This is the first edition of the Energy Research and Development Administration (ERDA) catalog of available motion picture films. One hundred and eighty-eight films, principally relating to energy, are briefly described and classified into three understanding levels. All films are loaned free; complete borrowing instructions and request forms are provided. (SL)
Inquiries concerning this catalog should be directed to:

Audiovisual Branch
Office of Public Affairs
Energy Research and Development Administration
Washington, D.C. 20545
Telephone: Area Code 301/973-4239
Contents

INTRODUCTORY SECTION
Introduction to Catalog ... 3
Explanation of Understanding Level: 3
About ERDA .. 4
Catalog Format and Use ... 4
How to Borrow Films .. 8
Who May Borrow ... 8
How to Order .. 8
Civil Rights .. 8
Loan Requirements ... 8
Television Clearance and Use ... 8
Video Copying .. 8
Canadian Borrowers .. 8
Advice to Foreign Borrowers ... 8
How to Purchase Films ... 9
How to Obtain Stock Footage ... 9
ERDA Film Request Forms ... (back of book)
Notice to ERDA Film Requester (back of book)

INDEX SECTION
Outline of Subject Headings ... 1
Subject Section -- Film Titles in Subject Order 3
Film Titles Section -- Titles in Alphabetical Order 9
Film Titles Index-- Listing Producers, Sponsors and Sources .. 63
Sales Source Addresses .. 74

FILM DESCRIPTION SECTION
Descriptions of Films in Alphabetical Order 11
Introduction to Catalog

With this 1973 first edition, the United States Energy Research and Development Administration (ERDA) introduces a collection of 488 motion pictures on many of the energy options and related activities. All these films are available for free loan.

Through a series of indexes, the films can be easily located by subject or title; every film is simply coded for audience levels of understanding; television clearance is stated; producers, sponsors, sales sources are listed.

All films are described for easy reference by schools, television stations, civic clubs, government and industrial organizations interested in educational and informational films as well as technical and professional films on energy and energy-related subjects. To help teachers, broadcasters, and program chairman select films which will suit the understanding levels of students and other audiences, all titles are indicated as suitable for three Understanding Levels:
- Understanding Level 1 for Elementary School
- Understanding Level 2 for Junior and Senior High School
- Understanding Level 3 for College and University, Industry, Researchers, Scientists, Engineers, and Technologists

We heartily acknowledge that this catalog follows the general format and pattern of A CATALOG OF UNITED STATES GOVERNMENT PRODUCED AUDIOVISUAL MATERIALS (1974-75) published by the National Audiovisual Center, General Services Administration, National Archives and Records Service. And special thanks to Ed Westcott, Photo Officer, Office of Public Affairs, for selecting and cropping all the photographs and particularly for permitting us to use the cover illustration which is repeated as the illustration for A SEA WE CANNOT SENSE. This photograph from his private collection was made at Ocean City, Maryland, Easter Sunday 1974.

Sid L. Schwartz,
Editor
Energy—its shortages, rising costs, more efficient use, and the development of new sources—has received considerable attention all around the world.

The United States has become acutely aware of the growing need for mobilizing a national effort to get through its present energy difficulties and to avoid new ones in the future. A key element in the Federal response to these energy problems was the creation of the new Energy Research and Development Administration which was activated on January 19, 1975.

ERDA brings together into a single agency the major energy research and development programs of the Federal Government aimed at finding ways to increase the supply of energy as well as to conserve the energy already available.

ERDA will do this by providing a sound organizational and programmatic base for moving ahead rapidly. It will advance the state of energy technology in all promising areas including such fossil energy techniques as coal gasification and liquefaction; nuclear fusion and fission; solar, geothermal, and other advanced energy systems.

The agency's mission, as defined by Congress, is to develop all energy sources to meet the needs of present and future generations; to increase the productivity of the national economy and make the nation self-sufficient in energy; to restore, protect and enhance the environment; and to assure public health and safety. In brief, ERDA will direct major efforts that eventually will enable the nation to attain the goal of meeting the nation's energy requirements without the need to rely on foreign sources.

In this effort, ERDA will draw heavily on the proven expertise of the program components inherited from the Department of the Interior, the National Science Foundation, the Environmental Protection Agency, and the former Atomic Energy Commission. It will also work closely with the industrial and academic communities, recognizing that the ultimate achievement of ERDA's mission depends on the smooth transfer of proven energy technology to the private sector for commercial application and prompt benefit to all American citizens.

ERDA functions are divided into six major categories: fossil energy; solar, geothermal, and advanced energy systems; nuclear energy; energy conservation; environment and safety; and national security.
Catalog Format and Use

A. Catalog Format

The catalog has been organized with energy subject headings and subheadings. The new format includes:

1. OUTLINE OF SUBJECT HEADINGS Page 1
 The fastest method of determining the actual subject heading in the catalog that contains your specific area of interest.
 Example:
 SOLAR ENERGY
 General
 Applications
 Research

2. SUBJECT SECTION Page 3
 This section contains all titles in alphabetical order listed under appropriate subject headings.
 Example:
 NUCLEAR POWER
 General
 ATOMIC POWER PRODUCTION
 ATOMIC POWER TODAY (and so on)
 Fuels Processing and Handling
 CURRENT METHODS IN PLUTO NIUM FABRICATION
 FI FTH FUEL THE
 Waste
 WASTE DISPOSAL BY HYDRAULIC FRACTURING

3. FILM TITLES SECTION Page 9
 The FILM TITLES SECTION lists all the titles in the catalog in alphabetical order.

4. FILM DESCRIPTION SECTION . . Page 11
 The FILM DESCRIPTION SECTION with title entries in alphabetical order provides all the descriptive information that pertains to a particular title.
 Example:
 CHALLENGE OF THE FUTURE (1975), 29 minutes, color.
 (Insert identical type and make up the full description as it will appear in the catalog)

5. FILM TITLE NUMBERS
 Every entry in the catalog has been assigned a distinct title number. Always use the title number when ordering films.

6. SERIES
 Films in series are listed in the FILM TITLES SECTION under the series title. The components of the series are also listed individually; this entry will indicate "From the . . . series . . . (name)."

7. INSERTS AND SUPPLEMENTS
 Inserts describing individual films and supplements will be published periodically and will contain all new films accumulated since the publication of this edition.

B. How to use the catalog

1. By title: If you have a specific title in mind, look directly in the FILM TITLES SECTION . Page 9

2. By subject: When you find the subject of interest in the OUTLINE OF SUBJECT HEADINGS, starting on Page 1 then look at the OUTLINE OF SUBJECT SECTION starting on Page 3 and choose the film title. The film description will be listed alphabetically in the FILM TITLES SECTION starting on Page 9

3. By browsing: Consult the OUTLINE OF SUBJECT HEADINGS and choose headings of interest. Look these up in the SUBJECT SECTION where applicable titles will be listed under the subject headings. Detailed information on selected titles of interest may be found in the FILM DESCRIPTION SECTION.
How to Borrow Films

A part of an information and education program, the Energy Research and Development Administration's ERDA maintains one consolidated motion picture library at Oak Ridge, separate libraries in Alaska, Hawaii, and Puerto Rico and special substations which serve regional needs, from which qualified borrowers throughout the United States may obtain broken sound films that explain various aspects of energy.

All these films are loaned free, and only for educational, nonprofit, and noncommercial screenings.

Additional copies of this catalog may be obtained from the Audio-Visual Section, Office of Public Affairs, ERDA, Washington, D.C. 20545, or the ERDA Film Library, P.O. Box 62, Oak Ridge, Tenn. 37830.

Catalog inserts and supplements are issued periodically, and for them.

WHO MAY BORROW

Bona fide representatives of educational, civic, industrial, professional, youth activity, and government organizations are invited to borrow films, because of wear and tear that result from repeated projection, films are loaned for group screenings, and not for screening before individuals or in homes, because custody of the films involves both legal and financial responsibility, films cannot be loaned to minors.

HOW TO ORDER

The ERDA Film Library enjoys heavy patronage throughout the year, so it is important that borrowers needing particular titles should make their requests as far in advance of their scheduled showing date as possible. Since some titles are booked solidly in advance for several months, borrowers should attempt to specify at least two other acceptable titles and one other acceptable alternate showing date or indicate that first available date is all right. Making requests, always include both the film number and the full film title and use the request forms provided in the back of this catalog.

CIVIL RIGHTS

The loan of films directly or indirectly from an ERDA motion picture library constitutes Federal financial assistance and is subject to the provisions of Title VI of the Civil Rights Act of 1964 as amended and implementing regulations. No person shall, on the ground of race, color, or national origin, be excluded from participation in, denied the benefit of, or be subjected to discrimination under any program or activity in which such films involved.

LOAN REQUIREMENTS

The following requirements apply to all films and all borrowers, regardless of which ERDA Film Library provides the service.

1. Projection must be on good motion picture sound equipment, and by a trained operator.

2. No borrower under any circumstances may remove even temporarily any footage from ERDA library films on loan to him, either to delete damaged sprocket holes, to edit or digest selected scenes.

3. Films do break, and occasionally will require splicing by the borrower. However, we prefer that damaged films be returned to the libraries for the professional repairs available there. Do not use "scotch" tape for emergency splices. Unrepaired damage should be noted on the computer statistical card so that the film may be repaired before it is shipped to the next borrower.

4. Borrowers planning to show a number of films on a protracted schedule should request delivery of specific films on a staggered schedule to facilitate maximum use by other borrowers. No borrower may hold a film past scheduled return date without express prior permission of the issuing library.

5. No borrower may release an ERDA film from his personal possession for loan to another individual or agency without express prior permission of the issuing ERDA library. Except where heavy demand requires tighter scheduling, borrowers are normally allowed to retain films for two or three days.

6. Borrowers are obligated to complete the computer statistical card form enclosed with each film.

7. Films are shipped from the libraries at government expense, but return shipment charges are borne by the borrower.

8. Films are normally shipped by 1st class Book Rate, but it is the borrower's responsibility to use any available means—including air express, air mail, or personal delivery—to assure that films being returned will reach the libraries on or before the due date.

Optimum service to the thousands of borrowers utilizing ERDA Film Libraries is possible only when each individual
CANADIAN BORROWERS

Residents of Canada may obtain many of the films in this catalog from the National Science Film Library, Canadian Film Institute, 602 Carling Street, Ottawa, L Canada, with a wire charge for handling.

ADVICE TO FOREIGN BORROWERS

Because most of the titles stocked by the ERDA film libraries are in heavy demand by U.S. borrowers and because shipment abroad would involve lengthy, nonproductive periods, it is not considered practical to extend this film library service to other than U.S. borrowers.

However, a number of titles listed in this catalog have been acquired by the U.S. Information Service film libraries throughout the world. Residents of each nation should seek assistance directly from the nearest U.S. Information Service at the American Embassy in the capital city of their country.

In addition, prints owned by ERDA are available for loan to the U.S. Information Agency in Washington.
Outline of Subject Headings

ACCELERATOR
AGRICULTURE
ANTHROPOLOGY
Archeology
Ethnology
ATOMIC ELEMENTS
ATOMIC ENERGY
General
Industrial Uses
Principles
ATOMIC POWER (See NUCLEAR POWER)
BEVATION (See ACCELERATOR)
BIOLOGY
General
Photosynthesis
Radioactive Tracers
BREEDER REACTOR
CAREERS
CHALLENGE SERIES
CHEMISTRY
COMPUTERS (See DATA PROCESSING)
CONSERVATION
CONTROLLED THERMONUCLEAR REACTOR
(See FUSION)
CYCLOTRON (See ACCELERATOR)
DATA PROCESSING
ELECTRICITY
ENERGY
ENERGY CENTERS (See NATIONAL LABORATORIES
and ENERGY CENTERS)
ENGINEERING
ENVIRONMENT
FOSSIL
FUSION
GEOTHERMAL
ISOTOPES (See RADIATION; See RADIOISOTOPES)
MEDICINE
General
Diagnosis and Therapy
Research
METALLURGY (See RESEARCH)
NATIONAL LABORATORIES AND ENERGY CENTERS
NATIONAL SECURITY
NUCLEAR POWER
Fuels Processing and Handling
General
PEACEFUL NUCLEAR EXPLOSIVES
PERSONALITIES
PHYSICS
RADIATION
General
Applications
Detection and Protection
Medicine
Neutron Activation
RADIOISOTOPES
RESEARCH
General
Photography
Metallurgy
Nuclear
RESEARCH AND TEST REACTORS
SAFEGUARDS
SAFETY
SERIES (See CHALLENGE SERIES and
UNDERSTANDING THE ATOM)
SOLAR ENERGY
General
Applications
Research
SPACE
General
SNAP
TRANSPORTATION
UNDERSTANDING THE ATOM SERIES
ACCELERATOR
ALCHEMIST'S DREAM: THE
ATOM SMASHERS
BEGINNING WITHOUT END: A
BUILDING AN ATOMIC ACCELERATOR
EXPLORING THE ATOMIC NUCLEUS
FABRICATION OF THE ACCELERATOR
STRUCTURE
HEART OF THE MATTER: THE
HEAVY PARTICLE BEAMS IN MEDICINE
MANY FACES OF ARGONNE: THE
MICROSCOPE FOR THE UNKNOWN
OF MAN AND MATTER
PEOPLE AND PARTICLES
SYNCHROTRON
WORLDS WITHIN: THE

AGRICULTURE
ATOMS IN AGRICULTURE
CONTROLLED PHOTOSYNTHESIS
FARM FRESH TO YOU
HARVEST OF AN ATOMIC AGE
PLANT GROWTH IN COMPENSATED FIELDS
RIDDLE OF PHOTOSYNTHESIS: THE
ROUNDUP

ANTHROPOLOGY
Archaeology
ATOM AND ARCHAEOLOGY: THE
ATOM FINGERPRINT, THE
NUCLEAR FINGERPRINTING
Ethnology
FEAST: THE
YANOMANIA: A MULTIDISCIPLINARY STUDY

ATOMIC ELEMENTS
A IS FOR ATOM
ALCHEMIST'S DREAM: THE
ATOM IN PHYSICAL SCIENCE: THE
CONTROLLING ATOMIC ENERGY
FIRST CHEMICAL SEPARATION OF LAWRENCHIUM
FUEL OF THE FUTURE: THE
JOURNAL OF PLUTONIUM: A
INTRODUCING ATOMS AND NUCLEAR ENERGY
MASS OF ATOMS: THE
TRANSURANIUM ELEMENTS: SYNTHESIS,
SEPARATION AND RESEARCH
TRANSURANIUM ELEMENTS

ATOMIC ENERGY
General
MIGHTY ATOM: THE
Industrial
ATOMIC REVOLUTION IN WOOD
BUTTER AND THE SWEET, THE

BREEDER REACTOR
BREEDER IN THE DESERT: A
HANFORD OR BUST
LANDMARK
MOLTEN SALT REACTOR EXPERIMENT
NUCLEAR POWER IN THE UNITED STATES
PRINCIPLES OF THERMAL, FAST AND BREEDER
REACTORS
CAREERS
GO Fission
HORIZONS UNLIMITED
PREPARING FOR TOMORROW'S WORLD
YOUR PLACE IN THE NUCLEAR AGE

CHALLENGE SERIES
ALCHEMY'S DREAM: THE
ART OF SEPARATION
THE ATOMIC FORNACES
BUILDING BLOCKS OF LIFE
CHEMICAL SOMERSAULT: A
DOWN ON THE FARM
FUEL OF THE FUTURE: THE
HARNESSING THE RAINBOW
IMMUNE RESPONSE: THE
INVISIBLE BULLETS
LIVING SOLID: THE
MICROSCOPE FOR THE UNKNOWN
RADIATION AND THE POPULATION
SEARCHING FOR THE ULTIMATE
TESTING FOR TOMORROW
TIME: THE FIERCE POISON
TRACING LIVING CELLS
WORKING WITH RADIATION

CHEMISTRY
ART OF SEPARATION: THE
BEGINNING WITHOUT END: A
BIOENGINEERS: THE
BROOKHAVEN SPECTRUM
CHEMICAL SOMERSAULT: A
COMBUSTION TECHNIQUES IN LIQUID
SCINTILLATION COUNTING
DOWN ON THE FARM
FIRST CHEMICAL SEPARATION OF LAWRENCHUM
RADIATION EFFECTS IN CHEMISTRY
XENON TETRAFLUORIDE

COMPUTERS
(See DATA PROCESSING)

CONSERVATION
CHALLENGE OF THE FUTURE
WHEN THE CIRCUIT BREAKS

CONTROLLED thermonuclear reaction
(See FUSION)

DATA PROCESSING
ACCEL REVISITED: AUTOMATED CIRCUIT CARD
ETCHING LAYOUT
COMPUTER COLOR GENERATION
COMPUTER FLUID DYNAMICS
INTRODUCTION TO ANALOG COMPUTERS
LINK
SANDIA SPINOFF

ELECTRICITY
BEGINNING WITHOUT END: A
CHALLENGE OF THE FUTURE
ENERGY—THE AMERICAN EXPERIENCE
SUPERCONDUCTING MAGNET FOR FUSION
RESEARCH
SUPERCONDUCTING MAGNETS
WHEN THE CIRCUIT BREAKS

ENERGY
CHALLENGE OF THE FUTURE
ENERGY—THE AMERICAN EXPERIENCE

ENERGY CENTERS
(See NATIONAL LABORATORIES and ENERGY CENTERS)

ENGINEERING
CHALLENGE OF THE FUTURE
COMPUTER COLOR GENERATIONS
COMPUTER FLUID DYNAMICS
ENERGY—THE AMERICAN EXPERIENCE
ENVIRONMENTAL TESTING AT SANDIA
FUNDAMENTALS OF MECHANICAL VIBRATION
HANFORD OR BUST
RESPONSE TO MECHANICAL SHOCK
SANDIA SPINOFF

ENVIRONMENT
ATOM AND THE ENVIRONMENT: THE
CLEAN AIR IS A BREEZE
ENDLESS CHAIN
ENVIRONMENTAL TESTING AT SANDIA
ISOTOPES IN ENVIRONMENTAL CONTROL
NATURE'S FORGE
NO TURNING BACK
NUCLEAR POWER AND THE ENVIRONMENT
PARK, THE
WARM COAT, THE
WEB OF LIFE

FOSSIL
PROJECT GASBUGGY
CHALLENGE OF THE FUTURE
ENERGY—THE AMERICAN EXPERIENCE

FUSION
BEGINNING WITHOUT END: A
CHALLENGE OF THE FUTURE
COMPUTER COLOR GENERATIONS
SUPERCONDUCTING MAGNET FOR FUSION
RESEARCH
TO BOTTLE THE SUN
TO IMITATE THE SUN

GEOTHERMAL
CHALLENGE OF THE FUTURE
POWER FROM THE EARTH
TERRADYNAMICS
WHEN THE CIRCUIT BREAKS

ISOTOPES
(See RADIATION and RADIOISOTOPES)

MEDICINE
General
ATOMIC MEDICINE
BIOENGINEERS, THE
BROOKHAVEN SPECTRUM
CLEAN AIR IS A BREEZE
CONTROLLING ATOMIC ENERGY
Diagnosis and Therapy
ACROMEGALY: DIAGNOSIS, ETIOLOGY,
THERAPY
DOORWAY TO DIAGNOSIS
EXTRACORPOREAL IRRADIATION OF BLOOD
AND LYMPH
HEAVY PARTICLE BEAMS IN MEDICINE
RADIATION ACCIDENT PATIENTS
RADIOISOTOPE SCANNING IN MEDICINE
SCINTILLATION CAMERA, THE
SHORT-LIVED RADIOISOTOPES IN NUCLEAR
MEDICINE

Research
BEGINNING WITHOUT END: A
BROOKHAVEN SPECTRUM
immune response, the
NUCLEAR SPECTRUM
THORIUM-233 UTILIZATION
Waste
WASTE DISPOSAL BY HYDRAULIC FRACTURING

PEACEFUL NUCLEAR EXPLOSIVES
ATOM UNDERGROUND, THE
PROJECT GASBUGGY: THE RESOURCEFUL ATOM

PERSONALITIES
ALPHA, BETA, AND GAMMA (Ralph T. Overman)
ANALYSIS OF NUCLEON-NUCLEON SCATTERING EXPERIMENTS (H. Pierre Noyes)
ATOM AND ARCHEOLOGY, THE
(Thomas Gains, Frank Asaro)
ATOM IN PHYSICAL SCIENCE, THE (Glenn T. Seaborg)
ATOMIC PHYSICS (J. J. Thompson, Ernest Rutherford, J. D. Cockcroft, Albert Einstein, O. R. Frisch)
BEGINNING WITHOUT END, A (Ernest Lawrence)
BIOENGINEERS, THE (Norman Anderson, Charles Scott, T. A. Welton, Robert Worsham)
CONTROLLED PHOTOSYNTHESIS (Melvin Calvin)
DAY TOMORROW BEGAN, THE (Several 1942 Scientists)

NATIONAL SECURITY
DAY TOMORROW BEGAN, THE
FIRST 25 YEARS, THE
PERSIMMON: A NUCLEAR PHYSICS EXPERIMENT UNDERGROUND NUCLEAR WEAPONS TESTING

NATIONAL LABORATORIES AND ENERGY CENTERS
ATOMIC SEARCH
ATOMS FOR THE AMERICANS (Puerto Rico Nuclear Center)
BEGINNING WITHOUT END, A (Lawrence Berkeley and Lawrence Livermore Laboratories)
BIOENGINEERS, THE (Holifield National Laboratory)
BROOKHAVEN SPECTRUM (Brookhaven National Laboratory)
CHALLENGE OF THE FUTURE (Several National Laboratories and Energy Centers)
FIRST 25 YEARS, THE (Los Alamos Scientific Laboratory)
MANY FACES OF ARGONNE, THE (Argonne National Laboratory)
MANY FACES OF ARGONNE, THE (Argonne National Laboratory)
MASS OF ATOMS, THE (Mound Laboratory)
METALS FRONTIER (Ames Laboratory)
MIRACLE IN THE DESERT: THE STORY OF HANFORD (Pacific Northwest Laboratories and the Hanford Works)
NEW POWER, THE (Idaho National Engineering Laboratory, formerly the National Reactor Testing Station)

ATTACK, THE (Savannah River Laboratory)
FOURIER OF OAK RIDGE OPERATIONS, THE (Holifield National Laboratory)

NATIONAL SECURITY
DAY TOMORROW BEGAN, THE
FIRST 25 YEARS, THE
PERSIMMON: A NUCLEAR PHYSICS EXPERIMENT UNDERGROUND NUCLEAR WEAPONS TESTING

NUCLEAR POWER
General
ATOMIC POWER PRODUCTION
ATOMIC POWER TODAY
ATOMIC POWER TODAY: SERVICE WITH SAFETY
BASIC PRINCIPLES OF POWER REACTORS
CHALLENGE OF THE FUTURE
DAY TOMORROW BEGAN, THE
DESLATING THE SEAS
ENERGY—THE AMERICAN EXPERIENCE
INTRODUCING ATOMS AND ATOMIC ENERGY LANDMARK
NUCLEAR POWER AND THE ENVIRONMENT
NUCLEAR POWER IN THE UNITED STATES
PRINCIPLES OF THERMAL, FAST, AND BREEDER REACTORS
REACTOR SAFETY RESEARCH
RETIRED OF THE HALLAM NUCLEAR POWER FACILITY
SAFETY—SECOND TO NONE

Fuels Processing and Handling
CURRENT METHODS IN PLUTONIUM FABRICATION
FIFTH FUEL, THE
FUEL OF THE FUTURE, THE
INSIDE THE YANKER CORE
PETRIFIED RIVER, THE
SAFE HANDLING OF ENRICHED URANIUM, THE
CORE RECOVERY FOLLOWING FUEL ELEMENT DAMAGE

PHYSICS

ANALYSIS OF NUCLEON-NUCLEON SCATTERING EXPERIMENTS
ATOMIC PHYSICS
BEGINNING WITHOUT END, A
DEVELOPMENT AND FABRICATIONS OF HFIR TARGET ELEMENTS
DISPERSION THEORY APPROACH TO NUCLEON-NUCLEON SCATTERING
INTRODUCTION TO HIGH VACUUM LINK
PERSIMMON: A NUCLEAR PHYSICS EXPERIMENT

