A URHOR	Chinn, William G.; And Others
tITLE	Mathematics for the Elementary School, Book 1 (Part 2). Teacher's Commentary. Special Edition (Revised).
INSTITOTION	Stanford Univ., Calif. School Mathematics Study Group.
SPONS AGENCY	National Science Foundation, Washington, D.C.
fub date	66
NOTE	281p.; For related documents, see.SE 023 011-013;
	Contains occasional light and broken type
EDRS PRICE	MF-\$C.83 HC-\$15.39 Elus Postage.
DESCRIPTORS	*Arithmetic; *Disadvantaged Youth; Elementary
	Education; *Elementary School Mathematics; Geometry;
	Grade 1; Mathematics; *Number Concepts; *Teaching
	Guides
IDENTifters	*School Mathematics Study Group

ABSTRACT

This is the Teacher's Commentary for Mathematics for the Elementary School, Book 1 (Part 2), Special Edition. The writers have relied wit the existing SMSG kindergarten and first grade materials as a framerork. This special edition is designed to meet the reeds of disadvantaged children. Included in the Commentary are back ground information for the teacher, discussion of actıvities in the text, and answers to activities and exercises. (RH)

[^0]
SCHOOL
 MATHEMATICS

 STUDY GROUP

 STUDY GROUP}

MATHEMATICS FOR THE ELEMENTARY SCHOOL

BOOK 1 (Part 2)
Teacher's Commentary
SPECIAL EDITION (Revised)

2

MATHEMATICS FOR THE ELEMENTARY SCHOOL BOOK 1 (Part 2)

Teacher's Commentary SPECIAL EDITION (Revised)

The following is a list of all those who participated in the preparation of thas volume:

Wilhan G. Chann, San Francisco Unified School District, San Francisco, Califormat M E Dunkley, SMSC; Stanford Universuy
Mars O. Folsom, Univeraty of Miami. Florida
E Glenadine Gibb, State College of Iowa
Lenore John, Unwersity of Chicago Laboratory School, Chicago, Illinois
Einma Mi. Lewis, District of Coiumbia Publa Schools, Washington, D C
Susan H Tilbot, Gunn High School, Palo Alto, Califoma
J Fred Weaver, Boston University
Margact F Willerding, San Diego State College
(C) 1965 and 1966 by The Board of Trustees of the Leland Stanford Jumbor Unversmy All rights reserved
Printed in the United States of America

Permisuon to make ver batim use of material in thus book must be secured from the Director of SMSG. Such permission wall be granted except in unusual circumstances. Publacatoons incorporating SMSG matertals must include both an acknowledgment of the SMSG copyright (Yale University or Stanford Universty, as the case may be) and a disclamer of SMSG endorsement. Exclustve license will not be granted save in exceptional ctrcumstances, and then only by spectif action of the Advisory Board of SMSG.

Financial suppor for the School Matbernatics Study Group bas heen provided by the National Sczence Foundatic r.

Teachers' Commentary
 Table of Contents

Chapter
5. RECOGNIZDNG GEOMETRIC FIGURES 241
5-2. Familiar Three-Dimensional Sbapes 250
5-2. Simple Closeu Curves 256
5-3. Polygons. 261
5-4. Classifying Regions 270
5-5. Fitting Regions 279
6. PLACE VALUE AND NUMERATION 287
6-1. Counting by Tens and Ones 291
6-2. Eieven, Twelve, and the Teens 297
6-3. Spoken Names of the Numbers: 21 Through 99 304
6-4. "The Written Numerals: 20 Through 99. 306
6-5. Order Relations for Numbers O Through 99 310
7. ADDTTTON AND SUBTRACTION. 343
7-2. Partitions and Addition 347
7-2. Partitions and Subtraction. 3
7-3. Addition and Subtraction on the Number Line 380
7-4. How Many More? 392
7-5.. Problem Solvang and Equations 400
7-6. Adition and Subtraction: Numbers Greater Ynan Ten「. 416
8. ARPAYS AND MUIMIPLICATION 420
8-1. Arrays 422
8-2. Multiplication 432
8-3. Simple Properties of Multiplication 438
9. PARTITIONS AND RATIONAL NUMBERS 445
9-1. Partixtioning Sets into Equivalent Subsets 448
9-2. Partitioning Into a Given Number of Equivaleal Sets 457
9-3. Parts of Regions and Sets $1: 63$
9-4. One-Half. 470
9-5. One-Third 476
9-6. Using Rational Numbers 482
10. LINEAR MEASUREMENTP. 489
10-1. Line Segment, Straighterge 492
10-2. Comparing Line Segments. 499
10-3. Measurement of Line Segments 510
10-4. Construction of a Ruler. 515

Chapter 5

RECOON $\perp \angle \mathrm{ING}$ GEOMETRIC FIGURES

BACKGROUND

INTRODUCTION 4

This chapter is devoted to geometry. The subject is intrcduced to the children by means of familiar three-dimensional shapes. This part if the discussion is very informal and the classification crude: objects are differentiated according to the shape.

The rest of the chapter, as well as the ensuing geumetric material through the next several books, deals with plane geometry only. For convenience of reference we now outline the main ideas (eien though many of. them will not be encountered until later).

We shall study what may be called physical geometry--that is, the geometry of the world around us. The study invoives a certain amount of abstraction, for the fundamental ideas we shall deal with are not things we can pick up or feel or see. We shall think of a point, for example, as an exact location in space. A point, then, has no size or shape or colur; it has no physical attributes at all except its location. We indicate a boint by making a pencil dot or a chalk dot, but agree that such a dot does not mark an exact location.

We may remark that the geometry studied in college courses is of a higher degree of abstraction still. There, the fundamental geometric objects like point and line are not defined at all, and the study procceds deductively from certain formaily stated assumptions about them (called axioms).

Our purpose here is to help the pupil observe and describe fundamental. geometric relationships. The discussion is invuitive. Ta the primary grades we are not particularly concerned with formal deductions.

POINT

By a point we meen an fexact location--for example, the exact spot at the corner of a room where two walls and the ceiling meet. We indicate points by drawing dots, but we realize that a pencil dot, ro matter how small, gives only an approximate location, not an exact one. (In fact, it is clear that a pencil dot on a sheet of paper covers infinitely many points--that is,
more than can be counted.) Nevertheless, in order to keep the language simple, we refer to the dots themselves as actual points.

It is customary to denote points by capital le"tters. A point is a fixed ionetion: points do not move. The point at the corner of the ceiling remains even if the whole building falls down. Nevertheless, it must be remembered that fixing a location is a meaningful notion only with respect to some particular frame uf reference. Frames of reference in common usage are: the sun, the earth, a car, a person, a ruler. A point that is fixed with respect to one frame if reference noed not be fixed with respect to a different one. For example, when a ruler is carrien across the room, a point on the ruler remains fixed with respect to the ruler but does nct remain fixed with respect to the earth.

A geometric figure is any set of points.

CONGRUENCE

The idea of congruence in geometry is basic. Two geometric figures are said ic be congruent provided one is an exact copy of the other. A test of congr cy is whether one figure will fit exactly on the other. In practice, the objects may not be conveniently movable; then one tests for congruence by making a mo:able copy of one and checking it against the other. Of cuurse, all such tests, since they involve actual phvsical objects, of ten including the human eye, are only approximate. Nevertheless, in order to keep the language simple, we shall say, "the segments $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are congruent" (rather than seem to be)--just as people say, "Johnny and Jimmy are exactly as tall as each other" (rather than seem to be).

CURVE

By a curve we mean any set of points followed in passing from a given point A to a given point B. Inherent in this definition is the intuitive notion of continuity; this is a curve.

ard so is this:

while this is not a curve because it has gaps, or is not continuous:

(However, it is a union of three curves.)
It is also notewurthy that, according to the definition, a curve can be straight (in contrast with everyday usage). This is a curve:

and so is this:

LINE SEGMENT

The last picture is an example of a line segment, that is, a straight curve. The endpoints are marked A and B; the line segment is denoted, accordingly, by either $\overline{A B}$ or $\overline{B A}$. Again, we agree that a single point is not a line segment.

Observe that a line segment can always be expressed in many different ways as a union of other line segments. For example, the line segment $\overline{\mathrm{AB}}$ show here is the union of the line segments $\overline{A C}$ and $\overline{C B}$, the union of the line segments $\overline{A D}, \overline{A E}$, and $\overline{C B}$, etc.

LINE

When a line segment is extended infinitely far in both directions, we get a line. Such extensions are only coneoptual, of course, not practical. A line has no endpoints. No mat, r how far out we go in either direction along a line, still more of the line will lie ahead. The infinite extent is iralicaled oy arrows. The ime containing points A and B is denoted $\overleftrightarrow{A B}$. The line show contains points. A, B, and C; some names for this line are, therefore, $\widehat{A B}, \overrightarrow{B A}, \overrightarrow{A C}, \overrightarrow{B C}$, etc

Note that, although $\overline{A B}$ and $\overline{A C}$ are different line segments, $\overline{X B}$ and $\overrightarrow{A C}$ are the same line.

Just as a line is the infinite extension of a line segment in buth directions a ray is the infinite extension of a line segment in sne direction. A ray therefore, has a single endpoint. The infinite extent of a ray is indicated by an arrow. The ray with endpoint A and containing another point B is denuted by $\overrightarrow{A B}$. The endpoint must be written first. The ray shown has endpoint A and contains points B and C; some names for this ray are, therefore, $\overrightarrow{A B}$, and $\overrightarrow{A C}$.

Note that, although $\overrightarrow{A B}$ and $\overrightarrow{B A}$ are the same inc, $\overrightarrow{A B}$ and $\overrightarrow{B A}$ are different rays.

$\overrightarrow{A B}=\overrightarrow{B A}$

ANGLE
$\overrightarrow{A B}$
$\overline{B A}$

By an angle we mean the union of two rays having the same endpoint. (We exclude the sue in will the two rajes are part of the come line.) The common endpoint is called the vertex of the anele. The plural of "vertex" is "vertices". The angle formed by revs $\overrightarrow{A B}$ and $\overrightarrow{A C}$ is denoted by $\angle B A C$ or $\angle C A B$. Two segments with a common endpoint determine an angle: segments $\overline{A B}$ and $\overline{A C}$ with common endpoint A determine the $\angle B A C$ with vertex A :

A special angle chat makes frequent appearance's in mathematics is a right angle. Na formal definition of a right angle is given at this iime. Instead, we will describe what is meant by a right angle in much the same way that you will convey the concept to your pupils.

The drawing above represents two right angles, $\angle V X X$ and $\angle W V X$. This is one way of describing right angles. Two right angles are congruent and fit together to form a 1 e. Alsc, in our example, if this page were folded along $\overline{V Y}$, then \bar{V} and $V W$ would coincide.

If a piece of paper were folded twice, as the drawing below indicates, and it were then unfolded, the creases suggest segnents of two lines whose intersection is the point R. Thus R is the vertex of four right angles whose sides are extensions of appropriate pairs of creases.

Unfolded with creases

PLANE

When a fiet, surface such as a tabie top, wall, or sheet of glass, or even this sheet 0^{*} paper, is extended infinitely in all directions. ve get a plane. N tice that if two points of a line lie in a given plane, then the entire line is contained in the plane. Two intersecting lines determine a plane. In the ieaching material, the infinite extent of the plane is not stressed.

4

CLOSED CURVE, SIMPLE CLOSED CURVE

We have called a curve any set of points followed in passing from a given point A to a given point B. when the points A and B coincide, the curve is said to be closed. For this level, we will consider only those curves which lie in the plane.

A closed curve

A closed curve that does not ross itself is simp...

A simple vised curve

A simple closed Curve has the interesting property of separating the rest of the paine into two subsets, an inside or interior (the subset of the plane enclosed by the curve) and an outside or exterior. Any curve connecting a point of the interior with: a point of the exterior necessarlily intersects the simple closed curve. (It may be of interest that this seemingly obvious fact is actually quite hard to prove.,

POLYGON

An important class of simple closed curves is the sass of polygons. A polygon is a simple closed curve that is a union of lie segments. Hecall that a line segment car always be expressed in many Afferent was, as a union of line. segments. Hence a polygon. too, can be expressed \mathfrak{r}. different ways as a union of line segments.

3

If we look at the various line segments in a polygon, we notice that they are of two kinds: those that are contained in other line segments, and those that are not contained in other line segments. For example, in the picture above, $\overline{A D}$ is of the first kind, since it is contained in the line segment $\overline{A B}$. On the other hand, $\overline{\mathrm{AB}}$ is of the second kind, since it is not contained in any. line segment except itself. Line segments of this second kind are called sides: a line segment in a polygon is called a side if it is not contained in any other line segment in the polygon. The polygon shown has three sides: $\overline{A B}, \overline{B C}$, and $\overline{C A}$. A polygon of three sides is called a triangle. A polygon of four sides is a quadrilateral; of five sides, a pentagon; of six, a hexagon. (The last two names are not used in the teaching material.)

The endpoints of the sides are the vertices (singular: vertex) of the polygon. The vertices of the triangle show above ace A, B, and C.

Rectangles are special kinds of quadrilaterals. Squares are special kinds of rectangles. A rectangle is a quadrilateral with four right angles. A square is a rectangle with four congruent sides.

REGION

The union of a simple closed curve and its interior is called a region. We refer to a triangular zegion, rectangular regicn, or circular region, etc., indicating that the simple closed curve is a triangle, rectangle, or circle, etc. For example, an ordinary sheet of paper is a rectangular region; the edges of the paper form a rectangle.

circular region

5-1. FAMLLIAR 1 HREE-DIMENSTONAL SHAPES
OBJECTIVE: To lead children to observe dastinguishing features of spheres, rectangular prisms, and cylinders.

VOCABULARY: Shape, round, face, edge, comer, surface.
YAIERIALS: A table on which there are familiar objects (at least 15): balls, boxes, blocks, plastic containers, and the like. These should be restrirted to objects that can serve as models oi spheres, rectangular prisms, and cylinders. A set of commercial models is highly recommended.

Sphere

Rectangular prism

Cylinder

SUGGESTED PROCEDURE

PRE-BOOK ACTIVITIES:
This exploratory lesson directs attention to the geometry of spheres, rectanguiar prisms, and cylinders. These terms, of course, will not be used with the children. There should be a sufficient number of objects (varied in color and. shape) so that all children have an opportunity to handle and to diccuss the $\lrcorner b j e c t s$. They should run their hands over surfaces along edges, etc. As the lesson proceeds, use the words ob.ject, item, and thing interchangeably so that the children will learn the word object.

Yu may begin this lesson by desigrating desks on which children are to place objects that have some kind of likeness to each other. Begin by asking a child ti place an object (item or thing) on one of the desks. Ask ansther shild to select a second object. If he does not think it should be placed with the first object, he may place it on another desk and explain in what way these objects are different. The classification has been established at this point.

When the other children place objects in the various sets, they shouid use this same classification. You may find that the first sorting is done according to color or size or use of the object or material from which it is made, etc. Let the children continue the classification by using six or more objects. As each object is placed with \& set, discuss with the children whether or not it belongs with the other objects in the set.

Start again with all objects in one set and tell the children to think of other ways to sort them. Let the childaren develop several classifications. If shape has not been used as a basis for sorting, introduce it. First place a ball on one desk, a box on the next desk, and a can on the third. Then select another objcet and ask the children why it should be placed on a particular table. If a response is made that it has a shape like a ball, agree, and comment that it is a figure shaped like a ball.

The activity shoulc result in some such arrangement as that pictured belon'.

After the sorting is completed, the ohildren should identify what the objects in each set have in common. Their description of the sets may be: objects like boxes, objects like balls, owjects like cans. Help develow the awareness of these thapes by describing the boxes as having edges, flat sides (faces), and corners; the cans as having edges (rims) but no corners; and the balls as having neither edges nor corners.

USING THF PUPIL'S BOOK, PAGES 133-134: RECOGNIZING THE SHAPES OF FIGURES IDEAS

Objects are shaped in different ways. (Balls, cans, boxes.)

Page 133:

This is a teaching page. Call attention to some of the pictures of objects on the page. Ask the children to look at the first row. Note that a row goes across the page, not up and down. Ask what the first object in the first ruwis. (Dall.) Ask the children to make a mark, X, on the ball.

What are the names f the other pictures in the row? (Crayon, golf ball.)
Wh: zh picture has tne same shape as the baseball? (Golf ball.)
Mark the golf ball in the same way the baseball is marked.
Then ask the children ark, X, the first picture in the other rows, and one other picture shapea like the first one in the same row.

Page 134:
This is a teaching page. This page has more choices f marking in each row. Ask the children trirk at the first row and mark tne tw objects that have the same shape. Check the accuracy of their markings, then give instructions f making the next row.

:3

FURTHER ACTIVITIES:

1. Ask a child to put his hands behind his back. Then place in his hands an object shaped like one of the three kinds in this lesson. (It would be advisable to include objects whjch had not been used in the earlier sorting.) Ask the child to identify its shape. Continue with other children and other objects. In each case, ask why the object is classified as it is. Chalk, dominoes, and cylindrical pinboxes would be helpful.
2. Have children identify other objects in the room that could be placed in one of the three categories. Chilaren may wish to bring from home various objects to add to the collection. Flashlight batteries, balls, blocks, pencils, chalk, or simple toys can be slassified as they are brought in.
3. Pictures of objects can also be brought in and classified. Have the children tell why each object can be put in that particular classification. This procedure not only helps to identify the geometric figures but also provides the association of the picture with the objects and with the geometric figure they represent. The pictures may be arranged on a bulletin board, in a scrapbook, etc.
4. If children ask the geometric names of the objects that they handle, supply these names whenever possible. Although introduction of such names as "rectangular prism", "cylinder", and "sphere" is not the purpose of this chapter, some children are interested in new words and will take pleasure in hearing them.
5. Select a child. Give him an object, such as a ball. Have him call another child to find another object in the room with the same shape. Continue with other objects and other children.

5-2. SIMPIE CLOSED CURVES
OBJECTIVE: A preliminary classification of some simple closed curves.
VOCABULARY: Straight, rounded, circle, inside, cutside, on.
MATERIALS: Balls, boxes, and cans as in the preceding section; models of circles, triangles, rectangles, and other curved or polygonal figures, such as triangles from rhythm instruments, rectangular picture frames, circular embroidery hoops, rubber bands, stretched around peso on a pegboard (or nails in a piece of ceiling tile), models made from wire or starched string (do nut use cardboard sheets as they suggest the regions rather than the curves themselves); chalk and string for drawing circles on the chalkboard.

SUGGESTED PROCEDURE

PREBOOK ACTIVITIES:

DISTINGUISHING BETWEEN "STRAIGHT" AND "ROUNDED"

Before the lesson, draw several polygons and other simple closed curves on the chalkboard. Include ar least two circles.

Pint out that some of the figures are rounded, while others have straight sides. Discuss and classify each :figure in turn.

Children instinctively identify a representation of a circle as rounded. Indeed, they tend to believe that any geometric figure which does not represent a circle is not rounded even though they agree that the figure does not have straight sides. Figures such as difficult for children to identify as rounded.

I: this difficulty des arise. it is sugested that a b ok be clsssified as having straight sides. This then may be deed as a model of straightnesc. Place the b ok eige along the side of the firure. If the side of the figure dees nat coincide with the model, then the fleure is classified as rounded.

Display and discuss the triangles, frames, and huops, and the peeborard and wire a dels. Use these :epresentatans wise metrin trures to differentiate
 in:. dex, utside and on the utline or lifurt.

Display the kallo, koxes, and sans. Show the circular seam if a ball. (Do not use a laselvil; its scam is n t a plane "urve.) Indicate the rounded rims rif the cans. Print t, the straight edees of the boxes.

Hosve the hildren . ok i r bjects ab ut the room whose shapes they can classify: the unded :im if the wastekacket wr elock, the itraight edees of the desk or windrw, etc.

USING THE PUPIL'S BOOK, PAGE 135° ROUNDED GR STRAIGHT
Thir is a teaching paje. Frad the instructions to the children, the child is to make a nark smewhere on the ticture X not X. Have one child d, the markane n a boik displayed at the frint it the rom while the other ahildren work individually.

258

Teaching Page
 Rounded or Straight

Mark each rounded figure blue.
Mark each figure with straight sides red.

DISTINGUISHING CIRCLES FROM OTHER ROUNDED SHAPES
Direct children's attention again to the figures on the chalkboard.
Tell the children that you are going to erase all the figures (or pictures) with straight sides. Have them pick out the figures for you. when all the polygons have been erased, :replace them with curved figures that y au can draw freehand.

Introduce the word circle. Consider the figures one by one, picking out the circles. Have the children tell why the circle is special. ("It looks the same from every direction", etc.)

Before erasing the representations of circles, make it clear that the circle is the outline. Ask various children to come to the chalkboard and place a finger: inside, outside, and on the figure.

USING THE PUPIL'S BOOK, PAGE 136: CIRCLES
Read the instructions to the children. The pupil is to make a mark somewhere on the figure.

Circles
Mark each circle green.
Color the inside of the other figures red.

5-5. POLYGONS

ODJECTE: A paeibining: y lasstication or some polygons.
VOCABIARY: Triancie, rectanele, s zuare.
MATERIALS: Buxes, models of triangles, reitangles, and ithe: pilygons, such as triancies irom rhytrm instruments, rectangular picture frames, rubber vande streished ar und pegs on a pegboard (or f nails in a piece f ceiline tile), models made from wi:e or starched string; sticks of various lengths.

SUGGESTED PROCEDURE

- PRE-BOOK ACIIVITIES:

This lessun :equires 3 me preparation of the chalkboard. On the left side of the chalkbord, dram several polygons.a. (As shown belin). Include at least three triancles and thee quadrilaterals, and a few plyons with five nr more sides..

