## DOCUMENT RESUME

AUTHOR
TITLE
INSTITUTION
SPONS AGENCY
PUB DATE
CONTRACT NOTE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

> Cooper, Gloria S. Ed.; Magisos, Joel H., Ed. Metrics for Bindery Operation. Ohio State Univ. Columbus. Center for Vocational Education.
> Bureau of Occupational and Adult Education (DHEW/OE), Washington, D.C.
> 76
> OEC-0-74-9335
> 59p.; For related documents see. CE 009 736-790
> MF-\$0.83 HC-\$3.50 Plus Postage.
> Communications; *Curriculum; Instructional Materials; Learning Activities; Mass Media; Measurement Instruments; *Metric System; Publishing Industry; Secondary Education; Teaching Techniques; Units of Study; *Vocational Education
> *Book Binding

ABSTRACT
Designed to meet the job-related metric measurement needs of bindery operations students, this instructional package is one of six for the communication media occupations cluster, part of a set of $55^{\prime}$ packages for metric instruction in different occupations. The package is intended for students who already know the occupational terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In additiqn, suggested teaching techniques are included. At the back of the package are objective-based evaluation items, a page of answers to the exercises and te: ts , a list of metric materials needed for the activities, references, and a list of suppliers. The material is designed to accommodate a variety of individual teaching and learning styles, e.g., independent study, small group, or whole-class activity. Exercises are intended to facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring. Unit I, a general introduction to the metric system of measurement, provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and. measurement instruments; and to develop a set of mental references for metric values. The metric system of notation also is explained. Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks. Unit 3 focuses on job-related metric equivalents and their relationships. Unit 4 provides experience with recognizing and using metric instrumerts and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments. Unit 5 is designed to give students practice in converting customary and metric measurements, a skill considered useful during the transition to metric in each occupation. (HD)

[^0]

 formetrics formetrics metrics formetrics for formetrics formetrics metrics for metrics for
 metrics for bindery operation
for metrics for metrics

## TEACHING AND LEARNING THE METRIC SYSTEM

This metric instructional package was designed to meet job-related metric measurement needs of students. To use this package students should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with the help of experienced vocational teachers, reviewed by experts, tested in classiooms in different parts of the United States, and revised before distribution.

Each of the five units of instruction contains perfomance objectives, learning activities, and supporting in:formation in the form of text, exercises, and tables. II addition, suggested teaching techniques are included. At the back of this package are objective-based evaluation items, a page of answers to the exerciser, and tests, a list of metric materials needed for the activities, references, and a list of suppliers.

Classroom experiences with this instructional package suggest the following teaching-learning strategies:

1. Let the first experiences be informal to make learning the metric system fun.
2. Students learm better when metric units are compared to familiar objects. Everyone should leam to "think metric." Comparing metric units to customary units can be confusing.
3. Students will learn quickly to estimate and measure in metric units by "doing."
4. Students should have experience with measuring activities before getting too much information.
5. Move through the units in an order which emphassizes the simplicity of the metric system (e.g., length to area to volume).
6. Teach one concept at a time to avoid overwhelming students with too much material.

Unit 1 is a general introduction to the metric system of measurement which provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of nota. ERIC is explained.

Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks.

Unit 3 focuses on job-related metric equivalents and their relation. ships.

Unit 4 provides experience with recognizing and using metric instruments and tools in occupational measurement tasks, It also provides experience in comparing metric and customary measurement in. struments.

Unit 5 is designed to give students practice in converting customary and metric measurements. Students should leam to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metric in each occupation.

## Using These Instructional Materials

This package was designed to help students learn a core of knowledge about the metric system which they will use on the job. The exercises facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring.

This instructional package also was designed to accommodate a variety of individual teaching and learning styles. Teachers are encouraged to adapt these materials to their own classes. For example, the information sheets may be given to students for self-study. References may be used as supplemental resources. Exercises may be used in independent study, small groups, or whole-class activities. All of the materials can be expanded by the teacher.

Gloria S Cooper
Joel H. Magicos
Editors

> This publication was developed pursuant to contract No. OEC. $0 \cdot 74.9335$ with the Bureau ol Occupational and Adult Education, U.S. Department of Healith, Educa. rion and Welfare. However, the opinions expressed herein do not necessarily refliect, the position or policy of the U.S. Olfice of Education and no otficial endorsement by the U.S Otfice of Education should be inleried.

## UNIT <br> 1

## SUGGESTED TEACHING SEQUENCE

1. These introductory exercises may require two or three teaching periods for all five areas of measurement.
2. Exercises should be followed in the order given to best show the eelationship between length, area, and volume.
3. Assemble the metric mearuring derices (rules, tapes, scales, thermometers, and measuring containers) and objects to be measured.*
4. Set up the equipment at work stations for use by the whole class or as individualized resource activities,
5. Have the students estimate, measure, and record using Exercises 1 through 5 .
6. Present information on notation and make Table 1 available.
7. Follow up with group discussion of activities.

Other school departments may have devices which can be used. Metric suppliers are listed in the reference section.

## OBJECTIVES

The student will demonstrate these skills for the Linear, Area, Volume or Capacity Mass, and Temperature Exercises, using the metric terms and measurement devices listed here.

|  | EXERCISES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Linear $(p p .3 \cdot 4)$ | $\begin{gathered} \text { Area } \\ (\mathrm{pp}, 5 \cdot 6) \end{gathered}$ | Volume or Capraty (pp.7.8) | $\begin{gathered} \text { Mas } \\ (p p, 9-10) \end{gathered}$ | Tempenture (p. 11) |
| 2. Recogrize and use the unit and its symbol for: | millimetre (mm) centimetre (cm) | square <br> centimetre $\left(\mathrm{cm}^{2}\right)$ | cubic centi- <br> melre $\left(\mathrm{cm}^{3}\right)$ | gram <br> (b) <br> kilopram <br> (kg) | degree Cellius <br> (c) |
| 2. Select, uefe, and read the approprite meauring intriruments for: |  | square melre $\left(m^{2}\right)$ | cubic metre $\begin{aligned} & \left(n^{3}\right) \\ & \text { litre } \quad \text { (I) } \end{aligned}$ |  |  |
| physical reference for: |  |  | millilitre (ml) |  |  |
| 4. Extimate within $25 \%$ of the actual measure | height, width, or length of objects | the atea of <br> a giver turfice | capacity of <br> containers | the mass of objectu in grams and kilo. rams | the temperature of the air or a liguid |
| 5. Read correctly | metre stick, metric tape measure, and metric rulen |  | measurements on craduated volume measur. ing devices | a kilopram scale and a gram scale | $A$ Colsius themometer |

## RULES OF NOTATION

1. Symbols are not capitalized unless the unit is a proper name ( mm not MM ).
2. Symbols are not followed by periods ( m not m ).
3. Symbols are not followed by ans for piurals ( 25 g not 25 gs ).
4. A space separates the numerals from the unit symbols (41 not 41).
5. Spaces, not commas, are used to separate large numbers into groups of three digits ( $45271 \mathrm{~km} \mathrm{not} 45,271 \mathrm{~km}$ ).
6. A zero precedes the decimal point if the number is less than one ( 0.52 g not .52 g ).
7. Litre and metre can be spelled either with an te or -er ending.