RADIATION
General
ALPHA, BETA AND GAMMA
CONTROLLING ATOMIC ENERGY
DEVELOPMENT AND FABRICATION OF HFIR TARGET ELEMENTS
FIRE FIGHTING IN THE NUCLEAR AGE
INVISIBLE BULLETS
MAN AND RADIATION
PROPERTIES OF RADIATION
RADIATION AND MATTER
RADIATION AND THE POPULATION
RADIATION EFFECTS IN CHEMISTRY
SEA WE CANNOT SENSE, A
WORKING WITH RADIATION

Applications
ATOMIC REVOLUTION IN WOOD
FABRICATION OF SNAP-7D FUEL SOURCES

Biology and Agriculture
BUILDING BLOCKS OF LIFE
CONTROLLED PHOTOSYNTHESIS
FARM FRESH TO YOU
ENERGY FILMS CATALOG

FRESHER THE BETTER THE HARVEST OF AN ATOMIC AGE
LIVING SOLID THE MOLECULAR BIOLOGY
RADIATION IN BIOLOGY
RETURN TO BIKINI

Detection and Protection
ADDED SENSE: AN EXPERIMENT IN RADIATION DETECTION
RADIATION DETECTION BY IONIZATION
RADIATION DETECTION BY SCINTILLATION
RAP-A SYSTEM: RADIOLOGICAL ASSISTANCE PROGRAM

Medicine
ACHOMEGALY: DIAGNOSIS, ETIOLOGY, THERAPY
ATOMIC MEDICINE
DOORWAY TO DIAGNOSIS
EXTRACORPOREAL IRRADIATION OF BLOOD AND LYMPH
RADIATION ACCIDENT PATIENTS

Neutron Activation
ATOMIC ARCHEOLOGY: THE ATOMIC FINGERPRINT
NEUTRON ACTIVATION ANALYSIS
NUCLEAR FINGERPRINTING
NUCLEAR WITNESS: THE ACTIVATION ANALYSIS IN CRIME INVESTIGATION

RADIOISOTOPES
ATOM AND THE ENVIRONMENT: THE ATOMIC ENERGY FOR SPACE
ATOM AND THE MAN ON THE MOON: THE ATOMIC MEDICINE
ATOMS FOR THE AMERICAS: CONTROLLED PHOTOSYNTHESIS
HANDLE WITH CARE: THE SAFE HANDLING OF RADIOISOTOPES
ISOTOPES IN ENVIRONMENTAL CONTROL
OPPORTUNITY UNLIMITED: FRIENDLY ATOMS IN INDUSTRY
PAX ATOMI: SNAP-7A TERRESTRIAL ISOTOPIC POWER SYSTEMS
PM-3A NUCLEAR POWER PLANT - ANTARCTICA
RADIOISOTOPES IN BIOLOGY AND AGRICULTURE
RADIOISOTOPE POWERED CARDIAC PACEMAKERS, THE
RADIOISOTOPE SCANNING IN MEDICINE
SCINTILLATION CAMERA: THE SHORT-LIVED RADIOISOTOPES IN NUCLEAR MEDICINE
TRACING LIVING CELLS
TRANSURANIUM ELEMENTS: SYNTHESIS, SEPARATION AND RESEARCH

RESEARCH
General
BIOENGINEERS: THE CHALLENGE OF THE FUTURE
ENERGY - THE AMERICAN EXPERIENCE
TERRADYNAMICS
TESTING FOR TOMORROW

Metallurgy
ALCHEMIST'S DREAM: THE METALS FRONTIER
TERNARY PHASE DIAGRAM
TRIP STEEL

Nuclear
DEVELOPMENT AND FABRICATION OF HEIR TARGET ELEMENTS
EXPLORING THE ATOMIC NUCLEI
NUCLEAR SPECTRUM
PARK THE REACTOR SAFETY RESEARCH
SAFETY—SECOND TO NONE
STUDY OF GRAM GROWTH IN BODIES USING A NEW TRANSMITTED LIQUID HOT STAGE
TRANSURANIUM ELEMENTS: SYNTHESIS, SEPARATION AND RESEARCH

Photography
ACCEL REVISITED: AUTOMATED CIRCUIT CARD ETCHING LAYOUT
COMPUTER COLOR GENERATIONS
CONTROLLING RECORDS. FIRES WITH HIGH EXPANSION FOAM
OF MAN AND MATTER
SOLAR ECLIPSE EXPEDITION 1972

RESEARCH AND TEST REACTORS
ADVANCED TEST REACTOR
ATOMIC FURNACES
OAK RIDGE RESEARCH REACTOR

SAFEGUARDS
ATOMS IN THE MARKETPLACE: NUCLEAR MATERIALS SAFEGUARDS AND MANAGEMENT

SAFETY
CONTROLLING RECORDS FIRES WITH HIGH EXPANSION FOAM
EXPERIMENTS IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM
FIRE FIGHTING IN THE NUCLEAR AGE
GLOVE BOX FIRES
HANDLE WITH CARE: THE SAFE HANDLING OF RADIOISOTOPES
LIVING WITH A GLOVED BOX
RADIATION ACCIDENT PATIENTS
RADIOLOGICAL SAFETY
R-A-P: RADIOLOGICAL ASSISTANCE PROGRAM
REACTOR SAFETY RESEARCH
RETIREMENT OF THE HALLAM NUCLEAR POWER FACILITY

SERIES
CHALLENGE SERIES
UNDERSTANDING THE ATOM SERIES

SOLAR ENERGY
General
AIRBORNE ECLIPSE EXPEDITION 1972
CHALLENGE OF THE FUTURE
WHEN THE CIRCUIT BREAKS

Research
CONTROLLED PHOTOSYNTHESIS

Applications
HERE COMES THE SUN
PUTTING THE SUN TO WORK

SPACE
General
AIRBORNE ECLIPSE EXPEDITION 1972
NUCLEAR REACTOR SPACE POWER SYSTEMS
SNAP
ATOM AND THE MAN ON THE MOON, THE
FABRICATION OF SNAP-7D FUEL SOURCES
NUCLEAR POWER FOR SPACE—SNAP-9A
PAN-ATOMICS SNAP-7 TERRESTRIAL ISOTOPIC
POWER SYSTEMS
SPACE AND THE ATOM
WEATHER EYE, THE

TRANSPORTATION
ON THE MOVE

WOODEN OVERCOAT, THE
UNDERSTANDING THE ATOM SERIES
ALPHA, BETA AND GAMMA
ATOM IN PHYSICAL SCIENCE, THE
NUCLEAR REACTIONS
PROPERTIES OF RADIATION
RADIATION AND MATTER
RADIATION DETECTION BY IONIZATION
RADIATION DETECTION BY SCINTILLATION
RADIOISOTOPES IN BIOLOGY AND AGRICULTURE
RADIOLOGICAL SAFETY
Film Titles
Section

—Titles in Alphabetical Order

A IS FOR ATOM 11
ACCEL REVISITED: Automated Circuit Card Etching Layout 11
ACROMEGALY: DIAGNOSIS, ETIOLOGY, THERAPY 11
ADDED SENSE, AN: THE DETECTION OF NUCLEAR RADIATION 11
ADVANCED TEST REACTOR 12
AIRBORNE ECLIPSE EXPEDITION–1972 12
ALCHEMIST’S DREAM, THE 19
ALPHA, BETA, AND GAMMA 19
ANALYSIS OF NUCLEON-NUCLEON SCATTERING EXPERIMENTS 13
ART OF SEPARATION, THE 13
ATOM AND ARCHEOLOGY, THE 13
ATOM AND THE ENVIRONMENT, THE 13
ATOM AND THE MAN ON THE MOON, THE 14
ATOM IN PHYSICAL SCIENCE 14
ATOM SMASHERS 15
ATOMIC FINGERPRINT, THE 15
ATOMIC FURNACES 15
ATOMIC MEDICINE 15
ATOMIC PHYSICS 15
ATOMIC POWER PRODUCTION 16
ATOMIC POWER TODAY 16
ATOMIC POWER TODAY: SERVICE WITH SAFETY 16
ATOMIC REVOLUTION IN WOOD 17
ATOMIC SEARCH 17
ATOMS FOR THE AMERICAS 18
ATOMS IN AGRICULTURE 18
ATOMS IN THE MARKETPLACE: NUCLEAR MATERIALS SAFEGUARDS AND MANAGEMENT 18
BASIC PRINCIPLES OF POWER REACTORS 18
BEGINNING WITHOUT END, A 19
BIOENGINEERS, THE 19
BITTER AND THE SWEET, THE 20
BREEDER IN THE DESERT, A 20
BROOKHAVEN SPECTRUM 20
BUILDING AN ATOMIC ACCELERATOR 21
BUILDING BLOCKS OF LIFE 21
CHALLENGE OF THE FUTURE 21
CHEMICAL SOMERSAULT, A 21
CLEAN AIR IS A BREEZE: Airborne Contamination Control Through Laminar Air Flow 22
COMBUSTION TECHNIQUES IN LIQUID SCINTILLATION COUNTING 22
COMPUTER COLOR GENERATIONS 22
COMPUTER FLUID DYNAMICS 23
CONTROLLED PHOTOSYNTHESIS 23
CONTROLLING ATOMIC ENERGY 23
CONTROLLING RECORDS FIRES WITH HIGH EXPANSION FOAM 23
CURRENT METHODS IN PLUTONIUM FUEL FABRICATION 23
DAY TOMORROW BEGAN, THE 24
DEALING WITH THE SEAS 24
DEVELOPMENT AND FABRICATION OF HFIR TARGET ELEMENTS 25
DISPERSION THEORY APPROACH TO NUCLEON-NUCLEON SCATTERING 25
DOORWAY TO DIAGNOSIS 25
DOWN ON THE FARM 25
ENDLESS CHAIN 25
ENERGY–THE AMERICAN EXPERIENCE 26
ENVIRONMENTAL TESTING AT SANDIA 27
EXPERIMENTS IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM 27
EXPLORING THE ATOMIC NUCLEUS 27
EXTRACORPOREAL RADIATION OF BLOOD AND LYMPH 27
FABRICATION OF SNAP-7D FUEL SOURCES 28
FABRICATION OF THE ACCELERATOR STRUCTURE 28
FARM FRESH TO YOU 28
FEAST, THE .. 28
FIFTH FUEL, THE 29
FIRE FIGHTING IN THE NUCLEAR AGE 29
FIRST CHEMICAL SEPARATION OF LAWRENCIUM 29
FIRST TWENTY-FIVE YEARS, THE 30
FRESHER THE BETTER, THE 30
FUEL OF THE FUTURE, THE 30
FUNDAMENTALS OF MECHANICAL VIBRATION 30
GLOVE BOX FIRES 30
GO FISSION .. 30
HANDLE WITH CARE: THE SAFE HANDLING OF RADIOISOTOPES 31
HANFORD OR BUST 31
HARNESSING THE RAINBOW 31
HARVEST OF AN ATOMIC AGE 31
HEART OF THE MATTER, THE 31
HEAVY PARTICLE BEAMS IN MEDICINE 32
HERE COMES THE SUN 32
HORIZONS UNLIMITED 33
IMMUNE RESPONSE, THE 33
IN SEARCH OF A CRITICAL MOMENT 33
INSIDE THE YANKEE CORE 33
INTRODUCING ATOMS AND NUCLEAR ENERGY 34
INTRODUCTION TO ANALOG COMPUTERS 34
INTRODUCTION TO HIGH VACUUM 34
INVISIBLE BULLETS 34
ISOTOPES IN ENVIRONMENTAL CONTROL 34
JOURNAL OF PLUTONIUM, A 34
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDMARK</td>
<td>31</td>
</tr>
<tr>
<td>LINK</td>
<td>35</td>
</tr>
<tr>
<td>LIVING SOLID, THE</td>
<td>35</td>
</tr>
<tr>
<td>LIVING WITH A CLOSED EYE</td>
<td>35</td>
</tr>
<tr>
<td>MAC AND RADIATION</td>
<td>36</td>
</tr>
<tr>
<td>MANY FACES OF ARAGONNE, THE</td>
<td>36</td>
</tr>
<tr>
<td>MASS OF ATOMS, THE</td>
<td>36</td>
</tr>
<tr>
<td>METALS FRONTIER</td>
<td>36</td>
</tr>
<tr>
<td>MICROSCOPE FOR THE UNKNOWN</td>
<td>47</td>
</tr>
<tr>
<td>MIGHTY Atom, THE</td>
<td>47</td>
</tr>
<tr>
<td>MIRACLE IN THE DESERT, THE STORY OF HANFORD</td>
<td>37</td>
</tr>
<tr>
<td>MOLECULAR BIOLOGY: An Introduction</td>
<td>37</td>
</tr>
<tr>
<td>MOLECULAR SALT REACTOR EXPERIMENT</td>
<td>37</td>
</tr>
<tr>
<td>NATURE'S FORGE</td>
<td>38</td>
</tr>
<tr>
<td>NEUTRON ACTIVATION ANALYSIS</td>
<td>38</td>
</tr>
<tr>
<td>NO TURNING BACK</td>
<td>38</td>
</tr>
<tr>
<td>NUCLEAR FINGERPRINTING OF ANCIENT POTTERY</td>
<td>39</td>
</tr>
<tr>
<td>NUCLEAR INNOVATIONS IN PROCESS</td>
<td>39</td>
</tr>
<tr>
<td>NUCLEAR POWER AND THE ENVIRONMENT</td>
<td>39</td>
</tr>
<tr>
<td>NUCLEAR POWER FOR SPACE SNAPAO</td>
<td>40</td>
</tr>
<tr>
<td>NUCLEAR POWER IN THE UNITED STATES</td>
<td>40</td>
</tr>
<tr>
<td>NUCLEAR REACTIONS</td>
<td>40</td>
</tr>
<tr>
<td>NUCLEAR REACTOR SPACE POWER SYSTEMS</td>
<td>40</td>
</tr>
<tr>
<td>NUCLEAR SPECTRUM</td>
<td>40</td>
</tr>
<tr>
<td>NUCLEAR WITNESS: THE ACTIVATION ANALYSIS IN CRIME INVESTIGATION</td>
<td>41</td>
</tr>
<tr>
<td>OAK RIDGE RESEARCH REACTOR</td>
<td>41</td>
</tr>
<tr>
<td>ON THE MOVE</td>
<td>41</td>
</tr>
<tr>
<td>OPPORTUNITY UNLIMITED: FRIENDLY ATOMS IN INDUSTRY</td>
<td>42</td>
</tr>
<tr>
<td>PARK, THE</td>
<td>42</td>
</tr>
<tr>
<td>Pax ATOMS: SNAP-7 TERRESTRIAL ISOTOPIC POWER SYSTEMS</td>
<td>42</td>
</tr>
<tr>
<td>PEOPLE AND PARTICLES</td>
<td>43</td>
</tr>
<tr>
<td>PERSEPHONE: A NUCLEAR PHYSICS EXPERIMENT</td>
<td>43</td>
</tr>
<tr>
<td>PETRIFIED RIVER, THE</td>
<td>43</td>
</tr>
<tr>
<td>PLANT GROWTH IN COMPENSATED FIELDS</td>
<td>43</td>
</tr>
<tr>
<td>PM 3A NUCLEAR POWER PLANT ANTARCTICA</td>
<td>44</td>
</tr>
<tr>
<td>POWER FROM THE EARTH</td>
<td>44</td>
</tr>
<tr>
<td>PREPARING FOR TOMORROW'S WORLD</td>
<td>45</td>
</tr>
<tr>
<td>PRINCIPLES OF THERMAL, FAST AND BREEDER REACTORS</td>
<td>45</td>
</tr>
<tr>
<td>PROJECT GASSIGGY: THE RESOURCEFUL ATOM</td>
<td>45</td>
</tr>
<tr>
<td>PROPERTIES OF RADIATION</td>
<td>46</td>
</tr>
<tr>
<td>PUTTING THE SUN TO WORK</td>
<td>46</td>
</tr>
<tr>
<td>RADIATION ACCIDENT PATIENTS</td>
<td>47</td>
</tr>
<tr>
<td>RADIATION AND MATTER</td>
<td>47</td>
</tr>
<tr>
<td>RADIATION AND THE POPULATION</td>
<td>47</td>
</tr>
<tr>
<td>RADIATION DETECTION BY IONIZATION</td>
<td>47</td>
</tr>
<tr>
<td>RADIATION DETECTION BY SCINTILLATION</td>
<td>48</td>
</tr>
<tr>
<td>RADIATION EFFECTS IN CHEMISTRY</td>
<td>48</td>
</tr>
<tr>
<td>RADIATION IN BIOLOGY: An Introduction</td>
<td>48</td>
</tr>
<tr>
<td>RADIOISOTOPE POWERED CARDIAC PACEMAKER, THE</td>
<td>48</td>
</tr>
<tr>
<td>RADIOISOTOPE SCANNING IN MEDICINE</td>
<td>48</td>
</tr>
<tr>
<td>RADIOISOTOPE IN BIOLOGY AND AGRICULTURE</td>
<td>49</td>
</tr>
<tr>
<td>RADIOLOGICAL SAFETY</td>
<td>49</td>
</tr>
<tr>
<td>R.A.F: RADIOLOGICAL ASSISTANCE PROGRAM</td>
<td>49</td>
</tr>
<tr>
<td>REACTOR SAFETY RESEARCH</td>
<td>49</td>
</tr>
<tr>
<td>RESPONSE TO MECHANICAL SHOCK</td>
<td>49</td>
</tr>
<tr>
<td>RETIREMENT OF THE HALLAM NUCLEAR POWER FACILITY</td>
<td>50</td>
</tr>
<tr>
<td>RETURN TO BIKINI</td>
<td>50</td>
</tr>
<tr>
<td>RIDDLE OF PHOTOSYNTHESIS, THE</td>
<td>51</td>
</tr>
<tr>
<td>ROUNDUP</td>
<td>51</td>
</tr>
<tr>
<td>SAFE HANDLING OF ENRICHED URANIUM</td>
<td>51</td>
</tr>
<tr>
<td>SAFETY SECOND TO NONE</td>
<td>51</td>
</tr>
<tr>
<td>SANDIA SPINOFF</td>
<td>52</td>
</tr>
<tr>
<td>SCINTILLATION CAMERA, THE</td>
<td>52</td>
</tr>
<tr>
<td>SEA WE CANNOT SENSE, A</td>
<td>52</td>
</tr>
<tr>
<td>SEARCHING FOR THE ULTIMATE</td>
<td>53</td>
</tr>
<tr>
<td>SHEAR EACH PROCESS FOR SPENT NUCLEAR FUELS</td>
<td>53</td>
</tr>
<tr>
<td>SHORT-LIVED RADIOISOTOPE IN NUCLEAR MEDICINE</td>
<td>53</td>
</tr>
<tr>
<td>SL-1 ACCIDENT, PHASES 1 AND 2, THE</td>
<td>53</td>
</tr>
<tr>
<td>SL-1 ACCIDENT, PHASE 3, THE</td>
<td>53</td>
</tr>
<tr>
<td>SPACE AND THE ATM</td>
<td>53</td>
</tr>
<tr>
<td>SHE CORE RECOVERY FOLLOWING FUEL-ELEMENT DAMAGE</td>
<td>53</td>
</tr>
<tr>
<td>STORY OF OAK RIDGE OPERATIONS, THE</td>
<td>54</td>
</tr>
<tr>
<td>STUDY OF GRAIN GROWTH IN BEO USING A NEW TRANSMITTED LIGHT HOT STAGE</td>
<td>54</td>
</tr>
<tr>
<td>SUPERCONDUCTING MAGNET FOR FUSION RESEARCH, A</td>
<td>54</td>
</tr>
<tr>
<td>SUPERCONDUCTING MAGNETS</td>
<td>55</td>
</tr>
<tr>
<td>SYNCHROTRON</td>
<td>55</td>
</tr>
<tr>
<td>TERNARY PHASE DIAGRAM</td>
<td>55</td>
</tr>
<tr>
<td>TERRADYNAMICS</td>
<td>55</td>
</tr>
<tr>
<td>TESTING FOR TOMORROW</td>
<td>56</td>
</tr>
<tr>
<td>THORIUM-U-233 UTILIZATION</td>
<td>56</td>
</tr>
<tr>
<td>TIME--THE SUREST POISON</td>
<td>56</td>
</tr>
<tr>
<td>TO BOTTLE THE SUN</td>
<td>56</td>
</tr>
<tr>
<td>TO IMITATE THE SUN</td>
<td>57</td>
</tr>
<tr>
<td>TRACING LIVING CELLS</td>
<td>57</td>
</tr>
<tr>
<td>TRANSURANIUM ELEMENTS: SYNTHESIS, SEPARATION AND RESEARCH</td>
<td>57</td>
</tr>
<tr>
<td>TRIP STEEL</td>
<td>58</td>
</tr>
<tr>
<td>UNDERGROUND NUCLEAR WEAPONS TESTING</td>
<td>58</td>
</tr>
<tr>
<td>WARM COAT, THE</td>
<td>59</td>
</tr>
<tr>
<td>WASTE DISPOSAL BY HYDRAULIC FRACTURING</td>
<td>59</td>
</tr>
<tr>
<td>WEATHER EYE, THE</td>
<td>59</td>
</tr>
<tr>
<td>WEB OF LIFE: Endless Chain</td>
<td>60</td>
</tr>
<tr>
<td>WHEN THE CIRCUIT BREAKS</td>
<td>60</td>
</tr>
<tr>
<td>WOODEN OVERCOAT, THE</td>
<td>61</td>
</tr>
<tr>
<td>WORKING WITH RADIATION</td>
<td>61</td>
</tr>
<tr>
<td>WORLDS WITHIN, THE</td>
<td>61</td>
</tr>
<tr>
<td>XENON TETRAFLUORIDE</td>
<td>61</td>
</tr>
<tr>
<td>YANOMAMA: A MULTIDISCIPLINARY STUDY</td>
<td>61</td>
</tr>
<tr>
<td>YOUR PLACE IN THE NUCLEAR AGE</td>
<td>62</td>
</tr>
<tr>
<td>ZONAL ULTRACENTRIFUGE, THE</td>
<td>62</td>
</tr>
</tbody>
</table>
A IS FOR ATOM (1964). 15 minutes, color.

Suitable for Understanding Level 1 and 2.

NOT CLEARED FOR TV.

Begins by describing how the atomic age was born. A nontechnical explanation and illustration of the basic structure of the atom, using an analogy to the solar system, is presented. Fundamental differences of elements in terms of both their atoms and isotopes are discussed and illustrated. The film introduces the concepts of stable and radioactive elements. Also presented are the basic structure and principles of a nuclear reactor. The importance of reactors in the formation of the first man-made elements is described.

Suitable for Understanding Level 3.

CLEARED FOR TV.

ACCEL is a computer program which designs printed circuit boards and produces the drawings for their construction with the input encoded from an engineer's schematic diagram by a clerk without knowledge of electronics. The outputs of the program are a schematic, parts list, printed circuit negative, assembly drawing, and a hole drilling list. ACCEL is written in Fortran II for the IBM 7090 computer and the drawings are produced on the Stromberg Carlson 4020 cathode ray tube plotter. The film describes the operational aspects of the system, as well as the unusual algorithms used to accomplish the design feat. Two items of major significance are (1) the "force placement" algorithm for determining component location; and (2) a routing method utilizing Lee's algorithm and a new technique called topographic simulation.

HONORS: British Computer Society's Data Fair; Spring Joint Computer Conference; Atlantic City, New Jersey; Phnom Penh, International Federation of Information Processing Congress, Ljubljana, Yugoslavia.

Suitable for Understanding Level 3.

NOT CLEARED FOR TV.

Describes the successful application of heavy particle radiation, obtained from high energy cyclotrons for treatment of the comparatively rare disease, acromegaly. Work at Donner Laboratory in Berkeley with the 184-inch synchrocyclotron for treatment of acromegalic patients is described. Detailed procedures for preparing the patient and irradiating the pituitary gland are shown. Symptoms, diagnosis, etiology, and medical history and medical treatments also are discussed.