On the right side $3:$ the chalkboard, draw seve:ai uadrilaterals (as shown belon). Include at ieast inve rectangies, tiv of which are square; at least two of the rectang... including une of the squares, ghould be "tilted". Keep this section covered from view until needed.

CLASSTFYING: POLYGONS ACCORDING TO THE NUMBER OF SIDES

Ask the class how the set of figures (or pictures) drawn here differs from those discussed last time. (All of these have straight sides.) Pick out a triangle and show that it has three sides; write " 3 " inside the triangle. Pick out a quadrilateral and show that it has four sides; and write " 4 " inside. Then consider the remaining figures in turn, getting the children to agree on the number of sides, and recording the number inside the figure.

See if children know the name, triangle, for polygons having exactly three sides. Suggest the name if necessary. Consider the figures once more, picking out the triangles. The word "quadrilateral" is not introduced at this stage, bit should be given if a child asks for the name of a polygon of four sides. For five or more sides, it is enough to tell the chi?dren that special names do exist.

Display the metal triangles, the picture frames, and the pegboard and wire models of polygons. Have the children classify their shapes.

Supply sticks of various lengths for the children to form into triangles. Make sure that the two shortest sticks have a combined length greater than the longest; then the child will always be able to construct a triangle.

If you wish to discuss the number of angles of a triangle or any other polygon, it is better to use the term "points where the sides meet" since it is difficult to define an angle correctly at this grade level.

USING THE PUPIL'S BOOK, PAGE 137: NUMBER OF SIDES
Read the instructions to the children.
Page 138: TRIANGIES
Ask tre children to make a blue mark in any figure that represents
a triangle.

Number of Sides

Write the number of sides inside each figure.

Triangles

Mark each triangle blue.

138

DISTINGUISHING RECTANGLES FROM OTHER QUADRILATERALS

Disclose the figures on the right sir of the chalkboard. Ask the class how the set of figures (or pictures) drawn here differs from the set discussed earlier in this section. (Each of these has exactly fcur sides.) 'fell the class you are all going to look for son. special rigures in the set. Ask whether some child sees a figure that is special in any way. Point to the rectangular picture frame and the rectangular window frame as examples of the special shapes we are looking for. If necessary, ask explicitly aoout the corners. Try to lead the children to the idea that in a rectargle, all four corners "look alike". If any difficulty arises in determining if the four corners "look alike", use a paper model \square. If the paper model fits the corners of the figure exactly, this will be accepted as meaning that the four corners "look alike." Introduce the word "rectangle."

Some children may object to calling the square a rectangle; point out that it is a special kind of rectangle, just as a lollipop is a special kind of candy.

Have the children make rectangles by bordering a sheet of paper with a crayon.

Display several boxes and point out how their edges form rectangles. Have the children look for rectangles in the room as boundaries of desks, the chalkboard, and so on.

USING THE PUPIL'S BOOK, PAGE 139: RECTANGLES
Read the instructions to the children. The child i., to make a mark somewhere on the figure.

Rectanyles

Mark each rectangle red.

DISTINGUISHING SQUARES FROM OTHER RECTANGLES

Draw several squares and other rectangles on the chalhboard before the lesson begins. Make certain that the rectangles, other than squares, can be clearly distinguished from squares. Ask the class if all of the figures have four sides. Than ask if all the figures have corners that "look alike." If there is any question about this point, use the folded paper model to show that the model will fit the corners of the figures exactly. Ask for the name of these figures. (Rectangles) Tell the class you are going to look for the special kind of rectangles. The ohildren will name this figure as a square. Use a piece of string to demonstrate that the sides of the figure are congruent. Do not use this term but merely place the string along one of the sides and show that this piece of string will fit exactly on all of the other three sides. Use this same procedure with another figure that is a rectangle but not a square to show that this is not true of rectangles that are not squares.

Display several boxes and point out how their edges form squares or other rectangles. Have the children look for squares and other rectangular figures in the room.

USING THE PUPIL'S BOOK, PACE 140 :
Read the instructions to the children.

Squares and Other Rectangles
Mark each square green.
Mark all other rectangles red.

5-4. CLASSIFYING REGIONS

OBJECTIVE: To recognize that a circular region, rectanguiar region, etc., consists of the curve itself plus its interior. To identify circular, rectangular, triangular, and square regions.

VOCABULARY: Circular region, rectangular region, triengular region, and square region.

MATERIALS: Wire models of circ?es, rectangles, squares, trjangles; flannel regions of the same shapes.

SUGGESTED PROCEDURE

PRE-BOOK ACTIVITIES:

In preparation for study of regions, review the ideas of inside, outside, and on. In the SMSG Kindergarten book there are many activities that call attention to these ideas.

The use of playground circle games can reinforce the idea of a circle through their references to the above terms: Such games include: "Froggie in the Midale", "The Farmer in the Dell", "Bor Belinda", "In and Out the Window", "Looby Loo", "The Old Brass Wagcn", and "Hokey Pokey". Step on the circle to show where the curve is.

The playground outlines for "Four Square" can be used to find several squares.

The sutlines of the volleyball or basketball court art examples of rectangles, though these may tend to be too large for delineation at this time.

On the flannel board place an assortment of regions of the types above. Compare these with models of circles, rectangles, trianglez. and squares. lsk how a circular figure is like a circle and how it is different. (Alike in shape; the edge or the felt figure is like the wire circle; the inside of the felt figure is "full"; and so on.)

Tell the children that ry object like the felt cutout has a longer name. It is called a circular region. Its edge is a errcle.

Continue with the other figures. Refer to their straight edges as sides. Use the terms triangular region, rectangular region, and square region.

Place the wre models on a table in separate classifications. Ask a child to go to the flannel board, remove a region, compare it with a wire ,model, name the region, and place it in the proper classification. Continue until all the figures have been removed and classified.

Some children will use the terms: circle region, rectangle region, and triangle region. Agree and state, "Yes, that is a circular region." If the teacher consistently presents the correct language pattern, the crildren will, in time, use the proper terminology.

USING THE PUPIL'S BOOK, PAGES 141-146: REGIONS
Ideas
A circular region, rectangular regicn, etc., consists of the curve itself and its interion.

Pages 141-144:
Each page includes a different type of region to classiiy. The instructions should be read to the children.

Pages 145-146:
Here the children need to mark the curve itself:

Crayons should be used. Red if the curve is a circle; bluc if a triangle; green if a square; and black if' it is a rectangle that is not a square.

Regions

Mark the circular regions.

Regions

Mark each rectangular region.

Regions

Mark the triangular regions.

143

Regions

Markeach square region.

40

276

Regions

Mark an X on each of the rectangles, squares, circles and triangles.

145
41

Regions

Mark an X on each of the rectangles, squares, circles, and triangles.

FURTHER ACTIVITIES:

1. Place parquetry blocks in a bag for a game of identifying figures. If blocks are not available, figures cut from tagboard or cardboard may be used. Children take turns. Each reaches into the bag without looking and identifies the shape of a block by feeling it. He may say, for example, "The block is shaped like a triangle." Then he brings out the block. If the other players agree that he is correct, he places the block in front of him. Otherwise he returns it to the bag. At the end of the game, the child having the most blocks is the winner. It is necessary, of course, to establish the rule that each child must have the same number of turns. Children can make tally marks to keep track of their turns.
2. Start Our Big Book of Shapes with a page for each of the figures-rectangular region, triangular region, and circular region. Paste a model cut from construction paper at the top of each page. Children may cut pictures from magazines and paste them on appropriate pages. Do not hastily reject a child's selection as incorrect; inquire. Some aspect or detail that escapes your attention may have been seen by the child.
3. Give children geometric regions cut from colored construction paper. They may assemble the shapes into "pictures" of animals, people, boats, buildings, tree forms, and so on.
4. Prcvide parquetry blocks and design blocks for children to use in making designs, pictures, etc.: Further intuitive understanding among geometric figures can be developed by such experiences. The intent of this chapter is to introduce concepts and vocabulary rather than to have children "master" the content.

5-5. FIITING REGIONS
OBJECTIVE: To distinguish different regions by seeking to fit them on each other.

VOCABULARY: Match, fit.
MATERIALS: Flannel board regions of different sizes and shapes; there should be two sets of congruent figures of contrasting colors (red and given, for instance); one square region clearly larger than any of the other congruent figures; a few sets of construction paper regions in two colors, as above.

SUGGESTED PROCEDURE
PRE-BOOK ACTIVITIES:
Place on the flannel board some of the red figures as shown:

Talk about what it means to fit exactly, or to match exactly. Show how edges of coins of like denomination match exactly; discuss the way the edges of slices of bread often fit exactly in a loaf. Pages in a book match, and one end of an unsharpened pencil may fit exactly against the end of another, with nothing left over of either pencil.

Hold up a green rectangular region which will fit exactly one of the red ones on the flannel board. Hold it with its sides parallel to the sides of the one on the board. Have it described as a rectangular region. Ask whether this region will exactly fit any of those on the flannel board. Have a child do the matching, and show that all sides match, or fit.

Remove the two figures, place the green one on the flannel board, and ask whether the red on c can be matched to it. Remove the green figure and ask whether it would fit on any of the other resins of the flannel board. Have a child try to fit it, and show clearly that there are some parts not covered up either on the red or on the green figure. Match the other green regions to the appropriate red regions in the same way, having them described each time as a \qquad region.

Without lettinf the class see what you are duine, arrance the green regions on the llannel board in difierent positions.

Hold up the red triangular region in the same position it was in when it. was first matched. A.k. with what kind of recion it mikht be matched. Murn the flannel buard s, that the shildren san see the different shapes; then ask the children whetne: the red reirion can be matched to one of thuse on the board. Caution the hildren t be careful, fre even thin simple arrancement can cause diffioulty fir children whe expest t, see refions in positions with one side parallal t the flove. Cintinue fittine the ther firfures.

Hid a the square rerton finger size and ack whether it could be matched t any oi thoe n the board. Discuss the fact that a rerion must not uny be the same chap kut als the came sim in rder t, lit pactly. USING THE PUPIL'S BOOK, PAGE: 147-150: BEGIONE THAT FIT

Ideas

Reerions if the came cise and shape can le fitted ne on the ther.
A resion can \because atated $f r y$ sible rittine.
The firct tw, atre thew regions in the so-called horizontal position. It represente n pr itm : ridentificati n. The them and : urtin paces will need more caretul iomutinicine ince rotatin. will br nectecary in most instanere to get the a ures t :"it.

Regions that Fit

Mark the regions that fit.

147
4

Regions that Fit
Mark the regions that fit.

Regions that Fit

Mark the regions that fit.

149

Regions that Fit

Mark the regions that fit.

150

- An additional series of lessons can bc developed to refine comparisons by fitting. A long thin rectangular region can be included with one that is nearly square.

All the red regions might be rectangular regions (including some sauare ones) such as two different sized square regions and three or more rectangular regions of different dimensions and proportions.

The green regions should include all of these shapes as well as other rectangular (and square) regions of difierent proportions, including some like the following for which one pair of sides fits somewhere above but the other does not.

This time, the pupil will need to re:ogize that, for the fitting, the lengths of opposite sides must be the same. Choose some of the green regions quite similar to the led ones, but not acturli. the same; good practice can then be developed in estimating relative lengths. In most cases it would be proiltable, before any attempted fitting is made, to discuss whether a given green region will fit and what would be reasonable places to try it.

Another time, some of the red regions on the board should be turned in different positions. It is important to plan specifically for such a lesson.

Geometric insights of these additional lessons would include:

1. An awareness of the impossibility of matching a long, thin rectangle with one which is nearly a square;
2. An awareness of the possibility of comparing visually the sides of a region to see whether they are likely to fit;
3. An awareness of the possibility of retating a region to make it fit another;
4. The recognition of a rectangular or triangular region which does not have a side parallel to the floor.

Chapter 6

PLACE VALUE AND NUMERATION

Background

The fundamental purpose of this chapter is to learn assigned names of numbers greater than nine. We have named the first few numbers: 0,1 , $2,3,4,5,6,7,8,9$, and 10 , but the procedure of assigning a new name to each successive number is clearly impractical. Some sort of system of naming numbers is necessary. This chapter is devoted to the Hindu-Arabic system of numeration, our decimal system of numerction. It is interesting to notice that this is a relatively modern system-quite unknown to the Greeks and Romans. Indeed, mathematicians have conjectured that the rather feeble accomplishment of the Greeks in algebra was due to their lack of a reasonable notational system. The system which we now use is only about a thousand years old; it was carried to Europe, along with spices and sandalwood, by frab traders.

The simplest numeration systems are very closely related to tallying. For instance, the Romans used I, II, and III. for the first three numbers. Of course, this sort of notation is completely impractical for large sets, and people soon found ways of simplifying the naming system. The first step was to count by groups of some agreed-upon size, so that, for example, we might refer to seven dozen eggs, or a gross (twelve dozens) of pencils.

Let us state in mathematical terminology just what this sort of "grouping" amounts to. Suppose we are trying to describe a set which has a great many members. We select a subset of some standard number of members (like a dozen, or a gross) and partition (spi:t up) the set into as many equivalent subsets as possible. There may or may not be a remainder (that is, members left over). Thus if 5 is the standard number, we may partition the set

and describe the original set as consisting of 2 fives and 3 ones. The number of members of the standard subset is more or less arbitrary. Thus we describe the number of members of the set pictured above in any of the following ways:

We customarily group by tens--presumably because we have ten fincers. Computing machines customarily group by twos, and the barefoot Mayans grouped by twenties.

This system of counting by groups has been used by most civilizations. But as greater and greater numbers of objects were considered, new names for greater and greater standard numbers became necessary. Thad the Romans ubed I, V, L, C, D, and M for one, five, fifty, one hundred, five hundred, and one thousand. At each stage, as names for' greater numbers were needed, a new symbol was needed: But the Hindu system circumvents this difficulty by assigning meaning to the place a digit occupies, and manages to create numerals for every. number from the ten symbols: $0,1,2,3,4,5,6,7,8$, and 9 . This is a truly a remarkable achievement.

The idea of grouping, together with place value, is enough tu permit us to assign numerals to the first hundred numbers. The step from the pattin:

$$
\begin{array}{c|c}
\text { Tens } & \text { Ones } \\
\hline 4 & 7
\end{array} \quad \text { to the numeral } \quad 47
$$

is a simple one, and it should be clear tha this number is to be assie ed to a set which consists of 4 tens and 7 ones. The number 10 is described in preciscly the same way: this is the number which is to be assigned to a set of I ten and 0 cnes. We say that the right hand digit is in the ones' place, and that its neighbor on the left is in the tens: place.

There is a further step in our system of numeration. Sipp, se that. a set consists of 23 tens and 4 ones. In counting the 23 tons we would normally group these in tens, so that our record keeping might look like either of thecorollowing:

Tens	Ones		
23	4	\quad	Tens o:
:---:			
2	\quad	tens	
:---			
2	\quad Tens	Ones	
:---:	.		

In either case, naming this number $23 /$ is completely natural. We say. that the right hand digit is in the ones' place, its left hara neighbor in the tens' place, and the next left ha:d digit is in the hundreds' place. We csil tens of tens "hundreds", and we call tens of tens of tens "thousands". But the practive of namins these greater numbers eventually becomes impractical and we fall back on the numerals. Thus

$$
234,460,789,345,863,456,998,567,452,345,715,989
$$

names a certain number in a perfectly well-defined way, but it is doubtful if many ot us remember the ordinary names beyond quadrillion.

NOI'E:

- The sequence of tupics in this chapter may require a little explanation. We beein by partitioning a set into as many sets of ten as possible. We then record the number of sets u ' ten (number of tens) and the number in the remaining set (the number of ones). Then we begin to name these numbers. Following this introduction to the meaning and writing of 2 -digit numerals, the so-called "teen numbers", 11 through 19, are considered.

Difficulties arise kecause the pattern of naming is more complex than the naming of the numbersein the twentias, thirties and so on. Eleven and
!. . twelve have very sperial names, but the nam.ts of the "teens" reverse the usual pattern: For instance, in "thirteen" the first part of the word is associated rith. ones and the last part with ten. On tre ouner hand, in "t'wenty-seven" the reverse is true.

Again, note that the numeral " 10 " was delayed until we could assign it the natural meaning: one ten and zero ores.

6-1. COUNTING BY TENS AND ONES
OBJECTIVE: To help children learn to count sets with many members by counting sets of ten.

VOCABULARY: (No new terms.)
MATERIALS: Flanrel board squares and strips of ten, similar flannel board material, other types of counting materials.

BACKGROUND NOTE:

A set of objects may be partitioned into subsets of ten members each and a set of not more than 9 objects. (We do not use the term "pertition" with the children.) In this lesson the children learn to do this partitioning into subsets of ten and to name the number of members in the set; e.g., 3 tens and 7 ones, or (orally) thirty and seven.

TEACHING NOTE:

There are very few pages in the pupils' book for use with this lesson. This is not an oversight. Teachers have found that actual manipulction of sets of objects is much more effective than working with pictures of sets. Such pictures necessarily either groun the members of the set artifically or else present an impossibly cluttered sppearance.

SUGGESTED PROCEDURE

PRE-BOOK ACTIVITTIES:

Place thirty-fixur flannel cut-outs in a box. Ask the children to count with you as you remove ten from the set and place the objects in a row on the flannel board. Be sure they understand that "ten" or "ten ones" are the names that tell how many. Place anothe set on the flannel board that matches the set already there.

How many members in the second row? (Ten.)
Do we have to count to know that there are ten? (No. The first row has ten members and the second row matches the first.)
How many sets of ten are on the flannel board? (2.)
Do the same $f r$ a third set of ten. Then show the remaining 4 objects.
Dc we have enough to make another row of ten? (No.)
How many jets of ten do we have? (3.)
What is another name for three sets of ten? (Thirty.)

What number tells how many object, are not in sets of ten? (4.)
These are the ones.
How many ones are there? (4.)
How many objects were in the box? (Many answers should be itven, such
as 3 tens and 4 ones, thasty plus four, thirty-four.)
If we counted the memoers of the set of the flannel bcard, are you certain that there would be thirty-four nermers? (Yes. Three tens and i_{4} ones are thirty-four.)
Just to be sure, let's count together.
The counting, of course, verified that ; tenc and 4 nes are the same as thirty-four ones. Counting is introduced here tomphasize this concept and to provide practice in counting beyond ten.

Repeat the experience with a set in which the number member: is 40.
Nw how many sets of ten do we have? (1.)
We have separated all our material intu sets of tenc.
Do we have a set of ones? (N. There are no members in the set wi nes.)
What is the number that we use to tell that a set hac n members? (0.) How many sets if ten do we have, and huw many unes? (4 tens and 0 inss.) Use other type: of material to levelup understandine of antint by tem" and ones.
 use in countine $z e t r a$ tene and nes. It i. nut necessary t, orunt these set materials ber me cimine them to the chilmen. Fs example, it pacte sticks are used, just ive eack. child a mord handfui. Y u will want a random assortmert if number numes. Since whe children are mole pr, i..ient in counting and/or paining, wait until everyne has a unted at least tw sets of ten. Then arlle the un rounted paste .tick. Be .ure t leave the majoraty of children olth some emannin ${ }_{f}$ vets of uct, Y u will nant the recordine of the amerals t'in the ne numers t mry "rm 0 - - in the one's solum. Draw a shart on the chalk boarl tu use it: recordine the names of the numbers. Explain the merning of the words. Then aall on the children to tell hwmany tens and ones they have ounted. A. each child answers, ask where the numerale the the numers that tell how many
 tens and how many ones shoula ke written. Emphasise that the ten' numeral is written iorst; then the ons. Ube every pprertunity that prosent: itrelf
to ask about the placement of tine ten's and one's diglts as well as the name of the number until you are certain that every child understands (probably several weeks:). As each numeral is written ask for the name of the number, e.g., twenty-five, sixtymene, etc.

Put sets of small objects for countine into voxes or envelopes. Write a letter of the alphabet on eacl. box or envelore. Give each child a paper which is marked:

Children may wris as teame al me to wunt eratento wiven enve and record the number rif iots if ten and rnes Attor a chilithes comploted one envelope, he replases its sontents and sxamees -t frr another envelope.

One child of a tean may serve as the recorder or each may want to keef his own chart. A class chart can ve used in order to verify the independent charis. Children ean hell in settine ur materials of this kind. The number of objects in the envelofes can be changed and the activity repeated.

USING THE PUPIL:S BOCK, pazes 15:1-152

A.k the cailaren to fin sets of ter, wunt the number if set: the y have rined, and record the numerai in tie ten'. amm. Then determine the number of snes and res rd this nuneral in the ne : colum. N, dubt you whll want to privide additicnal work w to wi tris kind for chilmen who need to develup mire skill in perfrann, this kind ut tank.

FUITHER ACTIVITIES:

1. There is a derided ady ntare aten tos niner the "teens" numbir; if children alresdy know the names \therefore these numbers. Pronare t tifis ky pr vidint osme dally experience in counting children, coneirs, but." daye on the
 permitted t, a unt bey nd wo. Insrease the number if itjects tw be \therefore wod as the fildrem master the names of the numers.
2. Repeat the procedure of having children count sets of tens and ones as many times as is necessary to develop the understandings.
3. Provide a number line with the whole numbers from 0 through 100 that can be attached to the sides of the chalk board in such a manner that children can touch the numerals. Hold up ten bundles of ten and ask one child to point to the numerals on the number line as the children count the sets by tens. A great deal of practice will be needed bef re most children will be able to locate the numerals for the multiples of ten as quickly as the children name the numbers.

