This paper discusses two approaches that are well adapted to school district enrollment forecasting and related planning studies. The author focuses in turn on two enrollment forecasting methods—the Analytical Simulation Approach, and the Modified Cohort Survival Approach. After briefly describing each forecasting method, he presents a short case study that illustrates the use of that method for enrollment forecasting. (JG)
ENROLLMENT TRENDS, IMPLICATIONS AND FORECASTING TECHNIQUES

Institute on Coping with Declining Enrollment

NATIONAL ACADEMY FOR SCHOOL EXECUTIVES
AMERICAN ASSOCIATION OF SCHOOL ADMINISTRATORS

February 23, 1977
Las Vegas

Harold L. Finch
FOREWORD

Throughout American history the business of elementary and secondary education has been a growth industry, and particularly so since the end of World War II. Until recently growth had become a way of life for many of today's school administrators—a continuing spiral of more students, more buildings, more budget. When enrollments began to decline it was not surprising, then, that many districts across the country were suddenly caught up in the state of being overbuilt, overstaffed and hardpressed to maintain fiscal stability.

For those districts that are unprepared for further change, the worst may yet lie ahead. For some, the problems associated with declining enrollments and revenues will be intensified; for others, ironically, enrollment surges in direct contrast to the national trend will become a major cause for concern. However, for the prepared, the next several years will present unprecedented challenges and opportunities for self-renewal and revitalization.

It is possible for elementary and secondary school administrators to be prepared—to be able to anticipate enrollment changes with acceptable planning accuracy even in this decade of change. This report is dedicated to that end.

Harold L. Finch
Executive Vice President
Johnson County Community College
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>The Enrollment Bust - Why?</td>
<td>1</td>
</tr>
<tr>
<td>Implications for the Future</td>
<td>3</td>
</tr>
<tr>
<td>ENROLLMENT FORECASTING/CASE STUDIES</td>
<td>3</td>
</tr>
<tr>
<td>Projections by Attendance Center</td>
<td>4</td>
</tr>
<tr>
<td>Projections at the District Level</td>
<td>7</td>
</tr>
<tr>
<td>ENROLLMENT OUTLOOK</td>
<td>11</td>
</tr>
<tr>
<td>SUPERINTENDENT'S CHECKLIST</td>
<td>12</td>
</tr>
<tr>
<td>APPENDIX - SAMPLE PRINTOUT, DISTRICT PROJECTIONS</td>
<td>13</td>
</tr>
</tbody>
</table>
INTRODUCTION

Elementary and secondary enrollments in the United States rose by eleven million (44%) during the 1950's.* This growth trend continued in the 1960's, but at a slower rate with a ten year increase of nine million (26%). To many, the first sign that the postwar K-12 enrollment boom was about to bust came in the fall of 1970 when the percentage increase nationally was less than half that of any prior increase in recent history. Although the cessation of growth a year later and the subsequent decline caught many educators by surprise, this significant reversal was predictable many years in advance.

The Enrollment Bust - Why?

The first clue that the current decline was forthcoming came as early as the mid-1930's. Before and during the Depression, birth rates dropped steadily from 25.1 per 1000 population in 1925 to a near low of 18.7 in 1935--25 percent in ten years.* The economic environment and the storm clouds of World War II on the horizon were not conducive to family planning. As a result of the low number of births in the mid-1930's, a relative scarcity of young adults twenty to thirty years hence could have been anticipated with a high degree of confidence. The U.S. Census in 1960 indeed proved the merit of this supposition. Further it could have been reasoned with assurance that since young adults have the highest propensity for procreation, this "shortage" of persons in

the mid-20 age range in 1960 would begin to have a significant depressing effect on birth rates in the 1960's. And finally, it would follow that the scarcity would take the form of reduced enrollments in the elementary grades in the 1970's (Figure 1).

Thus as much as 40 years ago it was possible to foresee the current enrollment decline emerging as a second generation product of the Depression baby bust. The date and magnitude of the fall could not have been forecast with preciseness at that time; however, the enrollment shift and the approximate timing could have been anticipated—certainly to a degree that would have prevented much of the surprise and trauma of the late 1960's.

