This booklet contains a series of worksheets on the metric system to be used with students at the elementary school level. Twenty of the worksheets are concerned with linear measurement, four with area, ten with mass, and four with capacity. (DT)
metric activities
for
Elementary Grades

the board of education for the borough of york

september 1976
FOREWORD

This booklet has been prepared to supplement the measurement section of the mathematics program. It is not necessary to follow the order of topics, nor is it expected that all the activities in each unit be completed. It is hoped that teachers will select according to the ability and experience of their students.

The design of the activity units is based on the practice used by the authors with success whereby the class is divided into four groups. Each 'round' consists of four units, one unit for each group. All students are expected to complete and record as much of the unit as possible in one period. The groups rotate to the four units for the four consecutive measurement periods. Thus each round lasts for four measurement periods.

Grade levels have been omitted since it is recommended that the background and experience of the children should be the criterion.

The activities are designed to help students understand the metric units of length, area, capacity and mass. (The exercises may be made into stencils from the heat copier).

H. Deane
(George S.)

P. Panetta
(Rockcliffe Senior Public School)
TABLE OF CONTENTS

Linear Measurement

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round I</td>
<td></td>
</tr>
<tr>
<td>The Millimetre</td>
<td>1 - 3</td>
</tr>
<tr>
<td>The Centimetre</td>
<td>4 - 7</td>
</tr>
<tr>
<td>The Metre</td>
<td>8 - 12</td>
</tr>
<tr>
<td>The Kilometre</td>
<td>13 - 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round II</td>
<td></td>
</tr>
<tr>
<td>Estimating and Measuring Me in Centimetres</td>
<td>17</td>
</tr>
<tr>
<td>Linear Metric Quiz</td>
<td>18</td>
</tr>
<tr>
<td>Comparing Metric Units</td>
<td>19</td>
</tr>
<tr>
<td>Estimation Game</td>
<td>20</td>
</tr>
<tr>
<td>Word Problems</td>
<td>21 - 22</td>
</tr>
<tr>
<td>Finding the Perimeter</td>
<td>23 - 24</td>
</tr>
</tbody>
</table>

Area

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round I</td>
<td></td>
</tr>
<tr>
<td>Finding Area</td>
<td>25 - 26</td>
</tr>
<tr>
<td>Area Match-Up</td>
<td>27</td>
</tr>
<tr>
<td>Area of Rectangular Shapes</td>
<td>28</td>
</tr>
<tr>
<td>Areas Around You</td>
<td>29</td>
</tr>
</tbody>
</table>

Mass

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round I</td>
<td></td>
</tr>
<tr>
<td>The Milligram</td>
<td>30</td>
</tr>
<tr>
<td>The Gram</td>
<td>31 - 32</td>
</tr>
<tr>
<td>Using the Kilogram</td>
<td>33 - 34</td>
</tr>
<tr>
<td>It Takes the Tonne</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round II</td>
<td></td>
</tr>
<tr>
<td>Metric Match-Up</td>
<td>36 - 37</td>
</tr>
<tr>
<td>Balancing Masses</td>
<td>38</td>
</tr>
<tr>
<td>At the Store</td>
<td>39</td>
</tr>
<tr>
<td>Metric Fish Game</td>
<td>40 - 43</td>
</tr>
</tbody>
</table>

Capacity

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round I</td>
<td></td>
</tr>
<tr>
<td>Liquid Measures</td>
<td>44 - 45</td>
</tr>
<tr>
<td>Litres and Millilitres</td>
<td>46 - 47</td>
</tr>
<tr>
<td>The Drug Store</td>
<td>48 - 49</td>
</tr>
<tr>
<td>It's Your Problem</td>
<td>50</td>
</tr>
</tbody>
</table>
The thickness of a dime is about 1 mm.

A. Circle all the objects that are about 1 millimetre in thickness.

- 8 sheets of paper
- a finger
- a paper clip
- a dollar bill
- pencil point
- a ruler
- a straight pin
- cardboard
- chalk
- button

B. Estimate the height of each animal in millimetres, then accurately measure each using your mm ruler. Use the spaces below the animals for your answers.
MYSTERY MILLIMETRE MESSAGE

Measure the lines in millimetres to break this code and read the message.

Make estimates before measuring.

<table>
<thead>
<tr>
<th>5 mm</th>
<th>10 mm</th>
<th>15 mm</th>
<th>20 mm</th>
<th>25 mm</th>
<th>30 mm</th>
<th>35 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>F</td>
<td>S</td>
<td>T</td>
<td>N</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>40 mm</td>
<td>45 mm</td>
<td>50 mm</td>
<td>55 mm</td>
<td>60 mm</td>
<td>65 mm</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>M</td>
<td>E</td>
<td>U</td>
<td>R</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

MILLIMETRE CODE BOX

Now make up a millimetre OR centimetre mystery message of your own and give it to a friend to solve!!

