5 names the number that is one greater than 5. It should be emphasized that all numera's before "5"name numbers, less than 5 ."and that all numerals after " 5 " namé numbers greater than 5 . Ask children to use the number line to find:

A number greater than 7 .
A number greater than 2°.
A number less than 4.
A number less than 6..
Use 'riddie games. For example: "I am thinking of' a number that is two less than seven;" "I am thinking of a number that is one greater than' six."
Mount above the \chalkboand; ori.elsewhere, a large printed number line: ;

CAUTTON: "If"the material you have has the " O " to the right" of " 9 " 'cut off the " 0 " and tape it to the left. of the " 1 "."

- Pupil's book, pages 36 and 37: Ask the children to draw lines to show where the numerais in the boxes belong on the numbert lines.

Pupil's book, page 38: Ask the children, to look at the

- picture of the number line.

Using, the numberiline, they
are to mark all of the numerals
in the first box that name numbers less than 4; in the second box, greater that 7 ; and in the third. box, less than 0 .

Where do the numerals belong?

Where do the numerals belong?

Use the number line

$$
9 \times 1 \times 6
$$

$$
57966.8
$$

$$
573 \quad 410
$$

Chapter III
SETS OF TEN

Background

We have been concerned so far with sets of single objectst-that is, with bunches of things. In this chàpter we reach a slightly higher level of sophisttication: we consider sets whose members are themselves sets". We count sets, of object's by partitioning. them into sets of ten and then counting the sets of ten. We extend our system of numeration by agreeing that, for example, a set which can be partitioned into 3 sets of ten has thirty members.

This short chapter is devoted entirely to sets of " ten and it is primarily preparation. for the study of place value. In a later chapter we shall partition a set into equivalent subsets which: are not mecessarily, sets of ten. We then connect the fact that, for example, a set of thirty can be partitioned into 5 sets of 6 , with the facts: $5 \times 6=30$ and $30 \div 5=6$.

III- ${ }^{\prime}$: Sets ớ ten

Objective: 'To introduce counting sets of ten members each.
Vocabulary: (No new words.)
Materials: For, teacher--a box with sets:of ten disks and other cutouts for use at the flannel board; large sheet of tagboard or cardboard; counting sticks, rubber bands. ${ }^{\prime}$

For pupils--sets of materials in multiples of ten (10. to 100 . of each); e.g., blocks, kindergarter beads; buttons, lima beans, spools, stictks, theeater tickets; pegs', and paper, clips.

Teaching Note:

The activities descibed here may be carried on for several "days, the time depending on the ability and previóus experiences of the children. It', should be remembered, however, : that the intent is to "opan up" an idea rather then to develop full understandeng. No worksheets dre. needed.
1.

Suggested Procedure:
Shów the childrern a box containing thirty flannel cutouts
(ten disks and ten each of two other shapes), bunched so that it is necessary to count and sort them. Drmp, them on a table.

I wonder how many sets of ten are in this box?;

- Let's see how we can find out.

Pick out one disk and hold it up:
How many disks' have II (One.) of

Place 'that disk on the flannel board. Repeat the plocedure, making a row of disks on thie flannel bpard. (As you work, a child may be asked to heip pick out the cutouts with which you are yorking and hand them to you, one at a time.) !

How many diskș are there in the set on the. flannel boand ${ }^{-1}$
Point to each"disk as children count, to ten. This set of disks on the flannel board has how many members? (Ten.).
Do we-have one set with ten members? (Yes.)
Letis see if we can use the set of ten disks to. find mow many trees we have.
Place ten trees in a row beneath the disks so that the ong-to-one correspondence is obvious.

Is the set of trees equivalent to the set of disks? '('Yes.).

What is the number of the set of disks? (Ten.) of the set of trees? (Ren..)
How many setṣ of ten cutouts do we have on the flannel board? (Two.)

Hold tagboard to cover the sets, exposing one row, then two, while children count with you: one set of ten, two sets of ten:

106

Place' another set of ten cutouts beneath the trees.
How many sets of ten cutouts have we now'? (Three.).
Again cover and expose rows while children count:
'one set of ten, two sets of ten, three sets of ten. Tell, the children that we can say "one ten", "two tens", "three tens", and not say as -many words when we count. Let them repeat the counting: "one ten", and so ${ }^{\circ}$ on.

How many sets of ten cutouts did we' have in the box? (Three.)
(Have children count ten sticks as you oundie them together.

- Ask how many are in the bundle; put a rubber band around it. Continue in 'like manner with ten sets (bundles) of ten sticks, asking questions similar to those related to the sets of cutouts on the flannel board.
\succ -
- Have sets of ten blocks counted and stacked in "hens", - questioning the children as the work proceeds* as to how - many tens there are after each stack is completed:
- Other experiences with sets of ten;

A strip of ten theater tickets that has been torn apart

- into ten single tickets can be put back together as a
- Set of ten. Paper clips may be strung together as sets of ten to lead" to the idea that ten ones and one ten are names for the same number. Sets with a variety of members as well as with similar object's should be grouped into sets of 'ten, egg.

\cdots
A chart may be made on the chalkboard with blanks 'in which) children can' record the number. of sets of ten that have been counted.
tickets $\quad \longrightarrow$ tens
clips.
. \quad tens
- The preceding experiences have had considerable guitunce by the teacher. The next step, ard an important one, is " to give each child a set of materiais to count into sets of. ten. If yọur children work well in small groups, you may prefer to have several children work together: Let each chilu ('or group) report'the number of sets of ten (tens) that was counted. Make a ? ist on the chalkboard, letting* children" write the numerals and their own names.
\qquad tens. Le's.
\qquad tens

Chris
\qquad tens. Alic̣ia,

Further Activities:

1. How many fingers are in the set of fingers on both of your hands? Then let ten children stand in front of the class; while.the other childrer count the ten sets 'of ten fingers.' Have one child come to the front and - count the sets of ten by starting at one end of the row of childreh. Have another child count by starting at the other end of the row. Did both count ten sets of ten?" Did both say the counting names in the s.gme. order?
'2. - Let childrén work as partners. Hque each-child in turn drak around the other's outspread hands palmo down. Let children color and cut out their f "hands". Then paste the hands, in pairs, to a stryip of wrapping paper to use in. practicing counting by tens.
2. Have children count sounds as you tap the desk or a ${ }^{\circ}$ triangle. After a set of 10°. taps, each child holds up one finger; , after the next set of 10 taps he holds up another finger, and so'on. Stop after every multiple Kof ten, and have chiłdaren tell you how many "tens" of taps",there have been. or, each child may record the sets of ten by marking a tally mark for each of the sets.

IIE-2. Naming multiples of ten

Objective: To emphasize that the order of counting "tens" is "the.same as the order of counting "ones"; to téach the names for 'multiples of ten.

Vocabulary: Row, column; ten, twenty, "thirty....one hundred.
Materials: Spool board with 100 spools or pegcoard with 100 pegs,' large piece-of. plain tagboard or cardboard to cover rows for counting by tens; $1^{\prime \prime} \times 1^{\prime \prime}$ cutouts for flannel board and ten strips of ten of these made by affixíng to masking tape; objects for children to use in forming sets of ten, e. g., bundles of sticks, lima beans or other small objects in "plastic bass, strips of tickets; the strips of $1^{\prime \prime} \times 1^{\prime \prime}$ cutouts, buttons' on cards.

Suggested Procedure:

'Call attention to the rows and corumns' of the spool board. or peg board.

How menty places for spools (pegs) are there in one row? (Indicate ar row:) In one column? (Indicate a column,)

How many spools will each row of the board hold? (Ten.)

How many spools winl each column of the board, ec hold? (Ten.)

How do you know?

Ask a chila to choose a row and fill it with spools. (If he selects a column, help him change to a row without belaboring the point. The distinction between row and column is introduced at this time. "Clarification \therefore willi come with use.).

How many spools are in the set on the board? .(Ten.)
How do you know? (Answers will vary.)
Do we have one set of ten. spool's? (Yes.)
Place another row of spools on the board.

- How many sets of ten spools are on the board now? (Two.)

Continue placing rows of spools an the board letting the children count them: $\underline{1}$, set of ten, $\underline{2}$ sets of ten; etc. to 10 sets of ten. Have the children count to ten so that the order will be recalled easily., "Then have the rows of spools counted as you move a sheet of tagboard to expase them:" \underline{i} ten, $\underline{2}$ tens,' $\underline{3}$ tens; etc)

> Can we count tens in the same way we count ones? (Yes.)