Tens and Ones

XXXXXXXXXX	Tens	Ones	XXXXXXXXXXX	Tens	Ones
XXXXXXXXXX XX	2	2	xXXXXXXXXX XXXXXXXXXX xx	3	2
XXXXXXXXXXX	Tens	Ones	XXXXXXXXXX	Tens	Ones
XXXXXXXXXX XXXXXXXXXX XXXXX	3	5	XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX	4	0
XXXXXXXXXXX	Tens	Ones	XXXXXXXXXX	Tens	Ones
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX	H	/	XXXXXXXXXX $x X X X X X x \not x x x$ X	3	$/$
XXXXXXXXXX	Tens	Ones	XXXXXXXXXX	Tens	Ones
XXXXXXXXXX XXXXXX	2	6	XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXX	\neq	q

60

Tens and Ones

$X X X X X X X X X X$ XXXXXXXXXX XXXXXXXXXX XXXXX	Tens	Ones	XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX	$\frac{\text { Tens }}{5}$	Ones0
	3	5			
$X X X X X X X X X X$	Tens	Ones		Tens	Ones
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX X	5	$/$			2
XXXXXXXXXX XXXXXXXXXX XXX	$\frac{\text { Tens }}{2}$	$\begin{array}{\|c} \hline \text { Ones } \\ \hline 3 \end{array}$	XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX	$\frac{\text { Tens }}{7}$	Ones 0
$\begin{aligned} & \text { XXXXXXXXXX } \\ & \text { XXXXXXXXXX } \\ & \text { XXXXXXXXXX } \\ & \text { XXX: } \end{aligned}$	$\frac{\text { Tens }}{3}$	Ones	XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX $X X$	$\frac{\text { Tens }}{5}$	Ones. 2

6-2. ELEVEN, TWELVE, AND THE TEENS
OBJECTIVE: To associate the spoken names and written numerals for the numbers 11-19.

VOCABULARÝ
MATERIALS: Flannel board materials, blocks, sticks, etc. (One ten and ten ones of each.) ,

SUGGESTED PROCEDURE

PRE-BOOK ACTIVITIES:

Place ten objects on the flannel board and have children name the number of the set. Refer to the ten's and one ${ }^{\text {t }}$ chart drawn in the chalkbuard.

How many sets of ten? (one.)
Where shoula I write the numeral in the crart? (In the first column.)
Did we have any members left civer after we mave the set of ten? (N..)
What numeral showa I wite in the onc's column? (Zero.)
Place another jbject on the flannel buard, underneath at the left.
How many do we have njw? (One ten and une, wr ten and one more.)
If someone surcests that there are oleven, ask the children to go back to the berinnins and runt by ones to determine that eleven is the currect name. If no ne suffest eleven, supply the word and then ask the children to count.

How many cets of ten? (1.)
Where should I write the numeral that names the number of tens? (In the ten's column or in the first column.)
How many ones? (1.)
Where should I write this numeral? (In the ne:., column or in the second column.)
Lrook at the numeral (11) carefully.
If, both ,f hese ones mean tha same thine? (No. One means ne ten and the other one, one.)
Whicn one means one ten? (The one in the first lumn. The ne in front.)

Using the same procedure, place another object and develop the idea if twelve as 10 and 2 more, or twelve ones. Continue with thirteen. Be sure children know they are saying thirteen, not thirty. This same wainng applies to the other teen names which are closely related to the names of the multiples of ten. Be careful to enunciate very carefully so that children will hear the difference. (Notice that if the names for sets with one ten and some ones followed the same pattern as the other number names of the twenties, thrrties, etc., we would say something like "onety-one, onety-two, etc." It would not be quite so hard if we said, "Teen-one, teen-two, teenthree, teen-four", but that just isn't the way it's done in the English language:) Use other sets of materials and emphasize the oral names, and the idea of one ten and so many ones. List the numerals vertically.

Discuss how the numerals for ter, eleven, twelve and thirteen are alike (1 in ten's column) and different (number of ones increases by one so pattern is $0,1,2,3$). With some classes, it probatly will be wise to stop at "thirteen" the first day. The number uf teens introduced per day wall depend upon the teacher's judgment of the understanding of the children. It would be desirable to return to 10 and review each time new numerals are introduced. A thuroush understandang of the teens will save much difficulty later on.

- Many children will benefat from 1 actice in writing the numerals 0 .. 1. in both a vertical and a horizontal frrm, e.e.,

0	10
1	11
2	12
etc.	

and

0	1	2
10	11	12

It is heipful to provide worksheets that have been rulod t, indicate the arrangement desired.

USING THE PUPIL'S BOOK, page 153
Ask children to ring sets of tom and record the numeral in tife ten's colum. Then determine the number ri nec and receri thi numeral in the one's column.

Pages 154-155:
For each set, make a ring ariun the numeral that nume, the numbry of members in the set.

Tens and Ones

How many?

玄 * * * * 玄
19

How many？

复 复		12
复	身	15
		17

FURTHER ACTIVITIES:

Give many opportunities for separating sets fewer tr.n 20 into tens and ones, recording and saying the result as tens and ones and as the teen number.

1. Hold up a numeral card and ask the children to show a set with the appropriate number if tens and ones.
2. Write numerali on shalkivard and have the;children draw a ring around the diëit that names the tens or the digit that names the ones.
j. With "SHOW-ME" こards have children show the numeral from ten-and-ones instructions and from the spoken word. (See helow for construction of "SHOW-ME" eards.)

HOW TO MAKE "SHOW-ME" CARTS

1. Use a piece of tagboard $6^{\prime \prime} x{ }^{\prime \prime}$. Fold up $2^{\prime \prime}$ from the bottom.

2. Staple as marked to make 3 pockets, each almost $2^{\prime \prime}$ wide.

3. Cut a strip oi "agboard $18^{\prime \prime} \times 4^{\prime \prime}$ irco 12 strips $1 \frac{1}{2} \times 4^{\prime \prime}$. lith felt pen, write numerals as follows

4. Children should be taught early to lay out numeral cards in order on their dest.j and to rep ace them in order.
5. In the game, the children figure out the sclution to a prollem yuu give orally or on the chalkboard. They then place the numerals for the answer in the pockeis, hold the cards against their chests with the answers concealed until you say, "Show-me!" Then all turn the ancwers toward you, whle you make a quick survey to see who is right.

Note:
Show-Me cards and cards on which the numerais may be written can be purchased reasonably at any school supply house.

6-3. SPOKEN NAMES OF THE NUMBERS: 21 THROUGH 29

OBJECTIVE: To develop the ability to name the cardinal number of a set of more than twenty members by identifying a multiple of ten and counting on from that number.

VOCABULARY: The spoken names of numbers from 21 through 99.
MATERIALS: Different kinds of objects in sets nf t en and ones.

TEACHING NOTL:

Children who are not proficient in counting sets of ten (tera, twenty, thirty, etc.) will fina counting .. from a given multiple difficult. Work sheets for pupils are rot recommended here.

SUGGESTED PROCEL"PE:

Place 2 tens and 5 ones on the ilannel board.
Who can tell how many members are in the set ort the flannel board? (Two tens and 5 ones, or possibly twenty and five.)

Cover the 5 ones with tagboard.
How can we count the tens in a short way? (Ton, twenty.)
Then $10 \mathrm{t}^{\text {ts }}$ go on from twenty: twenty-onc, twenty-iwo, twentythree, twenty tour, twenty-tivc.

Repeat with several different sets. Children will need a great acal of practice counting together in this way.

- Prepare materials in sfts of ten and ones. Give each child two bundles of ter and rine ones. Ask the chaldretato represent the numbers one t... ough nine, then ten. Sinse the chlldren wers nut given 10 ones, the only representation of ten available to them is one ten. fatch to see that every chila clear's the top ot tho desk and displays only one set of ten. Continue with the representation of 11-19. As each number 13 represented, ask the children to count the momb rs to make certain the modrls are sorpet. Thls will rinfore counting on from a given multiple of ter. Then emphasise that the next numbrr is twerty, which ran be reprenente: by wo bunlles of ten. Continue on through i\%. A leason jike this shond be reptated beveral times with these and otner deradec.

Children who can represent with set material the number that is one greater than, say, 39 by showing 4 sets of ten display that they have learned something about the base of our number system.

Note:
While working with iundes at tens and unes, you are teaching children about the base of our number system. Do not confuse this with place-value. Place-value is involved cnly il you represent the number of these bundles of tens and ones in numeral form, e.g., 39, 47, etc. A chart :ay bc used in teaching place-value if you use the digits as in: You zan also use strips of some cort that, do not

Tons	Ones
3	2

6-4. THE WRITTEN NUMERALS: 30 THROUGH 3

OBJECTIVE: To help children associate the correct written numerals, as well as spoken names, with the numbers 20 to 99.

VOCABULARY: (No new words.)
$\begin{aligned} \text { MATERIALS: } & \text { Different kinds of objects for countine: blocks, sticks, pegs, } \\ & f l a n n e l ~ b o a r d ~ m a t e r i a l s, ~ e r c . ~ S h o w-M e ~ c a r d s ~ f o r ~ f u r t h e r ~ a c t i v i t i e s . ~\end{aligned}$
SUGGESTED PROCEDURE
PRE-BOOK ACTIVITIES:
This activity should follow many experiences with counting and naming sets of ten and sincle abjects. The children should be able, for example, to name a set of it tens and; ones as forty and five, and as forty-five.

Place three stacks of ten blucks and a stack of two blucks on the chalk tray. Have ohildren name, in several ways, the number of nemers in the set. (3 tens and $?$ ones; thirty-two.)

Begin a tabulation on a chart showing:

Tens	Ones
3	2

Place " sots of ten amall itjects on the flannel kuard. Have children tell, in tw, way: njw many there are. Makr \exists bundes of ten sticks each and put them rith \cdot sticks on a table. A.k a chidd to tell the number of tens and one:. C-ntinue t. leveis the chart as each if the sets is counted. Show 4 set. of ten und 7 , ne. Have chalden tell where you chould write the numeral i', r the tens and the numeral for the ones for each set of objects.

The shart mirht ? \& like thir.

Tras	Onco
-	$\hat{\prime}$
5	0
S	6
is	i

1 i

Eacn of these numbers can be named in several different nys.
When we see the nunerals on the chart, we read $\dot{-}$ tens and \doteq ones. We may. say thirty and two or thirty plus two.
We also say thirty-two.
We write: 32 .
Continue to rewrite the numerale from the chart.
A completed chart micht 1 wk like this:

Tens	Ones	Numerals
3	2	32
5	0	50
2	6	26
4	7	1.7

USING THE PUPIL'S BOOK, page 1,56 :
In cach case the child is t, show the other way to name the number.
Page 157.
Wite the numeral wish names the number, f mente in the cet.

Two Names For A Number

How many?

6-5. ORDER REIATIONS FOR NMMBERS O IHRCUGH 19
OBJECTIVE: T extend the ideas of "greater than" and "less than" to include the numbers ll through in.
VOCABULARY: (Review) greater than, less than.
MAIERIALS: Sets i aticks or small countine materials buniled into tens and onec; a number line.

SUGGESTED PROCEINRE

PRE-BOOK ACTIVITIES:
Place a set of : teris and a cet of 4 tens on a table or desk. Identify the membe:s the set: as sticks in bundies if tea and ask the children which set has mere members. Thic may ije determined iy oounting by tens and by parint. Hold up the : -wt: aten.

How many tenc? (.)
What is a namt t^{\prime}, tricer tear? (Thicty.)
What numerai names is:irty? (so.)
Write 20 on the ?abinard and repeat the same proceaure with the 4 sets of ten. Ker \dot{A} w under -0 on the nalkboard.

Which is areste. U ur 40 ? (Forty.)
How d) $\frac{\mathrm{kn}, \mathrm{w}}{\mathrm{thns}} 15$ true? (A set if 4 tens, r it 0 has more membe: sthan a sat of tens or o.)
Forty 15 how much greater than 20 ? (One ten ar 10.)

- Leave the se numerila n the chaikb ard ani emot the foredure using 20 and $=0,4 j$ and 0 , etr.

Luck at the numerats in the incti.. ard.
The first prit: $i s$
Which numeral names the greate: number? (:0.)
How can you tell just by lowint at these twe numeraly that tha 15 so?
(L ok at the ten': insit. is wreater than 3 s. is tons, is reater
than : ten: : 1,0 is greater than jo.)
Frty is hiw mu hereater than jo? (uns ten is 10.)
Can you tell trom the numpals that 10 10 10 breat..r tuen go?

i . 1 thereater than tens. 40 i 10 breater then o.)

Consider the utner pairs if numerals in the same way. Help children generalize that if there are the same number of unes in two numbers, then we need only compare the tens.

- It is helpful to draw a number line like the one beluw on the chalkboard.

For example, place a finger under 30 and another under 40 and ask which numeral names the greater nu nber. Encourage children to indrcate how the arrangement of the numerals on the number line helps them determine the eater number. If a child says that 40 is greater than 30 because 40 . after or behind 30 on the number line, comment, "Yes, 40 is greater than 50 since 40 is to the richt of 30 un the nurver line." USING THE PUPIL'S BOOK, page 158:

Fing the numeral for the greater of the two numbers in each set. Page 159:

Read the title. Discuss the first exercise with the pupils. Ask which of the numerals name numbers ereater than $10.0(0,70)$. Dirert the children to rine the numerals 5,0 and 10 . Have the children wurk independently on the uther ext roises.

- Repeat the same procedure but ask for the number that is less than a ziven une and how much less. n, not \because mp e numbers that dif'er by m, re than 10.

Which is greater?

Which is greater?

USING THE PUPIL'S BOOK, page 160 :
Read the title. Direct the children to look at the first exercise. Ask which of the numerals names the lesser of the two numbers in the set. (70.) Direct the children to ring the numeral 70. Have the children work independently on the other exercises.

Page 161:
kead the titie. Direct the chldren's attention tc ie first exercise. Ask the children to name two numbers named in the exercise that are less tha: 40. (20,50 .) Direct the children to ring the numerals 20 and 30. 'fave the children work independentiy on the other exercises.

Which is iess?

Which is less?

x

Page 162:

This is a teaching page. Read the title page. Read the first exercise. Wheh the children give the correct answer (20) select a child to write the numeral in the space provided. Direct the children to write the numeral in, their texts. Continue for all the exercises. If ε child has trouble let him use objects (sets of 10) to discover the answer.

Name the number.
10 greater than

10 is

50 is

30 is

80 is

60 is
 20 is

10 less than

20 is

90 is

40 is

50 is

70 is
 30 is

- Placen a set of $\therefore \therefore$ (3 bundles of ten and 4 onts) and a set of (6 bundles of ten and $\stackrel{y}{ }$ ones) on a table or desk. Ask the children which set has more members. This may be determined by counting (tens and ones) and by pairing. Puint to the set of 34.
liow many tens? (3.)
How many ones? (4.)
What is the name of the number? (Thirty-four.)
Write 3^{4} on the chalkbaord and repeat the same rrocedure with the set of 6 tens and 4 ones and write 64 under 34 on the chalikboard.

Which is greater, 34 or 64? (64.)
How do you know this is true? (A set of 6 tens and 4 ones or
64 has more mombsrs than a set of 3 tens and 4 ones or 34.)
Leave these numerals on the chalkboard and repeat the procedure using 42 and 62, 76 and 20 , etc.

Lrok at the numerals on the chalkooard.
The first pair is 3^{34} and Unt 1.
Which numeral names the greater number? (64.)
Huw can you tel+ just by lookine at these two numerais that this is so? (The one ${ }^{\text {i }} \mathrm{s}$ digits are the same. Look at the ten's digit. 6 is greater than 3 so 6 tens is greater than 3 tens. 64 is greater than 34.)
Consider the other pairs of numerals in the same way. Help childre:. generalize that since there are the same number of ones in the two numerals, we need only compare che tens as we did with the multiples of 10 . The number line used with the multiples of ter can be used as an aid if the children realize that they need only compare the ten's digits.

USING THE PUPII'S BOOK, Fage 1.63:
Read the title. Direct the children to look at the first exercise. Ask, "Whi in is greater 6. or 2 ?" When a child eives the correct answer (5) direct the children to rias the numeral 6. Children work independently on the other exercises.

Page 164:
Read the title. Inrect the chilaren to look at the first exercise. Have the childrer read efth number names. A.k, "Which numbers named are
 to ring numerals triat name rumbers ereater than \dot{j}. Children work independently on other exercijes.

Which is greater?

Which is greater?

- Repeat the same procedure and ask fror the number that is less than a given une. USING THE PUPIL'S BOOK, pages 165-166:

Use thic same procedure os you used on pages $1 \epsilon_{3}$ and 164 for greater than.

Which is less?

Which is less?

$\therefore: 1$
 (s bundles of ten and mes) in a table iv desk. Ack the children which set has more members. Ihis may be determmed by c untine; (tent and ones) and by pairine. P int to the set f.

How many tens? (\because)
Hin many mes? ($=.$,
What is the name of the number? (Thrity-tw.)
Write $:=$ in the chalkbord and repeat tre pricedure with the set of tenc and ! ones snd wrate $; ?$ under $\therefore \therefore$ in the chalkboard.

Which is greater, $三$ or in ($\because \because$.
How do you know thie 15 ourrect? (A set if \mathcal{L} tent and 7 unes has more members than a set i : tens and \because ones. $i l$ is Ereater than 2.)

Do these two numerals name the numbers that hav. the same number if tens? (Yes.)
 ones than a set of s2.)

Leave these numprals in the halnuard and repeat the predure usinf fi:
 them.

Look at the numerais on the chalkb ard.

Which numeril names the preate: numbe:? ' i.)
 (Yos. The ton'; di-it: art the came. I, 水 at the one': dirit. ! 1
runter than $\quad{ }^{\prime \prime} \quad\left(i r r a c t . " ~ t h a n ~_{\prime}^{\prime}\right.$.)
 generali." that it the"e ar" the :ame nabre tone in the number then we noed aly compare the number it me..

YiSI.

 triven ine.

USING THF: PIJPIT1: KONK, paet 1r,-1, O:
Use the nome proredure a't y a ured for rext luy-164.

Which is greater?

(59)

53

35
(38)

$\because 1$

Which is greater?

Which is less?

$$
1
$$

Which is less?

- write the numerals $l u$ and t on the chalkboard and ask the cai dran to tell which. names the ereater number. ${ }^{2}$ Ask the children how they know that 16 is greater than 6. Try to obtain several diferent explanati.ns. Use aet materials to show that a set ot lf has more momuers than a set of 6. Represent 10 as 1 ten ó ones and $\dot{0}$ as 6 unes. Place a number line ($0-100$) across the chalkboard so that the chaldren can tuch the numerals. Indicate that 16 is to the right of 6 on the number line. Then continue by asking whether all numbers in the teens are greater than the numbers which contain 0 tens. Ask whether every number in the falties 'is greater than numbers in the thirties, and so on. Cinntinue with specific eramples:
i?

Is two tens and five ones greater than one ten and 1 ones? (Yes.)
Which is ereater, 37 or $40 ?\{$ And so on.
In each case, restate the problem in terms if tenc and nes and then wit the number lile t, indi ate the relative position is the numerals that name. the nuthbers.
 shoulu (The ten's diqit.)

If the nuneralj have the same ten's diadt, hin in d. ade nhirh
number is zeater? (The one to di, it.)

 whi nh ar.1t : the numeral nam: the tens ar. : fle r...
$\xrightarrow{\text { HING THE PUPIL' } ; B O O K, ~ y a g e ~ 11: ~}$

 n tre re t : tion erwirios.

Pate 1 た:
U:

P54...113:
 Ask áte: it is read,

What number is 1 greater than 23 (24).
When the children have eiven the sorrect encier: direct them tir write 24 in the blank space. Chillan mak indepealently on the rest of the exarises.

Page 174:
Use the same pr ceru:e as y u das a r page 173.

Which is greater?

Which is less?

Name the number.
23 is 1 greater than

1 less than
42 is

64 is $\quad 63$
25 is 24
87 is 86
92 is

53 is $\quad 52$
78 is \qquad

FURTHER ACTIVITIES:

1. Write a numeral on the chalkboard and have chilaren name the number that is one greater or one less than the one whose name you have written. "Ask them to name the number that is ten

- greater or less.

2. Let children use hundreds-square paper (10 rows of 10 squares) and write numerals from 0 through 99.
3. Numerals may be written either vertically or horizcntally. To check understandins of greater than and less than, write on the chalkboard:

612,	21
45,	49
62,	57
38,	25
70,	39
98,	89

Ask children to copy the pairs of numerals and draw a ring around the one in each pair that names the greater number. (They will ring 21, 49, 62, 38, etc.) The activity may be varied by asking them to draw a ring around the numeral for the lesser number in each pair. On the other days you may wish co write 3 numerals in each group and ask children t draw a red ring around the numeral for the greatest number and a blue ring aruund the numeral for the least number.
4. Give each child three numeral cards and a piece of lined writing paper. The child is to arrange the three numeral cards in order from least to greatest number.

The child then copies the three numerals on his paper. When the first set is finished the child gets a new, sev of cards and repeats the activity for another set of cards. It is possible to modify this nork by giving some children only two cards and other. children as many as five cards.

Pages 175-176:

These are practice pages similar to those before. Use the same procedure as for page 163.

Page

177
Read the title. Direct the children to look at the first exercise. Ask

Which number is the least? (19.)
Where shall I put 19? (In the first box on the left.)
Which of 25 and 31 is leas? (25.)
Where shall I put 25 ? (In the middle box.)
Which number is the greatest? (31.)
Where shall I put 3.1? (In the last box; in the box at the right.)
Pupils work independently on the other exercises.

Which is greater?

175
1,3

Which is less?

36

1:’:

340 .
on \quad Order of Numbers
Write in Order from the Least to the Greatest

5. Game for three children. Each child starts with 20 numerg cards, any of the set 0 through $99 ;$ no duplicates. The cards are in a stack, face down. Each' child turns'one card face up. The children compare the three numbers named, and the child whose numeral card names the greatest number takes ail. three cards and puts them on the bottom of is his stack.