6
Use the diagram to complete the chart. Measure to the nearest mm.

<table>
<thead>
<tr>
<th>Guess the distance from:</th>
<th>It is about:</th>
<th>Measure it.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Jim's House to the Zoo</td>
<td>__________ mm</td>
<td>__________ mm</td>
</tr>
<tr>
<td>b) Jim's House to the Church</td>
<td>__________ mm</td>
<td>__________ mm</td>
</tr>
<tr>
<td>c) Jim's House to the Hospital</td>
<td>__________ mm</td>
<td>__________ mm</td>
</tr>
<tr>
<td>d) Jim's House to School</td>
<td>__________ mm</td>
<td>__________ mm</td>
</tr>
<tr>
<td>e) Tom's House to the Zoo</td>
<td>__________ mm</td>
<td>__________ mm</td>
</tr>
<tr>
<td>f) The Church to the Hospital</td>
<td>__________ mm</td>
<td>__________ mm</td>
</tr>
<tr>
<td>g) The Zoo to the Church</td>
<td>__________ mm</td>
<td>__________ mm</td>
</tr>
<tr>
<td>h) The School to the Zoo</td>
<td>__________ mm</td>
<td>__________ mm</td>
</tr>
</tbody>
</table>
THE CENTIMETRE

Estimating and Measuring in Centimetres

cm (centimetre)

A convenient unit for shorter lengths is the centimetre. The widest part of your little fingernail is about 1 cm wide.

Find the lengths of each of the following lines:

- My estimate is ________ cm.
 Measure. It is ________ cm.

- My estimate is ________ cm.
 Measure. It is ________ cm.

- My estimate is ________ cm.
 Measure. It is ________ cm.

- My estimate is ________ cm.
 Measure. It is ________ cm.

- My estimate is ________ cm.
 Measure. It is ________ cm.

- My estimate is ________ cm.
 Measure. It is ________ cm.
My estimate is _______ cm.
Measure. It is _______ cm.

My estimate is _______ cm.
Measure. It is _______ cm.

My estimate is _______ cm.
Measure. It is _______ cm.

My estimate is _______ cm.
Measure. It is _______ cm.

My estimate is _______ cm.
Measure. It is _______ cm.
1. Estimate the length of each line in centimetres.
2. Using a piece of string, trace the line.
3. Measure the string against your ruler. Write down the actual length.

A. Estimated length is _________ cm.
 Actual length is _________ cm.

B. Estimated length is _________ cm.
 Actual length is _________ cm.

C. Estimated length is _________ cm.
 Actual length is _________ cm.
D. Estimated length is _______ cm.
 Actual length is _______ cm.

E. Estimated length is _______ cm.
 Actual length is _______ cm.

F. Estimated length is _______ cm.
 Actual length is _______ cm.

G. Estimated length is _______ cm.
 Actual length is _______ cm.
m (metre)

A door opening is about 2 m high and a door handle is approximately 1 m from the floor.

1. Underline all the things that are less than a metre in red.
2. Circle all the things that are about 1 metre in black.
3. Underline all the things that are more than a metre in green.
Colour the shapes in the picture that are longer than one metre.
A. About how many of each are as long as your metre stick?

<table>
<thead>
<tr>
<th></th>
<th>Guess</th>
<th>Measurement</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>stride</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>foot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>span</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Find things in the classroom that are:

<table>
<thead>
<tr>
<th>less than one metre (<1 m)</th>
<th>about one metre (=1 m)</th>
<th>more than one metre (>1 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Use a metre stick to measure the following objects.

<table>
<thead>
<tr>
<th>Object</th>
<th>Guess in Metres</th>
<th>Measurement in Metres</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height of door</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of desk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of window</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height of table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partner's height</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TALL STRUCTURES FROM AROUND THE WORLD

1. How much taller is the C. N. Tower than the Ostankino Tower?

2. How tall is the tallest building?

3. How much would you have to add to the First Canadian Place to make it as tall as the C. N. Tower?

4. What is the difference in height between the Great Pyramid and the Eiffel Tower?

5. Find the total height of the four structures built in the 1970's.

6. A kilometre is 1,000 metres. Which two structures are more than half a kilometre in height?

7. Which two structures total 620 metres?

8. The highest mountain in the world, Mt. Everest, is almost 20 times higher than the Empire State Building. How high is Mt. Everest?
KILOMETRES

km (kilometre)

We use km which is 1 000 m to measure longer distances.