Cover all but the two top rows of spools with the, tagboard.

```
, O.How many sets of ten spools do you see?, (Two.)
    Who will tell us another name for .2 tens?
    (Twenty.)

Continue in similar fashion, introducing any names that ere. noit known by a chrild. Then let the children count the rows of spools again with you: ten, twenty, thirty, ...one hundred. Give each child sets of maţerials that have been grouped into sets of ten. Let each child count the sets he has, using both names, for example: 2 tens, twenty; 3 tens, thirty. Make a.chart on the chalkboard. Let children wrịte the numerals and their own names.


Follow up by asking such questions as:
Who has 7 tens? What is another name for 7 teñs? (Seventy.)

> Who has. 4 tens? What is another name for 4 tens? (Forty.),
- "Wirite numerals on the chalkboard, e.g., ' 9 tens, 1 ten, 10. tens. Ask the children who have the corresponding. number of sets of 10 to display them to the ciass, Further:Activities:
1.; Place sets of objects on the table or shelf reserved for activities for chilaren to choose for individual wprk. With them place duplicated sheets that children may complete.

2. Use gummed stickers to make perception cards for sets of "ten.; Arrange the' sets' of ten in various patterns, but keep them as easily distinguishable units on the cards: For example,


3: The teacher fay serve as leader to introduce the activity; later a child may be the reader. This card shows forty stars, Forty is
how many sets of ten? (Four.)

Then briefly expose the card to the children. Show the picard again so that a check can be made. Following several experiences with the cards, children may use them as an independent activity. After these names have been learned, they can be written on the reverse sides.


III-3. \(\because\) Application: xqey
Objectives: it introduce the orelative values of ten centes and one dime.ind

To reinforce understanding of "ten" as "ten ones" or 'rone \(\operatorname{ten}^{n+1}\). \(, \quad, \quad \geqslant\)

Vocabulary: " Dime, worth; value.
Materials: \(\quad 100\) pennies; \(\therefore 10\) dimes sheet of construction paper.

Suggested Procedure:
Have the chìidren gather around a tabie where all may see. Let them discuss briefly their experiences in using money. Show them a dime and a cent.
"If you could choose just one of these coins, which one would"you choose? Why?

Note whether or not any children use the words cent, penny, dime, value .or worth spontaneously. If not, introduce the words. into the discussion when appropriate. Put \(100^{\circ}\) pennies on a table and ask a child to count a set of ten pennies. Ask if. anyone knows fiow this- set of ten could be used to help in finding the number of the sety of all the pennies on the table. A child may suggest arranging the rest of the pernies into sets of terthat * match (are equivalent to) the set of ten that was counted. If the suggestion does not come from a child, introduce the idea and let, a child arrange the pennies as shown. Holid a sheet of construction paper to cover alil but triz fist row, and uncover rows as childrof count: one ten, ten cents; two tens, twenty cents; three tens, thirty cents; and iso on.
(2). Ask queations to bring out the idea that thérearie ten rows of pennies with ten pennies in each row; the number of peanies. in the set on the table is one hundred; there are one hundred cents altogether.

Ask how:many pennies there are in the first column of pennies. "Use a procedure like, that used with the rows and let a child count the columns.by tens. \(\because\)

Have a child place a dime at the end of each row of pennies", slightly apart from the row. Note that there is a set of ten pennies for each dime, and a dime for each set of ten pennies; the number of the set of dimes on the table is ten. " "

If you need a dime to buy something, how many pennies will it take to buy the same thing?

Do ten pennies have the some value as one dime?
If someone wanted. to give you nine cents for one dime, what would you do? Why?

If you have two dimeś, do you have' as much monéy as someone who has twenty pennies'? Do you have more colnswor fewer coins?

新"
Remove therpeniles from the table. Ask how much one dime is worth. Tell the children that a dime is sometimes called a "ten-cent piece"; when money is counted, dimes Fare counted as tens. Let a child play "banker" and count the dimes: "one dime, ten cents; two dimes, twenty 114
cents;...ten dimes, one hundred cents". Give ten pennies or more to each of several children, letting them count ten cents and give it to the "banker" in exchange for .one dime.

Does anyone know the name of a bill you
ti get in exchange for ten dimes? \({ }^{\circ}\)
Further Activities:
1. Make a chart showing the vaiues of the coins cent, . nickel and dime, and usè it for discussion and review. Reaf çoins may be fastened to tagboard with transparent tape. If you wish, some space may be .
- left for coins of larger deñomination.
2. Use opportunities that arise naturally in the classroom for counting money and discussing the values of coins.

Pupil's book, page, 39:

Discuss with the children the pictures of cent and dime, and give help in reading the names beneath them. Have them find the picture of the toy car, and the dime that, will buy the car. رAsk how many pennié it would take to" buy the car. Iet the children mark an, \(X\) on enough pennies to buy the car.

Ask the childpen what they thirk they should do in the next exercise. After discussion, let them do it independently. (Mark enough pennies to buy the book.)

Dimes and cents


Mark enough pennies to buy each toy.

'III-4. Problem solving with sets ofeten
objectiye: To exterfinderstanding of "tens" timpugh using sets"of tent in problem solving; to develop abililty "to solve problems invoiving
- inequality, one more ten and one less ten..

Vocabulary: (No new words.)
Materiale: Sets of ten tickets, sticks, toothpicks, tôngue dêpressors, clothes pins, platotic spoons, held,together by rubber bands or tape.

Suggested Procedure:
\(\therefore\). The intent is that these problems be read or told to thie children; and that no written equations be used: in conpection with them. The sequence is from relatively simple to more complex problems. Selections should be appropriatéepr the children in the class.

Suppose that you could choose either a set of ten sticks of candy, or a set af twenty sticks of candy? Which set wofild you choose? . Why?

Le several childreh choose and explain trir answers. Some may choose the setr with more members and some may select the set with fewer ménbers: The essential point is the comparison: ' a set of ten memberss sk. "(a tền)" has fewer members then' a séy of twentyi", riembers ( 2 tens) a set of twenty members ( 2 tens) hàs more members thion a set of ten members ( 1 , tên). Sticks or "toothpicks may be used to represen sticks of cendy if physical representation is needed:


Thirty is how many sets of ten? Who will put that number of spoons on the table? How many spoons are there on the table now? Three sets of ten spoons' and one set of ten spoons are, how many sets of ten spoons? How many spoons are on the table? How many spoons did the class have? (They had forty spoons.).
This problem also may be used.
4. Alice counted her money and found that she had exactly forty pennies. Mary has ten pennies more than Alice. How many pennies does Mary have?

How many sets of ten are there in forty? How many sets of ten pennies does Alice have? How many sets of ten pennies does Mary have if she has ten pennies more than Alice?
1. If the children have had experiences with problems that. cannot be solved because there is "not sufficient inform-. mation, problems like the one that follows may be peresente without preliminary comment.
5. Sue has thirty buttons. She buys tenn
buttons. How many blue buttons does
she have?

If 'a'child answers" \(\frac{4}{?} \frac{\text { tens }}{}\) or forty, ask questions such as: Are you sure? How do you know that Sue has forty blue buttons? Listen' while \(\frac{I}{4}\) tell the - story again.
"In' working' with the situation, handle 'It, so that no child is embarrassed by having given an answer without sufficient information on which to base it.

A variation working with "story problems" is to give the children information about numbers and let them: formulate the story. :
6. We know that two tens and one more ten iş thrée tens. "Who wants to teill a "story problem", thet , these numbers suggest. . \(/\)

With children early in first grade it may be necessary to give considerable help in formulating the story. Sóme children may be, helped by being able to use some of the manipuiative materials that are ávailable in the classroom. Such experienoes are worthwhile, despite the "struggling", for their contribution to reading and interpreting problems thät will be encountered later.

Further" Activities:
Let children make pictures of "story problems" and .write, or dictate for you to write, a question about the pieture. Such "problems" may be shared. with. the class.
- Children who are writing with ease may enjoy writing story prơblems.' These may be stapled together between sheets of construction paper to make booklets. These can become sources of problems to use with the class. joining sets. One set joined to 0 ' another is the set consisting of all objects which belong to either set. In your classfoom, if the set of boys is joined to the set of girls,. the result is the set of all children in your classroom. We' may represent two sets on the flannel board, and think of joining the first seet to the second; or of joining the sécond set to tothe
 that joining is commitative. This fact serves later to show us that addition is commutative.

The idea of joining sets underlies the arithmetical idea of addition. In a classroom, if the set of "all boys is joined to the set of \({ }^{\prime}\) dll girls, the result is the set of ail children. The number ofe girls plus the numier of boys is, equal to the number of children. Thus \(2+{ }^{\prime} 3\) is by definition the number of members in the set obtained'by joining a set of 3 to \(a^{k}\) set of .2.. There is one complication (which you may or may not waint to point out to your pupils). The sets which we join mast have no members. in common. We. call sucl. sets disjoint. Thus the set consisting of John and Mary has 2 members, the set condisting of Mary, 'Sue and Jane has 3, members, but, the set. obtained by joining these two sets, which conslists of John, Mary, Sue, and Jarke, doess not have \(2+{ }^{\circ} 3_{2}\) members. The trouble is that Mary is a member of both sets, and the sets are not dis,joint.

Joining a set of
y. the same set as joins the set of 3 to the set of 2 .
 \(50+7=7+{ }^{+}\), and so on. We pay that the operation of addition \({ }_{2}\) is cominutative:

We-wish"t "t make very clear, the sense in which equalitity end the equals sign," \((=)\), are used in "
mathematics We write, for example, \(3+4=7\), or
 names for the same thing, the number seven. Any statement of equality means that the symbols to the left of the equals symbol and the symbols to the right of the equals symbol are names for the same thing. A number, like a person, may have many names all of the following
\[
7,3+4,5+2,8-1,49 \div 7, \frac{14}{2} \text { VII }
\]

IV are names for the number seven The reason we adopt this meaning for equality is that' we always want to be able. to substitute equals for equals. Thus, for example, if "we know that \(6 \frac{\prime}{=} 3+3\), we can inter that the sum i of 7 and \(6 *\) is the sum of 7 and \(3+3\).
 \(\therefore\) If we apply the operation + to a pair of numbers, say 3 and 4 , the result is another number, \(3+4\) or 5. We write \(3+4=7\), because " \(3+4\) " and \(\gg\)
 that \(3+4=6+1\); and indeed, if we ask aw child "What is 3 , 4 equal to?", then all of the following are correct answers: \(7,6+73+4,4+3\). The procedure which we sometifite call addition really".

4: amounts to finding the common name, a name not involving +, for a number which we have named in a more complicated way--for examples , "3 3 +4":

解， Wa that one set meimber of the first is a member of the second．The set of giris in a classroom，is a subset of the set of children， and the set of all tricyclés is a subset of the set or ell toys．The set．consisting of John and Mary is not a＂subset of the set of all girls because John does not belong to： the set of girls．

Let us list all possible subsets of the set consisting of an apple and anoorange．It is clear that there are two subisets which have just one member each：the set consisting of the apple and the set consisting of the orange．Are there other subsets？What of the empty set？Is it゙ true that every member of the empty set is a member of the set． consisting of \({ }^{\circ}\) an apple and an orange？If not，then some member of the empty set must fail to belong to the apple－and－orange set，and this is impossole since the empty sét has no member．We must therefore agree that the empty set is a subset of the set consisting of an apple and an orange，and in fact that the empty set is a subbset of everv set：＂（Later we will relate this to statements like \(5-\overline{0}=5\). ）Finally，we may ask if this apple－and－orange setais a subset of itself．Is it true that every member of the set consisting of an apple and an orange belongs．to the set consisting of an apple and an orange？This is obviously true，so we agree that the apple－and－orange set is a subset of itself．In fact， eviêcy，set is a subset of itself．（We will relate
 this fact to statements inke \(7-7=0.7\) Mathematicians have expressed their general feeling that it＇s somewhat improper for＂a set to be a subset of itself by agreeing that a：proper subset of a set is to be a subset which is＂different from the whole set．＂［A proper subset of a set alweys has fewer members than the set．］．

Suppose we are given a set and a subset of it and登酸＂remove＂the subset．＂The remaining set consists of those objects which belong to the origing set but． not to the subset．If we remove the set of boys
from the sef of children in the classroom, the remaining set is the set of girls.

We describe subtraction in terms of removing a subset of a set: '5-.3 is the, number of members, in. the remaining set if a set of 3 is removed from a set of 5. Thus, if :John has 5 marbles and his older brother takes away 3 marbles, then the remaining set has 5-3 members..

There is a \(\frac{c l o s e}{6}\) relation between addition and subtraction. If we join a set to another set and then remove it, the remaining set is "just the original or "starting" set., If we remove a subset from a.set and then join it to the remaining set, then we again have the original set. We sometimes say that joining a set, and removing the same set, are inverse operations, in the sense that doing these in succession to any "set alway's gives back the original set. This fact sabout manipulation of sets shows us something about adaition and subtraction. If we add 2 to a number and then subtract 2 , we have the original number. If we, subtract 2 and then add 2 , we again have the original number. Thus, aḑing. 2 and subtracting. 2 are inverse operațions, in that doing these in succession to any number always gives the original number. Of, bourse, adding 4 and subtracting .4 are also inverse operations, and so on.

There is one matter of notation which needs to be made clear: In some of the equations in this thapter we have left boxes for the children to write in (for example, \(2+\square=5\) ). These, boxes are nothing more than places for the child̈ren to write; they are not interpreted as placeholders or variables, 'as is the case in some of the other mathematics programs. We introduce variable notation in the second grade, where we write, for example, \(2+n=5\).

IV-1. Joining

Objective: To introduce the operation of joining and its comintative property.

Vocabulary: Join.
Background Note:
If one set is joined to another, the result is the set
- whose members are those things which belong to either of the sets. This is preparation for the concept of addition.

Materials: Materials for flannel board or magnetic board demonstration; beans, bottle caps, buttons; blocks and spools.

\section*{Suggested Procedure:}

After the children are familiar with the ideas of get and member, they should be ready to understand the concept of join. Some will understand the word as they have heard it used in other situations.

You might startmith a demonstration at your`desk, at a low table, or on a flannel or magnetic board where all can see. On one side of the table, place a set of ten or fifteen various sized buttons and on the other side a.set of blocks, another kind of material, or another set of buttons which can be distinguished. from the first set. Each set should contain too many members to be counted quickly as no counting is wanted at this time.

After the sets have been described by, the children, proceed somewhat as follows:

We will move this set of buttons over to
join it to the set of blocks.
Wher' we jqin these sets; we have a new'
set.
What are the members of this set? (Bittons and blocks.)

Touch a member of the set formed by joining the set' of buttons to the set of blocks. (A button:)

Is thinis button a member of the set of buttons? (Yes.)

Is this foution a member of the set of blocks? (No.)
- Is it a member of the set of buttons and blocks? (Yes.)

Is each member of the set of buttons a member of the set of buttons and balocks? (Yes.)

Is each member of the set of buttons and blocks
\% a member of the set of buttons? (No.)
Discuss several other members of the set in a "similar manner. Through this discussion the children should be helped to understand that each member of the new set (buttons and blócks) wàs a member of either the set of buttons or the set of blocks and that each member of the set of búttons and the set of blocks is a member of the new set.

Move the set of buttons back to its original position. Now let's move the set of blocks over to join the set of buttons.

When we join the set of olocks to the? set, of büttons, we have.a new set. What are the membérs of this set? (Buttons arid blocks.)

How is this set like the set we had when we joined the set of buttons to the set of blocks? (It has the same members:)
- You should follow the same procedures using a variety of materipals. Maphasize the ideas that one set is joined to the other to form a new set; each nember of the new set is a member of one or both of the sets joined; the order of joining the sets does not change the new set.

We have our set of books about animals "here at the library table: On my desk
- 'f is the set of new animal books that I got at the library today, John, will you bring the set of new books and join it to the set here at the table? How would the new set be different if we' took the set of animal books from the Jibrary table back to join the set of books on my desk? (Noldifference.)

- See that each child has a set of spools and a set of beans or other sets of two different kinds of material on his desk, one set on each side. Again have too many members in each set to be counted quickly.

Put your right hand on the set of beans. "on-your desk. Now move this set over.' 's to join the set of spools.
What is the new set on your desk? (A set of beans and spools. ) :
Ask the children to pick up"a member of the new set which was not, a member of the sèt of beans. (A spoql.) Pick up a member of thíe new set which was not a member of the set of spools. (A bean:) Ask the childrem to pick up a member of the nenew set that was not a member of the set of beans or the set of spools. (None.) Nove the set of beans and spools back where they were when the lesson started. This time move the set of begns:over to join the set of spools:

127

What set do we have when we join a set of "Beans to a set of spools? (A set, of bean's and" spools.)

How is this set like the set we had when we joined the set of spools to the set of beans. (The members of the new set are the same. as before.)
Emphasis is made 'here on the idea that the prder of Joining sets does not affect the new set. '
Further "Activities:
Describe two sets in the clasroom; a set of chalkboard erasers, a set of staplèrs. Ask̀ a child to show the set of stapler's joined to the set of chalkboard erasers on' \({ }^{\text {T }}\) demonstration table or desk.


\section*{IV-2. Joining sets and counting}

Objective: To prepare for the operation of addition by -1 . introducing the joining of set in association with the spoken names of numbers 0 . through 9.
Vocabulary: (Review). Joining, written numerals for numbers \(0-9\), member, set, empty set, set with one member.

Materials: Materials for flannel board, sets of small objects; perception cards (see instructions under Further Activities), a box of small objects for exch child.

Suggested Procedure:
As a pre-addition activity you will find it useful to establish an understanding of joining sets and counting, counting both the sets with which they started, and the resulting set. An introduction by means of a flannel board demonstration follows. (The same procedure, with slight modification, is applicable to chalkboard
illustrations.)
Place a set of objects on the flannel board and have the set described. (Example: set of apples, "set of red apples, set of 5 apples.)

Identify the number of the set and place the set to one side of the board. On the other side, of the board place another set. (Example: \(z\) oranges.) Identify the number of this set as your did the first.

We now have a set of 5 apples on our board and a set of 3 oranges. Let's put the oranges with the apples. What have we done to the two sets? (Joined the set of oranges to the set of apples.) We began with a set of 5 . apples. and, a set of 3 oranges.
How many members do we have, in the new set that we just made by joining the two sets? (8.).

By moving the set on the flannel board, the children are ; able to see the joining of thè separate sets and formation of the new set.
- After the children are familiar with the verbal presentation, cards with numerals written on them, one numeral per card, should be placed on the flannel board or table during the discussion and the appropriate card displayed after the number of members of a given set is identified.

What is the number of members in the set of apples? : (5.)

What is the number of members of the set of oranges? (3.)

What is the number of members in the set of apples and oranges? (8.).

Place the oranges on the flamel board. Then join the se.t of apples to the set of oranges and ask that this. set be described.

When we join the set of, apples to the set of oranges, what is the new set? (A set of oranges and apples.)

What is the number of members of the set of apples? (5.) Display the numeral card with 5 .written on it.

What is the number of members of the set of oranges? (3.) Display the numeral card with a written on it.

What is the number of members of the new set? (8.) Display the card with 8 on it. \(\%\)

How is the set we formed by joining the set of apples to the set of oranges like the set formed by joining the set of oranges to the set of apples? (They have the same number of members. . They have the "same members. We changed the orete inhich we joined the sets but this does not change the set which is formed.),

Place 4 rabbits on the flannel board. Ask a child to name the number of members in the set. Place a card with this numeral on the flannel board. Place. 3 kittens on the flannel board. Ask a child to name the number of " members in the set of kittens. Place a card with this numeral on the flannel board. Ask \(\dot{a}\) child to join the set of kittens to the set of rabbits.

> What are the, members of the new set? (Kittens and rabbits.)

"What is the number of members in the on it on the flannel board.

A discussion such as the following may serve to evaluates how well children remember which set had a given number of members.

Remove" the set of kittens and rabbits from the flannel board and point to the card with the numeral . 3 on it.

What set had this number of members?.
is (The set of kittens.)
Point to the card with the numeral 4 . on it. \(\therefore \quad a^{\text {What }}\) set had this number of members? - (The set of rabbits.)

Point to the card with the numeral 7 on it. . . What set had this number of members? (The set of rabbits and kittens.) If we had jot ned the set of rabbits to the set of kittens would we have the same number of members in the set of rrabbits.and kittens as in the set we had earifer? (Yes.)教


\section*{Further Activities:}
1. Perception cards made by the teacher help to visualize the joining of sets: Several cards should be made for each number so that children do not mereiy leapn to recognize a pattern. Magazine pictures. pasted on heavy paper are also usefyl. Some advertisements have excellent pictures ann are fun for, children to find. They also enjoy making these cards themselvés. Hold up one' card and haye the children identify the number of memberg:: (Identification may be made either by recognition or counting, or a combination of both.) Place this card on a stand and. hold up another card using the same procedure. 'Join the two sets and identify the number of the resulting set.
2. Sets of objects such as books, writing equipment, art supplies, and blocks may be placed on a demonstration table. First, identify two sets and "join one to other to form a new set. Remember to identify the number of members in each set as well as the number of members in the new set.
Manipulative materials may be used at the pupils: desks to be joined to form new sets. Proceed as before, being certain to use orally the number of \({ }^{\circ}\). both the set with which you started and- the resulting set.
13. Use sets of class members like ball monitors, erraña helpers, etc. Join one set to another and name the number of the resulting set. (Example: 'ball monitors. 2, errand helper 1, resulting set 3.)
4. An overhead projector, if available, is useful in developing this lesson. It provides an excellent means of viewing the sets, writing nemes of numbers. associated with these setso; and showing the result. of joining one set to the other.

IV-3. Joining sets and adding numbers

Objective: : To develop in understanding of addition:
, for 5. To use the terms plus and equals and the symbols + and \(=\) to write equations;
Vocabulary: Add, plus, equals, number, equation.
Materials: Set of books, set of blocks, large sheets of paper divided into three columns for a chart:
Suggested Procedure:
Ask a child to pick up a set of 2 books from the shelf. Have the childuplace the books on the table, \({ }^{m}\) spying that this is our first set. Explain to children that we will keep a record of our work and record this number in the first column of the chart.


Ask a child to pick up asset of 3 books. We' want to jojn"this set to the first set by putting these books with the books on the table. You should then explain that you will record this number of books (set being joined) in the second column of the chart. \({ }^{\circ}\) As the chart is developed, continue to point out to the children that a numeral in the left hand column shows the number of objects in the set we started with and
 a numeral on the middle column shows the number of . objects in the get. joined to the first set. Join the set of 3 books to the set of a books.

How many members are in the new set of books? (5.)

Record 5 in the right-hand column of the chart. Explain to the children that this numeral (5) shows the number -of members in the new set when the second set is joined to the first set. Continue with other examples, recording the numbers for each example on therchart:

Pupil's book, page 40 : Re, cord in the left column of the chart the number of members in the set on the left,' record on the center column the number of members in the set on the right, and record in the right column the number of members you would have if you joined these sets.

Page 40 in the pupil's book may be used for an independent activity.

Continue with the information on the chart.
Look at the record of our work with the sets of books. We can use what is written to make an equation . In the eqqa*icion we say, "two plus" three equals five".

To the number 2 we are adding the number
'3. The result is the number 5 .
Extend the chart and write the equation, \(-2+3=5\) on the chart.

This is how we write the equation.
Continue to extend other rows of the chart in 'a similar manner.


How many?


What is it that we want to find out? - (How many knives Father has now.)


Ask the children to describe the sets that they start with and shów representative sets on the flanfel board.

What must we think about next? (Joining
one sët to the other to find out how many
'there are all together:)
Proceed by asking a child to join the set of one mife to. the set. of tho, knives and tell how many are in thes new set. *

Who remembers what the question in our
story asked? (How many knives did
Father have after Bob gave him one knife?)
Can we use what we found out by joining
these sets to help us answer the question about Father's knives? (Yes.)

Ask a child to give a sentence that will tell about the
knives. (Father has 3 knives.)
What is an equation that can be, wititen
for this sfory? \(\quad(2+1=3\).)
"Other problems to be developed in the same way:
-1. Three ducks were swimming.
. Three ducks came to swim.
Then, how many ducks were swinming? :
2. Jack saw 6 cats and 3 dogs..
- How many cats and dògs did he .see?
3. Mary had 2 pencils. \(\because\).

Betri gave her 4 pencils.
Then, how many"pencils did Mary have?
4. Four mice were eating. Three mice came to eat. Then, how many mice were eating?
Distribute sets, of small objects. Display the numeral 5. Ask children to "show" that many objects on their desk. Display the numeral 3. Ask children to join a set with that many members to the set on their desk:

How many members are in the new set? (8.).
Display the numeral 8.
Can we use an equation to tell about joining these sets? ( 5 plus 3 equals 8.). Fut the + and \(=\) symbols in the correct places in the equation.

Write an equation, \(7+2=\) \(\square\) Help children use materials to \({ }^{s^{4}}\) complete this equation, as well ads other \({ }^{\text {- }}\) equations such as \(6+\square=7, \quad \square+3=8\).

Pupil's Book, page 41: Record the numerals in the chart as on page 40 . Then write the equation.

Fupilis book, page 43: Record the numbers of members in each set". Complete the equations.


How many? Write the equation.

\[
5+1=6
\]

\[
\frac{2}{2}+6=\frac{8}{8}
\]

\section*{Equations}

\section*{Pair of Equations}



How many? " 2

Write two equations.
\[
\begin{aligned}
& 4+2=6 \\
& 2+4=6
\end{aligned}
\]


How many? \(\qquad\) \(\therefore\)


Hos' many? \(\qquad\)

Write two equations.
5
\(1+5=6\)

IV-4 2 Subsets
'Objective: , To introdūce the idea of subset of a set. Vocabulary: 'Subset;" (review) set, collection, member. Backiground Note:

One set is a subset of a second set if each member of the - first get is a member of the second. Thus the set of all dog's is a subset of the set of all animals because each dog is an animal, but the set of all animals is not a subset of the set of all dogs because there are animals which aren't dogs. This lesson is. preparation for the concept of subtraction", which we will describe in terms of removing a subset of a set and identifying the number. of members in the remaining \({ }^{3}\) set.
Materials: \({ }_{\text {N }}\) Sets of objects, materials for flannel. board displays, colored construction paper (several sheets of different colors), jars of multi-colored beads, rhythm instruments, set of play dishes.

Suggested Procedure:
"The concept of a subset of a set may be developed as follows:
Will éach member of the set of children' in our room raise one hand?

Do, all the boys have one haind ap? (Yes.)
Do all the "girls have one hand up? (Yes.),
Everyone put his hand gown.
Now; " letris have the girls stand. Is Jane a member of the set of girls? (Yes.), Repeat this question about several girls; then ask, the question inserting a boy's name.
Is Michael a membery the'set of 'girls? (No.)

Michael is not a member of set of girls. of what set is he a member? (The boys.) Will the boys stand? (Repeat as with the girls.) \({ }^{\prime}\) We have seen thret there is a set of children in our room. 'We "also know that there is a set of \(\because\) " boys and a set of girls., सेe say. that the set of girls is a'subset of the children because every member of the set of girls is" a member of the set of children. The set of boys is a subset of the set of children because every member of the set of boys is a member of the set of children,
(Ask the boys to stand again. Then ask three children to raise their right hands.) Tom , Billy, and Johnny have reach raised their right hands: Are these three boys members of our set of boys? (Yes.) However, they have their hands raised. We cail the set of boys in our class with their hands raised a subset of the set \({ }_{l}\) of boys in our çlass.

Repeat the above process with the girls: sets of girls and set of girls holding books; or, thè seti of girls and girls wearing white shoes.

This exercise can be developed further using the entire set of children and describing subsets of this set. \(\qquad\)
- At this point you may wishito use a chalkboara or flannel board to develop further the idea of gubset of set. Place a set of "fruit" on the flannel' board. Talk 'about" the set of apples as being a subset of the set of fruit, the set of pears' as a subset, etc.

Caution: It is necessary to identify the set first before tolking about a subset of that given set. We cannot start withra subset and then think of a set.

It is important to have experiences naming subsgts whose ...members, are' nót selécted on the basis pf size, color, or "use; or children develop the misconception that a subset.
is a subset because the members belong together for , some of these reasons.
- Place a set of materials on the flannel board:

How can we describe this set?
(A set. with seven members. A set of flannel. objects. \(A\) set of a tree, a star, a cup, a coné, a kite, a moon and a ball.)
Is the set of a star and a cup a subset of the \| set of flannel board objects? (Yes.)

Is the-set, a ball, a subset of the set of flannel board objects?' (Yes.)
Is the set of a swing and a seesaw a subsét \(\Rightarrow\) of the set described? (NO.).

Emphasize that each member of the subset must bi a member of the given \(\cdot\) set.

Is the set of a ball, a treé and a watermelon ' a subset of the set of flannel board materials? (No..)

Then proceed with these questions.
Is there any member of the set "cup, cone, kite \({ }^{n}\) tha't is not a member of the set of flannel board objects? (No.)

Is; the set "cup, cone, kite" a subset of the set of flannel board objects? \({ }^{*}\) (Yes.) Is there any member of the empty ' set that is not a member of the set of flennel board objects? (No.)

Is the empty set a subset of the set of flannel board objects? (Yes.)

Make a iisst of things" used during art "class. \({ }^{2}\) (Substitute + if this list is not approppiate.)
clay
glue
brush
paper.
pencil
paint
crayon
chalk
\(\therefore\) selssors
īnk
- string
cloth

Use this list as the basis for questions about subsets to reinforce the ideas previously dealt with in this lesson.

Exhibit a set of objects on the flannel board. Identify the number of' members of the set. . Place this numeral on the flalnel board. Place a piece of yarn arouna, subset of the set of flannel board objects, Ask a child to name "the number of members in the subset. Place the numeral. for this number on the flannel board. Include the subset -which consists of all of the members of the set and thes. empty set.

After this'experience children should be ready. for the following ingependent work:
"Dístribute seţ of smakl objects, niné or less per child." Give each child a piece of fam. Ask the children to use the yarn to make a ring around a subset of the set of materials on the desk. Give each child a half sheet of paper which has been labeled:

Tel the children to record the number of members in the set of his desk under set, make the ring to show a subset of the set and then record the number of members in the subset. Repeat activity asking children to show other subsets of this set.

\section*{Further Activity:}

If. children wear costumes on Halloween, the following activity could be used: Ask children to stand in a large ring. Touch four or five children and ask them to stand inside the ring, ( 2 witches, 1 bunny, 1 ghost, 1 pirate.)

Ask \(\bar{a}\) child to name the members of the set in the center of the ring.

Does every member of the set' of children in the center of the ring belong to the set of children in our room? (Ye st.
Is the set of children in the center of the ring a subset of the set. of children in. our room?, (Yes.)
Is a skeleton a member of the subset? (No.)
 whichonarnef a' subset "of: the set


146

What Set and Some of tits Subsets

(A.) apple \(\because\) kite \(\square^{\circ}\) and cup
B. tree and barn
c. wagon

(D.) apple \(\square\) tree a and cup \(\square\)
E. gun \(\sqrt{2}^{3}\)
F) umbrella and apple

\section*{IV-5. Removing sets and the remaining set}
objective: \({ }^{\prime}\) To introduce the ideas of removing setts, the remaining set and the tise of these ideas.

Vocabulary: - Remove, remaining set.
Background Note:
This is further preparation for the concept of subtraction.
Materials: Materials for flannel board such as apples, bananas, oranges, pineapple, cherries, \(\varepsilon^{-}\) smiall objects as ubeans, sticks and buttons.

Suoggested Procedurè;
On a table place a set of beans with more members than can easily be counted. Tell a child to remove a subset of the set. When we remove a set, the set that is left is the remaining set.

Point to the remaining set.
These observations should be made in relation to the removing of a set and the remaining set:

Each member of the set removed was a member - of the set with which we started \(s^{3} t^{*}\)

Each \({ }^{\text {member }}\) of the remaining set is a member of the set with which we started.

Each member of the starting set is a member of either the set removed or the remaining set.,

- On the flannel board place a set of fruit containing six or seven members. Ask a child to describe the set. It.may be a set of fruit, such as apples, oranges, pineapple, cherries, banana.

Let's pretend that we are going on a picnic today. We will each take a sandwich for ourselves and something to share withothe whole group. On the flannel board is the set of fruit which Dick brought. How many members are in the set? (7.) Jerry wanted some of the fruit to eat with his sandwich. Jerry will take some of the fruit from the set. (Ask a child to take some fruit from the set displayed.) This is the set of \({ }^{\circ}\) fruit Jerry wanted to eat. Is it. a subset of the set of fruit? (Yes.), When Jerry took the subset of fruit from the set of fruit, he removed it from the set. What is the number of members in the set removed? (2.) -

Ask a child to' describe the set. remaining on the flannel board. (Cherry, orange, apple, pineapple, and banana!) The remaining: set is the set that is left after we have removed a subset from the starting set.
v Is the remaining set a subset of the starting set? (Yes, because all members of the remaining set must have been members of the starting set.) How many members are in the remaining set? (5.) Call attention to the many situations in the school day o experience which could illustrate a set removed. and the _remaining set, where the starting set is the children in your classroom: for example, the set of children who went home \({ }^{2}\) for lunch today (thelset removed) and the set \({ }^{\text {. }}\) of children who ate lunch at school, today (the set remaining).

149

\section*{IV-6. Removing sets and subtracting numbers}

\section*{Objectives: \(\quad \mathbb{T b}\) review the idea of removing a subset. \\ To use number in relation to this set}
experience. - -
Vocabulary: Minus, subtract, -. . .


Background Note:
Subtraction is described in terms of removing a subset:
-7-3 is the number of members in the remaining set if
'a subset of 3 members is removed from a set of 7 members. We shall later consider other descriptions (which include, the missing addend description).
Materials: Set of flannel cutouts, numeral cards \(0,1,2,3,4,5,6,7,8,9\) and, chart to display y numeral cards.

Ask a child to form a set, with 5 objects on the flannel board. Display the set of numerals and ask if a child can find the card for the number of members in the set. Place the card on the left at the bottom of the flannel board. Ask a child to describe \(\dot{\&}\) subset of the set.
Remove the subset' and place it on the flannel board apart from the' set with which you started.

How many" members are in the set that was' removed? (2.)
- Ask" the child to find the numeral card which tells this. number and place it on the flannel board at the fight of the first card.

What do we call the set that is here (indicate the part that was not moved)? (The'remarining set.)
How many members are in the remaining sets. (3.).

4
\(y=4\)

Ask a child to find the numeral card for, the number of members in the remaining set and place it on the flannel board at the right of the other cards.
a Then numerals at the 'bottom of the flannel board can be used te make an equation. We, are subtracting the number 2 .from \(5^{\circ}\). The result is the number 3

We: say 5 minus 2 , equals 3 .
-We write the equation, \(5-2=3\).
As a review you might ask children the ; following questions:
Which set has 5 members?. (The set we. started (with, )
Which set has 2 'members? (The set we removed.) Which set has, \(3^{\circ}\) members? (The remaining set.) - In further development of this lesson the numerals should be recorded on a chart similar to that used in Section 1. The column on the left is for the number of members in the starting set; the column. in the middle is for the number of members a in the set that was removed, and the column on the right is for the number of members in the remaining set. Write the equation which corresponds to each expedience." The" completed chart might look like this:


Have each child, work at his*desk with sets of small objects, • removing subsets from sets of objects and recording the numbers of each of the three sets. The paper which each child uses to record the work should have these headings:
 is these problems.

Five rabbits were in mo garden.
- Two rabbits hoppedeaway.

Э : Then how manywabbits wert in my garden?
What is it, that we want to find out?
(How many rabbits are in the garden after soigne go away)
 left (remained) in my garden ?ll after some hopped away.

Describe. the first set you heard about when \(\bar{I}\) read the "story. (A set of 5 rabbits in a garden.)'

Have a child use materials on flannel board toophow a, set that matches the set of five, rabbits.
-What happened to this set of rabitits? (Two rabbits hopped away.)

Ask'a child to show what happened using the objects on the flannel board. "Discuss the set of 'three members.
, 4 nat remains after the subset with 2 members is removed.
Do 'you know' the answer to the problem? What.
is it? (Some children may answer, "Three":)

Ask if the Answer is 3 \(\qquad\) naming what were used to represent the rabbits, Bring \({ }^{\prime \prime}\) at again that we are answering the question, "How many rabbits remained in the garden?" We use these materials to help us find the answer, but the answer. is, "There are still three rabbits in my garden."

What equation can be written about this story? \((5-2=3)\).
Other problems to, be developed in the same way:
1. "Seven birds were sitting in a tree.

Four of these birds flew away.
How many birds, were still sitting in the tree?
2. Mark had 5 cents.

He, gave 4 .cents to Father.
-Then how many cents, did Mark have?
3. . Weather baked eight. gingerbread men:
- She gave three of them to susan.

How many did Mother have then?
4. Judy had 9 pencils:
'She lost' 2 of these pencils. Then how many pencils doés Judy have?

\section*{Further Activities:}
1. Distribute sets of small objects, Display the numeral.
\(7 .{ }^{n}\) Ask each child to "show" a set with that many members on his desk. Display the numeral 4. Ask children to remove a subset with that many members from the sets on their desk.

How many members are in the remaining set?
(3.)

\section*{Display the numeral 3.}

What is an equation that describes removing
a subset with 4 members from a set with
7 members?
\((7-4=3\).\() (7 minus 4\) equals 3.\()\)
Place the symbols \(-\therefore\) and \(=\) in the correct places with the numerals to form the equation.

Have the children use manipulative materials to find the numbers which complete these equations: \(7--\square=2 ; \square-1=4 ;\) and \(6-5=\square\)
2. To implement work with removing set, have the children imagine a birthday cake with \(\frac{2}{6}\) to 10 candles. For illustrative purposes 8 , will be used in the discussion here. Place numeral.cards \({ }^{2} 0\) through 8 if in a box.: (cards 0-6 if six, candies, etc.). Draw a card from the box and show it to the children. "Tell, them this is the number of candles which you were able to blow out with , one try.

Identify, the numizer of "candles which would still be " burning. ' (If necessary y' a row of candles, with detachable flames might be placed orr the flannel
- board. When the number indicates how many are blown out is shown, that number of flames could be removed.) Each experience should be followed by' writing an equation.

A chart. can be made for these experience to show the different equation which were formed. Then when a child. draws â card which haas been drawn earlier he can be asked to find the equation which.regresents this. only the different equations would be added to the chart.

154

\section*{Pupilis baok page 45:}

In each box the members of the starting set, and the number of members in the subset to be removed are given. The children are to ring and shade the subset which they are to imagine has been removed from the set. They are then to record into the space provided the number of members in the starting set and in the remaining set.

\section*{Pupil's book, 'page 46:}

Direct the children to identify the number of members of the "set. "They are to indicate a subset to"be removed by making a ring'around" it. "They are to -write the numerals which would be used to make a recorat
Pupil's book, page 47 and 48 :
Direct children to complete the chart which is shown and write the corresponding equation. on. page 48, 年ey will need to make the ring around the subset.

\section*{Pupilas book, page 49:}

Direct the children to complete these equations. If tiey Aeed to use manipulative materials, they shoula bé allowed to do so..

\begin{tabular}{|c|c|}
\hline 8 & \\
\hline 8 & \\
\hline 5 & \\
\hline 5 & 1 \\
\hline
\end{tabular}


10



Write the equations.
\[
\begin{aligned}
& \begin{array}{c}
5-1=4 \\
\because-2=1 \\
1-1=0
\end{array} \\
& 3-1=2 \\
& 4-3=1 \\
& 5-2=3 \\
& 1 \\
& 6-2=4 \\
& \text { - } 4 \\
& \text { \% } 160 \\
& \text { \%o" }
\end{aligned}
\]

IV-7. Döing and undoing

Objective: To introduce the notion that adding a number and subtracting the same number are inverse operations.

Vocabulary: Doing, undoing.

\section*{Background Note:}

Adding 3 to a number and then subtracting 3 from the. result always gives the original number. We may also anterchange the order of the operations. Subtracting 3 from a number and then adding 3 to the result lways gives the original number. 'We say that the operation of adding 3 , and the operation of subtsacting 3 are inverses. (We do not use the term "inverse" with the children.): This relation between addition and subtraction is \({ }^{\circ}\) based on the corresponding relation between joining and removing. Joining af set to a second set añ then removing it leaves the second set unchanged; removing a set which is a subset of a set, and then joining it to the remaining set leaves the starting set 'unchanged.

Saggested Procedure:
Place a set of toy cars on the table. Ask a child to. describe the set. Adentify this as the set with which we startea. Put a set of toy animals on the table. It is not necessary to knci the number of members in either set. Use sets which have too many members to count. Join the set of toy cars to the set of animals.

What are the members of this set?
"x-: (Cars and animals.).
When. we joined the set of cars to the set : of animals we formed a new set, Remove the subset of toys which was joined to the set of cars.

What are the members that are remaining?
(The set of animals.) This is the set with which we started.
- On the flannel board place a set of ducks with three members. Have the cłass describe the set, name the number of members of this set and refer toisit as the starting set. Place a set of two dogs on the right side and identify the number of members in the set.

We have 2 sets on our flannel board.
Let's join the set with 2 dogs to the set with 3 . ducks. (Show by moving the set 'of \(\therefore\) i dogs to the sèt of ducks.)
.We now have one set with how many members? (5.)
* What is the equation which tells we have added 2 to 32 -
\(\Rightarrow \quad(3+2=5\).
Continue the discussion using this new set formed by joining the set of dogs to the set of ducks.

How many members have we in this set? (5.)

Ask a child to remove the subsetrof dogs from the set of ducks and dogs.

What is the number of members in the subset of dogs which was yoved (2.)

Kame the members of the remaining set.
(The set of frecks, the set of 3 ducks, the set of duck with which we started.)
What is the equation which show that we have subtracted 2 from 5? (5-2 = 30). '

Is three the number of duck's with which we started? (Yes.)
'. \({ }^{\prime}\)

Is the set tylfe same set as the one with which we started? (Yes.)

Emphasize with the children that if a set which is joined to a set is removed from the new set which was formed, then we have the set with which we started.

If a number which is added to \(a^{\circ}\) second number is subtracted from the sum of the two numbers, then we have the number with which we started. The equations which we-medevelpped while working with these sets are \({ }_{\text {orepeated }}\) here for comparison.
\[
\begin{aligned}
& 3+2=5 \\
& 5-2=3
\end{aligned}
\]
- Place a set of spools on the table.

Ask a child to remove a subzert of the spools.
What is on the table? (A remaining set.) Join the set removed, to the remaining set.

What is on the table?
(The set with-which we started. The set
ofespools.)
Was each member of this set in the set \(\frac{1}{2}\) with which we started? (Yes.)
- Place a set of.bailis on a table. Describe the members of the set.

What is the mumber of members? (7.)
Ask a child to remove a subset of the balls.
What is the number of members in the subset whick was removed? (3.)
- What is the number of members in the remaiaing - set? (4.)

What equation describes removing a set of 3 . from the sete of 7 ? \((7-3=4 .\).

Ask the children to think of the remaining set_as a starting set.

How many objects are in this set? (4.) \(\because\) Join the set of \({ }^{\circ} 3\) balls which was the set removed to the set of 4 balls.'

What. is the number of members in the new set? (7.) This is the set which we had before we removed the subset* of three balls.

What is the equation to show that we have
joined a set of 3 balls to the set of
4 balls? ( \(4+3=\). \(\quad\). ) .
Solving Problems
1. Bobby had five balloons.

During the night some of the air went out of two balloons.
"How many were still blown up? (3.)
How many balloons were full of air? '(3.) \(\therefore \therefore\). Bobby's mother blew up the balloons which
had Sst some air.
How many had lost some aide (2.) How many are full of airagain? (5.)
2. Tom had

He had . jacks in his pocket
Hoff many objects were in his pocket? (6.)
: rom gave the jacks to his brother to play with." Then hor many jacks did Tom have? (0\%)
"What was, left"onom's pocket?" (The set of mấrbles.)
How many objects were left' in Tom's pocket? (2.)
Pupil's book, page 50: Tell children to fill blanks and to record addition and then subtraction.
Pupil's book, page nl: Tell children to fill blanks and .to record subtraction and then addition.


How many all together? 7
How many removed? \(\qquad\) 4

How many in remaining set? 3
\[
\text { Equation: } 7-4=3
\]


How many all together? \(\qquad\) 8. How many removed? \(\qquad\) :

How many in the remaining set? \(\qquad\) 5 Equation: \(\quad 8-3=5\).


How many? \(\qquad\)


How many? \(\qquad\)

How many all together? \(\qquad\)
Equation: \(\qquad\) \(5+3.78\)

\section*{TV-8. Problem solving} additional symbol cards for,,\(+-=\) (large size set \({ }_{i}\) for demonstration and additionai sets for the children); "balloons" for flannel board; story problems printed on \(12^{\prime \prime} \cdot \times 2^{\prime \prime}\) tagboard; small objectsfor use by childaren them needéd.".

\section*{Suggested Procedure:}


Di̦splay the following stọry written on tagboard.
Mary had \(\square\) cents. \(\quad\).
She gave \(\square\) cents to. Tom.
How many cents does Mary still have?

I will read this story to you, In the first two sentences the "box" shows where something is missing. I will pause there each time.

After you have read the problem to the children, ask que'stions such as these:

Does the story ask a question \({ }^{\text {r }}\) (Yes.)
What is the question it asks? (How many cents does Mary still have.)
What does the story tell you? (Mary had some money and she gave some' away.)
Con you tell the answer to the question? (No..)
Why not? (There are no numbers to tell how many.).
Let? use some numbers in the story. Then we wili \(\therefore\) if see if. He can answer the question.
Ask a child'to show with play money how many cents Mary had at first. Write the numeral in the fifst box and read the sentence aloud. (e.g\%, Mary had-f cents.)

4

Have the child who is holding the money" decide how fany. cents Nary gave to Tom. P Point out that this could not be. more ithan 7 , cents. Complete the second sentence by writing the pumeral in its' proper pósition, (e.g., 3) and then read the sentence. (She gave 3 cents to Tom.) Encourage the children to answer the question asked by the third sentence in the story.
.How can we show that Mary has 4 cents left? The child who bas the money can show, the result using the set of 7 centss with: which "he, started, and removing \(a\) subset of 3 cents..
"Ask a child tócome and ohoose numéral cards' and additional symbol cards to show the equation.
```

