7，OTHOR IITLE
PUB DATE NOTE

ELRS PEICE
DESCRIFTORS

IDENTIFIERS
ABSTRACT
Bers Trudy
An Analysis of the Student Evaluation Porm at Oaktop Ccmmunity Ccllege．
Jun 77
28 p ．

This papet reports the results of an evaluatiqe statistical analysis of the instrument employed for student evaluatiç of faculfy at Oakton Community College（Illinois）．${ }^{\text {f }}$ The analysis was performed because the locally devised instrument had hever been subjected to systematic study of reliability or validity． and because a review of pertinent literature indicated a la of of consensus on what types of varizables affect students＇evalugtions of faculty．Results suggested that the instrument failed to discriminate clearly between positive and negative aspectš of course organization， faculty performance，classroom ambience，and other evaluation variatles；that the positive wording used in constructing fie instrumert was such that faulty data might result from inculcation of a response set；and that equal veighting was given to eachitem on the evaluaticn form，even though each item was not necessafily applicable tc each instruct or or class．It was tecommended that Cakton define and clarify the purfoses of faculty evaluation，review existing instruments in use at other institutions，selector design an instrument meefing the purposes，and pretest the chosep instrument for rellability and validity befcre implementation．a reqiev of the litefature，tabular data from the instrument analysis，a bibliography，and the evaluation instrument are included．（JDS）

[^0]
AN ANALYSIS OF THE STUDENT EVALUATION FORM

AT OAKTON COMMUNITY COLLEGE

Trudy Bers
June, 1977

The purpose of this report is to evaluate and analyze the student evaluation form currently in use at Oakton Comunity College. This form, which has been used since the spring semester of 1976, has never been subjected to systematic study. We have made many assumptions about 'it, and have included on it for the first time data about"students as well as about student evaluations of faculty; however, these student data have never been used to crosscheck the overall means and standard deviations which have been the basis of interpretation.

The actual purpose of student evaluation of faculty tias: I believe, been subject to question. Essentially evaluation can be for two distinct purposes: first, to discriminate among faculty on some predetermined criteria, so that faculty, can be ranked, ciassified, or somehow nated against each other; or two, to providé student feedback for faculty in order that student-teacher relationships, classrobm performance, and course organization by faculty members can be improved. The second purpose does not imply rating faculty or establishing standardized criteria. Because these purposes are so distinct, the evaluation form used in each system can be drawn/very differently. Unfortunately, I think at Oakton we have neither cyarified four purpose-we have talked of both, as though they were one--hor constructed an instrumpent to suit. either objective. I do not believe this was intentional, and we have suff fered frustration, anger, and hurt from our own best intentions. "Nevertheless; since the college does seem cormitted to evaluation, and ofnce the merit system will no ionger raise red herrings in the way evaluation,
my own view i's that we can start afresh to first, clarify the purpose of our evaluation, and second, construct an evaluation process and instrument to achieve our purpose. This paper seeks to provide necessary background for these tasks.

The State of the Study of Student Evaluation

Hundreds of articles have been published about student evaluations of faculty. Among the more complete reviews of literature are those presented by Costin, et. al. (1971); Pasen (1977); and Shavelison and Dempsey-Atwood (1.976), Generally they found that student evaluation forms can have a hioh degree of validity and reliability, and that mixed evidence exists about relationships among a variety of variables such as expected grade and teacher ratings (see below). The literature about student fevaluations relies primarily on work done at four-yeare colleges and universities, although some work using cormunity college students has been done (Ostrowski, 1975). This is disturbing, because the community colleges by design tend to put more emphasis on excellence in teaching than do senior institutions and because community college student bodies are very heterogeneous and may have differjng standards from populations at four-year schools.

A major finding which consistently-emerges from research on student evaluations is that evaluations are multidimensional. Jwo or more continua underlay student perceptions of teaching, and/faculty who rank highly along one continuum may or may not rank highly along another one. While the number and definitions of continud implicit in any single evaluation instrument differ from one study to the next, certalin. similaríties occur. Bolton, et. al. (1976) analyzed eleven separate
studies of student evaluation which together had isolated 75 factors; They concluded that these 75 factors could be reduced to six major dimensions; effort demanded by the instructory instructor's preparation and organization, instructor's evaluation"of student performance, instructor's knowledge of the subject, value of the course to the student, and instructor!'s friendl iness and regard for students. They concluded that "the evaluation instrument which students complete should be scored within the major categories, generating a profile of subscale scores on the dimensions of teaching performance" (p. 119).

