This guide and the accompanying student workbook (separate document) comprise the Adult Basic Education Level III (grades 7, 8, and 9) package on the metric system. An introductory section provides background information on adult basic daily living skills, a discussion of the design and use of the student workbook, and information on what the teacher needs to know about the metric system (seven pages). Five instructional sections are included: linear, area, mass, volume, and temperature. Each section includes learning activities and additional comments (both of which relate to specified pages in the student workbook) and lists of materials needed. Appended are sources of material (complete addresses and ERIC document numbers, where possible) on adult education and/or the metric system, instructions for using the student test booklets, two student test booklets (forms 1 and 2), and answers to the student tests (forms 1 and 2).
Metrics for Good Measure
LEVEL III. INSTRUCTOR'S GUIDE

Gloria S Cooper
Doris J. Kreitlow
John C. Peterson
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>DESIGN AND USE OF THE STUDENT WORKBOOK</td>
<td>4</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>WHAT THE INSTRUCTOR NEEDS TO KNOW</td>
<td></td>
</tr>
<tr>
<td>LINEAR</td>
<td>7</td>
</tr>
<tr>
<td>AREA</td>
<td>9</td>
</tr>
<tr>
<td>VOLUME AND CAPACITY</td>
<td>9</td>
</tr>
<tr>
<td>MASS</td>
<td>11</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>12</td>
</tr>
<tr>
<td>METRIC NOTATION</td>
<td>12</td>
</tr>
<tr>
<td>COMMENTS AND MATERIALS NEEDED</td>
<td></td>
</tr>
<tr>
<td>LINEAR</td>
<td>14</td>
</tr>
<tr>
<td>AREA</td>
<td>18</td>
</tr>
<tr>
<td>VOLUME AND CAPACITY</td>
<td>19</td>
</tr>
<tr>
<td>MASS</td>
<td>23</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>27</td>
</tr>
<tr>
<td>RESOURCES AND MATERIALS</td>
<td>30</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>33</td>
</tr>
<tr>
<td>USE OF STUDENT TEST BOOKLETS</td>
<td>35</td>
</tr>
<tr>
<td>STUDENT TEST BOOKLET, FORM 1</td>
<td>37</td>
</tr>
<tr>
<td>ANSWERS TO STUDENT TEST, FORM 1</td>
<td>41</td>
</tr>
<tr>
<td>STUDENT TEST BOOKLET, FORM 2</td>
<td>43</td>
</tr>
<tr>
<td>ANSWERS TO STUDENT TEST, FORM 2</td>
<td>47</td>
</tr>
</tbody>
</table>
The ability to use measurement tools and concepts is a basic necessity of adult life. The change to the metric system now taking place in the United States gives the Adult Basic Education student an opportunity to catch up to, and even exceed the present measurement skills of the average adult.

Basically, ABE instructors are concerned with providing curriculum materials which have immediate application. ABE students are motivated by learning tasks which improve the quality of their lives now, whether on the job or at home. A chance to learn skills which their neighbors may not have can contribute to self-improvement and self-confidence.

The content of the LEVEL III STUDENT WORKBOOK is occupationally oriented. There are references to measurement tasks used within some fifty different occupations to which students can relate.

Pragmatic needs and goals have brought these adult students to the ABE program. They can emerge from the unit on metrics with measurement skills they can take home and immediately put to use.

The Adult Performance Level (APL) material here shows some of the everyday skills needed by LEVEL III ABE students.* After the students have finished this unit they should be able to use the metric system in these suggested ways.

<table>
<thead>
<tr>
<th>Consumer Economics</th>
<th>Occupational Knowledge (Including Homemaking)</th>
<th>Health</th>
<th>Community Resources</th>
<th>Government and Law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase reading vocabulary to include:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>length</td>
<td>metre m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>centimetre cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>height</td>
<td>litre l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scale</td>
<td>degree Celsius °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass-weight</td>
<td>gram g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>measure</td>
<td>kilogram kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>millilitre ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be able to write the metric symbols</td>
<td>m, kg, g, l, ml, and °C.</td>
<td>Be able to record own body measurements in metrics.</td>
<td>Assist community consumer organizations.</td>
<td>Able to read labels to see if they conform to packaging laws.</td>
</tr>
<tr>
<td>Ask for proper quantities and sizes needed in merchandise.</td>
<td>In service jobs, know and understand metric terms.</td>
<td>Say and understand readings of clinical thermometers, scales, and height measures.</td>
<td>Understand weather forecasts and temperature predictions.</td>
<td>Explain to others how metric system will affect government and laws.</td>
</tr>
<tr>
<td>Be aware of number of servings in commercial metric container sizes.</td>
<td>1. Use millilitre spoons and litre cups in food preparation. 2. Know correct utensil size for quantity prepared.</td>
<td>Relate °C to choice of clothing to wearer.</td>
<td>Keep daily and monthly rainfall records in centimetres.</td>
<td></td>
</tr>
<tr>
<td>When purchasing, know large and small equipment sizes and size of space to be occupied by them.</td>
<td>Know general temperature--low, medium, high--for cooking.</td>
<td>Interpret clinical thermometer readings for person's temperature and take appropriate action.</td>
<td>Use weather reports, distances in km, and speed limits to help plan activities.</td>
<td></td>
</tr>
<tr>
<td>Ask for correct sizes in talking to store clerks.</td>
<td>Teach a neighbor to use a metre stick, a metric ruler, and a metric tape measure.</td>
<td>Give the doctor a child's temperature over the phone.</td>
<td>Help others learn the basics of the metric system.</td>
<td>Give accurate estimates of metric measures to law enforcement officials.</td>
</tr>
</tbody>
</table>
LEVEL III

DESIGN AND USE OF THE STUDENT WORKBOOK

These materials are designed for ABE students who are functioning at grade levels 7, 8, or 9.

The STUDENT WORKBOOK is organized into six sections: Linear, Area, Volume and Capacity, Mass, and Temperature. Each of these sections introduces appropriate concepts, measurement words, and measurement devices. After a brief introduction to each section, students are sent to a resource table which you, the instructor, have organized. At this resource table students perform hands-on activities that are described throughout the STUDENT WORKBOOK in the sections headed Metric Activities.

As students complete the metric activities, they will acquire a feeling for the size of a metric unit. When they have internalized the concept (that is, when they are thinking metric), they go back to the STUDENT WORKBOOK for some examples of where people use these measurements at work and at home. These short vignettes not only give students some idea of the practical uses of metric measurements but can act as an impetus for further discussions of other occupations and situations where these metric units are used.

The ability to handle number concepts varies widely among ABE students. Therefore, it seemed prudent to plan the LEVEL III STUDENT WORKBOOK for grade 7 reading and mathematics levels. Instructors are encouraged to adapt the materials upward if they feel it is appropriate for their students. While all numerical examples are at Grade 7 mathematical level, some students may need help multiplying or dividing where decimal fractions are involved.

The STUDENT WORKBOOK begins by using a problem solving approach to introducing metric measurement. Most people have had measurement problems—clothing problems—clothing that does not fit when we get it home; furniture that is too wide to be moved through doorways, and objects that are too big for their intended space. These experiences are often uncomfortable and frustrating. Yet, almost everyone has had them and by planning ahead and measuring, many of these situations can be avoided.