7-3

```

Copy the equation on the chalkboard where everyone can see it.

Is this equation the answer to the question in our story? (No.)

Through, discussion bring out that the equation is not the anqwer to the'question in our problem, "How heny cents doies Mary have now"?
( Who can tell me the answer to the question - in our problem?
"Now Mary has 4 cențs," is the answer to the questiop in our problem: We can say we have solved the problem.
- inisplay and read to the chilaren the following problem:

Five togs were
Two dogs ran awa
How many dogs were there then?

Discuss the problem from the standpoint of ways in which it is different from and also like the first problem. Eprohasize that. although the story problems tel le about different things, both problems involve removing a subset from a set and finding the number of members in the set that remains.

Ask the children to show with a numeral card on their desks the number of members in the set of dogs that remained. (3.) (Some children may need to manipulate representative objects. Permit them to apo so.) Then have a child write on the chalkboard an equation that relates the numbers 5,2 and \(3 \cdot(5,-2=3)\)
*Ask another child to state the answer to the question in the problem.

Three dogs were left.
- Display. this story problem written on tagboard: ; . John had \(\square\) balloons. Father gave \(\square\) balloons to John.each box as you read. Then discuiss this problem in the same'way in which you discussed the first. problem, about Mary and Tom, ice.; emphasize the need for specific numbers to indicate how many balloons John had at first and how many'bailoohs Father gave to John.

Ask one child to be John. ald choose enough flannel board balloons to show how riant balloons John had before Father gave. more to him. Write the numeral in the box in the first sentence, ( \(\mathrm{e} . \mathrm{g}, \mathrm{4}\) ). 'Read the sentence to the - children.

. Can we solve the problem now (No, because we don't know how many ball ont Father gave - to John d)

If Father gave John at least one balloon, how many balloons would John haver then? (At least 5.) Ask another child to be Father, to choose the number of baifons that Father, gave to John (e.g., 3), and to display that many flannel board balloons.

Write the numeral to show how many balloons Father gave to John (e.g., 3) and read the second sentence aloud.

How can we find the number, we need to solye


Haye a child use the large demonstration cards to show
the equation that relates' the numbers 4,3 atid. 7 . \((4+3=7\).
Stres's the fact that \(4+-3_{0}=7\) is the equation associated with the problem but that the answer to the question asked in the story is, "Then John had 7 balloons."
1. Give:'the children large sheets of newsprint and suggest .that they think about a problem of their ow and draw a picture about itt:. Encourage them to share, their'story with the group. Write some of the story problems on, sheets of oaktag for use in this conrection.
- 2. Give each child a card with a pair of numerals on it, e.g., 3, 2. Using large sheets of paper have the child draw a picture of a story problem which would fit the numbers named on his "cara. Discussion in \({ }^{?}\). presenting the activity could bring out the different possibilities for using the same pair of numbers. For example, 3, \(2^{\prime}\) might be used as 3 and 2 . more, as 2 and * 3 more, or as a subset of ? rempved from a set of 3 .:
-3. Give each child a sheet of \(12 \times 18\) newsprint and a few'gummed dots of each of two.colors. Direct the child to stick dots on the paper wherever he may. wish to place them. . He may imagine the dots are anything he wishes them to be and he is to draw a picture around them.
* For example, the dots might be eggs in a nest, or a bed of flowers, , or balls, or different kinds of food. When the child "finishes his picture he may tell the class a story problem thaf bees with his picture:
4. Story problems such as these may be used for further experience with: problem solving work.

Some cars were in front of my jhouse. Two cars came. Then theré were four cars. How many cars were there at first?,

Susań spent 3 cents for candy and 2 cents for gum. How many cents did. she spend?
, Jack had 4 balloons \(\$\) He gave some to Jinmy.
? Then he had' 2 balloons. How many did he give to Jimm?

This morning David read \(1^{\prime \prime}\) page" in hig'bogk :This afternoón he read ' 5 ', pagess. How many' pages did he read?

Mother had 5. sticks of candy. She gave 4 sticks to the children. How marly sticks dịd she have then?

Bill borrowed some' parer from Bob. He returned 2 sheets and he still owes Bill 3 sheets: How many sheets did he borrow?

Mark had some, toy boats. He gave 2 boats to Albert: Then Mark had .5 boats. How many boats did Mark have in the beginning?

Mary had '3 dolls.. She got more dolls for her birthday, Then she" had 6 dolls. How many dolls did she get for her birthday?

Chapter V
RECOGNIZING GEOMETRIC FIGURES

\section*{Background}

\section*{Introduction}

This chapter is devoted to geometry.
The subject is introduced to the children by means of familiar three-dimensional' shapes. This part' of the discussion is very informal and the classification crude: objects are differentiated according to whether they are "round", "flat"., "square", and so on.

The rest of the chapiter, as well as the ensuing geometric material through the next several books, deals,
\(\therefore\). with plane \&ometry only. For convenfence of reference we now outline the main ideas (even though many of them will not be encountered until later).

We shall study what may be called phymizal.geometry-that is, the geometry of the world around us. - The study involves a certain amount of abstraction, for the fundamental objects we shall deal with are not thitigs we can pick up or feel or see. We shall. think of a point, for example; as an exact location in space. A point, then, has no size or shape or color; it has no physical attributes at ail except its location. We indicate a point 㓎 making a pencil dot or a chalk dot; but every' child will agree that such a dot does not mark an exact location, and he will enjoy imagining the unseaable, points.

We may remark that the geometry stydied in college courses is of a higher degree ofenbitraction still: "Thëre the fundamental geometric objects-like point' and Iine are not defined at all, and the study proceeds déductively fram certain formally stated assumptions about them (cailed axioms).

Our purpose here is to help the pupil observe and describe fundzinental. geometric relationships. The discussion is intuitive. In the primary grades we are not particularly: concerned with formal deductions Point

By a point we,mean an exact location--forinexample, the exact spot at the corner of a room where two mails and the "ceiling meet. We indicate points by drawing dots; but we realize that a pencil dot, no matter how. small, gives only an approximate location, not an exact one. (In fact, it is clear that a pencil att on, a sheet of paper covers infinitely many points eh that. 1 s , more that h Can be counted.) Nevertheless, in order to keep the language simple, we refer to the dots themselves as the actual points.

It is customary to denote points by, capital letters:
A point is a fixed location: \(s\) points do not move. The point at. tine corner of the ceiling remains even if the whole building fells down. Nevertheless, it must be remember that fixing a location is a meaningful notion on dy, with respect to some particular frame of: defence Fri en of reference in common usage are: the sin, the edith, a car, a person, a ruler. Appoint \(\vdots\) that Is, fixed with respect to one frame of reference need nate fixed with respect to 1 . different one: For example the a rifer is carried across tho room point on the ruler remains fixed with respect to the rifler but does not remain fixed with respect to the
 geagefic-fisurd are said* to be congruent provided that they have the same size and shape. A test is whether:
one will. fit exactly on the other. In practice, the objects' may not be conveniently movable; then one tests for congruence by making a movable 然py of one and checking it against the other. Of course, all such tests, since they involve actual physical objects, often including the human eye, are only approximate. Nevertheless, in order to keep the language simple, we shall say, "the segments \(\cdot \dot{\overrightarrow{A B}}\). and \(\overline{C D}\) are congruent" (rather than \(\therefore\) seem to be)--just as people say, "Johnny and Jimmy are exactly as tall as each other" (rather than seem to be):

Curve
\(\therefore\). By a curve we mean any set of points followed in passing from a given point, Auto a given point' B.
\(\because\) Inherent in this definition is the intuitive notion. of continuity; this is a curve: '-
察
/

and so is this: -

while this is not a curve:

(However, it is a union of three curves.) We agree that a single point is not a curve.

It is also noteworthy that, according to the definition, a curve can be straight (in contrast with everyday usage). This is a curve: \(\therefore\) \(\stackrel{\square}{ }\)

and so is this:


Line Segment
The last picture is an example of a line segment, that is, a straight curve. The endpoints"ere marked \(A\) and \(B\); the line segment is denoted, accordingly, by eithex \(\overline{A B}\) or \(\overline{\mathrm{BA}}\). Again, we agree that a'single point is not/a line segment.

Observe that a line segment can always be éxpressed.. in many different ways as a union of other line segments; For. exapple, the line segment. \(\overline{A B}\) shown here is the union of the line segments,\(\overline{A C}\) and \(\overline{C B}\), the union of the line segments \(\overline{\mathrm{AD}}, \overline{\mathrm{AE}}\), and \(\overline{\mathrm{CB}}\), etc.
mos


\section*{Ling}

When a line segment is extended infinitely far in both directions, we get a line. Such extensions are only conceptual, of course, not practical. A line has no endpoints. No matter how far out we go in either direction along a line, still more of the line will, lie ahead. The infinite extent is indicated by arrows. The line containing points \(A\) and \(B\) is denoted by \(\overrightarrow{A B}\). The. line shown contains points \(A, B\), and \(C\); some names for this line are, therefore, \(\overrightarrow{A B}, \overrightarrow{B A}, \overrightarrow{A C}, \overrightarrow{B C}\), etc.


Note that, although \(\overline{\mathrm{AB}}\) and \(\overline{\mathrm{AC}}\) are different line segments, \(\overrightarrow{A B}\) and \(\overrightarrow{A C}\) are the same line.

Just as a line is the infinite extension of a line segment in both directions a ray is the ipfinite extension of a line segment in one direction. A ray therefore has a single endpoint. The Infinite extent of a ray is indicated by an arrow. The ray with endpoinff \(A\) and containing another point \(B\) is denoted by \(\overrightarrow{A B}\). The ray show has, endpoint \(A\) and contains points, \(B\) and \(C\); some names for this ray are, therefore, \(\overrightarrow{A B}\) and \(\overrightarrow{A C}\).


Note that, although \(\overline{A B}\) and \(\overline{B A}\)-are the same line, \(? \overrightarrow{A B}\) and \(\overrightarrow{B A}\) are different rays.


Angle
By an angle we mean the, union of two rays having the same endpoint: (We exclude the case in which the two rays are part of the same line.) The common endpoint is called the vertex of "the angle. The plural of "vertex". is "vertices". The angle formed by rays \(\overrightarrow{A B}\) and \(\overrightarrow{A C}\) is denoted by \(\angle B A C\) or \(\angle C A B\). Two segments with a common endpoint determine an angle: segments \(\overline{A B}\) and \(\overline{A C}\) with common endpoint \(A\) determine the angle \(\angle B A C\) with vertex \(A\) :

。


\section*{Right Angle}

An angle is called a right angle if "duo of them can fit together to form a line". In the dat ram, \(\angle \mathrm{ABC}\) is congruent with \(\angle A B D\), and the throe points \(C, B\), and \(D\). lie on a line; therefor \(\angle C A B C\) and \(\angle A B D\) are right, angles.


Note that there are two parts to the definition: the part concerning congruence, and the part concerning the line. In the next diagram, \(\angle E F G\) and \(\angle E F H\) form a line. Gut are not congruent, while \(\angle K L M\) and \(\angle K L N\) are congruent but do not form va line.


When a flat surface such as a" table top, wall, or sheet of glass, or even this sheet of paper is extended. in -infinitely in all directions, we get a that if two points. of a line lie in a given plane, then the entire line is contained in the plane. Two intersecting lines determine a plane. In the teaching material, the infinite extent of the plane is not stressed.

Closed Curve, Simple Closed Curve
We have called a curve any set of points followed inopassing from a given point \(A\) to a given point \(B .=\) When the points \(A\) and \(B\) coincide, the curve issaid to be closed.



A closed curve

等
1

A closed curve that lies in a plane and does not._cross. itself is. simple.

2


A simple closed curve
A simple closed curve has the interesting property of separating the rest of the plane into two subsets, an inside or interior (the subset of the plane enclosed by the curve) and an outside or exterior. Any curve connecting a point of the interior with a point of the exterior necessarily intersects the simple closed curve. (It may be of interest that this seemingly obvious fact is actually quite hard to prove.)

Pölygon
An important class of simple closed curves is the class of polygons. A polygon is a simple closed curve that is a union of line. segments. Recall that a line segment can always be expressed in many. different ways as a union of line segments. Hence a polygon, too, can be expressed in different ways as. a union of line segments.

\(\Delta\)

The union of \(\overrightarrow{A B}\), . \(\overline{B C}\), and \(\dot{C A}=\)
the union of \(\overline{A D}, \overline{D B}, \overline{B C}\), and \(\overline{C A}\).
If we look at the varipus line segments in a polygon, we notice that they are of two kinds: those that are contained in other line segments, and those that are not contained in othar line segments. Formexample, in the picture above, \(\overline{\mathrm{AD}}\). is of the first kinत", since it is
contained id the line segment \(\overline{A B}\). On the other hand, \(\overline{A B}\) is of the second kind, since it is not contained in any line segment except itself. Line segments of this second kind are called sides: a line segment in a, polygon is called a side if it is not contained in any. other line segment in the polygon. The polygon shown has three sides: \(\overline{A B}, \overline{B C}\), and \(\overline{C A}\). A polygon of thriee "sides is called a triangle. A polygon of four side's is \(\dot{a}\) quadadiateral; of five sides; a pentagon; of six, a hexagon. (The last two' hames are nof used in the teaching material.)


It may be observed that two consecutive sides of a poly-gon--that is, two sides with an endpoint in common-never lie on the same line. The endpoints of the sides are the vertices (singular: vertex) of the polygon. The vertices of the triangle shown above are \(A, B\), and \(C\).

Rectangles are special kinds of quadrilaterals.
Squares are specialukinds of rectangles."

\section*{Règion}

The union of a simple closed"curve andits interior is called a region. We refer to a triangular region, • rectangula'r region, or circular region, etc., indicating that the simple closed curve is a triangle, rectangle; or circle; etc. For example, an ordinary sheet of paper is a rectangular region; the edges of the paper, form a rectangle.



180

circular region
.V-1. Familiar three-dimensional shapes.

Objectitfe: To lead children to observe distinguishing features of spheres, rectangular prisms, and cylinders. - si
. Yócabulary: Shape, round, fäce, edge, corner, surfáce. (at least , is): balls, bóres; blö̈ks, - plastic containers,*and the like. These should be restricted to objects that can serve' as models of spheres, rećtangular prisms, and cylinders. A şet of comercial \(\rightarrow\) models is highly recomended:


Suggested Procedure:
ín, This exploritory lesson directs attention to the geometry of spheres, rectangular prisms, and cylinders. There should be a sufficient number of objects (vasied in color and Whape) so that all children have an opportunity to hendlefand to discuss the abjects'. They should run their hąnds over surfaces, along edges, etc. As the. lesson proceeds, use the words object, item, and-thing , interchangeably until the children widye learned the word jobject.


You may begin this lesson by designating desks on which children are to place objects that have some kind of. likeness to each other. Begin by asking a, child to place an object (item or thing) in one of the places. Ask another child to select a second object. If he does not think it should be placed with the first object, he may place it on another desk and explain i in what way these objects are different.' The classification has been established at this point.

When the other children place objects in the various. sets, they should use this same classification. You may find that the first sorting is doter according to color or size or use of the object or material from which it is made; etc. Let the children continue the classification by using six or more object's. As each object is placed with a set, discuss with the children whether or not it belongs with the other objects in the set.

Start again with all objects in one set and tell the children to think of offer ways to sort them. Let the - children. develop several classifications. If shape, has not been used ás a basis for sorting', introduce it. 'First place a ball on one desk', a box on the next desk, and a can on the third. Then select another object and ask the' children why it should be placed on a particular t'ablé. If a response is made that it has a shape, like a bail, agree; and comment that it iss a figure shaped like a bail. The activity should result. in some such arrangemont as that pictured below.



After the sorting is) completed, the children should \({ }^{*}\); identify what the objects in each set have in common. Their'description of the sets"may be: objects like boxes, objects like balls, objects like spools. Help develop the awareness of these shapes by describing the boxes as having edges, flat sites (faces), and. cornets; the cans as having edges (rims) but no corners; and the balls as having neither' edges nor corners'.

\section*{Ideas}

Objects'arè shaped in different ways.

Page
(Balls, cans, boxes.)
53.

Call attention to some of the pictures
oof objects ion the page. Ask the children to lbokiat the first yow. Not that a . "row goes across the pose, not up and dow Ask what the first object in the first row is. (Ball) Trace the mark on the ball.

What are the names of the other pictures in the row? (Crayon, golfball.)

Which picture has the same shape as the baseball? (Goo foal.)
- Mark the golfoall in the same way the baseball is marked.
中hemeask the children to mark the first picture in the other rows, and one other picture shaped like the first one in the same row.

Page 54.
This page has more choices for marking in each row. Ask the children to look at the first. row and mark the two objects that have the same shape? "Check the accuracy of their markings, then give instructions to complete the page.

\section*{Further Activities:}
.1. Ask a child to put his hands behind his back. Then place in his hands an object shaped like one of the three kinds in this lesson. ('It would be advisable to include object's which had not' been 'used \(\alpha\) the earlier sorting.) Ask the child to identify its shape. Continue with other children and other obJets: In each ease, ask why the object is classified asst is. Chalk, dominoes, and cylindrical pinboxes would be helpful.
2." Have children "dentify"ather objects in the room Il that could of placed yin one of the three. categories. Children n day wish to bring for home various objects \({ }^{\text {a }}\) to ge to the collection." Flashlight batteries, balls, blocks, pencils,' chalk, or simple toys can
be put in that particular classification. This procequare not only heips to identify the geometric figures but also provides the association of the picture with the object and witk the geometric'fig: ure they represent. The pictures may be arranged on a builetin boara, in a scrappook, etc.."
4. If children ask the geometric names of the objects
\(K\) that they hande, supply these Although introduction of such names as "rectangular" prism", "cylinder", and "sphere" is not-the purpose. of this chapter, 'some childrgn are interested in new words and will take pleasure in hearing them.
5. Have seteral smàl packing bóxes (more than necessary) available in which to pack the objects. Ask the children how the objebts might best be packed to save' room. Some 'suggèstions.might be \(\quad \therefore\)

Réctangular figures, can fit together, bequyse of their edges.

Large round figures have waste space in which smaller objects can, be packed
Bailooes cotuld be 'deflatèd.
Then have the chilidren experiment with ways of yacking: Compare the ease or difficulty of packing
* with that of a bok of dominose or cheskers
6. Read to the children such books as:

Berdney, A Kiss is Round
-Kuskin, Square as à House
Boberts, The Dot


V -2. Simple \(\frac{\mathrm{closed}}{\mathrm{v}}\) curves.
Objective: \(\dot{\mathrm{A}} \dot{\mathrm{p}} \mathrm{r}\) luminary classification of some simple Closed curves.

Vocabuífary::" Straight, rounded, circle.

Materials: Balls; boxes, and cans as in the preceding section; models of circles, triangles, rectangles, and other curved or polygonal figures, such as triangles from rhythm instrument's, rectangular picture, frames, circular embroidey hoops, rubber bands, stretched around pegs on a pegboard ( \(\sigma\) r nails'in apiece. of' ceiling tile), models made from wite or starched string ( \(D_{0}\) not use cardboard sheets af they
\(\because{ }^{\prime} \therefore: \therefore\) suggest the regions rather than the curves themselves.); chalk and string for drawing \(\because \quad \because\) circles on the chalkboard.

Before the lesson draw several polygons and other simple
Suggested Procedure: closed curves on the chalkboard. Include at least. three. circles.

d


Point out that some of the figures are rounded, while others have straight sides! Discuss and classify each figure in turn.
Display and discuss the triangles, frames, and hoops, . and the pegboard and wire models.

Display the balls; .boxes, and cans. \(:\) Show the circular seam. of a ball. (Do not use a baseball; its seam is not a plane curve.) Indicate the rounded rims of the cars.
\% Point out the straight edges of the boxes.:
Have the children look for objects about the room whose shapes they can classify: the rounded rim of the waste \({ }_{-}\). ( basket or clock, the straight edges of the desk or window, etc.

Pupil's book, page 65: \(\dot{\text { pounded }}\) 오 Straight Read the instructions to the children: The child is to make a mark somewhere on the figure.
.


18.5


Distingitshing circles from other rounded shapes
\(\therefore\) Diceat chilaren's attention again ta the figures on the chankoand.- Tell the children that fou are gaing fo:efase all the figures for pietures mith stradght sides. Have them pick out phe figures for yor. When all the polygons have been erased, replace them with curved figures'that you can draw freehand.

by one, picking out the circles; . tell why the circle is special. ("It looks the sàme "from every direction", etc:)

Pupil's book, page 56:
Circles
Read the instructions to the children. The pupil is to make a mark somewhere on the figure:


Mark each circle green.
Mark each other figure red.


V-3. Polygons
3
Objective: A preliminary classification of some polygons.

Vocabulary: Triangle, rectangle; square.

Materials: Boxes, models of triangles, rectangles, and other polygons, such as triangles from rythem instruments, rectangular picture frames, Lubber bands stretched around \({ }^{\text {a }}\) pegs on, a pegboard '(or nails in a piece of, ceiling tile); models made from wire or starched. string; sticks of various lengths.

\section*{Suggested Procedure:}

This lesson requires. some preparation of the chalkboard. On the left side of the chalkboard, draw several polygons. Include at least three triangles and three quadrilaterals, and a few polygons with five or more sides.


Oi the right side of the charkboard, draw severad quadrilaterals. Include at least five rectanigres, two of . which are squares; at least two of the rectangles, in-cluding one of the scuares, should be "tilted". Keep this séction covered from vịew until needed.


Classifying polygons according to the number of sides
Ask the class how. the set of figures for pictures)
Fdrawn here differs from thóse discussed last time. (Ail of these have straight sidés.) Pick out a triangle and show that it has three sides; write " 3 " inside the triangle. Pick out a quadrilateral and show that it has four sides;' and write " 4 " inside. ': "Then consider the remaining figures in turn, getting the children to agree on the number of sides, and recording the number inside "the figure.

See if children know the name, triangle, for polygons having exactly three sides. Suggest the name if necessary. Consider the figures once more, picking out the triangles. .The word "quadrilateral" is not" introduced at this stage, rbut' should be given' if a child asks for the name of a polygon of four sides. For five or
more sides, it is enousin to tell the children that special names do exist. (Possible exception: some children with know the word "pentagon.")

Display. the petal triangles, the picture frames, and the pegboard and wire models of polygons. Have the childran classify their shapes..
Supply sticks ps various lengths for the children to. form into triangles. Make sure that the two shortest sticks have a ppmbined length greater than the longest; then, no matter which three'the child picks out, he will always be, 6 le to construct a triangle.

Pupil's book, page 57:
Number of Sides.
Read the instructions to children.

Number. of Sides.
Write the number of sides inside each figure.


\section*{Distinguishing, rectańgies and squares from other quadriläterals}

Discionse the figures on the right side of the chalkboard. Ask the class how the set of figures (or pictiureș) drawn here differs from the set discussed. .e earlier in this section. (Each of these has éxactly four sides.) Tell the class you are all going to look for some special figures in the set. Ask whether some' child sees'a figure that is special in any way. Point to the rectangular picture frame and the rectangular window frame as examples of the special shapes
 about the corners: Iry to lead the children to the "idea that in a rectangle, all four corner's "look. alike". Introduce the words "rectarryle" and "square". Some children may objecit to calling'the square a. rectangle; point out that it is a special kind of rectangle, just as a lolfipop is a special kind of candy. You may even refer to a square from the beginning as a "square rectingle".

Have the children make rectangles by bordering a sheet of paper with a crayon..

Display several boxes and point out how their edges form rectangles or squares. Have the children look for rectangles in the room as boutdaries of desks, the chaikboard, and so on.

Pupil's book, page 58:* "Rectangles and squares Read the instructions to the children. The child is . . to make a mark somewhere on the figure.

Rectangles and Squares
Mark each square green.
Mark each other rectangle red.


V-4. Classifying regions
Objective: To recognize that a carculaxinégion, rectangular region, etc., consists of̀ the curve itself plus its interior.

To identify circular, rectangular, trianguiar, and square regions.

Vocabulary: - Circular region, rectangular region, triangilar region, square region, inside, outiside, on.
Materials: Wire models of circies, rectangles, squares, ' triangles; filannel regions of the same' shapes.

Suggested Procediure:

In preparation for study of regions, review the ideas. of inside, putside, and on. In the , SMSG Kinfergarten book there are many activities that call rattention. to these ideas.
. The use of playgrónnd circle games can reinforce the idea of a cifcle through their, references to the "'above terms. Such'games include: "Froggie in the : Midale"; "The Farmer in the D\&ll", "Bow. Belinds", "In and Oít the Window", "Looby Eoo", "The Old Brass Wagon", 'and, "Hokey, Pokey". Step on the circle to . show where the curve is.
The playground outlines for "Four Square" can be used to find several squares.
\begin{tabular}{|c|c|}
\hline . . &  \\
\hline * \({ }^{2}\) & \(\stackrel{\square}{\bullet}\) \\
\hline
\end{tabular}
"The outlines of the voilleybails or basketball court -are examples of rectangles, though these may tend to be too large for delineation at this time.

On the flannel board placeran assortment of regions of the types above. Compare these with models of circles, rectangles, triangles, and squares.' Ask how a circular figure is like a circle and how it is different. (Alike in shape; the edge of the felt figure is like the wire circle; the inside of, the felt figure is "fuḷl"; and so on.)
-Tell the children that any object like the felt cutout has \({ }^{\circ}\) a longer \({ }^{\prime}\) name. It is called a circular region. Its edge is a circle.

Continue with the other figures. Refer to their straigh't edges as' sides. Use the terms' triangular region, rectangular region, and square region.

Place the wire models on a.table in separate clas. . sifications. Ask a child to go to the flannel board, remove a region, compare it with a wire model, 'name the region \({ }_{2}\) and place it in the proper classification: Continue until all the figures have been removed and classified.

Pupil's book, pages 59-63:
Regions

\section*{Ideas}

A circular region, rectangular region, etc., consists of the curye itself. plus its interior.

Pages : 59 to 62.
Each page includes a different type of,
- region to classify. The instructions should be read and the sample answer, noted on each of the first two pages.

Page 63. .
Here the children, need to mark the curve itself:


Regions
Mark each rectangular region.


Regions
Mark the triangular regions.



Regions
Mark each square reglon.


Regions
Mark an. \(X\) on each of the rectangles, squares, circles, and triangles.


\section*{Fürther Activities:}

6
1. Place parquetry blocks in a bag for a game of identifying figures. If blocks are not available, figures cut from tagboard or cardboard may be used. Children take turns. Each reaches into the bag without 'looking and identifies the shape of a block by feeling it. He may say, for example, "The block is shaped like a triangle." Then he brings out the block. If the other players agree that he is correct, he places the block in front of him. Otherwise he returns it to the bag. At the end of the game, the child having the most blocks is the winner. It is necessary, of course, to establish the rrule that each chicld must have the same number of turns. Children can make tally. marks to keep track of the ir turns.
2. Start Our Big Book of Shapes with a page for each 'of the figures--rectangular region, triangular resion, and circular region. Paste a model cut from construction paper at the top of each page. Children may cut pictures from magazines and paste them on appropriate pages. Do not hastily reject a child's selection as incorrect; inquire. Some aspect or detail that escapes your attention may have been seen by the child.
3. Give children geometric regions cut fromi colored construction paper: They may assemble the shapes into "pictures" of animals, people, boats, buildings, tree forms, and so on.
4. Provide parquetry blocks and design blocks for children to use in making designs, plictures, etc'. Further intuitive understanding among 'geqmetric figures can be developed by such experiences.
, onthe intent of this chapter is to introduce concepts and vocabulary rather than to have childaren "master" \({ }^{\circ}\) the, content.

\section*{-V-5. Fitting regions :}

Objective: To distinguish different regions byrseeking to fit them each other.

Vocabulary: Match, fit.

Materials: Flannel board regions of \({ }^{*}\) different sizes and shapes; there should be two sets of, congruent figures of contrasting colors (red and green, for instance); also, one square clearly larger than the -congruent figures; a few sets of construction paper regions in two colors, as above.

Suggested Procedure:
Place on the flannel board some of the .red figures as shown:


Talk about what it means to fit exactly, or to match exactly. Show how edges of coins of like denomination match exactly; discuss the way the edges of slices, of bread often fit exactly in a loaf. Pages in \(a_{1-1}\) book match, and one end of an unsharpened pencil may fit exactly against the end of another, with nothing left over of \(\dddot{\text { either pencil. }}\)
Hold up a green rectangular region which will fit exactly one of the red ones on the flannel board, Hold it with its sides parallel to the sides. of the one on the hoard. Have, it described as a rectangular
region．Ask whether this region will exactly fit any of those on the flannel board．Have child do the matching，and show that all sides match，or fit．

Remove the two figures，place the green one on the flannel board，and ask whether the red one car be matched to it． Remove the green figure and ask whether it would fit on any of the other regions on the flannel board．Have a child try to fit it，and show clearly that there are some parts not covered up either on the red or on the green figure．

Match the other green regions to the appropriate red regions in the same wry，having them described each time as a \(\qquad\) region．

Without letting the class see what you are doing，arrange the green regions on the flannel board in different positions．


Hold up the red triangular region in the same position it was in when it was first matched．Ask with what kind of region fit might be matched．Turn the flannel board so that the children can see the different shapes；then ask the children whether the red region can be matched to one of those on the board．Caution the children to be careful，for even this simple arrangement can cause difficulty for children who expect to see regions in positions with one side parallel to the floor．Continue fitting the other figures．

Hold up the square region of larger size and ask whether it could be matched to any of those on the board．Discuss the fact that a region must not only be the same shape but also the same size in order to fit exactly．

冓等
208


ERIC
\[
\frac{\square}{\square \square \Delta \square} \frac{\square \square \Delta \Delta}{\square \square \square \square}
\]

Regions that Fit
Mark the regions that fit,



ERIC
\(66: 12\)
- An additional series of lessons can be developed tó \(\dot{\text { refine comparisons by fitting. A long thin rectångular }}\) region can be included with one that is, nearly square. All the red reofions might be rextanguler regions (irciuding some square ones) such as tho aifferent. sizedequare regions, and three, or more rectangular regions of differing dimensions and preportions.


The green regions should include all of these shapes as well as other rectangurar (and square) region of \(\because \quad \because \quad \stackrel{y}{*} \quad\) different proportions, including some like the following


This time the pupil will need to recognize that, for the fitting, the "lengths of opposite sides"must be the same, Choose some of the green regions quite similar to the red ones, but not actuaily the same; good practice can then \({ }^{\text {m }}\) developed in estimating relative lengths. In most caşés it' would be profitable, - \(\}\) before any attempted fitting is made, to discuss whe ther a given green region will fit and what would beareasonable places to try itt:
Another time some of the red regions on the board should be turned in dufferent positions. It is in mportant to plan specifically sor such a lésson.
Geometric insights of these additional lessons would include:
1. An awareness of the impossibility of matching .

213
a long, thin rectangle' with he which is nearly is "
3. An awareness of the possibility of rotating a
 region which does not have a side parallel to the floor.

Chapter VE
\(\therefore\) place yalue and numeration

\section*{Background}

The fundamęntal purpose•of,this chapter ts to learn \({ }^{2}\) assígned names of numbers greater than nine. We have named the 'pirst few numbers: \(0,1,2 ; 3,4,5,6,7,8\), 9, and tén, but the procedưre of assigning a new name ta eaćh successive number is clearly impractical. Some sort \({ }^{+}\) of system of naming, numbers is necessary. This, chapter is devoted to the Hindu-Arabic system of numeration, our decimal sysitem of numeration. "It is interesting to notice that this is a relatively modern system-'-quite unknown to the Gresks and Romans. Indeed, mathematicians have conjectured that. the rather féeble accomplishment of the Greeks in algebra was due to their lack of a reasonable notational system. \(n\) The system which we now use is onlylabout a thousand years old; it was carried to Europe, along with spices.and sandalwood, b́y Arab traders.
- The simplest numeration systems are very closely relatéd to tallying. For. instance, the Romans used iI, II, III, , and IIII for the first four numbers. Of coutrse, thifs sort of notation is completély impractical for large sets, and. people soon fquind ways of simplifying the naming system. \({ }^{\text {. }}\) The first step was" to count by groups of some agreed-upon sfize, so that, for example, we might refer to seven 'dozen eggs, or a gross of pencils.

Let us state in mathematical terminology just what this "sort of "grouping" amounts to. Suppose we are trying to describe a set which has a great many members. We select a subset of some standard numiser of members (like a dozen, -or a gross) and partition (split up) the get into as many equivalentisibsets as, possible. There may or hay not be a. remainder (that is', members left over). Thus if \(5^{\circ}\) is the standard number, we may partition the set

This is a truly remarkable achievement.
Tv idea, of grouping, together with place volue, is enough to permit us to assign numerals to the first hundred numbers. The step from the pattern:

is a simple 'one, and it-should be clear that this number is to be assígned to a set which consists of 4 tens and 7 ones. The number \(10^{\circ}\) is described in precisely the saine way: this is the number which is to be assigned to a set: of \(i\) ten and 0 ones. We say that the right hand digit is inathe ones' place', and that-its neighbor on the left " is in the tens \({ }^{\text { }}\) place.

There 'is a further step in our system of numeration". Suppose that a set consistis of 23 tens and 4 ones. In counting the 23 . tens we would normaily group these in tens, so that our record keeping might look like either of the
- Tens \begin{tabular}{c|c} 
Ones \\
\hline \(23^{\circ}\) & 4
\end{tabular}
\begin{tabular}{c|c|c} 
Tens of tens & Tens & Ones \\
\hline 2 & 3. & 4
\end{tabular}

In either case, naming this number is 234 is completely natural. We say that the right hand digit is in the ones? place', its left hand neighbor in the tens \({ }^{2}\) place, and the next. Yeft, hand digit is in the 'hundreas' place. Wé call tens of tens "hundreds", and wę call tens of tens of tens "thousands". But the practice of 'naming these greater numbers, eventually becomes impractical and we fall back on the numerals. Thusf
\[
234,468,789,345,863,456,998,567,452,345,765^{\prime \prime}, 989
\]
names a certain number in a perfectly well-defined way, but it is doubtful if many of us remember the ordinary \({ }^{\text {an }}\), names beyond quadrillion.

In order to be sure that you understend our numeration system, you might want to imagine the following whimsical situation:

On Mars there are several forms of life, and. the dominant form is called the dozer because of its habit of taking cat naps. The dezër has neither hands nor feet, but it manages manipulations very nicely using its twelve tentacles. . The dozers'are mathematically accomplished* (all little dozers doze through calculus in the first grade) and they have invented a system of numeration which is quite similar to ours. But of course they count by dozens, for anatomical. reasons. They use the numerals \(0,1,2,3,4,5,6\), 7 , 8; and 9 - just as wp dp, but they use \(N\) for ten and \(L\) for eleven. It is curious that they have not found it necessary to invent, a'digit for twelve (or is it?). Naturally the counting is done by dozens and every little dozer understandsthat,\(N 7\) is ten dozens and 7 whereas 7 N is 7 dozens and ten ones. They also count by dozens of dozens, (which they call gross), so that. ISN means eleven dozens of dozens, 5. dozens, and \(N\). ones.标然 the problems:
(a) How do the dozers write twelve? (b) What would we call the number which they label poo? (c) \(7+L=\) ? (Of course the answer must be written s \(\phi\) that dozers can read it.) (d) A little dozer undulated down bo the store with \(2 N\) "shekels to buy ' \(L\) shekels worth of licorice." How much change did he bring his parents?

\section*{Note:}

The sequence" "of"topios in this chapter requires a,
- little expl nation. We begin by partitioning a set into
 as many sets of ten as passible. We then record the number of. sets of ten (number of tens) rand the number In the remaining set (the number of ones). We then begin to nate these 'numbers. "The twenties, thirties, and so on, are" discussed first because the pattern of naming is simple and is like the pattern of the numerals. The names fox the numbers between ten and twenty -are delayed-because the naming pattern is so much more complex. Eleven and twelve have very special' names, but the names 'of the "teens" reverse the usual pattern as the word, "thinted!y, * gives the number of ones first, then the number of tens On the other hand, "twenty-seven" states the

\section*{at. and then the number of ones.}

Again, note that the numeral " 10 " we could assign it the natural meaning:
one ten and zero ones.:

\section*{HOW TO MAKE "SHOW-ME" CARDS}
1. Use a piece of tagboard \(6^{\prime \prime} \times 6^{\prime \prime}\). Fold up \(2^{\prime \prime}\) from the bottom.

2. Staple at \(A, B, C\), and \(D\) to make 3 pockets, each almost \(2^{\prime \prime}\) wide.

3. Cut a strip of "tagboard \(188^{\prime \prime} \times 4^{\prime \prime}\) into 12 strips \(1 \frac{l^{\prime \prime}}{2} \times 4^{\prime \prime}\). With felt pen, write numerals as follows:
0

4. Children. should be taught early to lay out numeral cards in order on their desks and to replace them in order:
5. In the game, the children figure out the solution to a -problem sou give orally or on the chalkboard. They then place the numerals for the answer in the pockets, hold the cards against their chests with the answers concealed until you say, "Show-mei" Then all turn answers toward you, while you make, a quick survey to see who is right,

VI-1. counting by tens and ques
Objective: - To help children learn to count sets, with many members by counting sets of ten., i

Vocabulary: (No'new terms.)
Materials: Flannel board squares and strips of ten, similar flannel board material, other types. of equating material.

Background Note:
A set of ̉ objects may be partitioned into subsets of ten members each and a set of not more than 9 objects. (We do not use the term "partition" with the children.) In this lesson the children learn to do this partitioning into subsets of ten and to name the number of members. in the set; egg., 3 tens and 7 ones, or (orally) thirty and. seven.

Teaching Note:
The lack of pages in the pupil's book for use with this lesson is not an oversight. Teachers have found that actual manipulation of sets of objects is much more effective than working with pictures of sets. Such pictures' necessarily' either group the members of the set artifically, or else present an impossibly cluttered appearance.

Suggested Procedure:
索 Place the material to be counted in a box. Ask a child to remove ten from the set and place the objects in a row on the flannel board. Have children count to determine how many. Be sure they understand that the name that tells how many is "ten" or "ten ones". . Have a child place on the flannel board a set which matches the set already there. This can be done without counting. Have children note that. there, are now two tens. Do the same for a third

\footnotetext{
- . set of ten.
}

Show the remaining 4 objects.
Do we have enough to make another row of ten? (No.)

How many sets of ten do we have? (3.)
What is another name for three sets of ten?
- (Thirty.)

What number tells how many objects are not: in sets of ten? (4.)
These are the ones.
How many ones are there? (4.)
How many objects were in the box? (Many answers should be given, such as 3 ' tens and 4 ones,
thirty plus four, thirty-four.)
Repeat the experience with a set in which the number of fembers is 40.

Now how many sets of ten do we have? (4.): We have separated all our material into sets of tens.
Do we have a set of ones? (No.) (There are no members in the set of ones.)
What is the number that we use to tell that a set has no members? (0.)
How many sets of ten do we have, and how many ones? (4. tens and 0 ones.)

Use other types of material to develop understanding of counting by tens and ones.

Let children use sets of small objects, at their desks to count sets of tens and ones. Keep a record of their results on the chalkbaord.
\begin{tabular}{|c|c|c|c|}
\hline & Tens & Ones & oral \\
\hline Dick & 2 & - 5 & twenty-five \\
\hline Harry & 6 & 1 & sixty-one \\
\hline Tom & 2 & 8 & twenty-eight \\
\hline
\end{tabular}

As review, read each item on the chart in both ways; "e.g., 2 tens 5 ones, twenty-five. Discuss which child had the most objects. (Harry , with 6 tens 1 one.)
- Fut sets of small objects for counting into boxes or envelopes. Put a letter of the alphabet on each box or envelope. "Give each child a paper which is marked:


Children may work as teams or alone to count contents of envelope and record the number of sets of tens and ones. After a child has completed one envelope, he replaces its contents and exchanges it for 'another envelope. One child of a team may serve as the recorder or each may want to keep his own chart. A class chart can be used in order to verify the independent charts. Children can help in setting up materials of this kind. The number of \(\%\) objects in the envelopes can be changed and the activity repeated.

YI-2'. Spoken names of the numbers: 21 through 99

Objective: To help children understand how to count sets of more than twenty members using the spoken names. for whole numbers.

Vocabulary:

Materials:

The spoken names of numbers from 21 through 99. :

Different kinds of objects in groups of 20 or more.

Background Note: . \(\rightarrow\)
This lesson makes" the transition from "tens and ones" to the spoken names of the numbers. We avoid the names for the numbers between ten and twenty at this stage,

Teaching Note:
Work sheets for pupils are not recommended here.
- \({ }^{3}\) \&

Suggested Procedure:
Place 2 tens and 5 ones on the flahnel board.
Who can tell how many squares are on the flannel board? "
(Two tens and 5 ones, or possibly twenty and five.)

Cover the 5 "ones with tagboard.
How can we name the \(\hat{f}\) tens in a shorter way? (Ten, twenty.)

Then let's go on from twenty: twenty-one, twenty-two, twenty-three, twenty-four, twenty-five.
Repeat with different sets.
- Give each child a set of smallrobjects. Ask the children to separate the set of objects into subsets of. ten, to make as many subsets with ten members as possible,' and then to 'be ready to report to the class how many tens and how many ones there are in the set partitioned. Ask several children to
tell how many things they counted by. reporting tens and opes. Record the number of tens and ones on a chart or the chalkboard. When they have told how many tens and ones, point to the chart and.read, 6 tens and 5 ones, sixty, and five, sixty-five.

Further Activities:
Distribute sef of small objects for counting. 'On a chart write:
\begin{tabular}{lc|c} 
& -Tens & Ones \\
\hline Martha & \(2 \cdot\) & 4 \\
Sarah & 4 & 7 \\
Gébrge & -5 & 7 \\
\end{tabular}

Hảve each child display a set of small objects on his desk which corresponds to the set listed by his name on the chart. Then ask each child for other nemes for the number of objects he has shown. Emphasize names suich as twenty-four, forty-seven, fifty-three, etc.

\(\$\)

224
.
(VI-3. The written numerals: 20 through 99
Objective: To help ćhildren associate the correct written. numerals, as well as spoken names, with the numbers 20 to 99.

Vocabulary: (No new words.)
Materials: Different kinäs of \({ }^{\circ}\).objects for counting: blocks, sticks, pegs, flannel board materials, etc. Show-Me cards for further activities.

\section*{Suggested procedure:}

This activity should follow many experjences with counting and naming sets of ten and single objects. The children should be able, for example, to name a set of 4 tens land 5 ones as forty and five, and as forty-five,
* Place three stacks of ten blocks and a stack of two blocks on the chalk \({ }_{\text {atray. }}\) Have children name, in -several ways, the number of members in the set. (3 tens and 2 ones; thirty and two; thirty-two.)
Begin a tabulation on a chart showing:
\begin{tabular}{c|c} 
Tens & Ones \\
\hline 3 & 2
\end{tabular}

Place 5 sets of ten small objects on the flannel board. Have children tell, in two ways, how many there are. Make a 2 bundles of ten sticks each ark put them with 6 sticks on a table. Ask a child to tell the number of tens and ones. Continue to develop the chart as each of these sets is counted. Show 4 sets of ten and 7 ones. , Have children tell where you should write the numeral for the tens and : the numeral for the ones for each set of objects.


Each of these numbers can be named in several different ways. When we see the numerals on the chart we read 3 tens and 2 ones. We. may say thirty and two or thirty plus two. We also say thirty-two. We write: 32.

Continue to rewrite the numerals from the chart.
A completed chart might look like this:
\begin{tabular}{c|c||c} 
Tens & Ones & Numerals \\
\hline 3. & 2 & .32 \\
5. & 0 & 50 \\
2 & 6 & 26. \\
4. & 7. & 47
\end{tabular}

\section*{Pupil's book, page 67:}

In each case the child is to show the other way to name the number.

Pupil's book,'page 68:
Make a ring around a set of objects whose number is indicated at the right.

Pupil:s book, page 69:
Write the numeral which names the number' of objects in the set.

Pupil's book, page 70:
Join the points in succession, beginning with 10 and counting by tens.


ERIC

How many?


\(x \times \times \times x \times \times \times x, \dot{x}\)
\(x, x \times x \cdot x \times x \times x \times x\)
\(\$\)
22

28

(What is it?

\(23: 1\)

\section*{' Furth和 Activities:}

Distribute individual set materials. Give each child one \(\therefore\)-numeral card which has' on it a numeral from 20-99. "The , child will display on desk a set with that number of object!s. It should be displayed to show sets of tens and sets of ones. You can then check to see if the child has the correct set. If it is right give him a different numeral card. The child then repeats the activity for another number. Be alert to see that the work is yot too difficult.for any child. Such an açtivity can be, varied to consider individual differences.
Give each child a set of "Show-Me" cards. Say, "'sour tens and six ones." Children should insert numeral cards in the correct places in their cards. Vary the procedure by saying, "Thirty-two," etc. \({ }^{2}\) hace sets of objects" on the flannel. board or hold up bundles of sticks and single sticks and have children show you the numeral for the number.
```