The table below shows distances between cities. The distance is in kilometres. The distance between Montreal and Winnipeg is 2 341 km. It is circled. Trace your finger over the dotted lines to see how the chart works.

DISTANCES

<table>
<thead>
<tr>
<th></th>
<th>Toronto</th>
<th>Ottawa</th>
<th>Montreal</th>
<th>Winnipeg</th>
<th>Niagara Falls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toronto</td>
<td></td>
<td>397 km</td>
<td>544 km</td>
<td>1 029 km</td>
<td>128 km</td>
</tr>
<tr>
<td>Ottawa</td>
<td>397 km</td>
<td></td>
<td>202 km</td>
<td>2 099 km</td>
<td>522 km</td>
</tr>
<tr>
<td>Montreal</td>
<td>544 km</td>
<td>202 km</td>
<td></td>
<td>2 341 km</td>
<td>670 km</td>
</tr>
<tr>
<td>Winnipeg</td>
<td>1 029 km</td>
<td>2 099 km</td>
<td>2 341 km</td>
<td></td>
<td>2 182 km</td>
</tr>
<tr>
<td>Niagara Falls</td>
<td>522 km</td>
<td>670 km</td>
<td>2 182 km</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. How far is it from Toronto to Montreal?

2. How far is it from Niagara Falls to Winnipeg?

3. Which is farther, Montreal to Toronto or Montreal to Ottawa?

4. How far is it from Winnipeg to Ottawa?

5. Which is closer, Niagara Falls to Montreal or Niagara Falls to Ottawa?

6. How far is it from Toronto to Ottawa?
KILOMETRE CHECK

1. Think of the size of the following and put each in the proper column below:

 The Exhibition, Centre Island, Niagara Falls, schoolyard, golf course, C. N. Tower, school, Toronto-Dominion building

2. Think of the distance from your school to each of the following places and put each in the proper column:

 City Hall, your house, Hamilton, nearest plaza, Lake Ontario, nearest store, Italy, public library, fire station, nearest park, Jamaica

<table>
<thead>
<tr>
<th>It is less than a kilometre</th>
<th>It is about the same as a kilometre</th>
<th>It is more than a kilometre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19
1. Measure all the roads between the towns and on the map write down their distances in kilometres. **REMEMBER** 1 cm = 10 km.

2. If you had to go from London to Smallville which way would be the shortest?

3. Mr. Jack is a salesman who lives in Brownsdale. One day he visited customers in Crosswoods and Jackson. Then he returned home by 5 o'clock. How many kilometres did he travel altogether?

4. One week Mr. Jack made 7 trips to Elmvale and back. How many kilometres did he travel?

5. If you flew from Elmvale to Albert in a straight line, how far would that be?

6. How far would you have to drive if you drove around Big Lake?
Working with Scale

Scale: 1 cm = 300 km

Key

1. Victoria, B.C.
2. Edmonton, Alta.
3. Regina, Sask.
5. Toronto, Ont.
6. Quebec City, P.Q.
7. Fredericton, N.B.
8. Halifax, N.S.
9. Charlottetown, P.E.I.
10. St. John's, Nfld.

FIND THE DISTANCE:

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>DISTANCE IN cm</th>
<th>DISTANCE IN km</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Edmonton</td>
<td>3. Regina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Toronto</td>
<td>8. Halifax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Edmonton</td>
<td>4. Winnipeg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Winnipeg</td>
<td>6. Quebec City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Victoria</td>
<td>8. Halifax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Regina</td>
<td>7. Fredericton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Quebec City</td>
<td>9. Charlottetown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Edmonton</td>
<td>10. St. John's</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Victoria</td>
<td>4. Winnipeg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Victoria</td>
<td>6. Quebec City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Fredericton</td>
<td>9. Charlottetown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Halifax</td>
<td>10. St. John's</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimating and Measuring Me in Centimetres

MATERIALS: centimetre ruler, metric tape, metre stick

Estimate the length in centimetres of each of the following and then measure the length.

<table>
<thead>
<tr>
<th></th>
<th>Estimated Length in cm</th>
<th>Measured Length in cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>length of your foot</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>length of your thumb</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>length of your hand span</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>distance around your wrist</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>distance around your elbow</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>distance around your ring finger</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>distance from finger tip to elbow</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>length of your arm</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>length of your arm span</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>distance around your ankle</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>distance around your knee</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>height of your knee above the floor</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>distance around your neck</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>distance around your head</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>distance around your waist</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Find other parts of your body to measure and write them on the back of this sheet.</td>
<td></td>
</tr>
</tbody>
</table>

16.