A second major concern evidenced by studies of student evaluations is that of the methodology employed. Essentially three variants of determining mean scores on ratings instruments are possible: "within-class ratings, achoss-class ratings, and between-class ratings. Within-class ratings use each student evaluation as the unit of measurement; because all students are in the same class variabies such as instructor-differences, subject matter-differences, and ambience within the classroom are held constant. However, because these are held constant differences between disciplines, teachers, times-of-day, etc., cannot be measured. A more trious problem for measuring within class means is that a large class s required. At Oakton the average number of students rating an instructor in a class is 10-16; this is too small a number to control for differences among students within the particular ctass. Pasen (1977) used nearly. 500 students in à basic Titemature class for his 'within-class study. Across-class ratings use as the unit of analysis each student response without regard for the class in which the evaluation is ocouring. "This is the easiest.method to employ, but it results in the loss of
experience unique to a particular class. Whitely and Doyle (1976) recommend that across-class analysis not be used because it confounds within and between class correlations among variables. However, they themselves have used this approach (Doyle and Whitely,, 1974). Across-class ratings are used in the analysis of Dakton data presented below.

- Between-class ratings used as the unit for analysis the mean scores of each class, rather than the scores of each evaluator. This approach has the advantage of "reducing the impact of extreme evaluations, assumimg that they balance out within the class. It also accounts for unique class situations, since the class as a whole rather than the students within the class is the evaluator. Between-class ratings are also utilized in the data analysis below:

The abundance of studies about student evaluations noted above make a succinct summary of findings impossible. The contradictions within the 1 iterature make even an attempt at this frustrating. However, I have chosen to select out some findings which seem to me most germa ine to the concerns enunciated by Oakton faculty and administration during our own informal analyses of the student evaluation instrument. The reader should remember that these are suggestive findings, not definitive ones, and the fnstrument, student sample, type of institution, and timing of evaluation are among the the variables which may have affected these results.

Variables Affecting Evaluation
One of the questions most frequently posed about student evaluations is the affect of grades on rațings of instructors. Eagle (1917) found that student's expected grades were not correlated with their overall impression
of their courses, and costin et. a1 (1971), in an extensive literature review, suggest that there is mixed evidence about the correlation between actual grades received and evaluations. Pasen (1977) did find that within a single class there was an affect between expected grade and course evaluations. Centra (1977) and Doyle and Whitely (1974) used mean standardized final examination scores as a measure of course grades and found there Was some relationship to various measures of instructor and course offectiveness, On the whote, then, it appears that evidence on all sides of this question can be found.

A second question of ten raised at Oakton has been whether the "entertainer" teacher is rewarded with good evaluations. Costin et. al. (1971) found no evidence of this, although Battle and Fabick (1975) did. However, studies consistently find that faculty enthusiasm is related to positive evaluations (Costin, et. al., 1971Y, and it may be that enthusiasm and the value of "entertaining" may spill aver each other,

Students liking for the subject and interest in the course are related to posttive evaluations. (Doyle and Whitely, 1974), as is the 'student's major (Pasen, 1977). However, evidence about the affect of required and elective courses on evaluations is mixed (Costin, et. al., 1971).

In sum, then, it appears that whatever ideas one has abput the variables affecting evaluations, one can find evidence to support those ydeas. Thus it seems to me imperative that a strong effort be made to understand what ' variables affect evaluations at Oaktom.

There is another set of concerns doout what variables affect evaluations. These concerns operated in the realm of psychology and philosophy more than specific student characteristics; but they are, I think important to note.