Figure 1. Low birth rates during the 1930's (upper left) resulted in relatively few young adults in 1960 (lower left), which in turn lowered birth rates in the 1960's (lower right) thereby inducing a drop in elementary-secondary enrollments in the 1970's (upper right).
Implications for the Future

Since it is possible to establish basic cause and effect relationships between past demographic conditions and current enrollments, it should not seem unreasonable that forecasts can be made today that would identify significant school attendance patterns many years ahead—even into the twenty-first century. While school buildings currently on the drawing board must be planned for future generations as well as those of today, the kind of lead time that educational decision makers really need is five to ten years. And where enrollments are changing rapidly good projections for the coming year may be the most critical need, especially in the areas of staff, curriculum and budget planning and development. Through careful application of sound principles of demography together with insightful interpretation, meaningful and useful enrollment forecasts can be made—and can be an important, if not vital, planning tool for today's school administrator.

ENROLLMENT FORECASTING/CASE STUDIES

Enrollment forecasting processes vary widely as to purpose, application, theory, flexibility and analytical complexity. It is therefore incumbent upon the user to consider carefully the needs and special characteristics of the district before designing or selecting a methodology or approach to be used. In some cases a highly technical, sophisticated capability may be required; in others, a simplistic procedure may be adequate, or even preferable. This paper focuses on approaches that the writer has found to be pragmatic and well adapted to elementary and secondary school district enrollment and related planning studies. Other approaches are omitted because of the limited scope of this paper, and not necessarily because of their inapplicability to educational forecasting.
Regardless of the approach selected, the first step is to identify all potential users (e.g., superintendent, business manager, personnel director, curriculum director, board of education, district architect) and to learn of their needs as they relate to enrollment forecasts. The methods, scope and information to be generated then should be designed to be responsive to the individual user's expectations as balanced against the needs, resources and priorities of the district as a whole.

Projections by Attendance Center

Studies which require enrollment forecasts for each individual attendance center generally call for a relatively high degree of demographic and analytical sophistication in order to account for population shifts and trends within the district. Studies of this type typically would be employed by large districts as a tool to aid in the redistricting of attendance centers and similar sub-district analysis and planning activities. For users concerned primarily with forecasts at the district level and interested only in general distribution trends within the district, consideration should be given to the approach presented in the next sub-section, *Projections at the District Level*, p. 7.

Analytical Simulation Approach*

This approach is built around a process of simulating the total population of the district via high speed computer. Each person's demographic characteristics—sex, age, place of residence—are recorded in computer memory. The predicted lives of these persons are then simulated for the coming year. In each neighborhood and age group, some will die. Actuarial

Theoretical and analytical concepts utilized in this simulation forecasting approach will be presented with more technical detail in the NASE Institute Workshop, February 23, 1977.
rates are used as the basis for analytically simulating deaths. Births are effected taking into account prevalent fertility rates as they apply to the age of each of the potential mothers of the district. Residents will move away, some will move to other neighborhoods and some will move into the district. These movements are simulated by employing current trends in migration propensity factors for each age group and neighborhood. Likewise, land use is simulated. Some areas within the district are "allowed" to grow to accommodate utilization of undeveloped land. Tracts which are zoned for park or industrial development are programmed not to accept in-migration.

The analytical simulation process is straightforward. To illustrate, assume that 375 women, 24 years of age in 1975 lived in a specified neighborhood (Figure 2). Also assume that it is known that the following events will take place in the coming year: 15 will move out of the neighborhood, 32 will move in, 1 will die, and 38 will give birth. By simple arithmetic

![Figure 2. Sample calculation. Birth, death and migration data are obtained via empirically derived algorithms.](image)

\[
\begin{align*}
375 & \quad \text{(1975 female population, Age 24)} \\
+32 & \quad \text{In-migration} \\
-15 & \quad \text{Out-migration} \\
-1 & \quad \text{Deaths} \\
38 & \quad \text{Births} \\
\end{align*}
\]

\[
\text{1976 female population, Age 25} = 391
\]
it is predicted that one year later, the number of women 25 years of age living in the neighborhood will be 391 (i.e., 375-15+32-1=391). The simulation process is then continued one year at a time by allowing each age group to become one year older. The procedure is continued for as many years as called for in the forecast.

Case Study - Shawnee Mission USD

An enrollment forecast study of a suburban Kansas City school district was conducted in the fall of 1972 using the analytical simulation approach.*

District: Shawnee Mission Unified School District 512
Superintendent: Dr. Arzell Ball
Location: Shawnee Mission, Kansas
Attendance Centers: 49 elementary (K-6), 10 junior high (7-9), 5 senior high (10-12)
Enrollment: 44,026 at time of study

Enrollment History: Rapid growth since World War II through the 1960's (resulting in the construction of 36 elementary schools during the 10 year period of peak growth); declining enrollments in recent years.