## METRIC UNITS, SYMBOLS, AND REFERENTS

| Quantity | Metric Unit | Symbol | Useful Referents |
| :---: | :---: | :---: | :---: |
| Length | millimetre | mm | Thickness of dime or paper clip wire |
|  | centimetre | cm | Width of paper clip |
|  | metre | m | Height of door about 2 m |
|  | kilonetre | km | 12.minute walking distance |
| Area | square centimetre | $\mathrm{cm}^{3}$ | Area of this space |
|  | square metre | $\mathrm{m}^{2}$ | Ares of card table top |
|  | hectare | ha | Football field including sidelines and end zones |
| Volume and Capacity | millilitre | ml | Teaspoon is 5 ml |
|  | litre | 1 | A little more than 1 quart |
|  | cubic centimetre | $\mathrm{cm}^{3}$ | Volume of this container |
|  | cubic metre | $\mathrm{m}^{3}$ | A little more than a cubic yard |
| Mass | milligram | mg | Apple seed about 10 mg , grain of salt, 1 mg |
|  | gram | 8 | Nickel about 58 |
|  | kilogram | kg | Hebster's Collegiate Dictionary |
|  | metric ton <br> ( 1000 kilograms) | $t$ | Volkswagen Beetle |

## LINEAR MEASUREMENT ACTIVITIES

## Metre, Centimetre, Millimetre

## I. THE METRE (m)

## A. DEVELOP A FEELING FOR THE SIZE OF A METRE

1. Pick up one of the metre sticks and stand it up on the floor. Fiold it in place with one hand. Walk around the stick. Now stand next to the stick. With your other hand, touch yourself where the top of the metre stick comes on you.


THAT IS HOW HIGH A METRE IS!
2. Hold one amm out straight at shoulder height, Put the metre stick along this arm until the end hits the end of your fingers. Where is the other end of the metre stick? Touch yourself at that end.

THAT IS HOW LONG A IETRE IS!

3. Choose a partner to stand at your side. Move apart so that you can put one end of a metre stick on your partner's shoulder and the other end on your shoulder. Look at the space between you.

THATIS THE WIDTH OF A METRE!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN METRES

Now you will improve your ability to estimate in metres.
Remember where the length and height of a metre was on your body.

For each of the following items:
Estimate the size of the items and write your estimate in the ESTIMATE column. Measure the size with your metre stick and write the answer in the MEASUREMENT column.

Decide how close your estimate was to the actual measure. If your estimate was within $25 \%$ of the actual measure you are a "Metric Marvel."

> | How Close |
| :---: |
| Estimate |
| $(\mathrm{m})$ |
|  |

1. Height of door knob from floor.
2. Height of door.
3. Length of table.
4. Width of table.
5. Length of wall of this room.
6. Distance from you to wall.

Exercise 1

## II THE CENTIMETRE (cm)

There are 100 centimetres in one metre. If there are 4 metries and 3 centimetres, you write $403 \mathrm{~cm}[(4 \times 100 \mathrm{~cm})+3 \mathrm{~cm}=400 \mathrm{~cm}$ +3 cm ].

## A. DEVELOP A FEELING FOR THE SIZE OF A CENTIMETRE

1. Hold the metric ruler against the width of yon whan How wide is it? $\qquad$ cm
2. Measure your thumb from the first jo
$\qquad$
3. Use the metric muler to find the width of your palm.
$\square$
cm
4. Measure your index or pointing finger, How long is it?
$\square$ cm
5. Measure your wrist with a tape measure. What is the distance around it? $\qquad$ cm
6. Use the tape measure to find your waisis size. $\qquad$ cm
B. DEVELOP YOUR ABILITY TO ESTIMATE IN CENTIMETRES

You are now ready to estimate in centimetres: For each of the following items, follow the procedures used for estimating in metres.

How Close Estimate Measurement Were You? (cm) (cm)

1. Length of a paper clip.
2. Diameter (width) of a coin.
3. Widh of a postage stamp.
4. Length of a pencil.
5. Width of a sheet
of paper.

## III. THE MLLIMETRE (mm)

There are 10 millimetres in one centimetre. When a masasurement is 2 centimetres and 5 millimetres, you write $25 \mathrm{~mm}(2 \times 10 \mathrm{~mm})$ $+5 \mathrm{~mm}=20 \mathrm{~mm}+5 \mathrm{~mm}]$. There are 1000 mm in 1 m .

## A. DEVELOP A FEELING FOR THE SIZE OF A MLLLIMETRE

Using a ruler marked in millimetres, measure:

1. Thickness of a paper clip wire. _mm

2*Thicknes of sour tingernail.
$\ldots m m$
3. Width of youf fingernail.

4. Diameter (width) of a coin.

5. Diameter (thickness) of your pencil. $\qquad$ mm
6. Width of a postage stamp.
$\ldots$ mm

## B. DEVELOP YOUR ABILITY TO ESTIMATE IN MLLLIETRES

You are now ready to estimate in millimetres. For each of the following items; follow the procedures used for estimating in metres.

How Close Estimate Measurement Were You?
(mm) (mm)

1. Thickness of a nickel.
2. Diameter (thickness) of a bolt.
3. Length of a bolt.
4. Width of a sheet of paper.
5. Thickness of a board or desk top.
6. Thickness of a button.

# AREA MEASUREMENT ACTIVITTES <br> Square Centimetre, Square Metre 

WHEN YOU DESCRIBE THE AREA OF SOMETHING, YOU ARE SAYING HOW MANY SQUARES OF A GIVEN SIZE IT TAKES TO COVER THE SURFACE.

## I. THE SQUARE CENTIMETRE $\left(\mathrm{cm}^{2}\right)$

## A. DEVELOP A FEELING FOR A SQUARE CEHTIMETRE

1. Take a clear plastic grir e the grid on page 6 .
2. Measure the length d wid: .. one of these small squares with a centimt tra

THATIS ONE SQUARE CENTIMETRE!
3. Place your fingemail over the grid, About how many squares does it take to cover your fingernail?
$-\quad \mathrm{cm}^{2}$
4. Place a coin over the grid. About how many squares does it take to cover the coin? $\qquad$ $\mathrm{cm}^{2}$
5. Place a postage stamp over the grid. About how many squares does it take to cover the postage stamp?

6. Place an envelope over the grid. About how many squares does it take to cover the envelope?
$\square$
7. Weasure the length and width of the envelope in centi. metres. Length $\qquad$ cm ; widh $\qquad$ cm.

Multiply to find the area in square centimetres.
$\qquad$ cm $x$ $\qquad$ $\mathrm{cm}=$ $\qquad$ $\mathrm{cm}^{2}$. How close are the answers you have in 6 , and in 7.?
B. DEVELOP YOUR ABILITY YO ESTIMATE IN SQUARE CENTMETRES

You are now ready to develop your sbility to estimate in scuare centimetres.

Remember the size of a square centimetre. For each of the following items, follow the procedures used for estimating in metres.

How Close Estimate Measurement Were You? $\left(\mathrm{cm}^{2}\right) \quad\left(\mathrm{cm}^{2}\right)$

1. Index card,
2. Book cover.
3. Photograph.
4. Window pane or desk top.

## II. THE SQUARE METRE ( $\mathrm{m}^{2}$ )

## A. DEVELOP A FELLING FOR A SQUARE METRE

1. Tape four metre sticks together to make a square which is one metre long and one metre wide.
2. Hold the square up with one side on the floor to see how bigit is.
3. Place the square on the floor in a comer. Step back and look. See how much floor space it covers.
4. Place the square over a table top or desk to see how much space it covers.
5. Place the square against the bottom of a door. See how much of the door it covers. How many squares would it take to cover the door? $\qquad$ $\mathrm{m}^{2}$ THIS IS HOW BIG A SQUARE METRE IS!
B. DEVELOP YOUR ABILITY TO ESTMMATE IN SQUARE METRES

You are now ready to estimate in square metres. Follow the procedures used for estimating in metres.

| Estimate |
| :---: |
| $\left(\mathrm{m}^{2}\right)$ |$\quad$| Measurement |
| :---: |
| $\left(\mathrm{m}^{2}\right)$ |

1. Door.
2. Full sheet of newspaper.
3. Chalkboard or bulletin board.
4. Floor.
5. Wall.
6. Wall chart or poster.
7. Side of file cabinet. $\qquad$