Find other parts of your body to measure and write them on the back of this sheet.
LINEAR METRIC QUIZ

Use one of the metric units to complete the sentences below. (kilometre, metre, centimetre, millimetre)

1. The width of a dime is about 1 ________________.
2. Niagara Falls is about 50 ________________.
3. Your hand is about 7 ________________ wide.
4. You could walk a distance of one ________________ in about 15 minutes.
5. A jet plane might fly 7 ________________ high.
6. A book is about 20 ________________ tall.
7. The height of a door is about 2 ________________.
8. The distance from Edmonton to Calgary is about 300 ________________.
9. A basketball hoop is 3 ________________ high.
10. A man might be 2 ________________ tall.
11. The distance from the earth to the moon is about 454 144 ________________.
12. The thickness of your ruler is about 3 ________________.
13. A football field is 96 ________________ long.
14. A postage stamp is about 2 ________________ high.
15. The length of your little finger is about 40 ________________ long.
COMPARING METRIC UNITS

10 millimetres = 1 centimetre
100 centimetres = 1 metre
1 000 metres = 1 kilometre

A. Write >, <, or = in the circle.

1. 1 m [] 24 cm
2. 50 cm [] 1 m
3. 4 000 m [] 2 km
4. 200 cm [] 2 m
5. 80 mm [] 7 cm
6. 7 000 m [] 9 km
7. 30 mm [] 3 cm
8. 2 cm [] 14 mm
9. 124 cm [] 1 m
10. 6 km [] 6 000 m
11. 7 cm [] 163 mm
12. 19 km [] 19 000 m
13. 4 000 m [] 4 km
14. 37 cm [] 280 mm
15. 13 m [] 700 cm
16. 1 000 mm [] 1 m
17. 300 mm [] 28 cm
18. 3 000 mm [] 272 cm
19. 519 m [] 1 km
20. 96 cm [] 1 km

B. Complete the following:

1. 60 cm = [] mm
2. 35 m = [] cm
3. 6 000 cm = [] m
4. 14 km = [] m
5. 390 mm = [] cm
6. 219 m = [] cm
7. 32 km = [] m
8. 100 mm = [] cm
9. 90 cm = [] mm
10. 9 000 m = [] km
THE ESTIMATION GAME

This game is played with a partner. From the object box choose one object and guess its length. Be sure to include the units. Then have your partner do the same. Now measure accurately the length of your object. The closest estimation wins a point. Be sure to record all this on the chart.

Good Luck!

<table>
<thead>
<tr>
<th>OBJECT</th>
<th>GUESS</th>
<th>GUESS</th>
<th>ACCURATE MEASUREMENT</th>
<th>WINNER'S NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After you finish this game, challenge someone else in the group and start a new game.
WORD PROBLEMS

A. Cut out a problem.
B. Paste it onto your work sheet.
C. Show your calculations and write a sentence to solve the problem.

1. The penguin is a bird that does not fly. Some penguins can swim as fast as 32 km per hour. How far might a penguin travel in 9 hours?

2. If the bus travels 6 000 metres in one hour, how many kilometres will it have travelled in the same time?

3. A goose can fly as high as 8 000 metres. Many modern jet aircrafts fly as high as 11 000 metres. How much higher can a jet fly?

4. A humming bird is about 5 cm in length. How many hummingbirds would I have to lay end-to-end in order to cover 1 metre stick?

5. My car travelled 16 km on Monday, 363 km on Tuesday, 427 km on Wednesday, 1 204 km on Thursday, and 8 km on Friday. How many kilometres did I travel during that week?

6. The Eiffel Tower stands 321 m high. The C. N. Tower stands 553 m high. Find the difference between the two heights.

7. A metre of ribbon costs 18 cents. How much would it cost to buy 7 metres of ribbon?
8. I drive at an average speed of 90 kilometres per hour. How many hours would it take to reach Montreal which is 560 kilometres away?

9. If the C. N. Tower is 553 m in height, how many centimetres would that be?

10. One line measured 4232 mm. The second line measured 9214 mm. The third line measured 17042 mm. If I joined all the lines, how many mm would this line measure?
FINDING THE PERIMETER BY MEASURING

The perimeter of something is the distance around it.

Measure the distance around this star to find its perimeter.

Did you get this answer?

The perimeter is 10 cm.

Now find the perimeter of each picture on this page.
A. Complete each picture so that the other side is identical. Then find the perimeter.

The perimeter is ________ The perimeter is ________

B. Follow the dots and find the perimeter of this planet probe. Use a ruler to connect the dots.

The perimeter is ________
FINDING AREA

When you measure the surface of something you are finding the area.