The role of the teacher is extremely important. Reading metric information will not provide LEVEL III ABE students with the measurement skills they need to know. It is essential that the instructor encourage students to become actively involved in the Metric Activities sections. These are laboratory activities which involve the student in learning in a personal way. They encourage a positive attitude toward discovery and inquiry, and they reduce fears and concerns about the metric system. In addition, these hands-on activities can easily be expanded as needed. You need to collect the materials for each segment and set up a resource table with measurement equipment before the students begin.
Students need to get their hands on measurement tools. As a result of working with the Metric Activities in the STUDENT WORKBOOK, your students will become familiar with the quantities they represent and will establish their own personal sets of physical references. Thus, the students may associate the width of a fingernail with a centimetre and the mass of a brick—a football, or an iron with a kilogram.

Experiences with metrification in other countries such as Australia, England, and Canada show that students learn better when metric units are compared to familiar objects. Students should learn to "think metric." It is difficult and confusing to learn the new system by constantly referring the Customary system now in use. Even though we will be using Customary and metric measurements side by side for quite a while, students should learn them as separate measurement languages, not by translating from one to the other.
OBJECTIVES

The student will demonstrate the listed skills for each of the five measurement groups, using the terms and devices shown. Page numbers refer to pages in the STUDENT WORKBOOK.

<table>
<thead>
<tr>
<th>SKILLS</th>
<th>MEASUREMENT GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linear (pp. 3-23)</td>
</tr>
<tr>
<td>Recognize and use the unit and its symbol</td>
<td>millimetre (mm)</td>
</tr>
<tr>
<td>State or show a physical reference for</td>
<td>centimetre (cm)</td>
</tr>
<tr>
<td></td>
<td>metre (m)</td>
</tr>
<tr>
<td></td>
<td>kilometre (km)</td>
</tr>
<tr>
<td>Read correctly</td>
<td>metre stick, metric tape, and metric rulers</td>
</tr>
<tr>
<td>Calculate or determine (includes selecting and using any appropriate measuring instruments)</td>
<td>height, width, or length of objects</td>
</tr>
<tr>
<td>Estimate within 25% of the actual measure</td>
<td></td>
</tr>
<tr>
<td>Convert a metric quantity in one of these units to its equivalent in another of these units</td>
<td>millimetre</td>
</tr>
</tbody>
</table>
WHAT THE INSTRUCTOR NEEDS TO KNOW

Linear

The first section is about linear measurement. Linear measure refers to the length, depth, width, or height of an object. Students are asked to estimate and measure the length, width, depth, or height of various objects.

The base unit of linear measure in the SI, or metric system, is the metre. (SI is an abbreviation for Systeme International d'Unites, or International System of Units.) The basic tool for measuring metres is the metre stick. The symbol m is used to denote metre or metres. Notice that no period is placed after the m unless it is at the end of a sentence.

- If you place one end of a metre stick on the floor and hold the stick against your leg, you will find that the other end of the metre stick is near your waist. You may want to take a metre stick and work Metric Activities 1 and 2. These two learning activities are designed to give you and your students a feeling for the length of a metre and a metre stick.

Because a metre is too long to measure many things, it has been divided into smaller units. All of these units have the word metre in them. A different prefix is used to differentiate between these subunits. The three most commonly used subunits all have prefixes that end in the letter i. See the list on the bottom of the next page.

The first subunit is a decimetre. It is one tenth of a metre. The rectangle here is one decimetre long. There are 10 decimetres in one metre. The decimetre is a unit that is seldom used; but you, the instructor, should be aware of this unit so that you will have a better understanding of the metric system. The symbol for decimetre is dm.

If a decimetre is divided into 10 equal subunits, each of these subunits is called a centimetre. There are 10 centimetres in a decimetre, or 100 centimetres in a metre. At the right is a rectangle that is one centimetre long. Remember that since there are 100 centimetres in one metre, each centimetre is one hundredth of a metre. Most centimetre rulers are 20 or 30 centimetres long. The symbol cm is used for centimetre.
Measure the width of a paper clip and a penny. A paper clip is about one centimetre wide and a penny is about two centimetres wide. You may want to work through Metric Activity 7 to get a better understanding of the length of a centimetre.

If a centimetre is divided into 10 equal parts, each part is called a millimetre. There are 10 millimetres in a centimetre and 1,000 millimetres in a metre. At the right are two small rectangles: The distance between these rectangles is one millimetre. The symbol mm is used to represent millimetres.

Many students are used to millimetres because they smoke cigarettes that are 100 mm or 120 mm long. Note that a 100 mm cigarette is also 10 cm, or 1 dm, long. A dime is about one millimetre thick.

There are times when it is not convenient to refer to large linear measures in metres. When this happens, larger units are used. The names of these larger units all have a prefix plus the word "metre." For the larger units the prefixes do not end in the letter i.

The first of these larger units is 10 metres long. It is called dekametre and the symbol dam is used. Ten dekametres is a hectometre (hm). There are 100 metres in one hectometre. Ten hectometres is a kilometre (km). There are 1,000 metres in one kilometre. Dekametres and hectometres are not used in the LEVEL III materials. In fact, they will seldom be used. Kilometres are used to designate distances such as the distance between two cities. Many signs on the interstate highways now give the distance to major cities in kilometres. Speed and velocity are given in kilometres per hour (km/h).

The table below shows the relationship between the base unit (metre) and the other linear units.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Value in Metres</th>
<th>Read as</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilometre</td>
<td>km</td>
<td>1,000 metres</td>
<td>one thousand metres</td>
</tr>
<tr>
<td>hectometre</td>
<td>hm</td>
<td>100 metres</td>
<td>one hundred metres</td>
</tr>
<tr>
<td>dekametre</td>
<td>dam</td>
<td>10 metres</td>
<td>ten metres</td>
</tr>
<tr>
<td>metre (base unit)</td>
<td>m</td>
<td>1 metre</td>
<td>one metre</td>
</tr>
<tr>
<td>decimetre</td>
<td>dm</td>
<td>0.1 metre</td>
<td>one tenth of a metre</td>
</tr>
<tr>
<td>centimetre</td>
<td>cm</td>
<td>0.01 metre</td>
<td>one hundredth of a metre</td>
</tr>
<tr>
<td>millimetre</td>
<td>mm</td>
<td>0.001 metre</td>
<td>one thousandth of a metre</td>
</tr>
</tbody>
</table>

*Units commonly used.
Area

The second section discusses area. Area refers to the number of units it takes to cover a surface completely. An SI unit of area is the square metre. The symbol for a square metre is \(m^2 \). Notice that the symbol is \(m^2 \) and not \(\text{sq. m} \).

- Take four metre sticks and place them on the floor in the shape of a square. If you do this carefully, the area inside this square is a square metre. You might want to work Metric Activities 21 and 22. These two activities are designed to give you and your students a feeling for the area of a square metre.

There are smaller and larger units than a square metre. In fact, any of the linear units can be used for deriving a unit for area. For example, the instructional material in the STUDENT WORKBOOK uses square centimetres (cm²) to explain area to the students. You may also use square millimetres (mm²). Notice that there are 100 mm² in one cm².

Larger units can be used also. For example, a square dekametre (dam²) is 100 m². Another name that is often used for a dam² is are and the symbol for are is \(\mathbb{A} \). An even larger unit is the square hectometre (hm²). This is 10,000 m². A more common name for the hm² is the hectare and the symbol ha is used for hectare. Land measure is often in hectares. The only larger unit of area that will be used is the square kilometre (km²). This will be used primarily for very large land areas.

Volume and Capacity

The third section is about volume and capacity. The volume of an object refers to the amount of space the object occupies or encloses. Capacity refers to the amount of space enclosed by an object or container.