A primary purpose of the study was to determine the need for additional facilities and to analyze possible redistricting strategies to attain more effective space utilization. The district and adjacent portions of the county were divided into 33 areas generally conforming to census tract boundaries for the purpose of collecting and grouping fundamental demographic data. A computer model was developed to analyze quarter-quarter sections one-sixteenth of a square mile in area. These areas and the attendant population projections were then grouped in various ways around attendance centers to study the impact of boundary changes on future enrollments.

* The study was jointly sponsored by Shawnee Mission USD 512 and Johnson County Community College, Overland Park, Kansas.
One of the results of the study was a pledge by the Board of Education to not hold a building bond issue for at least five years (Figure 3). The findings also paved the way for the closing of two elementary schools (additional closings currently are under consideration).

A comparison of actual and forecast enrollments for the district as a whole follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual Enrollment</th>
<th>Three Year Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>44,026</td>
<td>-</td>
</tr>
<tr>
<td>1975</td>
<td>41,369</td>
<td>41,027</td>
</tr>
</tbody>
</table>

Within the district, enrollments for each of the high school service areas when adjusted for boundary changes have closely followed the shifts projected in 1972.

Projections at the District Level

For users primarily concerned with enrollment forecasting for the purpose of increasing their effectiveness in district-wide budgeting, staffing and facility planning, the approach outlined below frequently yields savings that far outweigh the cost of analysis.

Modified Cohort Survival Approach*

In many ways, the modified cohort survival approach is a scaled down, less complex version of the previously described analytical simulation method. It too simulates the life of a defined population but limits its scope of analysis to school-age cohorts. Kindergartners are first projected based on empirically derived birth-dependent algorithms. They

*Theoretical and analytical concepts utilized in this cohort survival approach will be presented with more technical detail in the NASE Institute Workshop, February 23, 1977.
Study Shows School Facilities Adequate for 5 Years

By Bill Anderson
A report at the Board of Education meeting last night revealed declining student enrollment rates cut a bond issue for the next five years in the Shawnee Mission school district, the district administration said today.

"We faced problems for new schools will be needed for at least five years," Dr. Herbert Bruning, associate superintendent for planning, said today in a report on a demographic study.

The report which will be submitted to the school board tonight is a detailed analysis of a study financed jointly by the school district and the Johnson County Community College.

Original data, submitted to the board last fall, showed a general decline in student enrollment throughout the 1970s with dips and rises occurring through the year 2000, Bruning said.

"The data clearly indicates that under present conditions we will see a surge in enrollment by 1990," Bruning said.

"Previously this is all the study indicated.

"Now we know that if migration and home-building patterns remain relatively stable, there will be no need for additional buildings within the next five years," Bruning said and the administration staff will report tonight at the district's offices, 7333 Mission Road, Overseal Field.

The five high schools will have enrollment increases through the 1975-76 academic year and then level off by 1976, the report said. The 10 junior high schools will have increases only through mid-year (1975-76) and then slight decreases through 1976.

The enrollment hikes in the junior and senior high schools can be accommodated by "minor boundary changes for a few junior and senior high schools for 1976-77," Bruning said.

Elementary schools show decreases continuing and changes are anticipated for them, Bruning said.

The report concludes, however, that "significant increases in enrollment at four of the 65 schools--Rosehill and Eudora elementary, Hillcrest and Brookridge junior highs and South High School--will require minor boundary changes for a few junior and senior high schools for 1976-77.

Completion of Oak Park School at 101st and Oakley, the district's 34th grade school, and construction of a new public library into Brookridge should take care of pressure on elementary schools there, the report said. Changes in attendance boundary areas for the two junior highs and South High School will accommodate expected increases in those areas. Current boundaries are being studied and recommendations will be forthcoming to the board," Bruning said.

The demographic study reveals an enrollment decline over the entire district from its 61,683 as of Sept. 15 to 61,077 through the 1975-76 year.

Broken down into the district's five attendance areas, enrollment through the 1975-76 academic year shows a decline in the North area from 11,168 to 10,914; in the East area, a fall from 7,281 to 7,075; in West, a decrease from 10,285 to 9,971; in South, a decline from 9,132 to 9,068 and in the Northwest area a rise from 4,709 to 4,764.