BACKGROUND

Chapter 7

ADDITION AND SUBTRACTION

You may want to revew the background for Chapter 4 , where the fundamental definitions concerning addition and subtraction were made. We recall, for example, that $3+5$ is the number of memsers in the set obtained by joining a set of 5 members to a set of 3 members and $5-3$ is the number of members remaining if a subset consisting of 3 me.bers is removed fiom a set of 5 .

The idea of partitioning $-t s$ is used in this chaptex primarily for -reinforcement of various number relationships, but we shall later 'use partitioning into equivalent sets in the discussion of place:value and division. Partitioning a set is just separating it into two disjoint subsets. For example, we may partition the set consisting of Mildred, Jean, Stan, and Mary into the set consisting of Mildred, Jean, and Stan, ard the set consisting of Mary. (We shall later partitión a set into more than-two subsets.).

Partitioning is related to both joining and removing. For example, if we join the set consisting of Mildred, Jean, and Stan to the set consisting of Mary, we have the original set consisting of Mildred, Jean, Stan, and Mary. Because of the relation between. Joining and addition, we see that, in general, the number of mabibers in the original set is equal to the sum of the number of members ir the two sets of the partition (in this case, $4=1 \pm 3$ or $4=3+1$). Then, $4-3=1$, and in geneial, the number of members of the original scuminus the number of members of one of the sets of the partition is the number of members of the other set of the partition.

There are also otner aroolems which lead to subtraction equations. For example: If John has 5 marbles and Ted has 3 marbles; how many more mariles has John? We may; think of pairing Ted's marbles with John's, as shown on the rext page,

removing from the set of John's marbles a set which is equivalent to Ted ${ }^{2}$ s, and identifying the number of the remaining set. Sine the number of Ted's marbles is equal to the number of the equivalent subset of John's marbles, we see that John has 5-; more mantles than Ted.

The following is a closely related problem: if J in as marbles and Ted has 3 marbles, how many marbles must we give $T \cdot d$ a. that he has as many as John? Schematically, we can pose the question as :allows:

If we remove from the set of John's marbles a subset which is equivalent to Ted's set, then the remaining set is equivalent to thenknom set. We conclude that we must give Ted 5 - ; marries.

The last description of subtraction in terms ot sets lead $t a$ formulation which does mot depend on sets, tut only on the ideas of addition which we have already introduced. (op course, the definition of addition does depend on manful. . On of sets.)

Suppose again that John has ' marbles and Ted has; males, and we Wish to know how many marbles to give Ted ac the boys will have the same number of rambles. The union of the set we give Tea and the set that Ted has must be equivalent to the set of Johntrs marbles. Hence, the number of marbles we must give, which is 5-3, is the answer to the following question: $\& f ?=5$. In the same way, $4-2$ is the answer to the question, $2+?=4$, and so on. This is sometimes called the missing addend description of subtracting. It is important that children work with this description as well as with the descriptions in terms of
set manipulation since this will be the fundamental notion underlying the subtraction of numbers in the later grades. In general, we try to give the children expericace with several of the ways that subtraction problems arise:

The number line is useful in learning about the operations of addition and subtraction. If we think of 0 as the starting point, then each numeral indicates the number of "Jumps" required woget from the starting point to the point marked by the numeral. We may find the sum of 3 and 5 by taking 3 jumps, and then 5 jumps, and then reading the numeral (which indicates the number of jumps taken from the starting point).

$$
3+5=8
$$

Notice that ve do not have to count out the 3 jumps: the numeral "3" shows where counting 3 jumps would have gotten us.

The number line can also be used for subtraction: 5-3 is the number of jumps from the starting point which results from taking 5 jumps forward and then 3 jumps backward.

5-3

$$
5-3=2
$$

Finally, we note that the number line, which we use here primarily for reinforcement and variety, can be used in a very important way in introducing such problems as $8+\square=12$ and $12-\square=5$.

$$
8+4=12
$$

346

$1: 0$

7-1. PARTITIONS AND ADDITION

```
OBJECIVE: To reinforce and extend the child's understanding of addition
by using partitions of sets.
VOCABULARY: Partition.
```

MATERIALS: Flannel board objects, yarn, set materials for the childien. BACKGROUND NOTE:

Partitioning a set into two subsets simply means separating it into two parts. E'ach member of the set with which you started then belongs to just one of the two suosets. The union of the two subsets is the set with which you started, and because of the reletion between adding and joining, each partition gives us information on addition. Thus the fact that a set of 5 can be partitioned intc a set of 2 and a set of 3 shows us that $5=2+3$ and $5=j+2$ (since joining and adding are bcth commutative.)

SUGGESTED PROCEDURE

PRE-BOOK ACTIVITIES:

Place four cut-outs or the flannel board. Ask the children how many members are in the set. Use yarn or any other suitable item to separate this set into two subsets of 2 members each.

I have used this yarn to separate or PARTITION this set into two subsets. How many members are in each subset? (2.)
Could I partition this set into two other subsets? (Yes.)
What could I do to show a different partition? (Move the yarn.)
Follow the suggesticnis of the children until all possible partitions of two subsets have been show. Yiu probably will have to suggest the partitions of 0,4 and $4,0$.

Replace the set of 4 on the flannel board with a set of 5 .
What is the number of members of the set? (5.)
Place a piece of yarn across the flamel board to show a partition of 3 and 2 members.

What is the rumber of members in one subset? (3.)

- What is the number of members in she other subset? (2.)

If we join these two sets, how many members will be in the new set? (5.)

We can add the number of members of the subsets to find the number of members in the set.
What is the equation? $(3+2=5$.
Write this equation on the chalkboard or use the flannel numerals and symbols to display this equation on the flannel board.

We found the number of members in the set by adding 2 to 3 .
We wrote $3+2=5$. Can we find the number of members in the set by adding 3 to 2 ? Can we write $2+3=5$? (Yes.)

Rezord this equation and ask the children how the equations differ. The di.,ussion should emphasize tnat the order in which the numbers are added does not affect the result. Therefore, two dadition equations can be written ${ }^{-}$ Sor this partition.

Consider other partitions of a set of 5 members and write the addition equations asscciated with these partitions on the chalkboard as the children give them.

Continue the same proceuure with sets of 6 through; members. For the partitions of each set, it is helptilu to have the associated equations recorded on the chalkboard, e.s. $;+2=5,2+j=5$. This enables the children to see that a given set may be partitioned in severai ways. In addition, children have the opportunity to develop the ifea that a n mber may have several names.

USING THE PUPIL'S BOOK, pages $178-182$:
The ee pages show partitions of various sets. Ask the children to write equations for each partition. N te that if the set partition results in two equivalent cubsets, only one addition equatirn can be written.

Gi:e the chilaren caraful direction for using thece paces. For example, on 178 direct their atter....un to the first set. Ask

What is the number in the set? (..)
4 whas the set been partitioned? (member: and 0 members.)
Who can write an equation for thic partition if a ret with - members? ($=+0=5,0+5=5$.)

Partitions

178
ERIC

Partitions

	$\begin{aligned} & 0+6=6 \\ & 6+0=6 \end{aligned}$

Partitions

180

182
ERIC

- Provide each child with a set of objects. Tell them you are thinking of a set of 4 that has been partitioned into 2 subsets and there are 3 members in one subset. Ask how many members are in the other subset. Demonstrate on the flannel board how children car u.ie a set of 4 objects to answer your question.

Continue with similar questions concerning sets of 50.6 members. Have the children show with set objects how they would partition the set if given the number of menbers in one subset in order to determine the number of members in the other subset. When the technique is established, write equations such as:

$$
\begin{array}{ll}
5=3+\square & 6=2+\square \\
5=\square+3 & 6=\square+2
\end{array}
$$

on the chalkboard. Have the children use the set objects to find the number of members in the other subset. Heln the children see that each pair of equations can be completed from one partition.

USING THE PUPIL'S BOOK, paees 183-185:
Provide the children with set objects to ald them in completing the equation. Guide the children as they do the first equation. Then allow them to work independently.

$$
\because 3
$$

$$
\begin{aligned}
& \text { COMPLETe THE EQUATIONS } \\
& 5=4+1 \\
& 5=\square+4 \\
& 5=2+3 \\
& 5=3+2 \\
& 5=5+0 \\
& 5=0+5 \\
& 5=4+\square \\
& 6=4+2 \\
& 6=1+5 . \\
& 6=5+1
\end{aligned}
$$

COMPLETE THE EQUATIONS

$$
\begin{aligned}
& 7=7+0 \quad 8=5+3 \\
& 7=0+7 \\
& 7=5+2 \\
& 7=2+5 \\
& 7=3+4 \\
& 7=4+3 \\
& 7=6+\square \\
& 7=\square+6
\end{aligned}
$$

;

7-2
PARTITIONS AND SUBTRACTION
OBJECTIVE: To reinforce and extend the child's understanding of subtraction and addition by using partitions of sets.

VOCABULARY: (No new terms.)
MATERITALS: .SEal l-objects.
BACKGROUND NOTE:

* If a set of 5 is partitioned into a set of 3 and a set of 2 , and If the set of 2 is removed, then the set of 3 is the remaining set. We therefore see that $5-2 \doteq 3$, because of the relation between subtraction and removing; by removing the set of 3 , in similar fashion, that $5-3=2$. Each partition thus leads to two subtraction equations. We have then 4 related equations (two addition and two subtraction) for each partition into .two non-equivalent subsets.

Throughout the following lesson, the children should use sets of small objects to aid them in finding sums and differences.

SUGGESTED PROCEDURE:

PREBOOK ACTIVITIES:

Give each child 6° to 10 objects. Ask him to partition the set on his desk into any two subsets. (There will be many different partitions.j Tell the children to $F:-2 k$ up the objects in one of the subsets, thus removing it from the set.

What set do you see row on the desk? (The order subset.)
Ask each child to join the set still on his desk to the subset that he had removed.
. What set is on your de k ? (The set I started \because fth.)
Ask children to make the same partition again. This time ask them to remove the other subset.

What set islon your desk? (The subset that we removed last time.)
Ask each to join the set he removed to the set that is on his desk.
Dc you have the set you started with? (Yes.)

Discuss that removing either of the subsets of a partition leaves the other subset as the lemaining set, and that juining the subset which had been removed to the remaining set results in the set with which they started.

- Give each clild seven onjects. Ask the children to partition the set of seven so that there are three members in one of the sets.

How many are in the other set? (4.)
What equation can we write about this partition? $\quad(7=3+4$ and $7=4+3$.
If you remove the set of 3 , how many members are in the remaining set? (4.)

What equation suggests that you are remơving a set of 3 frcm a set - of 7? (Hopefulizy, 7-3="4.)

Say that there are several' equations, that are suggested by this partition. Try to get the children to state them: $3+4=7 ; 4+2=7,7-3=4$, $7-4=3$.

Continue :working with partitions of 7 , and identifying the 4 equations associated with each partition.

USING THE PUPTL'S BOOK, pages 186-189:

- Direct attention to the first set. Ask,
\therefore How many dots are in the set? (5.),
How many dots are in the set on the right? (1.)
How many dots are in the set on the left? (4.)
If we remove a set of 1 from a set of 5 , how many are in the
remaining set? (4.)
Who can write the equation for this partitioning? $(5-1=4,5-4=1$.). Children work independently, on the rest of page.

360
Complete the equations.

$5-1 \cong 4$
$5-4=1$

$$
\begin{array}{ll}
\therefore & 5-3=2 \\
& 5-2=3
\end{array}
$$

$$
\begin{aligned}
& 5-0=5 \\
& 5-5=0
\end{aligned}
$$

$$
\begin{aligned}
& 6-\theta=\underline{6} \\
& 6-\underline{6}=\underline{0}
\end{aligned}
$$

$6-2=4$
$6-4=2$

$$
\begin{aligned}
& 6-5=1 \\
& 6-1=5
\end{aligned}
$$

Complete the equations.

$$
7-3=4
$$

$$
7-4=3
$$

$$
\begin{aligned}
& 7-\frac{5}{2}=\frac{2}{5} \\
& 7-2=2
\end{aligned}
$$

$$
\begin{aligned}
& 7-0=\frac{7}{7} \\
& 7-7=0
\end{aligned}
$$

$8-8=0$
$8-0=8$

$8-6=2$
$8-2=6$

$8-\underline{3}=\frac{5}{8}$
$8-\underline{5}=\underline{3}$

Complete the equations．

$$
\begin{aligned}
& 9-4=5 \\
& 9-5=4
\end{aligned}
$$

$$
\begin{aligned}
& 9-\frac{0}{9}=\frac{9}{9}=0
\end{aligned}
$$

ㅁㅁㅁ
 ロロロロロロ

$9-\underline{6}=3$
$9-3=6$

$$
\begin{aligned}
& 9-8=\frac{1}{8} \\
& 9-1=8
\end{aligned}
$$

$$
\begin{aligned}
& 9-\frac{7}{7}=\frac{2}{7} \\
& 9-\underline{2}=\underline{2}
\end{aligned}
$$

Complete the equations.

$$
\begin{aligned}
& 10-\frac{2}{8}=\frac{8}{2} \\
& 10-8=2
\end{aligned}
$$

$\square \square \square \square \square \square \square \square \square \square \square$

$10-9=1$
$10-1=9$

$10-0=10$
$10-10=0$

$10-\frac{4}{4}=\frac{6}{4}$
$10-6=4$

$10-7=\frac{3}{7}$
$10-3=1$

$10-\underline{5}=5$

Play "Acting Out Number Stories". Ask a group of six children to come to the front of the class to act out stories. Fo example: To act out $6=2+4$, the children separate into a group of 2 an a group of 4 , and then the groups come together. $(2+4=6$ or $4+2=6$. $)$ To act out $6-2=4$, they begin in one set, and then a set of 2 children move away from tne set of 6 . To act out a partition of 6 into a set of 2 and a set of 4 , they begin in a set of 6 , then a set of 2 moves one way and a set of 4 moves the other way. (There are iour equations for this play!) Ask the other children to hold up their hands as soon as they think of an equation that tells about the play, or later, ask them to write the equation on paper.

Dramatize problems such as the following. Children may use manipulative materials to represent the objects in each story problem.

Four girls and three boys were playing kickball.
How many children were playing kickball?
Can you make an equation about the story?
Billy had 8 marbles.
ne shared his marbles with John.
Billy kept 5 marbles.
How many marbles did John get?
Can you make an equation about the marbles?
Sally was helping her mother set the table.
She carried ${ }_{4}$ plates to the table.
Then she went back to the kitchen ti get 2 more plates.
How many plates did Sally put on the table?
Can you make an equation about the plates?
Bill had 8 marbles.
He lost $\underline{5}$ of them.
How many marbles did he have left?
Can you make an equation about Bill's marbles?
Polly had q crayons.
She broke 4 of them.
How many good ones did she have left?
Can you make an equation about Polly's crayons?

- Draw the picture below on the chalkboard

What addition equation can we write about this partition? $\quad(3+2=5$. 1~3

Write the first equation given in the space provided.
We know there are $?$ addition equations for this partition. Tell me how tc write the second one. (Children might say, "Chance the 2 and 3 around" or "Turn the numerals around.")

After writing the secind equation, ask the children how many subtraction equations can be written for this paritic... (c.) Provide spaces tu write these equations on the chalkboard to the right of the addition equationc.

How many members in the two subsets? ('..)
What numeral should I write in the firct space in each of tiese equations? (5.)

If I remove the su'sset of 3 , how many members in the remaining set? (2.) Complete this equation. Then ask the same question about the subset of 2 and complete the other equation.

Repeat the same procedure with several other partitions. Children accept the fact that only one addition and one subtraction equation can be written for any partition of 2 equivalent subsets without any difficulty. You may want to use such partitions at this time, or yuu may want to wait until you have established the fact that 2 addition and 2 subtra'tion equations can be written fur a partition resulting in 2 nonequivalent subsets. USING THE PUPIL'S BOOK, pages 190-195:

These pages show partitions of various sets. Ack the chisdren to write equations for each partition.

Equations

Equations

$$
\begin{array}{ll}
\frac{4}{3}+\frac{3}{4}=7 & \frac{7}{7}-3=4 \\
7
\end{array}
$$

ERIC

Equations

$$
\begin{gathered}
\bullet \bullet \bullet \cdot \bullet \\
\frac{5}{2}+\frac{2}{5}=\frac{7}{7} \\
\frac{7}{7}-\frac{2}{5}=\frac{5}{2} \\
\frac{1}{6}+\frac{1}{1}=\frac{7}{7} \\
\frac{7}{7}-\frac{1}{7}=\frac{1}{6} \\
\frac{7}{0}+\frac{0}{7}=\frac{7}{7}
\end{gathered}
$$

Equations

Equations

$$
\begin{aligned}
& \frac{7}{2}+\frac{2}{7}=\frac{9}{9}, \quad \frac{9}{9}-\frac{2}{7}=\frac{7}{2} \\
& \frac{5}{4}+\frac{4}{5}=\frac{9}{9}=9 \quad \frac{9}{9}-\frac{4}{5}=5 \\
& \text { (ロロロ } \\
& \begin{array}{l}
\frac{3}{6}+6=\frac{9}{3}=9 \\
\end{array} \\
& 9-6=3 \\
& 9-3=6
\end{aligned}
$$

Equations

$$
\begin{array}{ll}
2+8 & =10 \\
18 & 2 \\
2 & =10
\end{array} \quad \frac{10}{10}-2=2.8 .
$$

$$
\begin{aligned}
& 4+6=10 \\
& 6+4=10
\end{aligned} \quad 10-6=4
$$

$$
\begin{array}{ll}
\frac{7}{3}+\frac{3}{7}=10 & \frac{10}{10}-\frac{3}{10}=7 \\
10 & =2
\end{array}
$$

~ 372

Pages 196-197:
${ }^{1}$ Give each child a set of 9 objects. Read the title at the left. Tell the shildren'that they are to draw a ring around the sum winch names 7. Do the same for the title at right. Tell the children to wee their objects to find the set when they need to.

Pages. 198-200:
Ave each child ε set of 10 objects to use to find the differences. on those pages, the pupils are to ring the differences that name the number listed at the top of the page. Use the same procedure as on pages 196-1y1.

Which are equal to 7 ?
$3+4$
$4+4$
$8+1$
$2+7$
$5+3$

$9+0$
$1+8$
$2+5$

Which are equal to 8 ?
$7+$

$5+2$

$6+2$
$3+5$
$4+3$
$5+4$
$1+6$
$4+4$
$8+0$

Which are equal to 9 ?

$$
\begin{aligned}
& 8+1 \\
& 8+2 \\
& 5+4 \\
& 2+6 \\
& 3+6
\end{aligned}
$$

$$
10+10
$$

$$
1+8
$$

$$
7+2
$$

$$
9+0
$$

Which are equal to 10 ?
$6+2$
$5+5$
$4+5$ $2+8$
$3+4$
$3+7$
$0+9$

(1)

Which are equal to 5 ?

$$
\begin{aligned}
& 6-1 \\
& 9-3 \\
& 8-3
\end{aligned}
$$

$$
4-2
$$

$$
10-8
$$

$$
9-4
$$

$$
6-2
$$

$$
5-0
$$

$$
8-1
$$

Which are equal to 6 ?

$$
7-2
$$

$$
10-4
$$

$$
9-1
$$

$$
6-4
$$

$$
8-2
$$

$$
5-4
$$

$$
7-1
$$

$$
10-2
$$

$$
7-4
$$

Which are equal to 9 ?

$$
7-4
$$

8-6
$\frac{10-1}{6-5}$
$8-7$
$9-0$
10-5
9-9
8-4

Which are equal to 10 ?

$$
\begin{gathered}
9-2 \\
10-10 \\
7-5 \\
8-1 \\
9-5
\end{gathered}
$$

$$
10-0
$$

$$
8-6
$$

$$
10-4
$$

$$
9-4
$$

Page 201:

Direct the pupils to color the box after 7 , red; after 8 , blue; and after 9 , yellow. Now give the directions: Ring all nemes for 7 in red, all names for 8 in blue and all names for 9 in yellow.

Names for Numbers

,7-3. ADDITION AND SUBTRACTION ON THE NUMBER LINE.
OBJECTIVE: To extend the children's understanding of addition and subtraction by using the number line.

VOCABULARY: (No new words.)
MATERIALS: (Possibly, construction paper for number line.)

SUGGESTED PROCEDURE

PRE-BOOK ACTIVITY:

ADDITION:

The number line (which was introduced in Chapter 2, Section 2) may be used as an ald in addition and subtraction.

Review carefully the fact that the numeral on the line shows the number of jumps from the starting point, 0 .

Find the point on the number lane which shows that you have taken
8 jumps from the starting point, 0 .
Find the point which shows that you have taken $\{$ jumps, from the starting point, $\underline{0}$.
Find the point which shows that you have taken 3 iumps and then $\underline{2}$
gumps, from the starting point 0 .
If this is difficult, ask a child to poiat to the place un the number line which shows that he has taken j jumps from the starting point. Use a pointer or pencil to indicate the point on the line. Ask him not to go back to the starting point but tu take two more jumps. (It may be helpful to think of this as a "stop for a rest". A number line dram on the floor can be used if necessary to dramatize this idea.)

Now that you have taken $\underset{\underline{y}}{ }$ jumps and $?$ jumps from the starting point,
where are you on the number line? (',.)
This tells us that three plus iwo equals five.
Write the equation, $3+2=5$.
If. We have a word problem, we can solve it un the number line if we
know the number: which we want to add.
Jerry had 5 books
He bought 2 books
How many books does he have?
What is the numiser of books which Jerry had to begin with? (\%.)
11.