A unit of volume is the cubic metre (m³). A cube or box that is one metre long, one metre wide, and one metre high has a volume of one cubic metre. Notice that the symbol is \(m^3 \) and not \(\text{cu m} \).

You may want to work Metric Activity 27. This activity is designed to give you and your students a feeling for the volume of a cubic metre. If you do try Activity 27, you will need some help to hold the metre sticks.
There are smaller and larger units than a cubic metre. In fact, any of the linear units can be used for deriving a unit for volume. For example, the instructional material in the STUDENT WORKBOOK explains volume by using cubic centimetres (cm³). You can also use cubic millimetres (mm³). Notice that there are 1 000 mm³ in one cm³. Another unit that can be used is the cubic decimetre (dm³). Notice that there are 1 000 cm³ in one cubic decimetre.

The basic unit of capacity is the litre. A cube or box that is one decimetre long, one decimetre wide, and one decimetre high has a capacity of one cubic decimetre, or one litre. The symbol for a cubic decimetre is dm³. The symbol for litre is l. Notice that this symbol is not the numeral one but a small, or lower case, letter "l." Because there can be some confusion when the last digit of a number is one, it is very important that a space be left between a numeral and the symbol for litre. If there is any possibility of confusion, use the whole word "litre."

- The litre will be a very common household unit. Milk, motor oil, gasoline, bleach, and soda pop are a few of the products that will be purchased in litres. You might want to do Metric Activities 29, 30, and 31. These three learning activities are designed to give students a feeling for a litre.

The cubic decimetre, or litre, is often too large a unit for many uses. When this happens, the smaller unit that is used is the millilitre. There are one thousand millilitres in one litre. The symbol for millilitre is ml. Millilitre is another name for cubic centimetre. A box that is one centimetre long, one centimetre wide, and one centimetre high is a cubic centimetre. The symbol for cubic centimetre is cm³. There are 1 000 cubic centimetres in one cubic decimetre.

- A teaspoon holds five millilitres. Metric Activity 33 gives people experience with millilitre spoons that will be used in cooking. Metric Activity 37 is designed to give experience using millilitre spoons and litre measuring cups. You might want to try these recipes at home so that you are sure that you understand all of the steps.

Units smaller or larger than a litre are often needed. When this is the case, these new units have names with the word litre preceded by a prefix. The following table shows the relationship between the base unit (litre) and the other units of capacity.
Unit System for Measuring Volume

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Numerical Meaning</th>
<th>Read as</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilolitre</td>
<td>kl</td>
<td>1000 litres</td>
<td>one thousand litres</td>
</tr>
<tr>
<td>hectolitre</td>
<td>hl</td>
<td>100 litres</td>
<td>one hundred litres</td>
</tr>
<tr>
<td>dekalitre</td>
<td>dal</td>
<td>10 litres</td>
<td>ten litres</td>
</tr>
<tr>
<td>litre (base unit)</td>
<td>l</td>
<td>1 litre</td>
<td>one litre</td>
</tr>
<tr>
<td>decilitre</td>
<td>dl</td>
<td>0.1 litre</td>
<td>one tenth of a litre</td>
</tr>
<tr>
<td>centilitre</td>
<td>cl</td>
<td>0.01 litre</td>
<td>one hundredth of a litre</td>
</tr>
<tr>
<td>millilitre</td>
<td>ml</td>
<td>0.001 litre</td>
<td>one thousandth of a litre</td>
</tr>
</tbody>
</table>

*Units commonly used.

Mass

The fourth section is about measuring weight or mass. The mass of an object refers to the amount of matter contained in the object. This amount always remains constant so long as something is not added to or subtracted from the object. Weight is the term that most people use when they mean mass. Weight, however, is affected by gravity while mass is not. Thus, the weight of an object on the moon is one sixth its weight on earth. The mass of that same object is the same whether the object is on the moon or on the earth. The word mass is used in the LEVEL II materials.

The SI base unit of mass is the kilogram and the symbol kg is used to designate kilograms. A kilogram scale is used to measure kilograms. Kilogram scales come in many shapes and sizes. A bathroom scale and a scale in a doctor's office are two different types of kilogram scales.

- Find your mass on a kilogram scale. Measure the mass of other heavy objects such as a sack of potatoes, a bag of sugar, and a pet. Work through Metric Activities 38, 39, and 40: Guess the mass of a friend and various objects before you measure them. Keep trying until you are able to make fairly accurate guesses.

A kilogram is a rather heavy unit. Because of this it is often necessary to use subunits for expressing the mass of light objects. The most common subunit is the gram. There are one thousand grams in one kilogram. Thus, each gram represents one thousandth of a kilogram. The symbol g is used to represent grams. The units dekagram and hectogram are very seldom used. There are 10 hectograms in one kilogram and 100 dekagrams in one kilogram.

- Pick up a raisin. Feel how light it is! It weighs about one gram. Pick up a nickel. A nickel weighs about 5 g. You may want to work through Metric Activities 41 and 42 to develop a better understanding of the mass of one gram.
A smaller unit that is often used is the milligram, which is one thousandth of a gram. The symbol mg is used for milligram. Milligrams are used mostly for measuring very small amounts such as medicines and vitamins.

A unit larger than a kilogram that is often used is the metric ton, which is 1,000 kilograms. The metric ton is used for shipping corn, wheat, and other large quantities. The symbol t is used to represent the metric ton. This unit is spelled tonne in other English speaking countries; however, in the United States "metric ton" is preferred.

Temperature

The last section is about measuring temperatures. Students are asked to estimate how hot or cold something is.

The unit most people will use for measuring temperatures is degree Celsius. The tools for measuring temperatures are Celsius thermometers. The symbol for degree Celsius is °C. Usually no space is left between the numeral and the symbol. Thus, 53 degrees Celsius is written 53°C and not 53 °C. Celsius and º are both capitalized since they are in honor of Anders Celsius, the Swedish astronomer who developed the Celsius scale. The term degree centigrade has been replaced by degree Celsius.

If you place a Celsius thermometer in ice water the reading should be 0°C; if you place it in boiling water the reading should be 100°C. Normal body temperature is 37°C. A comfortable room temperature is 21°C. Metric Activities 53, 54, and 55 give you a better feeling for Celsius temperatures. You may want to do these three activities before this material is studied in class.

METRIC NOTATION

When writing measures in metric notation there are a few rules that should be followed. To express a quantity such as 15 metres you write 15 m. Notice that there is a space between the numeral 15 and the symbol m. Remember that no period is placed after the symbol unless it is at the end of a sentence.

A quantity such as 27 litres should be written as 27 l. Note that a space is left between the numeral 27 and the symbol l. This is important since a lower case l looks like a numeral one. Some early metric guides used a script l, but this is discouraged since most typewriters do not have a script l key. When there is a possibility of confusion, the word litre should be written out.
Numbers that are one thousand and larger use a space instead of a comma, to separate groups of three digits. Thus, a quantity such as 25,683,927 centimetres should be written 25 683 927 cm. However, when there are four digits the space does not have to be used. Thus, 3957 and 3957 are both correct.

When referring to quantities less than one unit in length, a zero (0) is placed to the left of the decimal point. Thus, 0.25 cm should be used, not .25 cm. This is not necessary when there is a combination of whole units and partial units. For example, 2.35 dm is correct; 02.35 is not.