CENTIMETRE GRID




## VOLUME MEASUREMENT ACTIVITIES

## Cubic ©̃entimetre, Litre, Millilitre, Cubic Metre

## I. THECUBIC CENTMETRE ( $\mathrm{mm}^{3}$ )

## A. DEVELOP A FEELING FOR THE CUBIC CENTIMETRE

1. Pick up a colored plastic cube. Measure its length, height, and width in centimetres.
THAT IS ONE CUBIC CENTIMETRE!
2. Find the volume of a plastic litre box.
a. Place R ROW of cubes against the bottom of one side of the box. How many cubes fit in the row? $\qquad$
b. Place another ROW of cubes against an adjoining side of the box. How many rows fit inside the box to make one layer of cubes? $\qquad$ How many cubes in each row? $\qquad$
Howmany cubes in the layer in the bottom of the box?
c. Stand a ROW of cubes up against:the side of the box. How many LAYERS would fit in the box? $\qquad$
How many cubes in each layer? $\qquad$
How many cubes itit in the box altogether? $\qquad$
THE VOLUME OF'THE BOX IS $\qquad$ CUBIC CENTIMETRES.
d. Measure the length, width, and height of the box in centimetres. Length $\qquad$ cm ;width $\qquad$ cm ;
height $\qquad$ cm . Multiply thesenumbers tofind the volume in cubic cantimetres.


## B. DEVELOP YOUR ABILITY TO ESTIMATE IN CUBIC CENTIMETRES

You are now ready to develop your ability to estimate in cubic centimetres.

Remember the size of a cubic centimetre. For each of the following items, use the procedures for estimating in metres.

|  | How Close <br> Estimate |
| :---: | :---: |
| $\left(\mathrm{cm}^{3}\right)$ | $\left(\mathrm{cm}^{3}\right)$ |

1. Index card file box:
2. Freezer container.
3. Paper clip box.
4. Box of staples.


## II. THEITTRE (I)

A. DEVELOP A EEELING FOR A LITRE

1. Take a one litre beaker and fill it with water.
2. Pour the water into paper cups, filling eachias fill as you usually do. How many cups do you fill?
THAT IS HOW MUCH IS IN ONE LITRE!
3. Fill the litre container withivice.

That is how much it Takes to flll a one LITRE CONTAINER!

## B. DEVELOP YOUR ABILITY TO ESTIMATE IN LITRES

You are now ready to develop your ability to estiriate in litres. To write two and one-half litres, you wite 2.51 , or 2.5 litres. To write one-half litre, you write 0.51, or 0.5 litre. To write two and threefourths litres, you write 2.751 , or 2.75 lites.

For each of the following items, use the procedures for estimating in metres.

How Close
Estimate Neasurement Were Yori? (I)

1. Medium-size freezer container.
2. Large frezerer container.
3. Small frezer container.
4. Bottle or jug.

## III. THE MLLILITRE (ml)

There are 1000 millilitres in one litre. $1000 \mathrm{ml}=1$ litre. Half a litre is 500 millilitres, or 0.5 litre $=500 \mathrm{ml}$.

## A. DEVELOP A FEELING FOR A MLLILITRE

1. Examine a centimetre cube, Anything which holds $1 \mathrm{~cm}^{3}$ holds 1 ml .
2. Fill a 1 millilitre measuring spoon with rice. Empty the spoon into your hand. Carefully pouir the rice into a small pile on a sheet of paper.

## THAT IS HOW MUCH ONE MLLLLLTRE IS!

3. Fill the $\overline{5} \mathrm{ml}$ spoon with rice. Pour the rice into another pile on the sheet of paper.
THAT IS 5 MLLILITRES, OR ONE TEASPOON!
4. Fill the 15 ml spoon with rice. Pour the rice into a third pile on the paper.
THAT IS 15 MLLILITRES, OR ONE TABLESPOON!

## Kilogram, Gram

The mass of an object is a measure of the amount of matter in the object. This amount is always the same unless you add or subtract some matter from the object. Weight is the term that most people use when they mean mass. The weight of an object is affected by gravity; the mass of an object is not. For example, the weight of a person on earth' might be 120 pounds; that same person's weight on the moon would be 20 pounds. This difference is because the pull of gravity on the moon is less than the pull of gravity on earth. A person's mass on the earth and on the moon would be the same. The metric system does not measure weight-it measures mass. We will use the term mass here.

The symbol for gram is g.
The symbol for kilogram is kg.
There are 1000 grams in one kilogram, or $1000 \mathrm{~g}=1 \mathrm{~kg}$..............
Half a kilogram can be written as 500 g,or 0.5 kg . $\qquad$ 4
A quarter of a kilogram can be written as $250 \mathrm{~g}, 0 \mathrm{O} 0.25 \mathrm{~kg}$. Two andthree fourths kilograms is written as 2.75 kg .

## 1. THE KILOGRAM (kg)

DEVELOP A FEELING FOR THE MASS OF A KILOGRAM
Using a balance or scale, find the mass of the items on the table.
Before you find the mass, notice how heary the object "feels" and compare it to the reading on the scale or balance.

## B. DEVELOP YOUR ABILITY TO ESTIMATE IN KILOGRAMS

For the following items ESTIMATE the mass of the object in kilograms, then use the scale or balance to find the exait mass of the object. Write the exact mass in the MEASUREMENT column. Determine how close your estimate is:

How Close
Estimate Measurement Were You?
(kg) $\quad(\mathrm{kg})$

1. Bag of rice.
2. Bag of nails:
3. Large purse or briefcase.
4. Another person.
5. A few books.

## II. THE GRAM (g)

## A. DEVELOP A FEELING FOR AGRAM

1. Take a colored plastic cube. Hold it in your hand. Shake the cube in your palm as if shaking dice. Feel the pressure on your hand when the cube is in motion, then when it is not in motion.

THAT IS HOW HEAVY A GRAMIS!
2. Take a second cube and attach it to the first. Shake the cubes in first one hand and then the other hand; rest the cubes near the tips of your fingers, moving your hand up and down.

THATIS THE MASS OF TWO GRAMS!
3. Take five cubes in one hand and shaike them around.

THAT IS THE MASS OF FIVE GRAMS!

## B. DEVELOP YOUR ABILITY TO ESTIMATE IN GRAMS

You are now ready to improve your ability to.estimate in grams. Remember how heary the 1 gram cube is, how heary the two gram cubes are, and how heary the five gram cubes are. Fcri each of the following items, follow the procedures used for estimating in kilograms.

How Close
Estimate Measurement Were You?
(g) $\quad$ (g)

1. Two thumbtacks.
2. Pencil.
3. Two-page letter and envelope.
4. Nickel.
5. Apple.
6. Package of margarine.

## TEMPERATURE MEASUREMENT ACTIVITIES

## Degree Celsius

l. DEGREE CELSIU: $\left({ }^{\circ} \mathrm{C}\right)$

Degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is the metric measure for temperature.
A. DEVELOP A FEELING FOR DEGREE CELSIUS

Take a Celsius thermometer, Look at the marks on it.

1. Find 0 degrees.

WATER FREEZES AT ZERO DEGREES CELSIUS $\left(0^{\circ} \mathrm{C}\right)$
WATER BOILS AT 100 DEGREES CELSIUS ( $100^{\circ} \mathrm{C}$ )
2. Find the temperature of the room. $\qquad$ ${ }^{\circ} \mathrm{C}$. Is the room cool, warm, or about right?
3. Put some het water from the faucet into a container. Find the temperature. $\qquad$ ${ }^{\circ} \mathrm{C}$. Dip your finger: quickly in and out of the water. Is the water very hot, hot, or just warm?
4. Put some cold water in a container with a thermometer. Find the temperature. ___ ${ }^{\circ} \mathrm{C}$, Dip your finger into the water. Is it cool, cold, or very cold?
5. Bend your arm with the inside of your elbow around the bottom of the thermometer. Atter about three minutes find the temperature. ${ }^{\circ} \mathrm{C}$. Your skin tempera. ture is not as high as your body temperature.

NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS $\left(37^{\circ} \mathrm{C}\right)$.
A FEVER IS $39^{\circ} \mathrm{C}$. A-VERY-HIGH-FEVER $I S \cdot 40^{\circ} \mathrm{C}$

## B. DEVELOP YOUR ABLLITY TO ESTIMATE IN DEGREES CELSIUS

For each item, ESTIMATE and write down how many degrees Celsisus you think it is. Then measure and write the MEASUREMENT. See how close your estimates and actual measurements are.

How Close
Estimate Measurement Were You?
( ${ }^{\circ} \mathrm{C}$ )

1. Mix some hot and cold water in a container. Dip your finger into the water.
2. Pour out some of the water. Add some hot water. Dip your finger quickly into the water.
3. Outdoor temperature.
4. Sunny window sill.
5. Mix of ice and water.
6. Temperature at floor.
7. Temperature at ceiling, $\qquad$ $\cdots$

## UNIT

2

## METRICS IN THIS OCCUPATION

Changeover to the metric system is under way. Large corporiwinf;re already using metric measurement to compete in the world market. The metric grs tet has been useditin various parts of industrial and scientific communities for years. Legegextiong, passed in 1975, authorizes an orderly transition to use of the metric system, NE Dusthesses ant industries make this metric changeover, employees will need to wemetric seasureme in job-related tasks.

Table 2 lists those metric terms which are most commonly ued in ancupation: These terms are replacing the measurement units used currently. What $\$$ of jobrelated tasks use measurement? Think of the many different kinds off toasirements you now make and use Table 2 to discuss the metric terms which replaceititeran jee if you can add to the list of uses beside each metric term.

## SUGGESTED TEACHING SEQUENCE

1. Assemble metric measurement tools (pules, tapes, scales, thermometers, etc.) and objects related to this occupation.
2. Discuss with students how to read the tools,
3. Present and have students discuss Information Sheet 2 and Table 2.
4. Have students learn occupationallyreated metric measurements by completing Exercises 6 and 7.
5. Test performance by using Section $A$ of "Testing Metric Abilities."

METRIC UMITS POR BINDERY OPERATION

| Quantity | Unit | Symbol | Us: |
| :---: | :---: | :---: | :---: |
| Length | millimetre | mm | Wrapping patar and cellophane, wire roll, paper |
|  | centimetre | cm | Padding tupe ting binders, covers, wire-. staple size |
| Mass | gram | 8 | Padding cement, postrye: |
|  | bllogram | k8 | Supplies, whijpping, partage |
| Volume/Capacity | millilitre | m | Paddingrement, oir |
|  | litre | 1 |  |
|  | cubic centimetre | $\mathrm{cm}^{3}$ | Storate end. Shippiufspace |
|  | cubic metre | $\mathrm{m}^{3}$ |  |
| Pressure | kilopascal | kPa | Air presme and vacram settings |
| Temperature | degree Celsius | ${ }^{\circ} \mathrm{C}$ | Room widation, or sterage temperatures, glue |
| Application rates | millilites per square metre | $\mathrm{m} / \mathrm{m}^{2}$ | Estimatiorg materials ineeded and applying materida |
|  | grams per square metre | $\mathrm{g} / \mathrm{m}^{2}$ |  |

## TRYING OUT METRIC UNITS

To giverou pratice with metric units st estinnabethe measurementsif theitems below. Write down your pas guearg mat to the item, Then actually measure the item and wite ic: :n your answers using the correct metris symbols. The more you pracice, the easier it will be.

|  | Estimate | Actual | 12. Measuring cup (mesic) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Length |  |  | 17. Willk container |  |  |
| 1. Paimw |  |  | 18. |  |  |
| 2. Hand span: |  |  | 19. Bucket |  |  |
| 3. Your height |  |  | 20. Small box or package |  |  |
| 4. Height of lab cutter |  |  | 21. Carton of No. 10 envelopes |  |  |
| 5. Space between holes on standard 3 -hole punch |  |  | 22. Carton of 634 envelopes <br> Mass. |  |  |
| 6. Maximum cut on lab cutter |  |  | 23 Textbook |  |  |
| 7. Maximum width on lab cutter |  |  | 24. Wrikel |  |  |
| 8. Cutterknife on lab cutter |  |  | 5. Yourself |  |  |
| 9. Weirith of a plastic spine |  |  | 26. Prmer clip |  |  |
| Area |  |  | 27. A quantity of bond paper |  |  |
| 10. Desk top |  |  | 28. Alitre of water (net) |  |  |
| 11. Classroom floor |  |  | Temperature |  |  |
| 12. Steel binderytable |  |  | 29. Bindery lab |  |  |
| - 13..-Floor.space:af.ab.cuttar |  |  | 30. Outside |  |  |
| 14. Sheet of paper |  |  | 31. Hot tap water |  |  |
|  |  |  | 32. Starage spari |  |  |



## UNIT

3OBJECTIVE

The student will recognize and use metric equivaients.

- Given a metric unit, state an equivalent in a larger or smaller metric unit.


## SUGGESTED TEACHING SEQUENCE

1. Make available the Information Sheets ( $3-8$ ) and the associated Exercises (8. 24), cre at a time.
2. As soon as you have presented the Jnformairon, have the students complete seach Exerise.
3. Check their answers on the page titled ANSWERSTO EXERCISES AND TEST.
4. Test performance by using Section B of "Testing Metric Abilities."

## METRIC-METRIC EQUIVALENTS

## Centimetres and Millimetres



Look at the picture of the nail next to the ruler. The nail is 57 mm long. This is $5 \mathrm{~cm}+7 \mathrm{~mm}$. There are 10 mm in each $\mathrm{cm}, 501 \mathrm{~mm}=0.1 \mathrm{~cm}$ (one-tenth of a centimetre). This means that $7 \mathrm{~mm}=0.7 \mathrm{~cm}, 5057 \mathrm{~mm}=5 \mathrm{~cm}+7 \mathrm{~mm}$
$=5 \mathrm{~cm}+0.7 \mathrm{~cm}$
$=5.7 \mathrm{~cm}$. Therefore 57 mm is the same as 5.7 cm .
Now measure the paper clip. It is 34 mm . This is the same as $3 \mathrm{~cm}+$ $\qquad$ mm. Since each millimetre is 0.1 cm (one-tenth of a centimetre), $4 \mathrm{~mm}=$
 cm . So, the paper clip is $34 \mathrm{~mm}=3 \mathrm{~cm}+4 \mathrm{~mm}$

$$
=3 \mathrm{~cm}+0.4 \mathrm{~cm}
$$

$=3.4 \mathrm{~cm}$. This means that 34 mm is the same as 3.4 cm .