 \
    ```

VI－4．Eleven，twelve，and the teens

Objective：．To present spoken names and written numerals．：

Vocabulary： Materials：：Flannel board materials，blocks，sticks，

\section*{Suggested Procedure：}

Place ten objects on the flannel board and have children name the number two ways，as one ten or ten．ones．

Underneath，at the left，place another＇object．
How mangy do we have now？（One ten and one one， or ten and one，more．）
＂

Flannel board materials，blocks，＇sticks，
theater tickets，etc．（One ten and ten ones of each．）
Eleven，twelve，thirteen，\(\therefore . . \therefore\) ，nineteen．． \(\bar{j}\)一白需


Ask children to go，back to the beginning and count by ones．
If they hesitate，supply the word＂eleven＂．
－Using the same procedure，place another object and develop the idea of twelve as 10 and 2 more，or twelve ones． Continue with／thirteen．Be sure children know they are spying thirteen，not thirty．It would be good to write the word thirteen on the chalkboard．（Notice that if the names for sets with one ten and some ones followed the same pattern as the other number names pupils have been studying， we，would say something \(\lambda\) 录e＂onety－one，onety－two，etc．\({ }^{4}\)
 teen－three，teen－four＂，＇but that just isn＇t the way＂it＇s done in the English language！）Use other sets of materials and emphasize the oral names，and the idea of one ten and so many ones．Use the tabulationsform，the rn the written numeral．流tr some classes，it probably will be wise to．
Tan cos stop at＂thirteen＂，the first day．Take the past of the teens another day（or two！）．A thorough，understanding of the teens will save much difficulty later on．


\section*{Pupil's book, page , 71:}

Have children write the conventional numeral opposite the tens and ones tabulated, or write the tens and ones opposite numeral. \}

Pupiji's book, pages \(72^{-}-73\) :
For each set, make a ring around the numeral that names the number of members in the set.

Pupil's book, page 74:
Have children write numerals for numbers that are 1 less than and 1 greater than, or 10 less than and \(1 Q\) greater than, the numbers that are named.

\section*{Further Activities:}

Give many opportunities for separating sets fewer than- 20 into tens and ones, recording and saying the result as tens "and" ones and as the teen number.
1. '.Have children build sets from directions given using ↔ written numeral, "Show a ten and six ones", and "Show , a set of fifteen", or "Show a set of 12 ". Be sure to use "one ten and zero ones" for 10.
2. Write numerals on chalkboard and have the children draw'a ring around the digit that names the tens or the digit that names the ones:
3. With "SHOW-ME" cards have children show the numeral from ten-and-ones instructions and from the spoken word.
4. When you are sure children have oral and written names for teen numbers firmly established, reintroduce numbers greater than twenty, and check to make sure they do not confuse 12 with 21,15 with 51 , and so on.

Two Ways to Name Numbers


How Many?


How Many?


彩
Name the Number


ERIC

VI-5: Order relations for numbers \(\frac{0}{\underline{i}}\) through \(\underline{9}\).
Objective: . To extend the 'ideas of "greater than" and. "less, than" "to include the numbers 11 ' through 99.

\author{
\(\rangle \frac{\text { Vocabulary: }}{\text { Materials: }}\)
}
(Review) greater than,"less than. One container of 28 , sticks or other small counting materials (theater tickets) that can be bundled into easily, recognizable tens, and one container of 31 of the same, kind of materials.

Suggested Procedure:
Empty two containers, one containing a set of (say) 28 objects and the other a set of 31 objects on.a table or \({ }^{\circ}\) desk. Ask the children which set has more members. Have \(f\) a child determine this by using a one-to-one correspondence. Expzain thât this is a way to, find out which set has more menbers. Then ask, "If we know the number of members in each set, we can decide which set has more members without making a one-to-one correspondence." Ask which number is greater, 8 or 5 . Continue by asking whether 28 or 2 is greater, \(581^{1}\) or 55 , and spon.
Help children to generalize that if there rare the same number of tens in two numbers, then we need only compare the number of, ones.
Write the numerals 16 and 6 on the chalkboard, and ask'a child to tell which names the greater number. Ask him how he can telil. Ask whether all numbers in the teens are greater than the numbers which contain 0 tens. Ask whether every, number in the fifties is' greater than numbers in the thirties, and so on. Continue with specific examples:

Which is greater 25 or 173 ,
.Is two tens and five ones greater than one ten and seven ores? \({ }^{\prime}\)
Which is greater; \(37^{\prime \prime}\) or 4 tor And so on.

In each case, restate the problem in 'terms'of tens and ones:
Use the sets of 28 mid counting objects again. Have a child separate each of the selts into tens and ones. Bundle the tens so that you can show that: "This ten (of. 28) corresponds to that ten (of 31); and this ten corresponds to that ten. But here (in the set of 31 ) there is one more - ten than in thís set (of 28 ).
```

If we have numbers between }10\mathrm{ and 99,
which digits of the numerals should we look
at first to help us decide which is the greater
number? (The tens digit.)
If the numerals have the same ten's digit, how*
do we decide which number is gregter? (The
ones digit.')

```

Write numerals on the chalkboard and have children draw a
- ring around the numeral for the greater number. Have them tell you, if they hesitate, what the parts of the numerals show.

Pupil's book, page 75 :
Top-Draw a.ring around the numeral for the greater of the two numbers ir each set. Bottom--Draw a ring around the numeral for the greatest number in each sef.

Fupil's book, page 76:
This is like the preceeding page but with "less than" and "least".
-
Pupil's book, page 77: .
Write the numerals in each box in order, beginning with the least:

Which is greater?


Which is greatest?


Which is less?

\({ }^{*}\) Which is least?


231

Order of Numbers
Write in order from the least to the greatest.


\section*{Further Activities:}
1. Write a numeral on the chalkboard and have chrildren name the number that is one greater or one less than the one whose name you have written. Ask them to name the number that is ten greater or less.
2. Let childreh use hundreds-square paper ( 10 rows of 10 squares) and write numerals from. 0 through 99.
3. Numerals may be written either vertically or horizontally. TQ check understanding of greater than and less than, write on the chalkboard
\begin{tabular}{ll}
12, & 21 \\
45, & 49 \\
\(62, \therefore\) & 57 \\
38, & 25 \\
70, & 39 \\
98, & 89
\end{tabular}

Ask children to copy the pairs of numerals and drawa ring around the one in each pair that names the greater number. . (They will ring 21, 49, 62, 38, etc.) The activity may be varied by asking them to draw a ring around the numeral for the lesser number in each pair. On other days you may wish to write 3 nutherals in eaćh group and ask children to draw a red ring around the numeral for the .greatest number and a.blue ring apound the numeral for the least number.
4. Give each child three numeral cards and a piece of lined writing.paper. \({ }^{*}\). The child is to arrange the three numeral cards in order frem least to greatest number.


The child then copies the three numerals on his paper. When the first set is finished the child gets a new set of cards and repeats the activity for another set
- of cards. It is possible to modify this work by giving some children only two cards and other children as many as five carious:
5. Game for three children. Exch child starts with' 20 numeral cards, any of the set \(0^{\circ}\) through 99; 'no duplicates: The cards are in a stack, face down. Each child turns one card face up. The children compare the three numbers named, and the child whose numeral card names the greatest number takes all three cards , and puts them on the bottom of his stack. The game is finished when one child has ail of the cards in his, stack.
\(-\)


3

\()\)


\section*{VI-6. The hundreds (Optional)*}

Objective: To develop the idea of the hundreds place in written notation.
Vocabulary: Hundred (s).
Materials: Small counting material's, all of one kind-:' beans, corn, pegs, "etc.--more than 300 of them-in a container, preferably glass or clear plastic.

\section*{Teaching Note:}

This section can be omitted if you feel it is too difficult, "or that you do not have time in your program for 'this extension at this time. An introduction to the hundreds place will be given in Book 2.

\section*{Suggested Procedure:}

Ask, children to guess how many beans are in the container. Suggest that they find out by counting, and that everyone help. Give each child a handful of beans and ask him to count the beans in sets of ten. When all have finished, . put all the remainder sets (ones) together, and have them counted into sets of ten.
-Ask a child to count the sets of ten. Using chart below, record the number of tens. Ask another child to count . the ones:" Record it,
\[
* \begin{array}{c|c}
\text { Tens } & \text { Ones } \\
\hline 32 & 7
\end{array}
\]

> How many beans do weave? (We have 32 tens and 7 . ones.). .

Ask them. if that is the way we expected to name the number of beans.

The sections, . 6 and 7, may be delayed until end of year or used with only some children:
\[
-.245
\]

Ask' the children to count the tens; ten, twenty, thirty, etc. When they get to one hundred, stop, and emphasize the pronunciation of the word. Print it on the board. Ask a child to count how many tens it took to make one hundred.
Make another tabulation form on the chalkboard and ask where you would put hundreds on this chart. ; E


Show that the hundreds is really ten tens, nad the numeral 10 could be written in the tens column, but that this would not suggest that we read it "one hundred". Draw still another chart, this time writing hand reds, tens, ones.


Request that the children count the ten tens with fagin: "Ten, twenty, thirty, ... one hundred".
: How many hundreds did we count? (One.) Enter a 1 in the chat.

If this set (point to the ten tens) were
we were counting, would we have any more teens to put in our chart? (No.)
Would we have any ones? (No.)
- Enter zeros in the tens and ones columns. Ask the che if they can tell you how to write the numeral A or one hundred. Write it to the right of the chart. (100.).
(Continue counting beyond one hundred.) Show the children some more sets of ten and again count by tens -ten, twenty, etc. Stop them at fifty: Ask them how they would write the numeral for the number they have now counted. If anyone says : 15 tens, enter to on the tens and ones chart anderact : if there is another way to write it, so that you will know that you have already said "one hundred \({ }^{\text {"'i. }}\). (1 in hundreds
column, 5 in tens column, 0 in ones column): Write the numeral to the right of the chart as before, and ask someope to read it. 'Point out that. 15 tens and 150 name the same numbex Go back, now, to the sets of ten, and have childeren again count by tens. When they get to one hundred, contrinue, "òne hundred ten, one hundred twenty, one hundred thirty, etc." to two hundred- Enphasize the 'two, "Two huñdred ten, retc." "If the children find it difficult to count by tens when they say "one hundred" or "two hundred" first, go back and count again, this time just saying, when you reach the number, "one hundred, one - hundred ten, one hundreed twenty, ... two hundred, two. hundred tem ...'three hundred, three hundred ten". . When they arrive at the total number of objects counted, repeat the number clearly and_ask, the children how to enter it on the chart of hundreds, tens, and ones.
Point out that the first chart, showing 32 tens' and 7 ones looks very, much like the present one showing 3 hundreds, 2 tens, and. 7 ones, and means exactly the same number of objects: Ask a child how to write the numeral as we would read it. (327.).

Write three-place mmeral's on the chalkboard. Have childregn tell what eash digit of the numeral means, and read the numezal. Be.sure to include 'numbers like \(401,20^{\circ} 0^{\circ}\), etc.; with zero ones or tens.

Further Activities:
I., Children should have opportunities to count large collections of things and tell you how to, write the number' of each set". This can be done in small groups or individually, and the length of time needed will '解pend on the "maturity and 'ability (among other things) of your"class. Theater tickets are easy to count into strips.of ten, with the strips bundled to make hundreds. .Hundreds-squared paper may be cut. into strips of ten. . and counted in the same way. In either cabe, however, you will need to point out that you are counting tickets "or squares, not strips, to detergine the number of objects,"
and that a strip containing ten squares is one ten, not just one thing.
2. Give children cards on which 3-digit numerals are written. Ask each child to read his numeral and tell you how many hundreds, tens, and ones it means'. Write it ort the board after his name." When five or six have answered;ask which numeral names the greatest number. Ask which one names the least pumber. Enter greatest and least in a special place or the chalkboard, perhaps with the names of the children who read them. Repeat with other * groups of ichildren. When all have had a chance to report, the numerals ior the greatest and least. numbers for each group have been recorded, identify which was the greatest number of objects coưnted and which was the least.
3. When 'children have understanding of the concepts \({ }^{\text {* }}\) developed here, let those who wish make booklets, using inendreds-square paper, ard write the mimerals from 1 to 1000 . Page 1 . would be 1 to 100 , page 2 from 101 to 200 , etc. While not emphasizing the point, you may tell the children who finish the project (and many wor \({ }^{\prime}\) t. 1 ) , that the number after 999 is 1000 , whigh reans, as they. can see from the 10 , pages they have done, ten hundreds, or one thousand, zeŗo hundreds, zero tens, and zero ones.
4. Use "SHOH-ME" cards, giving names orally, as "three hundred twenty-one", as "three hundreds, two tens, and one one", and tas "thirty-two tens and one one", and'. asking children to display the numerat on their card.

VI-7. Hand numerals (Optional)

Objective: To extend understanding of place value by using base five.

Vocabulary: ( Fl new words.)
Materials: Thirty-five objects for equating ; sets of objects for the children.

Suggested Procedure:
Write the numerals \(0,1,3,3,4 \therefore\) on the chalkboard.
We are going to count asset of objects today and use only these five numerals. We will have to find a way to count more than four. qiajects. When we, have counted four end are. ready to count one more ye will say that we have one hand. "This will be our only new" name. A We will record what we are counting on' \({ }^{\prime}\) a chart which shows the number of hands and the number of ones.
\begin{tabular}{|c|c|}
\hline hands & ones \\
\hline
\end{tabular}

Now count several sets by grouping into hands (fives) and 4 partition sets of objects into hands and ones, and record the numbers. "Then (in much the same way as for the decimal system) begin an third Column.' Explain to the children that to snow we are not using the ordinary numerals, we make an "H" to the right of the numerals. ,Your chart might look as follows.'