Another rule is that two different units are never mixed. It is not correct to write 6 m and .7 cm. Instead, this should be expressed entirely in metres, entirely in centimetres, or entirely in some other linear unit. Since there are 100 cm in 1 m, there are 600 cm in 6 m, hence this length of 6 m and 7 cm could be expressed as 607 cm. If you want to express this in metres rather than in centimetres, you must remember that 1 cm is the same as 0.01 m (1 centimetre is the same as one hundredth of a metre). So, 7 cm is 0.07 m and 6 m and 7 cm would be written 6.07 m.
LEVEL III

COMMENTS AND MATERIALS NEEDED

<table>
<thead>
<tr>
<th>Comment</th>
<th>Student Workbook Page</th>
<th>Materials Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity 1. A METRE HIGH</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Activity 2. A METRE LONG</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Activity 3. A METRE WIDE</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>In these three Metric Activities students use metre sticks and develop a feeling for the length of a metre or metre stick. Give each student enough time to fully understand the concept of metric length.</td>
<td></td>
<td>Metre stick for each student. (If possible, use unmarked metre sticks.)</td>
</tr>
<tr>
<td>Activity 4. METRE ROOM</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>In this activity students are getting additional experience in the use of metre sticks. Encourage them to write their answers and to use correct metric notation. They may want to write a result as $5\frac{1}{4}$ m. This is acceptable. In fact, you may want to encourage them to use some rough measures such as this. Do not expect them to be precise.</td>
<td></td>
<td>Metre stick for each student. (If possible, use unmarked metre sticks.)</td>
</tr>
<tr>
<td>Activity 5. STEPPING METRES</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>This can be fun. Encourage students to make the marks as far apart as possible, i.e., if there is room, they can put the marks 20, 30, or 40 metres apart. Ask them to try to make all their steps the same length.</td>
<td></td>
<td>Metre stick. Masking tape or chalk.</td>
</tr>
<tr>
<td>Activity 6. METRES AROUND THE ROOM</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Encourage the students to guess the height, width, or length of each of the objects and to write their guesses on a sheet of paper. Answers such as "almost two metres," "less than three metres," "two and a half metres," etc. are acceptable.</td>
<td></td>
<td>Metre stick for each student.</td>
</tr>
</tbody>
</table>
Activity 7. CENTIMETRES

This activity introduces the students to the centimetre by means of hands-on activities. In this Metric Activity, students will use the ruler to help them get an internal feeling for the length of a centimetre and how to use the ruler. Give each student enough time to fully understand the concept of the centimetre.

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Give each student enough time to fully understand the concept of the centimetre.</td>
</tr>
</tbody>
</table>

Activity 8. GUESS AND MEASURE

Encourage the students to guess the measures of each of these objects. Ask them to write their guesses on one sheet of paper and write the actual measures on a different sheet of paper. They should then compare the guesses with the actual measures. For the book, they may want to measure its length, width, and thickness. What about the diameter of the coffee pot? You may want to include objects other than the ones listed here.

<table>
<thead>
<tr>
<th>Materials Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric ruler for each student.</td>
</tr>
</tbody>
</table>

Activity 9. METRIC TAPE MEASURE

This activity helps students relate the metre to their body measurements. It introduces a new measuring tool—the metric tape measure. Before you begin this activity, the students can compare the length of their tape measure with the length of a metre stick. Note that many metric tape measures are 150 cm, or 1.5 m, long.

<table>
<thead>
<tr>
<th>Materials Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric tape measure for each student.</td>
</tr>
</tbody>
</table>

Activity 10. BODY MEASUREMENTS

Here again the students get a chance to relate the metre to body measurements. As they work through this Metric Activity, students should be encouraged to compare their body measurements from Metric Activity 9 to the measurements of the three "models" in this activity.
Activity 11. MEASURING MILLIMETRES

This is to help students learn to read a metric ruler in millimetres. You may want to duplicate some drawings or line segments for the students to measure in millimetres. The students can check these measurements against your answers or the measures of other students in the class. Give the students as many experiences as are needed for them to develop mastery.

Activity 12. MILLIMETRES

Students should get an idea of some everyday objects that measure about a millimetre. This will help them gain a better understanding of the size of a millimetre.

Activity 13. ME IN MILLIMETRES

Again, encourage students to guess before they measure. This will enable them to associate some parts of their bodies with millimetre measurements.

Activity 14. MORE MILLIMETRES

Encourage the students to first guess the measures of each of these objects, write their guess on a sheet of paper, and then measure the object. Encourage them to keep guessing and measuring until they become proficient. You may want to include objects other than the ones listed here.

Activity 15. UP IN SMOKE

This activity gives further practice with measuring in millimetres. It provides an example of a metric product already in common use.

<table>
<thead>
<tr>
<th>Comment</th>
<th>Student Workbook Page</th>
<th>Materials Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 11. MEASURING MILLIMETRES</td>
<td>13</td>
<td>Metric ruler for each student.</td>
</tr>
<tr>
<td>Activity 12. MILLIMETRES</td>
<td>13</td>
<td>Metric ruler for each student.</td>
</tr>
<tr>
<td>Activity 13. ME IN MILLIMETRES</td>
<td>13</td>
<td>Metric ruler for each student.</td>
</tr>
<tr>
<td>Activity 15. UP IN SMOKE</td>
<td>14</td>
<td>Metric ruler. A number of cigarettes in each of several lengths: 100 mm, 120 mm, king size, regular.</td>
</tr>
</tbody>
</table>
Activity 16. MILLIMETRES AND CENTIMETRES

In this Metric Activity students begin to convert from millimetres to centimetres. You may want to give the students some additional problems to convert. If these students are somewhat familiar with the customary system, you can point out how much easier it is to change metres to centimetres than to change feet to inches.

Activity 17. STEPPING KILOMETRES

This is more of an after-school activity than an in-class activity. The students can appreciate the length of a kilometre by taking 1 000 steps back and forth in the hall. If you time them, they will develop a feeling for a kilometre.

Activity 18. SCALING KILOMETRES

In this activity students have to do two things: measure the distance between two cities on a map, and convert that measure to kilometres. Students' answers may vary from the ones given on page 59 due to variations in the metric rulers or in whether the measures were taken from the center or an edge of the dots used for the cities.

Activity 19. MORE SCALES

This activity is similar to Activity 18. Students are to measure the distance between two cities and then convert these measures to kilometres. Note that there is a scale change—each centimetre represents three kilometres. This means that students may make some multiplication errors. Again, there may be slight variations in the answers from the ones given on page 59 of the STUDENT WORKBOOK. Any slight measuring errors are tripled.
LEVEL III

Activity 20. CROSS COUNTRY

This activity also is similar to Activities 18 and 19. Students are to measure the distance between two cities on a United States map. To convert these measures from centimetres to kilometres, students have to multiply by 300. This means that any small measuring errors are multiplied by 300 when they are converted to kilometres.

AREA

Activity 21. SQUARE METRES

Activity 22. LIVING METRES

These two activities help give students a feeling for the size of a square metre. If possible, measure off some parts of the room that are 2, 3, 4, etc. m². Have the students walk around these square metres and look at them to develop a feeling for the size of a square metre. This should help them to acquire the ability to estimate area in square metres.

Activity 23. METRIC ROOM

Use the newly acquired ability to estimate area in square metres by having students estimate the areas of the classroom floor and walls. After they have estimated these areas, they should measure them. Help the students determine the number of boxes of tile it would take for the floor and the amount of paint for the walls.
VOLUME AND CAPACITY

Activity 24. CUBIC CENTIMETRES

This is a combination activity. Students must first measure the length, width, and height of each solid, and then multiply these three numbers in order to get the volume. There are lots of chances for students to make mistakes. Make the blocks fairly small. You may want to use some children's blocks or small boxes, such as a paper clip box or a chalk box. Since some of the measures may not be in whole centimetres, there is the additional concern of placing the decimal point after the students' multiply.