## Information Sheet 3

Now you try some.
a) $26 \mathrm{~mm}=$ $\qquad$ cm
e) $132 \mathrm{~mm}=$ $\qquad$ cm
b) $583 \mathrm{~mm}=$ $\qquad$ cm
f) $802 \mathrm{~mm}=$ $\qquad$
c) $94 \mathrm{~mm}=$ $\qquad$ cm
d) $680 \mathrm{~mm}=$ $\qquad$ cm
g) $1400 \mathrm{~mm}=$ $\qquad$
h) $2307 \mathrm{~mm}=\sim \mathrm{cm}$

## Metres, Centimetres, and Millimetres

There are 100 centimettes in one metre. Thus,
$2 \mathrm{~m}=2 \times 100 \mathrm{~cm}=200 \mathrm{~cm}$,
$3 \mathrm{~m}=3 \mathrm{x} 100 \mathrm{~cm}=300 \mathrm{~cm}$,
$8 \mathrm{~m}=8 \times 100 \mathrm{~cm}=800 \mathrm{~cm}$,
$36 \mathrm{~m}=36 \times 100 \mathrm{~cm}=3600 \mathrm{~cm}$.
There are 1000 millimetres in one mette, so
$2 \mathrm{~m}=2 \times 1000 \mathrm{~mm}=2000 \mathrm{~mm}$
$3 \mathrm{~m}=3 \times 1000 \mathrm{~mm}^{2} 3000 \mathrm{~mm}$
$6 \mathrm{~m}=6 \mathrm{x} 1000 \mathrm{~mm}=6000 \mathrm{~mm}$,
$24 \mathrm{~m}=24 \times 1000 \mathrm{~mm}=24000 \mathrm{~mm}$
From your work with decimals you should know that
one-halif of a metre can be witten 0.5 m (ive-tenths of a metre), onefouth of a centimetre can be written 0.25 cm (twenty five hundredths of a centimetre).
This means that if you want to change three.fourths of a metre to millimetres, you would multiply by 1000 . So

$$
\begin{aligned}
0.75 \mathrm{~m} & =0.75 \times 1000 \mathrm{~mm} \\
& =\frac{75}{100} \times 1000 \mathrm{~mm} \\
& =75 \times 1000 \mathrm{Tm} \\
& =75 \times 10 \mathrm{~mm} \\
& =750 \mathrm{~mm} . \text { This means that } 0.75 \mathrm{~m}=750 \mathrm{~mm} .
\end{aligned}
$$

## Information Sheet 4

Fill in the following chart.

| metre <br> m | centimetre <br> cm | milimetre <br> mm |
| :---: | :---: | :---: |
| 1 | 100 | 1000 |
| 2 | 200 |  |
| 3 |  |  |
| 9 |  |  |
| 74 |  | 5000 |
| 0.8 |  |  |
| 0.6 |  | 600 |
|  | 2.5 | 25 |
|  | 639 | $1+8$ |
|  |  |  |

## Millilitres to Litres

There are 1000 millilitres in one litre. This means that
2000 millilitites is the same as 2 litres,
3000 in is the same as 3 litres,
4000 ml is the same as 4 litere,
12000 ml is the same as 12 litres.
Since there are 1000 millilitres in each litre, one way to change milli. litres to littes is to divide by 1000 . For example,

$$
\begin{aligned}
& \text { Or } 1000 \mathrm{ml}=\frac{1000}{1000} \text { litre }=1 \text { litre. } \\
& 2000 \mathrm{ml}=\frac{2000}{1000} \text { litres }=2 \text { litres. } \\
& \text { And, } 25 \text { a final example, } \\
& 28000 \mathrm{ml}=\frac{28050}{1000} \text { litres }=28 \text { litres. }
\end{aligned}
$$

What if something holds 500 ml ? How many litres is this? This is: worked the same way.
$500 \mathrm{ml}=\frac{500}{1000}$ litre $=0.5$ litre (five-tenths of a litre ). SO 500 ml is the same as one.half ( 0.5 ) of a litre.

Change 57 millilitres to litres.
$57 \mathrm{ml}=\frac{57}{1000}$ Iitre $=0.057$ lite (fifty-seven: ithusuandths of a litre).

Now you try some. Complete the following chat.

| millilititres <br> (mi) | litres <br> (II) |
| :---: | :---: |
| 3000 | 3 |
| 6000 |  |
|  | 8 |
| $1+000$ | 23 |
| 300 | 0.3 |
| 700 |  |
|  | 0.9 |
| 250 |  |
| 275 | 0.47 |

## Litres to Millililitres

What do you do if you need to change itites to millilitres? Remember, there are 1000 millilitres in one litre, of 1 litre $=1000 \mathrm{~m}$.

So,

2 litres $=2 \times 1000 \mathrm{ml}=2000 \mathrm{ml}$,
7 litres $=7 \times 1000 \mathrm{ml}=7000 \mathrm{ml}$,
13 litres $=18 \times 1000 \mathrm{ml}=13000 \mathrm{~m}$, $0: 65 \mathrm{litre}=0.65 \times 1000 \mathrm{ml}=650 \mathrm{ml}$.

Information Sheet 6
Now you try some. Complete the following chart.

| Litres <br> 1 | millilitres <br> ml |
| :---: | :---: |
| 8 | 8000 |
| 5 |  |
| 46 |  |
|  | 32000 |
| 0.4 |  |
| 0.53 |  |
|  |  |

## Exercise 11

## Grams to Kilograms

There are 1000 grams in one kilogram. This means that
2000 grams is the same as 2 kilograms,
5000 g is the same as 5 kg ,
700 g is the same as 0.7 kg , and so on.
To change from grams to kilograms, you use the same procedure for changing from millilitres to litres.

## Kilograms to Grams

To change kilograms to grams, you muitiply by 1000 .

$$
\begin{gathered}
4 \mathrm{~kg}=4 \times 1000 \mathrm{~g}=4000 \mathrm{~g}, \\
23 \mathrm{~kg}=23 \times 1000 \mathrm{~g}=23000 \mathrm{~g}, \\
0.75 \mathrm{~kg}=0.75 \times 1000 \mathrm{~g}=750 \mathrm{~g} .
\end{gathered}
$$

Information Sheet 8
Complete the following chart.

| kilograms <br> kg | grams <br> 8 |
| :---: | :---: |
| 7 | 7000 |
| 11 |  |
|  | 25000 |
| 0.4 |  |
| 0.63 |  |
|  | 175 |

Exercise 13

## Changing Units at Work

Some of the things you use in this occupation may be measured in different metric units. Practice changing each of the following to metric equivalents by completing these statements.
a) 46.72 m gold stamp foil is $\qquad$ cm
b) 250 ml of padding compound is $\qquad$ 1
c) 5 cm diameter die cut circle is mm
d) 2500 g of metal eyelets is $\qquad$
e) 120 mm wide strip of card stock is
f) 0.25 litre of liquid glue is $\qquad$ cm
g) 2000 kg of paper is $\qquad$ t
h) 10 m roll of tape is $\qquad$ cm
i ) 0.5 litre of concentrate is $\qquad$ ml

- 2 cm staple is $\qquad$ mm
k) 280 mm paper is cm

1) 600 mm poster board is $\qquad$ cm
m) 500 kg of cover stock is
n) 4 litre of padding compound is $\qquad$ ml

| grams <br> 8 | kiloprams <br> kg |
| :---: | :---: |
| 4000 | 4 |
| 9000 |  |
| 23000 |  |
| 30 | 8 |
| 300 |  |
| 275 |  |

Information Sheet 7
Try the following ones.

4

## OBIECTVE

The student will recognize and use instruments, tools, and devices for measurement takss in this occupation.

- Given metric and Customary tools, instruments, or devices, differentiate between metric and Customary.
- Given a measuruement task, select and use an appropriate tool, instrument or device.
- Given a metric measurement task, judge the metric quantity within $25 \%$ and measure within $5 \%$ accuracy.


## SUGGESTED TEACHING SEQUENCE

1. Assemble metric and Customary measur. ing tools and devices (rules, scales, ${ }^{\circ} \mathrm{C}$ thermometer, drill bits, wrenches, micrometer, vernier calipers, feeler gages) and display in separate groups at learning stations.
2. Have students examine metric tools and instruments for distinguishing characteristics and compare them with Customary tools and instruments.
3.--Have-students-verbally-describe-charac. teristics.
3. Present or make available Information Sheet 9 .
4. Mix metric and Customary tools or equipment at leaming station. Give students Exercises 15 and 16.
5. Test performance by using Section C of "Testing Metric Abilities."