Ask a child to take the same number of jumps from the starting point on a number line as the books Jerry had.

How many books did Jerry buy? (2.)
Ask the child to take that many more jumps on the number line, this time starting at 5 .

What is the number of jumps that you have taken? (7.)
We wanted to add 5 and 2 .
When we take those numbers of jumps on the number line we find that we have taken I jumps.
The set of 5 books and 2 books, if joined would be the same number of books. Thus, $5+2=?$.

- subtraction

Draw a number line on the chalkboard. Write the eqatuion, 6-2 $=$ \qquad .

To complete this equation we must first take six jumps on the number , line.
Start at 0 .
Ask a child to io this and either to mark the point where he stops or to draw the curve which shows the number of jumps.

To solve the equation, we must subtract $2 \underline{\text { from }} 6$.
On the number line, this means we will have to go back $\underline{2}$ jumps.
Ask a child to touch the point which shows where you would be if you went back 2 jumps from 6. Draw the curve which shows you have gone back 2 jumps.

Where did we stop this time? (4.)
When we went 6 steps forward and back 2 steps we stopped at 4 . This is one way of showing that 6 minus 2 equals 4 .
It may be necessary to use a line which is drawn on the floor for the first work with subtraction on the number ane. This would enable children to - take jumps forward and then to come back on the number line.

Some children have difficulty using the number line to complete equations because they are confused by the numerals at which they are look while tney count the second set of jumps.

Two ways to use the number line are given here. You may want to develop one to a great extent and exclude the other or try to use both of the ideas suggested.

Make a number line on a piece of cardboard or oaitag $12^{\prime \prime} \times 36$ ". This should be large enough for ail children to see. Fold the top of the paper to cover the numerals.

Place a pencil on the starting point (Figure i). (0.) Take jumps on the number line which correspond to the set to which another set is joined in the problem. (Some children will make one jump at a time (Figure 2) while other children will go to five in one jump (Figure 3).)

Move the pencil to that point. Some children may need to move the pencil as they take each jump. Keep the pencil on the last point and unfold the page. The yencil will be on the point which tells the total number of jumps. (Figure 4)

USING THE PUPIL'S BOOK, pages 202-205:
These pages have been designed to use in this way:
Some children may leave tne page unfolded to find the point which shows the number of the first set, then fold the page and take jumps which correspond to the second set and open the page to find how many jumpis in all. Children who are not confused by the numerals and can use the fage without needing to fold it should be encouraged to do so. Euttraction is developed by finding the number of members in the set described and relating the removing of a subset to moving to the left on the number line. This page may be helpful in solving other word problems or incomplete equations such as $3+2=$ \qquad - Pages in the pupil's book should not be used unless children have had enough experience with this number line to use it independently and without difficulty.
2. Draw a number line on the chalkboard.

Write an equation, $3+2=$ \qquad .

Place the chalk on the starting point. Ask a child to put a finger on the point which tells the number of jumps corresponding to the number of the first set. (The child should touch 3.) Draw a curve from the starting point to the point the child is touching.

Now, using 3 as the starting point ask where 2 more jumps would take us. (Child should now touch 5.) Draw a curve from the 3 to the 5. This represents the second set of jumps.

The point where the last, curve ends tells the number of jumps and enables the children to complete the equation.

Fold until edge covers numerals, but not dots.

Complete the equations.

$$
\begin{array}{ll}
2+1=3 & 5+3=8 \\
5+1=6 & 2+4=\square \\
1+5=6 & 1+6=7 \\
1+2=3 & 3+4=7
\end{array}
$$

: Fold until edge covers numerals, but not dots.

Complete the equations,
$3+2=5$
$1+7=8$
$6+2=8$.
$4+5=9$
in
$4+2=6$
$3+5=?$
$2+5=7$
149
$4+3=7$

Fold until edge covers numerals, but not dots.

$$
\begin{array}{ll}
5-3=\square & 9-7=\square \\
8-5=6 & 6-1=5 \\
7-2=4 & 5-2=3 \\
8-2=6 & 8-2=6
\end{array}
$$

Fold until edge covers numerals, but not dots.

Complete the equations.
(2)

Pages 206-208:
These pages are designed to be used in this way.
Heavy plastic taped over cardboard on which a number line has been drawn can be useful as an aid to independent work. The child can mark with a crayon the curve which shows the jumps he has taken and then remove the mark with a paper towel and use the same number line again.

Use the number line to help you complete the equation.

$$
1+3=4
$$

$$
2+1=3
$$

$$
8+1=9
$$

$$
4+5=9
$$

1.j)

Use the number line to help you complete the equation.

$$
3-1=2
$$

207
$13:$

Use the number line to help you complete the equation.

208
15.

7-4. HOW MANY MORE?

OBJECTIVE: To find how many more members there are in one set than in another set.

VOCABULARY: (No new words.)
MATERIALS: Material, such as apples and lemons for flannel board display, flannel pairing symbols, two sets of numeral cards (sandpaper or flannel strips on the back of the card will make: stay on the flannel board).

BACKGROUND NOTE:

Recall that when given ${ }^{\imath}$ sets, A and B, A has more member than B if, when the members of A are paired with members of B, there are members of A left over. In this lesson, we continue development of this idea by using subtraction to find how many more members there are in the first, set. We say there are 2 more members in a set of 5 than in a set of 3 because, if we pair members of the set of S with members of the set of 3 , there are 2 members left over. We also say there are 2 fewer members in the set of 3 .

SUGGESTED PROCEDURE

PREBOOK ACTIVITIES:

Place a set of 3 apples and a set of 5 lemons on the flannel board. Arrange the members of these sets in such a way that it is obvious without doing the actual pairing the one set has more members than the other.

Which set has more members? (Set of lemons.)
How many more? (2.)
Could you answer this question without counting all the lemons? (Yes.)
How did you do this? (You can see this is so. If you paired, all the
apples would be paired with lemons, but there would be 2 lemons
left over.)
Agree and then ask a child to show the pairing with the pairing symbols of with yarn. Explain that we say that there are 2 more because, if we remove the subset of lemons which matches the set if apples, the remaining set has 2 members.
voulunie the same procedure with sets of' l and '3, 7 and 10 , etc., until you are certain that the children understand the technique.

USING THE PUPIL'S BOOK, pages 209-212:
Read the questions on these pages to the children. Ask the children to first find out huw many members are in each set and then recurd the numbers. Then ask them to pair the members of the set on the left wi.th the members of the set on the right. They are then tu decide which set has more members and how many more.

Comparing Sets
How many?
How many?

Comparing Sets
How many?

210
15.$)$

Comparing Sets

How many more?

211

Comparing Sets

212
1%

- You should follow the work on pages 209-2l2 by asking how children compared the sets. If no one suggests writing the equation rather than pairing the members of the sets, consider each set of exescises and develop the equations. Hopefully, the children will be able to see that it is not necessary to use the second set if its number is known. It is sufficient to remove a subset which is equivalent to the second set from the set with more members. Consequently, for the first exercise on page 207, we can write $6-4=2$.

If this seems difficult, provide each child with set objects. Use the technique suggested below and word problems such as:

$$
\begin{aligned}
& \frac{\text { Mary }}{\text { has }} \frac{5}{\text { Jane has }} 4 .
\end{aligned}
$$

- Which girl has more apples?

How many more?
Ask the children to show a set of 6 objects.
Does Jane have a set of apples that is equivalent to this set? (No.) How many apples does Jane have? (4.)

Ask the children to remove a subset that is equivalent to the set of apples Jane has.

How many members in the remaining set? (2.)
Does this tell you how many more appies Mary has? (Yes.)
Does Mary have $6-4$ or $?$ more apples than Jane? (Yes.)
What is the equation? $(6-4=2$.
We can write a subtraction equation that describes word problem that ask, "How many more?"

Continue in the same way with several other similar word problems.

- PROBLEM SOLVING

Give each child some small objects to work with at his desk. Ask the children to select sets of objects equivalent to objects n the story problems. Notice that the problems differ in the kind of set operation--joining, removing, partitioning. In these problems, children should be expected to find the number tu be used in answering the question and then answer the question. An equation is not expected.

Ty Tom has 6 marbles.

Joe has only 4 marbles.
How many more marbles has Tom than Joe?
Jane has 3 crayons.
Then Mary gave her 5 crayons.
How many crayons does Jane have now?:
Bill had 1 cars.
Jim took $3^{\text {d }}$ of them.
How many cars does 3111 have?
Ann has 3 dolls.
Alice has 8 .
How many more dolls does Alice have?

7-5. PROBLEM SOLVING AND EQUATTONS
ORJECTIVE: Tr uce addition and suttraction to solve simple word prolems, and to find miscine numbers in equations involving additiun and subtraction.

VOCABULARY: (N = new words.)
MATERIALS: Sets of small objects.

BACKGROUND NOTE:

There are several different surto of problems which lead to addition ard subtraction equations.

For example:
One set has 4 membere and a see nd set has 2 mumber.
How many members must $\frac{1}{\square}$ jhin to the first to cet it oct foquivalont t the secun? $(4+\square=7$ or $2-4-\square$.)

A set with 4 members is joined to a
If the set obtained by joinine the tw sets has ; memter:, h a nany members did the first ect bave? ($\square+4=10 \% \cdot-40$.)

A set has - members.
 $(z+\square=$ or $M-i-\square$.
A sot has in membere.
Hix many mombers muit be removed t, ret a oet i _?

 many membere in the meinal set? ($\square-1, \quad$ or $\because+!-\square$.)

SUGGESTED PROCEDURE

- PRE-BOOK ACTIVITY:

equations lIke $\square+4=3$ and $3+\square=8$. Give children an opportunity to explain how they used objects t a aid them in completing the equation.

It 1 s important for children to realize that if they know the number: of members in 3 set and also the number if members in a subset, either a set partition or the removal \because the know subset all enable them t complete the equation. Follow with an equation such as $\quad-t_{r}=\square$. Hopefully, iniliren will generalise that either st the two procedures previ wily discussed can be used to complete this equation. It n 法, ask the children how they would use objects to deecrile this equation. I' removal of a uk set is suggested, demonstrate this procedure n the chnlrboard. Tan an if a set partition could be used in teach. In some ut the children aires ask one of them ts show the vet partition on the chalkboard.

Then consider an equation like $!-\square=$? Devi: a set of $:$ members on the chalkboard.

If you know how many members are in the remainmes sot, dry y y now how to partition this set? (Dew tho profit, n mare oc you sha a Funest ul .)

 wests to and the futhtin. Finally, on minder equation lice $D-5=3$

Du you kn w hor many members are in the subset t w hem, rem? (.) D. you han how member. awe in the remaining set? ('.)
 draw nim nos a n the chalkboard.

What set partition have I represented on the chalkboari? (A subset or 5 and a subset of 2.)
How many members are in the set? (-2 or 7.$)$
What numeral houlu I write in the frame? (?.)
Repeat the same procedure with several sther equations of thic same type. USING THE PUPIL'S BOOK, page 213:

Call the children's attention to the equations in the upper left hand corner. Ask the children now many members are in the set? (i.) Mark ? tallies, ///////, in the \longrightarrow.

How many elements a:e in the remaining jet? (..)
How can we partition this set? Complete the equation $i-4=\therefore$ Children may now work independently on the page.

Page 214:
Call the children': attention the equation in the upper lett hand comer. Ask,

Do you know now many members axc an tho set? (f.)

D) you know huw miny member are in the remaininf set? (2.)

MoN many are in the oct? (.)
Wrie 8 in the frame Childen ork inderenkentiy on the , ther problem:. Pa:2s 215-211:

Pasin il:

Show the partition.

$7-$ - $=3$

$5-\square=4$

6-团=2

9-3-6

8-5 = 3

$10-7=3$

1:

Show the partition.

(9-5 $=4$

囵-4=6

茴-7=3

Complete the equations.

$$
\begin{array}{l|l}
2 \square+5=7 & 8-5=3 \\
10-\boxed{2}=8 & 6+\boxed{2}=8 \\
7-0=\boxed{7} & \boxed{9}-3=6 \\
1+9=\boxed{10} & 6+2=\boxed{8} \\
0+8=\square & 4-1=\square \\
\hline 4-1=3 & 5-\square=4 \\
9-3=6 & 0+\square=7
\end{array}
$$

Complete the equations.

$$
\begin{array}{l|l|}
\hline 8-2=6 & 10-2=8 \\
3-2=1 & 9-5=4 \\
7-2=5 & 10-4=6 \\
8-3=5 & 7-4=3 \\
4-0=4 & 8-1=7 \\
7-6=1 & 10-5=5
\end{array}
$$

I:

Complete the equations.

$$
\begin{array}{l|l}
3+\boxed{4}=7 & 0+\boxed{6}=6 \\
4+\boxed{5}=9 & 5+4=\boxed{9} \\
\boxed{2}+8=10 & \boxed{5}+2=7 \\
\boxed{8}+1=9 & \boxed{y}+4=8 \\
7+0=\boxed{7} & \left.\begin{array}{l}
4 \\
7
\end{array}\right) 6=10 \\
6+2 & =8 \\
2+4=6 & 7+3=9
\end{array}
$$

Equations

- Next present word problems, to find equations which jescribe the problems, and to name the missing number. Continue to have the children use sets of objects to aris. . the questions.

The following are word problems you may ist.
There are 9 saucers and it cups on the table. How many more cups do we need if we want to put a cup on each saucer? $(4+\square=3$, or $3-4=\square$.) John has 4 cents and Sue has 7 eents. How much must John save to have as many cents as Sue? $(4+\square=7$ or $7-4=\square$.

Mary had two ribbons. Her mother save her some ribbons. Now she has seven. How many did her mother glve her? $(2+\square=7$ or $7-2=\square$.

Tom has six boats. He gave some to Bill. Now Tom has 1 , boats. How mary did he give to Bill? (\% $-\square=4$ or $4+\square=6$.

Ben has 8 marbles. Three are red. The rest are green. How many are green? ($3+\square=8$ or $8-3=\square$.) Mark had three cookies. He ate some on the way to school. Now he has only one for lunch. How many did he eat on the way to school? (3-D=1 or $\square+1-3$.

Karen had three caps. Her friend gave her ive caps. How many caps does Karen have? $(3+5=\square$.)

Jack's father gave him three model rocketis. His grandiather gave him fave. Jack gave one ot them to his friend, Thuglas.

- How inary rockets does Jack rave? $(3+5=\square$ and $\delta-\geq=\square$.

Display an equation on the chalrboard or flannel board, for example, $7+\square=$ 7. Ask the children to make up a word that goes with the equation. Ask the children to make up story prublems, discuss these, and write equations that ge with the stories.

- Tell the following story:

Jack had me toy cars.
M ther gave Jack 2 tcy boats.
Then Jack had I cars and boats.
How many toy cars did Jack have?
Ask the children to show sets equivalent to the sets of toys. Discuss what set operation could be used to find the answer to the question. Ask what equation describes the set operations and have it written on the board. Cuntinue by telline the children the followine stories. In each case, have the children tell what equation they can use to help them sulve the problem.

1. Father had ; rakes and a shovels. How many rakes and shovels did Father have? ($:+2=5$)
2. Beth had 4 new diesses. Muther bought some more new dresses for Beth. Now Beth has t new dresses. How many new dresses did Mother buy for Beth? ($4+2=$, or $0-4-\underline{2}$.)
j. Jack had come red apples. Mary took 5 of them for Muther. 'Then Jack
lid - apples. Hiw many red apples did Jack have to beein with?
$(1-j=2$ nr $2+j=i \cdot)$
3. Mary has 7 sticks : efum. Ann has ?. Mary has how many mure sticks \& gum than Ann? ($?+2=9$ cr $)$ - ? $=2$.)

USING THE PUPIL'S BOOK, pages 219-223:
Fead each of the word problem. alnud t, the children. The pupils should then le directed t, aplete the page by drawing mure object: (:ints ir X_{s}) as needed r whisine oft the subcet which i, removed. The equation which may be ued t. help filp the pr blem iu to be writter on the line. Then . mpleter the centenot.

Solving Problems

1. Sam wants 6 toy cars.

He has 4 toy cars.
How many toy cars must he get?

$$
\because 6=4+2
$$

-

Sam must get._ toy cars.

Problem Picture

2. Pat had 9 marbles.

He gave 5 marbles to Dick.
How many marbles did Pat have then?

$$
9-5=4
$$

Pat had \qquad marbles then.

3. Nan had 6 books.

She got 2 new books.
Problem Picture
How many books did Nan have then?

$$
6+2=8
$$

Nan has
 books then.

Solving Problems

1. Bob's dog had 3 puppies. His cat had 4 kittens.

How many baby animals did Bob have?
$3+4=7$
Bob had 7 baby animals.

2. Mother needs 10 candles

She has 6 candles.
How many candles must she get?
$10=6+4$
She must get \nVdash candles.
Problem Picture $111 \| 1$

(1)

C C
3. Mary had 8 toys.

Tom took 3 of the toys.
How many toys does Mary have now?

$$
8-3=5
$$

Mary has 5 toys now.

Problem Picture

Solving Problems

1. David had 6 toy cars.

He gave I car to Jim.
How many cars does David have?

David has \leftrightarrows toy cars now.

2. Sally has 2 crayons.

She needs 6 crayons.
How many crayons must she get?
$6=2+4$
Sally must get $\frac{4}{\square}$ crayons.
3. Joan had 2 cookies.

Problem Picture
Mother gave 2 snore cookies to Joan.
How many cookies did Joan have then?-
 Problem Picture \cdots $\hat{1}$

1. Jane wants 4 dolls:

Problem. Picture

She has 3 dolls.
How many dolls must she get?

Jane musts get \qquad doll.

2. Susan had 6 cookies.

Problem Picture
Spot ate 2 cookies.
How many cookies does Susan

have now?
$6-2=4 A$

Susan has \qquad cookies now.
3. Jack had 5 boats.

Problem Picture
He made 2 more boats.
How many boats did Jack have then?

Jack had \qquad boats then.

Solving Problems

1. Ann made 10 cookies.

Problem Picture
She gave 3 cookies to Bill.
How many cookies did Ann have then?
$\square 03$
$0(0$
$10-3=7$
Then Ann had $\quad 7$ cookies.

2. Mrs. Lee had 3 hats.

Problem Picture
She got 2 new hats.
How many hats does she have?

Mrs. Lee has \qquad hats now.
3. Mother baked some cakes.

Problem Picture
She gave 4 cakes to the church.
Then she had 2 cakes.

How many cakes did Mother bake?

$$
4+2=6
$$

Mother baked 6 cakes.

7-6. ADDITTION AND SUBTRACTION: NMMBERS GREATER THAN TIEN
OBJECTIVE: To begin the suay of addition and suotra:tion of mumers greater than ten.

VOCABULARY: (No new words.)
MATERIALS: Sets o* small objects for countinf.

TEACHING NOTE:

This lesson contains a sample presentatson $n f$ qudition and subtraction of numbers named by 2 -digit numerals. The tianer may rursur this as far as seems approp:iate with her class.

SUGGESTED PROCEDURE:

Billy's family is going on a pacriz. Hos motho put ten cookies in the basket. Billy rut merinty mur. . How mam cookles are in the baskct?

We can add the number of coukies that Biliy p.t in the basket to the number his mother put in the basket th find the number of cookies. We would write the equation $10+0=$ \qquad .
To complete the equation, we need wid the mabra. It may help us to think of the number of trins in iC anair .C.

How many tens are in ten? (1.)
How many tens in thirty? (j.)
If we add 1 ten and f tens, fow man ters wil! we na.: (4.) What do we call 4 tens? (Forty.)

When we adu 30 to 10 , we have th; we wrert tee the equation $10+30=4+0$.

If nesessary, bundles of ten obje:ts easi in ula be avillatle t une as an aid in solving these problems.

Develop the following problems in the same way:
Jerry and his friends caught to fish ori Moriay. The n x^{+} day they caught 10 morf. How mary tisk jur they crithe in che two dajs? $(40+10=50$.

Aide had $=0$ pennies. Hor mother gave her 20 mure. How many pennies does Alice have now? $(0+20=40$.

Car ı had 20 plastic sars and 00 trucks. He took these car and trucks to Bjo^{2}, hui ti play. How many toy did he take? ($0+0=; 0$.)

These problems involve removing a subset:
Steve had 0 marbles. He traded 20 marbles for a kite. H many marbles aid ho keep? ($0-20=0$.)
fin has to dreszaz fir he: paper din. She lett 10 of the dresses at Mary' $=$ house. H is many dresses ines she have u, play with at home? ($10-10=, 0$.

John has 40 pencils. itu eave 20 t has brother Jerry. H w many pencils doe J hr nave n? (40-20=20.)

- Place tin sets un small bjeats na tai in. D n, tell tr number f eject. in each set.

Ho can we find hum many rejects we would have if wo joined the ceto? (Pupils will surest that they could 3 in the rets and then count all the objects. This procedure should the be i flowed.)

Place two ne; sets or rejects on the table. Now tell the children the number of miners in each set as y u place them on the table. (B ere sur t joining the set, of ones will result in a set not more than , ones.)

This set has 22 members.
We will join it t a set with jet members.
How many objects ave in our new set?
Can we find the number of members in our new set without counting each member?
Remember, ru know the number member: in each of the sets.
Pursue suggestions that children may dive. if pefully, omeone will suggest that ines $22=2$ tent +2 ones and $;=3$ tens $+\cdots$ es, we may add the n mber if ones and then the number of tens. The sun is \quad. If no one fifers this suggestion, ask:

It "- arrange this set If 2 members in set: of tens and mes, how many tens will we have? (.)
And how min tu hes? (\quad.)
 sets if ten will w have? (..)
And how many mes? (.)