Use the plan of the school and its grounds to find the area of the different sections. Remember that 1 square centimetre represents 5 square metres on our scale diagram.

1. Calculate the area of the following:
 a) shrubs
 b) playing field
 c) wading pool
 d) sand area
 e) baseball diamond
 f) climbing apparatus
 g) parking lot
 h) school
 i) school and its grounds

2. a) Which section has the largest area?
 b) Which section has the smallest area?
 c) What is their difference in square metres?
This plan of a school and its grounds has been drawn to scale.

1 square centimetre: 5 square metres.
AREA MATCH-UP

1. Make 4 columns with these headings:

<table>
<thead>
<tr>
<th>square millimetres</th>
<th>square centimetres</th>
<th>square metres</th>
<th>square kilometres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Match the object with the correct unit of measure.

- hockey stick blade
- Province of Ontario
- cigarette pack
- coffee bean
- checkerboard
- sail
- carpet
- book
- school yard

- desk top
- window shade
- Centre Island
- kleenex box
- butterfly wing
- bench top
- ticket
- town
- blackboard

- classroom floor
- square of butter
- match book
- baseball park
- shirt button
- dollar bill
- fingernail
- stamp
- magazine

3. Add **four more** things to each column that could be measured in the specified units.
Area of a Rectangular Shape = Length x Width

Find the area of each and write your answer in a sentence.

Area of chess board = 43 cm x 43 cm
= 1,849 cm²

ea.

b.

c.

WHEAT FIELD

d.

e.

tea bag

f.

WHEAT FIELD

g.

h.

i.

TENNIS COURT

j.

k.

l.
AREAS AROUND YOU

Find the area of the following objects in your classroom.

OBJECT	LENGTH	WIDTH	AREA IN SQUARE UNITS
floor tile	15 cm	8 cm	15 cm x 8 cm = 120 cm²
math book			
desk			
piece of foolscap			
a notebook			
board			
teacher's desk			
classroom floor			
door			

Add some more things to the list and find their area.

35
MILLIGRAM

Druggists and chemists use this small unit of mass in their work with drugs.

An aspirin tablet has a mass of about 300 mg.

1 000 milligrams = 1 gram

A. Make a list of different things that might be weighed in milligrams.

B. Word Problems

1. A vitamin tablet has a mass of 218 mg. Find the weight of 9 tablets.

2. A bowl of Raisin Bran contains 15 mg of iron. My doctor said that I must have 850 mg of iron per day. How many bowls of Raisin Bran must I have in order to get the amount of iron I need?

3. A headache tablet contains:
 300 mg of acetaminophen
 30 mg of caffeine
 8 mg of codeine

 i) Find the total weight of 1 tablet.
 ii) Find the difference between the weight of acetaminophen and the codeine.

4. A bowl of Happy Cereal contains:
 8 mg of niacin
 106 mg of phosphorous
 17 mg of iron
 2 mg of riboflavin

 i) If I ate 8 bowls of cereal, how much iron would my body get?
 ii) Find the total mass of all the vitamins and minerals.
 iii) How much more phosphorous than niacin is contained in one bowl?
A paper clip has a mass of about 1 gram.

A. Make a 1-gram weight using plasticine.

Check by balancing it with a 1-gram mass.

B. Use your 1-gram mass and the balance to measure the following:

<table>
<thead>
<tr>
<th>Object</th>
<th>Number</th>
<th>= 1 gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>beans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thumbtacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paper clips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pins</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Make your own plasticine set of gram masses of the following weights: 5 g, 10 g, 25 g, 50 g, 100 g, 250 g.

Use the standard set of masses to check the accuracy of your weights.
D. From the mass table select different objects that you wish to weigh. Weigh the object using your own set of gram masses. Check the correct weight column under which the object belongs.

<table>
<thead>
<tr>
<th>Name of Object</th>
<th>about 5 g</th>
<th>about 10 g</th>
<th>about 25 g</th>
<th>about 50 g</th>
<th>about 100 g</th>
<th>about 250 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 paper clips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
USING THE KILOGRAM

Another useful unit for mass is the kilogram. Packages of 2 kg and 4 kg will likely be the common sizes for sugar.

a. Make a 1-kilogram mass of plasticine, books or stones and then feel how heavy it is.

b. Find some objects and estimate if they weigh more or less than your kilogram mass. Record your answers in chart form. Then weigh them on a scale to see if you were right.