HONORS: 3rd International Festival on Medicine & Public Health, Bologna, Italy.

Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.
To harness the power of the atom effectively, the technology to control nuclear energy and safeguard its use must be assured. Consequently the key to practical application of atomic energy is instrumentation. Through animation, the film presents significant concepts associated with detector technology, such as the various forms of nuclear radiation, gas ionization chambers and their design, proportional and scintillation counters, and several unique methods including thermoluminescence.

To demonstrate the wide use and application of nuclear detectors, various research activities at ERDA’s Lawrence Livermore Laboratory are shown, including a post-type nuclear reactor; health physics and personnel dosimetry techniques and instruments, including a Whole Body Counter; biomedical investigations to search for sources of radioactivity in the environment and to study the effects of radiation on plant and animal life; the field of X-ray Astronomy, where unique instruments to measure the low-energy x-rays emanating from celestial bodies are described, and many other unique applications of detectors. The film summarizes the state of the art in detector technology, and provides an excellent insight into the great challenge to scientists and engineers to advance our knowledge and control of nuclear phenomena.

HONORS: 6th International Festival of Scientific and Technical Films, Brussels, Belgium, 3rd International Film Festival of Prevention (Labor Accidents and Professional Diseases), Lisbon, Portugal, 5th International Scientific Film Festival, Rio de Janeiro, Brazil, 29th International Exhibition of Specialized Cinematography (“Nuclear Rassegna”) Rome, Italy, CINE 16th Annual Awards Presentation Ceremonies and Exhibition of Films of Meat, Washington, D.C., 12th ANZAS International Scientific Film Exhibition, Australia and New Zealand, 11th International Festival of Science Fiction Films, Trieste, Italy.

0492 ADVANCED TEST REACTOR 1964. 9 minutes, color. Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.
This film uses animation to show precisely how the 250 Mw(t) Advanced Test Reactor design utilizes multiple flux traps to achieve exceptionally high neutron density in nine independent test loop positions. It describes the clover leaf, punched fuel annulus that circumscribes the time flux trap test positions, and the moving control components which vary flux and power in each test position. ATR was designed by Ebasco Services, Inc., as prime contractor, with Babcock & Wilcox Co. as nuclear subcontractor. Phillips Petroleum Co. prepared the conceptual design and will operate the reactor.

0492 AIRBORNE ECLIPSE EXPEDITION 1972 (1973), 12 minutes, color. Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.
Early on the morning of July 10, 1972, a team of 29 scientists left Fairchild Air Force Base, Spokane, Washington, aboard the Air Force NC 135 “Flying Laboratory,” a scientifically modified aircraft. The aircraft intercepted the moon’s shadow nearly eight miles above Canada’s Northwest Territories to record and study a total solar eclipse.

AIRBORNE ECLIPSE EXPEDITION

The major observation included photographic polarimetry of the corona out to a distance of 12 solar radii from the sun’s center.

Measurements were taken (in cooperation with Sacramento Peak Observatory solar astronomers) of the shape, strength, and polarization of several emission lines of highly ionized iron in the corona. This experiment makes use of a large refracting telescope, a Fabry-Perot interferometer and a Savart plate which projects the corona on an image orthicon for data storage on magnetic tape.

Measurements of the albedo of the earth before and during eclipse totality were carried out by Greek scientists, and looked not at the corona but down at the ground in an attempt to measure changes in the earth’s reflectivity as the moon’s shadow passed over.

Most of the experiments aboard the aircraft were designed to probe the corona at distances farther from the sun’s surface than is possible when the same experiments are performed on the ground. This film deals with the preparation, scientific equipment used and photographic results obtained from this expedition. It includes actual live motion picture footage of the various phases of the eclipse through totality and the 3rd or “diamond ring” phase, one of the more spectacular stages of a total eclipse.

ORDER BY FILM NUMBER AND TITLE

0011 THE ALCHEMIST’S DREAM (1965). 29 minutes, black and white.

(From the Challenge Series.) Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.
Transmutation of metals, the dream of the alchemists in the Middle Ages, is shown and explained in its nuclear science context by members of ERDA’s Argonne National Laboratory Chemistry Division. A minute quantity of berkelium is produced by bombarding curium with deuterons from a cyclotron. The berkelium is separated and purified behind the thick walls of a newly constructed hot laboratory for research with man-made elements. This film provides an in-depth description of basic research in the nuclear sciences.

0013 ALPHA, BETA, AND GAMMA (1962). 44 minutes.

(From the Understanding the Atom Series.) Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.
Gives some insight into the origin and nature of alpha, beta, and gamma radiation. After a short discussion of the methods of describing atoms and the introduction of the energy-level concepts, the lecturer, Dr. Ralph T. Overman, former Chairman, Oak Ridge Institute of Nuclear Studies, introduces the potential-energy well model of the nucleus. This, together with the barrier model, is used as the
ANALYSIS OF NUCLEON-NUCLEON SCATTERING EXPERIMENTS (1961). 50 minutes, color. Suitable for Understanding Level 2 and 3.
Cleared for TV.
This filmed lecture by Dr. H. Pierre Noyes is intended primarily for graduate courses in nuclear physics. It gives an overall picture of the results followed in passing from single, double, and triple-scattering experiments to a unique description of the scattering matrix in terms of phase shifts. The topic mentioned: relation between scattering cross section and scattering amplitude; conservation of angular momentum and of number of particles by writing the scattering amplitude in terms of phase shifts; relation between range of the force and the number of angular-momentum states present: relation between quantum mass and range of force; inclusion of one-pion-exchange effects in the phase-shift analysis; the number of independent scattering experiments using two spin particles, illustrated by three-dimensional models for the experiments P, D, R, A, Cn, and Cz; problems encountered in trying to determine the best phase-shift solution in terms of least squares. (See also DISPERSION THEORY APPROACH TO NUCLEON-NUCLEON SCATTERING on page 25.)

THE ART OF SEPARATION (1962). 29 minutes, black and white.
(From the Challenge Series.) Suitable for Understanding Level 2 and 3. Not cleared for TV.
Deals with the separation of chemical compounds into basic substances in the purest form possible by the process known as chromatography and with the importance of that process in chemistry work. Using a situation, the chemist is able to work with much greater speed and ease in the field of chromatography. The basic principles and various methods of modern chromatography are explained and demonstrated. Actual separation of a chemical compound is shown. The film provides an in-depth description of basic research in the nuclear science at ERDA's Argonne National Laboratory.

This film is designed for a high school senior level chemistry or physics course, or as an introductory unit in nuclear science at the college level.
to help the Coast Guard pinpoint vessels suspected of illegally discharging oil and fouling coastal waters; how radioactive tracers chart the underwater movement of sand which results in clogging of harbors and channels; the use of radioactive tracers to study the ability of flowing streams to purify themselves—resulting in data to aid in the proper placement of sewage plants and factories; how atomic isotopes are used in the analysis of smoke samples and help scientists determine air pollution patterns over cities; and how nuclear tracers assist in the study of the extent to which plants can absorb dangerous pollutants that interfere with the process of photosynthesis, and aid man in learning more about the growing process of plants and trees.

ALSEP and inserting the nuclear fuel capsule. The film discusses the type of lunar surface information the radioisotope-powered ALSEP will send back to earth, and the type of experiments which were used in the production of transuranium elements. These have been discovered using exceedingly ingenious approaches involving quite complex electronics and highly refined chemical techniques.

The film discussed applications to other chemical problems such as the mechanism of photosynthesis and the use of special techniques such as isotope dilution analysis. Of considerable interest also is the description of Carbon-14 dating.

The lecturer closes with a strong statement regarding the need for scientists and the importance of good scientific training in schools. This film was designed for a high school senior-level chemistry or physics course, or as an introductory unit in nuclear science at the college level, and is presented by Dr. Ralph T. Overman, former Chairman, Oak Ridge Institute of Nuclear Studies.
Particles speed around, as on a racetrack, until they almost reach 186,000 miles a second. Views of circular accelerators are shown: the Bevatron, the AGS and the planned 200 Bev.

THE ATOMIC FINGERPRINT (1964). 12½ minutes, color.
Suitable for Understanding Levels-2.
NOT CLEARED FOR TV.
Explains neutron activation analysis, a highly sensitive and powerful analytical technique with wide applications in the basic and applied sciences, which involves the use of neutrons to make substances radioactive, followed by analysis of the radiations emitted, to determine which elements are present and their amounts. The film demonstrates some of the many applications of neutron activation analysis in crime detection, geology and soil science, analysis of art and archeological objects, oil refining, agriculture, electronics, biology and medicine, and space sciences. Various techniques of neutron activation—making a sample radioactive—are explained, as well as the instruments and methods used in analyzing the activated samples. These include the use of the gamma-ray spectrometer and the technique of "spectrum stripping"—the electron subtraction of the gamma-ray spectra of one or more known elements from that of a multi-element sample.

ATOMIC SMASHERS

ORDER BY FILM NUMBER AND TITLE.

ATOMIC MEDICINE (1968). 27 minutes, color.
Suitable for Understanding Levels-2 and -3.
NOT CLEARED FOR TV.
Makes a summary examination of the expanding applications of atomic energy for the diagnosis and treatment of disease today and in the future, with Host Narrator Walter Cronkite. Radioisotopes are explained. By using the right radiophosphate, doctors can determine the condition of organs, diagnose illness and often treat disease. We see a patient take an "atomic cocktail" (radioactive iodine) which destroys diseased tissue in the thyroid. An example is shown of research on treating leukemia in which the patient’s blood is circulated and irradiated outside the patient’s body. We see a patient’s cancerous pituitary gland being "stabbed" with a needle of radioactive strontium-90, which burns out the cancer.

ATOMIC PHYSICS (1948). 90 minutes (2 reels), black and white.
Suitable for Understanding Levels-2 and -3.
NOT CLEARED FOR TV.
Discusses the history and development of atomic energy, stressing nuclear physics, Dalton’s basic atomic theory,
Faraday's early experiments in electrolysis, Mendeleev's periodic table, and early concepts and size of atoms and molecules are discussed also. The film demonstrates how cathode rays were investigated and how the electron was discovered; how the nature of positive rays was established; how X rays were found and put to use. The film also presents research tools of nuclear physics, explains work of Joliot-Curie and Chadwick in discovery of neutron, and splitting of lithium atom by Cockcroft and Walton. Einstein tells how their work illustrates his theory of equivalence of mass and energy. One sees and hears such famous scientists as J. J. Thomson, Ernest Rutherford, J. D. Cockcroft and O. R. Frisch. Uranium fission is explained, as well as why it is possible to make an atomic bomb.

0050
ATOMIc POWER PRODUCTION
(1964), 14 minutes, color.
Suitable for Understanding Levels-2.
NOT CLEARED FOR TV.
Opening with an explanation of the growing demand for electrical power, produced today primarily through hydro-electric means and the burning of fossil fuels (coal, gas, and oil), the film tells of the need for harnessing nuclear energy. With animation, an explanation is given of how the heat created by the controlled chain reaction of atomic fuel in a reactor is converted to electrical power. Several types of power reactors and their basic differences are discussed: the boiling water reactor, the pressurized water reactor, one using a liquid sodium coolant, and one using an organic coolant. The principle of the "breeder" reactor is explained and its importance stressed. The film also discusses the care and safety of design, construction, maintenance and operation of atomic power plants.

0410
ATOMIc POWER TODAY
(Short Version, 1967), 15 minutes, color.
Suitable for Understanding Levels-2 and -3.
CLEARED FOR TV.
The motion picture explains the growing need for electricity, contrasts conventional and nuclear generating technology, shows how a nuclear power plant is designed, built and operated for dependable service; describes the many safeguards, and explains the former USAREC regulatory and licensing procedures.
The motion picture tells the story of central station atomic power plants and how they serve the country now and in the future. Starting with how electricity is produced from water power and fossil fuels, the film introduces atomic fuel as a vast new energy resource. The film shows atomic fuel being fabricated and put to work in a nuclear reactor to produce heat which will ultimately produce electricity.

This abridged version of ATOMIC POWER TODAY: SERVICE WITH SAFETY (described below) was made especially for meetings, lectures and groups that require short films only.

0051
ATOMIc POWER TODAY: SERVICE WITH SAFETY
(1966), 28½ minutes, color.
Suitable for Understanding Levels-2 and -3.
CLEARED FOR TV.
Tells the story of central station atomic power plants and how they serve the country now and will continue to do so in the future. Starting with basic information of how electricity is produced from water power and fossil fuels such as oil, gas and coal, the film introduces atomic fuel as a vast new energy resource that helps keep down the cost of electricity. The film shows atomic fuel being fabricated, through animation, how it is used to work in a nuclear reactor to produce heat which will ultimately be used to produce electricity.

The safety aspects of atomic power, including both natural and engineered safeguards, as well as the demand for dependability by the operating utility and by the customer, are discussed. We see utility and former USAREC conferences relating to a proposed atomic power plant and the care that goes into design and planning.

Further safety considerations are explored, showing some of the rele-
vent equipment and systems. We learn why it is impossible for a nuclear reactor to blow up like an atomic bomb. The film also deals with the safe handling of wastes and controlled release of material to the environment on a planned basis, according to Federal safety regulations.

When the plant finally goes "on the line," it joins other atomic power plants across the nation providing dependable electricity for our many needs. We see a sampling of these plants and the communities they serve, demonstrating that atomic power is here today, providing for our present and future electrical power needs.

HONORS: 10th CINE Golden Eagle International Award, Washington, D.C.; One of the "Most Honored Pictures of the Year," Business Screen, Chicago; 4th International Festival of Scientific & Technical Films, Brussels, Belgium; 10th Gold Mercury Film Prize, Venice, Italy; 14th International Nuclear Congress, Rome, Italy; 8th International Industrial Film Festival, Lisbon, Portugal; 5th ANZAAS International Exhibition of Science Films, Australia & New Zealand; 19th International Electronics & Communications Exhibits, Rome, Italy; Electro-technical Film Exhibition, Budapest, Hungary; International Trade Fair Energy Spectrum, Salonika, Greece.

0438

Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.

Story of a new, important peaceful application of nuclear energy—the fusing of wood and plastic by irradiation into an amazing combination substance which has all the aesthetic appeal of wood, but is greatly improved in hardness, abrasion resistance and durability. The film traces the development of radiation processed wood-plastic materials from initial Government development efforts through industry's commercialization activities. By means of animation and live action, the film explains the process for making this new material and describes its superior characteristics and woodworking properties in comparison to plain wood.

The commercialization activities of several companies actually engaged in the production of wood-plastics are shown, including the actual making of the material. Parquet flooring applications are highlighted, with emphasis on furniture and other industrial uses.

0448

Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.

In laboratories across the nation, scientists have made continuing important contributions to the peaceful uses of nuclear energy. This film is the story of some of these achievements: nuclear chemistry used to investigate the composition of lunar rocks to help determine the age of the moon; a container of radioactive plutonium to provide heat to protect the seismometer on the moon during the cold lunar nights; an isotopic nuclear generator providing electrical power on weather satellites orbiting in space; the first in a series of tests with dogs of a nuclear-fueled cardiac pacemaker, a device to assist a damaged heart; development of new, highly sensitive diagnostic tools to identify and separate the constituents in the body fluids to predict illness or disease; a special shielded room for low-dose total body irradiation, seeking a more effective, safer method of treating blood disorders; neutron activation analysis to measure the curative powers of a new drug treatment for the Parkinson syndrome, a nerve disorder; development of an irradiated concrete-plastic combination—a corrosion-resistant concrete-polymer four times stronger than ordinary cement; use of a similar irradiated wood-plastic combination, highly resistant to wear, for floors in public buildings and homes; a so-called solar telescope, almost a mile underground, that captures sub-atomic particles from the sun in order to learn more about solar energy; Project Rulison—a 10-kiloton nuclear explosion experiment to shake loose billions of cubic feet of natural gas trapped in hard rock more than 8,000 feet underground; positive identification of a new element, number 104, by a team of scientists at ERDA's Berkeley Laboratory; the work to learn more about effects of an expanding nuclear power industry on the environment—for
example, the effects on fish of the excess heat water from reactor operation—as part of ERDA's conservation research to protect man and his environment.

HONORS: Electricotechnical Film Exhibition, Budapest, Hungary; 2nd International Scientific Film Festival, Rio de Janeiro, Brazil; 8th International Science Fiction Film Festival, Torino, Italy; National Youth Conference on the Atom, Chicago, Illinois; Industrial College of the Armed Forces, National Seminar; Seminar, 5 U.S. cities, 12th International Nuclear Congress, Rome, Italy; 12th International Festival of Documentary Films, Bilbao, Spain; 15th International Festival of Science and Educational Films, Rabat, E.D.I.T.

0066
CLEARED FOR TV.

Offers an extensive tour of the facilities of the Puerto Rico Nuclear Center (operated for ERDA by the University of Puerto Rico) and a study of the Center's curricula and research programs. The Center was conceived primarily to aid the Latin American nations in developing skills essential to nuclear energy activity, by providing graduate and postgraduate-level education and research opportunities. At the Center's Bio-Medical building, work is shown involving radioisotopes and their clinical applications, and other nuclear work related to biology, chemistry, and medicine is reviewed. Study and research in nuclear engineering and technology, health physics, agriculture and marine biology are shown at the Center's reactor and laboratories located on the campus of the University of Puerto Rico's College of Agriculture and Engineering, and aboard the Center's oceanographic ship.

ORDER BY FILM NUMBER AND TITLE

ATOMS IN AGRICULTURE

0437
CLEARED FOR TV.

Explores the beneficial applications of atomic energy in the fields of agriculture: as radioactive tracers that—like little radio transmitters—help scientists follow the life processes in plants, animals and soil, and as radiation to treat or improve plants, animals, insects and food products. In a series of interviews at universities, industrial organizations and government research and experiment stations in eight places in the United States, we meet agronomists, veterinarians, entomologists, nutritionists, biochemists and engineers, who show us and explain their work in: the safe and more effective use of pesticides; controlling and understanding the diseases and metabolism of plants and animals; conservation of water; work to fight the staggering crop losses due to weeds, diseases and insects; research to achieve better, higher-yielding crops; studies of animal parasites; studies of cattle feeding; work to eliminate the screwworm fly by irradiation-sterilization; and research on fibers for improved textiles. It is made clear that the atom is an extremely important tool for agricultural scientists.

0074
BASIC PRINCIPLES OF POWER REACTORS (1962). 8½ minutes, color. Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Deals with the economic nature and significance of high cost, strategic nuclear materials—with their importance to commerce, the nation and the nations of the world.

The film discusses the great need for safeguards and controls to avoid the diversion of uranium, plutonium and other nuclear materials into channels for the making of unauthorized nuclear weapons. In addition, as the young, dynamic nuclear industry grows, it will eventually assume ownership of all commercial nuclear materials and cannot risk small cumulative, undetected losses and the resultant serious financial problems. The film details how the U.S. manages nuclear materials and the special techniques and methods involved—practices established by the U.S. Energy, Research and Development Administration, by private industry, by nations throughout the world, and international organizations—a story that demonstrates the interrelationship of sound management and nuclear safeguards in the atomic age.

0448
briefly describes fission, controlled chain reaction, and the function of basic reactor components (e.g., core, reactor vessel, shielding, moderators, coolants, and control rods). The boiling-water and pressurized-water reactor concepts are explained. Various types of fuel elements are described, such as rods, plates, and pellets.

9111
A BEGINNING WITHOUT END (1968). 30 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Summary of the wide variety of nuclear research and development work at the Berkeley and Livermore sites of ERDA's Lawrence Radiation Laboratory, operated by the University of California. The film briefly covers, in turn: the work of the late Dr. Ernest Lawrence on the invention and development of the cyclotron (particle accelerators); a historical statement by Dr. Lawrence on the principles of the cyclotron; the post-war work using particle accelerators to discover new elements; research into photosynthesis, use of high-energy particles from an accelerator for medical therapy; studies in superconductivity—the transmission of electricity with no production of heat; studies of chemical processes that occur during a nuclear explosion; work on the Plowshare program; studies of effects of radiation on animals, man and the food cycle of both; developments in the Sherwood program—development of controlled thermonuclear process for useful energy; high energy physics work with the Bevatron.

HONORS: Two Statuettes, Industrial Photography; Special Trophy, Industrial Management Film Festival.

0489
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
In a fast-paced, popular-level, contemporary style, this artistic film explores the exciting new combination of biology and engineering at the Holifield National Laboratory, with special emphasis on the investigation of human cells. Multi-disciplinary teams of scientists and engineers have combined their talents to produce new research and diagnostic tools to aid in the study of molecular biology, and to help gain information that will aid in the relief of suffering and the control of disease. The film surveys the successful development of the zonal centrifuge which has proved useful in purifying flu vaccines. Developed by Dr. Norman Anderson, this high-speed centrifuge has also proven to be a valuable tool in cancer and other biomedical research. To match the speed and efficiency of the centrifuges, an automated clinical analyzer was developed by Anderson's team. Now produced by several companies, this fast analyzer is being used in both the United States and Europe.

The film also deals with the development of sophisticated machinery to analyze body fluids. From one urine sample the analyzer has given researchers information on more than 100 different molecular components that are often disease-related. This analyzer, developed under the guidance of
Dr. Charles Scott and his team of several medical centers, will be useful in detecting metabolic abnormalities that might result in early death or mental retardation.

Under the direction of Dr. J. A. Welton and Robert Wotton, a powerful scanning electron microscope is being developed at the laboratory, designed to permit scientists to see individual atoms in complex molecules. In addition, the film covers part of the research of Dr. David North and his team as they accomplish the difficult work of separating RNA from cells. This purified RNA has been made available to the worldwide scientific community for biochemical research. Basic research, based on the study of RNA, promises to give us a better understanding of the normal and abnormal functions of human cells.

HONORS: 6th Annual Industrial Film Festival, Chicago, Illinois, Special Prize-Cup awarded by Ministry of Industry and Commerce. 5th International Review of Educational TV Films, Rome, Italy. 7th International Review of Didactic Films, Rome, Italy. 12th ANZAS International Scientific Film Exhibition, Austria and New Zealand. 6th International Scientific Film Festival, Rode Janeiro. 2nd Festival of Mountain and Exploration Films, Trento, Italy.

0083

BROOKHAVEN SPECTRUM (1967)

Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.

Surveys some of the varied aspects of nuclear research and engineering at the Brookhaven National Laboratory. Scientists and technicians are seen conducting experiments in biology, chemistry, medicine, physics, and reactor technology. The use and operation of such large and complex facilities as reactors and accelerators are shown in studying the fundamental structure of medicine and the forces within the atomic nucleus. Yet in spite of the impressive size and complexity of their tools, the film concentrates upon the men and women themselves who are the most vital component of any scientific investigation.

Among the research projects reviewed: preservation of perishable foods with high-intensity radiation; autoradiography of rare oil paintings by neutron activation; studies with radiation on the mechanisms of aging; an experiment, in cooperation with NASA, on the combined effects of weightlessness and radiation on living organisms in outer space; a newly developed treatment for leukemic patients by extracorporeal irradiation of the blood; an experiment at the 33-Bev AGS resulting in the discovery of an antinucleon; and the use of neutron spectrometers at the High Flux Beam Research Reactor in studying the structure of liquids and solids.

The film suggests the many lines of research that lie ahead. While the primary aim of such research, basic in itself, is to add to man's knowledge of his physical world, it is essentially applied to his benefit in a more direct sense.

HONORS: EFLA American Film Festival, New York City. 10th CINE Golden Eagle International Award, Washington, D.C. Special Merit, 6th International Labour & Industrial Film Triennial, Antwerp. Belgium. 4th International Exhibition of the Scientific Film, Sao Paulo, Brazil. 5th International Festival of Scientific & Technical Films, Buenos Aires, Argentina; Trieste Festival of Films, Italy; Scientific Film Festival, Lyon, France; 12th International Festival of Scientific and Educational Films, Padua, Italy; 10th Gold Mercury Film Prize, Venice, Italy; 15th Annual Columbus Film Festival, Ohio; 5th International Festival of Scientific Films, Paris, France; one of the "Most Honored Pictures of the Year."
BUILDING AN ATOMIC ACCELERATOR (1973). 28 minutes, color.
Suitable for Understanding Levels 2 and 3
CLEARED FOR TV

This film was designed primarily to communicate to both professional scientists and high school science students. The five basic parts of the atomic accelerator - the Super Heavy Ion Linear Accelerator - are described: the injectors, the linear accelerator, the radiofrequency power supply, the vacuum system, and the magnets. Some of the more important and interesting construction details are shown and explained. Animation is used to aid in explaining the theory of how accelerators work, and how parts of the accelerator function. The film concludes by describing some of the first research performed on this new machine.