## SELECTING AND USNG

## METRIC INSTRUMENTS, TOOLS AND DEVICES

Selecting an improper tool or mistreading, a scale can result in an improper sales form, damaged materials, ot injury to self or fellow workers. For example, putting 207 pounds per square inch of pressure (psi) in a tractor tire designed for 207 kilopascals (about 30 psi) could cause a fatal accident. Here are some suggestions:

1. Find out in advance whether Customary or metric units, tools, instruments, or products are needed for a given task.
2. Examine the tool or instrument before using it.
3. The metric system is a decimal system. Look for units marked off in whole numbers, tens or tenths, hundreds or hundredths.
4. Look for metric symbols on the tools or gages such as $\mathrm{m}, \mathrm{mm}, \mathrm{kg}, \mathrm{g}, \mathrm{kPa}$, etc.
5. Look for decimal fractions ( 0.25 ) or decimal mixed fractions ( 2,50 ) rather than common fractions.
6. Some products may have a special metric synbol such as a block $M$ to show they are metric.
7. Don't force devices which are not filting properly.
8. Practice selecting and using tools, instruments, and devices.

## MEASURING UP NNBINDERY OPERATIONS

Practice and prepare to demonstrate your ability to identify, select, and use metric-scaled tools and ins ruments for the tasks given below. You should be able to use the measirement tools to the appropriate precision of the tool, instrument, or task.

1. Messure odd size stack of scrap paper.
2. Order catons to package customer order of cut paper.
3. Determine caliper of sheet of book paper.
4. Estimate stitcher wire needed for large book order.
5. Determine mass of skid of book paper.
6. Estimate storage space for 10 skids of book paper.
7. Figure postage required to mail catalog odder.
8. Detemine amount of oil for hydraulic pump on cutter.
9. Determine number of bales of scrap paper that can be hauled in shop truck.
10. Determine temperature of paper storage area.
11. Select the correct fold dimensions for folding a form business letter:
12. Determine the number of pages that can be stapled on a stitcher.
13.- Determine anount of padding cement required for alarge multiple form order.

For the tasks below, estimate themetric measurement to within $25 \%$ of actual measurement, and verify the estimation by measuring to within $5 \%$ of actual measurement.

|  | Estimate | Venify |
| :---: | :---: | :---: |
| 1. Mass (weight) of stack of scrap paper |  |  |
| 2. Surface area of steel bindery tables |  |  |
| 3. Temperature ot: a. Bindery |  |  |
| b. Outside |  |  |
| c. Paper storage area |  |  |
| 4. Height of cutter bed |  |  |
| 5. Volume of scrap storage bin |  |  |
| 6. The spacing of holes drilled in sheet of paper |  |  |
| 7. Area needed for skid of paper |  |  |
| 8. Size of jar of padding compound in millilitres |  |  |
| 9. Estimated cm of gold stamp foil to be used in stamping 1000 book covers ( 15.24 cm by 5.08 cm of foil to be used per book) |  |  |
| 10. Estimate number of book covers that can be stamped from 1 roll | . |  |
| - of gold stamp foil $15.24 \mathrm{~cm}^{2} \mathrm{x}$ $50 \mathrm{~m}(15.24 \mathrm{~cm} \times 5.08 \mathrm{~cm}$ to be used per book) |  |  |
| 11. Select size and number of lengths of mailing tubes needed to mail 600 calendars $90 \mathrm{~cm} \times 7.6 \mathrm{~cm}$ when rolled (mailing tubes avail. able in 2.75 m lengths) |  |  |

## UNIT

## OBJECTIVE

The student will recoguize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this occupation.

- Given a Customary (or metric) measure. ment, find the metric (or Customary) equivalent on a conversion table.
- Given a Customary unit, state the replacement unit.


## SUGZESTITD TEACHING SEQERNCE

1. Assemblepackages and containes: of maerials.
2. Preat or make available Information Sheet 10 and Table 3 .
3. Have students find approximate metricCustomary equivalents by using Exercise 17.
4. Test periormance by using Section D of "Testing Metric Abilities."

## METRICCUSTOMARY EQUTALENTS

During the transition period there will be a need for finding equivalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is needed, a conversion table can be used to find it. Follow these steps:

1. Determine which conversion table is needed.
2. Look up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number.
3. Read the equivalent(s) from the next column.

Table 3 on the next page gives an example of a metric-Customary conversion table which you can use for practice in tinding approximaie eydivalents. Tabie 3 can be used with Exercise 17, Part 2 and Part 3 .

Below is a table of metie-Customary eauivalents which tells you what themetric replace. ments for Custamary mits:are:* This tablezan be used with Exercise 17, Partiland Part 3. The: symbol $=$ means: "neariy equal to."

| $1 \mathrm{~cm} \approx 039 \mathrm{inch}$ | 1 inch $\approx 2.54 \mathrm{~cm}$ | $1 \mathrm{~m} / \sim 0.2 \mathrm{tsp}$ | 1 tsp $=5 \mathrm{ml}$ |
| :---: | :---: | :---: | :---: |
| $1 . \mathrm{m} \sim 3.28$ feet | 1 foot $\approx 0.305 \mathrm{~mm}$ | $1 \mathrm{~m} \sim 0.07$ tbsp | 1 tbsp $\approx 15 \mathrm{ml}$ |
| $1 \mathrm{~m} \approx 1.09$ yards | $1 \mathrm{yard} \approx 0.91$ :m | $11 \approx 33.8 \mathrm{fl} 02$ | $1 \mathrm{floz} \approx 29.6 \mathrm{mb}$ |
| $1 \mathrm{~km} \approx 0.62$ mile | 1 mile $\approx 1.61 \mathrm{~km}$ | $11 \sim 4.2$ cups | $1 \mathrm{cup} \approx 237 \mathrm{ml}$ |
| $1 \mathrm{~cm}^{2} \approx 0.16 \mathrm{sq} \mathrm{in}$ | 1 sq in $\approx 6.5 \mathrm{~cm}^{2}$ | $11 \approx 2.1$ pts | $1 \mathrm{pt} \approx 0.471$ |
| $1 \mathrm{~m}^{2} \approx 10.8 \mathrm{sq} \mathrm{ft}$ | $1 \mathrm{sq} \mathrm{ft} \approx 0.09 \mathrm{~m}^{2}$ | $11 \approx 1.06 \mathrm{gt}$ | $1 \mathrm{qt} \approx 0.951$ |
| $1 \mathrm{~m}^{2} \approx 1.2 \mathrm{sq} \mathrm{yd}$ | 1 sq yd $\approx 0.8 \mathrm{~m}^{2}$ | $11 \approx 0.26 \mathrm{gal}$ | $1 \mathrm{gal} \approx 3.791$ |
| -hectare $\sim 2.5$-acres | -1.acre $=0.4$ hectare | $1 \mathrm{rram} \approx 0,03502$ | $102=28.38$ |
| $1 \mathrm{~cm}^{3} \approx 0.06 \mathrm{cu} \mathrm{in}$ | 1 cu in $\approx 16.4 \mathrm{~cm}^{3}$ | $1 \mathrm{~kg} \approx 2.2 \mathrm{lb}$ | $116 \approx 0.45 \mathrm{~kg}$ |
| $1 \mathrm{~m}^{3} \approx 35.3 \mathrm{cuft}$ | $1 \mathrm{cuft} \approx 0.03 \mathrm{~m}^{3}$ | 1 metric ton $\approx 2205.1 \mathrm{~b}$ | 1 ton $=907.2 \mathrm{~kg}$ |
| $1 \mathrm{~m}^{3} \approx 1.3 \mathrm{cuyd}$ | $1 \mathrm{cuyd} \approx 0.8 \mathrm{~m}^{3}$ | $1 \mathrm{kPa} \approx 0.145 \mathrm{psi}$ | 1 psi $\approx 6.895 \mathrm{kPa}$ |