Activity 25. ROCKY VOLUME

You need a rectangular, watertight container of some kind which need not be transparent. Take the inside measurements of the length and width of the container. If you use an inside caliper or a circle compass you may have to show the students how to use that device.

Put some water in the container and measure the height of the water. Now calculate the volume of the water. Gently lower the rock, measure the new height of the water, and calculate the volume of the water and the rock. Subtract to find the volume of the rock. You might want to do this with several rocks, bricks, or other irregularly shaped objects that sink in water. Keep these objects for later use in Activity 50.

Activity 26. APPLE VOLUME

If the apple is much smaller than the rock, you may want to find a smaller rectangular box. This would make the rise in the water level more noticeable.

You can use this same technique when you are teaching the volume formula in a mathematics lesson.
Activity 27. CUBIC METRES

This is a challenging activity. It is possible to do this with as few as two people, but it is hard. If possible, see if the students can construct similar figures for 2, 3, 4 m³, etc.

Activity 28. CUBIC METRE ROOM

This is a simple multiplication problem using the answers the students got when they worked Activity 4. Since so many of the measures were rough (about 3 metres, or almost 4½ metres, etc.) the students may want to re-measure the room. Again, there may be some difficulty in multiplying decimals, and you may have to adjust the numbers to more closely fit your students' mathematical abilities.

Activity 29. LOTS OF LITRES

Do products that come in litre containers really hold a litre? Is the shape of the container deceiving so that some of the products look like they have more than some of the others? Measure and see.

Activity 30. BOTTLES AND CANS

This is similar to Activity 29. Ask the same questions. Encourage the students to guess whether they think that each container really holds a litre. Cover up or remove the size designations on each bottle or can.

Materials Needed

12 metre sticks for each cubic metre to be made.

Data of room measures from Activity 4 (METRE ROOM).

Containers that hold a litre— one for each student, if possible.

Products that come in litre containers.

Rice, sand, sugar, water, etc.

Litre measuring cup.

Containers that hold a litre—one for each student, if possible.

Products that come in litre containers.

Rice, sand, sugar, water, etc.

Litre measuring cup.

Several bottles or canned products that come in one litre sizes.
Activity 31. GUESS LITRES

Students should be acquiring a feeling for a litre by now. See how well they can guess the capacity of each of these containers. Encourage guessing. After everyone has guessed, then measure.

Activity 32. FILL THE BUCKET

This is fun, but it can be messy. If you think students will have difficulty seeing the water line after each litre is added, you may want to put a few drops of food coloring in the first couple of litres. Use a waterproof marker even if you put the marks on the outside. This prevents the marks from running if any water is spilled or the bucket sweats.

Activity 33. SPOONS

Let the students examine the spoons. How can they tell the number of millilitres each spoon holds? When would they use the spoons? Discuss. How many different uses can they think of for measuring with millilitre spoons?
Let the students make coffee. This is a good opportunity for them to use litres and millilitres.

Activity 35. CAN CAN

The students can begin this activity by guessing the size of each can. Some cans have metric units printed on the label. It would be best to remove or cover up any of these units before class. It would be helpful to remove any customary units (such as pounds, ounces, pints, quarts) so that students do not compare the metric units with the customary ones. If a typical serving is 200 ml, how many servings does each container hold?

Activity 36. SHOPPING TRIP

This is an out-of-class activity. Encourage students to look at the sizes of food containers in stores and at home. Ask them to bring in empty cans, bottles, or boxes from home. Examine the labels to see how much each container holds. Are all the containers marked according to their capacity? Explain that the ones that are marked in grams (g) and kilograms (kg) will be studied later.
Comment

Activity 37. LET'S EAT!

This is a tasty activity. Wherever the recipe says "Chop 40 ml carrots" it should be understood that the students are to measure out the 40 ml of carrots after they are chopped. All ingredients are given in litres and millilitres except for the 440-gram box of chocolate fudge frosting mix. This is a standard size box. Students should have no difficulty identifying it if you have the box on hand. No recipe requires cooking. Good eating!

MASS

Activity 38. FIND YOUR MASS

This is a fun activity. Everyone is surprised at how little they "weigh" in kilograms. You may want to place the scale in a corner of the room so that students can keep their metric mass a secret.

Activity 39. KILOGRAMS

Like some of the other Metric Activities, this one is designed to help the students get a feeling for the size of metric units, in this instance--kilograms. Students are to lift several different kilogram pieces; one at a time, to get an idea of their masses.
LEVEL III

<table>
<thead>
<tr>
<th>Activity 40. What's ITS MASS?</th>
<th>Page 47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Again students are asked to guess, record their guess, and then use the scales to find the mass. You may want to add several objects to the ones that are listed. It is very hard to become accurate at estimating mass. You can provide additional objects to use for further practice.</td>
<td>Materials Needed</td>
</tr>
<tr>
<td>Kilogram scale.</td>
<td>Apple.</td>
</tr>
<tr>
<td>Brick.</td>
<td>Box of rice.</td>
</tr>
<tr>
<td>Additional objects.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity 41. Grams, Grams, Grams</th>
<th>Page 49</th>
</tr>
</thead>
<tbody>
<tr>
<td>This activity gives students an opportunity to develop a feeling for the mass of a gram. Most students find it difficult to differentiate between the masses of some of these pieces. Trying to guess the mass of a piece while blindfolded should, after several trials, improve the students' ability to distinguish the mass of a piece.</td>
<td>Materials Needed</td>
</tr>
<tr>
<td>Set of mass pieces (1 g, 3 g, 5 g, and 20 g).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity 42. Guess and Find the Mass</th>
<th>Page 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Now that students are beginning to feel comfortable with the concept of gram, have each student guess the mass of each of the light objects that have been placed on the table. Do NOT measure their masses— JUST GUESS! Then have each student find each object's mass and record the measure.</td>
<td>Materials Needed</td>
</tr>
<tr>
<td>Sugar cube.</td>
<td>Pencil eraser.</td>
</tr>
<tr>
<td>Pencil.</td>
<td>Sunglasses.</td>
</tr>
<tr>
<td>Metric ruler.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity 43. What We Eat</th>
<th>Page 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is primarily a do-at-home activity. Ask students to examine various containers to find the mass of the contents. Soup, sugar, flour, rice, spices, and other products have their metric masses printed on the label. You should point out that most labels give net weight, or the weight of the contents and not weight of the contents and the package. Also, manufacturers use the term weight, rather than mass, on labels. You may want to ask some students to bring in examples that they found. Empty some of the containers and have students find the mass of the contents. Do they get the same figure that is on the label? Relate this activity to Activities 35 (Can Can) and 36 (Shopping Trip).</td>
<td>Materials Needed</td>
</tr>
<tr>
<td>Gram scale and a set of mass pieces.</td>
<td></td>
</tr>
</tbody>
</table>
Activity 44. THINK MASS

Here is a good opportunity for some class discussion. What jobs require people to find the mass of objects? What other measuring tasks are used in these jobs? Where will the students need to use the skills from this course?