The SuperHILAC is unique in this country, for it is the only operational machine designed to accelerate charged atoms of the heaviest natural elements. This makes possible new research: discovery of new elements, cancer research, and many other studies to further our understanding of nature's most fundamental building blocks.

BUILDING BLOCKS OF LIFE (1962). 20 minutes, black and white.
(From the Challenge Series)
Suitable for Understanding Levels 2 and 3
CLEARED FOR TV

Unique fragments of molecules caused by radiation in living systems, which are known as free radicals, either kill or seriously damage living cells. The how and why of both the particles and the damage they cause is the topic of this film. The film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

Suitable for Understanding Levels 2 and 3
CLEARED FOR TV

We are entering a new age when energy will be more expensive and less abundant. Our civilization has run on petroleum, oil and gas which has supplied three-quarters of the energy that feeds our society... our homes, businesses and industry. Now these resources in...
A commonly accepted scientific maxim, that the more complex and not easily characterized a system is, the more difficult it is for us to fully understand, is a useful reminder of the complexity of many modern technological systems. In the field of molecular biology, this is especially true, as the biologist is required to prepare and measure the structure and activity of complex molecules and biological samples. The development of liquid scintillation counting techniques has been instrumental in allowing scientists to gather this type of information.

However, the use of color in electronic displays, such as computer monitors, has not always been effective. The large amount of information required per frame could not be displayed in a reasonable manner. The use of color could solve this problem, but was too expensive in computer time to consider. “Computer Color Generations” discusses a technique developed at ERDA’s Los Alamos Scientific Laboratory that produces color film from the computer without any increase in computer time over an equivalent black and white run, because more information is possible per frame, the overall expense will drop significantly. Various areas of LASL research, which use computer color film output, are discussed and illustrated. Included are such areas as Controlled Thermonuclear Research, Engineering, Lasers, and three dimensional space problems.

HONORS: 14th International Photography Awards, Chicago, 6th International Festival of Scientific and Technical Films, Brussels; 17th International Festival of Scientific and Educational Films, University of Padua, Padua, Italy; 5th International Scientific Film Festival, Rio de Janeiro, Brazil; First Prize Cup and Diploma of Merit, 20th International Exhibition of Specialized Cinematography (“Nuclear Rasagna”), Rome, Italy; Awarded cash prize 100 Livres (silver equivalent), 5th International Film Festival on Organization and Automation of Production and Management, Sofia, Bulgaria; 11th International Science Fiction Film Festival, Trieste, Italy; Golden Eagle Certificate, CINE 16th Annual Awards Presentation Ceremonies and Exhibitions.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Demonstrates the power of giant electronic computers for solving problems that previously were impractical to undertake. The examples cover a wide range of fluid flow problems, for example, the water wave produced when a sluice gate is opened. First, it presents the actual laboratory experiment in slow motion; then, for comparison, it shows the unrehearsed output of an electronic computer study of the same process, so that the viewer can see for himself how accurately the motion has been calculated.

HONORS: Science Film Theater, American Association for the Advancement of Science, Boston; 52nd Annual Information Film Producers of America, San Diego, Calif.

CONTROLLED PHOTOSYNTHESIS (1971). 21 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Photosynthesis is probably the most important chemical reaction that takes place on earth—for without it there would be no plants, no animals, no life. The film gives an introduction to the structure of leaves, chloroplasts, grana and lamellae; and describes the first part of the process of converting the sun's energy to chemical energy. The film describes the injection of radioactive carbon-14 into the plant, and tells how this tracer technique is used to determine the series of chemical compounds the plant makes before producing food sugars and also describes some current research on enzyme reactions in plants. It is known that enzymes influence the production of carbohydrates, proteins and fats. It appears possible, by controlling these enzymes, to control photosynthesis and increase the production of protein in the plant's leaves.

Featured is a brief discussion by Dr. Melvin Calvin, Lawrence Berkeley Laboratory, who was awarded a Nobel Prize in 1961 for his research with radioactive tracers on the transformation of raw chemicals into plant sugars.

HONORS: Finalist, National Educational Film Festival, Oakland, California; Special Award, 13th Annual Industry Film Awards, New York, N. Y.; American Society for Microbiology, Philadelphia, Pa.

Suitable for Understanding Level 2.

NOT CLEARED FOR TV.
A basic teaching film which uses the conversation of a young student and a scientist who is writing a book about atomic energy summarizing, briefly, by live action and animation, the following: what is an atom; radioactive atoms; measuring radioactivity; uranium; nuclear fission; the chain reaction; the controlled chain reaction in reactors; how reactors are used for production of electricity for power and propulsion; and the production of radioisotopes for applications in biology, medical diagnosis and therapy, agriculture, industry, and research.

HONORS: 11th CINE Golden Eagle International Award, Washington, D.C.; Blue Ribbon, EFLA, New York City, N. Y.; 19th American Film Festival, New York City, N. Y.; Columbus Film Festival, Ohio; 21st Edinburgh Film Festival, Scotland; Trieste Festival of Science Films, Italy; 3rd International Festival of Experimental Documentary Films, Cordoba, Spain; 21st International Film Festival, Salerno, Italy; Science, Fact and Fantasy Film Event, Newcastle-Upon-Tyne, United Kingdom; 13th International Festival of Scientific & Educational Films, Padua, Italy; ANZASA, Australia & New Zealand; 6th International Exhibition of the Scientific Film, Buenos Aires, Argentina.

CONTROLLING RECORDS FIRES WITH HIGH EXPANSION FOAM (1966). 13 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Simplified description of high-expansion foam and its characteristics as a fire-fighting agent, particularly with respect to fires involving paper and photographic records in typical open file storage. The film summarizes the result of high-expansion foam tests conducted at the National Reactor Testing Station in August 1965. The tests disclosed that high-expansion foam provides fast, effective, and possibly least damaging means of extinguishing fires involving various kinds of records, including x-ray films, motion picture films, and photographic prints.
DECONTAMINATION OF LOADED FUEL RODS AND WELDING OF THE FINAL END CAPS ARE FOLLOWED BY SEVERAL UNCONVENTIONAL TESTING TECHNIQUES BEFORE ASSEMBLY OF THE RODS INTO THE UNIT-ROD NUCLEAR FUEL ELEMENT CLUSTER.

THE DAY TOMORROW BEGAN (1967). 30\% minutes, color.
Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.
This historical film tells the story of the building and testing of CP-1 (Chicago Pile-1), the first atomic pile, and the work of the brilliant scientific team, led by Dr. Enrico Fermi, which ushered in the Atomic Age behind a cloak of wartime security under the stands of Stagg Field, Chicago, December 2, 1942.

By interview, historical footage, paintings, etc., the film takes us on a step-by-step re-enactment of the famous event—beginning with the arrival of the first refugee scientists in 1939, to the dramatic hours in late 1942 when control rods were pulled out of CP-1 an inch at a time, to achieve the first sustained chain reaction.

Interviews are conducted with some of the members of the team and people closely associated with them—John Wheeler, Mrs. Laura Fermi, Glenn Seaborg, Leslie Groves, Frank Spedding, Crawford Greenwalt, Walter Zinn, Herbert Anderson, Norman Hilberry and Mrs. Leona Libby.

Against the background of a world plunged into World War II, the Third Reich hard on its way to developing an atomic bomb, uranium metal almost a laboratory curiosity, and with seemingly unsurmountable problems to be solved—the story of this brilliant scientific tour-de-force brings into focus the work of such people as Dr. Fermi, Leo Szilard, James Conant, Vannevar
The development of plant to advance the technology.

HONORS: Special Mention, 21st Film Festival, Salerno, Italy; 5th International Festival of Scientific and Technical Films, University of Buenos Aires, Argentina; 15th International Nuclear Congress, Rome, Italy; U.S. Trade Center, London, United Kingdom; 5th International Scientific Film Festival, Lyon, France; 12th International Festival of Scientific and Educational Films, Padua, Italy; 5th International Festival of Scientific Films, Paris, France.

0477 DISPERSION THEORY APPROACH TO NUCLEON-NUCLEON SCATTERING (1961). 45 minutes, color.
Suitable for Understanding Level-3.
CLEARED FOR TV.
This filmed technical lecture by Dr. H. Pierre Noyes, which outlines some of the main ideas and techniques used in the calculation of the nucleon-nucleon scattering matrix from its analytic properties and unitarity, is suitable for use at the graduate student level. It presupposes some familiarity with scattering solutions of the nonrelativistic Schrodinger equation and Cauchy's theorem and an acquaintance with Feynman diagrams. Topics discussed: (1) Solution of the S-wave Schrodinger equation for a superposition of exponential or Yukawa potentials by conversion to a Volterra equation, using the method of Andre Martin. (2) Solution of the same equation by partial-wave-dispersion relations using the N-D method; construction of the potential from the discontinuity in the partial-wave amplitude. (3) The Mandelstam representation for potential scattering and construction of the double-spectral function. (4) Relation between the field theoretic amplitude and the nonrelativistic scattering amplitude. (5) Relation of nucleon nucleon scattering to the nucleon antinucleon amplitude, pion nucleon scattering, pion pion scattering, and nucleon electromagnetic structure. (See also ANALYSIS OF NUCLEON-NUCLEON SCATTERING EXPERIMENTS on page 131).

0485 DOORWAY TO DIAGNOSIS (1971). 21/2 minutes, color.
Suitable for Understanding Level-3.
CLEARED FOR TV.
One of the eternal challenges in the field of biological instrumentation has been the ability to detect and accurately measure radiation which occurs when nuclei undergo transitions. Recently some revolutionary improvements in such energy resolution have been made through the development of semiconductor detectors, image intensifiers, new rare earth phosphors and refined scanning devices. All of these clinical advances have in part been financed by ERDA (formerly AEC), and their improved capability arms the physician with a much more sophisticated ability to detect and accurately measure the various manifestations of disease.

HONORS: 16th International Festival of Scientific and Educational Films, University of Padua, Italy; Diploma Award at 15th Venice Golden Mercury Film Festival, Venice, Italy; 7th International Festival of Scientific and Technical Films, Belgrade, Yugoslavia; 14th Industrial Photography Awards, Chicago, Illinois.

0105 DOWN ON THE FARM (1965). 29 minutes, black and white.
(From the Challenge Series).
Suitable for Understanding Levels-2 and 3.
CLEARED FOR TV.
Algae are grown in heavy water in a unique "farm" at Argonne to obtain organic compounds in which the atoms of ordinary hydrogen are replaced by atoms of deuterium. Scientists show how these deuterated compounds are employed in studies of photosynthesis and other metabolic processes. The presence of deuterium in place of ordinary hydrogen is shown to have a slowing-down effect on many life processes. The film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

0457 ENDLESS CHAIN (1971). 28 minutes, color.
Suitable for Understanding Levels-1, 2, 3.
CLEARED FOR TV.
A poetic, intimate look at the "endless chain of life" in the desert: the ceaseless transfer of the sun's energy to plants, to insects, and to animals. We see the life-death cycle, as energy passes from a plant ... to a beetle ... to a pocket mouse ... a snake ... a hawk—and the cycle is completed as bird droppings washed down by rain become nutrients for plants.

Suitable for Understanding Levels 1, 2, and 3.

CLEARED FOR TV.

With the perspective over 200 years of history, the film shows the development of different forms of energy under the unique conditions of the American Experience. We see the 50 year changing cycles of energy sources from wood to coal to oil and gas produce the steam and electrical energy that helped make the United States the industrial giant of the world.

Americans of the past worked from dawn to dark to live and improve their lives. They asked the same basic questions from the beginning—in the 18th and 19th centuries—as we are today. Questions about energy, how to extract it, use it, convert it, and conserve it, are universal—only the answers differ for each historic period.

American inventors and their inventions from water powered mills to the famous reaper bring us to 1876 and the Centennial celebration when the conquest of energy was made by coal, iron and steam. The great event is shown as it was when the giant Corliss steam engine ran all the equipment in machinery hall. Then we see early solar inventions, the internal combustion engine, the horseless carriage, a flying machine, electricity. Along with the mechanical improvements, the film reveals human progress despite wars and depressions.

Then today, the fuels Americans thought inexhaustible are being used up, rapidly. And how to promote a national effort in this emergency, the Energy Research and Development Administration has been created to plan the best use of present resources.
mobilize science and industry to develop new sources and choices of energy.

We see in the National Energy Research and Energy Plan new work in ancient sources: solar, geothermal, wind power; depicted is coal being converted to synthetic gas and oil; oil from oil shale; while work in enhancing oil wells and developing nuclear power plants and breeder reactors goes on. Finally, the film peeks into the future work at fusion and solar electricity—the inexhaustible energy sources of tomorrow.

0113 ENVIRONMENTAL TESTING AT SANDIA (1964). 28 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Discusses the environments, both natural and induced, which weapon components and systems may experience between manufacture and use. The film shows how environmental testing is used to ensure reliability. A series of test sequences enables the audience to see some of the facilities at ERDA’s Sandia Laboratory, giant centrifuge, electrodynamic shaker, rocker sled, air gun and climatic chamber—which are used to produce varying environments.

0117 EXPERIMENTS IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM (1955). 6½ minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Grass, brush, and forest fires cause an annual loss in the United States close to a quarter billion dollars. This film describes a series of tests by Argonne National Laboratory to explore the use of detergent foam as a fire break. Experiments were conducted with the Fire Protection Department’s forestry jeep, which has a 265-gallon water tank and rotary gear pump. A detergent and water solution is sprayed on a nylon mesh while air is forced through the openings in the mesh by a large fan. This produces a detergent foam which has been expanded approximately 1000 times. The foam is delivered through a canvas tube at the rate of 5000 cubic feet of foam per minute. In three tests detergent foam appeared to be effective.

0119 EXTRACORPOREAL IRRADIATION OF BLOOD AND LYMPH (1966). 7½ minutes, color.
Suitable for Understanding Level 3.
CLEARED FOR TV.

Shows how blood and/or lymph may be irradiated in a well-shielded gamma ray source outside of the body through a closed circuit of teflon tubes from artery to vein. The basic principle concerns the relative radiation resistance of erythrocytes (red blood cells) and the radiation sensitivity of the normal white cells (lymphocytes). The technique developed at ERDA’s Brookhaven National Laboratory, known as extracorporeal irradiation, is still experimental. It may prove to be of some therapeutic value to patients with leukemia and severe kidney disease.

Surgeons working in the operating room section of the experimental animal barn are shown fitting a calf with an external loop of teflon linking the carotid artery to a vein. The loop may
be enlarged to include a helix to form a co-axial 147 radiation source.

A similar method for production of lymph fluid outside the body employs an external plastic loop from thoracic lymphatic organs to a vein. The lymphocytes, an integral part of the foreign tissue reaction mechanism may be depleted by extracorporeal irradiation, thus interfering with the normal body reaction of rejection of transplanted blood, skin grafts, or organ transplants, etc. The final scenes show a human patient with chronic myelocytic leukemia receiving treatment.

HONORS: 5th ANZAAS International Scientific Film Exhibition, Australia & New Zealand. 11th International Film Festival of Scientific & Technical Films, Belgrade, Yugoslavia; 2nd International Festival of Red Cross and Health Films, Varna, Bulgaria.

0124 FABRICATION OF SNAP-7D FUEL SOURCES (1964). 12 minutes, color.

Suitable for Understanding Level-2 and -3.

CLEARED FOR TV.

Semitechnical film which describes the fabrication of strontium-90 fuel capsules for the SNAP-7D generator which powers an unmanned Navy weather station in the Gulf of Mexico. Purified strontium-90 carbonate was processed at ORNL's Fission Products Development Laboratory to strontium-90 titanate, pressed into pellets and then encapsulated. Most of the film is devoted to the pelleting and encapsulating operations within the hot cells of the FPDL.

Suitable for Understanding Level-3.

CLEARED FOR TV.

Describes the methods used in the fabrication of the accelerator structure and associated components for the FRDA's two-mile linear electron accelerator at Stanford University. The accelerator pipe, or disk-loaded waveguide, through which the electron beam travels, is manufactured from oxygen-free, high-conductivity copper cylinders and disks. The film shows in detail the steps followed in brazing together of 81 cylinders and 85 disks to form a bass, 10-foot section of the accelerating structure. Significant steps shown and described include: machining of cylinders and disks; annealing of parts; fabrication of input and output coupler sub-assemblies; brazing of a 10-foot section in a unique, hydrogen oxygen, splitting burner flame.

0127 FARM FRESH TO YOU (1966). 132 minutes, color.

Suitable for Understanding Levels-2 and -3.

CLEARED FOR TV.

Preservation of fresh fruits and vegetables by radiation pasteurization is described in this semi-technical film. After touching briefly on the high spoilage losses presently encountered in the marketing of fresh produce, the film presents graphic visual evidence of the reduced spoilage and extension of shelf life which can be obtained through the use of nuclear energy. The process of exposing foods to the energy of the atom in radiation research facilities is described, together with a simple animated version of what happens during exposure. Emphasis is placed on the fact that foods processed in this way are safe for human consumption, and that each radiation pasteurized food item will be approved by the U. S. Food and Drug Administration before it is offered for sale to the public.

HONORS: 5th ANZAAS International Scientific Film Exhibition, Australia and New Zealand. 5th International Festival of Science Films, Lyon, France; 12th International Festival of Science & Educational Films, Padua, Italy; 11th International Nuclear Exposition, Rome, Italy; 5th International Festival of Science Fiction Films, Trieste, Italy; 7th International Agricultural Film Festival, Trieste, Italy; 10th Gold Mercury Film Prize, Venice, Italy.

Suitable for Understanding Levels-2 and -3.

NOT CLEARED FOR TV.

This anthropological film, made by ethnographic film-maker Timothy Asch of Brandeis University and anthropologist Napoleon Chagnon of...
the University of Michigan, shows the first stage of alliance formation between two of many mutually hostile Yanomamo Indian villages in Southern Venezuela and Northern Brazil. Through feasting, trading, dancing and chanting, the hosts and their guests, wearing only decorative paint and feathers, hope to renew an old alliance, but both—though surrounded by hostile enemies and desperately needing allies—are fearful because such a feast can end in violence through treachery or flaring of tempers. The story of this impressive documentary is told in a unique fashion: first a brief summary of the events with explanatory narration and still pictures; then a motion picture without narration, recounting in detail the preparation for and holding of the feast, using only the sights and sounds of the event and occasional superimposed translations of the authentic recorded dialogue. This film is one aspect of comprehensive studies of the population genetics of primitive peoples under the overall direction of Prof. James V. Neel, Chairman of the Department of Human Genetics of the University of Michigan, and under the financial sponsorship of the former U.S. Atomic Energy Commission.

HONORS: Golden Eagle, CINE (Council on Nontheatrical Events), Washington, D.C.; 8th New York Film Festival, New York; 19th International Festival of Scientific and Educational Films, Padua, Italy; Grand Prize Trophy, 20th International Tourist and Folklore Film Week, Brussels, Belgium; First Prize, 14th American Film Festival, N.Y., N.Y.; First Place, First International Festival of Sociological and Ethnographic Films, Venice, Italy; Festival dei Popoli, Florence, Italy; Tokyo Film Festival “Festival of Ethnographic Films of the World,” Tokyo, Japan; 10th International Educational Film Festival, Tehran, Iran.

0426
FIRST CHEMICAL SEPARATION OF LAWRENCIUM (1968). 17 minutes, color.
Suitable for Understanding Levels 3.
CLEARED FOR TV.
Shows four important factors that made the chemical separation of lawrencium possible: (1) preparation of a target to make \(^{252}\text{U}\); (2) production

0429
THE FIFTH FUEL (1967). 22 minutes, color.
Suitable for Understanding Levels 2 and 3.
NOT CLEARED FOR TV.
A fifth fuel—uranium—has become a useful source of energy; taking its place alongside of wood, coal, natural gas and oil, to provide power for our civilization and growth. This film explains the steps involved in preparing enriched uranium (U-235)—from the mining operation, through the exact-
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
This film, narrated by Dr. Norwood Bradbury, Director of ERDA's Los Alamos Scientific Laboratory from 1945 to 1970, concentrates on the development of the first atomic bomb (1945) and the first hydrogen bomb (1952).

Overall, the film is an historical perspective by Dr. Bradbury on the role played by LASL in the development and advancement of the nuclear age. Dr. Bradbury takes over the directorship of LASL from Dr. J. Robert Oppenheimer, who was the first director (1943-1945) and under whom the world's first atomic bomb was developed at Los Alamos.

Early Los Alamos story was not well documented photographically due to the nature of the ultra-secret Manhattan Project. However, through the use of available materials, especially old photographs, a perspective of the early years at LASL has been reconstructed.

The film also deals with the remarkable group of scientists gathered at Los Alamos by Dr. Oppenheimer. Included are such as Enrico Fermi, Edward Teller, Emilio Segre, Otto Frisch, James Fisk, Hans Bethe, Stan Ulam, Philip Morrison, Edwin McMillan, Victor Weisskopf, and others. Famous visitors include Niels Bohr and Ernest O. Lawrence.

HONORS: INDY Winner, 13th Annual Industrial Film Awards, New York City, New York.

From the Challenge Series.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Special precautions and techniques employed in working with plutonium are shown in a unique engineering laboratory, the Argonne Fuel Fabrication Facility, where work is performed within sealed glove boxes under an inert atmosphere. The manufacture of experimental reactor fuel pins containing plutonium is illustrated step-by-step. The film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

FUNDAMENTALS OF MECHANICAL VIBRATION (1964). 29 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Discusses the simple systems of mechanical vibration, including spring mass, viscous cowlomb, and solid}

The various types of damping are illustrated by free-demon movements and animation. In addition, numerous mathematical examples in letters are used to illustrate regular forcing functions and related effects on engineering dynamics. The mathematical approach to solving multiple displacement vibration problems is also included. (See also, RESPONSE TO MECH. SHOCK.)

Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Improvements relating to fire safety made at the plutonium processing facilities at the Rocky Flats Plant after the Hanford Report and as a result of a major fire are shown. The fire properties of glove box construction materials and means for protecting high efficiency particulate air (HEPA) filters from the effects of fire in the glove box area are presented.

The design of radiochemical processing buildings and interaction between the design and escape of particulate contamination are explained. Particulate tests of various construction materials installed on a full-scale glove box are shown. The high air temperatures resulting from these tests suggest that protection from heated air be provided for the HEPA filter system. Results of tests of various sprays and mist suppressants are shown.

These tests resulted in recommendations for materials and devices which are shown as installed. The relationship between these devices and fire safety of a plutonium processing facility is explained.

Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
In a "mod" style with a jazz musical score, this nuclear careers film is designed to appeal to junior and senior high school students. In a kaleidoscopic presentation, many young people are shown at work in various interesting phases of nuclear research and nuclear science and industry.

This unusual film does not have narration in the conventional sense. Instead, we hear young voices asking many varied questions about careers in the atomic field. The fast-paced visuals are, in effect, the "answers" to the questions—questions that cover: education required, clothes, living, recreation, on-job training, where the jobs...
are, the kind of people with whom one would be associated, the chances for independent research, the careers for women, the types of job opportunities and many others. With sprightly humor, the film makes the serious points that people who work in the scientific and administrative fields of atomic energy are not all geniuses, that opportunities for interesting and important positions are available for all, and that people who work in nuclear energy—whatever they do and wherever they are—are just people.