One of the unknown with which we are operating at 0akton is what frames of reference or "anchors" (Pasen, 1977) students are using as they evaluate instructors. Students may well have internal criteria against which they measure their instructors. These internal criteria may be, for example, a stucent's best, worst, or average teacher (Gresha, 1975). That is; students may be implicitely measuring the instructor being evaluated against some other real or ideal teacher, and the choice of that referent may or may not affect evaluation outcomes. Follman, et. al. (1974) perfomed an experiment to test this and found the referent made littie difference; however, they assigned referents to students. What we at Oakton do not know and havernot asked is which frame of reference students are opting to use.

Another internal constraint which may be affecting evaluations is students in implicit theories about teaching characteristics which occur :together (Whitely and Doyle, 1976). Students may have identified clusters of teacher behavior through past experiences, and in evaluating teachers assume that the occurrence of one such behavior is accompanied by the occurence of related behaviors, even if this does not occur in fact. For example, students may have implicit notions that a teacher who is enthusfastic about her subject is also responsive to students; thus, the enthusiastic teacher will be rated positively on responsiveness whether or not she is in fact responsive.

Finally, Morey, et. al. (1977) found that faculty have differing conceptions about what constitutes good teaching, as do students. Neither group, especially faculty, have reacked consensus about this, Furthermore, they do not give the same importance, or weight, to the quatities which
are rated positively. Marey and his colleagues recommend that weighing ftems for importance before determining mean scores over items will provide a more accurater picture of evaluations.

As this cursory research note indicates, a variety of studies have been conducted in the general area of student evaluations of facultys and a variety of conclusions have been reached. Probably the most pervasive conciusion of all is that there is a great deal about student evaluations that we do not know. This paucity of knowledge is important for several reasons. For those concerned about processes of -learning and teaching, data about factors contributing to achievement and positive feelings toward learning (not necessarily the same thing) are crucial to the development of systematic learning theorfes and successful teaching techniques. For those concerned about accountability of educators-and I choose to view this term as a positive one--connections between the inputs to the' educational system and the outputs of that system must be made. Meredith (1975) suggests three outcomes of instruction in higher education are identifiable: production, satisfaction, and growth, I think that viewing student evaluations as one tool for measuring outcomes of the educational system underscores the institutional need for such eveluations. Evaluations; as I view them, are a method for providing feedback to faculty; in turn faculty can use this information to upgrade their own teaching.

I have spent time reviewing methodological and philosophical issues of student evaluation and current findings for a specific reason: to H1lustrate the complexity of the subject, and the fact that while many researchers have carefully studied student evaluations, consensu's about variables affecting ratings and even the dimensions along which ratings are assigned is not present. In one sense, then, the analysis below contributes to this confusion. In another, I hope it reduces confusion
for us at Oakton.

The Oakton Student Evaluation Form: An Analysis
The first step in evaluating the instrument was to determine correTations between each question (vamable) on the instrument. (For exact wording of items and short titles used, see appendix I.) Pearson's correJation lirefered to as Pearson's r, or simply r) was used as the statistic to measure congruence of responses for pairs of variables. The corretation varies from 1 to -1 , with a positive score indicating that a high yalue on one variable is related to a high value on a second variable. A negative score indicates that a high value on one variable is related to a low value \% on the second variable. Pearson's assumes that the realtionship between variables is linear (Garson, 1971).

A summary of means and standard deviations of all evaluative items is presented in Table 1. As both the low means and moderate standard deviations suggest, little discrimination among responses was obtained by the survey instrument. All means are strongly positive, and differences tend to be small. This should be borne in mind as the analysis continues: we are working essentially with minimal differences.
. Three items on the instrument measured student inputs and expectations from the course. Nearly half the students indicate they prepare for class WHays or almost always, and another $B 6 \%$ say they do so of ten. Over 80% claim to attend always or almost always. Given the constantsconcern about low preparation and attendance evidenced by faculty, how can these conscientious respondents be explafned? While the data do not tend themselves to interpretation, several speculations are plausible. One, the fall 1976 evaluations were given early in the term, before the noticeable drop the
last third of the term, Two, students answering the questionnaire are conscientious; but they are not representative of the entire population. Three, respondents are giving themselves more credit than is warranted. And four, a combination of these. Grade expectations also place students in a favorable light and tllustrate grade inflation: nearly 35% of students expect an A, and over 80% expect an A or a B. Again, the early administration may have affected these expectations, but clearly students anticipate high grades.