Activity 45. WATER LITRE

Activity 46. BUCKETS OF KILOGRAMS

These two activities are designed to show students the relationship between volume and mass. When French scientists originally defined a gram, it was the mass of one cubic centimetre of distilled water at 4°C at a certain atmospheric pressure. Your students should not see any noticeable difference between this ideal for the mass of one cubic centimetre of water and what they get when they find the mass of large amounts of water. Since 1 cm³ has a mass of 1 g, then 1 litre (1 000 cm³) has a mass of 1 000 g, or 1 kilogram. A bucket that has a capacity of 4.5 litres holds a mass of 4.5 kilograms of water. This relationship between volume and mass is true only for water.

Activity 47. LITRES AND NOT KILOGRAMS

This activity helps show that a litre of many different things does not necessarily have a mass of one kilogram. You can get into a good discussion as to how you know when you have a litre of each of these things. From Activities 25 (ROCKY VOLUME) and 26 (APPLE VOLUME) students should know one way to make sure that they have a litre of rice, sand, beans, or rocks. Will that work with the flour or sugar? If they complain because all of these are not liquids, then use the Isopropyl rubbing alcohol. A litre of Isopropyl alcohol should have a mass of 881 g. You might want to return to this activity after you have finished Activities 48 (APPLE MASS) and 49 (WOOD MASS).
Activity 48. APPLE MASS

This activity demonstrates that the mass of water displaced by a floating object is equal to the mass of the object. For example, if the apple's mass is 125 g, then the water level will rise 125 ml; that is, 125 g of water are displaced.

The second part of the activity demonstrates how to find density. Students are asked to divide an apple's mass by the apple's volume.

If you use several apples you may get different results. The moisture in the apple varies causing some fluctuations among apples. One apple tried by the authors had a volume of 185 ml and a mass of 155 grams. This gave a density of 155 / 185 = 0.84.

Activity 49. WOOD MASS

Activity 50. ROCKY MASS

Activity 51. SPECIFIC BRICK

These are a continuation of Activity 48 (APPLE MASS). Students are to find the density of a piece of wood, a rock, and a brick. The density of the wood should be less than one. The density of the rock and the brick should be greater than one.

If several rocks and bricks are used, their densities may vary depending on the type of rock or style of brick. A rock tried by the authors had a mass of 450 g and a volume of 160 ml, and so its specific gravity was 450 / 160 = 3.81. Again note that if the density is less than one, the object will float in (on) water. If the density is more than one, the object will sink in water.

(Continued)
You can return to Activity 47 (LITRES AND NOT KILOGRAMS) and calculate the density of the Isopropyl alcohol. Measure out equal amounts of alcohol and water. Find the mass of each. Divide the alcohol's mass by the water's mass. The density of Isopropyl alcohol will be about 0.88. Will the alcohol float on water? You can ask your students if they think the alcohol will float on water and then, after you have recorded their ideas, try it and see.

The students may also want to calculate the density of the rice, sand, beans, and rocks that were used in Activity 47. They will have to be careful when they determine the volume of each of these items. They may have to refer to Activities 25 and 26 for help in calculating the volume of each item.

TEMPERATURE

Activity 52. READING DEGREES

Set the demonstration thermometer at a certain setting and ask the students the temperature indicated. Repeat this with different temperatures as often as it takes for the students to gain proficiency in reading the thermometer. Explain the significance of 0°C, 37°C, 100°C. Make sure you use some temperatures below zero. Also give the students opportunities to write temperatures.

(Continued)
Whether something is hot or cold depends on the circumstances. 2°C would be a cold morning, but 2°C would be too warm for the freezer compartment of a refrigerator. 40°C would be a very hot summer day, but it would be too cold to bake in the oven. Establish your frame of reference before you decide whether a temperature is hot or cold. What are comfortable temperatures for cooking?...for going to the beach?....for working outdoors?

Activity 53. TAKING TEMPERATURES

Have several thermometers that can be dipped in the containers. Have the liquids in the containers at different temperatures. Use insulated containers, if possible, to help maintain the temperature. Fill one container with ice and some water; another with boiling water (you could use a coffee pot to boil water); and so forth. Except for the hot liquids have the students first feel the water with their fingers and guess the temperature, then have them take the temperature. Ask them to read the temperature from the thermometer and then write the temperature.

Activity 54. AROUND AND ABOUT

As the students move around the room, ask them to guess the temperature in several of the places around the room. Is it warmer near the ceiling? Is it warmer or cooler near the windows? Do they think their answers would be the same during another season of the year?
<table>
<thead>
<tr>
<th>Activity</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>55. IN AND OUT</td>
<td>Again, have the students try to guess the temperature of each of several places outside. Is it really cooler in the shade? What difference does it make if they are near the building? If it is a sunny day, they can check the temperature in a closed car.</td>
</tr>
<tr>
<td>56. FEVER</td>
<td>Either make or obtain a demonstration Celsius clinical thermometer. Directions for making one are in Resource 5., page 32. Show students how to read degrees in tenths, then give the students as many experiences in reading and writing temperatures as are needed to develop mastery.</td>
</tr>
<tr>
<td>57. BODY TEMP</td>
<td>This activity takes some time. A clinical thermometer can be difficult to read. Make sure you use the alcohol to sterilize the thermometers after each use. After each student has taken his or her own temperature, ask the student to write it down. Then ask the student to tell you the temperature. Does the written answer agree with the oral answer, and do both answers agree with the thermometer?</td>
</tr>
</tbody>
</table>

Materials Needed

- Several Celsius thermometers.
- Demonstration Celsius clinical thermometer.
- Several Celsius clinical thermometers one for each student, if possible.
- Bottle of Isopropyl, or rubbing alcohol.
- Cotton balls.
RESOURCES AND MATERIALS

1. Make-a-Metre Packs: A roll of metre strips of heavy paper in variety of colors. Roll is $3.50 for 100 strips. Pads of decimetre strips and centimetre strips which may be cut apart and pasted or stapled to make a calibrated metre stick. Pads are approximately 70¢ and contain enough for 30 students.
 Available: Metric Supply International
 1906 Main Street
 Cedar Falls, IA 50613

 Improvised Material: Light weight cardboard or nonwoven fabric such as Pellon® cut into metre size strips. Draw in decimetre divisions with ballpoint pen.

2. Butterick Publishing Wall Chart: "Figure It In Metrics" an excellent chart for developing an understanding of metric clothing sizes. Cost for wall chart measuring 85 x 55 cm and showing 12 figure types is approximately $2.00.
 Available: Butterick Publishing Co.
 P. O. Box 1945
 Altoona, PA 16603

 Available: Ohaus Scale Corp.
 29 Handver Road
 Florham Park, NJ 07932

 Improvised Material: A kitchen scale may be recalibrated to measure metrically. An improvised balance scale can be constructed as follows--

 Materials--a metre stick (thin wood), fish line or strong string, small plastic containers like butter containers, and large paper clip.

 Holes can be made in the metre stick with a drill or small screwdriver. The holes at end should be near the bottom. Use large paper clips, which are bent open, to provide hooks from which plastic containers may be hung. A loop of string in the center may be used to suspend the balance scale. Bring scale into balance by adding clay or plastic to the containers.

 To make weights, a square sugar cube is 1 gram, a rectangular one is 5 grams. Use clay balls or water to "make" weights needed.
4. **Celsius Demonstration Thermometer:** Can be purchased for approximately $6.75 from Ohaus (Ohaus Part No. 80570) or Dick Blick (Catalog No. 88283).

Available: Ohaus Scale Corp. Dick Blick
29 Hanover Road Box 1267
Florham Park, NJ 07932 Galesburg, IL 61401

Improvised Material: An improvised Celsius demonstration thermometer can be constructed as follows:

- **Materials:** one sheet of white poster board 75 cm x 100 cm, a piece of red ribbon and a piece of white ribbon each measuring 2 cm x 95 cm, glue, black felt tip marker, red felt tip marker, knife or razor blade, metre stick, pencil.