0154
Suitable for Understanding Levels 2 and 3
NOT CLEARED FOR TV.
Covers some of the methods of safe handling of radioisotopes in a laboratory and points out the procedures followed by laboratory personnel to avoid contamination. While the film is educational, its contents are presented in the form of a story of an unlikely, but possible, contamination incident, as a scientist goes about his work in an apparently methodical and routine manner. As he recalls the happenings of the day, the audience sees in detail all the procedures used in the safe handling of radioisotopes. The mystery of the contamination is solved at the end of the film. The film shows the use of protective clothing, radiation measuring devices such as film badges, dosimeters and counters, the handling of the radioisotopes in an experiment using a fume hood, and cleanup procedures following an experiment.

0155
HARNESSING THE RAINBOW (1965). 29 minutes, black and white.
(From the Challenge Series.)
Suitable for Understanding Levels 2 and 3
CLEARED FOR TV.
Uses of spectroscopy in a nuclear laboratory are illustrated with instruments ranging in complexity from a simple prism to one of the world's largest and most complex light spectrographs. ERDA's Argonne scientists describe the identification of line spectra as a means of studying atomic structure. The film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

0156
HARVEST OF AN ATOMIC AGE (1963). 20 minutes, color.
Suitable for Understanding Levels 2 and 3
CLEARED FOR TV.
Illustrates the progress achieved by U.S. scientists in using radiation to create new strains of disease- and weather-resistant food crops with higher yields. We see both the research work at ERDA's Brookhaven National Laboratory and the field work with new varieties of commercial crops. The specific example shown is the development of the Sanilac bean by Michigan State University plant geneticists. The Sanilac bean is disease-resistant and stands upright, permitting machine-harvesting. The film explains simply the theories of radiation-induced plant mutations, the methods, and the complexity of the long-term work.

0500
Suitable for Understanding Levels 2 and 3
CLEARED FOR TV.
Today, the most powerful "microscope" ever designed to study the basic nature of matter is at the ERDA Fermi National Accelerator Laboratory (Fermilab) near Chicago, where, in underground tunnels, scientists use atomic particles to help them search for and analyze some of the ultimate particles of matter.
Dr. Robert Wilson, Director of Fermilab, tells us that to study atomic structure, special "microscopes" are used, millions of times more powerful than ordinary micro-
scopes, and that high energy protons, rather light, are used for these studies.

We learn that protons are stripped from atoms and focused into a narrow beam which is accelerated to hundreds of billions of electron volts. The beam is guided into the main accelerator—an underground ring four miles around where it spins faster, with a thousand magnets keeping it on course, at almost the speed of light itself! Then the proton-bullets are channeled into targets, one of the main ones being the world's largest bubble chamber—a huge tank filled with liquid hydrogen. Particles created by the collision of the protons with the target produced bubble-tracks in the chamber. The tracks are photographed and analyzed.

Dr. Leon Lederman of Colorado University explains how high energy protons strike other type targets, and how an array of sensitive machines detect the particles coming from the collision. This information is electronically examined, filtered and stored. Eventually the information is correlated into theories that help explain the basic nature of matter.

FERMILAB's unique facilities are available to qualified scientists from universities around the world.

ORDER BY FILM NUMBER AND TITLE

0159
HEAVY PARTICLE BEAMS IN MEDICINE (1964). 11 minutes, color.
Suitable for Understanding Level-3.
CLEARED FOR TV.
Gives a brief historical development of the medical uses of cyclotrons and shows the unique properties of accelerator-produced heavy particles both in investigative studies and in radiation therapy. Experience at the Donner Laboratory shows that this new tool of nuclear medicine when used in pituitary irradiation provides creditable results in the treatment of acromegaly, Cushing's disease, and the retardation of diabetic retinitis. In addition, the Bragg effect of alpha particle radiation is of increasing importance in direct treatment of tumors of the brain and soft tissue.

0199
Suitable for Understanding Level-2.
CLEARED FOR TV.
In Massachusetts, Maryland, Virginia and Minnesota solar energy "goes to school," as students, teachers and the communities at large find solar heating an important asset to help relieve the energy shortage, and in the process learn how the systems work.

"Strange shapes" on the landscape are solar collectors—huge window-panes lined up side by side—facing the sun and collecting part of its enormous output of energy: collecting and storing and using it directly for heating, in experiments sponsored by the National Science Foundation.

In classrooms of the "solar schools," students discuss: the use of pumped water, passing through small metal channels in the solar collectors,
just below the surface of the glass, the "greenhouse effect" of heat gases permeating the glass and heating the water; heated water pumped through pipes into the buildings and into storage tanks (to be used when the sun is not out).

We see scenes of the collectors, the control centers, a solar experimental van, etc. Some solar collectors are roof-mounted, some are on the ground. In one of the Minneapolis schools, the solar heat is used to heat the air in the swimming pool. In another school, solar-heated water is used to wash dishes.

0:15
HORIZONS UNLIMITED

Suitable for Understanding Level 2.

CLEARED FOR TV.

Urges young people to think carefully about their future and raises certain questions that should be considered in this regard. The growth of nuclear energy and its applications have opened the door for all kinds of career opportunities. Due to the tremendous energy available from the atom, brand new industries are springing up. The role of nuclear power to produce electricity, desalt seawater, manufacture fertilizer, propel rockets, and mine minerals is described. Nuclear fuel processing is noted as one of the new industries emerging which will recover unused fuel and reclaim radioisotopes, a valuable by-product useful in numerous medical, research, and industrial applications.

Nuclear research and the tools used by nuclear scientists and engineers are briefly examined. Nuclear science has made a substantial contribution to the life sciences, where researchers investigate the biological processes which produce and sustain life. One of the most exciting applications of nuclear energy, thermonuclear fusion, is still to be developed. The potential benefits are many, but taking advantage of them will require creative young minds.

One of three films in nuclear science and nuclear engineering produced with the assistance of the American Nuclear Society. The basic purpose of these three films is to motivate students in their formative years to consider careers in the field of nuclear science and engineering. Use with PREPARING FOR TOMORROW'S WORLD, page 45, and YOUR PLACE IN THE NUCLEAR AGE, page 62.

0:17:21
THE IMMUNE RESPONSE (1962).

20 minutes, black and white.

(From the Challenge Series.)

Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.

Is concerned with the mechanism by which the body builds antibodies against disease and other foreign substances and with the effects of radiation on this immunizing response. In a demonstration the experimental procedures of the irradiation of rabbits with X-rays is shown and conclusions are discussed. A film which provides an in-depth description on basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

0:15:44
IN SEARCH OF A CRITICAL MOMENT (1970).

28 minutes, color.

Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.

This artistic film tells the story of the ZPFP—the Zero Power Plutonium Reactor—a special split-table test reactor that is designed to supply information essential to the development of economic fast breeder central station nuclear power plants. Although most current reactors "burn" uranium, the trend is toward fast breeder reactors that will produce or "breed" more nuclear fuel (plutonium) than they consume, thus dramatically increasing the world's supply of fissionable material. To achieve these goals, experimentation is necessary—resulting in machines to study the core designs of future breeder reactors. Animation shows the ZPFP, in which the composition, configuration and performance of fast breeder cores are tested. Criticality of the ZPFP is achieved by loading two separate 'tables' with plutonium fuel and bringing them slowly together. The film shows the construction of the ZPFP by Argonne National Laboratory, its many safety features, plutonium handling and storage, the instrumentation and computer to record and analyze data obtained by the ZPFP, and the fuel loading and eventual attainment of the state of criticality of the ZPFP to prepare it for its important testing program.

HONORS: Gold Camera, U. S. Industrial Film Festival, Chicago, Illinois; 18th International Nuclear Congress, Rome, Italy.

0:16:09
INSIDE THE YANKEE CORE (1967).

32 minutes, color.

Suitable for Understanding Level 3.

CLEARED FOR TV.

Describes in detail the most extensive and complete post-irradiation program ever performed on an expended commercial power-reactor core—in a sense, a detailed autopsy on the heart of an atomic power plant. It shows the actual work that was done and explains why and how the first core of the Yankee Atomic Plant reactor was destructively analyzed. The film explains the procedure used to select fuel assemblies and individual fuel rods so that, with inherent core symmetries taken into account, a three-dimensional map of measured burnup and isotopic content could be constructed and compared against predictions.

Fuel scheduled for examination is followed from the Yankee site at Rowe, Mass., to the Westinghouse Post-Irradiation Facility at Wintz Mill, Pa., where intact assemblies are inspected visually, measured, and gamma scanned. Selected fuel rods are shown being removed from the assemblies and transferred to the hot cells for destructive examination.
INTRODUCING ATOMS AND NUCLEAR ENERGY (1963). 11 minutes, black and white or color.
Suitable for Understanding Level-1.

NOT CLEARED FOR TV.

Although this teaching film explaining the general structure of the atom and showing how changes in the nucleus may produce energy used by man was prepared for intermediate grades and junior high school use, it will also be useful for lay-level adult audiences that wish a basic, concise primer on the subject. The film discusses: the composition of atoms—protons and electrons; how the nucleus releases the energy of the atom by losing particles (disintegration); nuclear fission, chain reaction and nuclear reactors; nuclear fusion in the sun; and, very briefly, the uses of nuclear energy.

INTRODUCTION TO ANALOG COMPUTERS (1963). 2 hours, color.
Suitable for Understanding Level-3.

CLEARED FOR TV.

This three-part technical lecture-film (approximately 40 minutes per part) by Dr. L. C. Jain of Argonne's Applied Mathematics Division includes: (1) components of electronic analog computers, (2) familiarization with a typical analog computer, (3) programming for analog computers, and (4) solution of typical problems.

INTRODUCTION TO HIGH VACUUM (1961). 18 minutes, color.
Suitable for Understanding Level-2 and 3.

CLEARED FOR TV.

Defines high vacuum and shows how it is produced and measured. Information is given on the contributions of Torricelli and von Guericke to vacuum physics; how vacuum is expressed (millimeters of mercury, Torr, particles per cubic centimeter); flow characteristics viscous and molecular) of gases under vacuum and their influence on vacuum techniques: mechanical and nonmechanical vacuum pumps and their principles of operation (toll-seal rotary, dry-seal roots, diffusion, and getter-ion types); mechanical and nonmechanical vacuum gauges and their principles of operation (McLeod mercury, thermocouple, and ionization); and typical examples of applications of high-vacuum techniques in product manufacture and in scientific research (freeze-drying process, thin-film evaporation process, and thermonuclear experiments).

INVISIBLE BULLETS (1962). 29 minutes, black and white.

From the Challenge Series.
Suitable for Understanding Level-2 and 3.

CLEARED FOR TV.

Introduces the series and establishes the basic knowledge about radiation necessary for an understanding of the other films in the series. The meaning of radiation, its natural sources, the various forms it takes, and how it is used in research are explained. The difference between alpha and beta particles and between gamma rays and X-rays is described. The film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

ISOTOPES IN ENVIRONMENTAL CONTROL (1971). 14 minutes.
Suitable for Understanding Level-2 and 3.

CLEARED FOR TV.

Shows some of the ways radioactive atoms are being used to help man safeguard his environment. Neutron activation analysis is applied to tracing oil spills. Radioactive tracers show the absorption of oxygen by flowing water. Other tracers are used to determine the drifting of sand on the ocean floor. Chemical and nuclear techniques are used in combination to study air pollution by sulfur oxides.

HONORS: Chris Award, Columbus Film Festival, Columbus, Ohio.

Suitable for Understanding Level-3.

CLEARED FOR TV.

Largely by interview, this film is a chronicle of the men and events that led to the discovery, separation and large scale production of plutonium—the most important new element discovered in the last half century. Through the personal reminiscences of Dr. Glenn T. Seaborg, Dr. Emilio Segre, Burris Cunningham and others, the personal story of the men who handled plutonium, purified and weighed it, and eventually produced it on a large industrial scale for the wartime Manhattan Project is told. Only four years elapsed between the discovery of the new transuranium element and its first isolation in quantity—truly an unprecedented chapter in the basic history of chemistry. Since the end of World War II, plutonium has also played a very active role in the peaceful uses of atomic energy—as the nuclear fuel in a fast breeder reactor, as the power source for small, compact isotopic generators in space, and as the potential power source for heart pacers and artificial hearts.

LANDMARK (1973). 13½ minutes, color.
Suitable for Understanding Levels-2 and 3.

CLEARED FOR TV.

For 200 years it took all kinds of energy—man and horsepower, water and windpower—to build America. Of all the forms of energy, it is mostly electricity that keeps our nation going and growing. We generate and use more than one-third of all the world’s electrical power, and every 10 years our needs double. For the most part, we create our electrical energy by burning coal, oil and natural gas. In addition, a small amount of today’s electricity comes from falling water, and about four percent is nuclear power.

LANDMARK takes us back twenty-two years before the energy shortage, when the United States built the world’s first experimental breeder reactor. This was the first nuclear energy machine to produce electrical power anywhere. Breeder reactors are important in this time of energy and fuel shortages because the breeder machine has the unique ability to produce more fuel than it uses while it generates electricity.

The breeder will convert idle, stored, non-fissionable uranium-238 into plutonium—a man-made fissionable fuel that can be used to fuel other reactors—thus freeing conventional fossil fuels for petrochemical uses, and extending our nuclear fuel resources from 25 years to centuries.

With scientific foresight, more than two decades of technology in research and testing have proved the safety and reliability of breeder reactors. Now, in this time of growing energy shortages, LANDMARK shows how the Government and the American utility industry are gearing up to build and operate a full-scale fast breeder demonstration plant.

When breeder reactors are commercially competitive in the 1980s, they will save this country more than 200 billion dollars in the first 30 years of operation.

HONORS: INDY Winner, 15th Annual Industrial Film Awards, New York City, New York, 2nd Birmingham
Film Festival, Birmingham, England; International Trade Fair Energy Spectrum, Salonika, Greece; Smithsonian Energy Film Series, Washington, D. C.

0482

LINK (1967). 8 minutes, color.
Suitable for Understanding Level-3.
CLEARED FOR TV.
Explains that current experiments in high energy physics involve the analysis of immense quantities of data. A typical experiment using a spark chamber can require the examination of a half million photographs. For analysis each track must be reconstructed from the photographs and located in space so that the particles can be identified and their moments calculated. An experimental computer approach at ERDA’s Argonne National Laboratory centers about a series of programs which match points in the photographs and draw a curve bit by bit. LINK, the program which draws the curve, utilizes an unusual trial-and-error approach which is illustrated by the photographs of an oscilloscope readout as curves are developed.

A particularly interesting facet of the LINK film is its computer-generated avant-garde music. Dr. Arthur Roberts, high-energy physicist at Argonne, combines his talent as a composer with a CDC-3600 computer to generate a number of intriguing sounds which simulate the instruments in an orchestra. The result is an interesting study in computer-performed music which accurately matches the mood of the computer-high energy physics work pictured.

HONORS: 15th Columbus Film Festival, Ohio; Scientific Film Festival, Lyon, France.

0192

THE LIVING SOLID (1962). 29 minutes, black and white.
(From the Challenge Series.)

Suitable for Understanding Levels-2 and -3.
CLEARED FOR TV.
Explains the principles and techniques of working with a gloved box—an
enclosure designed for handling radio-
active materials of low activity which
present a hazard primarily through
inhalation and ingestion. The film
opens with an explanation of how air
currents and turbulences carry various
substances, some of which may be
hazardous. It shows how highly toxic
materials like plutonium can best be
handled in a gloved box. The princi-
ples of the gloved box are then explained
in detail. Such incidents are cov-
ered as: the air flow and pressures
within the box; the "bagging in" and
"bagging out" of materials; the proce-
dures for changing gloves on the box;
and changing of the filter, and a method
for handling a fire within the box.

0199
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Discusses many aspects of radiation and offers a survey of their widespread beneficial applications in medicine, industry, agriculture, power, and research. A historical survey of the discovery of radiation is followed by an animated explanation of different types of radiation, including alpha, beta, and gamma. A brief explanation of radioisotopes and how they are produced is given, followed by scenes depicting some of their uses, including the use of Calcium-47 to diagnose bone cancer. The detection and study of radiation by sensitive instruments is explained. The study of radiation in the laboratory is demonstrated with work in photosynthesis using radiochromatography. Several important industrial uses of radiation are shown. The use of irradiation for prolonged food preservation, particularly of such highly perishable food as fresh fish and the production of a new material, a wood-plastic alloy, is also shown.

HONORS: 2nd International Festival of Red Cross & Health Films, Varna, Bulgaria; 12th International Nuclear Congress, Rome, Italy.

0201
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Survey of the objectives, methods, and hardware of the broad range of nuclear research conducted by a typical national laboratory of the Energy Research and Development Administration. With both artistry and clarity, the Argonne National Laboratory (ANL) narrator shows the CP-5 and the range of work accomplished with this powerful research reactor. In an ANL chemistry laboratory, investigation of atomic forces with "color center" studies of the structure of crystals is shown. Information is given on methods of protecting atomic scientists from radiation.

Argonne's efforts in the power reactor field are summarized, using the Experimental Breeder Reactor II as an example, with detailed explanation of its components, purposes, and methods. Experiments to learn the effects of radiation on human beings are explained—studies of the effects of radiation received continually over a lifetime (bone-tumor studies); studies of the mutation-producing effects of radiation (fruitfly studies, work with dogs, etc.); studies of neonatal rates; life-span studies; studies of leukemia; effects of radiation on cells.

Shows in detail the giant Zero Gradient Synchrotron accelerator—or "atom-smasher"—used to tear apart subatomic particles to study the basic nature of matter. Argonne's relation to American universities is outlined, with views of the training of foreign students.

0202
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
The step-by-step operations in an experiment performed by two Mound Laboratory scientists to determine the masses of a helium atom and a polonium atom. Throughout the film, the various laboratory techniques and precautions necessary for these measurements are shown in detail. In addition, students will learn something of radio-chemical techniques.

In Part I, a sample of radioactive polonium is weighed and sealed in an evacuated quartz tube, and then left to decay. The collection of alpha particles from the decaying polonium provides a sample of helium. In Part II, after a three-week period, the mass of helium sample accumulated is determined, and the rate of decay of the polonium is measured. From these data the atomic masses of helium and polonium are determined.

0208
METALS FRONTIER (1961). 22 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
A story of teamwork in research is designed for an audience with an appreciable degree of scientific sophistication, primarily seniors and graduate students in the physical sciences and engineering. Highlights in the operations of ERDA's Ames Laboratory are shown by illustrating the steps in the development of the process for the production of yttrium metal. The film also gives insight into the facilities and the pioneering tradition of Ames Laboratory in the investigation of the rare earths. The film is panoramic in style, showing how basic research, development, and production go along together. The following steps in metal processing are shown: separation of yttrium from rare earths, conversion to fluoride, reduction, and arc melting. Special emphasis is given to purity and to the need for careful analytical control. The film also shows how the graduate student fits into the laboratory's research program.

0210
MICROSCOPE FOR THE UNKNOWN (1965). 29 minutes, black and white.
(From the Challenge Series.)
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
The Zero Gradient Proton Synchrotron at ERDA's Argonne National Laboratory is the scene of this presentation depicting types of experimental
apparatus used in high energy physics research. Principles of "track detectors" such as the bubble chamber and the spark chamber are described, and the interpretation of track photographs is explained. A large spark chamber facility for detecting neutrinos and the 30-inch MURA bubble chamber are illustrated in detail. The film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

THE MIGHTY ATOM

0120

THE MIGHTY ATOM (1968): 27 minutes, color.

Suitable for Understanding Levels 2 and 3.

NOT CLEARED FOR TV.

Makes a summary examination of the peaceful uses of atomic energy today and in the future, with Host Narrator Walter Cronkite. Touched upon briefly are: the need for nuclear power; the nuclear merchant ship, the N.S. Savannah; nuclear propulsion for space rockets; SNAP (nuclear) generators which supply power for remote unmanned weather stations and off-shore oil rigs; use of the atom's energy to preserve foods by irradiation; nuclear medicine: the fight against cancer; nuclear-powered man-made hearts; the theory of atomic fission and the controlled nuclear reaction in a reactor; the burial of atomic wastes and research into the future; the theory and operation of giant accelerators to smash atoms and study their subatomic particles; breeder reactors; desalting plants, agro-centers, the controlled fusion reactor.

0211

MIRACLE IN THE DESERT: THE STORY OF HANFORD (1966): 28½ minutes, color.

Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.

Tells the story of the development during World War II of the Hanford Engineering Works in southeastern Washington. Construction of the billion dollar plant was based on the discovery of the new element 94, plutonium, in California by Dr. Glenn T. Seaborg and others, in 1941, and on the demonstration of the first successful nuclear chain reaction in Chicago by Dr. Enrico Fermi and others, in 1942.

Starting with construction of the secret Hanford nuclear plant in 1943, additions and improvements were made to plant facilities in the post-war years in the creation of plutonium by transmutation of uranium atoms and its chemical separation from uranium. Also shown is the New Production Reactor, the nation's first dual-purpose reactor to produce plutonium for military needs and steam to generate electricity.

Hanford's broad research efforts in the fields of metallurgy, radiation effects, biology, aquatic biology, atmospheric physics and other peaceful uses of atomic energy are summarized. Conversion of the plant from military needs to work on peaceful uses of nuclear energy is detailed. An explanation is given of how community and government agencies cooperated to institute a multi-contractor operation, attract new, diversified industry and create new jobs.

0417

MOLTEN SALT REACTOR EXPERIMENT (1968): 20 minutes, color.

Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.

Describes the design, construction and operation of the Molten Salt Reactor Experiment (MSRE), which is a fluid fuel, rather than solid fuel reactor.
Extensive animation is used to illustrate what takes place in the reactor system during operation. Developmental work prior to fabricating many of the reactor's major components, such as the reactor vessel and salt-to-air radiator, also is presented. A portion of the film is devoted to a discussion of the composition and circulation path of the molten salt fuel as well as the reactor cooling and control systems. It is pointed out that, based upon the successful operation of the MSRE, thermal breeder reactors could have many practical construction and operating advantages, and that molten-salt reactors appear to be very attractive thermal breeders.

0417
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Against a background of the icy lakes, volcanic mountains and wooded valleys of North America 10,000 years ago, this artistic film tells the story of how species competed against species for survival in nature's forge of fire and ice. Animals, insects, plants and man—all living things that had learned to adapt—survived and flourished in a wide range of temperatures. In breathtaking photography, we see the animals, birds and cavedwelling Indians in an accurate recreation of the great Northwest at the end of the last ice age.

The story is brought up to today, when our complex society demands vast amounts of electrical energy. Energy produced from the fossil fuels burned millions of years ago as storehouses of the sun's energy. And, finally, nuclear power plants. But, all plants—whether fossil or nuclear—produce excess heat: waste heat which is largely released to bodies of water. Excess heat from power plants often follows the same process as heat from the sun. The same sun pours the energy equivalent of 6,000 large power plants upon the Great Lakes every year.

Yet as small as the effect is of man's released heat on a global scale, such thermal effects at local levels must be carefully considered for each environment. The Government and commercial operators of nuclear plants are deeply committed to continual in-depth research on the effects of excess heat on fish, plants and animals, in studies searching for long-term effects. Brooks are channeled through laboratories. The movement and transfer of heat in lakes are studied. Fish are studied in the Great Lakes and at such great rivers as the Connecticut and the Columbia. Conclusion to date: some species suffer adverse pressure, some species benefit from the heat, but the great majority appear unaffected.

HONORS: 23rd International Festival of Mountain and Exploration Films, Trento, Italy; accepted by USIA for worldwide use.

0217
NEUTRON ACTIVATION ANALYSIS (1964). 40 minutes, color.
Suitable for Understanding Level 3.
CLEARED FOR TV.

Deals with the nature, potentials, and applications of neutron activation analysis—a highly sensitive and powerful analytical technique that has grown out of the study of peaceful uses of nuclear energy. It is a method of analyzing samples for various elements by bombarding them with neutrons to make some of the elements radioactive, and then identifying and measuring the induced radioactivities to complete the quantitative analysis.

The film shows the kinds of neutron sources used (isotope, reactor, and nuclear reactor), the latest counting techniques employed (especially those of multichannel gamma-ray spectrometry and spectrum stripping).

Interesting examples of recent applications of the method in the fields of scientific crime detection, geology and geochemistry, agriculture, medicine, the petroleum and chemical industries, and the semiconductor industry are shown.