Table 2 provides Pearson's correlations for all variables measured. across-classes. Correlations among the items measuring faculty performance and course organization (questions 1 through 14) range from a moderate .273 between items 4 and 13 , to a substantial .678 between ftems 8 and 9. Of more interest that these, however, is the correlation between variables measuring student input to a course and the evaluation of that course. Items 15 and 16 meascure how often, by their own admission, students prepare for and attend class. The low correlations suggest that frequency of attendance and/or preparation for class are not related strongly to positive evaluations of the class. Item 17 measures the relationship between expected grade and class evalưation; once again, correlations are low. Expectations of good grades are not related to positive evaluations, although there is a relationship between frequency of preparation and expectations of high grades, not a surprising finding. Item 18 asks whĕther the course is elective or required for the student. Required courses were coded 1; elective courses were coded 2; and if the student did not know if the course was required, a value of 3° was assigned. Nearly 64% of the responses indicated the course was required, and one-quarter said it was elective. The remaining 14\% either didn't know or had an invalid response. Given the
wide latitude students have in selecting courses beyond core requirements, it is likely that many students taking courses fulfflling general requirements (e.g., three credits of any social science) interpret this as absolute requirement's. On the whole, all correlations are exceedingly small. There is little support for the assumption that students for whom course is required evaluate the course differently than those for whom it is an elective.

- Table 3 presents Pearson's correlations for between-class analysis.
- The same general pattern evidenced across-classes is present between-classes as well, although correlations are on the whole higher. There is a moderate relationship between how.often the class as a whole prepares and evaluations for the course, Little evidence is available that courses which have a large number of students for whom the course is required are evaluated: differently from courses which are for the most part elective.

Both Tables 2 and 3 provide support for the notion that positive evaluations of the course and instructor (items 1 through 14) are correlated. with the student's recommending the course to others. (see coefficients in last row of each table). Course recommendations are not, however, strongly related to student's attendance; preparation, expected grade, or whether or not the course was required.

One of the frustrations in dealing with large numbers of Pearson's correlations as presented in the above two tables is the difficulty of interpreting patterns. As noted in the discussion of literature above, virtually all studies of student evaluations have determined that evaluation occars along several continua which are both conceptually and empirically distinct from each other. In order to determine whether the Oakton evaluation distingxishes among two or more continua, a factor analysis on
across-class and on between-class evaluations was performed. This analysisdetermined whether two or more dimensions underlay the evaluation ftems 1 through 14 on the survey instrument. In other words, what items share a common underlying factor with what other items? (Garson, 1971).

For those knowledgable and Interested in the factor analysis statistics, Tables 4 and 5 present factors extracted berore rotation and factor loadings using both orthogonál ạnd oblique rotations for across-class and betweenclass analysis, respectively. The mosit important finding, I believe, is that several distinct cont inuua do not underlay the Oakton evaruation items. Only two factors were extracted from the correlation matrix, and the first factor explains 89.7% of the explained variance in items in the across-class analysis and 89.2\% of the explained variance in ftenis in the between ciass analysis. The second factor explains 10.3% and 10.8% of the explained variance, réspectively.

- The oblique rotation factor pattern, which presents the unique loadings of each item on the two variables, provides a clearer picture of items' relationship-to each other than does the orthqgonal factor matrix. It appears that items $1,2,10,11,12$, and 13 load most highly on factor I. Items 5,6, and 7.1 bad most highly on factor II. Iteris 8,9, and 14 load moderately on both factors. Items 3 and 4 load on factor If, but more moderately than do items 5,6, and 7. The higher the loading of a variable on a factor, the higher the proportion of variance in that variable explained by that factor.

Factor analysis was used as a method for teasing out of the Pearson's correlation matrix systematic patterns among evaluation ftems. In order to extend the analysis and at the same time to reduce the number of variables under consideration, I constructed two indices for use as dependent variables. The first index is the mean score pn ttems 1,2, and 10 through 13. I have labeled this scale Course Cohesion, because it
draws from ftems reláting to course organization, clarify, and the helpfuiness of assignments in meeting course objectives. I have labeled the second scale Instructor Affect. It consists of the "mean score on items 5,6, and 7 , which measure instructor's responsiveness," sensitivity, and enthusiasin. Analysis below, then, uses theșe two scales as dependent variables.