Demonstrate that these answers are correct by arrangins the st of and the set of $j 0$ in sets of tens and ones. J in the set $\sigma A^{\prime} b$ one to the set of 2 ones.

How many sete oi pnes do we have non? (\quad.) Join the set of ; tens to the set of 2 tenu.

How many tens 2 n all? (.)
We have \because tens and $\xlongequal{\ell}$ ones.
at is the name of the number? ($9,5$.)
How many memoers are in the set? (-9.)
Show children an envelope. Tell ther that inside 1 a set t eticis. Show them another envelope. Ihis one ha: 2, sticks in it. Ack the chiliren if they know the number of sticks we wow : have if we joined the set uf 2 . sticks to the set of 4.5 sticks. If n ne alaceste addan; ? t. 4 , offer this idea.

How many tens are in ty? (1.)
And how many ones? (. .)
How many tens are in 2 ? (..)
And how many ones? (s.)
If we add 3 ones to 5 ones, what is the number f nec? (.)
On the chalkboard, write ' ones + ; ones $=$ ' ones.
If we add 2 tens to 4 tens, what is the numver if tenc? (.,)
On :ar chalkboard, write 4 tens +2 thn $=$ ten..
We have 6 vens and 8 ones in all.
How many sticks are in the envelopes? (.-.)
Arrange the sets into tens and nes. J in the s ts f une and then the seto of ten to check this work.

- Piace a set of objects on the table. In not toll the number -i' f nber:.

If I remive $\underline{2 l}$ members of the se , what will be the number it memers
 urier t find cut.)

Place ansthor wet m the table. Arrange the set as 4 tens and 8 ones.
This set hac 48 members.

How many abjects are in the set that remanc? (Remore 1 one from
3 ones.)
What is the number of shes remainme? (\because ones.) (Remove a tens from
is tens.)
What is the number if tens remaining? (- tens.)
The remaining set has $?$ tens and $?$ ones.
What is the number of membere in the remaining set? (27.)
Show the chlldren a box. Tell them that inside the box are 97 beads.
İ I remove 44 beads, how many beads will be left in the box:
Tell the maldeen we :an numbers to sind the number of members in the remaining set. We a_{i} this by subtractine 34 from !?.

How many tens are in 57? (\%.)
And how many unes are left? (\%.)
How many tens are n n 34 ? (j.)
And how many nos? (4.)
If we subtract" 4 ones from ines, how many ones are left? (..) On the nhaikbarsa write ! ones -4 ones $=$; ones.

If we subtract - tens from \because tens, how many tens are left? (2.) On the chaikbcard write ; tenc - ; tens $=$ a tens.

We have $?$ tene and \underline{x} ones in the remaining set if we have subtracted
the numbers correctly.
H w many neads are the remaning set? (2..)
Remove the set or j^{4} beads from the set wi, 7 beads. C iunt the number of member in the remaining set in order t, check this work.

Chapter 8

ARRAYS AND MULIPIPLICATION

BACKCROUND:

A rectangular array is an arrangement of okects into rows and coiumns. The obects in an array are cailei its members. Shown below is an array of 3 rows and 5 colimns. Note that each of the 3 rows has the same number of members (5) and smmilirly, each of the 5 columns has the same number of members (3).

x	x	x	x	x
x	x	x	x	x
x	x	x	x	x

The objects neea not be all alike. Here, for instance, is an arra: of 2 rows of 3 members eacn, all uafferent.

The rectangular arrangements of flannel doard objects, llocks on the floor, urawers in a cabinet, panes in a window, compartionts in a urton, etc., may all be described as arrays. If an arrangement of ot, cte in rows does nut have the same number of members in each row, then it - not called an array.

Multiplication is associateu with arrays. When we mutiply 5 bs 3 , for instance, the resuit is assceluted with the moker of membere in an ray of 3 rows of 5 members each. In counting the rumber of memerc in an array of, for example, 3 rows of 5 memi es each, chiluren are le: to count ty rows (5, 10, 15) ant to say, "rhree fives are fifteen." Later there is a tranaition to the statement "riner times f'ive equals fitteen" and to the equation $3 \times 5-15$. However; $1 t$ shoult be notea here that no mister: of multiplication facts 15 expeccei in this grade.

Two simple properties of mitiplication are pointe: out. The first of these is that multiplinge numbers in either oree alway: ilits the sane result. For inctance,

$$
4 \times 5-5 \times 4
$$

Arrays make this very easy t see: when we turn on end an array of 4 rows of' members each, we get an array of \quad 'wis if it members each.

$$
\begin{array}{llll}
\times & \times & \times & \times \\
\times & \times \times \times \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times \times \times \times \times \\
\times & \times & \times & \times \times \times \times \\
\times \ll & \times \times
\end{array}
$$

By sunziderine an ara of just 1 rim ot, say, mamore, we see that
$1 \times j=j$.
Similarly, 1 multiplied $: \mathrm{y}$ any .thule number is that while number. Al .., by conodewne an array is : his fit 1 member cath, in see that $\times 1=$,
and similarly, that any merle number multiplied ry \& 1 . that why l" number.

UBJECTIVE: To introduce the array as a means of providing readiness fo: the concept of multipl cation.

VOCABULARY: Array, row.
MATERIALS: Curting disks, butt ns, beans, or other mall objects; felt cut-outs for flannel board; hundreds-squere paper.

SUGGESTED PROCEDURE

PRE BOOK-ACTIVITY:

Give each child a set of 20 counting disks or otner small objects. Ask 6 children to select 2 of their disks to put into a box in which ynu will collect them. When you have collected the disks, discuss with the elass the fact that you have joined 6 sets, and that the ots were equivalent to each other, each having 2 members. Have a child count the disks in the box to see how many drsks are in the union.

| 0 | 0 |
| :--- | :--- | :--- |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |

Suggest that the disks be arranged in an array, ith 2 in each row, and show that in this arrangement it is possible t, cont by twre. Explain that this kind of arrangenent $2 s$ called an array. It ha; \because rowi with ? members in each ruw. There are 6 sets 2 , and hence $\%$ twos, or 12 members in the array. Explain that the array we will u.e is an arrangement of thangs in rows in which each riw has the same number members and that each member of one row is placed below a menery fthe peceunt : in. Print to arrays of window panes, bulletin borrd pictures, etc., or drak in the chalkboard pictures of arrays of different kinds: 5 riws I^{\prime} it nembere each, 3 ic ot 8 members each, 6 ruws of 5 memicers each, etr., and have children observe huw they knum tney are arrays. Ask chillen to fi, other examples. Punt cht that unless all row have the ame numer firmbers the arrangement is not whed in array. Give examples a aransements that are not arrays.

Keturn the dicks tu the choldren and ask them tu make an array (demonctrate again, if necessary) of 4 whs with 2 members in each an. Ask huw may
members there are in the array. Continu, in the same way, havins other arrays made with 2 members in each row.

Have children make arrays of \quad, mins with ? members in each row, again, and then rearrange the wisks to show 2 rows or 6 members each. Children should be aware that these are arlerent arrayi, but that they have the same number of members.

Repeat, us nn_{ℓ} an array with If rus it 2 members each, and rearranging to form an array with 2 aws of 4 mombers each.

Have zhildren furm an array of 3 rows with 5 members in each row. Ask how they misht 'uunt tu find the number of members in the array. (', 10 , 15.) Draw arrays with $\bar{\sigma}$ or 10 members in each row and have children count by rows to find the number of members in the array. Distrib te hundreds-square paper. Show children how to make lines cr balls in che space: to :orm ariuus arrays of $2,3, \therefore$, or 10 members in each row, ar u direct them. For instance, use red cuyon to shum an array of of mw. whth members in each row. Use blue crayon to show ... Under each array, they should write the number of members in the rray.

x	x	x	x	x	x	x
x	x	\therefore	x	x	x	x
x	x	x	x	x	x	x
x	x	x	x	x	x	x
x)					
x	x					
x	x					
x	x					

USING THE PUPIL'S BOOK, pates an-22:
Children are t : write the number thes, the number of mombers in each rou, and the number t members athe any. P ad each questan the the shildren. Have them white the orrect numeral in the llank.

How many rows?

How many in each row?
How many in the array?

224

How many rows?

How many in each row?

How many in the array?

0

How many res :

How many in each row?

How many in the array? \qquad

ARRAYS

How many rows? \qquad
How many in each row?
How many in the array? 6

How many rows? \qquad
How many in each row? 5
How man in the array? 15

How many rows?

How many in each row?
How many in the array? $\underline{5}$
\qquad

Show on the flannel board an array of 5 rows wath 2 bejecte in each roi. Have shildren tell how many rows there are and how many rjects there are in each row. p,int. to each row in turn.

Are there $\xlongequal{2}$ objects in this row? (Yes.) Then ask/children how many sets of two there are in the arrav. -(.) Have them count by twos in find how many members the ie are in the aray. Write:

$$
\therefore \text { tws are } 10
$$

Show other arays with riws if 2 iojects and repeat, havine children tell how many rows, and how many sets $0: 2$ the array has. Have them count by twos. Write:
\qquad tros are \qquad
Include an array inth 10 , tows with \Rightarrow member in each riw. when
 members in each $x w$, and userve that $\&$ tens are $\therefore 0$.

Have sildren make nrrays with :ows if ajects and ask how many sete of ifive there are, etc. Tren mirite:
\qquad river are \qquad -

D, the same ine rows it membere tava
USING $14 E$ PUPIL'S BOOK, pases 2.:-2.0:
Children first sunt the vios, then fill in the blanks.

ARRAYS

$$
\begin{aligned}
& x_{2} \sum_{2}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{6} \overrightarrow{2}_{2} \quad{ }_{2} x_{2} x_{2} \\
& { }^{\sigma} z_{2} \operatorname{ing}_{2} i \theta_{3}
\end{aligned}
$$

How many sets of 2 ? \qquad 4 twos are \qquad .

ARRAYS

How many sets of 3 ？ 3
\qquad threes are \qquad ．

务务务务务务务务务

ぶ心

How many sets of 4 ？ \qquad
\qquad fours are \qquad ．

ARRAYS

ARRAYS

25
元药
是是
主定里 2

$Q_{252} \quad Q_{2} 2 \underline{2}$
How many sets of 5 ？ \qquad
2 fives are
15 ．

重番采掌

How many sets of 5 ？ \qquad
5 fives are

25 ．

8-2. MULTIPLICATITCN
OBJECTIVE: To introcuce the iuea of multapiacation, ucing arrays.
VOCABUIARY: Multaply, multiplication, timec.
SMMBOL:
MATERIALS: Feli cut-outs fCr flamel voaru; sev of :ounting disks or other small objects; paper bae.

SUCGESTED PROCEDUTE

PHE-BOOK ACIIVITIES:

Tell the following story.
Mrs. Brown was getting reauy for a pienil.
Eight peovle were going, and she wanted to take two wokies for each person.
She put the cookies into a box, two at a time.
I'll pretend to be Mre. Brown and use these circular reginns as cookies.
Fut the circular rections on the flanmel board two at a time. As you do so
count: "One persor, iwo people, thre people, etc."
How many times du I put 2 iisks on the flannel kour:? (8.)
Is this arrangement an array? (yes.)
How many rows in the array? (8.)
How many members in each row? (2.)
low many members in the array? (16.)
mere is an equation that uescribes this array. Write:
$8 \times 2=16$.
We reau this itatement: 8 times $\underline{2}$ equals 16.
Does this equation tell us that 8×2 iw another name for 16 ? (les.)
Letls count by twos to be sure that is correct. Two, four, ete.
Provide each child with blocks, disks or otier set material. Write
$5 \times 2=$ \qquad on the chalkboard. Have the chiluren use set objects tc make the array suggested.

How many memoers in each row? (2.)
How many rows? (5.)
How many times did you place 2 disks on your desis? (5.)
Iet's eount by twos to finc the number of members in th.e array. 'TWC, four, ... ten.

What numeral should I write to complete the equation? (10.)
Is 2 times $\underline{2}$ another name for 10 ? (Yes.)
Continue with the following word problem.
Suppose you earned 5 pen:ies each school day this week.
That would be Monday, Tuesday, Wednesday, Thursday, and Friday. How many times would you have earned I pennies? ($\%$.) What is 5 times. $\underline{2}$?
Have the children use disks or other objects to form an array and find out. Ask what equation would describe this array. Writo the equation on the chaḷkbperd. \quad

Is 2 times 2 another name for $\underline{2}$ (Yes.) Direct the children to use an array to solve the following problem:

A man has \vdots ponies, and they a \quad l need new shoes.
He wants to know how many shoes will be needed.
How many shoes for each pony? (4.)
How many ponies are there? (5.)
The number of shoes needed will be equal to 2 times 4 .
Write $5 \times 4=\ldots$ on the chalkboard. Have the children use their set objects. They should put 4 disks in a row to show how many shoes the first pony needs, 4 disks in another row for the next pony, etc., t, learn that 5 times ' 4 equals 20. Complete the equation.

Is 5×4, another name for 20 ? (Yes.) "
When we say 5 times 4 equals 20 , we are MuImiplyins.
In MULPIPLICATION, we multiply one number by another.
Go directly proplems of the form: what is times '? Restate the problem in several ways: Three fives are ___? If an array has 3 rows, and each 10 has 5 memuers, how many members are in the array? Have children use disks or other objects to help them answer the questions. Write the equation on the chalkbcard and compli,te it when the children have found the product.
USING THE PUPIL'S BOOK, pages 231-233:
Chilaren whe thake rings in spaces to furm arrays as indicated. They will wite the numeral that numes the number of members in the array in the blank. Do the first exercise to demonstrate what is to be done.

Show

Multiplication

Show 5 rows of 5 .

Show 3 rows of 4 .
436.

Multiplication
Show 5 rows of 10 .

Show 6 rows of 2.

TURTHER ACTIVITIES:

Use word problems such as the following to deepen understanding of maltiplication. Read each story to the children. Insist tha they use nanipulative materials or draw arrays to solve the problem. Write the equation to be completed on the chalkboard. For example, $6 \times 3=$ \qquad .

1. Mother washed 5 pairs of stockings. How many stockings did

Mother wash?:
2. On Mary's street there were : houses. In each of the houses lived 3 children. All together fow many children lived i.t the ; houses?
3. Joe ate 3 apples each day. In 4 days how many apples did Joe eat."
4. Tom hit one home run in each of 3 games. How many home runs dia - he hit all together?
5. Beth ate 2 cookies each day for . 2 days. How many cookics did Beth eat?
6. David put 1 butterfly in each of 5 jars. How many butterflies were in the 5 jars?
7. Each of the girls had 4 dolls. How many dulls would $\frac{3}{2}$ of the girls have?
8. Mark got 3 new books each week for 2 weeks. How many new books did Mark receive?
9. Jim polished 4 pairs of has father's shoes. How many of his father's shoes dia dim polish?
10. Bob had several boxes of toys. Each box had 2 toys in it. How many toys were there in 3 of the boxes?

8-3: SIMPLE PROPERTIES OE MULTIPIICATION

OBJECIVE: To use arrays to show the commutative froperty ut multiplication and the multiplication property if 1 .

MATERIALS: Manipulative objects fur emidren, pictures of arrays on tagivarid or construction paper as shom:
SUGGESTED PROOEDURE:
\qquad $5 \times 4=$ \qquad

PRE-BOOK ACTIVITIES:

Show picture A to the slass. Have the array described. (3 rows with 2 members in each row.) Ask children to count by twos to find wnat y times 2 is, and write:

$$
2 \times 2=
$$

Turn the picture to show 2 rows of $;$ members eacin.
Have the array described and ask children to count by rovs. (i, o.) Write:

$$
2 \times 3=0
$$

Show pictures B and C in the same way. Have children use objects and make arrays of 4 rows of 3,3 rows of 4 , etc., so that they see that exactly the same number of objects, are used to make the arrays. Help children to generalize that one number times o second number gives the same result as the second number times the first.

Show picture D. Have the a: ray described (: rows with 1 me., ier in each row.) Ask how children will count by rows. (By ones.) Write:

$$
\therefore \quad \because^{\prime} \times 1=9
$$

Turn the picture to show the ar.ay as 1 row of $;$ members. Have the array described, ask children what they, will say is they count by rows. (..) Write the equation: $1 \times 3=3$. Draw other arrays either in th 1 row or with 1 member in each row, and help children tu generalize: . any number times 1 is that number, and 1 times any number is that number.

Show the chart and have children read the equations at the left. Read the first one. Ask which equation tu the left gives the information needed to complete $5 \times 1=\ldots . \quad(. \times 5=`$.$) Use cray !$ or felt, pen to wite ; and to draw a line between the sentences that show commutativity. Complete the. chart in this way.

USING THE PUPIL'S BOOK, pages 2 24-2;6:
Children are to complete each equation. They should tiserve that exch pair of boxes shows commutativity.
Pages 237-23 $\dot{3}$:
Children should be able t use their understanding if commutativity and of multiplying with 1 as a facture. Provide each child with set ejects to aid them in empletine the equations on page $2: 3$.

Multiplication

Multipligation

0	0
0	0
0	0
0	0
0	0
0	0
12	000000
$6 \times \underline{2}=\underline{0}=\underline{12}$	

235

Multiplication

$\ddot{2}:$

Multiplication

ㅁㅁㅁㅁ
\square
ロ \square \square \square ㅁㅁㅁㅁ

$$
\begin{aligned}
& 3 \times 5=\frac{15}{15} \\
& 5 \times 3=15
\end{aligned}
$$

 © AXAXAAAAA $\quad 10 \times 4=40$ - AAASAAAAB पA A A A A A A A

$$
\begin{aligned}
& \begin{array}{l}
00 \\
00 \\
00 \\
00 \\
00 \\
00 \\
00
\end{array} \\
& \begin{array}{l}
2 \times 7=\frac{14}{14} \\
7 \times 2=1
\end{array} \\
& 4 \times 5=20 \\
& 5 \times 4=20
\end{aligned}
$$

Multiplication

$4 \times 5=20$
$5 \times 4=20$
$5 \times 1=$

Chapter 9

PARTITITONS AND RATIONAL NUMBERS

BACKGROUND

Meaning of the whole numbers is developed by observing collections of - equivalent sets--sets whose members can be paired so that a one-to-one corresponderce is established between the member's of any two sets in the colleation. The property common to the sets below and to all sets whose members can be pla ed in a one-to-cne correspondence with the members of any one of these sats has the number property, three.

The purpose of this chapter, is two-fola. Children learn to partition sets of objects into subsets, and first understandings of the rational numbers of arithmetic are developed by partitioning sets of objects and regions into equivalent parts.

First, sets of objects are partitioned into subsets of a given number of members, and the number of subsets identified. For example, we ask, "How many sets of 5 are there in a set of 20?" We partition a set of 20 into subsets of 5 members each. We note that there are 4 equivalent subsets. We can think of these subsets as forming an array of 4 rows of 5 .

Next, sets of objects are partitioned into a given number of subsets, and then the number of members in each of the equivalent subsets is identified. For example, we ask, "If 20 players are divided into 5 teams with the same number of members on each team, then there are how many members on each team?" Or, "If there are 24 cookies to be shared among 6 children so that each child has the same number of cookies, how many cookies will each child receive?"

2!:

Following this; sets of objects are partitioned into equivalent parts and the number of parts are identified. Regions are partitioned into equivalent parts--parts that fit exactly, and the number of parts identified. No number is associated with these parts of a set or region.

Then, physical models are used in developing understanding of the rational numbers, $\frac{1}{2}, \frac{1}{3}, \frac{2}{2}, \frac{2}{3}$, and $\frac{3}{3}$ Consider each of the following as a basic unit:

The property sommon to each of the shaded parts of the unit is the number which can be represented by the fraction, $\frac{1}{3}$, and named "sne-third". Consider each of the following as a kasic unit:

The property common to each of the shaded parts of the unit is the number which cen be represented by the fraction, $\frac{1}{2}$, and named "one-half".

Similar models are used to develop understanding of $\frac{2}{2}, \frac{2}{3}$, and $\frac{3}{3}$. For example, the rational numbers associated with the shaded areas of the physical models below (each representing a unit) are

$\frac{2}{2}$

$\frac{3}{3}$

$\frac{2}{3}$

Finally, simple problems such as the following are considered:
If 10 cookies are distributed fairly to just 2 children, how many cookies will each get? A set of 10 is partitioned into 2 equivalent subsets to find how many memoers each will have. Thıs leads to the statement,

$$
\frac{1}{2} \text { of } 10 \text { is } 5
$$

The statement

$$
\text { " } \frac{1}{2} \text { of } 10 \text { is } 5 "
$$

is illustrated by a 2 by 5 array marked in this way:

where we are interested in only one of the two rows and its relation to the entire array.

In a similar way we arrive $a^{ \pm}$the statement

$$
\frac{1}{3} \text { of } 12 \text { is }
$$

by asking a question as,
If 12 cookies are distributed fairly to 3 children, how many cookies will each get?

The number, $\frac{1}{3}$, is associated with the ringed regions in the array if the array is regarded as 1 set. There are 4 objects within this ring.

9-1. FARTITIONING SETS INIO EQUIVALENT SUBSETS
OBJECTIVE: To partition sets into equivalent subsets of a given number of members.

VOCABULARY: (Review) partition, equivalent.
MATERIALS: A set of 16 disks or other smail objects for each child;
A set of 16 disks to be used on the flannel board.

SUGGESTED PROCEDURE

PRE BOOK ACTIVITIES:
Place a set of 12 disks (or other small objects) on each child's desk. Ask each child to find out how many objects are on his desk.

Each of you has twelve objects on your desk.
I have twelve disks on the flannel board.
Now pull 4 members of your set to one side of your desk. (You should do likewise with the materials on the flamel board.)
What do we call this part of the set? (Subset.)
Have children continue to pull subsets of 4 members each to other positions on their desks. (As they do this you separate the objects on the flannel board intc subsets of 4 members each.) Ask children to make as many subsets with 4 members as they can.