HONORS: ANZAAS 3rd International Scientific Film Festival, Australia & New Zealand.

0461
NO TURNING BACK (1971). 27 1/2 minutes.

Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Since its beginning, the U.S. Atomic Energy Commission has made outstanding contributions to environmental research. This film visits some of the men involved in ERDA-supported ecology studies at laboratories and sites across the country. As these scientists discuss their own areas of research, the camera dwells, at each location, on the forms and variety of life, the interaction of plants and animals and man's impact on nature and the environment.

Among the areas visited are: the ALE (Arid Land Ecology) reserve—a vast, desert steppe laboratory in southeastern Washington State; the "Climatron"—a tropical forest study at the Missouri Botanical Garden; ERDA plants—Savannah River in South Carolina and Hanford on the Columbia River—where extensive research on river ecosystems takes place; Lake Michigan—where Argonne National Laboratory scientists study the impact...

Suitable for Understanding Levels 2 and 3.

Cleared for TV.

The nuclear "fingerprint" of an ancient piece of pottery is an extremely precise chemical analysis of the material in that item by nuclear techniques. The fingerprint is obtained by first removing a small sample of the pottery item, then irradiating the sample inside a nuclear reactor. The radioactive isotopes produced emit different amounts and intensities of radiation, which are analyzed by a germanium detector and other electronic equipment. A documentary section of live sound and true action gives the audience insight into how the research is actually conducted. The nuclear technique of pottery identification gives archeologists a means of knowing where pottery came from, which is independent of stylistic criteria and does not depend upon inferences as to where particular styles arose. The film illustrates some actual results from which imported and locally made potteries were distinguished when this could not be done with confidence on stylistic grounds alone. By retaining this data in the computer bank, the beginning of a fingerprint file on ancient pottery is underway.

NUCLEAR FINGERPRINTING OF ANCIENT POTTERY

HONORS: 8th Show of Technical Scientific and Educational Films in Industry; Fondation, Czechoslovakia; Industrial Photography Festival, New York City, N. Y.; Industrial Management Society, Chicago, Illinois; Information Film Producers of America, National Conference, Los Angeles, California; Chicago International Film Festival, Illinois; 2nd International Scientific Film Festival, Rio de Janeiro, Brazil; 20th International Festival of Mountsins and Exploration Films, Trento, Italy, 14th American Film Festival, New York City, New York.
means of producing power in large amounts is to build steam-powered electrical power plants—both fossil-fueled and nuclear. The film discusses the great care taken in studying and controlling effects of nuclear power plants on the environment. Environmental surveys are conducted to predict and control effects on fish life, ecology and hydrology. Problems from thermal effects (heated water) are avoided, with artificial cooling ponds, cooling towers, and careful selection of the plant site. The release of radioactivity to the atmosphere and in the cooling water are carefully controlled under rigid regulations. Storage of waste products, safety of nuclear plants and esthetic values are also touched in this currently important presentation.

0226

Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

After showing the launching of a new satellite, which is being wholly powered by a nuclear generator, animation is used to explain the use of its isotopic generator to create power to run electronic equipment, recording equipment, and transmit data back to earth for analysis. The advantages of nuclear energy are shown over the use of chemical energy and solar energy. The principles of power generation by isotopic decay are explained, showing how thermocouples convert the decaying isotopes’ heat directly to electricity. A comparison of the isotopes Plutonium-238 and Curium-242, both used in SNAP isotope power systems, is made. It discusses the design features of the SNAP-9A which are the result of 7 years of research. Safety tests of the isotope capsule, including explosion tests, fire tests, impact tests, and re-entry tests are shown.

0168

NUCLEAR POWER IN THE UNITED STATES (1971). 28 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

By the year 2000, it is estimated that close to half of all the electrical power needs of the United States will come from nuclear energy power plants. To meet these projected demands for yet more power, the former United States Atomic Energy Commission spent more than two decades in the development of thermal reactors as well as performing research on various advanced reactor concepts. This film describes the implementation of plutonium-recycle programs and the thrust of the liquid metal fast breeder. The entire spectrum of the nuclear power industry is touched upon including S.E.F.O.R., LMEC, FFR, EBR-II and the work being performed at Enrico Fermi, Dresden, Hanford and Shippingport. The film not only discusses the liquid metal fast breeder, but tells of the work being done on other advanced reactor concepts such as the high temperature gas cooled reactor, the molten salt breeder and the low gain thermal breeder.

HONORS: Industrial College of the Armed Forces Seminars; American Society of Civil Engineers, Cincinnati, Ohio.

0227

NUCLEAR REACTIONS (1963). 29 1/2 minutes.

(From the Understanding The Atom series).
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

This segment of the series continues the discussion of the film “Alpha, Beta, and Gamma,” and involves some of the basic concepts of nuclear reactions. Neutron capture processes are described with the gamma emission and particle ejection reactions being studied. Nuclear fission is also discussed. As an example of the calculations involved in nuclear reactions, the film describes the activation of a gold sample in a nuclear reactor. Emphasis is placed on the minute quantities which can be detected with the subsequent applications to the technique of activation analysis. It is shown that hundreds of a part per billion of certain materials can be detected by nuclear techniques.

The lecture film, designed for a high school senior-level chemistry or physics course, or as the introductory unit in nuclear science at the college level, is presented by Dr. Ralph T.
pleton of the Pacific Northwest Laboratory (studies of waste heat in aquatic biology), and Dr. Loren Eiseley, internationally known anthropologist.

HONORS: Second Birmingham Film Festival, Birmingham, England; American Film Festival, New York City, N.Y.

Suitable for Understanding Levels 2 and 3. CLEARED FOR TV.

Describes a new technique in the examination of physical evidence involved in crime investigation called "Activation Analysis." This method is some 100 to 1,000 times more powerful (more sensitive) for the detection of most elements than methods currently available in police crime laboratory. Evidence, even small enough to be analyzed by other methods (even microscopic samples) can often be analyzed successfully by this new technique, and tell-tale trace concentrations can be measured. Frequently, the analysis can be done non-destructively—thus preserving the samples.

This highly sensitive and powerful analytical technique is a method of analyzing samples for various elements by bombarding them with neutrons, to make some of the elements radioactive, and then identifying and measuring the induced radioactivities to complete the quantitative analysis.

The film shows the application of activation analysis to the investigation of several illustrative types of criminal cases: murder, burglary, and narcotics peddling. The cases described are based on actual cases. One case is described all the way from the commission of the crime through the trial in court; the others from the crime through the laboratory investigation. The film is of interest to law enforcement people, the legal profession, service organizations and educated laymen.

HONORS: 15th Annual Columbus Film Festival, Ohio; 19th International Exhibition of the Scientific Didactic Film, Padua, Italy.

0236 OAK RIDGE RESEARCH REACTOR (1958). 20 minutes, color.

Suitable for Understanding Levels 2 and 3. CLEARED FOR TV.

Summarizes the components, facilities, uses, and operation of the Holifield Research Reactor, a tank type, heterogeneous reactor, immersed in a pool, designed to operate at 20 to 30 Mw.

Suitable for Understanding Levels 2 and 3. CLEARED FOR TV.

Describes the design, development and operation of the alternating gradient synchrotron (AGS) at ERDA's Brookhaven National Laboratory, shows the various major components of this 33 billion-electron-volt particle accelerator, and explains how the high energy protons produced in the machine are used in physical research. An experiment is seen, in which the particle beam is guided into a bubble chamber and the resultant interactions with the target nuclei are photo...
suitable for understanding level 2.
cleared for tv.
A living wilderness side by side with industry in South Carolina is an ideal laboratory for environmental research for scientists from Universities, foundations and other government agencies...scientists who can conduct a wide range of long-term, undisturbed experiments and studies. THE PARK examines the character of the on-site nuclear industry, its effect on natural resources and living species around it and the nature, importance and extent of continuing research that began before industry arrived.

In 1972, ERDA's Savannah River Plant was designated the first National Environmental Research Park. Since 1950, the Plant's 300 square miles have been the subject of extensive scientific study to define and control the impact of industry on nature...in this case, an active industry that produces a variety of much-needed, nuclear materials.
electric power converter, and chemical processing of the radiisotope Strontium-90 fuel. Laboratory procedures are depicted for thermoelectric couple assembly into a compact operating system capable of converting heat energy into electrical current without the need for moving parts.

Fully shielded Strontium-90 fueled thermoelectric generators, placed into operational service at remote outposts from north of the Arctic Circle to the South Pole, are now proving the feasibility of reliable, unattended electrical power production from heat generated by decay of radioisotopes.

Installation of the SNAP-7 generator family—to power unattended weather stations in Antarctica and the Gulf of Mexico, navigational aids to shipping in Chesapeake Bay and the Gulf of Mexico, deep sea acoustic research in the Atlantic Ocean—is depicted.

The film concludes with a description of current development work and predictions relating to the next generation of Strontium-90 thermoelectric power supplies for terrestrial uses.

HONORS: Best in Class, Industrial Film Awards Competition, Industrial Photography Magazine, N. Y.

0411
PERSIMMON: A NUCLEAR PHYSICS EXPERIMENT (1967). 16 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
For several years, the Los Alamos Scientific Laboratory has been using the intense burst of neutrons produced by the underground detonation of a nuclear explosive to perform a variety of nuclear physics experiments. The basic argument in favor of such experiments is that a relatively small nuclear detonation will produce the same quantity of neutrons, in a fraction of a second, that would take a laboratory accelerator hundreds of years to produce. Thus, experiments requiring a very high neutron flux, or a hopelessly long-running time on an accelerator, become feasible with a nuclear explosion as the neutron source. The motion picture presents and discusses the various experiments that comprised the Persimmon event and climaxes with the actual detonation of the nuclear explosive and the consequent collapse and cratering of the ground above it.

0256
THE PETRIFIED RIVER (1956). 28 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Describe how uranium was deposited during prehistoric, geologic ages: shows early prospecting on the Colorado Plateau; mining and milling of uranium ores; and the use of the atom’s energy for power and to produce radioisotopes for medical diagnosis and therapy, agriculture, industry and research.

0260
PLANT GROWTH IN COMPENSATED FIELDS (1967). 7 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Plant growth is controlled by an extremely sensitive mechanism. Even a brief and minute stimulation by gravity, water, etc., will cause the growing portions of the plant to turn toward or away from the stimulus. Since the gravitational force must operate for a "minimum presentation time," it is
possible to neutralize the gravitational field. A mechanical servo-system has been developed by Argonne National Laboratory to neutralize effectively the gravitational effects in all directions. The servo-motors are controlled by a computer program which provides uniform angular distribution, velocity and acceleration.

HONORS: Scientific Film Festival, Lyon, France.

0267
PM-3A NUCLEAR POWER PLANT—ANTARCTICA (1963). 20 minutes, color.

Suitable for Understanding Level 5.

CLEARED FOR TV.

The film-story of the 1500-kilowatt nuclear power station built, under contract to USAEC, for operation by the Navy at McMurdo Station, Antarctic headquarters for the joint Navy–National Science Foundation Antarctic Research Project, PM-3A, the first atomic power station in the bleak Antarctic, supplies electric power and space heating for the isolated station. Use of nuclear power reduces the massive amounts of fuel oil for generating electricity that must be brought 11,000 miles by American tankers. PM-3A was designed, fabricated, and tested in 14 months. Details are given on the plant’s pressure vessel, coolant, nuclear fuel, control rods, switchgear, heat-transfer equipment, turbogenerator, and many other major components. We see shots of the erection and testing of the reactor in the States, site preparation by Seabees in the Antarctic, erection and testing of the reactor at McMurdo, safety aspects, and achievement of criticality.

0501

Suitable for Understanding Levels 2 and 3.

CLEARED FOR TV.

As we see the type of work they are describing, eight scientists, engineers and managers explain various aspects of obtaining thermal energy from the earth for the production of electric power.

It is possible to drill a well and obtain natural steam. In this country the best potential is in the West. When a well is drilled, dry steam, wet steam, or hot liquid water may be produced, and may help meet national power needs in the future. Pacific Gas and Electric Company is presently developing 300,000 kilowatts of electric

power.
power with heat produced from geothermal sources.

In addition to steam and water, hot dry rock and lava are also found. Development must occur where the heat source occurs—near volcanoes or in other areas where magma or lava is near the surface. Heat may be obtained from rocks at 500–1,000 degrees Fahrenheit by injecting water in one hole and removing steam from another, if the rock is sufficiently
broken. This method has the potential of economic benefit to local communities and has limited environmental impact. The problem is determining how to use the resource.

Hot fluid systems offer the most immediate solutions, but even with these problems can occur. Hot water is more concentrated than sea water and can produce large amounts of salt which may be re-injected into the earth. The Imperial Valley of California has a potential capacity of 20,000 megawatts compared to 34,000 megawatts presently being used by the entire state. Design and materials problems must be overcome because of the erosive and corrosive effect of the brine on pipe and well casing.

Utilization technology for hot, dry rock has not yet been developed and is far more complicated than it sounds. An Energy Research and Development Administration (ERDA) program is aimed at providing basic technology.

0451
PREPARING FOR TOMORROW'S WORLD (1969). 26 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Opens in a high school science laboratory with the physics teacher serving as narrator. The student is asked to examine his interests and abilities with a view toward taking his place in the expanding world of nuclear science and nuclear engineering. The value of building a firm foundation in science, mathematics, and English as early as possible in school is stressed. Participation in extracurricular activities, such as school science fairs, is encouraged.

Visits are then made with several students majoring in some aspect of nuclear science or nuclear engineering at different universities across the country. The difficulty in making a career choice is recognized and the student is encouraged to examine all programs offered by the university.

Depending upon one's goal, the student is encouraged to continue his education toward an advanced degree. With the availability of graduate fellowships and other assistance, the financial burden is lightened for most.

Although this additional commitment adds to the student's time and cost, there are many factors which make those additional investments very worthwhile.

One of three films in nuclear science and nuclear engineering, produced with the assistance of the American Nuclear Society.

The basic purpose of these films is to motivate students in their formative years to consider careers in the field of nuclear science and engineering. (Use with HORIZONS UNLIMITED, page 33, and YOUR PLACE IN THE NUCLEAR AGE, page 62.)

0280
PRINCIPLES OF THERMAL, FAST AND BREEDER REACTORS (1963). 9 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
This animated film offers an explanation of nuclear fission, the chain reaction, and the control of this reaction in three basic types of reactors. It describes the principles of fast and thermal reactors and introduces the concepts of the moderator and reflector. The breeder principle is described, and plutonium and thorium cycles are indicated. (Use with BASIC PRINCIPLES OF POWER REACTORS, see page 19.)

0415
PROJECT GASBUGGY: THE RESOURCEFUL ATOM (1968). 14½ minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Man's hope to harness the atom's explosive force for peaceful purposes moved closer to fulfillment deep beneath a plateau in northern New Mexico in December 1967. Government and industry joined forces to study whether nuclear explosions could be safely used to perform massive underground engineering tasks for more efficient recovery of natural resources.

The experiment involved the detonation of a 26-kiloton nuclear explosive (energy equivalent to that released by 26,000 tons of T.N.D.) underground in a test area of natural gas-bearing sandstone in which the gas is so tightly trapped that recovery by conventional techniques is uneconomic. Principal objective of the experiment was to investigate how explosive force of the atom could crush and shatter the rock to permit safe and economic recovery of the natural gas.

PROJECT GASBUGGY reports on site preparations, drilling activities, emplacement of the nuclear explosive, installation of safety monitoring equipment, the explosive and drilling.
back to collect gas and rock samples. Art and animation are used to illustrate the test objectives, what takes place underground when a nuclear explosive is fired, and the expected effects of the explosion on the gas reservoir.

HONORS: 6th Review of Scientific Technical & Educational Films, Pardubice, Czechoslovakia. 4th International Exhibition of the Scientific Film, São Paulo, Brazil. 5th World Festival of Scientific Education & Geographical Films, Tehran, Iran. 6th International Festival of Scientific & Educational Films, Parma, Italy; Scientific Film Festival, Lyon, France; 6th International Exhibition of the Scientific Film, Buenos Aires, Argentina.

0288
(From the Understanding the Atom Series)
Suitable for Understanding Levels 2 and 3
CLEARED FOR TV.
Discusses the general problems of radiation decay, such as the laws of radioactive decay, including the concept of half life. Statistical considerations are introduced, and the basic notion of the standard deviation in counts expected in various experiments is described. The energy spectrum from alpha and beta emitters is considered, and the use of absorption curves to study the energy distribution of beta radiation is introduced. The density thickness expressed in milligrams per square centimeter is introduced as a useful term.

The film, designed for a high school senior-level chemistry or physics course, or as an introductory unit in nuclear science at the college level, is presented by Dr. Ralph T. Overman, former Chairman, Oak Ridge Institute of Nuclear Studies.

0502
PUTTING THE SUN TO WORK (1974). 5 minutes, color.
Suitable for Understanding Levels 2 and 3
CLEARED FOR TV.
The earth is man's primary source of energy, but this energy was obtained from the sun. Yearly energy production by the sun would satisfy all human needs for more than 10,000 years. Why are we worried about an energy crisis?
Mr. George O. G. Lof, Director, Solar Energy Laboratory, Colorado State University, explains that there is a definite limit to the supply of fossil fuels, and use pollution. Paradoxical, but in the sun's radiation sign special str capture that e solar heated by Dr. Lof explains the sun's energy, w inward to heat then may be a house.
Dr. Aden Optical Science Arizona, states the new techno film coating w and prevents re s that the surf very hot. Res under a Nation grant, at the Un solar collector
The problem is one of engineering and fabrication. Honeywell and the University of Minnesota are building modular components which can be placed and maintained in the field. Also, there is work toward improving structure and function of elements to reduce cost, so that thermal power plants are one of the approaches that researchers are taking toward harnessing the sun to work.
RADIATION ACCIDENT PATIENTS

Suitable for Understanding Levels 2 and 3.

CLEAR FOR TV.

The film is designed for the training of rescue workers, nurses, therapists, hospital administrators, physicians, police and firefighters. It emphasizes that, despite the outstanding safety record of the nuclear energy industry, the anticipated rapid growth of atomic power plants, the increasing medical use of radioactive substances, and the expansion of radiation cases, radioactive contamination must not be allowed to compromise good medicine. The film points out that the unfounded fears of nuclear medical and paramedical personnel of radiation and possible contamination must not be allowed to close the door on assistance to radiation patients. The film helps audiences understand that radiation cases have parallels in routine rescue squad and hospital experiences.

HONORS: 25th National Committee on Safety, Chicago, Illinois; Gold Medal, International Festival of Occupational Safety and Health Films, Belgrade, Yugoslavia; 3rd International Film Festival of Prevention (Labor Accident), Oporto, Portugal.

0291

RADIATION AND MATTER (1962). 11 minutes.
(From the Understanding the Atom Series.)
Suitable for Understanding Levels 2 and 3.

CLEAR FOR TV.

The film, which considers the interaction of radiation with matter, develops the various processes by which alpha, beta, and gamma radiation give up energy to their surroundings. The similarities and differences of alpha and beta particles are considered, with emphasis on the methods by which ionization occurs. It is pointed out that, since the interaction of radiation in the absorption process takes place essentially only with orbital electrons on the atoms, the density of electrons in matter is the determining factor. The relation between energy of a particle and the number of ion pairs formed is also explained. The lecturer follows with a discussion of gamma, or electromagnetic radiation, which is described as a nonionizing event in terms of the initial interaction between photons and atoms. Four possibilities of gamma-ray absorption (excitation, photoelectric effect, Compton effect, and pair production) are discussed. The viewer, however, is alerted to the fact that there is only a certain probability that one particular process may take place rather than another, depending upon the energy of the gamma ray. This probability, expressed as absorption coefficient, is then related to each of the four absorption processes.

A lecture film designed for a high school senior-level chemistry or physics course, or as an introductory unit in nuclear science at the college level, presented by Dr. Ralph T. Overman, former Chairman, Oak Ridge Institute of Nuclear Studies.

0292

(From the Challenge Series.)
Suitable for Understanding Levels 2 and 3.

CLEAR FOR TV.

Because genetic damage is one of the most serious effects of radiation, the U.S. Atomic Energy Commission's genetics program is designed to learn how radiation damages cells and what the long term effects of such damage might be. The film explains how radiation causes mutations and how these mutations are passed on to succeeding generations. Mutation research is illustrated with results of experimentation on generations of mice and includes discussion of work with fruit flies and induced mutations. Fallout and its implications are also discussed. The film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

0293

RADIATION DETECTION BY IONIZATION (1962). 30 minutes, black and white.

(From the Understanding the Atom Series.)
Suitable for Understanding Levels 2 and 3.

CLEAR FOR TV.

The basic principles of ionization detectors are described, particularly in relation to the pulse height as a function of voltage curves. Brief descriptions of ionization chambers, proportional counters, and Geiger counters are included, and examples of instruments operating in these regions are shown. Special consideration is given to Geiger counters, including the mechanism of gas quenching and the determination of a counting-rate plateau. The resolving time of a counter is discussed, as well as various components of a practical instrument, including amplifiers and scalers.

A lecture film designed for a high school senior-level chemistry or physics course, or as an introductory unit in nuclear science at the college level, presented by Dr. Ralph T. Overman, former Chairman, Oak Ridge Institute of Nuclear Studies.
0290 RADIATION DETECTION BY SCINTILLATION (1962). 30 minutes, black and white.

From the Understanding Nuclear Series. Useful for high school junior and senior science, college science, and technical courses. Suitable for demonstrating and explaining the operation of spark counters, Geiger counters, and other types of radiation detectors.

Cleared for TV.

0291 RADIATION EFFECTS IN CHEMISTRY (1964), 13 minutes, color.

Suitable for Understanding Level 1.

Cleared for TV.

Explains that radiation initiates a variety of chemical reactions. But the fundamental mechanisms which produce these effects are still under investigation. Within a few nanoseconds after irradiation, a variety of chemical substances are produced which are then available to participate in subsequent reactions. The experimental study of this process requires extremely sensitive and high-speed techniques - spectrometry, electron spin resonance techniques, etc.

0292 RADIATION IN BIOLOGY: An Introduction (1962), 13 1/2 minutes, black and white or color.

Suitable for Understanding Level 2.

Not Cleared for TV.

The meaning of high-energy radiation and how it is used in biological research. Briefly reviews light from the sun (wave radiation), radio waves, x rays. Also touches on the various sources of radiation (x ray machines, nuclear reactors, cosmic rays, the sun). Radiolabels are defined, and their life is traced from production through their use as tools in the study of radiation damage. The effect of radiation on living cells is demonstrated by comparisons of plants grown from irradiated and nonirradiated seeds and of mice that had been irradiated with those that had not been irradiated. The film also shows the effects of radiation on bone marrow, on the protective lining of the intestine, and on chromosomes (mutations). The use of radioisotopes to trace chemical processes in plants (the absorption of nutrients) is also covered. Autoradiographs are explained, and the function of a Geiger counter is outlined.

0293 THE RADIOISOTOPE POWERED CARDIAC PACEMAKER (1971), 21 1/2 minutes, color.

Suitable for Understanding Level 3.

Not Cleared for Television.

One of the relatively common diseases that disrupts a normal heart is "heartblock." This occurs when the natural pacemaker of the heart no longer generates the required electrical impulses to contract the ventricles. There are presently more than 10,000 persons in the United States who have been greatly assisted by the use of battery-powered artificial heart pacers and each year an additional 5,000 patients receive such devices.

In three years the former U. S. Atomic Energy Commission in collaboration with the National Institutes of Health successfully developed an isotope powered pacemaker. The nuclear pacemaker promises a lifetime of ten years or more and removes the risk and expense of frequent surgical replacement experienced with battery powered pacers. This film depicts the entire fabrication and lifetime testing of the nuclear powered pacers and witnesses one of the complete implantations of the device in a dog at the National Institutes of Health.

HONORS: Chris Certificate in Medicine, 19th Columbus Film Festival, Ohio.

0294 RADIOISOTOPE SCANNING IN MEDICINE (1965), 16 minutes, color.

Suitable for Understanding Level 2.