Table 6 presents muitiple correlations for across and between-class analysis, using Course Cohesion and Instructor Affect as dependent variables. Three independent variables were used in between-class analysis, and four independent varfables were used across-class. All variables are measures of the amount of effort andfor, concern students placed in the class. Whether a class is required was used only in the across-class analysis, because this is a variable relevant only to the individual student, not a measure of the class as a whole; a single course can be, for example, required for some students and an elective for others. The \mathbb{R}^{2} in each dependent variable section is the amount of variance' in that dependent variable explained by the independent variablestaken together. Thus course means for students' ${ }^{\prime}$ expected grades, preparation, attendance, and expected grade explain only 13\% of the varfance in across-class means on the index course cohesion. The moderate $R^{2} s$ reaffirm that these student-related independent variables are not, on the whole; powerful explanations of varying evaluations (although they may be powerful for particular courses or faculty members).

Conclusforts and Recommendations Regarding the Evaluation Instrument
I am concerned about the fallure of the current student evaluation insthiment to discriminate more clearly between positive and negative aspects of course organization, faculty performance, classroom ambience, etc. Further, I am concerned that despite our addition l of scudent data to the instrument, we have fafled to utilize these data. I. suggest that these fallings derive from several sources:

1. We have constructed the survey instrument so that all items are worded positively.. Thus the response "all or almost alh of the time" is always appropriate for positive evaluations, and never appropriate for critical ones. This can easily lead to a response set, a situation in which respondents are lulled into a pattern of response without their having to. think very carefulity about the particular item under consideration. This, in turn, provides faulty data.
2. We have weighted all, items as equally important in calculating an overall course evaluation mean. Thus faculty who do not give tests, for example, but whom stduents persistently evaluate on 1tem 13, are judged on this as well as more appropriate, items.
3. We have not subjected ouk instrument to even rudimentary validity and reliability analysis: We have fiade assumptions about these qualities without testing for them. I befere that much of the skepticism atout the 'evaiuation form is rooted in distrust of 'it, and part of this distrust is legitimately rooted in the fact that we have not taken the time and effort to understand our instrument before using it.
4. We have not adequately used the data avallable on the form as it , now stands. It would not be difficult to determine such simple facts as whether students taking a course because it is required evaluate their, instructor "differently from those who elected to take, the course for each instructor interested in this. By falling to personalize data analysis we have prohibited instructors from taking maximum advantage of information avallable in raw form on the instrument.
5. We have consistenly constructed our own form without exploring the adoption or adaptation of existing forms. A number of student evaluation forms are avallable which have already been systematically tested for validity ạd reliability. We should, I believe, investigate these. If we
do wish to construct our own form again, I belleve we shuuld allow time and support for validating it.

Regarding the Evaluation Process
My comments in this section go somewhat beyond my analysis of the extsting student evaluation form itself. They are founded in this analysis-and I think my above corments demonstrate I am critical of both the instrument and the use made of it--but draw as well upon my seven-year experience © an "evaluatee" at Oakton. Biuntiy, I'm tired, and I think students who attend Oakton for any length of time are tired. I also think staff who are responsible for organizing evaluation are tired. We have been saturated with evaluation. Therefore, I suggest the following:

1. Declare a sabbatical on student eyaluations. Except for new full and parttime faculty members-(deans can work out criteria for defining "new"), faculty ishould not have courses evaluated untll spring, 1978 at the earliest. This will provide a needed psychological and intellectual respite from evaluation saturation and time to accomplish my other suggestions.
2. Establish a spectal faculty or faculty/administration evaluation committee--ah yes, another committee. I envision the charge of this cormittee to be the following:
a. Collect and evaluate existing student evaluation forms in use at other institutions with a view of adopting one or more of these.
b. 'If none of these forms seems appropriate, adapt on construct a new one(s) for use at Oakton.
c. Plan and implement a program for pretesting the chosen instrument(s) for both validity and reliability.
d. Consider and make recommendations regarding
3. Form(s) to be used fores every faculty member haverto use the same form?
4. Frequency of evaluation -. does-every faculty member have to be evaluated every term?
5. Timing of evaluation .- must every evaluation occur in the same week of the semester?
6. Oncè above recommendations and decisions have been made, appoint one appropriate individual to work out details for and implement the student evaluation process. This individual will probably need to work closely with the dafa processing staff to design and write programs which can analyze data in a form most useful to faculty members. (Incidentally, this is not really a difficult matter, "although it will take time. The syatistical Package for the Social Sciences software package, which we have, "can process a variety of data in an effective and flexible manner.)