<table>
<thead>
<tr>
<th>Object</th>
<th>My Estimate (More or Less) than 1 kg</th>
<th>Actual Mass (More or Less) than 1 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

People, animals, and larger dry goods are weighed in kilograms. Find the weight of each person in your group. Record your answers on the next page.
A. Have each person in the group weigh themselves on a kilogram scale.

B. Write their name and weight on your weight chart.

C. Answer the following questions using your weight chart:

1. Who weighs the most?
2. Who weighs the least?
3. What is the difference in weight between these two people?
4. How many children weigh less than 25 kilograms?
5. How many children weigh more than 30 kilograms?
6. If you could weigh your whole group, what would the scale read?
7. What is the total weight of the girls?
8. What is the total weight of the boys?
9. Find your group's average weight.

(Divide the total weight of your group by the number of children in your group).
IT TAKES THE TONNE (t)

In measuring larger masses, the unit is the tonne, which is 1000 kg. A mass of 1 t is what a van or pickup could carry.

1 tonne (t) = 1 000 kilograms

Solve the following:

1. The three heaviest animals at the zoo are the elephant, 4 561 kg, the rhinoceros, 2 519 kg, and the hippopotamus 3 920 kg.
 a) What is their total weight in kilograms?
 b) What is their total weight in tonnes?

2. If a blue whale weighs 122 tonnes, how many tonnes will six whales weigh?

3. A Boeing 747 weighs 322 tonnes. Could 4 of these jets be parked on a runway which could only take a weight of 1 148 tonnes?

4. A cement truck can carry 5 tonnes of cement. How many kilograms is that?

5. A transport truck delivered 8 new cars to a car dealer. Each car weighed 2 500 kilograms.
 a) What was the total weight of the cars in kilograms?
 b) What was the total weight in tonnes?

6. A large truck weighs 7 tonnes when empty. The maximum weight for the truck and its load on a highway is 21 tonnes. What is the maximum weight of goods that the truck is allowed to carry?

7. A truck loaded with 20 tonnes of lumber was going down the highway when the holding chains broke and 400 pieces of lumber spilled on the road. Each piece of lumber weighed 30 kilograms.
 a) What was the total weight of the spilled lumber in kilograms?
 b) What was the total weight in tonnes?
 c) Was there more lumber on the truck or on the road?
A. On a sheet of paper make four columns and label them milligrams, grams, kilograms and tonnes.

B. Choose an object on this page and decide in which unit it would be weighed.

C. Write its name in the proper column.

D. After you have finished choose one object from each column and explain why you put it in that column.
BALANCING MASSES

1 gram = 1 000 milligrams
1 kilogram = 1 000 grams
1 tonne = 1 000 kilograms

1. Balance the following:
 a) 1 kg = 500 g + __________ g
 b) 1 g = 300 mg + __________ mg
 c) 1 tonne = 500 kg + __________ kg
 d) 60 g = 5 000 mg + __________ mg
 e) 10 kg = 6 000 g + __________ g
 f) 2 tonne = 1 000 kg + __________ kg
 g) 9 000 g = 3 kg + __________ kg
 h) 22 kg = 20 000 g + __________ g
 i) 3 tonnes = 3 000 kg + __________ kg
 j) 4 000 mg = 1 g + __________ g

2. a) 2 kg + 600 g = __________ g
 b) 3 000 t + 200 kg = __________ kg
 c) 1 000 mg + 200 g = __________ g
 d) 4 000 kg + 3 t = __________ t
 e) 4 g + 2 000 mg + __________ mg

3. What must be added to each to make a gram?
 a) 500 mg b) 320 mg c) 460 mg d) 987 mg

4. What must be added to each to make 1 kilogram?
 a) 650 g b) 25 g c) 980 g d) 362 g

5. What must be added to each to make a tonne?
 a) 500 kg b) 630 kg c) 2 kg d) 930 kg
AT THE STORE

1. Write the things shown in order from heaviest to lightest.

2. Sam bought butter, bread, bacon, coffee, and salt. What was the weight of the bag of groceries that he carried home?

3. How much heavier is the bread than the jelly?

4. How much would 6 cans of salmon weigh?

5. 1 kg of potatoes costs 32¢. How much will 4 kg cost?

6. One can of ham costs $1.96. How much will 5 cans of ham cost?

7. What is the total weight of all the canned foods?

8. How many grams must you add to the bacon to make 1 kg?

9. Which weighs the least from the peas, salmon and cheese?

10. What is the total weight of all the groceries not canned in grams?
Teacher Directions

1. Paste each problem on a blank playing card or bristol board cut to size (9 cm x 6 cm). You will end up with a deck of 50 cards.