"The scientific data is what has been needed for us to plan effectively rather than our being stumped into a building program without adequate facts," said Walter Hiersteiner, board president who proposed the demographic study in October, 1971.

Hiersteiner praised the report as a significant social tool and praised the co-operation of the community college with the school district as an illustration of a good educational environment in the community.

"The $33,000 demographic study was authorized early last year. It was funded with $11,000 in school district funds and the remainder by the college.

It was directed by Dr. Harold Pack, who was dean of the college's development institute and who since has been promoted to executive dean.

"I'm not aware that any other school district could achieve this kind of planning," Bruning said.

"Such scientific and sophisticated data for long-range planning is necessary to reduce changes in use of school facilities every four years and also enables us to make more efficient use of school buildings."

Dr. Arnold Ball, superintendent, justified the report as illustrating how long-range planning can be meaningful to taxpayers as well as educators.

"At this point we know we won't need a bond issue for at least five years," Ball said. "Just a few years ago we couldn't predict the decline in enrollment we are now experiencing."

"This news should also be gratifying to parents," the superintendent said, "when it is noticed school taxes declined last year and additional property tax relief may be forthcoming from a new state aid school financing formula."

The school district's operating levy dropped last year to $.33 on the 100 assessed valuation from a 1971 levy of $.62.

"At the present time it appears that with minor changes in enrollment distribution, property tax relief may be forthcoming from a new state aid school financing formula."

The school district's operating levy dropped last year to $.33 on the 100 assessed valuation from a 1971 levy of $.62.

The board is considering the projected enrollment figures for the next ten years and is expected to decide the best method of enrollment distribution, consistent with maximum educational benefits and efficient use of facilities.

"At the present time it appears that with minor changes in enrollment distribution, property tax relief may be forthcoming from a new state aid school financing formula."

The school district's operating levy dropped last year to $.33 on the 100 assessed valuation from a 1971 levy of $.62.

Figure 3. Reprint, The Kansas City Star, January 22, 1973.
then are followed analytically through school one grade and one year at a time taking into account the net effect of dropouts, deaths and migration to and from the school system.

To gain insight into enrollment patterns within the district, attendance center projections can be made by applying past allocation patterns to the forecasts for the district as a whole. The resultant attendance center enrollments should not be interpreted as predictions, but rather as projections of past and current distribution trends. It should be borne in mind that such sub-district projections will require future adjustments to compensate for unforeseen changes in attendance center boundaries and bussing policies and other such actions by the administration and board of education.

In actual practice, district level forecasts based on the modified cohort approach generally have proven to be as useful and reliable as those generated by the more complex analytical simulation approach.

Case Study - Buhler USD

An enrollment study was conducted in December 1976 for a small but growing school district in central rural Kansas using the modified cohort survival approach.

District: Buhler Unified School District 313
Superintendent: Robert Burkholder
Location: Reno County, Kansas
Attendance Centers: 6 elementary (each housing different grade levels or combinations of grades K-8), 1 high school (9-12)
Enrollment: 2,063

Enrollment History: Sustained growth continuing into the 1970's--current enrollment up 5 percent over previous year.
A primary purpose of the study was to determine the need and timing for the construction of additional facilities to alleviate overcrowded classroom conditions. A computer analysis was made and district enrollments were projected through 1981 at the kindergarten level, 1982 for grade one students, and so on in this fashion through 1991 for the senior high level.

Based on the results of the study, district planners should prepare for an extended period of continued expansion. An unexpected finding was that the thrust of growth would undergo an immediate shift from grades 7-12 to grades K-6, which in recent years had been stable. In the early 1980's the upper grades are expected to again resume a substantial and sustained increase in enrollment (Figure 4). A computer generated summary sheet is included in the Appendix.

![Figure 4. Past and projected enrollments for Buhler grades 7-12. Rate of growth of the past decade is expected to resume in 1982 after a five year period of stabilization.](image-url)
ENROLLMENT OUTLOOK

Total elementary-secondary enrollments are projected to continue to decline for the nation as a whole. However birth rates have been on the upswing since 1973 throughout much of the country which will bring about an upturn in lower elementary grade enrollments in the next several years. School planners will need to monitor birth rates to determine whether this recent trend will be sustained. Planners also should be alert to the fact that enrollment patterns can vary widely from district to district and region to region (Figure 5). Education is in a critical period from the standpoint of enrollment change; therefore, administrators and boards of education will need to evaluate and refine their plans and planning processes from time to time in the months and years immediately ahead.