Fundamental to all my reconmendations are the following principles: . We need to clarify the purposes of evaluation, be flexible in instrument.and procedures, and be moderate in the number of evaluations we perform.

	Maximu actu	$N=8$ I N va 2	034 ries			6	7	$A C$ Pearso 8	Table ross-c n's Cor	2 , asses relat	ns * 11	12	13	14		16		18
1		7	-	, 1	1.			.						\cdots				
2.	$\bigcirc 6464$		*	,		\%		\%							\because			
3.	. 4043	. 3974				1		S.										
4:	:2957	. 3079	. 3606			\therefore,		-		-		*				-		
5	4072	. 3978	4549	4025	,													
6	. 3866.	. 3875	. 4338	. 3943	. 6592						l							-
7	4293	. 3956	. 5116	. 3720	.5241	. 5178	-											
8	. 6022	, 5511	. 4915	3611	. 5192	. 4803	. 5335		*									
9	. 5188	. 5048	. 4478	. 3528	. 4589	.4385	. 5272	. 6775				1						
10	. 5138	${ }^{\circ} \mathrm{5} 841$. 3759	. 3168	. 3693	. 3743	. 3684	. 5459	. 5244	;			,				,	
11.	. 4785	. 4583	, 3966	. 3269	3915	. 3835	. 3905	5019	. 4551	. 5012	.				.			
12	4827	4582	.3731	3069	3581	. 3582	3671	4629	4190	4919	6303							
13	$\therefore .4344$. 3932	. 3280	- 2732	. 3401	. 3128	. 3360	4391	. 3882	4038	. 4852	. 5241						
14	. 4495	. 4467	. 3505	. 3211	. 4397	. 4618	, 4013	4889	4234	. 3437	4221	. 4292	. 4794					,
15.	. 2677	. 2624	. 2315	. 1991	. 1499	. 1648	. 1997	2353	. 1990	2507.	. 2551	. 2927	. 2491	2327				
16	. 1779	. 1737	. 1634	. 1209	. 1174	. 1213	. 1469	1422	. 1350	1547	. 1384	1795	1336	1536	. 3690			
17.	2029	$\underline{.} 1854$. 1658	$\underline{1320}$	$\stackrel{\sim}{1356}$	1580	. 1365	1962	. 09081	1660	1627	1825	1877	2513	4089	2034		
18	. 0260	. 0195	-, 0065	-001	- 020	-. 0175	-. 0188	-0058	0.005	. 0263	0258	0402	.0418	$\operatorname{Lon} 47$	$.0843$	0793	. 0436	20
19	. 4275	. 3862	. 3765	1.2819	4411	. 4266	. 4340	. 5111	. 4615	. 3407	. 3487	3390	1.3152	3980	$.1224$	1.1114	. 1377	-. 0018
19				!	-													