2. The Metric Fish Game is to be played in a group. The cards are shuffled and then set in the centre. A group member fishes for a card. The number at the bottom of the card corresponds with the number on the answer sheet. One group member may do the scoring. If the player answers the card correctly, he gets to keep the card. When all the cards have been fished, they are tallied, and the winner is announced. The game may be repeated.

3. Make out an answer sheet as follows for the score keeper.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1 kg of feathers</td>
<td>14. 2 g of sugar</td>
<td>26. False</td>
<td>39. False</td>
<td>40. 500 mg of iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. b) 10 kg of meat</td>
<td>15. 5 g of steel</td>
<td>27. Yes</td>
<td>41. b) 3 000 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. True</td>
<td>16. False</td>
<td>28. False</td>
<td>42. 104 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. False</td>
<td>17. 17 921 g</td>
<td>29. 2 kg box of soap</td>
<td>43. 3 000 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. True</td>
<td>18. True</td>
<td>30. False</td>
<td>44. 2 000 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. c) 1 kilogram</td>
<td>19. b) 500 g of jam at $0.49</td>
<td>31. b) 1 kg of chocolate at $3.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. True</td>
<td>20. a) dime</td>
<td>32. A cat at 3 000 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. b) 2 kg</td>
<td>22. True</td>
<td>34. 3 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. 500</td>
<td>23. 1 100 g</td>
<td>35. 1 200 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. 6 500 g</td>
<td>24. a) 1 kg of cheese at $3.00</td>
<td>36. True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. c) equal to 1 g</td>
<td>25. They weigh the same</td>
<td>37. True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. 1 000</td>
<td>26. False</td>
<td>38. 325 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. What is heavier, 1 gram of sugar or 1 kilogram of feathers?

2. Which weighs the most:
 a) 100 grams of gum
 b) 10 kilograms of meat
 c) 9 999 grams of water

3. 300 grams + 700 grams are equal to 1 kilogram.
 True or False

4. 1 200 grams + 800 grams are equal to 2 000 kilograms.
 True or False

5. 1 001 grams are greater than 1 kilogram.
 True or False

6. 1 000 grams are equal to:
 a) 10 kilograms
 b) 100 kilograms
 c) 1 kilogram

7. 1 000 grams are less than 2 kilograms.
 True or False

8. 1 300 grams + 90 grams are greater than 2 kilograms.
 True or False

9. 2 000 grams are equal to:
 a) 20 kilograms
 b) 2 kilograms
 c) 200 kilograms
 d) 1 000 kilograms

10. The smallest watch in the world weighs 2 grams. How many watches would it take to weigh 1 kilogram?

11. Bill weighs 30 kilograms. Joe weighs 35 kilograms. How many grams do the two of them weigh together?

12. 1 000 mg is:
 a) less than 1 g
 b) more than 1 g
 c) equal to 1 g

13. The world's smallest motor weighs about 1 gram. How many are needed to weigh 1 kilogram?

14. Which is lighter, 2 grams of sugar or 1 kilogram of steel?

15. Which weighs the least:
 a) 10 grams of water
 b) 1 kilogram of gum
 c) 5 grams of steel

16. 1 001 grams are less than 1 kilogram.
 True or False

17. What is the total mass of 17 000 grams and 921 grams?

18. 1 000 mg are less than 1 kilogram.
 True or False

19. Which is the better buy:
 a) 1 kilogram of jam at $1.00
 b) 500 grams of jam at $0.49

20. A gram is about the mass of:
 a) a dime
 b) an apple
 c) a 2-kilogram bag of sugar
1 000 grams are greater than 2 kilograms. True or False