![Public K-12 Enrollment Trends](image)

Figure 5. This ten year comparison of three national, state and district enrollment trends illustrates wide differences that face local school planners, administrators and boards of education. (Analysis and projections by the author, Harold L. Finch.)
SUPERINTENDENT'S CHECKLIST

☐ The last decade and the next constitute one of the most tumultuous periods in terms of enrollment shifts ever faced by the Western World. Is our preparation adequate?

☐ Total enrollments for grades K-12 will continue to decline nationally; however, the number of lower elementary students will begin to rise as the result of increasing births in recent years. How does this relate to my district?

☐ Do I have knowledge and understanding of district enrollment trends and implications? Is my insight into enrollments sufficiently timely to act—rather than to react?

☐ Are district planners keeping a watchful eye on the principal causes of enrollment growth and decline—in-migration, out-migration and birth rate? Is the recent upturn in numbers of births being monitored?

☐ Are district planners and patrons alert to the fact that while national and regional enrollment trend data are helpful to local planning, district trends may be markedly different?

☐ Enrollment forecasting processes vary widely as to purpose, application, technique and complexity. Was our selection based on the unique needs and characteristics of the district?

☐ Knowledgeable and imaginative analysis and interpretation of enrollment projections is no less important than having quality forecasts. Do we recognize this in actual practice?

☐ Do district planners have an understanding of the dynamics of demography complemented by a sound knowledge about the school district and are these traits applied with a good measure of common sense?

☐ Do we update our enrollment forecasts each year?

☐ An effective enrollment analysis and planning capability doesn't cost—it saves. Does our planning activity reflect this principal?
APPENDIX

SAMPLE PRINTOUT, DISTRICT PROJECTIONS

(Case Study - Buhler USD 313)

K-6 DISTRICT TOTAL

<table>
<thead>
<tr>
<th></th>
<th>73-74</th>
<th>74-75</th>
<th>75-76</th>
<th>76-77</th>
<th>77-78</th>
<th>78-79</th>
<th>79-80</th>
<th>80-81</th>
<th>81-82</th>
<th>82-83</th>
<th>83-84</th>
<th>84-85</th>
<th>85-86</th>
<th>86-87</th>
<th>87-88</th>
<th>88-89</th>
<th>89-90</th>
<th>90-91</th>
<th>91-92</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-6</td>
<td>73-74</td>
<td>74-75</td>
<td>75-76</td>
<td>76-77</td>
<td>77-78</td>
<td>78-79</td>
<td>79-80</td>
<td>80-81</td>
<td>81-82</td>
<td>82-83</td>
<td>83-84</td>
<td>84-85</td>
<td>85-86</td>
<td>86-87</td>
<td>87-88</td>
<td>88-89</td>
<td>89-90</td>
<td>90-91</td>
<td>91-92</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>KINDERGARTEN</td>
<td>111</td>
<td>113</td>
<td>135</td>
<td>122</td>
<td>114</td>
<td>112</td>
<td>120</td>
<td>133</td>
<td>140</td>
<td>134</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
</tr>
<tr>
<td>FIRST</td>
<td>101</td>
<td>116</td>
<td>111</td>
<td>129</td>
<td>129</td>
<td>121</td>
<td>119</td>
<td>127</td>
<td>127</td>
<td>132</td>
<td>140</td>
<td>156</td>
<td>165</td>
<td>146</td>
<td>150</td>
<td>154</td>
<td>158</td>
<td>162</td>
<td>166</td>
</tr>
<tr>
<td>SECOND</td>
<td>144</td>
<td>115</td>
<td>122</td>
<td>125</td>
<td>172</td>
<td>143</td>
<td>134</td>
<td>132</td>
<td>140</td>
<td>156</td>
<td>165</td>
<td>146</td>
<td>137</td>
<td>163</td>
<td>167</td>
<td>171</td>
<td>175</td>
<td>184</td>
<td>198</td>
</tr>
<tr>
<td>THIRD</td>
<td>134</td>
<td>147</td>
<td>111</td>
<td>132</td>
<td>128</td>
<td>176</td>
<td>146</td>
<td>137</td>
<td>135</td>
<td>143</td>
<td>160</td>
<td>169</td>
<td>134</td>
<td>146</td>
<td>166</td>
<td>174</td>
<td>184</td>
<td>194</td>
<td>204</td>
</tr>
<tr>
<td>FOURTH</td>
<td>135</td>
<td>149</td>
<td>155</td>
<td>123</td>
<td>144</td>
<td>140</td>
<td>192</td>
<td>159</td>
<td>150</td>
<td>147</td>
<td>156</td>
<td>175</td>
<td>184</td>
<td>155</td>
<td>165</td>
<td>175</td>
<td>184</td>
<td>194</td>
<td>204</td>
</tr>
<tr>
<td>FIFTH</td>
<td>151</td>
<td>147</td>
<td>146</td>
<td>169</td>
<td>130</td>
<td>152</td>
<td>147</td>
<td>202</td>
<td>167</td>
<td>185</td>
<td>155</td>
<td>164</td>
<td>184</td>
<td>194</td>
<td>194</td>
<td>204</td>
<td>214</td>
<td>224</td>
<td>234</td>
</tr>
<tr>
<td>SIXTH</td>
<td>175</td>
<td>168</td>
<td>154</td>
<td>154</td>
<td>181</td>
<td>139</td>
<td>163</td>
<td>158</td>
<td>216</td>
<td>179</td>
<td>169</td>
<td>166</td>
<td>176</td>
<td>197</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIAL STUDENTS</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>965</td>
<td>965</td>
<td>942</td>
<td>1001</td>
<td>1013</td>
<td>998</td>
<td>1036</td>
<td>1064</td>
<td>1105</td>
<td>1146</td>
<td>1187</td>
<td>1228</td>
<td>1270</td>
<td>1313</td>
<td>1356</td>
<td>1400</td>
<td>1445</td>
<td>1490</td>
<td>1535</td>
</tr>
</tbody>
</table>