	1	2	3	4	5	6	7	8	9	10	11	12	13	14.	15	16.	17	18.
1							\because										.	
2	. 8071							*										$4^{\text {i }}$
3	. 5562	. 5490		.														
4	. 3296	. 3487	-4464															
5	-5545	, 5746	. 6121	, 4920		\%										\%		
6	. 5091.	. 5582	. 5432	. 4338	. 8221								-					
7	. 5883	. 5705	. 7285	. 4681	. 6535	. 6323												
8	. 7761	. 7424	. 6752	.4343	. 6941	. 6095	! 6744											
9	. 7082	. 7396	. 6065	. 3866	. 5887	. 5559	. 6566	. 8203										
10	:6987	. 7826	. 5179	. 3430	. 4966	. 4817	. 4954	. 6775	. 6908									
11	. 6571	. 6929	. 5592	. 3510	. 5369	. 5053	. 5529	. 6662	. 6394	. 6846								
12	, 6763	. 6701	. 5082	. 3013	4513	. 4174	. 5121	. 5956	. 5870	. 6438	. 7184					*		
13	. 4591	. 4381	. 2017	. 1212	. 2109	. 1839	.2740	. 3718	. 3996	.4327	. 4618	, 4605						
14	. 5645	. 6112	. 4535	. 3266	. 5532	. 5757	. 5119	. 6001	. 5408	. 5825	. 5714	. 5341	. 4277		.			
15	-3647	. 3580	. 4006	. 2317	. 1860	. 2162	. 2983	, 3570	. 2775	. 3389	. 3806	. 4014	2395	. 3218				
16	. 2491	. 2622	. 3255	. 1509	. 1136	. 1451	'2290	. 1906	. 2182	. 2150	. 2069	. 1844	. 0863	. 1787	. 4095			
17.	. 2225	. 2384	. 3235	. 2488	. 2465	. 3030	. 2551	3134	. 1540	. 1982	. 2146	. 1849	. 0378	. 4167	. 4886	. 2149		
18	-. 0201	-. 0497	-. 1746	-, 132	-. 2008	-. 1762	$\therefore .1709$	-. 1513	-1131	-. 0604	-. 0840	- 0232	-. 0903	-. 0716	. 0180	. 0506	. 1017	22
19	. 6700	. 6546	.6486	. 3790	. 7235	. 6549	. 6606	. 7790	. 2204	. 5433	, 5902	. 5184	. 3245	, 5710	. 1938	1631	. 2452	-. 1712

Across-classes
Factor Analysis

FACTOR ,	EIGENVALUE	PCT OF VAR	CUM PCT
1	6.33304	89.7	89.7

Q1 Q2 Q3 Q4 Q5

Q6
Q7
Q8
Q9
Q10
011
Q12
Q13
Q14

Factor 2
0.33190
0.30176
0.52123
0.46038
0.75623
0.73389
0.64287
0.52233
0.48589
0.27545
0.29704
0.23611
0.26073
0.41677

Factore 1
Factor 2

Factor 1
0.67374
0.66958
0.36809
0.28231
0.25075
0.24170
0.32254
0.58607
0.52898
0.67458
0.65388
0.67914
0.58020
0.49417

Between-courses Factor Analysis

Factor correlations.

	1	11
I	1.000	.62712
II	.62712	1.000

Table 6

Multiple Correlations: Course Cohesion and Instructor Affect explained by Student Input

Across-classes	Between-classes ${ }^{2}$	
R	R^{2}	R

1 Independent variables include required or elective course, expected grade, frequency of preparation, and frequency of attendance. Students who did not know whether a course was required were excluded from analysis.

2 Independent variables include course averages on expected grades frequency of preparation, and frequency of attendance.

25

REFERENCES

Battle, James, and Fabick, Stephen, 1975. "Validity of Cotlege Studerts' Evaluations of Instructors' Competence," Psychological Reports. [2:1112-1114.

Bolton, Brian, Bonge, Dennis, and Hinmar, Suki. 1976. "Dimensions of Students' Evaluation of Instruction: An Empiricăl Synthesis," Psychological Reports. 38:119-123.

1977
Centra; John A.A "Student Ratings of Instruction and Their Relationship to Student Learning," American Educational Research Journal, 14:17-24.

Costin, Frank, Greenough, Will Iam T, and Menges, Robert J, 1971. "Student Ratings of College Teaching: Reliability, Validity, and Usefulness," Review of Educational Research $41: 511-535$.

Doyle, Kenneth 0., and Whitely, Susan E. 1974. "Student Ratings as Criteria for Effective Jeaching," American Educational Research Journal. 11:359-274.

Eaglë, Norman, 1977. "Studies in the Reliability and Validity of a Community College Rating of Instruction Questionhaire," Community/Junior College Research Quarter1y: 1:303-314.