22. 1 000 grams are less than 2 kilograms. True or False

23. Sue bought 100 grams of gum. Joe bought 1 000 grams of chocolate. What was the total mass of the candy?

24. Which is the better buy:
 a) 1 kilogram of cheese at $3.00
 b) 500 grams of cheese at $2.00

25. Jane weighs 28 kilograms and Bill weighs 28 000 grams. Who weighs the most?

26. 3 000 grams are equal to 4 kilograms. True or False

27. Are 300 grams and 700 grams equal to 1 kilogram? Yes or No

28. 200 grams and 200 grams are greater than 2 kilograms. True or False

29. A box of soap weighs 2 kilograms. A can of peas weighs 250 grams. Which product is the heaviest?

30. 2 000 grams + 1 001 grams are equal to 3 000 grams. True or False

31. Which is the better buy:
 a) 500 grams of chocolate at $2.00
 b) 1 kilogram of chocolate at $3.50

32. A rabbit weighs 2 kilograms. A cat weighs 3 000 grams. Which animal weighs the most?

33. A kilogram has a greater mass than a tonne. True or False

34. A newborn baby weighs about:
 a) 3 kilograms
 b) 30 kilograms
 c) 300 kilograms

35. An aspirin tablet has a mass of 300 mg. What is the mass of 4 tablets?

36. 1 000 mg is equal to 1 gram. True or False

37. 3 000 mg is equal to 3 grams. True or False

38. What is the total mass of 8 mg, 17 mg and 300 mg?

39. 6 001 mg is less than 6 grams. True or False

40. One tablet contains 2 mg of iron. How much iron is contained in 250 tablets?

41. 3 000 are equal to:
 a) 300 kg
 b) 3 000 kg
 c) 30 kg

42. What is the total mass of two books that each weigh 52 grams?
3. A truck carries a load of steel which has a mass of 3 tonnes. How many kilograms is it carrying?

44. How many grams are there in 2 kg?

45. How many tonnes are there in 9 000 kg?

46. Joe weighs 28 kg. Bob weighs 28 000 g. Who has the greatest mass?

47. A chocolate bar has a mass of 12 g. What would the mass of 6 bars be?

48. What is the total mass of 60 kg and 42 kg?

49. 8 mg of sodium are contained in a tablet. How much sodium would be found in 20 tablets?

50. 4 000 g are equal to:
 a) 40 tonnes
 b) 400 tonnes
 c) 4 tonnes
LIQUID MEASURES

The capacity of a bottle, a bowl, or a bucket is the amount of liquid it will hold. Small amounts are measured in millilitres and bigger amounts are measured in litres.

1,000 ml = 1 litre

1. Find some large containers which have different shapes.

Using a litre measure pour 1 litre of water into a bucket.

Look at the depth and estimate how many litres you will need to fill the bucket.

Check your estimate by measuring with water.

Make a table in your book.

<table>
<thead>
<tr>
<th>container</th>
<th>estimate</th>
<th>capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>bucket</td>
<td>_______ litres</td>
<td>_______ litres</td>
</tr>
<tr>
<td>bowl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Add some more things to the list.
2. Find a set of small containers like this:

- egg-cup
- cup
- paper cup
- tin
- saucer
- jar

We measure the capacity of small containers in millilitres.

Does each one of your small containers hold more or less than 150 millilitres?

Estimate first and then check by measuring with water.

Make a table in your book.

<table>
<thead>
<tr>
<th>container</th>
<th>estimate more or less than 150 ml</th>
<th>actual capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>cup</td>
<td></td>
<td>ml</td>
</tr>
</tbody>
</table>

Add some more things to your list.
LITRES AND MILLILITRES

A. Complete the following:

<table>
<thead>
<tr>
<th>1 litre</th>
<th>1 millilitre</th>
</tr>
</thead>
<tbody>
<tr>
<td>litres</td>
<td>millilitres</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Balance the following:

1) 1 litre = _ ml + _ ml + _ ml + _ ml

2) _ ml = 1 litre + 1 litre + 450 ml

3) 2 500 ml = _ l + _ l + _ ml
How many millimetres of water must I add to each in order to get 1 litre?

a) 322 ml b) 674 ml c) 927 ml d) 802 ml
THE DRUG STORE

Goods in the drugstore are often sold in containers of different sizes. Some things are measured in litres or millilitres.

Solve the following:

1. a) How many small jars of hair cream equal the large jar?
 b) Which jar is the better buy?

 ![Hair Cream Containers]

 Hair Cream 75 ml 50¢
 Hair Cream 150 ml 95¢

2. How much does it cost for:
 a) 1 litre of juice in 200-ml jars?
 b) 2 litres of juice in 500-ml jars?
 c) 6 litres of juice in 2-litre jars?

 ![Fruit Juice Containers]

 Fruit Juice 200 ml 25¢
 Fruit Juice 500 ml 60¢
 Fruit Juice 2 litres $1.50

3. Find the cost of:
 a) 1 litre of perfume in 5-ml bottles.
 b) 30 ml of perfume in 15-ml bottles.
 c) 30 ml of perfume in 5-ml bottles.
 d) 3 litres of perfume in 30-ml bottles.
4. Here are 6 medicine bottles of different sizes.

- a 50 ml
- b 100 ml
- c 150 ml
- d 200 ml
- e 300 ml
- f 500 ml

How many times can you fill each bottle from 1 litre of medicine?

5. A medicine spoon holds 5 ml, and this amount is taken in one dose. How many 5-ml doses are contained in a 100-ml bottle?
IT'S YOUR PROBLEM!

Make your own problems for other people to solve. Use the numbers given.

Example:

A milk truck carries 30 000 litres of milk. How many litres of milk will 3 trucks carry?