2. J, Cautions Dp not read. 31 H as thirty-one. Head as "three-hand one" (or "three-handy-one". "if you prefer).

Pupil's book, page 78:
Children are to record the number of hands and the numbed of ones. in each set and then.
write the H numeral.
Display an \(H\) numeral such as 23 and ask the children to construct a set with that many members. (They should show 2 fives (hands) and 3 ones.)

Pupil's book, page 79:
The children are to draw a set of the indicated number of members.

Ask the children to using the hand numerals.
\(\therefore\). Record on a chart as below (you fill probably need two columns on'the chalkboard). Begin: one, tho, three, four, one hand zero, ... until y you reach four hand four.


Ask what the next number would be. Probably someone will suggest "five hand zero". If so explain that in naming' , numbers with hands we only use' \(0, i, 2,3\), and 4. Bring out that five is one hand zero, and that we write this's as io H. The entry in the chart will then read;
\begin{tabular}{|c|c|c|}
\hline Hands & COMes & Herd numeral \\
\hline 10 H & 0 & \(\ddots\) \\
\hline
\end{tabular}

Try to get one of the children to suggest the correct hand: numeral: 100 H . Go on to say that we could call a hard of hands a fist, and that we could make our chart as follows:
\begin{tabular}{|c|c|c|c|}
\hline Fists & Hands & Ones & Hand numeral \\
\hline 1 & 0 & 0 & \(100 \mathrm{H} \cdots\) \\
1 &, 0 & -1 &. \\
\hline
\end{tabular}


This may be about as far as you wish to carry this discussion at this time. Be.sure to point out the similarities with the decimal system:

> One ten and zero ones is 10.
> One hand and ae yo ones is 10 H .
> One ten of tens (hundred) is 100 .
> One hand of hands (fist) is 100 H.
> 234 is 2 tens of tens (hundreds),
> 3 tens, and 4 .
> 234 H is 2 hands of hands (fists), 3 hands, and 4 .

Ask a child to place two-hand-zero on the chart. Ask another child to plage three-hand-two on the chart.

Which has more members two-hand zero or three hand-two? (Three-hand-two.) •
What number is greater by one than two -hand-one? (Two-hand-two.)

What-nurber is one less than four-hand-zero?
(Thre-hand-four.)

How Many?

\(\%\)


7
\(\bigcirc \bigcirc \bigcirc \bigcirc\)
\(-\bigcirc \bigcirc \bigcirc\)
\(000^{0}\)
\(\bigcirc\)


ERIC \(\square\)

Draw a set of 13 H.
\(X \times X \times X\)
\(X X X\).

Draw a set of 24 H.
\(\therefore x x x x\)
\(x \times x \times x\)
\(x \times x x\)
\(\star\) - 品
\(\because \quad 1\)

\section*{Draw ä"set of 40 H .}
\(X X X X X\)
XXXXX ;
\(\dot{x} \times x x x\)
\(X X \cdot X X X\)


VI-8. Application: Money

Objective: Review value of pennies and dimes.
Introduce value of dollar.
Vocabulary: " Dollar, nickel.
Materials: 100 pennies, 20 nickels, 10 dimes, - 1 dollar.

Suggested Procedure:
Place . 100 pennies on a table._ Tell one child to separate (partition hasn't been introduced yet) the set of pennies into sets of 10 . As he does, arrange the piles of pennies in a row, and place a dime beside each pile.
. 746


Note that there is a set of pennies for each dime, and "a, dime for each set of ten pennies. .

Does'this help us find out something about how many pennies a dime is worth? If you need a
dime to buy something, how many pennies will it take to buy the same thing?

If it takes ten cents, to buy something, how many dimes will you need to buy the same thing? children that ter dimes can be traded for one The dollar is worth ten dimes.

What else could be traded for one dollar?
(100 pennies.).
One dollar is worth how many pennies?, (100.)
One hundred pennies have the value of how many
dollars? (1.)
How many dimes are worth one dollar? (10.)
This is like something we have done with numbers:

At this point it is hoped that children will have noticed -that the 100 pennies, 10 dimes, 1 dollar pattern is like the place-value ideas they have recently learned.

Make a tablulation form on the chalkboard.


Give a child 37 pennies. Ask what pieces of money he could trade them for so that he had the same value but fewer pieces of money.

Give a chila 5 dimes and 2 pennies. Ask how this could be-traded so that value of the money was the same but the numbep of pieces of money was far greater.

Giye children amounts of money with which they must trade - 10 dimes for a dollar to get the fewest number of pieces of money. Do not introduce notation \$1. or \$1.35. at this time. Call the amount fead from the chart.
\begin{tabular}{c|c|c} 
dollars & dimes & cents \\
\hline 1. & 3. & 5
\end{tabular}
one dollar, thirty five
cents and relate to one
hundred thirty-five.
Ask a child to pretend he is going to the store to buy a* toy car that costs \(49 \phi\). Have him count out the money, all in pennies, and hold it in his hand. Have another child. count out \(49 \phi\) using as few coins as possible.

\section*{Which is easier to carry?}

Point out the fact that 9 pennies are stivl rather awkward and that it would be easier to manage if there. were some coin between \(\dot{a}\) dime and a penny in value, sope, coin worth more than a penny but less than a dime.

Does anyone know whether we have a coin like that?
- . What is it called?

Hold up the envelope of nickels and ask what children think may be in it.; Have them guess howmany nickels are in "it: 'Tell them ititis a dollaris worth of nickels, and havè someone count the nickels to find how many there are,

255

Does anyone know how many nickels one dime
\(\cdot\). is worth?
Remind children that one dollar's worth of pennies and one dollar's worth of dimes could be Counted so that there were 10 pennies for every dime. If Jimmy says \(5^{\text {c }}\) nickels are worth one dime say

Let's.see if we can count out 5 nickels\}on. èvery dime and have enough to go around.

Use the following arrangement on a table or desk.



Let a child do the counting, putting 5 nickels on the table beside each dime. When he has finished, ask what happened. , a
- Are there 5 nickel e for each of the 10 dimes on the table? 'Let's try something else. Do you think there are more than 5 or fewer than. 5 . nickels for every -dime?

Try to get children to think, not guess. When the idea of 2 nickels for each dime appears to them to be the most reasonable suggestion; have a child count out 2 . nickels beside each dime on the table.

If ten pennies are worth as much as a dime and a dime is worth as much as two nickels, how many pennies would be worth as much as two
nickels?
- After the idea that ten pennies have the value of two nickels seems firmly established, ask how many pennies one nickel is, worth. Even though some children at this age know the answer, it may be worthwhile to ask them. to count out a set of ten pennies into two sets of five pennies each and to put each. set of five pennies next o to a nickel.

When we count the number of cents in ten dimes we may count, to one hundred by tens.
Remind children that two nickels have the value of one dime \({ }_{j}\) Add a nickel to each heap of Coins and show the children how to count it as "ten, twenty, thirty," (moving two nickels at, once) "forty."

When we count the number of cents in twenty nickels we count five, ten, fifteen, twenty.. We could count the sets of five pennies in the same way.

5
\(\rightarrow\) -
Let's \({ }^{\text {g go bask to that toy car Jimmy wanted to buy. }}\) Think how heavy 49 pennies are. We found that it was easier to carry 4 dimes and 9 pennies. Now if a nickel is worth as much as 5 pennies, can we use a nickel instead bf' 5 of those 9 pennies? Let's see what happens..

Make the exchange of coins, and count the money for the children.

Ten, twenty, thirty, forty cents (eounting dimes) and then we have five cents because that is wha * a nickel is worth. Forty-five_cents, forty-si \(\bar{x}\) cents, forty-seven cents, forty-eight cents, forty -nine cents. We still have forty, nine cents ? Give chillaren many experiences mixing dimes, nickels ahd pennies and ask chiidren to count the number of cents. Further Activitıes:
Place 3 dimes, 2 nickiles, and 7 pennies on a table, Display another set of coins which is 2 "dimes, 7 nickels, and \(;\) pennies.

These are intentionally the same number of pieces. Ask children to determine which set is worth more.
Tell several children to pick up 7 coins. On a chart reçr्य the different numbers of sents which a set of seven coins may be:


Tell a chilld' to pick up any numbér uof coins which are 36 cents. Ask another child to find sets of coins which are worth 36 cernts, A chart might be made of these. Each child might 'cnoose an amount of, money and try. to list 5 different sets of money which make that amount.



- Write numeral in box at right for the amount shown.

Pupir's̀ look, page \(\frac{81 \text { : }}{\text { b men }}\)
Mark coins needed to make amount shown at left.
Pupil's book, page \({ }^{82}\) :
Wite numeral in box at right for the amount .shown.

Pupil's book, page 83:
Mark coins needed to make amount shown at left.
Pupil's book, pages 84-85:
. Mark number of coins designated to make amount of money designated.

\begin{tabular}{|c|c|}
\hline & (3) 0 209 \\
\hline & (1) (0) \\
\hline 236 & - 3 \\
\hline \% 6 & (3) (3) (3). \\
\hline We & (e) \(0^{189}\) \\
\hline & 붕1ㅇㅇㅇㅇ \\
\hline & \[
10
\] \\
\hline
\end{tabular}


Money
\begin{tabular}{|c|c|}
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline
\end{tabular} 8263

Money
Mark 9 coins that make 484.


Mark 7 coins that make \(414^{\prime}\) :


Money
\[
L
\]

Mark 11 coins that make \(60 \$\).



Chapter VII
ADDITION AND SUBTRACt

Background
You may want' to review the background for Chapter 4, where the fundamental definitions concerning addition and subtraction were made. We recall, for example,' that \(3+5\) is the number of members in the set obtaine by joining a set of 5 to a set of 3 ; that \(5-.3\) is the number of members remaining if subset consisting of .3 members is removed from a set of 5 ; and that adding 3 and subtracting 3 are inverse operations in the sense that adding 3 to a number and then subtracting 3 from the result always gives, the original number, and subtracting 3 and adding 3 also gives' the original.

We introduce the idea of partitioning sets in, this. chapter. This idea is used here, primarily for reinforcement of various number relationships, but we shall *later use partitioning into equivalent sets in the dịscussion of place-value and division. Partitioning a set is just separating it into two disjoint subsets. For example, we may partition the set consisting of " Mildred, Jean, Stan, and Mary into the set consisting of Mildred, Jean, and Stan, and. the set consisting of Mary. (We shall later partition a set into more than .two subsets.)

Partitioning is related to both joining and removing. For example; if we join the set consisting of Mildred, Jean, and Stan to the set consisting of Mary, we have : the original set consisting of Mildred, Jean, Stan, and, Mary. Because of the relation between joining and ad-; edition, we see, that, in general; the number of members in the original set is equal to the sum of the number of members in the two sets of the partition (in this case, \({ }^{4}=1+3\) or \(4=3+1\) ).

If we remove from the set of John's marbles a subset which is equivalent to Ted's set, then the remaining set is equivalent to the unknown set. We conclude that we must give Ted \(5^{\circ}-3\) marbles.

This last description of subtraction in terms of sets leads to a formulation which does not depend on sets, but only on the idea of addition which we have already. introduced. (Of course, the definition of addition does depend on manipulation of sets.)

Suppose again that John has 5 marbles and Ted has 3 marbles, and we wish to know how many marbles to give" Ted so the boys will have the same number of marbles.
 The union of the set we give Ted and the set that fed has must be equivalent to the set of John's marbles. Hence, the number of marbles we must give, which is." 5-3, is the answer 篟o the following question: \(3+?=5\). In the same way, \(4-2\) if the answer to the question, \(2+?=4\), and so of This is sometimes called the missing addend description of subtraction. 'It is important that children work with this description as well as with the descriptions in terms of set manipulation since this will be the fundamental notion * underlying the subtraction of numbers in later grades. In general, we try to give the children experience with several of the ways that subtraction problems arise.

The number \({ }^{\circ}\) line is useful in learning about the operations of addition and subtraction. If we think of \(\rho\) as the starting point, then each numeral indicates the number of "jumps" required to get" from the starting point to the point marked by the humeral. We may find the sum of 3 .and 5 而 then 5 jumps, and then reading the numeral (which indicates 'the number of" 'jumps' taken from the starting point). ;

\[
3+5=8
\]

Notice that we do not have to count out the 3 jumps: the numeral " " 3 ". show ṣ where counting : \(\dot{3}\)."umps would have gotten us.

The number line can also be used for subtraction: 5-3 is the number of jumps from the starting point which results from taking \(\overline{5}\) jumps forward and then. 3 jumps backward.

\(\qquad\)
5. \(=3=2\)

Finally, we note that the number line, which we use here privy for reinforcement and variety, can be used in'公'very important way in introducing such \(\vdots\) problems \(a s^{-}+\square=+2\) and \(i 2-\square=\dot{5}\).

1


\section*{VII-1. Partitions and addition}

Objective: To reinforce-and extend the child's understanding of addition by using partitions of 'sets.

Vocabularẏ: Partition.
Materials: Flậnnél board shapes, colored paper shapes or sets of small objects, sheets of white.. \(9^{\prime \prime} \times 12\)," paper, yarn.

Background Note: Partitioning a set into tiwo subsets simply means dividing it into two parts. Each member of the set, with which you started then belongs to "just one of the two subsets. The union of the two subsets . Is the set with which you started and, because of the relation betweer daing and joining, each paytition gives us information on addition. Thus, the fact that a set of ' 5 can be partitioned into a set of 2 and a set of 3 shows us that \(5=2+3\) and \(5=3+2\) (since joining and adding are both commutative).

\section*{Suggested Procedure:}

Place a set of objects on the flannel bpard. Observe how, many, objects' are in the set. Separate this set into two subsets, using yarn or any other suitablé item. Observe how many objects are in each of the subsets. Repeat the procedure, partitioning the same set in different ways.

Have each child place a \(9^{\prime \prime} \times 12^{\prime \prime}\). sheet of paper on his desk and place four circular shapes on the paper:

Lay a piece of yarn on the paper so that you have some members the set on one side \({ }^{\circ}\) of the yarn and some on the other.

What could you call the part of the set on each side of the yarn? (A subset.)

Fred, how many members are in your whole set? (4.)
How many members are in each of your two subsets? (Answers will vary.)

Glenn, how many members'are in your whole set? (4.)

How many members are in each of your two subsets? (Answers will vary.)

Continue until all possiblé partitions of a set of ; foup have been found.

Pupil's book, page 86:
Have the pupils imagine that eách rectangle is a "fence" around a set of things. The two dots represent
"fence posts". Each set is to be partitioned by drawing" a "line" from one fence post to the other, as indicated by the dashed line in the 'first exagple. Have children' trace over the dashed line in the first example; and then draw lines between the fence posts in each of the other two examples. Discuss, each partitioning, having gupils indicate the number of members in the whole set and the number of members in each subset.


ERIC
\(2{ }^{26}\)
- Place asset of 8 objects on the flannel board. An \({ }_{*}\) What is the number of members of the set? (8.)

Place a piece of yarn across the flannel board to show a partition of the set.

What is the number of members in one subset? (3.)

What is the number of members in the other subset? (5.)
We can add the number of members of the \({ }^{\circ}\) two, subsets.
What is the equation? \((5+3=8\).)
-Place a set with nine members on the flannel board; place a piece of yarn to show four in the subsets. Tell children that it is easy to find the n amber of members in the set if we add the numbers in the two subsets.

How many members are in the subsets? ( \(5,4\). ).
When we add 5 to 4 this tells the. number of members in the set. We write the equation \(5+4=\dot{9}\). could also write \(4+5=9\).
Display other sets with 6 to 9 members. Encourage
children to use partitions and addition to determine
the number of members in the sets.
Pupil's book, pages 87-90: These pages show partitions of various sets. Ask the children \(p\) write equations for each partition. Pupils's book; pages 91-94:
Ask the children to partition the sext pictured at the top of each page by placing some object across the box. Record the equations, in the space provided at the bottom of the page:


Partitions


F


Partitions


ERIC.
8976

268
Partitions

＂Partitions of 6．Write the equations．
A
 give Bind －in

＂．Chider of answers will vary．



ERIC角荡

Partitions of 9. Write the equations.


Cundergf, ancient will vary
\[
9=\frac{0}{9}+9 \cdots 0 \overline{9}+0
\]
\[
\begin{aligned}
& \frac{9}{9}=\frac{\cdots}{6}+\frac{8}{8} 8+1 \\
& 9=2+7+\text { or } 2+8 \\
& \frac{9}{9}=\frac{3}{6}+6-2+3
\end{aligned}
\]
ERIC


Criler of answere will vary.
\[
\begin{aligned}
& \frac{8}{6}=\frac{0}{8} \text { or } 8+0 \\
& -1+7+1
\end{aligned}
\]

0
Partitions of 7 . Write the equations.

\[
\begin{aligned}
& \therefore 7=\therefore 0+\therefore \quad \therefore \quad \text { or } 7+0 \text {. } \\
& \because 7^{\prime}=\frac{1}{6}+{ }^{\circ} 6+1 \%
\end{aligned}
\]

2


Further Activities :
1. Duplicate sheets with sets of geometric figures. Have each chiliad partition each set as he wishes. Then have children work in pairs, exchanging papers and writing the equations for the partitions.
2. Tell the children that you are thinking of a set with 5 members--that your set is partitioned into two "subsetṣ'-and that there are 3 members in one of the subsets. Ask how many members are in the other subset. (If necessary, demonstrate on the flannel board bow children could use a set of 5 objects to answer your question.) Repeat with other partitions of sets with no more than 5 or \({ }^{6}\) members.
\(28 \succeq\)


Ask children to make* the same partition again. "This time ask them to remove the other subset.

A What set is on your desk? (The subset that we .removed last time.).

Ass each to join the set he removed to the get that is on his desk.

Do. you have the set you started with? (Yes.)
Discuss that removing either of the subsets of a partition leaves. the other subset as the remaining set, and that joining the. subset which had been removed to the remaining. set results in the set with which they, \(=\) started.
- Give each child seven objects. Ask the children to partition the set of seven so there are three members' 1 望 cone of the sets.

How many are in the other set? (4.)
What equation can we make about this,
 If you remove the set of 3 , how many \(\therefore\) members are in the remaining set? ( 4.\()\) ) What equation suggests that you are removing a set of 3 from a set of \(7 ?\) (hopefully, \(7-3=i 4\).
7
\(\because \ddot{3}\) that there; are several equations that are siaggested dy this partition:. Try to get the children to state them: \(3+t_{4}=7,{ }^{2}+3+3=7,7-3=4,7-4=3:\) Continue working with partitions of 7 and identifying the 4 equations associated with'each partition.

Pupil's book, pages \(9.95-\frac{99}{5}\) :
Ask the children to partition the set pictured at the top of the page by placing string or yarn across the box. Think of removing one subset which is formed and write the appropriate equation: Think of, removing another subset and write the equation.


88
Partitions of 8

\[
\begin{aligned}
& 8-7=10 \text { or } 8-1=7 \\
& 8-\frac{66}{2}=\frac{1}{2}+8-2=6 \\
& \because 8-\frac{1}{2}=3 \text { or } 8-3=5 \\
& 8-4=4
\end{aligned}
\]

Partitions of 1


Order of axicures will vac
\[
8 .
\]
\[
\begin{aligned}
& 7-\frac{7}{0}=\frac{0}{} \text { or } 7-0.07 \\
& 7 . \quad 6=6 \text { ora } 7-1=6
\end{aligned}
\]
\[
\begin{aligned}
& 7-\frac{4}{7}+\frac{3^{2}}{7} \operatorname{ar}+3=4 \\
& 2058
\end{aligned}
\]

Partitions of 10


Cerdec of answero wile vary.
\[
\begin{aligned}
& 10^{\circ}-1 \circ \div 9 \text { or } 10-9=1 \\
& 10 \div 1 \div 8 \quad 010-8=2 \\
& 10 \text { - }=7 \text { in } 10-7=3
\end{aligned}
\]

有 \(10-\frac{4}{6}=\frac{6}{2}\) ar \(10-6=4\).
- Play "Acting out Stories't. Ask a group of six 'children to come to the front of the class to act out Stories. For example: To act out \(6=2+4\), the children separate into a group of 2 and a group of 4 , and then the groups come together: \((2+4=6\) or \(4+2=6)\) To act out \(6-2=4\), they begin in one set, and then a set of 2 children move awey from the set of 6 . To act.out a partition of 6 into a setrof 2 and a set of 4 , they begin in a set of 6 , then a set of 2 moves one way and a set of 4 moves the other way. (There are four equations sor this' glay!) Ask the other children to hold up their hends as soon as they think of an equation that tells acout the play, orerater, ask them to write the equation on paper.
:Dramiatize problems such as the following. Children may use manipulative materisls to represent the objects in each stō̄y probiem.

Four girls and three boys were playing kickoail.
How many children were playing kickialn?
Can you make an equation about the story?
Billy had 8 marbles. He shared his marbles
with Jokn, Billy kept, 5 marbles. How many marbles did John get? .
Cen you make are equation about the marbles?
Sally was helping hep mother set the table. She carried 4 plates to the table: vThen she went back to the kitchen to get 3 more plates. How many plates did Sally put on the table?
Can you make an equation about the plates?
Ethel and Jim were counting cars. Jim counted white cars, and Ethel counted red cars.and blue cars. Ethel counted 6 red cars and 3 blue cars, and Jim counted 8 white cars. Who counted the most cars?

Can you make en' equation abơut the cárs Ethél ćountèd? "
'Polly hed nine crayons. - She kept some of them in a shoe box, but she kept 3 in her pocket. How many çrayons did Pollyifkeep in the shoe box?
类 'Can you make 'a n equation about Polly's ctayons?

Use Drill Dopghnuts to. reinforce the learning of addition and subtractipon. \(2+, 1+, 3+,, 4+\) + 5-, . and 6- '辛ght now be appropriate'. (Instructions for making Doughnuts are on page \({ }^{\circ}\) 283.)
Pupil's book, pages \(100^{\circ}=1.102\) :
Each box shows a set which has iseen partitioned. Write tro’addition and two subtraction equations suggested'by . the partition.

\section*{}
"Drill Doughnuts" may be used to advantage for additional practice in adding and subtracting, both for the basic facts and for encouraging mental computation later, e.g., \(35+4,49-6\), etc
- For each child in the class, prepare a Doughnut. Cut from cardboard, tagboard, cr e other'heay stock.' Circle is \(4 \frac{1}{4}\) inches in diameter, center hole is is inch in. diameter. (Use red felt pen to write the numerals on one side and blue felt pen to write, the numerals or the
* other side.)


Give each child a Doughnut and \(a_{t}\) sheet of newsprint, \(9 \times 12\); Tell children to fold paper in half (to yield two sections on each side of paper, each \(9 \times 5{ }^{\circ}\).
Have Doughnut placed on paper so that zero is at the top and there is room on each section of paper to write numerals around the edge of the Doughnut. Tell "children to hold Doughnut still, not to. trace around it, but to. write on paper through the hole in the middle \(4+\) ". Beyond the circumference of the Doughnut, on the newsprint, they should write sums of 4 and the numbers indicated on each section of the Doughnut.

Next move Doughnut to. another section of the paper. Give the operation sign and the number' to be written: For example, "6-" might be written in the center of the Doughnut. Children again write answers \({ }^{\circ}\) around the Doughnut on the paper. This can be repeated when
the papcr is turned over.
When all rout sections \({ }^{*}\) of paper are used, 40 problems have been done if blue side is used, 24 if red side is used. Onity the center entry and the answers appear for each*section and are necessary in making/a key for checking papers.
\(\frac{\text { Pupiits }}{1} \frac{.00 \% \text {, pages }}{}\) 103-104:
Asfithe children to fill in the blank spaces in the tacles. . You should fill in a similar addition table on, the ohalkoord before asking the children to do these sheets.
-j
Puyil's book, pabes 105-106:
Ask the orildren to, fill in the blank spaces in the sübtraction table.

Pupiz: book, page 107:
Ask the children to look at the sums in the left hand. column and to circle each which names 8. Those, which" jeme ten. in the right hand column are to be circled.

Papil's book, page 10中:
On this page the pupil is to ring the sum or difference which names the number listed at the top of the page.
\(\frac{\text { Expzi's sook, page }}{109}\) :
Nark the box after 7 , with red, after 8 with blue, after' ' 9 with yellow; we use these as keys. Ring in red each name for 7 , in blue each name for. 8 , in yellow each name tror 9 :

293

Further Activity:
The addition chart can be used as a review of addition ..facts. It can be used to, solve an equation". "If a number on the top is added top a number on the left, place a • J (which may be cut from plain white. paper). so. that the numerals, nearest the shaced. edges (left of side ' \(x\) and above side \(z\) ) are the numbers which you wish to 'add'. The answér is the number at the point where the two sides of the \(\overbrace{0}\) join (darker shading).


Pupil's book, page 110:
Direct children to write the equatico which was completed when \(A\) was the answer. Cointimue with \(B, \sigma,{ }^{\prime} D\), etc.

Equations


Equations:


Equations


Addition
Fill in the tables.

\begin{tabular}{c|c|c} 
& \(\ddots\) & \\
& \(\vdots\) & \\
& +2 & +6 \\
\hline & 3 & 5 \\
\hline & 9 & 6 \\
\hline & & 10
\end{tabular}
L.

Addition
Fill. in the tables.
\begin{tabular}{l|l|l}
\(\because\) & +2 & +0 \\
\hline 7 & 9 & 7 \\
\hline 6 & 8 & 6
\end{tabular}

ERIC
\(2.9 .9 \mathrm{i}_{104}\)

Subtraction:
Fill in the tables."
\begin{tabular}{l|l|l}
\hline & -3 & 4 \\
\hline 8 & 5 & 4 \\
\hline 6 & 3 & 2
\end{tabular}
\begin{tabular}{l|l|l} 
& 2 & -4 \\
\hline 5 & 3 & 1
\end{tabular}

Bic

CI
\begin{tabular}{|c|c|c|}
\hline 9 & -4 \\
\hline 9 & 4 & 5 \\
\hline 8 & 3 & 4
\end{tabular}
\begin{tabular}{r|r|r} 
\\
& -4 & -3 \\
\hline 7 & 3 & 4 \\
\hline 6 & 2 & 3
\end{tabular}

Hic
301
106

Which are equal to. 8 ?
\(7+1\)
\(5+2\)

\(3+5\)
\(4+3\)
\(5+4\)
\(\sqrt{6} 1: 6\)
\(4+4\)
\((8+0)\)

Which are equal to 10 ?
\[
\frac{6+2}{\frac{5+5}{4+5}}
\]
\(2+8\)
\(7+4\)

\(0+9\)


Which are equal to 7 ? \(3+4\)
\(4+4\)
\(8+1\)
\(-2+7\)
\(5+3\)

\(9 \frac{1}{1} 3\)
\[
\frac{1+8}{2+5}
\]

Which acre equal to 9 ?

\(8+2\)

\(2+6\)

\(10+1\)

\(7+5\)

- Names for Numbers
\begin{tabular}{|c|c|c|}
\hline \(7{ }_{\text {Me }}^{\square}\) & \(8 \square \square_{\text {che }}\) & \(9 \square\) \\
\hline 3 nd 4 & \(2+5\) & \(4+4\) \\
\hline \(0+9\) & \(8+0\) & \(5+1\) \\
\hline \(6+1\) & \(3+8\) & \(0+8\) \\
\hline \(6+2\) & \(3+3\) & \(3+1\) \\
\hline \(6+0\) & \(1:+8\) & \(3+6\) \\
\hline \(5+4\) & \(2+7\) & \(\because 1+6\) \\
\hline \(7+\) yjelem & \(: 7+4\) & \(2+6\) \\
\hline \(7+1\) & \(4+3\) & 8 y \({ }^{\text {jeltam }}\) \\
\hline
\end{tabular}
\(\star\) Addition Table"

\[
\begin{aligned}
& \begin{array}{l}
A+3=4 \\
B+1+4=5
\end{array} \\
& \text { c. } 3+5=8^{\circ} \\
& \text { D } 4+3=7 \\
& \text { E } \quad 6+2=8 \\
& \text { F } 2+7=9 \\
& 6 \quad 8+0=8
\end{aligned}
\]

ERIC
"VII-3. Addition and subtraction on the number line

Objective: \(t\) To extend the children's understanding of addition
 and subtraction by using the numper Ine.