[^1]
## CONVERSION TABLES

MILLIMETRES TO INCHES

| mm | lnches | mm | Inches | mm | Inches | mm | Inches |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 3.98 | 10 | 0.39 | 1 | 0.04 | 0.1 | 0.004 |
| 200 | 7.87 | 20 | 0.79 | 2 | 0.08 | 0.2 | 0.008 |
| 300 | 1181 | 30 | 1.18 | 3 | 0.12 | 0.3 | 0.012 |
| 400 | 15.74 | 40 | 1.57 | 4 | 0.16 | 0.4 | 0.016 |
| 500 | 19.68 | 50 | 1.97 | 5 | 0.20 | 0.5 | 0.020 |
| 600 | 23.62 | 60 | 2.36 | 6 | 0.24 | 0.6 | 0.024 |
| 700 | 27.56 | 70 | 2.76 | 7 | 0.28 | 0.7 | 0.028 |
| 800 | 3150 | 80 | 3.15 | 8 | 0,31 | 0.8 | 0.031 |
| 900 | 35.43 | 90 | 3.54 | 9 | 0.35 | 0.9 | 0.035 |

1000 mm or 1 metre $=39,37$ inches
INCHES TO MILLIMETRES

| Inches | mim: | Inches | mm | Inches | mm | Inches | mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 25.4 | 0.1 | 2.54 | .01 | .25 | .001 | .05 |
| 2 | 50.8 | 0.2 | 5.08 | .02 | .51 | .002 | .05 |
| 3 | 76.2 | 0.3 | 7.62 | .03 | .76 | .003 | .08 |
| 4 | 101.6 | 0.4 | 10.16 | .04 | 1.02 | .004 | .10 |
| 5 | 127.0 | 0.5 | 12.70 | .05 | 1.27 | .005 | .13 |
| 6 | $152: 4$ | 0.6 | 15.24 |  | .06 | 1.52 | .006 |
| 7 | 177.8 | 0.7 | 17.78 | .07 | 1.78 | .007 | .18 |
| 8 | 203.2 | 0.8 | 20.32 | .08 | 2.03 | .008 | .20 |
| 9 | 228.6 | 0.9 | 228.86 | .09 | 2.29 | .009 | .23 |

10 inches $=254 \mathrm{~mm}$
12 inches or 1 feet $=304.8 \mathrm{~mm}$ or 30.48 cm

## ANY WAY YOU WANT IT

1. You are working in a bindery. With the change to metric measurement some of the things you order, sell or use are marked only in metric units. You will need to be familiar with appropriate Customary equivalents in order to communicate vith customers and suppliers who use Customary units. To develop your skill use the Table on Information Sheet 10 and give the approximate metric quantity (both number and unit) for each of the foliowing Customary quantities.
Customary Quantity Metric Quantity
a) 5000 lbs of book paper
b) 4 qts. of padding compound
c) $3 / 4$ in. die cut
d) $18 \mathrm{sq} . \mathrm{yd}$.
e) 50 lbs of stitcher wire
f) 18 in. tinning strip
8) tapgalon can
h) $1 / 2 \mathrm{Bb}$, shipping mass (weight)
i) $1 / 4$ ib. of rubber bands
j) 4 in. card stock
k) 24 in. poster board
9) 2 miles
m) 15 yd. roll of tape
n) 40 lbs. box of paper
10) $1 / 2 \mathrm{in}$. margin
2. Use the conversion tables from Table 3 to convert the following:
3. Complete the Requisition Form using the items listed. Convert the Customary quantities to metric before filling out the form. Complete all the information (Date, For, Job No., etc.).
Order the following bindery supplies:
a) 1 gal. of padding cement
b) 5 rolls of 2 in by 25 yd. roll of black bookbinding tape
c) 1 box of $5 \mathrm{M} 1 / 2$ in. staples
d) 1 package of 5 sheets, 22 in $x 28$ in heary binder board


## SECTIONA

1. One kilogram is about the mass of a:
[A] nickel
[B] apple seed
[C] basketball
$\mid$ | $\mid$ | Volkswagen "Beetle"
2. A square metre is about the area of:
[A] this sheet of paper
[B] a card table top
[C] a bedspread
(D) a postage stamp.
3. The metric unit which is used to measure paper thickness is:
[A] gram
[B] millimetre
(C] kilogram
[D] milligram
4. The mass of brass eyelets is measured in:
[A] cubic mettes
[B] millilitres
[C] centimetres
[D] kilograms
5. The correct way to write twenty
6. The correct way to write twelve thoussand millimetres is:
[A] $12,000 \mathrm{~mm}$.
[B] 12.000 mm
[C] 12000 mm
[D] 12000 mm

## SECTION B

7. A sheet of paper 20 centimetres wide also has a width of:
[A] 2000 millimetres
[B] 0.2 millimetre
[C] 2 millimetres
[D] 200 millimetres
8. A 750 gram box of fasteners is the same as:
[A] 7.5 kilograms
[B] 0.75 kilogram
[C] 7500 kilograms
[D] 750000 kilograms

## SECTION C

9. For measuring grams you would use a:
[A] rule
[B] pressure gage (C) scale
10. Estimate the length of the line

Use this conversion table to answer questions 15 and 16.
(A) 23 grams
(B) 6 centimetres.
(C) 40 millimetres
[D] 14 pascals
12. Estimate the length of the line segment below: 1
[A] 10 millimetres
[B] 4 centimetres
[C] 4 pascals
[D] 23 milligrams

SECTION D
13. The metric unit for liquid measure which replaces the fluid ounce is:
[A] litre
[B] millilitre
[C] hectare
[D] gram
14. The metric unit for liquid measure which replaces the gallon is:
[A] gram
[B] kilogram
[C] killilitre
grams is:
(A] 20 gms
[B] 20 cm ,
(C) 20 g .
(D) 20g
[D]-container
10. For measuring millimetres you would use a:
[A] pressure gage
[B] ruler
[C] scale
[D] container

## EXERCISES 1 THRU 6

The answers depend on the items used for the activities.

## EXERCISE

Currently accepted metric units of measurement for each question are shown in Table 2. Standards in each occupation are being established norr, so answers may vary.

## EXERCISE 8

a) 2.6 cm
b) 38.3 cm
c) 0.4 cm
d) 68.0 cm
e) 13.2 cm
f) 80.2 cm
g) 140.0 cm
h) 230.7 cm

## EXERCISES 9 THRU 13

Tables are reproduced in total, An. swers are in parentheses.

## Exercise 9

| metre <br> m | centimetre <br> cm | millimetre <br> mm |
| :---: | ---: | ---: |
| 1 | 100 | 1000 |
| 2 | 200 | $(2000)$ |
| 3 | $(300)$ | $(3000)$ |
| 9 | $(900)$ | $(9000)$ |
| $(5)$ | $(500)$ | 5000 |
| 74 | $(7400)$ | $(74000)$ |
| 0.8 | 80 | $(800)$ |
| 0.6 | $(60)$ | 600 |
| $(0.025)$ | 2.5 | 25 |
| $(0.1+8)$ | $(14.8)$ | 148 |
| $(6.39)$ | 639 | $(6390)$ |

Exercise 10

| millilitites <br> ml | litres <br> 1 |
| :---: | :---: |
| 3000 | 3 |
| 6000 | $(6)$ |
| $(8000)$ | 8 |
| $(14000)$ | $(14)$ |
| $(23000)$ | 23 |
| 300 | 0.3 |
| 700 | $(0.7)$ |
| $(900)$ | 0.9 |
| 250 | $(0.25)$ |
| $(470)$ | 0.47 |
| 275 | $(0.275)$ |

Exercise 11

| litres <br> 1 | millilitres <br> ml |
| :---: | :---: |
| 8 | 8000 |
| 5 | $(5000)$ |
| 46 | $(46000)$ |
| $(32)$ | 32000 |
| 0.4 | $(400)$ |
| 0.03 | $(5300)$ |
| $(0.48)$ | 480 |

Exercise 13

| keilograms <br> kg | grams <br> g |
| :---: | :---: |
| 1 | 7000 |
| 11 | $(110001$ |
| 125$)$ | 25000 |
| 0.4 | $(4000$ |
| 0.63 | $(630)$ |
| $(0.175)$ | 175 |

Part 2.
$\begin{array}{ll}\text { a) } 0.08 \mathrm{~mm} & \text { c) } 3.93 \mathrm{in} . \\ \text { b) } 457.2 \mathrm{~mm} & \text { d) } \\ \text { b } & 3.82 \mathrm{in} .\end{array}$
Part 3.
a) 3.79 litres
b) 5.5 .08 cm by 22.75 m
c) 1.1 .27 cm
d) $1.55 .88 \mathrm{~cm} \times 71.12 \mathrm{~cm}$

## Exercise 14

a) 4572 cm h) 1000 cm
b) 0.25 litre i) 500 ml
c) 50 mm
j) 20 mm
d) 2.5 kg
k) 28 cm
e) 12 cm
l) 60 cm
f) 250 ml
m) 0.5 t
g) 2 t
n) 4000 ml

EXERCISES 15 AND 16
The inswers depend on the items used for the activities.