How many subsets do you have? (3.)
Does each subset have 4 members? (Yes.)
Do we have 3 fours in our starting set? (Yes.)
We PARTTIONED our starting set into 3 subsets with 4 members each.
Have chjldren put all disks into one set again and then partition the set into subsets with 3 members each, using the same procedure as above. You follow a similar procedure with the objects on the flannel board. When 4 subsets of 3 have been obtained, ask the following questions:

You partitioned your set of 12 members.
How many subsets do you have? (4.)
How many memiers in each subset? (3.)
Do you have 4 threes in your starting set? (Yes.)
Use the same procedure and partition the set of 12 into subsets of 2. Say " 12 is 6 twos." Partition the set ints subsets of 6 . Say, "12 is 2 sixes."

USING THE PUPIL'S BOOK, pages 239-240:
Chillren-should first tell how many objects are in the picture. They complete the first sentence. Then, they should ring sets, as indicated, and tell how many equivalent subsets there are.

Pages 241-242:
Not only do children tell how many objects in the picture and the number of equivalent subsets of the given number of members, but they also relate the situation to multiplication language.
FURTHER ACTIVITIES:

1. Have children put 8 objects on their desks. Let individual children suggest ways of partitioning. ("Rill, how many things shall we use for our first subset?") If no child suggests it, make sertain that sometime during the period it is noticed that a set of ρ can be partitioned into subsets of $?$ and into subsets of 4. Also, if not suggested, ask children to partition the set into subsets of 1 member eaci and into subsets of 8 members each.
wimi wouid iappen if you partitioned your set into subsets of 1 member each? (Then we would have 8 subsets of 1 member each.)

What would happen if you partitioned your set into subsets of 8 members each? (Then we would have just 1 subset of \mathcal{E} members.)
2. Draw sets on chalkboard (balls, trees, kites, etc.) and ask children to draw rings around equivalent subsets of various numbers of members. Use sets of $6,42,9,10$, etc. While one chlld is drawing the rings on the chalkboard, the other children can make a similar set or their desks and show the subsets by moving the objects.

Partitioning

Partitioning

Partitioning

There are 15 trees.
Ring sets of 3.
There are 5 sets of 3 .
15 is 5 threes.

Partitioning

There are $1 \not \nsim$ houses. There are Z sets of 7.
Ring sets of 7 .
$1 \not \subset$ is 2 sevens.

Place a set in cojecte on the riannel biard. Aix a child t tell how, many cijects are on the flamel board. Then ask a child t. partition the set into sets of fcur. Obsorve that there ace, i, et. of foum in a set wixteen.

We know that there are fuur members in each in these subset.:. How can we a:range the objects so it would be easier to ee that thore are 4 bjects in each set?
If chitaren do no suggest an array, thon ask a chith to stow how these 4 sets of 4 can be arranged in an array.

We know that if there are 4 in the firot Row and the ther riws. are the same, then each row ias 4 members.
We can make a set of 20 intu an array having 4 rows and 4 members in each row.
 Hw many fous are there in 16?
We see that if is \ddagger fours. .
Fepeat this procedure, partitioning a set $\dot{\theta}$ io into subsets e i by armanting the objecte in on array so that each row has 2 mem! ra.

How many rows do we have? (3.)
Have the set of 1 li arranged in rows of a members ench.
How many rows do we have? (.z.)
Have the set of be arranged in rons with 1 member in each row, etc.
Distribute suunters (disks, buttons, etc.) Ask chilitren to show an array to find how many sets of , there ane in a set of 9 .

Continuing the same way ghave the children find hor many row of 7 members each will be in an ariay of 14 members. How many rowi, of 5 members each will be ir an array of 10 members? etc. \cdot

USING THE PUPIL'S ZNK pages $243-244$:
Onild:on are to complete the starting set as indicated. They may draw similar objects or use rings or $X^{\prime} s$. Then they complete the sentences.

Partitioning

Partitioning

Show 8° boxes. :
Have 2 boxes in each row.

There are f boxes.
 is \qquad twos.
$8=$ \qquad \times $\times 2$

Show 15 boxes.
Have 5 boxes in each row.

$$
\begin{aligned}
& x \times x \times x \\
& x \times x \times x \\
& x \times x \times x
\end{aligned}
$$

There are 15 boxes
\qquad
1δ is \qquad fives.
$15=3 \times 5$.

Show 12 boxes.
Have 3 boxes in each row.

$$
\begin{aligned}
& x \times x \\
& x \times x \\
& x \times x \\
& x \times x
\end{aligned}
$$

There are 12 boxes.
$1 \sum$ is $\angle t$ threes.
$12=\underset{\sim}{\neq} \times 3$.

Show 12 boxes.
Have 4 boxes in each row.

$$
\begin{aligned}
& X X \\
& X X X \\
& X \\
& X
\end{aligned} X X X
$$

There are $/ 2$ boxes.
12 is 3 fours.
$12=3 \times 4$.

9-2. PARTITIONING IPFIO A GIVEN NUMBER OF EQUIVAIENT SETS

OBJECIIVE: To partition a set into a given number of equivalent subsets. VOCABULARY: (No new words.)

MATERTALS: A set of ló counters (disks, buttons, etc.) for each child; a set of ló disks to be used n the flannel board.

SUGGESTED PROCEDURE

PRE-BOOK ACTIVITIES:

Present the following problem:
Mary, Sue and Betty have 12 cookies.
They want to share the cookies so that each girl will have the same number of cookies.
How can they do this?
Cnilaren will probably sugest giving one to each girl in turn until all cookies have been iistricuted; "passing them out" until all are gon?. Explain that we must see that eash girl gets the same number of cookies.

Let these disks represent the cookies.
fiw many shall we put on the liannel board? (12.)
Place three yarn rings on the flannol board so that each Eirl's cookies may be placed inside the ring. Remove a subset of $;$ from the set of 12 and place a cockie inside each ring. Cnntinue this procedure until no more subsets of 3 can be removed from the starting set. Ask how many cookies each girl will cet. Ask children to deseribe another way of showine the $;$ subsets. If they do not suggest putting the disks in rows, subgest that re put the disks in three rws. The first row then shows the cookies that Mary get., the second row shows Sue's cookies and the third row shows Botty's cookies.

Acain, remve a sur-ot of $;$ from the starting set of 12. Place the disks as the first member in each if 3 rows, as,

Romove a sec ni subset if and place a dasis in each of the 3 $r \cdot$. Continue until the 4 subscts, have been removed.

If children do not observe that an array has been made and that It is easy to see that each row has 4 members, ask them to tell how many rows and how many memiers in each row.

Let us complete this sentence (which you write on the chalkboard)

12 is three \qquad 's.

Discuss the fact that making an array helps them to find out how many cookies each girl receives. (4.)

Have children use objccts on their desks to find out how many members in each set if a set of 10 is partitioned into 2 equivalent subsets. When they find the answer, then write:

$$
\begin{aligned}
& 10 \text { is two } 5 \text { 's. } \\
& 10=2 \times 5
\end{aligned}
$$

Continue with several other problems, such as, a set of 12 as 4 subsets of how many members, a set of 8 as 4 subsets of how many members, a set of 3 as 3 subsets of how many members, a set of 14 as 2 subsets of how many members, etc. To solve these problems and similar problems children should use objects.

USING THE PUPIL'S BOOK, DAEes 245-247:
Children are to first sell the number of objects in the picture. Then they separate the set into the number of given subsets, drawing a ring around each subset or drawing lines to separate the objects into the subsets, and complete the si..cences.

Discuss the first example with the children. For example,
There are apples.
Imagine that three children are to share the apples.
Show the apples each child gets.
Make clear that they are to use all tho objects and that the same number of objects must be in each subset. Instruct them as to how they may show the subsets, as,
.

or

Suggest that they imagine problems for the other pictures, such as, There are 6 blocks. Think of putting the same number of blocks in each of 2 boxes. Show the blocks that go in each box.

Partitioning

There are 6 apples	There are \qquad 6 blocks.
Show 3 sets.	Show 2 sets.
	\square
6 is three 2 's \qquad s.	6 is two 3 's.
$6=3 x$ \qquad	$6=2 \times 3$

There are 4 umbrellas.

Partitioning
There are 12 balls.
Show 3 sets.
12

There are $\frac{10}{}$ rectangles.
Show $5 \frac{1}{\text { sets. }}$

10 is five $\frac{2}{2}$'s.
Shere are $\frac{12}{}$ sets.
Sheles.

ERIC

Partitioning
There are 6 bananas.
Show 3 sets.
There are 8 candles.
Show 2 sets.

6 is three 2 's.
$6=3 \times \underline{2}$.
8 is two
4 's.
$8=2 \times 4$

There are $/ 6$ stars.
Show 4 sets.

16 is four $\not \angle$'s.
$16=4 \times 4$.

There are 12 circles.
Show 2 sets.

12 is two \qquad 's.
$12=2 x$ \qquad .

9-3. PARTS OF REGIONS AND SETS

OBJECTIVE: To partition given regions and sets of objects into two and thr (No congruent or equivalent parts.
VOCABULARY: (No new words.)
MATERIALS: Sheet of yellow and blue paper; rectengular and circular regions and set of objects to be used on the flannel board; drinking straws; and other objects that can be separated into congruent or equivalent parts. A piece of yarn. A set of 12 objects (disks, buttons, etc.) for each child. A plece of string for each child.

SUGGESTED PROCEDURE

PRE-BOOK ACIIVITTES:

Place an "apple" or circular piece of felt on the flannel board.
Herc is one apple.
How can we cut it to have two parts the same size? (If children suggest ways, cut the "apple" according to their directions. ". may be necessary to take another "apple" and try again ir they find that the parts are not the same size.!

Then take one part from the flannel board, holding it in your head so chlldren can see it. Ask,

How many parts are in my hand? (1.)
How many parts are now on the flannel board? (1.) (Feturn the part to the flannel boarci.)
How many equivalent parts in the whole apple? (\because.)
C-ntinue the liscussion by placing a circular region (r rectangular region) on the flannel board--one which has already been cut into 3 congruent parts.

Here is a piece spaped like a circle.
It has already been cut.
How many pieces are there? (3.)
Are these parts all the same size?
How can you tell? (Place one part on each of the others to see if they fit exactly.)
H) 'w many pat t: in the minle piece? (3.)

Then remove two parts from the flannel board, holding them so that the children can see them.

Huw many parts do I have in my hand? (2.)
How many parts are stipl on the flannel board? (1.) (Put the
pieces on the flannel board ngain.)
Now how many pieces are on the board? (3.)
Do we have our starting region on the fiannel board? (Yes.)
Continue the discussion using drinking straws as the starting units. Tape one to the chalkboard. Obse ve that the other straws are just as long as the one on the-board. Cur one of these into 2 congruent parts. Cut the other into 3 congruent parts. Place these below the straw on the board. Indicating the straw cut into two parts, ask a child to draw a ring around one of the parts. Then erase the ring and ask another child to draw a ring around two of the parts. In a similar way, note the three parts of the other straw--l part, 2 parts, and 3 parts-all of the same size.

Use other materials rasch enable children to observe first a whole unit and then to recornize that it has been partationed into 2 or 3 congruent parts--perts of the same size and shape.

USING THE PUPIL'S BOOK, pages 248-249:
Children observe the number of congruent parts into which the unit has been partitioned. Then they complete the sentence and color the number of parts indicated.

Parts of Regions

There are 3 parts.
Color 1 part blue.

There are 2 parts.
Color 1 part red.

Parts of Regions

There are 2 parts.
Color 2 parts red.

There are 3_ parts.
Color 3 parts red.

There are 2 parts.
Color 2 parts blue.

There are \quad parts.
Color 2 parts green.

Place a set of 6 objects on the flannel board.
Here we have one set of objects. •
Let's partition this set into parts, so that the parts are equivalent.

Separate the objects into 2 parts. Place a piece of yarn nround each part. Ask a child to show one part of the set. Then ask h.i many parts do not have rings arcund them. (1.) Remove the yarn.

How many parts do we have on the board? (2.)
Do we have our starting set? (Yes.)
Then ask a child to separate the set intn 3 equivalent parts. Ask now many parts there are. tsk a child to use the yarn to show 1 part of the set. Removing the yarn, isk another child to show 2 parts of the set, again using the yarn to show the tro parts. Again, removing the yarn, ask another child to show 3 parts of the set.

Give each child 12 counters (disks, buttons, etc.) and a piece of string. Ask each child to place a set of 4 objects on his desk. When they have done this, ask f 'h to partition his set into ? equivalent parts. After this : is completed, ask each to us the string to show one part. Then ask each child to show two parts. (At this time, we are not concerned with the number of ubjects in each part.)

Continue the lesson by asking each child io put a set of i objects on ais desk. First partition into ? equivalant parte and give instructions as abcve. Then, ack each to partition the set of 6 into s equivalent parts. Using their strings, they identify 1 part, a parts, and : parts.

Use sets of"?, 8, 10, and 12 for partitioning sets into 2 equivalent parts.

Use sets of 3,9 , and 12 fcr partitioning sets into ; equivailent parts.

USING THE PUPIL'S BOOK, pages $250-251$:
Children observe the number of equivalent parts inta winch the set has been partitioned. Then they complete the sentence and color each object in the parts indicated. Demonstrate with first exercise on page 250 . Alert children to horizontal partitioning in the exercise with six balls. Ask:

Can you find the lines partitioning the balls?
$23:$
There are 2 parts. Color 1 part. There are 3 parts. Color 1 part.
-

There are $\underset{\sim}{Z}$ parts.
Color 1 part.

There are \qquad parts. Color 1 part.

Parts of Sets

9-4. ONE-HALF
OBJECTIVE: To intracuce the idea of one-half, and the symbol fror onehalf, also, the idea of two halves, and the symbol for two halves.

VOCABULARY: One-half, two nalves.
MATERIALS: Materiais for flannel board--sets of objects, rectangular and eimular regions.
Numeral cards $\frac{1}{2}$ [$\frac{2}{2}$ to be used on the flannel board. Stts of objects for childen to use on desk and the numeral cards

SUGGESTED PROCEDURE

PRE-BOOK ACTIVITIES:

Abstract

and

Place fr flannel cut-outs (apples) on the flannel board in no particular arrangement. Ask children how many apples are on the flannel board. I ien say--

Here is 1 set of appies.
Lat's partition this set into 2 equivalent parts.
Who can show the two parts? (Let a child who thinks he can show t... two equivalent subsets of apples, do so.)

Does anyone know what number describes this part of the starting
set that we have on the flannel board? (Indicate one of the 2 suibsets.)

Some caild may be able to associate the number, one-nalf, with the part of the set. If they say, "Three," acknowledse that three describes the number of apples but we want a number to describe the part of one set.

If no one knows the number, tell the ohildren that we have a new kind of number, g number whose name is one-half. Continue the discussion having children pretend that they are to give the two parts if the set of apples to two children, each child receiving one part.

Ask,
What number describes the part of the set ,f apples that iussn has? (One-half.)
What number describes the part rif the set of apples that John has? (One-half.)

Then tell the children that the name of this number is written like this-as you exhibit the numeral card $\frac{1}{2}$. Have them look at the two cards on thei: desks. Ask which of the cards names the number, one-nal. Point out that the numeral " $\frac{1}{2}$ " is made by using the numerals for one and two. Y u may wish to ask if there are other numerals whien are made by using 1 and 2. (12 and 21.) Emphasize that we write these names in a different way. We write " 1 ", put a bar under it, and write " 2 " under the bar. (We io not expect children to write these numerals. They are just to recognize the numeral for one-half and later two-halves.)

Let us look at the set oi apples again.

How many one-halves are show? (2.)
The number that describes the whole set which has been separated into t *o equivalent parts is two-halves. We write the name of this number like this--(exhibit the numeral card

Because many children have only the idea that one-nalf means a part of something, or less than all of a set, it is necessary to emphasize that finding zne-half of a set required partitioning the set into 2 equivalent subsets.

Provide experiences for showing one-nell and two halves of many different sets--i, $8,10,12$. It is important that children learn ts think of the set of objects as one set and that to tind one-half of the set, they partition (or separate) the set into two equivalent subsets.

Take a sheet of paper. Have the shildren bbserve the sheet if paper. Plase it on the chalkbsard or some place where it can be kept in view. Then take another sheet of paper and snow by placine it on top of the first sheet that the sheets are the same size. One fits exactly on the other.

Here is another sheet of paper the same size.
 it.)
Are these parts the same size? (Yes.)
How can we be certain? (Put one piece on t,I of the other. See if they fit exactly.)
If the number 1 describes this sneet of paper (indicate the cheet
on the chalkboard), ${ }^{n}$, at number describes this part of a sheet of paper (hold up one of the two pieces)? (One-half.)

Ask a child to identify the numeral for this number by showing the numeral card which ha~ its name. Then show both pieces of the sheet that has been cut.

What number lescribes the paper that I now have in my hand? (If children answer 1 , accept this answer. However, also tell them that they can name the number, two-halves.)

Ask children to show the numeral card which names two-halves. Continue with other regions where first the unit is identified and then it is separated into two parts of the same size. Identify the part that can be described by one-half and by two-halves.

Again, it is important that children learn that the number one-half describes that part of a set of 1 which has been separated into two equivalent parts and that two-halves describes two such parts.

USING THE PUPIL'S BOOK, peges $252-25{ }^{\prime}+$
Chldren are to ring the word "Yes" if the shaded part of the set can be dessribed by une-half or by two-halves. They then ring the name of the number. If neither one-half nor two-ialves describes the shaded part, then they rints the rord, "No."

One Half

One Half

253

One Half

254
と:

9-5. ONE-THIRD

OBJECTIVE: To introduce the idea of one third, and the symbol for onethird, also, two thirds and three thirds.
vOCABULARy.: One-third, two-thirds, three-thirds.
MATERIALS: Sets of materials for the flannel board, rectangular and circular regions cut into three congruent parts. The numeral cards $\frac{1}{3} \quad \frac{2}{3} \quad\left[\frac{3}{3} \quad\right.$ to be used on flannel beard. A set of 1^{1} counters (disks, buttons, etc.) for each child. Three numeral cards for each child $\left[\frac{1}{3}\right]$ $\left[\frac{2}{3} \quad\left[\frac{3}{3}\right.\right.$, also numeral cards used previously.

SUGGESTED PROCEDURE

PRE-BOOK ACTIVITIES:
Make a display of 12 disks on the flannel board. Review the idea of one-hali by askilt the children to imagine that the disk are cookies and that two children are to share the cookies. Each child is to have just as many cookies as the other. Ask two children to come to the board and decide how they might share these. If a suggestion is needed, ask each to take a cookie, and then each to take another cookie, and so on until all cookies are gone.

Then ask the first child to place his share of the cookies in a row. Ask the second child t_{1} place his share in a row below that of tile first child. Then ask other children to name the number that describes the part of the set that each child has. They can indicate this by using their numeral cards. Tcgether the children have how many halves? Again, the children respond by using their numeral cards. Again, arrange the 12 disks on the flannel board. Ask how three children can share the twelve cookies so that each child will have the same number of cookies. Ask three children to come to the board and decide how to do this. They may each take a cookie, then each take another cookie, and continue this process until all the cookies are gone. Ask the first child to place his share of the cookies in a row, the next child to place his in a row below that of the first child's cookies, and so on.

Ask it anyone knows what number describes the part of the set of ". cookies each child has. If no one says, "One-third," recall that we started with 1 set. The number which describes the part one child (name the child) has is one-third.

Have the numeral cards to be used displayed. Which of the se do you think names one-third? Identify the name for one-third. ($\frac{1}{3}$)

Then talk about the cookies that two children have as being twothirds of the one set of cookies. Identify the name for this number. $\left(\frac{2}{3}\right)$ Children have three-thirds of the set of cookies or all of the cookies. Identify the name for this number. ($\frac{3}{3}$)

Repeat with other sets of objects until the idea that one-third is the number which describes one of three equivalent parts of the set; that two-thilis describes two such parts, and that three-thiras describes the three pa:ts or the entire set. Children tell what number describes the part indicated by using their numeral cards.

Have children work individually with sets of objects, showing what part of a set of 6 can be described by one-third, two-thirds, threethirds. They can indicate the part of the set by putting a piece of string around that part. Give them instructions nrally and by indicating the parts using the numeral cards. In a similar way, they work with sets of $9,3,12$, and 15 objects.
. Follow procedures similar to those used for developing the understanding of one-half, using sheets of paper. Then continue with other circular and rectangular regions. First, they should observe the starting unit. Then another unit the same size is separated into three congruent parte.

It is important in this Iesson that children. learn that the number, one-third, describes 1 of the 3 equivalent or congruent parts into which the starting set of objects ur region has been partitioned. Also, they learn that three-thirds describes the entire set or region.

USING THE PUPIL'S BOOK, pages $255-2,6:$
Children are to ring the word "Yes" if che shaded part of the set or resion can be described by $\frac{1}{3}, \frac{2}{3}$, or $\frac{3}{3}$. Acn they ring the numeral that names the number. If the shaded region cannot be described by these numbers, then they rang the word, "No."

Pages $27-2,8:$
Children ring the correct numeral. If neither names the number which describes the shaded regi . they ring "No."

One-Third

YES

255
a One-Third
YOS NO

Regions
Ring the correct numeral

$2:$

Sets of Objects
Ring the correct numeral:

9-6. USING RATIONAL NMBERS
OBJECTIVE: To find the number of objects in one-half and one-third of a given set.
VOCABULARY: (N new words.)
MATERIALS: A set of 12 objects (apples) to be usej in the flannel board; a sei of 1.2 counters (disks, buttons, ete.) $f(r$ each child.