Not Cleared for TV.

Development of scanning equipment in combination with new radioactive drugs has produced important advances in medical diagnosis. Radionu-
A lecture film designed for a high school senior-level chemistry or physics course, or as an introductory unit in nuclear science at the college level, presented by Dr. Ralph T. Overman, former Chairman, Oak Ridge Institute of Nuclear Studies.

0310
RADIOLOGICAL SAFETY (1963). 30 minutes, black and white.
(Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Examines the field of radiological safety or health physics, and tries to give a basis for a perspective on potential biological radiation damage. It first covers background radiation and the nature of the difference in this radiation. Larger doses of radiation can be a potential cause of both somatic (direct bodily) damage and genetic (hereditary) damage, and consideration is given to the maximum permissible limits or radiation guide levels which have been established by various radiological protection committees and the Federal Radiation Council. Various units are described, including the roentgen, the rad, and the rem. The latter unit is a measure of the biological dose equivalent and considers the relative biological effectiveness (RBE) of the radiation. Consideration is also given to the maximum permissible concentration of radioisotopes in water or air, and the problems involved in the localization of radioactive materials in the body. Various factors that must be controlled in reducing the radiation hazard include the quantity of radioactive material, the distance, the time of exposure, and shielding. Internal exposure must be minimized by the use of special laboratory facilities and techniques which are required to minimize the admission of radioactive isotopes into the body. The importance of having calibrated instruments available is stressed in any program involving the use of radiation sources. A lecture film designed for a high school senior-level chemistry or physics course, or as an introductory unit in nuclear science at the college level, presented by Dr. Ralph T. Overman, former Chairman, Oak Ridge Institute of Nuclear Studies.

0311
REACTOR SAFETY RESEARCH (1964). 15 minutes, color.
(Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Shows that conservative design is characteristic of nuclear power reactors, with elaborate safeguards to prevent the improbable accident. It points out that through reactor safety research the mechanisms of abnormal behavior, fission product release, chemical reactions, containment, and vapor cleanup systems are better defined, providing a basis for improvement in design features and reduction of costs.

0125
RESPONSE TO MECHANICAL SHOCK (1968). 18 minutes, color.
(Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Illustrates several types of mechanical shock and shows the shock signature (acceleration as a function of time) generated by each shock. Through
animation, the parameters used to define mechanical shock are shown: acceleration, velocity, and displacement, and the relationship and interdependence of these three functions are explained. The film illustrates the concept of a single degree-of-freedom model and shows how three different degrees of damping affect motion of the spring-mass system during shock response. With animated drawings, the film illustrates how the amplitude and duration of a shock affect the response of a single degree-of-freedom system; how shock response spectra for simple and complex shocks are derived; how shock response spectra may be used.

(See also, FUNDAMENTALS OF MECHANICAL VIBRATION, page 34.)

HONORS, 13th International Exhibition of Scientific and Educational Films, Padua, Italy.

0156

ternal radiation levels have dropped to levels safe for people and the radioactive burdens in animals and plants are low, rainwater in the soil is safe for drinking, coconut trees are increasing again, all the expected species of fish and sea life are to be found, birds are thriving, and that the sea surging through the coral reefs has cleaned, restored, and nourished the adults. Conclusions: the gross tilts or nutrient problems are being corrected. Drinking water in the soil is safe for people.

HONORS: 5th International Agricultural Film Festival, Trieste, Italy, 1st Annual Melbourne Film Festival, Australia.

ROUNDUP (1960), 15 minutes, color. Suitable for Understanding Level 2. CLEAR FOR TV.

Describes the use of photography to eradicate the screwworm fly in the southeastern United States, an insect pest that had caused large losses to live-stock owners. The screwworm fly deposits its eggs in a cut or insect bite on the skin of a warm-blooded animal. The eggs hatch to worms that feed on live flesh and then fall to the ground. The eggs of the screwworm fly have been tried on the tiny island of Curaçao, where sterilized male flies were released from aircraft. In six months the pest was eliminated.

SAFETY—SECOND TO NONE (1974), 14 minutes, color. Suitable for Understanding Levels 2 and 3. CLEAR FOR TV.

As more nuclear power plants are put into operation by electric utilities throughout the U.S., some fears have been expressed about safety. This film explains that, as the watching over the nuclear power industry, the government takes great care to see that plants are made extraordinarily safe, that no shortcuts are ever taken that might threaten the public, and that emphasis is placed on quality in design, construction and operation.

SAFETY SECOND TO NONE (1965 Version), 14 minutes, color. Suitable for Understanding Level 2. NOT CLEAR FOR TV.

Shows role of photosynthesis, a process by which plants use sunlight, water, minerals and carbon dioxide from the air to release oxygen and to form foods such as sugars, starches, fats and proteins. Better understanding of the process may lead to the production of food by chemical methods. In the film, algae, one-cell plants, are subjected to a series of different light exposures to determine chemical changes in relation to exposure time.
SANDIA SPINOFF (1967). 15 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Demonstrates how high reliability requirements in the U.S. nuclear weapons program have resulted in scientific developments at ERDA's Sandia Laboratory which have peaceful "spinoff" applications for hospitals, industry, etc. Examples shown: laminar air flow; a technique which creates ultra-clean environments for any medical or industrial application where protection is needed from airborne contamination; ion plating, a new method of plating which creates extremely tight bonds between previously incompatible metals; and ACCEL (Automated Circuit Card Etching Layout). See ACCEL: RE-VISITED, page 111.

HONORS (1976, Golden Eagle International Award, Washington, D.C.). One of the "Most Honored Films of the Year." Rinemann, Seven, Chicago.

THE SCINTILLATION CAMERA (1964). 10 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
In order to visualize the location of gamma-emitting isotopes within the human body for medical diagnostic purposes, the scintillation camera was developed at the Donner Laboratory. Using animation, this technical film describes this equipment and explains the application of the method for studying thyroid and kidney function disorders. It also demonstrates a modified apparatus for use with positron-emitting isotopes which has been developed and finds a particular advantage in diagnosis of brain tumors.

A SEA WE CANNOT SENSE (1973). 27 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Everything in nature can be seen or felt—wind, light, cold, texture—that is everything except radiation. This is "A SEA WE CANNOT SENSE."

Low-level radiation that thoroughly suffuses our environment—much of it coming from cosmic rays from outer space—is in the earth, the rocks, the waters, the air, even in man himself. The amount varies in different places and under differing conditions. We have instruments that detect all kinds of radiation and thoroughly measure and record it. The film shows where natural background radiation comes from, where the natural buildup is three to twenty times more than in the United States. The radioactive difference of residing a wooden house is compared with a concrete house.

Low-level radiation as used in medicine and dentistry is also discussed, as are the effects of chest X-rays, television sets, nuclear power plants and weapons testing.

The determination of Federal Radiation Protection Standards is made by outstanding experts in radiology, genetics, biology and health physics. The film shows how background as well as man-made radiation has been studied and examined more thoroughly than any other potentially hazardous substance in man's environment, and how these standards originally set in 1929 are now amended and enforced.
A Sea we cannot sense is a popular and impressive treatment of a little-known subject—Ionizing radiation, which has been here on earth long before man and has been part of the natural environment as all life has developed on this planet.

HONORS: American Film Festival, New York City, New York, 2nd Bonnie Film-Festival, Birmingham, England, 2nd International Festival of Mountain and Exploration Films, Trents, Italy

0336

SEARCHING FOR THE ULTIMATE (1962). 29 minutes, black and white.
(From the Challenge Series.)
Suitable for Understanding Level 3 and 4
CLEARED FOR TV.
Atomic structure, one of the most basic forms of nuclear research, permits the scientist to discover the nature of the universe through the use of atomic smashers or particle accelerators. The machines produce intense beams of radiation which enable study of the structure of the atom, the nucleus, and the basic components of the nucleus. The film explains how accelerators operate and shows one of the world's largest particle accelerators being constructed. Sub-nuclear particles and the concept of matter and anti-matter are also explained. The film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

0339

SHEAR-LEACH PROCESS FOR SPENT NUCLEAR FUELS (1966). 11 minutes, color.
Suitable for Understanding Level 3.
CLEARED FOR TV.
Illustrates the development at ERDA's Hollfield National Laboratory of the Shear-Leach Process, a mechanical method for reprocessing spent stainless steel or Zircaloy-2 clad power reactor fuels. The various parts of the equipment are portrayed, as well as the operation of the Shear-Leach with unirradiated fuel. The film also summarizes data obtained from various shearing and leaching tests conducted at Hollfield National Laboratory.

0341

SHORT-LIVED RADIONUCLIDES IN NUCLEAR MEDICINE (1971). 27 minutes, color.
Suitable for Understanding Level 3.
CLEARED FOR TV.
The recent surge in the use of radioisotopes in nuclear medicine owes much of its impetus to the development of new improved scanning instrumentation.

The film describes the development of a Technetium-99 generator at Brookhaven and its medical application at the Argonne Cancer Research Hospital. It also touches upon the more recent methods of producing new experimental short-lived isotopes in High Flux Reactors and medical cyclotrons. The refinement of radioisotope scanning techniques is also discussed, and capsule reports are made on the Mark III brain scanner, the 16 inch Auger camera, and the depth perception ability of the multiplane tomographic scanner. All these refinements offer the physician a better diagnostic picture faster and with the lowest radiation burden to the patient.

0343

THE SL-1 ACCIDENT, PHASES 1 AND 2 (1962). 40 minutes, color.
Suitable for Understanding Level 3.

NOT CLEARED FOR TV.
This semi-technical film on the SL-1 accident at the National Reactor Testing Station, Idaho, was produced primarily for studying and improving the methods and techniques of handling nuclear emergencies. A combination of actual and reenacted scenes, the film presents a concise resume of what happened and how the former U.S. Atomic Energy Commission and its operating contractors reacted to the situation, i.e., the activities associated with Phases 1 and 2 of the postaccident operations. Phase 1 involved the location, rescue, and recovery of the three personnel and the determination of how much contamination had been released to the environment. Phase 2 involved determining whether the reactor was nuclearly safe. Results of the investigation of the accident indicate a need for readily available high-range survey instruments, careful use of health physicists, preplanning, etc.; in addition, important information on reactor technology and the administrative procedures governing reactor development has resulted. Brief information is given on the start of Phase 3 work, involving the decontamination and disassembly of the reactor to determine what destroyed it. This is detailed in THE SL-1 ACCIDENT, PHASE 3, described below.

0344

THE SL-1 ACCIDENT, PHASE 3 (1962). 57 minutes, color.
Suitable for Understanding Level 3.

NOT CLEARED FOR TV.

This is a sequel to "The SL-1 Accident, Phases 1 and 2." It is a factual and historic documentary report on what was done with the SL-1 reactor and building commencing about four months following the accidental nuclear excursion that occurred Jan 3, 1961. It features a step-by-step recounting of the accident, annotation of the events believed to have taken place during and immediately following the excursion, and a postulation of the cause. The film documents substantially the recovery operations specified under contract with General Electric Company, which was charged with: gathering evidence pertaining to the accident; preparing the facility for core removal; recovery of the reactor core for remote examination; decontamination of the SL-1 site and restoration to habitable status; and presentation of an accident analysis report to the former U.S. Atomic Energy Commission.

0472

Suitable for Understanding Level 3.
CLEARED FOR TV.
Success in the coming decades of space exploration will in large measure be predicated upon an increasing use of nuclear energy. As payloads become larger and mission lifetimes become longer, the use of nuclear energy represents the only alternative to mission success—especially for on-board electrical power and higher powered propulsion systems. This film reports on many of the past successes of nuclear energy in space, such as the various SNAP generators used on SNAP-3A, 9A and 10A. It also discusses the success of these radioisotopic generators on the recent Apollo lunar missions and Nimbus weather satellites. It also delineates the twelve year joint efforts of the former U.S. Atomic Energy Commission (now ERDA) and the National Aeronautics and Space Administration to develop a nuclear rocket engine.

ORDER BY FILM NUMBER AND TITLE.

SRE CORE RECOVERY FOLLOWING FUEL-ELEMENT DAMAGE (1962). 291/2 minutes, color.
Suitable for Understanding Level 3.
CLEARED FOR TV.
Describes (1) design features of the Sodium Reactor Experiment (SRE) near Santa Susana, California [de-
THE STORY OF OAK RIDGE OPERATIONS

Designed, constructed, and operated for the USAEC (now ERDA) by Atomics International; (2) important operations attainments; (3) circumstances in 1959 which resulted in severe damage to the reactor core and release of about 10,000 curies of fission-product activity; (4) equipment, methods, and procedures employed to contain gaseous atmospheres, to remove radioactive debris (including pieces of fuel elements from the reactor system), and to replace affected core-moderator cans; and (5) modifications made to prevent similar future difficulties. Included are actual motion-picture scenes of the highly radioactive reactor core and animation of fuel-element damage and breakage. A relatively small number of men performed the recovery work operations; none of the men received more than the standard permissible amount of radiation exposure, and there were no physical injuries. Demonstrated was the fact that extensive maintenance work can be conducted on the entire plant complex of a sodium-cooled nuclear power reactor with a reasonable degree of effort.

ORDER BY FILM NUMBER AND TITLE

THE STORY OF OAK RIDGE OPERATIONS (1971). 28 minutes. suitable for understanding, classes 2 and 3. CLEARED FOR TV.

The breadth and scope of the National atomic energy program—from synthesis of minute quantities of radioisotopes to the highly automated production of enriched uranium for nuclear power plants—are evident in the programs of ERDA's (fomerly AEC) Oak Ridge Operations, one of the ERDA's largest and most active field offices. Oak Ridge Operations is responsible for the work of plants and laboratories in four states and Puerto Rico which employ 20,000 persons in programs of research and production.

In nontechnical language, this volume covers the major activities of Ridge Operations which support programs of national defense and peaceful applications of atomic energy. A major segment of the film explains how three gaseous diffusion plants are meeting the demand for enriched uranium to fuel nuclear power plants in this country and abroad; the process of gaseous...
tion is explained and methods of increasing production capacity are also presented. Research activities of the Holifield National Laboratory are highlighted, including a major experimental effort to control the thermonuclear reaction which could lead to the development of fusion reactors, and studies on the environment. The use of radiation to diagnose and treat disease in a unique Oak Ridge hospital is covered. Also receiving attention are the nuclear-related studies of the Agricultural Research Laboratory in Oak Ridge and the research and education programs carried out by the Puerto Rico Nuclear Center.

HONORS: 11th Industrial Photography Awards, Chicago, Illinois; First Prize, 11th Annual Conference of the Information Film, Hollywood, California.

0357
A STUDY OF GRAIN GROWTH IN BeO USING A NEW TRANSMITTED LIGHT HOT STAGE (1965). 16½ minutes, color.

Suitable for Understanding Level 3.

CLEARED FOR TV.

Film report (based on ceramics technology research conducted for the Fuels and Technology Branch, Division of Reactor Development and Technology, ERDA (formerly AEC) depicts the design and operation of a new hot stage used with a polarizing microscope and transmitted light. Time-lapse color cinematography makes possible the observation of time-dependent reactions and structural changes in transparent crystalline materials at temperatures as high as 2000°C. Sequences are shown of studies of thin sections of beryllium oxide ceramics at about 1700°C in vacuum. Movement of pores and grain boundaries, grain growth, and surface evaporation effects were seen. The film describes the physical basis for some of the observations, and the determination of quantitative grain-growth kinetics from the photographic records.

HONORS: 5th International Festival of Science Films, Lyon, France.

0484
A SUPERCONDUCTING MAGNET FOR FUSION RESEARCH (1971). 22 minutes, color.

CLEARED FOR TV.

In nuclear research intense magnetic fields are generally agreed to be the most promising means of confining hydrogen plasma to produce controlled fusion energy on earth.
At the ERDA Lawrence Livermore Laboratory of the University of California, a 13-ton superconducting magnet has been designed and fabricated for the new Baseball II neutral beam injection experiment. This huge liquid helium-cooled magnet operates at cryogenic temperatures and is capable of containing dense gas whose temperature reaches 300,000,000 degrees centigrade.

This film describes the general concept of the experiment, the winding and installations of the magnet system, and initial testing of the new fusion research facility.

HONORS: First Prize, 13th Conference of the Information Film Producers of America, Hollywood, California; 29th International Exhibition of Specialized Cinematography (Nuclear Reactor) Rome, Italy; 19th ANZAAS International Scientific Film Exhibition, Australia.

SUPERCONDUCTING MAGNETS (1967), 12:1 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Many important areas of research and development involve the use of large electromagnets. These large magnets require correspondingly large amounts of power and cooling equipment. By constructing these magnets with superconducting cable, it is possible to produce coils which require no power to operate. This film is an introduction to the subject.

Superconductivity was first discovered in 1911 by the Dutch physicist, Kammerlingh Onnes, but commercial materials were not available until 1961. Already several hundred small superconducting magnets are being operated in laboratories throughout the world, and a number of large magnets have been operated successfully. This rapid development has been made possible by ingenious magnet and fabrication techniques. These designs make it possible to produce completely stable magnets of very large size. This film describes the basic design problems and includes pictures of the ERDA Agonon National Laboratory's 67,000 gauss magnet during fabrication and testing.

HONORS: Gold Transistor Award, 15th International Electronic, Nuclear, Radio, and Motion Picture Congress, Rome, Italy; Chris Statuette, 15th Columbus Film Festival; International Association of Machinists & Aerospace Workers Conference, San Jose, California; Science Film Theater, American Association for the Advancement of Science, Boston.

SYNCHROTRON (1968), 14:2 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Discusses the components and operation of the Cambridge Electron Accelerator (CEA), a high energy physics research laboratory funded by the ERDA (formerly AEC), operated by MIT and Harvard University.

Dr. William Shurcliff, a physicist and Senior Research Associate at the CEA, explains the synchrotron, showing key components by means of a visit to the accelerator, animation and cutaway models. Drawings show the injection of the electrons (bullets), their entrance into the 240-foot-diameter accelerator ring, their acceleration to more than 99 percent the speed of light, and how they are released from the synchrotron to strike the nuclei and particles in the nuclei of atoms, thus permitting physicists to study the interaction between particles and the creation of new sub-atomic particles.

In the large, complex Experimental Hall, we watch scientists and technicians in a variety of experiments to test old and new theories of the basic nature of matter, using bubble chambers, liquid argon counters, and path chambers.

TERNARY PHASE DIAGRAM (1965), 7 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Reports the development of a new and rapid technique for preparation of ternary phase diagrams required in the search for useful alloys. Since there are more than 4,000 combinations of three-element alloys which can be made from common metals alone, a comprehensive collection of such diagrams is needed. The technique known for determining ternary phase alloy diagrams makes it possible to circumvent a previously tedious, time consuming, and costly research procedure.

TERRADYNAMICS (1968), 21 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Documents the earth penetration program at Sandia Laboratories—a pro-
TO BOTTLE THE SUN (1973), 30 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV

With coal, gas, and oil in limited supply, where will we turn to satisfy our future expanding energy needs? Some scientists believe it may be the thermonuclear process, called fusion, that powers the sun. The fusing of atoms releases large amounts of energy. Scientists at ERDA laboratories and elsewhere in the world are seeking to control the fusion process to generate electricity.

Dr. Robert L. Hirsch, Director of ERDA's Division of Controlled Thermonuclear Research, explains that fusion fuel—a form of hydrogen found in ordinary seawater—is virtually in limitless supply. But there are enormous technical problems yet to overcome. Fusion fuels must be heated to 100-million degrees to form a special kind of gas, called a plasma, so hot that no solid material can contain it. Scientists, therefore, have turned to magnetic fields as the fusion-plasma container. But what bottle shape will be most effective?

Dr. Harold Furth explains that at Princeton University doughnut-shaped magnetic bottles are being studied as a means of avoiding plasma leakage from ends—in the effort to eventually develop a power-producing commercial fusion reactor. The film explains that fusion power stations would be safe, environmentally attractive, and could be located in heavily populated urban areas where power needs are the greatest. Dr. Hirsch notes other promising lines of research—for example, laser beams to trigger the fusion reaction, magnetic fields, or direct conversion of plasma energy into electricity. But there is much research yet to be done internationally before fusion power can be achieved on a commercial basis, hopefully before the turn of the century.

HONORS: USIA "Sources of Energy Exhibits" traveling to 20 countries; American Society of Civil Engineers, National Structural Engineering Convention, Cincinnati, Ohio; 6th Annual Industrial Film Festival, Chicago, Illinois; International Trade Fair, Energy Spectrum, Smolni, Greece; II International Festival of Science Fiction Films, Trieste, Italy.

ORDER BY FILM NUMBER AND TITLE
TO IMITATE THE SUN (1971). 43 minutes, color.
Suitable for Understanding Level 3.
CLEARED FOR TV.
One of the rarest basic research programs now gripping the minds of nuclear physicists is the world over is controlled thermonuclear fusion. After more than a quarter century of research and experiment, scientists believe they are close to demonstrating the scientific feasibility of the fusion concept.

This film depicts the theoretical challenge of such controlled fusion and describes many of the research laboratories that are being used to investigate plasmas of thermonuclear regimes. It also touches upon what environmental and economic advantages may accrue from future fusion power reactors. The film also includes descriptions of the four major American fusion devices, Two-X-Two, Astron, Scylla and ORMAK, as well as discussions on the modeling of plasmas by such internal ring machines as the D.C. Octupole and the Sphaler.

HONORS: Chicago International Film Festival, Illinois; 16th International Festival of Scientific and Educational Film, University of Padua, Italy; National Educational Film Festival, Oakland, California; 11th American Film Festival, New York City, New York; IV International Scientific Film Festival, Rio de Janeiro, Brazil; 10th International Tech Film Review, Pardubice, Czechoslovakia; 6th International Festival of Scientific and Technical Films, Brussels, Belgium.

TRACING LIVING CELLS (1962). 29 minutes, black and white.
(From the Challenge Series.)
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.
Radioactivity is often mankind's servant. In recent years, the use of radioactive isotopes in the study of cell division and in medical therapy has helped man overcome disease. This film demonstrates some of the many helpful and healthful uses of atomic energy, including use of radioactive tracers in blood and cancer research.

The film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.
The transuranium elements (1968). Part I: 58 minutes; Part II: 57 minutes; black and white. Suitable for Understanding Level 2.

The film explains and illustrates: how EMetals and former chairman of the U.S. Atomic Energy Commission, was produced from a TV tape recorded at the 60th Anniversary Summit Science School at the University of Sydney, Australia, in January 1968. Dr. Seiberg describes the work leading to the discovery of all the known transuranium elements, from element 92 through element 103. The lecture is illustrated with slides explaining the production of these new, man-made elements. Some practical application of transuranium elements and the possibility of making even newer, very heavy elements are also discussed. The film provides the opportunity of seeing and hearing a famous scientist personally describe some important nuclear age discoveries in which he played a major role.

HONOURS: ANZAAS 11th International Scientific Film Exhibition, Australia & New Zealand.

0123 TRIP STEEL (1968). 11 minutes; black and white. Suitable for Understanding Level 2.

CLEAR FOR TV.

TRIP steel (transformation-induced plasticity) is a new series of thermomechanically treated, highly alloyed steels containing high ductility and high strength. Tensile ductilities of 25% to 50% at strength levels above 200,000 psi are obtainable. The steels can be produced having wide ranges of composition and properties. Through microstructure photography, the film shows how the transformation that occurs in TRIP steel as load is applied to both machined and forged specimens. When specimens are pulled in tension, a surface upheaval is clearly evident by the appearance of horizontal lines. This upheaval or surface tilting is a consequence of the change in crystal structure of the steel occurring during straining. During tensile testing, the sample elongates to a surprising degree. During a later stage, oblique lines, again representative of the transformation, travel up and down as the stress level is increased. This transformation redistributes the stress on the sample to temporarily prevent necking down and breakdown.

0234 UNDERGROUND NUCLEAR WEAPONS TESTING (1972). 28 minute color. Suitable for Understanding Levels 2 and 3.

CLEAR FOR TV.