Cut the sheet of poster board in half so that each half measures about 37.5 cm x 100 cm. About 5 cm from the middle of the top of the board cut a slot about 2.5 cm x 0.2 cm. Cut another slot this same size about 5 cm from the middle of the bottom. Your board should now look something like the Drawing 1 here.

With the red felt tip marker draw and color in a circle below the bottom slot. With a pencil lightly mark point A about 1 cm to the left of the top slot, point B 1 cm to the left of the bottom slot, point C 1 cm to the right of the top slot, and point D 1 cm to the right of the bottom slot. Draw a line from A to B and a line from C to D (see Drawing 1).
Using your metre stick, mark each of these two lines off in centimetres. Connect the marks that are opposite each other. Your poster board should now look like Drawing 2. Label the bottom mark -40. Count up 10 marks and label this mark -30. Continue counting 10 marks and labeling: -20, -10, 0, 10, 20, 30, 40, and 50. Glue one end of the red ribbon to one end of the white ribbon. You now have one ribbon—red on one end and white on the other. After the glue has dried, insert the ribbon into one of the slots, pull one end of the ribbon through and insert the end into the other slot. Join and glue the two ends of the ribbon. Hold the poster board upright and arrange the ribbon so that the red part of the ribbon comes through the bottom slot. You now have a demonstration Celsius thermometer. By sliding the ribbon up and down you can get different temperature settings.

5. **Clinical Celsius Demonstration Thermometer**: This is an improvised thermometer. The materials and the directions will be the same as for the Celsius Demonstration Thermometer as described in the previous part, #4. If you made that thermometer, then use the other half of the poster board for this thermometer. If not, then you will need a piece of poster board 37.5 cm x 100 cm. Cut the slots 10 cm from the top and bottom instead of the 6 cm that was used in #4. The bottom reading on the thermometer should be 34. Count up ten spaces and label this line 35. Keep counting ten lines and labeling 36, 37, 38, 39, 40, 41, and 42. Insert the ribbon and use, as in the other demonstration. Remember, however, that on this thermometer each mark indicates 0.1°C (one-tenth of a degree Celsius).
REFERENCES

Northcutt, Norvell W. ADULT FUNCTIONAL COMPETENCY: A SUMMARY. Adult Performance Level Project Staff, Division of Extension, The University of Texas at Austin, Austin, Texas, January, 1973, 25 p. $2.00

Order from: Adult Performance Level Project
202 Extension Building
The University of Texas at Austin
Austin, Texas 78712

Order from: Superintendent of Documents,
U. S. Government Printing Office,
Washington, D.C. 20402
SD Catalog No. C13.10:330/3

Order from: The Ohio Department of Education
Division of Educational Redesign and Renewal
Room 1004, 65 South Front Street
Columbus, Ohio 43215

Order from: Superintendent of Documents
U. S. Government Printing Office
Washington, D.C. 20402

Also from: ERIC/ED 055 884
LEVEL III

Order From: American National Metric Council
1625 Massachusetts Avenue, N.W.
Washington, D.C. 20036

METRIC EDUCATION: AN ANNOTATED BIBLIOGRAPHY FOR VOCATIONAL, TECHNICAL AND ADULT EDUCATION. The Center for Vocational Education, The Ohio State University, 1960 Kenny Road, Columbus, Ohio 43210. December, 1974, 210p. $10.00

Order from: Product Utilization
The Center for Vocational Education
1960 Kenny Road
Columbus, Ohio 43210

Also from: ERIC/ED 115 953

Cooper, Gloria S.; Magisos, Joel H.; and others. METRIC EDUCATION. A POSITION PAPER FOR VOCATIONAL, TECHNICAL AND ADULT EDUCATION. The Center for Vocational Education, The Ohio State University, Columbus, Ohio. 1975, 46 p. $3.00

Order from: Product Utilization
The Center for Vocational Education
1960 Kenny Road
Columbus, Ohio 43210

Also from: ERIC/ED 112 064

Order from: Superintendent of Documents,
U. S. Government Printing Office,
Washington, D.C. 20402
SD Catalog No. C13.10:389
Stock No.: 0303-01219

Also from: ERIC/ED 090 025

THE CENTER FOR VOCATIONAL EDUCATION
USE OF STUDENT TEST BOOKLETS

The STUDENT TEST BOOKLETS can be used to evaluate how well your students are able to meet the objectives for these materials. The tests in this INSTRUCTOR'S GUIDE can be used as masters for duplicating additional copies.

There are two forms of the test. Form 1 can be used to evaluate a student's progress. Students who do not get at least 24 of the 30 questions correct may benefit from repeating parts of the LEVEL III materials. After a student has restudied the materials, Form 2 of the test can be used. Answers and a list of materials needed for each form are given on the page immediately following the form.
Directions

This test has 30 questions. Read each question carefully. There are three kinds of questions on this test.

One type of question is a multiple-choice question. Read each of the possible answers below the question. Pick the number of the answer you think is best. Write the number of this answer in the blank in the question.

Example:

There are \(\text{(3)} \) metres in one kilometre.

(1) 10
(2) 100
(3) 1 000
(4) 10 000

There are 1 000 metres in one kilometre. The correct answer is number (3). So, the number (3) is written in the blank.

A second type of question asks you to fill in the blank. You are to put what you think is the correct answer in the blank.

The third type of question also asks you to fill in the blank. But, before you fill in the blank you have to measure an object that is on the resource table. Each object on the resource table has been given a letter. Make sure you measure the correct object. If you do not see it someone else may be measuring it. Please wait until they are through; then measure the object and write your answer in the blank.
1. A millimetre is about the size of
 (1) the thickness of a paper clip wire.
 (2) the top of a card table.
 (3) a bathroom scale.
 (4) the length of your little finger.

2. A box has a mass of 57 kilograms. Using metric symbols, this can also be written as 57 ___.

3. Measure the length of the resource table. It is ____ metres long.

4. How much salt is in this spoon?

5. A measure that is the same as 43 litres is ____
 (1) 0.043 ml
 (2) 4 300 ml
 (3) 43 000 ml
 (4) 0.43 ml

6. The distance between New York City and Boston is about 369 kilometres. If you write this using the symbol for kilometres you would write 369 ___.

7. The temperature shown on this thermometer is ____

8. This toothbrush is ____ cm long.

9. On the resource table is block D. ESTIMATE its mass in kilograms. ____ kg.

10. On the resource table is a cardboard square, B. ESTIMATE the length of one side of this square in centimetres. ____ cm.

11. If you use the symbol for millilitres, 28 millilitres can be written as 28 ____.

12. This needle is ____ mm long.

13. The area of this rectangle is ____ m^2.

14. On the resource table is a ball, K. Its mass is ____.

15. If you use metric symbols, 47 millimetres can also be written as 47 ____.
16. The temperature shown on this thermometer is _____ °C.

17. Using metric symbols, 273 square metres can also be written as 273 _____.

18. On the resource table is a can, C. Measure its capacity. It is _____ millilitres.

19. The area of the floor of the house in this picture is _____.

20. A measure that is the same as 934 kilograms is _____.
 (1) 0.934 g
 (2) 934 000 g
 (3) 9.34 g
 (4) 93 400 g

21. On the resource table is a can, C. ESTIMATE how many litres can C will hold. _____

22. How much water is in this cup? _____ ml

23. A square metre is about the size of _____.
 (1) a card table top.
 (2) your thumbnail.
 (3) the floor of the classroom.
 (4) a 25¢ coin (quarter).