Suggested Procedure:
The number line (which was introduced in Chapter 2 , sefetion 3) may bế ứsed as fat adin addition and subtraction.
Review carefully the fact that the numeral on the lime shows the number of jumps from the starting point, 0 .

Find the cpoint on the number line which shows that you have taken, 8 jumps from the starting point, 0. Find the point which shows that you have taken 3 jumps, from the starting point, 0 .
...... Find the point on the number line which shows that you have taken " 0 " jumps from the starting point " 0 .

Find the polint which shows that you have taken jumps and then 2 jumps, from the starting point 0 . If this is difficult, ask a.çhild to point to the place on the number line which shows that he has, taken 3 jumps from the starting point. Use a pointer or pencil to indicate the point on the line. Ask him not to go back to the starting point but to take two more jumps. (It may be helpful to think. of this as a "stop for a rest". A number line drawn on the 'floor can be used if necessary to dramatize this idea.)

Now that you have taken 3 jumps and 2 jumps
- from the starting point, fhere are, you on the number line? (5.)

This tells us that three plus two equals five.
Write the equation, \(3+2=5 . \\).
If we have a story problem, we cah solve it on the number line if we know the numbers which we want to add.

Jerry had 5: books.
He bought" 2 books.
How many books does he have?
What is the number of books which Jerry had to begin: with? (5.)

Ask a child to take the same number of jumps from the starting point on a number line as the books Jerry had.

How many books did Jerry buy?
(2.)

Ask the child to take that many more jumps on the number line, this time starting at 5 .

We , wanted to add, 5 and 2 . When we take those. 8. numbers of jumps on the number line we find that \& awe have taken, 7 jumps. The set of 5 books \(\therefore\) and 22 books if joined would be the same number
- Subtraction

Draw a number line on the pralkboard.
Write the equation, \(6-3=\)

six jumps on the number line. Start at 0. .


It may be necessary to use \(\dot{a}\) line which i's drawn on the floor For the first work with subtraction on the number line. This would enable children to take jumps forward and then to come 'back on the number line.

Some children have difficulty using the number line to - complete equations because they are confused by the numerals ; at which they are looking while they count the second set of jumps.

Two ways to use the number line are given here. You may - want to develop one to a great extent and exclude the other or try to use both of the ideas suggested.
1. Make a number line on a piece of" cardboard or oaktag \(12 " \times 36^{\prime \prime}\). This should be large enough for hal children to see. Fold the top of the paper to cover the numerals.
(Figure 1) Place a pencil on the starting point. (0) Take jumps on the number line which carespond to the set -to which another set is joined in the problem. (Some children will make, one jump at * a tine (Figure 2) while other children will. go to five, in , one jump (Figure 3).)



Move the pencil to that point. Some-children may need to move the pencil as they take each jump. Keep the pencil on the last point and unfold the page. The pencil
 will be on the point which tells the total number of jumps. '(Figure -4)


Pupil's book, pages 111 - 114: have been designed to use in this way:

Some children may leave, the page enfolded to find the point which shows the number of the first set, then fold the page and take jumps which correspond to the second set and open the page to find how many jumps in all. C Children, who are not confused by the numerals and can use the page without - needling to fold it should be encouraged to do so. Subtraction is developed by finding the number of members in "the set described and relating the removing of a subset to "beckịing up". on the number i nine. This page may be helpful in solving other story problems or incomplete equations such" as \(3+2=\) \(\qquad\) - Pages in the pupil's book should not be used unless children have had enough experience with this number line to use it independently and without difficulty..
.2. Draw .a number line on the chalkboard.


Write an equation, \(3+2=\) \(\qquad\)
Place the chalk on the starting point. Ask a child to, put a finger on the point which tells the number of Jumps corresponding to the nitmber of the first set. (The child should touch \(3^{3}\).). Draw a curve from the starting point to the point the child is touching.

Now, using 3 as the starting point ask where \(\dot{2}\) mare jump so would take.us. (Child should now touch 5.) Draw ar curve \({ }^{-}\) from the 3 to the \(5^{\circ}\). This represents the second set of


Theipoint where the 'last curve ends tells the number of \(:\) jump and enables the children to complete the equation. Pupín's book, pages 115 - ill: are designed to be used in this way.
- Heavy plastic taped over cardboard on which a number line : has been drawn can be useful as' an aid to independent work. The child can mark with a crayon the curve which shows the jumps he has taken "and then remove the mark with a paper towel and use the same number line again.

Fold until edge covers numbers

\[
3+2=3
\]
\[
2+5=7
\]
\[
4+3=7
\]

Fold until edge covers numerals
\[
\begin{array}{ll}
5-3=7 & 9-7=2 \\
8-5=3 & 6-1=5 \\
7-2=5 & 5-2=3 \\
8-2=6 & 5-1=4
\end{array}
\]

Fold until edge covers numerals

\[
2+7=9
\]
\[
3+6 \quad 9: \quad 9-5 \quad 4
\]
\[
10-3 \quad 7
\]
\[
1+4 \quad 5
\]
\[
7-6 \quad 1 \quad 2+6 \quad 8
\]

317

Use the number line.
\[
1+3=4
\]


Use the number line
\[
3-1=
\]
\(\square\)
\[
5-2=
\]
\(\square\)
\[
9-1=
\]
\(\square\)
\[
6-5=
\]
\(\square\)
Bic

Use the number line.

\(3+2=5\)

\(6+1=7\)
l

VII-4. How many more?

Objective: To find how many more members there are in one set than in another set. \(\quad\).
Vocabulary: (No new words.)
Materials: Material, suç as appIes and lemons for flannel board display, flannel pairing symbols, two sets of numeral cards, (Sandpaper of flannel strips on the back of the card will make it stay on the flannel board!.

\section*{Background Note:}

Recall that one set has. more members than a second set if, when members of the first are paired with the members of the second, there are members of the first left over. In this lesson we continue development of this idea by using subtraction to find how many more members there are in the first set. We say that there are 2 more members in a set of 5 than in a set of 3 because, if we pair members of the set of 5 with members of the set of 3 , there are 2 members left over., We also say that there are 2 fewer members in the set of 3. .

Suggested Procedure:
Ask a child to place a set of 3 apples on the flannel, board. Ask another child to place a set of 5 lemons on the board.

Ask whether there are more lemons, or more apples, and ask whether we can decide which seti has more members than the other without counting. Bring out that we. can accomplish this
- by pairing the lemons with the apples. Have one of the children show the pairing with pairing symbols or with yarn. Ask how many more lemons there are than apples. (2.) Explain that we say that there are 2 more because, if we remove the set of lemons that are paired to apples, the, remaining set has 2 members. Display the numeral cards for the set of lemons, the set of apples, and ask the
children if they can make an equation about these sets by vobserving that there are (5-3) or 2 , more lemons \({ }^{\circ}\) than . . . apples, and that \(5-3=2\) is thesequation which fells us 'how many more lemons.- Also, ask how the equation \(3+2=5\) is suggested by this problem.

Repeat this procedure with other sets, in each case displaying the pairing and expressing the equation.

Give each child some small objects. Ask each to place a set'of 8 . "members on one side of the desk, and a set
: of 5 members on the other side. Ask them how many members are in the first set. Ask what equation dêscribes the problem, and display the equations which are suggested.
\[
5+3=8 \quad-8: 5=3
\]
'Repeat, sometimes with the first set having, more members ( and sometimes with the second set Kaving more members:

Pupil's book, pages 118-124:

Ask the children to first find out how many members are in each set. Then ask them to pair the, members of the set on the left with the members of the set on the right. They:are then to decide which set has more members, and how many more.
(You may, want to follow.up the work on the pages by asking how children compared the sets. This would also be helpful to dêvelop an awareness of the ways in which children find out how many more.
iSome children will have paired the sets by touching or marking the same number in each. set: Some children will have subtracted the numbers; for this you will want to show the equation \(6-2=4\). Some children will have thought of the additional number of members needed in order to have equivalent sets; for this you will want to write the equation \(2+\ldots=5.) \ldots\)

Give each child some small objects to work with at this desk. Ask the children to select sets of objects equivalent to objects in the story problems. Notice that the problems differ in the kind of set operation--joining removing, partitioning. In these problems, 'children.should by expected to find the number to be used in answering the question and then answer the question. An equation is not expected.

Tom has 6 marbles. Joe has 'only 4 marbles.: How many more marbles has Tom than Joe?,

Jane had \(3^{\circ}\) crayons. Then Mary gave her \(5^{\circ}\) crayons. Now how many crayons does Jane have? Bill had 9 cars and Suse took 3 of them. How many cars does Bill have? \({ }^{-}\)

Sharon had 5 apricots. John" had 8 apricots.
 How many more, apricots did John have than Sharon?

Sara has 3 more dolls than Susan. Susan has 4 dolls. How many dolls, does Sara have?


324

Comparing Sets


Comparing Sets




Comparing Sets


Comparing Sets


ERIC
: 318


How many more? \(\qquad\)
+.
: 12431

VII-5. Problem solving and equations

Objective: To use addition and subtraction to solve simple story problems, and to find missing numbers in equations involving addition and subtraction.

Vocabulary:(No new words.)

Materials: Sets of small objects.

Background note: There are several different sorts of problems which lead to addition and subtraction equations. For example:

One set has 4 members and a second sèt has 9 members. How many members must I join to the first to get a set equivalent to the second? ( \(4+\square=9\); or \(9-4=\square\) )

One set is joined to a second set. The second set had 4 members. If the set obtained by joịning the two sets, had 6 members, how many members did the first set have? \((\square+4=6\) or \(6-4=\square)\)

A set has 4 -members. How many members must be joined to the set, to get a set of 6 members? ( \(4+\square=6\) or \(6-4=\square\) )

This lesson is devoted to problems of this kind, and to the equations that these lead to. You should be careful not to classify problems by' type, and to encourage each child to use his own method of thinking and to be as imaginative as possible in approaching the problems.

Suggested procedure:
Begin with an equation such as \(6+\square=9\). Explain that this asks us to name the numberyizhich added to 6 "will give a sum of 9. Try to get the children to visualize the equation by using sets of objects. Continue with equations like. \(3+4=\square\) and \(\square+4=8\). Do not point out different typès of equations, but try to get the children to examine and visualize each equation question as it comes.

Ask the children to complete the equations. Suggest they use" sets of objects if. they have difficulty.

The next step is to present story problems, to find equations which describe the problems," and to name the missing number. Continue to have the children use sets of objects to answer the questions.
/ The following are examples of story problems:
There are 9 saucers and 4 cups on the table.
How many more cups do we need if we want to put. a cup on each saucer? \((4+\square=9\), or \(9-4=\square)\)

John has 4. cents and Sue has. 7 cents. How much must John save to have as many cents as Sue?
\[
(4+\square=7 \text { or } 7-4=\square+\cdots
\]

Mary had two ribbons.
Her mother gave her some ribbons:
Now she has seven.
How many did her mother give her? ( \(2+\square=7\) or
\[
7-2=\square)
\]

Tom had six boats.
He gave some to Bill:
Now Tom has five boats.
How many did he give to Bill? ( \(6-\square=5^{\circ}\) or \(5+\square=6\) )
Gordy has 5 guns.
Eddie has 7 guns.
How many more guns does Cordy have? (No équation.) -
Ben has 8 marbles.
Three are red.
The rest are green.
How many are green? \((3+\square=8\) or \(8-3=\square)\)

> Mark had three cookies.
> He ate some on the way to school.
> Now he has only one for lunch.
> How many did he, eat. on the way to school?
> \((3-\square=1\) or \(\square+1=3)\)
> Karen had three caps.
> Her friend gave her five càp.
> How many caps does Karen have? \((3+5=\square)\)
> Bryan bought some ice cream cones.
> Four were \({ }_{4}\) vanilla and the rest were strawberry.
> How many did he buy in all? (No equation)
> Jack's father gave him three model rockets. His grandfather gave him five.
> Jack gave one of them to his friend Douglas.
> How many rockets aoes Jack have? ' ( \(3+5=\square\) and \(f \quad 8-1=\square)\)

Display an equation on the chalkboard or flannel board, for example, \(\hat{7}+\square=9\). Ask the children to make up a' story that goes, with the equation.

Ask the , children to make up story problems, "discuss these, and find equations (if there are any) that go with the stories.

Write the following story on the chalkboard:


Read the story to the children or have it read by an able child: Encourage the children to recall some of the ideas presented previously; (Chapter 4) namely:
(1) Story problems ask you tơ find something. You may be asked to find the answer to a question.
(2) Some information is given to help you solve the problem. Sometimes not enough information is given to solve the problem. .
(3) Thinking about sets, equivalent to the sets in the story, helps us solve story problems. (One child might demonstrate with set materials to show Mary's cookies.)
(4) We can write an equation to show us what number we till need to use in the answer but the equation is not the answer we are asked to find. (The equation 3-1 = -_ might be written on the chalkboard at a spot removed from the story itself. Remind the children that the 3 in the equation says nothing about cookies, it only names the number " 3 ". For this reason we mustitways tell. what it is that pas found: In this case, we might say, "Mary had 2 cookies then.")
(5) We can use what we know about solving one story problem to help us solve 'other story problems.

Erase the equation from its place on the board and write it directly under the story probiem. Write the following story on the chalkboard:
Jack hăd some toy cars.
Mother gave Jack. 2 toy boats.
Then Jack had 7 cars and boats.
How many toy cars and boats did Jack
hava to begin with?

A'sk a child to show sets equivalent to the sets of toys. Discuss what set operation could.be used to find the answer to the question. Ask what equation describes the set operations and have it written on the board, directly under the story. Continue by telling the children the following stories. In each case have the children tell what equation they can use to help them solve the problem. Would it be like the first story problem, a subset, rëmovied from a set,
using an equation that shows one number minus another number; or would it belike the second story problem, two 'sets joined, and use an equation that shows one number plus another number? Have the equation written and the answer to the problem given.
1. Father had 3 rakes and \(\dot{2}\) shovels. How many rakes and shovel's did Father have? (It is like the second equation. \(3+2=5\) ). (Father had 5 rakes and shovels.)
2. Beth had 4 new dresses.

Mother bought some more new dresses for Beth. Now Beth has 6 new dresses. Find how many new dresses Mother bought for Beth.
(It is like the second equation. \(4+\underline{2}=6\) ) \(\cdots\) (Mother bought 2 more dresses:)

Jack had some red apples.
Mary took 5 of them for Mother.
Then Jack had 2 apples.
How many red apples did Jack have to begin with'? (It is like the first equation. \(\frac{0}{7}-5=2\) ) (Jack had 7 ,apples in the beginning.)
4. Mary had some sticks of gum.

She gave 3 sticks to Joe.
Find how many sticks she has now.
(You cant solve it. You must either know how many sticks Mary had to begin with or how many she has now.)

Pupil's book, pages 129-133:
Read each of the stories aloud to the children. In some cases it may be well to ask a less able child to reread the story after it has been read once. The pupils should
(T) Then be directed to complete the page by drawing more objects as needed or crossing off the sưbset. which is removed. The equation which may be used to help. solve the problem is to be written onsthe line and the annswer , sentence completed by filling in the "blank. Let those children tho are able complete the page independently. Give individual help to those children who need. it. Pupil!s book; pages 129 and 130 are to be used inthis way. Pupil's book, pages 131-133: children should be difected to use \(\bigcirc\) 's to show sets equivalent to the sets of objects described in the story, Be sure to read" the stories aloud beföre the children begin to work independently. Give individual help whenever needed.
*

Complete the equations
\begin{tabular}{l|l} 
Complete te e evasions \\
\(8-2=6\) & \(10-2=8\) \\
\(3-2=1\) & \(9-5=4\) \\
\(7-2=5\) & \(10-4=6\) \\
\(8-3=5\) & \(7-4=3\) \\
\(4-0=4\) & \(8-1=7\) \\
7 & \(6=1\) \\
7 & \(10-5=5\)
\end{tabular}



Solving Problems
1. Sam wants 6 toy cars.

Problem Picture
He has 4 toy cars.
Find how many toy cars he must get.
\(4+2=6\) or \(6-4=2\)


Sam must get. \(\qquad\) 2 toy cars. \({ }^{\text {. }}\)
2." Pat had \({ }^{6} 9\) màrbles.

He gave 5 marbles to Dick.
Find how many marbles Pat had then.
\(\qquad\)

Pat had 4 marbles then. .

Problem Picture

1. Bob's dog had 3 puppies:

Problem Picture
His cat had 4. kittens.
Find how many baby animals Bob.
had.

\(3+4=7\)

Bob had \(\qquad\) 7 baby animals.
2. Mother needs 10 candles.

She has 6 candles.
How many candles must she get?
\(6+4 \div 10\) or \(10-6=4\)

She must get " of: candles.
3. Mary had 8 toys.

Tom took 3 of the toys.
Find how many toys Mary had then.'
\[
8-3=5
\]

Mary had \(\qquad\) 5 toys then.

Problem Picture


Solving Problems
1. David had 6 toy cars.

He gave 1 car to Jim.
- Find how many cars David has now.
\[
6-1=5
\]

David has \(\qquad\) 5 toy cars now.
2. Sally has 2 crayons. \(\square\) \(\ddot{4}\)
\({ }^{\circ}\) P'toblem Picture \({ }_{2}\)
She needs 6 crayons.
- How many crayons muse she get?
\[
-\frac{i}{4}+4=6 \text { oo } 6-2=4
\]

Sally must get \(\qquad\) 4 crayons.
3. Joan had 2 cookies.

Problem Picture
Mother gave 2 cookies to Joan.
How many cookies did Joan have then?
\(2+2=40\)
- \(\qquad\) cookies then.
1. Jane wants 4 dells.

Shè has 3 dolls.
How many dolls must she get?
\[
3+1=4 \text { or } 4-3=1
\]

Jane must get \(\qquad\) doll.

Problem-Picture

2. Susan had 6 Cookies.

Problem Picture
Spot ate 2 cookies:
Find how many cookies Susan had then.
\[
6-2=4
\]
"Susan had \(\qquad\) 4 cookies then:
3. Jack had 5 boats.

He made 2 more boats
How many boats did Jack have then?
Problem Picture

\[
5+2=7
\]

jack had \(\qquad\) 7 boats then.

Solving Problems
.1. Ann made 10 cookies.
She gave 3 cookies to Bill.
How many cookies did Ann have then?
\(\qquad\)
\(10-3=7\)
A,
Then Ann had \(\qquad\) 7 cookies.
2. Mrs. Lee hand 3 hats.

She got 2 new hats.
Find how many hats she has now.

\[
3+2=5
\]

Mrs. "Lee has \(\qquad\) hats now.
3. Mother baked some cakes.

She gave 4 cakes to the church.
Then she had 2 cakes.:
How many cakes did Mother bake?
\[
\therefore 6-4=2 \text { or } 4+2=6
\]

Mother baked \(\qquad\) cakes.

VII-6. Addition and Subtraction: numbers greater than ten

Objective: To begin the stady of addition and subtraction of numbers'greater than ten.-

Vocabulary: (No new words.)
Materials: Sets of small objects for counting.
Teaching Note:-
This lesson contains a sample presentation of addition and subtraction of 2 digit numbers. The teanher may pursue this as far as seems appropriate with her class.

Suggested Prócedure:
Billy's family is going on a picnic.
His mother put ten cookie's in the; basket.
Billy; put in thirty cookies.
How many cookies are in the basket?
We can add the number of cookies that Billy put in the basket to the number his mother put in the basket'to find the number or cookies. We "would write the equation, \(10+30=\). \(\qquad\) \(\stackrel{\rightharpoonup}{\bullet}\)
'To finis's the equation we jeed, to add the numbers. It may help us to think of the number 4 of tens in 10 , and in 30 "and add the tens. How many tens are in ten? (1.)
How many tens in thirty? ( 3.0 )
If we ald 1 ten and 3 tens, how many tens will we have? ( 4.4 )
What dxwe call 4 tens?" (Forty..)
Then we "uda 30 to 10 . we have 40 , we finish -的 the equation \(10+30=40\).

If necessary bundles of ten objects each should be available, to use as an aid in solvs. y these problems:

Develop the following problems in the same way*
Jerry found forty rocks in his back yard.
He put them in the fish bowl in his room.
On the way to the store he picked up ten rocks.
When he got home he put them in the fish bowl:
How many rocks does he have in the bowl?
(Jerry has fifty rocks in the fish bowl.
\(40+10=50:)\)
Alice had twenty pennies in her purses Her mother gave her twenty pennies. She put them in her purse; too. How many penniés are in
Alice's purse? (There"are forty pennies. in
Alice's purse: \(20+20=40\).\() \quad )\)
Carl has eighty plastic army men." He has "
twenty plastic army trucks. He has thirty plastic army jeeps. He took hes gray trucks. and jeeps to Bob's house to' play. How many toys did he take? (Carl took fifty toys. to Bob's house. \(20 \mp 30=50\).)

These problems involve removing a set:
Steve had fifty marbles. He traded twenty marbles for a kite. How many marbles did he keep?: (Steve kept thirty marbles. \(50-20=30\).)

Frank found forty sea shells while he was at the bërch. He gave twenty to his friend David when he got home. How many sea shells did Frank keep? (Frank kept twenty sea, shells. \(40-20=20\).)

Shirley has twenty paper dolls. She has forty paper doll dresses. She left ten dresses at Mary's
- house. How many dresses does she have to play with at: \({ }^{2}\) home? (Shirley has thirty dresses to play with. \(40 \cdot-10=30\).

John has forty pencils. He gave ten to his brother Jerry. Hf many pencils does his brother, Tim, have? (Cannot be solved with information available.)

Place, two set's of smail objects on a table. Do not tell the number of objects in each set.

How can we find how many objects we would have if we joined the sets?
(Pupils may suggest that they could join the sets and then count all the objects. This procedure should then be followed.)

Plage two new sets of objects on the table. Now tell the children the number of members in each set as you place. them on the table. (Be sure that joining the set of ones to, the set of ones will result in a set of not more than 9 ones.

This set has .22 members. We will join to. it a set with 36 members. How many objects are in our new set? Can we find the number of members in our new set without counting each member? Remember, you know the number of members in each of the sets.

Pufsue suggestions. that children may give. If not suggested, a\$k a child to ärrange the set, with 22 members as sets of ten and a set.of ones. Another child should arrange the set of 36 as tens and cnes.

How many sets of ten are in the set with 22
: members? (2.) -
How many sets of ten pre in the set.with 36
- membels? (3.)

Join the set of 3 tens to the set of 2 tens.
How many tens in all? (5.)
How many ones in the set with 22 members? (2.).
How many ones in the set with 36 members? (6.)
'Join the set of 6 ones to the set of 2 ones.'
There,'are how many ones in all? (8.")
We have 5 tens and 8 ones.
How many are in the set? (58.)

Show children an envelope. Tel them that inside is a set of" sticks. There are " 45 sticks in all. Show" them another envelope. Tell them that this one has 23 sticks in it. Tell the children we will use the numbers to help find out the number of sticks we would have if we joined the set of 23 "sticks to the set of 45 sticks. We will do this by, adding 23 to 45 .
\[
\text { .* How many tens are in } 45 \text { ? (4.) }
\]

How many tens are in 23? (2.) If we add. 2 tens to 4 tens, what is the number of tens? (6.)
: On the chalkboard, write 4 tens \(+\cdot 2\) tens \(=6\) tens. How many ones are in \(45 ?^{\circ}\) (5.)
How many ones are in 23 (3.)
If we add 3 ones to 5 ones, what is the number of ones? (8.)

On the chalkboard, write \({ }^{\prime} 5\) ones +3 ones \(=8\) ones.
\(\therefore\) We hayes ' 6 . tens' and 8 ones in all. ...' How many sticks are in the envelope? (68.) Join the sets, group into tens and ones, count the sets of tens and sets of ones to check this work. Place a set of objects on the table. Do not tell the number of members.

If I remove. .ell members of the set, what will be the number remo:ning? "(We will need. to count the members of the remaining set in order. to find out.)

Place another set on the table. Arrange the set as 4 tens and 8 ones.

This set ha's 48 members. Now I will remove * a subset 'of 21 objects. How many objects are in the set that remains? (Remove ' 2 ' tens from \(4^{\circ}\) tens.) What is the number of tens remaining? ( 2 tens.) (Remove 1 one from 8 ones ، \()^{\prime}\) What y is the number of ones remaining? (7 ones.)

The remaining set has 2 tens and 7 ones. What. is the number of members in the remaining set? (2ヶ்.)
Show the children a box: Tell them that inside the box are 57 beads.

If I remove .34 beads, how many beads will be left in the box?

Teil the children we can use numbers to find the number. of members in the remaining set. We do this by subtracting 34 from 57.

How many tens are in 57? (5.)
How many tens are in 34? (3.)
If we subtract 3 tens frem tens, what is the number of tens? (2.2
on the chalkboará, write 5 tens -3 tens \(=2\) tens.
How many-ones are in 57? (7.)
How many ones are in 34 ? (4.)
If we subtract 4 ones from 7 . ores, what is
the number of ones? (3.)
On the chalkboard, write 7 ones - 4 ones \(=\) 数 ones.

We have, 2 tens and ' 3 ones in the remaining
-set if we have subtracted the numbers correctily.
*How many are-in the remsining set? (23.) -
Remove the seit of 34 beads from the set of 57 beads. Count the number of members in the remaining set in order to check this work.

Chapter VIII
ARRAYS AND MULTIPLICATION

Background
Section VIII-1 introduces the idea of array. \({ }^{\circ} \mathrm{An}\), array is a rectangular arrangement of objects into rows, each row containing the same number of objects: \({ }^{-}\)Shown below is an array of 3 rows, each row containing \(5 \mathrm{x}^{\text {i }}\).
\begin{tabular}{lllll}
\(x\) & \(x\) & \(x\) & \(x\) & \(x\) \\
\(x\) & \(x\) & \(x\) & \(x\) & \(x\) \\
\(x\) & \(x\) & \(x\) & \(x\) & \(x\)
\end{tabular}

The objects in an array are called its members. These need not be all alike. Here, for instance, is an array of \(2^{*}\) rows of 3 members each, all different:



Arrays may also consist of rectangular arrangements of flannel board objects, or blocks on the floor, or drawers in a cabinet, or panes in \(a^{a}\) window, or compartinents in a carton, etc., etc. If an arrangement of objects -in rows does not have the same number of members in each row, then it is net called an array.

Arrays are used in defining multiplication.: When, we multiply 5 by 3 , for instance, the result is affined as the number of members in an array \(\because \because 3\) rows of 5 members each. In counting the number of members in an array: 1 . of, say, 3 rows of 5 members each, children are Ied to count by rows ' \(5,10,-15\) ) and to say, "Three fives are fifteen." .There is then an easy transition, in Section VIII-ざ, to the statement "Three times Five is fifteen." The further transition to the equation
\(\leq\) using the multiplication sign, can easily be made if the teacher feelis her class is ready for this: It should be noted here that no mastery of multiplication facts is expected. in this grade.

Section VIII-3 points out two simple properties of multiplication. The first of these is that multiplying. numbers in either order always'gives the same result. For instance;
\[
4 \times 5=5 \times 4
\]

Arrays make this wery easy to see: when we turn up on end an array of ' 4 rows of 5 members each, we get an array of 5 rows of 4 members each.

By considering an array of just 1 row of, say, 3 members', we see that
\[
1 \times 3=3
\]
- Similarly, \(1^{\circ}\) times any whole number is that number. Also, by considering an anray of 3 rows of just 1 member each, we see that
\[
3 \times 1=3
\]
and similarly, that any whole number times 1 is that number,

\section*{VIII-1. Arrays*}

Objective: 'To introduce the idea of array, and to finas the number of members in an array by courtits - by rows.

Vocabulary: Array, row.
Mąterials: Counting disks, buttons', beans, or other small objects; felt cut-outs for flannel board; hundreds-square paper.