Follman, John, Lavely, Carolyn, Silverman, Stuart, and Merica, John. 1974. "Student Raters" Referents in Rating College Teaching Effectiveness," The journal of Psychology. 86:247-249.

Garson, G. David. 1971. Handbook of Political Science Methods. Boston: Holbrook Press, Inc.

Mered̂ô, Gerald M. 1975. "Toward a Systems Approach to Student-Based Ratings. of Instruction," The Journal of Psychology. 91:235-246.

Morey, $T \therefore$ Mark, Garthwaite, Roger A., and Zimowki, Michele F, 1977, Teaching Effectiveness: Actual, Ideal, and Importance Ratings ${ }^{\prime \prime}$ " Unpublished paper, State University of New York, College at Oswego.

Ostrowski, M.Y. 1975. "A Comparison of Grades Students Achieve at William Rainey Harper College and How They Rate the Effectiveness of Their Instructor at Mid-Term Dưring the Spring 1975 Semester;" Unpublished paper.

Pasen, Robder M. 1977. Whe Differential Effect of Grade, Sex, and Discipline on TwoiGlobal Factors: A Within-Caass Analysis of Student Ratings of Instruction, "Unpublished Ph, D. dissertation, Northwestern University.

Shavelsom, Richard, and Dempsey-Atwood, Nancy. 1976. "Generalizability of Measures of Teaching Behavior," Review of Educational Research. 46: 553-611.

Whitely, Susan E.i and Doyle, Kenneth 0. 1976. "Implictt Theories in Student Ratings," American Educatiohal Reseacch Journal. 13:241-253.

This is an evaluation of your instructor and the course. Please give serious constderation to the survey.
The instructor will use the information to assess his/her effectiveness. The administration will use the information as part of the total evaluation of faculty, course, and programs.
Use no. i pencil.
OPEN END COMPENTS
Coment on how well. the exans, quizzes, and/or projects contribute to your learining (e.g. difficulty, fairness, appropriateness, etc.).

- 'Compent on the walue of books, out-of-class assignments, papers, labs, or profects in this course.
that did you like most about this course/instrictor?

From what classroon activities did you learn best in this course?

What did you not like about this courseinstructor?

From that classroom activities did you leam least in this courne?

- List any specific recomendations you have for the instructor.
*

PART II *

Please choose the words that fit for you. Mark IBM card.
If the statgment does not apply to this course, leave the space blank.
a. Always or almost always
b. Often
c. Some of the time 1
d. Seldom
e. Never or almost never

1. You know what you are supposed to be learning in this course.
2. You know what you are supposed to do for this course.
3. The instructor encourages attentiveness and/or participation.
4. The instructor is avaliable outside of the class.
5. The instructor is responsive to student's compents and/or questions.
6. The instructor is sensitive to and respeciful of his/her students.
7. The instructor is enthusiastic about the course.
8. The instruftor presents subject motter clearly.
9. The instructor is well-arganized.
10. leading and writing assignments are clear.
11. Follow to reading/writing assignments is helpful to your learning.
12. Assignments are helpful th your learning.
13. Examinations are helpful in your learning.
14. Grading is fair.
15. You consider yourself a person who prepares for this course (e.g. class participation, examinations, reading assigrments, papers, etc.
16. You attend this class.
17. Wark on the tBM card the smill letter that corresponds with the grade you expect . in this course.
a. A
b. 是
t. ©
d. 0
e. R
18. This course is required in your chosen curriculum. a. Yes k. No c. Don't know
19. You would recomend this instructor to friend. a. Yes b. Mo

UNIVERSITY OF CALIF. LOS ANGELES

[^0]:
 ＊Documents acguired by ERIC include many informal unpublished＊
 ＊materials not available from cther solfces．ERIC makes every effort＊
 ＊to cbtain the best copy available．Nevertheless，items of marginal．＊
 ＊reproducibility are often encountered and this affects the quality＊
 ＊of the micrcfiche and hardcopy reproductions ERIC makes available＊
 ＊via the ERIC Locument Reproduction Service（EDRS）．BDRS is not＊
 ＊resfcnsible for the quality of the original document．Reproductions＊
 ＊supplied by ELfS are the best that can．be made from the original．