24. A metre is about _____.
 (1) the distance you can walk in 12 minutes
 (2) the width of a brick.
 (3) the height of the ceiling of this room.
 (4) the height of a doorknob from the floor.

25. Measure the temperature of the liquid in can N. It is _____.
LEVEL III

26. The volume of this box is \(\text{cm}^3 \).

27. A measure that is the same as 0.8 cm is \(\text{ } \) cm.

 (1) 8 mm
 (2) 80 m
 (3) 0.08 mm
 (4) 8 m

28. If you use metric symbols, 13 cubic metres can also be written as 13 \(\text{ cm}^3 \).

29. A measure that is the same as 5000 mm is \(\text{ } \).

 (1) 5 cm
 (2) 50 m
 (3) 500 cm
 (4) 5000 cm

30. On the resource table is a rock labeled E. Measure its volume. Its volume is \(\text{cm}^3 \).
MATERIALS NEEDED

<table>
<thead>
<tr>
<th>Exercise number</th>
<th>Letter designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>D</td>
<td>Block of wood—37 mm x 86 mm x 475 mm</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>Large red cardboard square 23 cm on each side</td>
</tr>
<tr>
<td>14</td>
<td>K</td>
<td>Solid rubber ball—something like a "Super Ball"</td>
</tr>
<tr>
<td>18</td>
<td>G</td>
<td>Large empty frozen orange juice can</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>Small empty coffee can</td>
</tr>
<tr>
<td>25</td>
<td>N</td>
<td>Any size can, e.g. a soup can (this is used only for holding water)</td>
</tr>
<tr>
<td>30</td>
<td>E</td>
<td>A rock</td>
</tr>
</tbody>
</table>

ANSWERS

1. (1) kg

2. (3) km

3. Answer depends on length of table used

4. 5 ml

5. Answer depends on density of block used—allow 25% error in estimates

6. (1)

7. 20°C

8. 9

9. Answer depends on density of block used—allow 25% error in estimates

10. 23—accept answers from 18 cm to 28 cm

11. ml

12. 47

13. 40

14. Answer depends on mass of ball used

15. mm

16. (2) m²

17. (3) m²

18. Answer depends on size of can used

19. 38 m²

20. (2)

21. Answer depends on size of can used—allow 25% error in estimates

22. 450

23. (1)

24. (4)

25. Answer depends on temperature of water used

26. 1 000

27. (1)

28. m³

29. (3)

30. Answer depends on volume of rock used
Directions

This test has 30 questions. Read each question carefully. There are three kinds of questions on this test.

One type of question is a multiple-choice question. Read each of the possible answers below the question. Pick the number of the answer you think is best. Write the number of this answer in the blank in the question.

Example:

0. There are (3) metres in one kilometre.

 (1) 10
 (2) 100
 (3) 1 000
 (4) 10 000

There are 1 000 metres in one kilometre. The correct answer is number (3). So, the number (3) is written in the blank.

A second type of question asks you to fill in the blank. You are to put what you think is the correct answer in the blank.

The third type of question also asks you to fill in the blank. But, before you fill in the blank you have to measure an object that is on the resource table. Each object on the resource table has been given a letter. Make sure you measure the correct object. If you do not see it someone else may be measuring it. Please wait until they are through; then measure the object and write your answer in the blank.
1. A centimetre is about ______.
 (1) the width of a fingernail.
 (2) the thickness of a dime.
 (3) the capacity of a spoon.
 (4) the length of this room.

2. A rock has a mass of 128 grams. Using metric symbols, this can also be written as 128 ______.

3. On the resource table is a block A. Measure the length of this block. It is ______ millimetres long.

4. How much salt is in this spoon? ______.

5. A measure that is the same as 52 ml is ______.
 (1) 52 000 litres
 (2) 5 200 litres
 (3) 0.052 litre
 (4) 0.52 litre

6. The distance between New York City and Boston is about 369 kilometres. If you write this using the symbol for kilometres you would write 369 ______.

7. The temperature shown on this thermometer is ______.

8. This nail is ______ cm long.

9. On the resource table is a box, H. ESTIMATE its mass in grams. ______ g.

10. On the resource table is a yellow cardboard square, M. ESTIMATE the length of one side of this square in millimetres. ______ mm

11. If you use the symbol for millilitres, 28 millilitres can be written as 28 ______.

12. This pencil is ______ mm long.

13. The area of this rectangle is ______ m².

14. On the resource table is a brick, J. Its mass is ______.

15. If you use metric symbols, 47 millimetres can also be written as 47 ______.
16. The temperature shown on this thermometer is ___°C.

17. Using metric symbols, 48 square metres can also be written as 48 __________.

18. On the resource table is a can, F. Measure its capacity. It is ____ litres.

19. The area of the floor of the house in this picture is ________.

20. A measure that is the same as 187 grams is ________.

 (1) 187 000 kg
 (2) 0.187 kg
 (3) 1.87 kg
 (4) 18 700 kg

21. On the resource table is a can, P. ESTIMATE how many litres it holds. _________

22. How much water is in this cup? ml

23. A square metre is about the size of ________.

 (1) a card table top.
 (2) your thumbnail.
 (3) the floor of the classroom.
 (4) a 25c coin (quarter).

24. A metre is about ________.

 (1) the distance you can walk in 12 minutes.
 (2) the width of a brick.
 (3) the height of the ceiling of this room.
 (4) the height of a doorknob from the floor.

25. Measure the temperature of this room. It is ________.
LEVEL III

26. The volume of this box is _______ cm³.

27. A measure that is the same as 14 km is _______.
 (1) 14 000 m
 (2) 14 cm
 (3) 14 000 cm
 (4) 1 400 m

28. If you use metric symbols, 13 cubic metres can also be written as 13 _______.

29. A measure that is the same as 5 000 mm is _______.
 (1) 5 cm
 (2) 50 m
 (3) 500 cm
 (4) 50 000 cm

30. On the resource table is a block labeled L. Measure its volume. Its volume is _______ cm³.
MATERIALS NEEDED

<table>
<thead>
<tr>
<th>Exercise number</th>
<th>Letter designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>Block of wood—37 mm x 86 mm x 475 mm</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>Small box that is not empty</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>Yellow cardboard square 134 mm on each side</td>
</tr>
<tr>
<td>14</td>
<td>J</td>
<td>Brick</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>Large empty coffee can</td>
</tr>
<tr>
<td>21</td>
<td>P</td>
<td>Can—different size from F (should also be different size from C, G and N used in Form 1)</td>
</tr>
<tr>
<td>30</td>
<td>L</td>
<td>Block of wood 37 mm x 86 mm x 102 mm</td>
</tr>
</tbody>
</table>

ANSWERS

1. (1)
2. g
3. 475 mm—or whatever length of block used
4. 5 ml
5. (3)
6. km
7. 30°C
8. 6
9. Answer depends on mass of box used—allow 25% error in estimates
10. 134—accept answers from 100 mm to 168 mm
11. ml
12. 86
13. 40
14. Answer depends on mass of brick used
15. mm
16. 6
17. m²
18. Answer depends on size of can used
19. 36 m²
20. (2)
21. Answer depends on size of can used—allow 25% error in estimates
22. 450
23. (1)
24. (4)
25. Answer depends on temperature of room
26. 1 000
27. (1)
28. m³
29. (3)
30. 327.294—accept answers from 320 cm³ to 335 cm³