Suggested Procedure:
Give each child a set of 20 counting disks or othêr small objects. Ask 6 children to select 2 of their disks to \& put into a box in which you will collect them. When you hāve collected the disks; discuss with the class the fact that you have joined \({ }_{6}^{6}\) setis, and that the sets were equivalent to each other, each having 2 members. Have a child count the disks in the box to see how many disks are 'in the union.
\begin{tabular}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\(e\) & 0
\end{tabular}

Suggest that "the disks be arranged in rows, with \(2^{\prime}\) in each row. and show that int this arrangement it is possible to count by. twos. Explain that this kind of arrangement is "called an array. It has. \(\sigma\) rows with \(\dot{2}\) members in each row. There are 6 sets of 2 , and hence \(\oint\) tyos, or 12 members in the array. Explain lthat an array is an arrangement of things. in fows in which each row has the same number of members. Point to arrays of wis ndow panes, bulletin board pictures, etc., or draw on the chalkboard pictures of arrays of different kinds; 5 rows of . 4 members each, 3 rows of 8 members each, \(6^{\circ}\) rows of 5 members'each, etc., and have children observe
how they know they are'arrays. Ask children tif give other' examples. Point out that unless all rows have the same number of members the arrangement is not \&alled an array., Give examples of a
Return the disks to the children and ask them to make an array (demonstrate, again, iff necessary) of 4 .rows with 2 members in each row. 'Ask how many, members. there are in the whole array. Continue, in the same way, häing other arrays fack with 2 members in each row.
Have children make arrays of 6 rows with 2 members in each row, again, and then'rearrange the "aisks to'show?. rows of 6 members each. Children should be aware that these are different arrays, but that they have the same": numbër of members.
.Repeat, using, an array with 4 rows of' 2 members each, \({ }^{\prime}\) and rearranging to form an array with \(2^{\circ}\) rows of 4 members each.

Have children form an array of 3 rows with 5 members in each row. Ask how they might count to find the number of members in the array. (5, 10, 15.) .Draw arrays' with 5 or 10 members in each row and have childres. count by rows to find. the number of members in the array.. Distribute hundreds-square paper. Show children how, to write \(X^{\prime} s\) in the boxes to form various arrays of \({ }^{\circ} 2\), 3 , ' 5 , or 10 members in'each row, as you direct them. For instance, use ored crayon to show an array of 8 rows with. 2 members in each row. Use blue crayon to show .... Under each array they should write the number of members in the array:


355
\[
\begin{array}{cccc}
x & x & x & x \\
x & x & x & x \\
x & x & x & 8^{x} \\
x & x & x & x \\
\cdot & 20 &
\end{array}
\]

Pupil's book, pages 135 - I37:
Children are to write the number of rows, the number of members in exch row, and the number of members in the array.
\(\square\)


\[
\because \quad \dot{\bullet} \quad \dot{\cdot}
\]
\(\square\)
\(\qquad\)
\(\qquad\)
\[
\begin{aligned}
& \cdot \\
& \cdot \\
& \cdots
\end{aligned}
\]
\(\square\)

\(\therefore\)

ERIC
344.

Arrays


How many rows?


How many in each row? \(\qquad\) 2

How many in the array? \(\qquad\) 8.

How many rows? 2L
How many in each row? 3
How many in the array? \(\qquad\) 6

\(\therefore\) How many rows? \(\qquad\) 2 Col

How many in each row? \(\qquad\)
How many in the array? 4 \(\qquad\)
\(4{ }^{\circ}\)


How many rows? 2 \(\qquad\)
How many in each row? \(\qquad\)
How many in the array?

. 1

ERIC

Arrays

- Show on the chalkboard an array of 5 rows with 2 members in each row. Have children tell how many rows there are and how many members there are in each row. point to each row in turn.
Is this two? (Yes.)

Then ask children how many twos there are in the array. (5 twos.) Have them count by twos to find how many members there are in the array. Write: a
\[
5 \text { "twos are } 10 .
\]

Show other arrays with rows of, 2 members end repeat, having children tell how many rows, and how many twos the array has: Have them count by twos. Write:
\[
\ldots \text { tiros are } \ldots
\]

Include an array with 10 rows with 2 members in each row. .When' children have paid, "Ten twos gre 20 ", show an 'array with 2 rows of 10 members' in each 'row, and observe that. 2 tens are 20.

Have children, make arrays with rows of 5 , members in each row and ask how many fives there aredetc. Then write:
\(\qquad\) fives are .

Do the same for rows of ' 3 members each.

Pupil's book, pages \(138-141:\).
"Children first count the rows, then fill the blanks.


H How many threes? 3 : Ha
\[
\rightarrow \frac{x}{4}
\]
\(\qquad\) 3 threes are \(\qquad\) .9 S ed S C
 How many tens? \(\qquad\) 3
\(\qquad\) 3 tens are \(\qquad\) 30

 : d

How many fours? \(\qquad\) 2
\(\qquad\) 2 fours acre \(\qquad\) 8
 \(\stackrel{\square}{4}\) -

Arrays
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
 \\
 \(\boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta}\) \(\boldsymbol{\Theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta}\) 48 \(\%\) \\
How many tens? \(\qquad\)
\(\qquad\) tens are \(\qquad\) ..
\end{tabular} \\
\hline How many threes? \(\qquad\) 2
\(\qquad\) 2 .threes åre \(\qquad\) . & \(\qquad\) twos are \(\qquad\) 6 \\
\hline
\end{tabular}

Arrays



How many fives? . 3
\(\frac{\frac{3}{4} \text { fives are } \frac{1 / 5}{1}}{\therefore \nabla-\theta-7}\)
\(\therefore \theta \cdot \theta \cdot \theta\)
\(\because \theta \quad \theta \quad \theta \quad \theta\)
\(\theta \theta \theta \theta \theta\)
\(\therefore \theta \theta \theta \theta \dot{\theta}\)
How many fives? 5
\(\qquad\) fives are \(\qquad\) 2.5 \(\qquad\)

ERIC
12364 :

VIII-2. Multiplication
Objective: To introduce the idea of multiplication,
using arrays.
Vocabulary: Multiply, multiplication, times.
Materials: Felt'cut-outs for flannel board; sets of counting disks or other small objects; paper bag. . . -

Suggested Procedure:
Tell the following story.
Mrs. Brown was getting ready for a picnic Eight people were going, and she wanted -to take two cookies for each -person. She put the cookies into a bag; two at a time. It ll pretend. to be Mrs. Brown, and put in enough cookies for the eight people.

Put risks in the paper bag, counting as you do so: "One person, two people, three people, etc."When you have' Pint shed, ask

How many times did. I put 2 cookies into the bag. \(2 \cdot(8\).\() 拉 can say there are 8\) twos in the bag; or "tan say there are 8 times \(a-\) in the bag. Eight twos are...? (16.) What i's 8 timés.2? (16.)
Write:
8 times \(\because\) is 16.
Tour gay or may not wish to introduce the symbol \(\vec{x}\), and write equations, such as \(8 \mathrm{y} 2=16\).

Suppose yori earned. I pennies peach school day this week. That frouid be Monday, Tuesday, Wedneṣday, tInursday., and Friday. How many. times
would you have earned 5 pennies? (5)
What is 5 ?ines 5? (25.)

Have children ųse disks or other objects to form an array and find out. Ask childrenl how they might use an array to solve the following problem:

A man has 5 ponies, and they all need new shoes. He, wants. to know how many shoes will have to be put on. How many shoes does each pòny néed? (4.)
How many ponies are there? (5.) We can say that tpgether all the ponies need \(.5^{\circ}\) times 4 shoes.

Have the children use their counting disks. They should put 4 disks in a row to show how many shoes the first pony needs, 4, disks in another. row for the next pony, etc., to learn that 5 times 4 is \(20 .{ }^{*}\) Therefore \(20^{\circ}\) shoes are needed.

Whenge say 5 times 4 is 20 , we are multiplying. In multiplication, we multiply one number by another:

Go directly to problems of the form: what is 3 times 5? Restate the problem in several ways: Three fives are ...? If an array has 3 rows, and each row has 5 members, hpw many members are in the array? Have children use. disks or other objects to answer these questions. Some may choose to draw. arrays on paper.
Pupil's book, pages \(14^{\circ}\) - 144 :
Children are to write \(X\) 's in the boxes to form arrays, as indicated. They, will write in the blank the number of members \(\therefore\) in the array.

\section*{Multipitication}

Drawartyays: Fill the blanks.
Show 3 rows of 5 .


Show 6 rows of 3.


\section*{Multiplication}

Draw arrays. Fill the blanks. a
Show 5 rows of 5 .


Show 3 rows of 4 .


Multiplication
Draw arrays. Fill the blanks.

Show 6 rows of 2.


6 times 2. is" 12

Further Activities:
Use story problems such as the following to deepen understanding of multiplication. Read each story to the children. Encourage them to use manipulative materials or to draw' a arrays to solve the problem. The problem should also be -stated, and written on the chalkboard, in mathematical terms, using, at your option, either of the following forms: 3 ,times 6 is \(\qquad\) or \(3 \times 6=\) \(\qquad\) . "Show Me" cards are very useful for observing the responsefof each child to the problem situation.
1. Mother washed 5 pairs of stockings.

How many stockings' did Mother wash?
2. "On Mary \({ }^{\text {s }}{ }^{2}\). street there were 3 "houses".

In each of the houses lived 3: children.
\(\therefore\) All together how many children lived an, the
3: 'Joe ate 3 apples' each day for 4 days. In 4 days how many apples did Joe eat?
4. Judy was weaving a doll blanket.

She wove \(\dot{2}\) squares every day for 5 days.
How many squares did she weave in the 5 days?
5. Tom hit a home run each game for \({ }_{a} 3\) games. How many home runs did he hit all togetines?
6: Beth ate 2 cookies each day for 2 days. How many cookies did Bet \({ }^{\circ}\) eat?
7. David put 1 butterfly in each of. 5. jars.
\(\therefore\), Find Ap w many butterflies were \(1 m^{8}\) the 5 , jars.
8. Each po the girls had 4 dolls.

Find how many dolls 2 , of the girls would have.
9. Mark got \(3^{\circ}\) new books each week for 2 weeks. Find how many new books Mark got in the 2 weeks.
10. Jim polished, 4. pairs of his father's shoes.

How many of his father's shoes did Jim polish?

in. Bop had several boxes of toys.
Each box had 2 toys in it.
How many toys were there in \(3^{\circ}\) of the boxes?
; 12. Each backyard in Jane's block had. ! tree. How many trees were there in 4 backyards?
13. Each house in Jan's block had 1 chimney. All. together how many chimneys were there on 2 houses?
14. Each of the backyards had 73 flowering plants. How many flowering plants were there in 4 backyards?

VIII-3. Simple properties of multiplication
Objective: To use arrays to show the commutative property of multiplication and the multiplication - property of 1. .

Vocabulary: (Optional) Commutative.
Materials: Manipulative objects for frildren, pictures of arrays on iagboard or construction paper, as shown:


A

B.


C


D

Chant on newsprint, as shown:


Suggested Procedure:
Show picture A to the class'. Have the array described.' ( 3 rows with 2 , members in each row.) Ask children to county by 2 's to'find what 3 times \({ }^{\prime \prime} 2\) is, and write: \(\therefore\)
\[
3 \text { times } 2 \text { is } 6 .
\]

Turn' the picture to show 2 rows of 3 members each. Have the array described and ask children to count by rows. (3, 6.) Write:

2 times 3 is 6. \(\therefore\)

Showepletures \(B\) and \(C\) in the same way. Have children. use objects and make, arrays of 4 rows of 3 ., \(3^{\prime}\), rows of 4 , etc., so that they see that exactly the same number of objects may be used' to make the arrays., Help children to generalize, (using the term "commutative" property" if it has been used in lessons on addition) that one number times a second number gives the same result as the second number times the first.
Showoricture, D. Have the array described (3, rows with I member in each row.) Ask no children will count by rows. (By ones.) Merle:

Tum the picture to show the array as 1 row of 3 members. Hey the array described, and ask children what they will
say in they count-by rows.'(3.) Draw other arrays either with 1 row or with one memöer in each row, and he \(2 \underline{p}^{\circ}\). children to generalize: any number times 1 is that number itself in and times any number is that number. Show the chart and have children read the sentences at the lest. Read the first sentence at the right. Ask which sentence l to the left gives. the information needed io. finish, " 10 times 8 is \(\qquad\) - ( 8 'times 10 is 80. ) Use crayon or felt pen to write 80 and to drew a line between the sentences that show commutativity. Complete the chart in this way.

Children are to fill in the number of members, in each row and the number of members in the array. They should observe that each pair of boxes' shows commutativity.

Pupil's book, page 147:
A
.

\section*{Pupils book，page 148：}

Children should be able to use their understanding t of commutativity and of multiplying with 1 as a factor．If necessary，allow them to draw arrays to solve some of the problems at the bottom of \(\theta\) the page．

Multiplication





ERIC \(5 \times 378\)


\(\square\)
\(\square\)
\(\square\) \(\because 3\) times 5 is \(\qquad\) 15
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
So, 5 times 3 is \(\qquad\) 15
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\) So, 5 times \(\qquad\)
\(\qquad\)

4. times 10 is \(\qquad\) 40 \(\square\) So, 10 times 4 is \(\qquad\) 40
\(\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle\)
\(\qquad\) \(\therefore\)

\[
\mathrm{ERIC} \because \quad \because 18{ }^{2}+3883
\]

grades' it win be recognized that the statement
in \(\frac{1}{2}\) of 10 is 5
\(\therefore\) is a reading of the multiplication equation
\[
\because \quad \therefore \quad \because \quad \frac{1}{2} \times 10=5
\]
'In this' equation \(\frac{1}{2}\). clearly appears as a number (a rational number we call it, because it is the ratio of the whole numbers 1 and. \(¥\) ), and the "of" is associated with the "times" of multiplication. we \(\operatorname{can}^{-t} \mathrm{t}\) do all this at once.. In this chapter we content ourselves with telling children that \(\frac{1}{2}\) is a new kind of number and that the symbol " \(\cdot \frac{1}{2}\) " is an example of a special way orbiting a number that we all a. fraction", That is, "' fraction consists of \(\therefore\) abas with a numeral above it and a numeral below it. The statement
 \(\qquad\) \(\because\) is illustrated by a. \(\hat{2}\) by 5 array marked in thigs.way:

where wo mare interested in only one of the two rows and its relation to the entireliarray.
In. Section IX -4, instead of asking that is \(\because \frac{1}{2}\)

 \(\because\) array may be used and marked In this way.

but attention is placed on the twos.
Section IX -5 introduces \(\frac{1}{3}\), in much the same way Section IX -3 introduces \(\frac{1}{3}\) : We ask: If 12 cookies are distributed fairly to 3 children, how many cookies will each get? We arrive, at the statement \(\frac{1}{3}\) of 12 is 4,
and then use arrays to see "that \(\frac{1}{3}\), of \(\frac{12}{3}\) is the same as the number of members in each equivalent set


A
In \(A, \frac{1}{3}\) is the number associated with the ringed regions. -. in the array if the array" is regarded as set.


11
Section IX-6 uses the familiar device of cutting up regions into congruent pres (ie., parts of the same size and shape) to make vivid \(\frac{1}{2}, j \frac{2}{2}, \frac{1}{3}\), and \(-\frac{3}{3} \div\)


\(\frac{3}{3}\)


Objectives: To partition sets into equatalent suba sets of giyen number members and to use tresel to fomarrays.
- Vocabulary (Review) partition, equari

Materials: Setsrof gimall objectsy material ofor flanneíboard,

Suggested Procedure:
Ask the childrefo to select a set with 120 memberg. Now count 4 memers of your set and putidi them just a litele fone side.
What fo we call this part of the set?
(subse tion Have them keepon counting out subsets with 4 members each until they ohave made as many subsets afthey can.

How many subsets did you have when you frinished
Did each subset mave 4 membersi \((\underset{\text { mas }}{ }\) )
Could we say we have 03 fours in our original set? (Yes.)
We have partitioned the original
3 sets with 4 metubers each.
- Have childrenoput all subsets intd one set again añg then partition into subsets with 3 members each, using. above procedure. When 4 sets of 3 have been "obtained arf discussed, ask children to partitión the set of . 12 ., membersinto sets of 5 members each.

How many subsets do you have? (3.) M
Does each subset have 5 members?. (No; all but one.)



Use the same procedure and partition the set material
finto－subsets with 2 members ：\＆y that－in is 6电 Partition the set into shbsets with 6
members．．Say that \(12^{\text {r }}{ }^{2}\) sixes．

\section*{Further Activities：}

I．Have children choose 8 ；objects from set boxes andilet individual children suggest ways of marti－ tioning．（＂Bill＂，how many things shall we use For our first subset？＂）Make sure tho sometime during the period it is－xoticed，that \(8^{6}\) can be \(\because\) 品

Whet would happen．if we used only one member ．in he first subset？（Then we－would get \＆ etc or 1 membersach．） What would happen if we used＇ 8 ．members in our first subset？（Then we would get just 1 set of 8 members．）．

2．Draw sets on chalkboard（balls，trees，kites，etc． and ask children to draw．rings around equivalent subsets＂of various numbers of members．＇＂．．
 the number of objects in each box in order to fill the： first blank．They should thền ring sets，as indicated， and count the number of equivalent sets．



Partitioning


Partitioning


Ring sets of \(8=* / 2\) is 2 eights.


- \(\qquad\) fours.
- Place a set with ly members on the flannel board. Ask a child to count- the number of members of the set. Then ask a child to partition the set into sets of four and observe that there are 4 fours in a set of sixteen.
\(\mu^{\circ}\)
We know there are four members in each of these subsets because someone coinnted them as he \(\therefore\). partitioned the set of lo. How could-we Parrrange the objects so it would be easier, to see that there are \(4^{\circ}\) in each set?

Make an array.

We know, that if there are four in the first row and the other rows are the same, then each row has four members. We can make a set of is into an array with 4 roys, with " 4 ' members - in each row. We know just by looking that a sef* of 16 can be partitioned into 4 sets of 4 :
- Hok' many fours are there in \(16 ?^{\circ}\) We see that. 16 is \(\frac{4}{1}\) fours just by looking.
Repeat this procedure, partitioning a set of 16 , into sets of 2 by arranging it in an array so that each; row has 2 męmbers.

How many rows do'we have? (8.)

Have the set of 16 arranged in rows of 8 members. each.

How many rows do We have? (2.)

Have the set of 16 arranged in rows with 1 member in each row, etc.

Distribute counters (disks, Duttons, etc.) Ask children how they show an array to findrout how many sets of 3 there are in a set of 9 .

386



Partitioning


IX-2. Partitioning into a given number of equivalent sets

Objective: To partition a set into a given number "of equivalent, sets.

Vocabulary: ( (no new words.)
Materials: Sets of small objects, materials for, flannel board

Suggested Procedure:

Present the following problem:
- Mary, sue, and Betty have , 18 cookies. They, want to share the; cookies fairly, so that each girl will hate the same number of cookies: How can they do this?

Children will probably suggest giving one to each. girl in turn until ail cookies have been distributed, "dealing them out"! until all are gone. Explain" that each girl's.cokies should then be counted. to besure everyone has a fair share. .

Suggest using 18 felt objects on the flannel board to end out how many cookies each fir should get.. Place ' 3 objects one below the other, on the flannel board, and then put another in each row, et \(\ddot{c}\), until 211 18: have: been used.

Children should obselve that an array has been made, and that it is easy to see that eachrow has 6. mefnbers.
'18. is three \(\qquad\) 's.

Discuss the fact that making an array has shawn that the misising word is sixes:
\(r\)
\(\%\) Have chiliareñ use manipulative objects 'to find out how many membersa there would be in each set' if a -set of " \(16^{\circ}\) जeve paritioned into 4 equivalent subsets. Show' that they are'solving the problem:

16 is four \(\qquad\) 's.

Continue with several other problems of this sort: 12 as 4 sets of how many members, 14 as 2 sets of how many uembers, etci;

Have children use, objects to solve similár problems.
'Pupil's book, pages \(153-155\) : children draw more objects to make an array with the number of members indicated and the rows 'stanted.
"They are to find the number of membêrs in each row.

Partitioning
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Show 6 :in all. \\
6 is three \(\qquad\) 2 's.
\end{tabular} & \begin{tabular}{l}
Show 6 in all.
\(\square\) \(\square\) \(\square\)
\(\square\) \(\square\) \\
6 is two \(\qquad\) 3 s.
\end{tabular} \\
\hline \begin{tabular}{l}
Show 4 in all. \\
A is two \(\qquad\) 2 's.,
\end{tabular} & \begin{tabular}{l}
Show, 10 in all. \\
\(\square\) \\
10 is five \(\qquad\) s.
\end{tabular} \\
\hline
\end{tabular}

ERIC

Partitioning


\section*{Partitioning}
\begin{tabular}{|c|c|}
\hline Show l2 in all． & \begin{tabular}{l}
Show 20 in alt：
ロロロロ
回口回回
\(\square \square \square \square\)
\(\square \square \square \square\) \\
20 is four 5．s．
\end{tabular} \\
\hline \begin{tabular}{l}
Show 10 in all．\({ }^{\circ}\) ：
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\) \\
10 is five 2 s．
\end{tabular} & \begin{tabular}{l}
Show 18 in all： \\
000 \\
0.00 \\
00.0 \\
800 \\
000 \\
000
\end{tabular} \\
\hline
\end{tabular}

Objective: To introduce the idea of one-half and "the written symbol, " \(\frac{1}{2}\) ".

Vocabulary: One-half., part.

Materials: , Materials for flannel board, sets, of small objects.

\section*{Suggested Procedure:}

Place 6 flannel cutouts (apples on the flannel board in no particular arrangement. Ask children how many apples' are on the flannel board.
 one-half of the apples, in this set. Who can show us how many apples he would take? let a child who thinks he can show us remove the apples that, we will give away.) \({ }^{\text {a }}\) How many applies os did he take? (3) What part of the set of apples : did he take? \(\left(\frac{1}{2}\right)^{2}\)

Now suppose we want to "give away the other "apples.
How many apples can we give someone else? (3.).
(You may wish to name a chill who is to receive
these.) What part of the set of apples did he get? ( \(\frac{1}{2}\).) How many one-halves of a set of apples are there? (2.) How 'many children received apples? (2.). How many apples did each child get? (3.) \(\frac{1}{2}\) of 6 objects is how many? (3.),

Because many children have only the idea that one-half means a -part of something, or less than all of a set, it is.necessary . to emphasize the.façt that finding one half of set requires partitioning the set into \(x^{2}\) equivalent subsets.

Provide experiences for showing one-half of many different \(\because\) sets \(-: 4,8,10,12\). It is important that children learn to think of the set of objects as one set and that to find \(\frac{1}{2}\) of the set, they partition (or separate) the set into two
subsets so that there are just as many objects in one subset as in the other. .
- After they, understand how they can find one-half of a set of objects \(\dot{b}\) partitioning the set into two equivalent subsets, display on the chalkboard how we can describe what we have done, using the names' of the numbers. For example \(\frac{1}{2}\) of 3 is 4 . Explain that, \(\frac{1}{3}\) is a new kind of number. Point out that the numeral " \({ }^{2}\) " is made by using names for \(\ddagger\) and for 2. You may wish to as it' there are other numeral's which are made by using the numerals for one and two. (12. and 21) Emphasize that we write these names -in a' afferent way. We write "i"; put a bar under it, and write "?" under the bar: . \(\frac{1}{2}\). This is a name for the namer one-haly.
- Repeat some of the previous experiences \(\dot{i_{6}}\) ain and this tine Write the sentences that can be associated with finding \(\frac{1}{?}\) of a set of objects.
'Write on the chalkboard:
- \(\frac{1}{2}\) of 14 is \(\qquad\) .

Ask how many objects are to be in the set to. be, partitioned \(A\). Ask how children can rind the .number so that they can complete the sentence. Have -children. use sets of small objects and partition of a set of 14 into 2. Equivalent. subsets to determine the answer.
Write other sentences and have children use their sets of object's to complete the sentences.

Pupil's book, pages 256 - 158 children are to ring \(\frac{1}{\tau}\) off each set.
\(\square\) \(\because, \cdots, \quad-\)

"One Half
Color \(\frac{1}{2}\) of each set blue. Color the other half red. Fill the blanks.


\(\leq 1\)
\[
156
\]

One Half
Color \(\frac{1}{2}\) of each set blue. Color the other half red. Fill the blanks.


One Half
" color. \(\frac{1}{2}\) of each set blue. Color the other half red. Fill the blanks:

\[
\begin{aligned}
& 0000000000 \\
& 0000000000 \\
& \frac{1}{2} \text { or } 2 \text { is } 10 .
\end{aligned}
\]
-..
新

Further Activities;
Regal the following story problems to the children.
Let them use manipulative materials to find the answers.
1. 6 boys were playing ball. tiv

One-half of the boys, went hone:
How many boys went home? (Three boys went home.)
How many boys, were quill playing ball? ( Three
boys were still playing ball.)
What part of the group was still playing ball? (Half of the group was still playing bal.):
2. Mother had 8 sticks of gum.

She kept \(\frac{I}{2}\) of the gum for herself.
"How many sticks of gum did mother keep for
herself? (She kept 4 sticks:)
3. Father had 2 , golf "balls.
\(\because\) He lost \(\frac{1}{2}\). of the rivals..
Find how many balls he lost. (He lost 1
\(\therefore\) golf ball:.)
What part of the set of golf balls did Father . still have? (He had \(\frac{1}{2}\) of the balls.)
4. Mother had 4 cookies.
* She gave 2 cookies to Sarah.
-What part of the set of cookies did Sarah get?
\(\therefore\) (Sarah got \(\frac{1}{2}\) of /the cookies.)
What part of the/ set of cookies did Mother still have? (Mother fill had \(\frac{1}{2}\) of the cookies.)
5. Father had 12 nails.

He used \(\frac{1}{2}\) of the nails to make a bird house. How many nails did we we? (He used 6 nails.) *What part of the set foils did he still have? (He had \(\frac{1}{2}\) of the nails.)

IX-4. Halves and two times

Objective: . To lead children to see that 2 times one half of a number is the same" as that number.

Vocabulary: (No new words.)

Materials: Materials for flannel board, yarn, manipulative objects.
-Suggested Procedure:

Begin with a display of ten oranges on the flannel board end explain that we want to find one half of ten by partitioning this set into two equivalent sub"sets. Ask if there is any nice arrangement which we could make to show the two sets of the partition and display the fact, that they are equivalent.
Lead up to arranging the set in an array with two rows, and five members in each row. Decide that 5 is one half of tern. Ring one of the rows with yarn.


Then ring sets of two to show that the same number, 5, indicates how many twos there are in 10:


Pupil's book, pages 159 -. 161:•
Children first record the number of menbers in the array. They will ring or color \(\frac{1}{2}\) of the set.

ERİ:

\(A\)


How many? 12
Color \(\frac{1}{2}\) of the set. " \(\frac{1}{2}\) of 12 is 6




How many? -12
Ring subsets with \({ }^{*} 2^{\prime}\) members.
\[
\therefore \quad \text { twos in } 12
\]

\section*{Partitions}
How many? \(/ 6\)
Color \(\frac{1}{2}\). of the set.
\(\frac{1}{2}\) of 16 is \(\qquad\) \(\therefore \quad \rightarrow\)


How many? \(/ 6\)
Ring subsets with 2 members.
8 twos in 16.
\(\dot{\varepsilon}\)
\({ }^{160} 405\)

Partitions
\(\left.\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0\end{array}\right]\)

ERIC

Objective: To int \(\quad\) duce the ideas of one third, written symbols,\(\frac{11}{3}\),

Vocabulary: one third.

Materials: 'Objects' for flannel Board, manipulative materials.

\section*{Suggested Procedure:}

Make a flannel board display of 12 disks. Ask the . children to imagine that the disks are cookies and explain that three children are to share these so that each child gets the same number of cookies. An three, of the children to come to the board and decide how to do this. They may each take one in turn, till all cookies are gone. Ask the first child to place his share of the cookies in a row, the net child to place his in a row below that of the first child's, and so on. Say that each child has 4 n cookies', that each child hasmone-third of the \(12 \cdot\) cookies, and that
\(\therefore \quad \therefore \quad\) one-third of 12 is 4.

Write " \(\frac{1}{3}\) " of 12 is 4 ", on the chalkboard and, as youldid. in the case of \(\frac{1}{2}\), explain that this is a new number and so on. Repeat with other sets until the idea that to find \(\frac{1}{3}\). of a set, we.partition the set into 3 equivalent sets is understood.

Have the children, working individually with sets of objects, find one-third of 15 , of 21 , and so on. Use "Show-me cards", to check the results.
\[
\therefore 40 \%
\]

After understanding of the concept of one-third mas peen -developed, we help children to see that one-third of a number can be associated with: \(3 x\) \(\qquad\) = given number. 1 We do this with flannel board demonstrations, just as in the preceding section, when we learned that, for example-
\(7 \frac{1}{2}\) of \(8=4\) is related to \(? \times \dot{4}=8\) :

Begin with a display of 6 .objects on the flannel board.
\[
\begin{array}{r}
00 \\
0.0 \\
20.0
\end{array}
\]

Ask how to show -one third of the set with yarn. (Ring the 2 , members of 1 tow..)
Ask whether anything else may be seen from the array.
Tar to lead, children to see that there are • 3. twos: in 6. Use yarn to ring the three twos.