7-9 DISTRICT TOTAL

	73-74	74-75	75-76	76-77	77-78	78-79	79-80	80-81	81-82	82-83	83-84	84-85	85-86	86-87	87-88	88-89	89-90	90-91	91-92	
SEVENTH	169	193	163	164	161	169	145	170	165	226	187	177	174	181	184	206	218	239	250	261
EIGHTH	179	185	197	183	177	174	204	157	163	178	244	202	191	188	199	222	222	235	247	260
NINTH	184	183	192	205	185	183	180	211	162	189	184	252	209	197	194	205	229	243	254	267
SPECIAL STUDENTS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SUBTOTAL	532	561	552	552	527	546	529	538	510	593	616	631	574	569	599	646	687	730	773	816

10-12 DISTRICT TOTAL

| | 73-74 | 74-75 | 75-76 | 76-77 | 77-78 | 78-79 | 79-80 | 80-81 | 81-82 | 82-83 | 83-84 | 84-85 | 85-86 | 86-87 | 87-88 | 88-89 | 89-90 | 90-91 | 91-92 |
|-------|
| TENTH | 141 | 185 | 169 | 188 | 199 | 183 | 177 | 174 | 205 | 157 | 183 | 178 | 244 | 203 | 191 | 188 | 200 | 222 | 236 |
| ELEVENTH | 157 | 138 | 166 | 166 | 179 | 190 | 174 | 169 | 166 | 150 | 174 | 232 | 193 | 182 | 179 | 191 | 212 |
| TWELFTH | 130 | 153 | 129 | 151 | 156 | 168 | 179 | 163 | 159 | 156 | 183 | 141 | 163 | 160 | 218 | 181 | 171 | 168 | 179 |
| SPECIAL STUDENTS | 0 | 0 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| SUBTOTAL | 428 | 476 | 464 | 510 | 535 | 542 | 531 | 507 | 531 | 517 | 494 | 578 | 596 | 603 | 552 | 551 | 582 | 628 | 670 |

K-12 AGGREGATE

	73-74	74-75	75-76	76-77	77-78	78-79	79-80	80-81	81-82	82-83	83-84	84-85	85-86	86-87	87-88	88-89	89-90	90-91	91-92	
DISTRICT TOTAL	1925	2002	1958	2063	2075	2086	2096	2109	2146	2187	2228	2270	2313	2356	2400	2445	2490	2535	2580	2625