SUGUESTED PROCEDURE

PRE-BOOK ACTIVITIES:
Place a set of 8 objects (apples) on the innnel buard.
Suppose that we put these apples on two plates.
We will let trese pieces represent the plates. (Place two :lannel strips on the flannel board.)
We will put just as many apples on one plate as on the other. Who can separate the set of appies into two equivalent cubsets? (Ask child who thinks he can do this to do so.)
$\frac{\text { What }}{\left(\frac{1}{2}\right)}$ part of the set of apples is on this plate (indicate plate)?
What part of the set of apples is on this plate (indicate other plate)? ($\frac{1}{2}$).
How many apples are on this plate? (Again, indicate first plate.) (4.)

How many anples are on tinis plate? (Indicate other plate.) (4.) Let's write sentences that describe what we have dune.
Again ask for the number of apples that were placed on the flannel board. Then write:

There are \qquad apples.
How many apples are in $\frac{1}{2}$ of the set? " (4.)
We write:

$$
\frac{1}{2} \text { of } 8 \text { is } 4
$$

C intinue with other sets if apples-C apples, 4 apples, $=$ apples, 10 apples. Eath set is then partitioned into $t w$ equivalent parts. Each part is identified as one-half of the set of apples. Then a.k for the number of apples in each part. When those actions and ral descriptions have been given, then write the sentence that can be assuciated with finding $\frac{1}{2}$ of the set of objects.

For example,

| $\frac{1}{2}$ | of 5 | is 3. |
| :--- | :--- | :--- | :--- |
| $\frac{1}{2}$ | of 4 | is 2. |
| $\frac{1}{2}$ | of 2 | is 1. |
| $\frac{1}{2}$ | of 10 | is 5. |
| $\frac{1}{2}$ | of 1 | is $\frac{1}{2}$. |

Ask children to use sets of objects on their desks. Use sets of $4,6,8,2, \dot{y}$ and 10 . They first show one-half of the set. Then. they tell how many objects are in that part of the set. You write on the chalkboard the sentence that describes finding $\frac{1}{2}$ of each set of objects.

Read the following word problems to the children. Let them use the objects on their desks to find the answers. Then you write the sentences that can be associated with the problem on the chalkboard. After they find the answer, write the numeral in the blank to complete the sentence.

1. 6 boys were playing ball. One-half of the boys went home. How many boys went home? (3.) What part of the group was still playing ball? (3.)

$$
\left(\frac{1}{2} \text { of } 6 \mathrm{is}\right.
$$

\qquad .)
2. Mother had 8 sticks of gum. She gave $\frac{1}{2}$ of the gum to Mary. How many sticks of gum did mother give to Mary? (4.)

$$
\left(\frac{1}{2} \text { of } 8\right. \text { is }
$$

3. John had 4 cookies. He gave 2 cookies to Tom. What part of the set of cookies did Tom get? ($\frac{1}{2}$.) What part of the set of cookies did John still have? ($\frac{1}{2}$.)
\qquad of $4=\ldots$)
4. Father had 12 nails. He used $\frac{1}{2}$ of the nails to make a bird house. How many nails did he use? (6.)

$$
\left(\frac{1}{2} \text { of } 12 \text { is }\right)
$$

What part of the set of nils did he still have? ($\frac{1}{2}$.)

USING THE PUPIL'S B00K, pages .59-260:
Children first color the objects to show the two equivalent parts of the set. Then they complete the sentence.

Use similar experiences for using the number one-third, firct starting with a set of 12 objects (apples) on the ilannel board. Then put them on three plates, etc.

Continue the discussion with other sets of objects on the flannel board, as, sets of $b, i, 3$, and l. Also have children use objects on their lesks. Now they separate the set into,$~ p a r t s$ and identify $\frac{1}{3}$ of the set.
Pages 261-262:
Childrer first color the objects to show the three equivalent parts of the set. Then they complete the sentence.

$\because:$

One Half
Color $\frac{1}{2}$ of each set blue. Color the other half red. Fill the blanks.

One Half

Color $\frac{1}{2}$ of each set blue. Color the other half red. Fill in the blanks.

One Third
Color $\frac{1}{3}$ of each set blue. Color $\frac{1}{3}$ of each set red. Color $\frac{1}{3}$ of each set green. Fill in the blanks.

One Third

Color $\frac{1}{3}$ of each set blue. Color $\frac{1}{3}$ of each set red. Color $\frac{1}{3}$ of each set green. Fill the blanks.

Chapter 10

LINEAR MEASURDMRNT

BACKGROUND

In this chapter, we discuss the measurement of line segment. Recall that a line segment is the set of points followed in passing along a straight path from a given point A to a given point B. Two line segments are congruent proviled that they have the same size, so that one will fit exactly on the other.

Long before the child comes tc school he has experience in comparisons of order: his father 10 taller than he is; his sister is younger than he is; the new house is bigger than the old house; this pail is heavier than that pail. He has also had experience with the notion of measure; he understands and makes such statements as, "My dad is" 6 feet tall," "We get 3 quarts of milk a day," "It takes me 15 minutes o get to : 1001." Here we wish to extend the child's knowledge and intuitive understanding of linear measure.

Our development parallels the historical one. The counting of separate objects (say, sheep) was a technique not applicable to measuring a region or curve (like a field or its boundary). Nevertheless, one can often make comparisons: thic field 7 f larger than that; this boundary is longer than that. Later, when one field bordered anuther, actual measurement besar necessary. When a unit of measure (e.g., that part of a rope between t knots) was acreed upor, it was possible to designate a piece of prowerty \because having a lenth of " 10 units of rope" and having a width of " 30 units si rope". With the incre s in travel and communication it became obviou. "'at " O unit, of rope" dil not always rerresent the same length. Henze, ets $^{\prime}$ lard units weit 'dopted. For convenience in measuring, rules or scales m 'oin in the wandard uniti were introduced.

MEASURE, LENGTH, UNAIS
Ir measuring line segments, we fiy • srlest a particular line segment, say $\overline{R S}$, to serve as a unit.

The length of $\overline{\mathrm{RS}}$ itself is then 1 unit. To measure any given line segment $\overline{C D}$, we lay off the unit $\overline{\mathrm{RS}}$ along it.

If the unit can be laid of exactly twice, as in the picture, we say that the measure of $\overline{\mathrm{CD}}$ is 2 , and that the length of $\overline{\mathrm{CD}}$ is \hat{i} units. If the unit could be laid off exactly three times, we would say that the measure of $\overline{C D}$ is , and that the length of $\overline{C D}$ is 3 units. The measure of a line segment is a number: the number of times the unit can be laid off on a line segment. When naming a length, we use boih the measure and the unit.

LENGITH TO THE NEAREST UNIT'

More of ten than not, the unit will not fit exactiy some whole number of times. There will be a part of a unit left vver. In the picture below, the unit can be laid off along the segment $\overline{A B} ;$ times, with a part of a unit lef't over, but it does not fit 4 times.

The length of $\overline{A B}$ is then greater than 3 units but leas than 4 units. Mreover, in our examples the length of $\overline{A B}$ is visibly nearer to 3 units than to i^{4} units. In this case, we say that the length of $\overline{\mathrm{AB}}$ to the nearest unit is 3 units. This approximation is the best we can give without introducing fracticnal parts of a unit or shifting to a smaller unit. In thi. chapter, we will not introduce the phrase, to the nearest unit, but will note that the length of $\overline{A B}$ above is between ; and 4 units.

STANDARD UNITS AND SYSTEMS OF REASURES
The acceptance if a standard unit for purposes if communication is soon followed by an appreciation of the convenience of havine a variety
of standard units. An inch is a suitable standard unit for measuring the edge of a sheet of paper, but hardly satisfactory for finding the length of the schoo corricor. While a yard is a satisfactory standard for measuring the school corridor, it would not be a sensible unit for finding the distance between Chicago and Philadeiphia.

10-1. LINE SECMENT, STRAIGHTEDGE
OBJECTIVE: To introduce the concept of line segment and the use of the straightedge.

VOCABULARY: Straightedge, line segment.
MATERIALS: Jump rope, yom, string, thread; varions modele of liue segments; unmarked strips of cardbcard (at least 10 inches in length).

SUGGESTED PROCEDURE
PRE-BOOK ACTIVITIES:
Show a loosely held string between two pencils. Pull the string tightly to demonstrate the idea of a straight path.

Ask the children to identify objects that display straifht paths: the edge cof a duk, a sheet of paper, etc.

Explain that these are all examples of line segment: a straightedge from one point to another. Call attention the physical thines that suggest the endpoints. For example, if the edge wi a block is mentioned as a line segment, then the corners it the block represent the endpoints.

On the chalkboard show two points. D: aw a line sefment between them. Use an unmarked cardboard strightedec, since one will be used later by the children.

Explain that it is often helpiul torve names to the endpoints. Label them f and B as shown.

Explain further that the names of the endpoints may be used to name the line segment either as $\overline{A B}$ or as $\overline{B A}$. Illustrate and name several other line segments. •

Uncover on the chaikiuara, a picture of a triangle. Ask the children if there is a way in which they can use line segments and letters to des* cribe the triangle. Then label the triangle.

Help the children to visualize that this triangle can be described as being made up of line segment $\overline{A B}$, line segment $\overline{B C}$, and line segment $\overline{C A}$.

Shor tro more pnints on the bnard. Demonstrate a technique for using straightedge and cnalk. Show that if a piece of chalk is placed on ore point and the straightedge lined up slightly below the other point, then the line segment drawn will include both points. Also, discuss the importance of holding the straightedge at the center rather than at an end.

Distribute a cardboard strip to each chila. Have each child put 2 dots on a sheet of paper and use his cardboard strip to draw a line segment with these dots as endpoints. Ask them to draw other line segments br ween other pairs of endpcints.

USING THE PUPIL'S BOOK, pages 263-264:
Indan: A line segment conrects two points. A straightedfe can be used to draw a line segment.

Page 262:

- Give oral directions to uraw line segments $\overline{A C}, \overline{E C}$, and $\overline{B D}$. Tell the children to place their pencils on point A, line up the straightedge with point C, hold it in the center, then draw $\overline{A C}$. Do the same for the second exercise on this page.

Page 264 :
Read instructions and give help where needed. Some children may not think to count $\overline{A D}$ anu $\overline{\mathrm{BC}}$ as line segments. In discussion, help them see that the two shorter line segments are part of the longer line segment. Note also that two small triẩgular regions such as those bounded by $\triangle A B E$ and $\triangle A C E$ are part of the larger triangular region bounded by $\triangle A B C$.

Pages 265-266:

Read instructions for both pages, then let children work independently. When page 266 is completed, ask the children to compare the two examples (what happens when point D is inside, outside, the triangle). They snould learn that $\overline{A B}$ and $\overline{A C}$ mean line segment $A B$ and line segment $A C$.

Each page preserts one of the ideas of this section for visual comparison. Read the instructions with the chiluren. Make sure that they agree that the markine of the first example on each page is correct.

Line Segments

Draw $\overline{A C}, \overline{E C}$, and $\overline{B D}$.

Draw $\overline{\mathrm{A} E}, \quad \overline{\mathrm{AC}}$, and $\overline{\mathrm{DE}}$

Line Segments
draw $\overline{A B}, \overline{B D}, \overline{D C}$ and $\overline{C A}$.
Connect point E with the other points.

How many line segments can you count?
-10
Color a square region red. -
Color one triangular region blue,

Line Segments

Connect each point by a line segment to each of the other points.

How many line segments cross?

Line Segments

Draw $\overline{A B}$ and $\overline{A C}$.
Now connect point D with the other points.

How many line segments cross?

Draw $\overline{B A}$ and $\overline{B C}$.
Now connect point D with the other points.

Do any line segments cross?
Yes

2

10-2. COMPARING LINE SEGMENTS

OBJECTIVE: To introduce th.e ideas of longer than, longest, shorter than, shortest, same length as. To compare line segments by using an intermediate model.

VOCABULARY: Compare, longer than, longest, shorter than, shortest, same length as.
MATERIALS: One long paint brush and one short paint brush for each child, several tagboard and chipboard sheets of varied lengths, flannel board, three strips of cloth of different lengths, individual pieces of string, each 8 inches long, and as needed, pencils, pipe cleaners, pick-up sticks, book, straws.

SUGGESTED PROCEIURE

PRE-BOOK ACTIVITIES:

COMPARING IENGTHS OF OBJECTS

Give each child one short paint brush and one long paint trush. There should be a distinct difference in length betwetu the bx shes. If brushes are not available in quantity, use siraws.

Ask the children to put the brushes on end on their desks. Find out how the brushes are alike. (Both are urushes, wool, etc.) Find out how they are different. (This brush is longer than that paint brush.)

Suggest to a chila that he obrorve the brushes of the child next to ham. Ask him to find a irush the same length as one of his, and to display the two. Continu with ancther chalu finuing a brusk longer than (shorter than) his.

Select the chaluren at one tabe for lemonstration. Give a paint brush to one chilu. Ask him to compare the trust. with the two he has. Seek the response that the new brush is the same length as one of hic paint brushes, ani longer thar the otner paint brusn. kepeat with different chalaren, alternating with a short ant a long trush.

USING THE PUPIL'S BOOK, pages 267-269:
IDEAS: An object can be longer than, shorter than, or the same length as another object.

Each page presents one of the ideas of this section for visual comparison. Read the instructions with the children. Make sure that they agree that the marking of the first example on each page is correct.

Comparing Lengths
Mark the one that is longer than the other.

Comparing Lengths
Mark the one that is shorter than the other.

ERİC

Comparing Lengths
Mark the sticks that are the sarie length.

269

COMPARING LINE SECMENTS

Direct the children's attention to the flannel buard where three strips if colored cloth of distinctly different lengths are displayed. These strips should be placed horizontally and have the same beginning position.

Discuss which strips are longer, then ask which is longest. (The ane that $1 s$ longer than any of the others). Repeat with shorter and shorte t. Test for length by moving one edse against another.
I. two parts of the room place two objects (fairiy narrow) tiat are obviously not the same length. Compare them at a distance, then oring the objects together for comparison of their edges. Tnen place two objects that are the same length and repeat the comparisom:

Introduce two narrow tagesard or chipboard sheets, one only slightly longer than the otnor. When the comparison 15 made, point nut, the advantage of beine able tu bring the objects topether to check the lengths of their edecs.

Call attention to two diffirent edees of the flannel buard (ne edge should be shorter). Ack how these line segments could be compared. Accept any of the following ideas:

1. Hslding one's hands at the ends : one line segment and using this to transfer to the , ther line secment. (The endpoints are marked by the hands. Point out the difficulties involved.)
\because Layinf ${ }^{2}$ prec of strine beside one line serment, and then grasping it carefully at the endpoints of the line segment and carrying it over to the otior line segani. (Clarify that the string represents the line sement, and the places where it is held the endpoints. The method i: not very practical because the string nay stretch if tencion on it is increased.)

Using a long unmarked stick or piece of paper by placing one end of the stick or paper at one end of the line segment, marking a point on the object at the other end of the line sement, and then comparing the marked object with the nther line segment. (Indicate that the edge of the stick from one end to the mark represents the line segment.)

Clarify that in each 'ase above, in ine ray re another, a madel has been made of one line segment. This model has been superimposed on the other segment for comparison.

Use string to show how the edges if the flannel board can be compared.

USING THE PUPIL'S BOOK, pagès 270-275:

IDEAS: Two line segments can be compared uy uing a model of one and placing it on the other.
Pass out string to the class. Read the inctructions and tell the chidaren they are to use the atring t, compare the line seement'; in eacti set. Give no mar instructions, but move ar, und and ask leadint questions to those who are obvously copytne or as nc: uble to get started.

Comparing Line Segments
Mark the line segment that is longer than the other one.

270

Comparing Line Segments
Mark the line segment that is shorter than the other one.

2: !

Comparing Line Segments
Mark the longest line segment.

2

Comparing Line Segments
Mark the line segment that is shortest.

10-:: MEASUREMENT OR LINE GEGMANS

 it.

VOCABULARY: Unit segment, unit:, (:Mfr) lemeth.
 on paper.
SUGGESTED PROCEDURE

PRE-BOOK ACTIVITIES:

 points should be clearly indicated. The exercise is t.eff h m may of these toothpicks can be. laid end to end al mi: bach line corm ni. Indicate that the toothpick if but one of many l lect. that w he mat use to measure line segments. We call the t, thick a unit confront. The length of the toothpick is un unit. The len eth it tin le esmont is 4° units. Have the children write the numeral. $4^{\text {a }}$ then paper. Then continue with several other segment: where the 1 wert . i. at least approximately the cane as several toothpick e that are lin. : w.

$$
\text { The }] \in n_{i j} \text { th } \therefore \quad 4 \quad \text { unit } \therefore
$$

i.

Te next set at examples should be the where the unit errant does not rit exactly, a: sham bul w. Have the idildrun count the toothpicks and discover that the cement is batmen. and $L_{\text {a }}$ trothpick's in length. Feral the sentence and ave the children write the numerals : and 4 where blank are nitid.

Ask the children to check the examples again, this time using just one toothpick. Demonstrate how the toothpick is to be laid off and a mark made $\dot{\text { ct t }}$ the end each time so that the next measurement can be done carefully.

USITV THE FUPIL'S BOOK, pages 274-275:
IDEAS: A line segment may be measured by repeatedly using a unit segment.
Have the children lay the toothpick repeatedly along the segments. Ask them to count the number of times the unit is used and to write the correct minerals where shown. Some of the examples may result in the last mark falling on the end of the line segment. In these cases explain that the number is not "between", but is the count of the unit segments.

In all exercises, try to make sure that the pupils keep clearly in mind that the unit is a line segment. It is easy to have this idea obscured.

The exercises themselves will make clear the possible variety of units. Class discussion should crystallize the idea that for different units, a measurement has different numbers. T, tell a length you need to tell not only the number of units but also to tell what unit is used. It should also be possible to develop the understanding that the smaller the unit, the greater the number needed for any particular measurement.

Measuring line Segments
Arowirs ateperide zoon Use a unit segninnt to find each length. Youthpicte used

The length of $\overline{C D}$ is between \qquad and \qquad units.

The length of $\overline{\mathrm{SR}}$ is between \qquad and \qquad units.

Measuring Line Segments

Use a unit segment to find each length.
Answers depend upore tarthpricteused
\square

The length is between \qquad and \qquad units.
The length is between \qquad and \qquad units.

The length is between
and _ units.

FURTHER ACTIVITIES:

1. Provide each child with several different units (say pieres of drinkıng straws) and have him measure the same line segments with each unit. If straws are used, for examp?e, there should be some designation attached to the aifferent ones such as "long strak", "medium straw", and "short straw" so the pupil can descriot his results as so many "short straws", etce. An alternative would be to use different objezts as unit segments, such as pencil, maik, etn.
2. Have ditferent pupils measure the same line seyment with diferent units. For example, draw a wirline on the floor. Ask two children (with different sized feet) : see how many of therr foot leneths it takes to walk from one end c the walkline to the otres. Instrat o: a chalkline you may wish to tape a piece of heavy cord to the floon.
3. Have the pupils invent thei wh units and use then. For example, how many of some child's haru-spans is it a rose thie edge of the bookshele?

10-4. CONSTRUCTION OF A RULER

OBJECTIVE: To introduce the idea of a scale as a measuring device.
VOCABULARY: (No new words.)
MATERIALS: Light cardboard straightedge (unmarked) perhaps a foot long, one for each pupil, some convenient unit segment (toothpicks or pieces of drinking straws), one for each pupil. T , be con lenient for handing, the units chosen should be around two inches or a little less.

SUGGESTED PROCEDURE

Give a straightedge to each pupil and ask the pupils to make a mark not far from the end. (This point is to be the zero point of the ruler. Note that the zero point is not at the end of the straightedge. In addition to being easier to identify, it avoids the problem that corners are alreys getting bent and dogeared.)

- Nw ask each child to put his unit segment (a toothpick or whatever unit was user in Section 10.z) on the straightedge with one en i on the initial mark and to mark the other end.

The piece of the straightedge is now a line segment one unit long. Now the unit segment can be laid down again,

and again,

! : ,
as of ten as the length of the straightedge allows. It is now easy to see that the marked straightedge shows line segments l uni long, or E units long, etc.

The straight edge in its present form can now be used fir measuring line segments as shown below, where $u t$ is seen that the length of line segment $\overline{A B}$ is 4 units and the length $\neg f$ line segment $\overline{C D}$ is between $/ 4$ and ', units.

These numbers are found by counting the number font cements. The facing of the straightedge will need th it emphasized, le, the placing of the original mark at one end point of the line seamen'.

The next stage $1 s$ th ask the children + label the maris on the otraigntedye. The idea is to i ut a 1 vel w the mark tart was dale the first time the unit was used, a below the mark that was made the sec. nd time the unit was used, and 3 , on. Late instrument then li ks like this.

Discussion shoular fuce the suggesti at that the original mark br labeled 0 . The inctrument is now o mplete and may properly be called a ruler. Indacate that the ruler shows ract if a numifr line. In using It t measure line semments $\overline{A B}$ and $\overline{\Gamma T} s$ tetore, he numbering of the points $!$ roduces of Eimlucation.

The fract hat in measuring line serment $\overline{A B}$ the frint B is opposite the 4 mark shows that thre wore 4 conies if the unit sesment between \therefore and B, bue, inctead if lwham lack and cuntin:

 segment $\overline{J L}$ Ls ifotween 4 gani untic.

[^0]:

 * Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * to obtain the best copy available. Nevertheless, items of marginal * reproducibility are often encountered and this affects the quality * of the microfiche and hardcopy refrojuctions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original docament. Reproductions * * Supplied by EDRS are the best that can be made from the original.