Write:
\(\frac{1}{3}\) of -6 is 2 .
- There are 3 twos in 6.

Repeat with other sets.
Pupil's book, pages 162-153: Children are to mark \(\frac{1}{3}\) of the "objects in each box, and ail the blanks, as indicated. . ". -t.

Pup il's book, page I64: Children should \({ }^{\circ}\) observe the relationship between, \(\frac{1}{3}\) and \(\frac{1}{2}\).

One Third.
Color \(\frac{1}{3}\) of each set. Fill the blanks.'


398
One Third
Color \(\div \frac{1}{3}\) of each set. . Fill the branks.


ERIC

One Half and One Third



Further Activities: (Optional)
At a later time, when children show understanding of the ideas of" one third and one half, you may wish to. introduce the ideas of two thirds and three thirds.

Begin with a flannel board display with 3 rows with. 4 members in each row. Agree that one third of 12 - is. \({ }^{4}\) and record this result on the chalkboard. . Then ask what two thirds of 12 should be, and agree that it should be two fours or 8 . Record in the form:
\[
\begin{aligned}
& \frac{1}{3} \text { of } 12 \text { is } 4 \\
& \frac{2}{3} \text { of in. is } 8 \\
& \text { ァ" } \quad \hat{i} \cdot \frac{3}{3} \text { of } 12 \text { is } \xrightarrow{\because}
\end{aligned}
\]

Agree that \(\frac{3}{3}\) of 12 should be one twelve, ard explain that " \(\frac{3}{3}\) " is just another name for one. You may want "to discuss " \(\frac{2}{2}\) ", which is also' another name for one, at this time, or you mayowish to postpone this until later. Have the children, working individually with sets of objects, find pe third "and two thirds of 15 , of " 21 , and so on. Use - "Show-me" cards to check the "results. \&. ...

\section*{IX -6: Parts of regions}

Objective: To relate halves and thirds to regions and to physical objects.

Vocabulary: (No new words.)
Materials: Rectangular and circular regions of construction paper, 1 yellow and 1 blue of each. Numeral cards \(\frac{1}{2}\), \(\frac{1}{3}, \frac{2}{2}, \frac{3}{3}\).

Suggested Procedure:

Jimmy and Tim each want a piece of yellow paper for a picture. • I have only one piece of yellow paper. What shall we do to the paper? (Cut if into two pieces.)

There are many ways in mich we could cut the paper. If we cut it in a way so that Jinny and Tim each have a piece of the same size and shape then we say that each boy has one half of the sheet of paper. If one piece is larger than the other, then the pieces can not be called halves.

If we cut the paper into halves, what number of pieces will we'have? (2.) ,

The piece that Jimmy gets will be what part of the paper?. The piece that tim gets will be what part of the paper? Show how this is written. ( \(\frac{1}{2}\).)

What is the number of halves in the piece of paper? (Two halves.)

This is written \(\frac{2}{2}\).
Two halves is another name for 1.


What would we have done if three boys had wanted to use this blue paper? * (Cut it into three pieces.)

If we cut it so that there are three pieces of paper and all three pieces are the same size and shape, then each is called ane third.

This is written \(\frac{1}{3}\).
What is the number of thirds in the whole piece of paper? (3.)

Place the papers on the flannel board; Place them up in such a way that the sides of the parts are touching and look like the whole piece of paper. It may be advisable to mark the lines which were cut with black crayon to indicate the pieces which were made. Have some numeral cards with \(\frac{1}{2}: \frac{1}{3}, \frac{2}{2}, \frac{3}{3}\). Ask Gilidren to touch or pick up various pieces which are named or that match the numeral card which is displayed.

Emphasis needs to be given again to the idea that the numbers \(\frac{2}{2}\) and \(\frac{3}{3}\) are each equal to 1 .

Use various rectangular regions as well as circular regions to show halves, "and thirds.

Use objjects suich as a cookie, candy stick, candy bar. Demonstrate and discuss how these must be cut into pieces of the same size "and shape. Call the parts ohe half or one third of the object.

Pupil's book, page 165: . Children are to ring the numeral which shows what part of the region is skaded.

Pupil's book, page 166: Children are to color parts of regions as indicated.

Regions
Ring the correct numeral.


3


Regions -

Color \(\frac{1}{2}\) red.
Color \(\frac{2}{2}\) blue.


Color \(\frac{1}{3}\) yellow.
Color \(\frac{3}{3}\) green.


Color \(\frac{1}{3}\) red.
- Color \(\frac{1}{2}\) blue.


Chapter．\(\cdot \mathrm{X}\)

\section*{LINEAR MEASUUREMENTI}
－Background
In this chapter we discuss the measurement of line segments，Recall that ia line segment is the set of • points followed in passing along a straight path from a given point \(A\) to a given point \(B\) ．Two line segments are congruent provided that they have the same size， so that＇one will fit exactly on the other．

Long before the child comes to school he has experience in comparisons of order：his father is taller than he is；his sister is younger than he is； the new house is bigger than the old house；he woke up today before his mother did；this pail is heavier than that pail．He has also had experience with the notion of measure；he understands and makes such state－ mints as，＂攺．dad is 6．feet tall，＂＂We get 3 quarts a day，＂＂It takes me 15 minutes to get to school．＂Here we wish to extend the，child＇s knowledge of linear measure and to deepen his intuitive under－ standing．

Our development parallels the historical one．The counting of separate objects（say，sheep）was a technique not applicable to measuring a region or curve（like a field and its boundary）：Nevertheless，one could often make comparisons：this field is larger than that；this \({ }^{-}\) boundary is longer than that．Later，when fields E bordered more closely on each other，＇actual measurement became necessary．When＇a unit of measure（egg．，that part of a rope between two knots）pas agreed upon，it was possible to designate a piece of property as having a length of＂ 50 units of rope＂＇and having a width of＂ 30 units of rope＂．With the increase in travel and communication it became obvious that＂ 50 units
of rope" did not always represent the same length. Hence, standard units were adopted. For convenience A. in measuring; rules or scalles marked in these standard units were introduced.
*Measure, Length, Units
\(\therefore\) In measusing line segments, we first select a particular line segment, say \(\overline{\mathrm{RS}}\), to serve as a unit.


The length of: \(\overline{\operatorname{RS}}\) itself is then 1 unit. To measure any given line segment \(\overline{\mathrm{CD}}\), we lay off the unit \(\overline{\mathrm{RS}}\) alonsit.


If the unit. can be laid off exactly twice, as in the picture, we say that the measure of \(\overline{\mathrm{CD}}\) is 2 , and that the length of \(\overline{C D}\) is, ? units. If the unit could be laid off exactly three times, we would say that the measure of \(\overline{C D}\) is 3 , and that the iength of \(\overline{\mathrm{CD}}\) irs 3 units. The measure of a line segment is a number: the number of times the unit can be laid off on the line segment. When naming a length, we use both the measure and the unit.

Length to the nearest unit
\& More often than not, the unit will not fit exactly some number of times, but there will befa part of a unit left over. In the picture, the unit can be laid off along the segment \(\overline{A B} 3\) times, with a part of a , unit left over, but it does not fit 4. times.


The length of \(\overline{A B}\) is then greater than 3 units but less than !t units. Moreover, in our examples the length of \(\overline{A B}\) is visibly nearer to \(\bar{z}\) unit: than \({ }^{*}\)
to 4 units. In this case, we say that toris length of \(\overline{A B}\) to the nearest unit is 3 . units. Thic approximation is the best we can give without intrducing fractional
- parts or a unit or shiftinc to a smallef unit. In this chapter we will not introsuce the phrase, to the nearest unit, but will note thrat the length oi \(\overline{A B}\) above is between 3 and \(4{ }^{\prime}\) unjtits.

A word about tërmanology: we do not add incher, any more than we add anples. All we add are numkers. If we have 3 apples and .2 apples, we have 5 apples altogether, because
\[
3+2=5 .
\]

Likewise, if we have 3 yards of ribbon and 2 more yards off ribbon, we have 5 yards of ribbon astogethen again because , *
\[
3+2=5 .
\]

\section*{Standard Units and Systems of Measures \({ }^{\text {a }}\)}

The acceptance of a standard unit for purpoes of communication is soon followed by an appreciatipo of the convenience of having a variety of standard units. An inch is a suitable standard unit for measuring the" edge of a sheet of paper, but hardly satisfactory for finding the length of the school corridor. Thile a yard is a satisfactory standard for measuring the school corridor, it would not be a senstble unit far finding the distance between Chicago and Philadelphia.

The last section includes work with the idea of time. The placement of the material here is to extend physical measurement in which a linear scale is used.

\section*{X-1.. Line segment, straightedge}

Objective: To introduce the concept of line segment and the use of the straightedge :

Vocabulary: Straightedge, line segment. . ।
Materials: Jump rope, yarn, string, thread; various - . . models of line segments; unmarked strips of cardboard (at least 10 inches in length).

Suggested Procedure:
Show "a loosely "held string between two pencils. Pul the string tightly to demonstrate the ideal of "a straight path.

\(i\)
Ask the chillaren to identify objects that display straight edges: theredge of a desk, a sheet of paper, etc.

Explai帝that these are all examples of line segments; a straightedge from one point to another. Call attention to the physical things that suggest the endpoints.
- For example, if the edge of a block is mentioned as a. line segment, then the corners of the block represent the endpoints.

On. the \({ }^{\text {en }}\) chalkboard show two points. Draw a nine segment between them. Use an unmarked cardboard straightedge, sine one will be used later by the children, Explain that it is often helpful to give names to the end points. Label them \(A\) and \(B\) as shown.

Explain further that the names of the endpoints may be used to name the line segment as either line segment \(\overline{A B}\) or line segment \(\overline{B A}\). Illustrate and name several other line segments.
1. Uncover on the chalkboard a picture of a triangle. Ask the children if there is a way in which they can use line segments and letter) to describe the triangle. Then label the triangle.

```

Now tho more points on the board. Demonstrate a technique for $\operatorname{sining}^{\text {straightedge and chalk. Slow that }}$ if a piece or chalk 1 s placed on one point, the straightedge lined up slightly below the other, then the line segment drawn, will include both points. Also, discus's the importance of holding the straightedge at the center rather than gt an end.
'Ask several children to come to the board for a demonstration of the need to hold a straightedge firmly. Ask what will happen if fingers overlap the edge on which a segment is to be drawn.
Distribute a cardboard strip to each child.

```
```

Pupil's book, prges ln' - 1'0: , Line segments

```
Pupil's book, prges ln' - 1'0: , Line segments
        Ideas
        Ideas
                    A I. ne segment connects two points.
                    A I. ne segment connects two points.
                    A suralgitedge cdn be used to draw a line segment.:
                    A suralgitedge cdn be used to draw a line segment.:
Page 167:
Give oral directions to draw line 'segments
\(\overline{A C}, \overline{E C}\), and \(\overline{B D}\). Tell the children to
place their pencils on point A, line up
the straightedge with point \(C\), hold it in
the center, then draw \(\overline{\mathrm{AC}}\).
Encourage the children to guess what the . lower figure will be. 'dell' them to draw the line segments as shown. . '
```


Line Segments

Draw $\overline{A E} ; \overline{A C}$, and $\overline{D E}$.

Page . 168:
Read instructions and give help. where needed.
.*.Some children may not think to count
$\overline{A D}$ and $\overline{\mathrm{BC}}$ as line segments. In discuission help them see that the two shorter line segments are part of the longer line segment. "Note also that two small triangular regions such as $\triangle A B E$ and $\triangle A C E$ are part of the larger trianguiar region $\triangle A B C$.

Page 169-170:
 *

物.... Read instructions for both pages, then let children work independently. Whén page
170 is completed, ask the children to A. point D is inside, outside, the triangle).

Line Segments
Draw $\overline{A B},{ }^{\circ} \overline{B D}, \overline{D C}$ and $\overline{C A}$.
Connect point E with the other points.

How many line segments can you count? \qquad
Color a square region red.
Color one triangular region blue.

Line Segments

Connect each point by a line segment to each of the other points."

Do any line segments cross?
Mark Yes or No. .N. Yes No
C

How many line segments cross? 2

Line Segments

Draw- $\overline{A B}$ and $\overline{A C}$.
Now connect point "D with the other points. '

How many. line segments cross? 2

Draw $\overline{\mathrm{BA}}$ and $\overline{\mathrm{BC}}$.
Now connect point D with the other points.

D. o any: line segments cross? :Yes

428

$\mathrm{x}-2$. Comparing Line Segments

Objective: To introduce the ideas of longer than, longest, shorter than, shortest, same length as.

Vocabulary: Compare, longer than, longest, shorter than, shortest, same' length as.

Materials:
Ore long easel brush and one short paint brush for each child, several tagboard or : chipboard sheets of varied lengths, flannel board, three strips of cloth of different lengths, individual pieces of string, each 8 inches long, and as needed, pencils, pipe cleaners, pick-up sticks, book, straws.

Suggested Procedure:

Comparing Lengths of Objects
Give each child one short paint brush and ore long easel brush. There should be a distinct difference in length between the brushes. If brushes are not available in quantity, use straws.
Ask the children to put the brushes on end on their desks. Find out how the brushes are alike: (Both are brushes, wood, etc.) Find out how they are different. (This brush is longer than the paint brush.)

Suggest to a child that he observe the brushes of the child next to him. Ask him to find fa brush the same length as one of his, and to display the two. Continue with another child finding a brush longer "than (shorter than). his.

Select the children at one table for demonstration. Give an easel brush to qne child. Ask him to compare the brush with the two he has. Seek the response that the ${ }^{i}$ now brush is the same length as his easel brush, and longer than his paift brush. Repeat with different children, alternating with a short and a long brush.

Pupil's book, pages 171 - 173: Comparing Lengths
Ideas
An object can be longer than, shorter than, or the same length as another óbject.

Pages 171 - 173:
Each page'presents' one of the ideas of this section for visual comparison. Read the instructions with the children. Make sure that they agree that the marking of the
λ first example 'on' each page is correct.

Comparing tengths

Mark the one that is longer than the other.

Comparing line segments
Direct the children's"attention to the flannel board where throe strips of colored cloth of distinctly different lengths are displayed. These strips should be placed horizontally and have a common béginnịng position.

Discuss which strips are longer, then ask which is long est. (The one that is longer than any' of the others). Repeat with ${ }^{\text {Shorter and shortest. Test for length by }}$ moving one edge against another.

In two parts of the room place two objects (fairly narrow) that are obviously not the same length. Compare. them at elaristence then bring the objects together for compainsof their ed es. - Then place two objects that incthe yo elnath and repeat the citnadrison. Introduce two nary tagboarion of if hard sheets, one only slightly longer than the other then the ecomparispm is made, point out the advantage of being able to bring

Call attention ta two different edges of channel

- board (orle edge should be shorter). Ask
line segments could be compared.
.Accept any of the following ideas:

1. Holding one's hands at the ends of one line segment e.
and using this to transfer to the other line segment.
(The end points are marked by the hands " Keep din
2^{\prime} mind that this method is ${ }^{\prime}$ quite imprecise,
2. Laying a piece of string beside one line segment, and then grasping it carefully at the end" points of the line segment and carrying it over to the other, line segment. (Clarify that the string represents the line segment, and the places where it is held: the end points. The method is imprecise because the "string may stretch if tension in it is increased.)
3. Using a long unmarked stick or piece of paper by placing one end of the stick or paper at one end of the line segment, marking a point on the object' at the other end of the line segment, and then comparing the marked object with the other line Segment: (Indicate that the edge of the stick of rom one end to the mark represents the line segment. $)^{\frac{3}{3}}$

Clarify that in each case above, in one way or another, a model has been made of one line segment. This model has been superimposed on the other segment for comparison. Use string to show how the edges of the flannelboard can be compared.

Two line. segments, can be compared by using a model of one and placing it on the other.
Pages 174 - 177 :
Pass out string to the class. Read the instructions and tell the child en they are to use the string to compare the lithe segments in each set. Give no more instructions, but move around and ask feeding questions. $\ddagger 0$ those who are obviously copying or are not able to get started.
*

Comparing Line Segments
Mark the line segment that is longer than the other one.

ERIC

Comparing Line Segments
Mark the line segment that is shorter than the other one.:-

Comparing Line Segments
Mark thè longest line segment.

| ERIC |
| :--- |

Comparing Line Segments
Mark the line segment that is shortest.

$\mathrm{x}-3$. Measurement of line segments.

 a segment as the number of unit segments necessary to coven it

Vocabulary: "-Unit segment, units; (review) length.
Materials: Toothpicks, pieces of drinking straws, -" line segments drawn on paper.:

* Suggested Procedure:

i" "Provide each child with a number of toothpicks of. .
the same length. Make provision for a number of line segments. to be measured, The \&ndpoints should be
A clearly indicated. The exercise is to see how many
of these toothpicks can be laid end to end along 'each ot line "segment Indicate that the töathpick is but one of many objects that we might use to measure lithe segments. We call the toothpick a unit segment. The length of the toothpick is one unit. The length of the line segment is 4 units. Have the children write, the number 4 on their paper. Then continue with several other segments where the length is at least approximately the same as The next set of examples should the those where the unit 'segment does not fit exactly., as' shown below. Have the children count the toothpicks and discover length. 方ead the sentence and have the children write

Ask the children to check the examples again, this
time using just one toothpick. Demonstrate how the toothpick is to he laid off and a mark made at the end. each time so that the next measurement can be done carefullys
Pupilks book, pages 178-179: Measuring 1hne segments" 2 Ideasi:-

A line segment may be measured by repeatedly using a unit segmént.
Pages 178-179:
Have the children lay the toothpick repeatedly
along the segments: Ask them to count the number of times the unit is used and to

- write the correct numbers where shown.

Some of, the examples may result in the last mark falling on the end of the line segment. In these cases explain that the number fis nt' "between", but is the count of the unit segments.

- Measuring Line Segments

Use a unit segment to find each length. 'Insures depend on the hence used

Measuring Line Segments:
Use a unit sègment to find each length. Anowers idefend on the unit uad.'.

The length is between \qquad and \qquad units.

Further Activities:-

1. Provide each child with several different units.(say pieces of drinking straws) and have him measure. the same line segments with each unit. If straws. are used, for example, there should be some designation attached to the different ones such as "long straw", "medium straw", and "short straw" so the pupil can describe hi,s restilits as so many "short straws", etc. An alternative would be to use different objects as unít segments, such as pencil, chalk, etc.
2. Have different pitics seasure the same line segment uith different units. For example, have two children (with different sized feet) see how many of their foot lengths it takes to cover a crack in. the schoolroom floor.

3: Have the pupils invent their own units and use them. For example, how many of some child's hand spans. is it across the edge of the bookshelf?

In all exercises', try to make sure that the pupils keep clearly ir mind that the unit is a line seghent. It is' easy to have this idea obscured.

The exerci'ses, themselves will make clear the possible variety of units. . Class discussion should crystallize the idea that fondifferent units; a measurement has different numbers. To. tell a length you need to tell not only the number of units sut also to tell what unit is used.'. It should also be possible to develop the understahding that the small.er the unit, the greater the number needed for any particular measurement:

X-4, Construction of a ruler
Objective: To introduce the idea of a scale as a measuring device.

Vocabulary: (No new words.)
Materials: Light cardboard straightedge (unmarked) perhaps a foot long, one for each pupil, some convenient unit segment (toothpicks - or pieces of drinking straws), one for each pupil. To be convenient-for handinite, the units chosen should be around two inches or a little less.

Suggested Procedure:

Distribute straightedges and ask each pupil to make a

4. mark not far from the end. (This point is to be the zero point of the ruler. Note that the zeroopoint is not at the end of the straightedge. In addition to
i. being easier to identify; it avoids the problem that corners are always getting bent and dogeared.

童

Now ask each child to put his unit segment on the straightedge with one end on the initial mark and to mark the other end.

The piece of the straightedge is now a inline segment one mat unit long.

Now the unit segment can be laid down again,

r as often as the length of the straightedge allows. It is now easy to see that the marked straightedge shows line segments 1 unit long, or 2 .units long, etc.

The straightedge/in'its present form can now be used for measuring fine segments as shown below, where it, is seen that the 'length of line segment $\overline{A B}$ is 4 units ti and the length of line segment $\overline{C D}$ is between ${ }^{-}$ 4 and 5 units.

These numbers are found by counting the number of unit segments; "The placing of the straightedge will need to be emphasized, ${ }^{\circ}$ ide., the placing of the original mark at one end point of the line segment.
d
446

The next stage is to encourage the children to label the marks on the straightedge. The idea is, to put a 1 beside the mark that was made the first time the unit was used, a ${ }^{2}$ beside the mark that was made the 'second time the unit was used, and so on. The instrument then looks like this.

Discussion should produce the suggestion that the original mark beilabeled 0. The instrument is now complete and .may properly be called a ruler.' Indicate that the ruler shows part of a number line.. In using it to measure line segments, $\overline{A M B}$ and $\overline{C D}$ as before, the numbering of the point's produces a simplification.

The fact that in-measuring line segment $\overline{A B}$ the point B is opposite the 4 mark shows that there were 4 copies of the unit segment between A and B. .Thus.
 Was done before, the length of 4 units can be read "directly from the ruler. Similarly, on line segment
"氠, the point D is between the 4 and 5 marks; this show's that the length of line segment $\overline{\mathrm{CD}}$ is, between 4 and 5 units.

Practice should be given in measuring with this device, but it need not be pushed too hard as the mechanics of using the ruler will be developed when standarå unit \ddagger. are introduced in a later book.

X-5. Telling Time
Objoctive: To teach telling time,"emphasis on hour, half hour.
${ }^{\circ}$ Vocabulary: Time, hour, minute, o' clock.

Materiaks: Real or educational clock, duplicated clock faces to be grued on paper plates.

Suggested Procedure:
Hour hand - Children; willl be familiar with expressions ${ }^{\circ}$ of time which are a part of their daily program. Lead the children to discuss reasons- for measuring, pecording, or knowing exact times within a day. (When to get up, $:\{$, come to school, have lunch, keep a dental appointument; -watch television, have a music lesson, catch a train, airplane, or bus, etc.) If the room clock hasia second hand, have the children notice that its movement ${ }^{*}$ can easily be seen. Ask them to look carefully; at the position of the other hands and see which one of the hands will be in a differsit position when you ask to check the time. Wait two minutes (if possible) and ask whethe the long hand or the short hend has moved. Tell the childrerl that the short hand is the hour hand and that it goes' all the way around the ciock twice a day. Display a clock with only an hour hand. Say that this clock hay no minute hand but that if it were. necessary, one could show, the time fairly well anyway.

Point the hour hand exactly, at the 4 and explain that when the hour hand points exactly to that spot, it is . four $0^{\text {t clock. }}$

Move the hand half-way between the 4 and. the 5 and ask how far between the tro is, Explain that we. would say it is half-past four.

Repeat with other numerals on the clock face, and lead children to decide whether the ur hand would show "o 'clock" or "half.-past".

Have children make their own clock faces. These should hate only an hour hand. The teacher should ditto ad slack face on which numerals are written and the minutes a marked. This face is to be cut out and pasted on a paper plate. As the tepsher names times such as. two o^{\prime} clock, half-past five, the children place the hour hand in the right place.

Pupil's book, pages 180-181: Telling Time. - Ideas

- Time can be told by the hour hand alone, and can be read as "o 'clock" or "half past". Pages 180-181:

Ask why" 1 o' clock is the correct answer in the sample., Ask the children to enter the number which tells the nearest hour $\therefore{ }^{\prime} n^{7}$ half-hour.

Write the number that kells the time

Telling Time
Write the number that tells the time.

gMinute hand
Display a ciock" with the minute hand only. Explain that the long hand of a clock goes completely tround every hour and that it travels. from one lietle mark to anothes in one minute, from, one numeraf to the next in five minutes.
Point the minufe hand to the ' 12 and tell the chifidren that whenever the long hand points exactly to the is it will be "something o' cločk" = Use a piece of papèr, to cover the 6 , to 12 section of the clock and ask hók mich of the clock can be seen (half). Move the minute hand slowly to the 6 and show that 'it will have gone half way around, so that it will be haif past the time it'showed when it was at ${ }^{\circ} 12 .^{\prime}$ Have children say "something 0^{\prime} clock." or "half-past: something" as you move the hand to. 12 or 6.' (If you wish to go, on to the quarter hours, use yarn fastened with masking "tape to the clock face and proceed as above, moting" the hand to a quarter past, haif past, a quarter till, etc.)

Show that in order to tell time accurately; both alock hands are needed. Point the hour hand of one clock to the 2 and the minute hand of the other to the 12.

Fupills book, pages 182-i85: Telling Time

In telling time more accurately both the hour and minute hand are used.

- Page 182:

Children are to fill the blanks.
Page 183:
Children should write the time expressions $s^{s^{4}}$ as $2: 00,2: 30$, etc., on the blanks.

Pages 184-185:
Expfain that the minute hand should a!most tiouch the outer edge of the clock, and that
the hour hand should either touch the numeral. or be half-way between two numerals, but not. too near the outer edge:

1; Furthér Activities:

1. Some children will be able to tell time by the five minutes. Count the number of mirutes whinh the minute hand takes to go around. Point out that the time between any two numerals is 5 minutes $\%$ The time needed for the minute hand to , "go around the clock face, starting at any numeral and returning to that numeral is one hour.
2. Set one clock at $3: 00$ and another at $5: 30$. 'In $^{\prime}$ one hour check the clocks and note that an hour means not only from $3: 00^{7}$ to '4:00 but also from' 5:30 to 6:30:

Telling Time
Write the number that țells the time.

Telling Time
Write the number that tells the time.

.446

Telling, Time
Put the clock hands in the correct' places.

Telling Time

Put the clock hands in the correct places.

(40,

7:30

458

The following is a list of all those who participated in the

 preparation of this volumetLeslie Beatty, Chula Vista City School District, Chula Vista, Califorma.
Truman Bots, University of Virginía
Leon W. Coheñ, University of Maryland
Zigmund Drapalski, WTVS, Detroit Public Schools, Detroit, Michigan
Jean Dunn, Palo Alto Unified, School District, Palo Alto, California
Wade Ellis, Oberlin College, Oberlin, Ohio:
Mary F Folsom, University of Miami, Florida
Mary E.Giamperoli, Edıth C. Bä̀ker feneak Chestnut Hill, Massä̈chusetts
Leonard,Gillman, University of Roch ster, Lochester, New York
IVE. Glenadine Gibb, State College of 10 wa
Muriel Greig, McColl School, Detroit, Michigan
Adrien L. Hess, Montana State College
Stanley B: Jackson, University of Maryland os
John L. Kelley, University of California,Berkeley Sharon Logan, Oak Ridge Elementary School, Arlingtion; Virginia William F, McClintock, Stanislauş Stave College, Turlock, Californiá Mary McCulloch, University School, Northern Illinois University, DeKalb, Illipois
Patricia Mıchéls, Joaquin Mıller School, Oaklañd, Cälifornia Rose Mijanóvich Joåquin Miller School, Oakland, Califorāíf Mildrèd Pierce, Hümbert School, Cedar Falls, Iowa
Frank W.'Sinden, Bell Tetephone Laborģories, Murray Hilli, New Jersey Jane Stenzel, Cambrian Elementary'School District, San Jóse, California J. Fred Weaver, Boston University

[^0]: - refinement of ideas, associated with both number and space.

[^1]: * We might go even. further and define the number. 7 as the "collection of all sets having 7 members." Using the
 ideas which are explained in the' next two paragraphs'we, can the collection of all sets having 7 members. "Using the state this definition without using the notions of " 7 members", and say: .7 is the 8 election of all sets equivalent to:

[^2]: * Equivalent is not synonymous with equal. Two sets are equal if and only if they have the same members; ide., the sets ${ }^{*} A$ and B^{*} are equal if and only if every member of A is a member of B and every member of B is a member of A. For example: the set consisting of the President, Vice-President, and the Secretary of State equivalent to the set consisting of the British Prime Minister, the Chancellor of Exchequer, and Minister of War,; but these sets are certainly not equal.

[^3]: * This notation is used to denote a variation in either the activity used or the idea being developed.