## EXERCISE 17

Part 1.
Exercise 12

| grams <br> $g$ | kilograms <br> kg |
| :---: | :---: |
| 4000 | 4 |
| 9000 | $(9)$ |
| 23000 | $(23)$ |
| 180001 | 8 |
| 300 | $(0.3)$ |
| 275 | $(0.275)$ |

a) 2250 kg i) 0.113 kg
b) 3.8 litres j) 10.16 cm
c) $1.905 \mathrm{~cm} \mathrm{k} ~ 60.96 \mathrm{~cm}$
d) $0.8 \mathrm{~m}^{2}$

1) 3.22 km
e) 22.5 kg
m) 13.5 m
f) 45.72 cm
n) 18 kg
g. 7.58 litres 0$) 1.27 \mathrm{~cm}$
i) 0.225 kg
the center for vocational education

# SUGGESTED METRIC TOOLS AND DEVICES <br> NEEDED TO COMPLETE MEASUREMENT TASKS N EXERCISES 1 THROUGH 5 

(* Optional)

## LINEAR

Metre Sticks
Rules, 30 cm
Measuring Tapes, 150 cm
*Height Measure
*Metre Tape, 10 m
*Trunde Wheel
*Area Measuring Crid

## VOLUME/CAPACITY

${ }^{*}$ Nesting Measures, see of 5 , $50 \mathrm{ml} \cdot 1000 \mathrm{ml}$
Economy Beaker, set of 6, $50 \mathrm{ml} \cdot 1000 \mathrm{ml}$
Metric Spoon, set of 5, $1 \mathrm{ml} \cdot 2 \mathrm{ml}$
Dry Measure, set of 3, $50,125,250 \mathrm{ml}$
Plastic Litre Box
Centimetre Cubes

## SUGGESTED METRIC TOOLS AND DEVCES

NEEDED TO COMPLETE OCCUPATIONAL MEASUREMENT TASKS

In this occupation the tools needed to complete Exercises 6, 15, and 16 are indicated by " 4 ,"
A. Assorted Metric Hardware-Hex nuts, washers, screws, cotter pins, etc.
B. Drill Bits-Individual bits or sets, 1 mm to 13 mm range

* C. Vemier Caliper-Pocket side type, 120 mm range
D. Micrometer-Outside micrometer caliper, 0 mm to 25 mm range
E. Feeler Gage- 13 blades, $0,05 \mathrm{~mm}$ to 1 mm range
F. Metre Tape-50 or 100 m tape
G. Thermometers-Special purpose types such as a clinical thermometer
H. Temperature Devices-Indicators used for ovens, freezing/ cooling ssystems, etc.
I. Tools-Metric open end or box wrench sets, socket sets, hex key sets
J. Weather Devices-Rain gage, barometer, humidity, wind velocity indicators
K. P Pressure Gages-Tire pressure, air, oxygen, hydraulic, fuel, etc.
L. 'Velocity-Direct reading or vane type meter
M. Road Map-State and city road maps
N. Containers-Buckets, plastic containers, etc., for mixing and storing liquids

0. Containers-Boxes, buckets, cans, etce, for mixing and storing dry ingredients

Most of the above items may be obtained from local industrial, hardware, and school suppliers. Also, check with your school district's math and science departments and/or local industries for loan of their metric measurement devices.

## REFERENCES

Let' Measure Metric, A Teacher's Introduction to Merric Measurement. Divinon ol Educational Rederign and Reneral, Ohio Department of Educa. tion, 65 S. Front Street, Columbur, OH 43215, 1975, 80 pages; $\$ 1.50$, murt include check to state treasurer.

Activity-oriented introduction to the metric system designed for independent or group inservice education study. Introductory information about metric measurement; reproducible exercises apply metric concepts to common measurement situations; laboratory activities for individuals or groups. Templates for making metre tape, litre box, square centimetre grid.

## METRIC SUPPLIERS

Brown \& Sharpe Manufacturing Co., Precision Park, North Kingstown, RI 02852.
Industrial quality micrometers, steel nules, scresw pitch and thickness gages, squares, depth gages, calipers, dial indicators, conversion charts and guides.
Going Metric with the U,S, Printing Industry, Clive A. Cameron, Graphic Arts Ressarch Center, Rochester Institute of Technology, Rochester, NY 14623, 1972, 175 pages, 58.70 , paper.

Book on metric conversion for printing and graphics industry. Chapters on. evolution of measurement; commentary on conversions in Britain and Japan; metric ayslems applications in paper and packaging, typesetting, and ma. chinery and equipment; also has findings of survey on attitudes of graphic artaf firms toward the metric standard. Has related tables and graphics.
Measuring with Melers, or, Houlito Heigh a Gold Brich with a Meler. Stich. Metrication Institute of America, P.O. Box 236, Nothfield, IL 60093, 1994. 23 min . 16 mm , sound, color; $\$ 310,00$ purchase, $\$ 31.00$ rental.

Film presents units for length, area, volume and mass, relating each unit to many common objects. Screen overprints show correct use of metric symbols and ease of metric calculations. Relationships among metric measures of length, area, volume, and mass are illustrated in interesting and unforgettable ways.

Metric Education, An Annolated Bibliography for Vocational, Technical and Adult Education, Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1974, 149 pages; \$10.00.
Comprehensive bibliugraphy of instructional materials, reference materials and resource list for secondary, postsecondary, teacher education, and adult basic education. Instructional materias indexed by $150 c c u$ pational clusters, types of materias, and educational level.
Metric Education, A Position Paper for Vocational. Technical and Adult Edu. cation. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1975, 46 pages; $\$ 3.00$.
Paper for teachers, curiculum developers, and administrators in vocational, technical and adult education. Covers issues in metric education, the metric system, the impact of metrication on vocational and techrical education, implications of metric instruction for adult basic education, and curiculum and instructional strategies.

Wetrics in Coreer Education. Linoibeck, John R., Charles A. Bennett Company, Inc., 809 W. Detweiller Drive, Peoria, IL 61614, 1975, 103 pages, $\$ 3.60$, paper: 82.70 quantity school purchase.
Presents metric units and notation in a wellillustrated manner, Individual chapters on metrics in drafting, metalworking, woodworking, power and energy, graphic arts, and home economics. Chapters followed by several learning activities for student use. Appendix includes conversion tables and charts.


[^0]:    Documents acquired by ERIC include many informal unpublished materials not available from other sources. ERIC makes every effort to obtain the best copy available. Nevertheless, items of marginal reproducibility are often encountered and this affects the quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS). - s not responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from

[^1]:    *Adapted from Leet's Measure Matric. A Teacher's Introduction to Metric Meosurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 655. Front Street, Columbus, OH 43215, 1975 .