The film discusses and illustrates: how EMetals, formerly ARCI, to test nuclear weapons—work vital to the U.S. national interest and the defense capabilities of the Free World. The film shows how weapons tests at the Nevada Test Site (in central Nevada and on Amchitka Island in the Aleutian chain) are carried out safely underground in a manner designed to contain radioactivity within the ground, within the framework of the limited test ban treaty.

The film explains various types of nuclear tests: developmental—to check out concepts of weapons design; proof tests—to confirm safety and design of weapons going into production; checks on the readiness of weapons in the stockpile; and, in cooperation with the Department of Defense, tests to obtain information on effects from nuclear explosions.

The film discusses and illustrates: how proposals for development tests of nuclear devices are brought into being; the various steps in evaluating and approving proposals; the facilities at the main test areas—remote Frenchman and Yucca Flats and the isolated Paduca Mesa; the setup at CP-1—the Control Point and nerve center for operations.

The film shows: techniques for the drilled vertical shaft; the complex instrumentation; lowering of the nuclear device into the shaft; lackfilling of shafts; scenes at the Control Point, where the complex timing and firing systems are located; the careful weather briefings and other stringent safeguards to assure public safety; monitoring techniques, air sampling, assay of water and vegetation, aerial sweeps. We watch the progress of a
Suitable for Understanding Levels 1, 2, and 3.
CLEARED FOR TV.
A conservation story of the transplant operation of sea otters from Amchitka to Alaskan coves. Almost extinct at the turn of this century, the sea otter, known for its fine, dense, very valuable fur, is staging a comeback in Alaskan waters. The State of Alaska, with cooperation from ERDA (formerly AEC), has airlifted several hundred sea otters from Amchitka, an island in the Aleutian chain, to other areas where natural food resources are more plentiful and where large otter colonies and lived centuries ago. The transplant took place in the summer of 1968 and, hopefully, sea otters will thrive and multiply in the new environment.

THE WARM COAT is a film that watches the shy, whiskered bright-eyed sea otter dive and swim with easy grace. It catches him at play and attending to the business of survival... caring for pups, dining on great quantities of shellfish and other foods from the sea, hiding from his enemies in tangled beds of sea kelp.

HONORS: 2nd International Fishing and Hunting Film Festival, Yugoslavia; Golden Eagle, CINE (Council for Non-theatrical Events), Washington, D.C.; 2nd International Scientific Film Festival, Rio de Janeiro, Brazil; Argentine Film Festival, University of Buenos Aires, Argentina; 13th International Days of the Short Film (Festival of Tours), France; 17th International Nuclear congress, and Golden Rocket; 11th International Award of the Technical Cinema, Rome, Italy; International Small-Sized Film Festival, Salerno, Italy; 5th International Festival of Countries and People, La Spezia, Italy; 8th International Festival of Marine and Exploration Films, Toulon, France; 4th Festival of Scientific and Technical Films, Yugoslavia; 1st International Film Festival on the Human Environment, Montreal, Canada.

WASTE DISPOSAL BY HYDRAULIC FRACTURING (1966). 11 minutes, color.
Suitable for Understanding Level-3.
CLEARED FOR TV.
Depicts the development, at Holifield National Laboratory, of a process for the disposal of intermediate-level radioactive waste underground bedded shale formations. The film shows an actual injection of material into the formation, supplemented by animation which portrays the manner in which the grout is forced down into the well and then into the fracture for permanent disposal.

Suitable for Understanding Levels-2 and -3.
CLEARED FOR TV.
The story of the design, development and fabrication of SNAP-19, a small, long-lived, radioisotope-fueled nuclear generator whose mission is to be the auxiliary power supply to produce electrical power aboard a Nimbus weather satellite 600 nautical miles above the earth. As the orbiting Nimbus monitors changing weather patterns in the atmosphere, SNAP-19 supplements the work of solar cells in powering the data-gathering instruments and transmitters that supply information continuously to meteorologists on earth. Nimbus 1 and 2 weather satellites used only solar cells. Now, SNAP-19, which can operate continuously in sunlight or darkness, gives NASA and ERDA (formerly AEC) the opportunity to study onboard nuclear energy as an electrical power source for instrumentation. The film describes the design, testing and fabrication of the generators, in which the heat from the radioisotope plutonium-238 is converted directly to electrical power by means of thermocouples. To assure SNAP-19's safety and integrity, vibration and acceleration tests are conducted. Seeds and materials are tested under many conditions, including the simulated cold and vacuum of space—not only for the important weather satellite mission, but also to gather data for the day when power from radioisotopes will help men explore distant worlds.

HONORS: 7th International Convention in Electronics Engineering, New York City, N. Y.

Order by film number and title

0180 WEB OF LIFE: Endless Chain (1972), 28 minutes, color.

Suitable for Understanding Levels 1, 2, and 3.

Cleared for TV.

This tour de force is a version of the film ENDLESS CHAIN produced without narration. Now presented with an improved musical score, a ballad and sound effects, the film takes an intimate look at the endless chain of life in the desert as recorded by Tom Beemer, nationally acclaimed nature documentarian. One test of a good film is—does it "play" without narration? WEB OF LIFE does more than play—it lives. Without narration, this film will be particularly useful to younger audiences and all age groups. This no-talk version will be ideal for club meetings, nature study, environmentalists and biology classes. Of course, foreign audiences will appreciate this treatment. For descriptive subject matter, see the description for ENDLESS CHAIN, on page 25.

HONORS: 23rd International Exhibition of Documentary and Short Films, Venice, Italy; Edinburgh Film Festival, Edinburgh, Scotland; 22nd International Film Festival "Nature, Man and His Environment," Milan, Italy; 1st International Festival on the Human Environment, Montreal, Canada; 4th International "Hunting and Fishing" Film Festival, Novi Sad, Yugoslavia.

0503 WHEN THE CIRCUIT BREAKS (1975), 27½ minutes, color.

Suitable for Understanding Levels 2 and 3.

Cleared for TV.

This film has some important things to say about the energy crisis and our continuing energy problems: that demand for energy is increasing, and that our domestic supply is diminishing. The solution to our problems lies in our ability to fully develop our resources of coal, oil and natural gas. It lies in our ability to quickly develop new sources of nuclear energy (such as the "breeder"), geothermal and solar energy. And it lies in our willingness to conserve all forms of energy now.

WHEN THE CIRCUIT BREAKS illustrates that there are many opportunities for conserving energy. We can conserve at home, in transportation, in business, and in industry. The meaning is clear: to meet the challenge of the energy crisis, we must change our energy habits while, at the same time, we are finding better and more efficient ways to use our current fuels and developing new methods to harness and produce vast amounts of energy.

We see the search for new oil and gas sources, underwater drilling for oil, the piping of natural gas over long distances, the location of oil shale deposits, antipollution devices to screen out more than 99 percent of the ash and waste from coal-fired generators (using dirty coal in a clean way), the possibility of nuclear fusion with lasers, geothermal power (heat from beneath the surface of the earth), solar heated homes and factories, and others.

Scientists and engineers are engaged in basic research now to find other sources of energy: wind power, coal liquefaction (making oil from coal), underground coal gasification...
making gas from coal, breeder reactors, tidal power.

Someday, perhaps, nuclear fusion (using the unlimited heavy hydrogen in seawater as fuel) or harnessed solar energy for electricity will achieve man's age-old dream of unlimited energy. In the meantime, we must conserve the energy we have while we look for new energy sources.

0393

THE WOODEN OVERCOAT (1965).
14 minutes, color.
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Because radioactive materials are being shipped throughout the world in increasing quantities, research programs are being conducted to develop shipping containers for radioactive materials which are virtually accident-safe. In support of these programs, the Energy Research and Development Administration (formerly AEC) has asked its contractors to submit designs for containers. Sandia Corporation of Albuquerque, New Mexico, has designed and tested a wooden outer shell for existing metal containers which will withstand a 30-foot drop, a one-hour petroleum fire, and 24-hour water immersion without the seal of the inner metal container of radioactive material being broken. This technical film report shows the development and testing of the wooden containers as well as the buildup of the containers from rings of plywood. Photography of actual drop tests and fire tests is included to demonstrate the resistance of the container to both impact shock and fire exposure. Results of tests show that a container having six-inch thick shells of fir plywood will adequately protect the inner metal container of radioactive material.

0396

WORKING WITH RADIATION (1962). 29 minutes, black and white.
(From the Challenge Series)
Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

When properly handled in the laboratory, radioactive materials constitute little danger. This film shows precautions used in working with radiation as well as research effort made to gain more knowledge about handling radiation. "Hot caves" (radiation chambers) using remote-control mechanical manipulators, caves using electronic-type manipulators, and giant caves using heavy-duty manipulators illustrate the safety methods mentioned. Methods used to dispose of radioactive waste materials are also shown.

This film provides an in-depth description of basic research in the nuclear sciences at ERDA's Argonne National Laboratory.

0398

Suitable for Understanding Levels 2 and 3.
CLEARED FOR TV.

Describes the design, construction and use of SLAC, the new Stanford Linear Accelerator. A comparison is made of the various methods man uses to "see" particles of smaller and smaller dimension—using the magnifying glass, the microscope, the electron microscope, and the electron linear accelerator. Some historical background is given on the development of the linear accelerators. Scientists and engineers involved in the SLAC project discuss the theory of its operation and some of the problems related to building and operating this huge instrument to explore the structure of the atom and discover new particles. The fabrication of the 2-mile long copper tube, with a bore of only one inch in diameter, through which atomic particles will be fired, is shown and explained in some detail.

0402

XENON TETRAFLUORIDE (1962). 5½ minutes, color.
Suitable for Understanding Level 3.
CLEARED FOR TV.

Shows how chemists at ERDA's Argonne National Laboratory have succeeded in making xenon combine chemically with fluorine—the first combination of xenon and one other element, a chemical reaction previously thought to be impossible—which has opened up a new area for the study of chemical bonding. The film shows the preparation of the compound in the laboratory under special conditions of temperature and pressure. The ingredients are sealed in a glass vacuum tube and first heated to 400°C for one hour, then cooled rapidly to room temperature. Crystals of xenon tetrafluoride—the new compound—grow before your eyes. Tests to substantiate the exact nature of the compound are illustrated, and future experiments on forming compounds with rare gases are discussed.

HONORS: ANZAAS 3rd International Scientific Film Festival, Australia & New Zealand.

0460

Suitable for Understanding Levels 2 and 3.

For sale by NAC. Approval for television use must be obtained from ERDA's Audiovisual Branch, Office of Public Affairs.

Although this unusual film was produced primarily for college and university classes in anthropology and genetics, it will be of interest to all educational levels and general public audiences. Produced by ethnographic filmmaker Timothy Asch of Brandeis University, anthropologist Napoleon Chagnon and geneticist James V. Neel of the University of Michigan, the film illustrates the field techniques used by a team of specialists—from such disciplines as human genetics, anthropology, epidemiology, dentistry, linguistics and medicine—in one of a series of biological-anthropological studies of the Yanomama Indians in the dense jungles of Venezuela and Brazil sponsored by the U.S. Atomic Energy Commission, the National Science Foundation and the National Institute of Mental Health. One of the aims of the project was to discover how physical and cultural factors influence a primitive and isolated population's genetic and demographic characteristics—data basic to understanding man's genetic legacy.

The film describes the scientific objectives, the nature of the problems the team was attempting to study, the kind of data required to discuss these problems, and the significance of tribal populations in the studies of human biology. A thumbnail sketch of the Yanomama culture follows, touching on economy, ritual, daily activities, manufactures, fighting and other selected features of the society. The main body of the film deals with a closer view of each investigator's role in the study and how he goes about...
collecting data such as dental casts, blood samples, saliva specimens, language materials, etc. — and the often warm interpersonal relationships between the researchers and the Yanomama.

HONORS: 1st International Congress of Human Genetics, Paris, France; Golden Eagle, CINE Council for Non-theatrical Events, Washington, D.C.; Second Prize, 14th American Film Festival, New York City, N.Y., National Educational Film Festival, Oakland, California; Sydney Film Festival, Sydney, Australia; 9th International Educational Film Festival, Tehran, Iran; 10th International Festival of Science Films, Trieste, Italy; IV International Scientific Film Festival: Rio de Janeiro, Brazil; Edinburgh Film Festival, Edinburgh, Scotland; 22nd International Film Festival for Tourist and Folklore Films, Brussels, Belgium; 15th International Review of Social International Films, Florence, Italy; 21st International Competition of Mountain and Exploration Films, Trento, Italy.

0152

Suitable for Understanding Level-3.

CLEARED FOR TV.

Gives the student a picture of the professional environment in which he would be working if he chose a career in nuclear science or engineering. The three major employment areas covered are ERDA's laboratories, commercial nuclear industries, and colleges and universities. Each has a need for trained manpower in nuclear science and technology.

The need for creative ideas is essential to the development of nuclear energy, whether it be in basic or applied research. In a fast-moving field such as nuclear technology, the professional person is expected to prepare reports for scientific and technical journals, attend national or international meetings, and maintain contact with other specialists in his field to stay abreast of the latest developments.

For those more interested in the production and development side of the nuclear business, there are numerous opportunities in the growing nuclear power industry. The advantages of and the opportunities for continuing education are again emphasized.

One of three films in nuclear science and nuclear engineering produced with the assistance of the American Nuclear Society.

The basic purpose of these three films is to motivate students in their formative years to consider careers in the field of nuclear science and engineering. (Use with HORIZONS UNLIMITED, page 33, and PREPARING FOR TOMORROW'S WORLD, page 45.)

9175
THE ZONAL ULTRACENTRIFUGE (1971). 6 minutes, color.

Suitable for Understanding Level-3. CLEARED FOR TV.

In man's continual attack on human diseases, molecular biologists have come to employ new zonal ultracentrifuges which are capable of the rapid fractionization of large volumes of cell constituents. These centrifuges were developed out of the Molecular Anatomy on Man Program at the ERDA Holifield National Laboratory under the direction of Dr. Norman G. Anderson. This film depicts the loading, separation and unloading operation of the new centrifuge and touches upon their role in the purification of viruses using improved operation capabilities.
Film Titles Index
listing producers, sponsors, and sales sources*

A IS FOR ATOM ... 11
Produced by General Electric Company
For sale by General Electric Company

ACCEL REVISITED: Automated Circuit Card
Etching Layout ... 11
Produced for ERDA (formerly AEC) by Sandia Corporation
For sale by National Audiovisual Center

ACROMEGALY: DIAGNOSIS, ETIOLOGY, THERAPY ... 11
Produced by Donner Laboratory and ERDA's Lawrence Berkeley Laboratory
For sale by National Audiovisual Center

ADDED SENSE, AN: THE DETECTION OF NUCLEAR RADIATION ... 11
Produced by ERDA's Lawrence Livermore Laboratory
For sale by National Audiovisual Center

ADVANCED TEST REACTOR ... 12
Produced by Elco-Services, Inc., Babcock & Wilcox Company and Phillips Petroleum Company
For sale by National Audiovisual Center

AIRBORNE ECLIPSE EXPEDITION-1972 ... 12
Produced by ERDA's Los Alamos Scientific Laboratory
For sale by National Audiovisual Center

ALCHEMIST'S DREAM, THE ... 12
Produced by Ross-McElroy Productions for National Educational TV and Radio Center
For sale by NET Film Service

ALPHA, BETA, AND GAMMA ... 12
Produced by Educational Broadcasting Corporation
For sale by National Audiovisual Center

ANALYSIS OF NUCLEON-NUCLEON SCATTERING EXPERIMENTS ... 13
Produced by ERDA's Lawrence Berkeley Laboratory
For sale by National Audiovisual Center

ART OF SEPARATION, THE ... 13
Produced by Ross-McElroy Productions for National Educational TV and Radio Center
For sale by NET Film Service

ATOM AND ARCHEOLOGY, THE ... 13
Produced by Handel Film Corporation
For sale by Handel Film Corporation

ATOM AND THE ENVIRONMENT, THE ... 15
Produced by Handel Film Corporation
For sale by Handel Film Corporation

ATOM AND THE MAN ON THE MOON, THE ... 14
Produced for ERDA (formerly AEC) by General Electric Company
For sale by National Audiovisual Center

ATOM IN PHYSICAL SCIENCE, THE ... 14
Produced by the Educational Broadcasting Corporation
For sale by National Audiovisual Center

ATOM SMASHERS ... 14
Produced by Handel Film Corporation
For sale by Handel Film Corporation

ATOMIC FINGERPRINT, THE ... 15
Produced by Handel Film Corporation
For sale by Handel Film Corporation

ATOMIC FURNACES ... 15
Produced by Ross-McElroy Productions for National Educational TV and Radio Center
For sale by NET Film Services

ATOMIC MEDICINE ... 15
Produced by CBS-News for the series "The 21st Century"
For sale by McGraw Hill Films

ATOMIC PHYSICS ... 15
Produced by J. Arthur Rank Organization, Ltd.
For sale by Universal Education and Visual Arts

ATOMIC POWER PRODUCTION ... 16
Produced by the Handel Film Corporation
For sale by the Handel Film Corporation

ATOMIC POWER TODAY ... 16
Produced by Seneca Productions Inc. for ERDA (formerly AEC) and the Atomic Industrial Forum
For sale by National Audiovisual Center

ATOMIC POWER TODAY: SERVICE WITH SAFETY ... 16
Produced by Seneca Productions, Inc., for the Atomic Industrial Forum, Inc., and ERDA (formerly AEC)
For sale by National Audiovisual Center

ATOMIC REVOLUTION IN WOOD ... 17
Produced for ERDA (formerly AEC) by the Army Pictorial Center
For sale by National Audiovisual Center

*See Sales Source Addresses page 71.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOMIC SEARCH</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Argonne National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>ATOMS FOR THE AMERICAS</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Produced for ERDA (formerly AEC) by Orleans Film Productions</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>ATOMS IN AGRICULTURE</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Produced by Walter J. Klein Co. for Dow Chemical Co., with technical assistance of ERDA (formerly AEC)</td>
</tr>
<tr>
<td>For sale by WRG Motion Picture Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATOMS IN THE MARKETPLACE: NUCLEAR MATERIALS SAFEGUARDS AND MANAGEMENT</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Produced by the Office of Public Affairs, ERDA (formerly AEC)</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>BASIC PRINCIPLES OF POWER REACTORS</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Produced by USAF Audio Visual Center</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>BEGINNING WITHOUT END, A</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Lawrence Berkeley Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>BIOENGINEERS, THE</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Holifield National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>BITTER AND THE SWEET, THE</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Argonne National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>BREEDER IN THE DESERT, A</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Produced by Ross-McElroy Productions for the National Educational Television and Radio Center</td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>BROOKHAVEN SPECTRUM</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Brookhaven National Laboratory</td>
</tr>
<tr>
<td>For sale by Owen Murphy Productions, Inc.</td>
<td></td>
</tr>
<tr>
<td>BUILDING AN ATOMIC ACCELERATOR</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Lawrence Berkeley Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>BUILDING BLOCKS OF LIFE</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Produced by Ross-McElroy Productions for the National Educational Television and Radio Center</td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>CLEAN AIR IS A BREEZE: Airborne Contamination</td>
<td>22</td>
</tr>
<tr>
<td>Control Through Laminar Air Flow</td>
<td>Produced by the Sandia Corporation for ERDA (formerly AEC)</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>COMBUSTION TECHNIQUES IN LIQUID SCINTILLATION COUNTING</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Argonne National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>COMPUTER COLOR GENERATIONS</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>COMPUTER FLUID DYNAMICS</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>CONTROLLED PHOTOSYNTHESIS</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Lawrence Berkeley Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>CONTROLLING ATOMIC ENERGY</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Produced by Universal Education and Visual Arts</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>CONTROLLING RECORDS FIRES WITH HIGH EXPANSION FOAM</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Idaho Operations Office</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>CURRENT METHODS IN PLUTONIUM FUEL FABRICATION</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Produced by the General Electric Company for ERDA (formerly AEC)</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>DAY TOMORROW BEGAN, THE</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Argonne National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>DESALTING THE SEAS</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Holifield National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT AND FABRICATION OF HFIR TARGET ELEMENTS</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Holifield National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>DISPERSION THEORY APPROACH TO NUCLEON-NUCLEON SCATTERING</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Holifield National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>DOORWAY TO DIAGNOSIS</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Argonne National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>DOWN ON THE FARM</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Produced by Ross-McElroy Productions for the National Educational Television and Radio Center</td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>ENDLESS CHAIN</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Produced for ERDA (formerly AEC) by Tom Reemer, Films of the Great American Outdoors</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>ENERGY—THE AMERICAN EXPERIENCE</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Produced by Hugh Whittington for the ERDA Office of Public Affairs</td>
</tr>
<tr>
<td>For sale by the National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>ENVIRONMENTAL TESTING AT SANDIA</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Produced by the Sandia Corporation for ERDA</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENTS IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Produced by ERDA's Argonne National Laboratory</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPLORE THE ATOMIC NUCLEUS</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPLORE THE AMERICAN EXPERIENCE</td>
<td>26</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPLORE THE CRYSTAL PLANE</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPLORE THE NUCLEUS OF ATOMS</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT IN CONTROLLING BRUSH FIRES WITH DETERGENT FOAM</td>
<td>27</td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Film Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Extracorporeal Irradiation of Blood and Lymph</td>
<td>27</td>
</tr>
<tr>
<td>Produced by ERDA's Brookhaven National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Fabrication of Snap-Td Fuel Sources</td>
<td>28</td>
</tr>
<tr>
<td>Produced by ERDA's Holifield National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Fabrication of the Accelerator Structure</td>
<td>28</td>
</tr>
<tr>
<td>Produced by ERDA's Stanford Linear Accelerator Center</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Farm Fresh to You</td>
<td>26</td>
</tr>
<tr>
<td>Produced for ERDA (formerly AEC) by the Army Pictorial Center</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Feast, the</td>
<td>26</td>
</tr>
<tr>
<td>Produced by the Center for Documentary Anthropology of Brandeis University and the Department of Human Genetics of the University of Michigan</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Fifth Fuel, the</td>
<td>29</td>
</tr>
<tr>
<td>Produced by Holifield National Laboratory for ERDA</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Fire Fighting in the Nuclear Age</td>
<td>29</td>
</tr>
<tr>
<td>Produced for ERDA (formerly AEC) by Calvin Productions</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>First Chemical Separation of Lawrencium</td>
<td>29</td>
</tr>
<tr>
<td>Produced by ERDA's Lawrence Berkeley Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>First Twenty-Five Years, the</td>
<td>30</td>
</tr>
<tr>
<td>Produced by ERDA's Los Alamos Scientific Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Fresher the Better, the</td>
<td>30</td>
</tr>
<tr>
<td>Produced for ERDA (formerly AEC) by the Army Pictorial Center</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Fuel of the Future, the</td>
<td>30</td>
</tr>
<tr>
<td>Produced by Ross-McElroy Productions for the National Educational Television and Radio Center</td>
<td></td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>Fresh Doesn't Mean Better, the</td>
<td>30</td>
</tr>
<tr>
<td>Produced by ERDA (formerly AEC) by the Army Pictorial Center</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Fueled the Future, the</td>
<td>30</td>
</tr>
<tr>
<td>Produced by Ross-McElroy Productions for the National Educational Television and Radio Center</td>
<td></td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>Fundamental of Mechanical Vibration</td>
<td>30</td>
</tr>
<tr>
<td>Produced by the Sandia Corporation for ERDA</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Gloves Box Fires</td>
<td>30</td>
</tr>
<tr>
<td>Produced for ERDA (formerly AEC) by the Rocky Flats Division, Dow Chemical Co.</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Go Fission</td>
<td>30</td>
</tr>
<tr>
<td>Produced by Walter J. Klein Co., for Consolidated Edison Company of New York and Pacific Gas and Electric Company</td>
<td></td>
</tr>
<tr>
<td>For sale by WRS Motion Picture Laboratory</td>
<td></td>
</tr>
<tr>
<td>Handle with Care: The Safe Handling of Radioisotopes</td>
<td>31</td>
</tr>
<tr>
<td>Produced for the International Atomic Energy Agency by Sterling Educational Films, Inc.</td>
<td></td>
</tr>
<tr>
<td>Not for sale</td>
<td></td>
</tr>
<tr>
<td>Hanford or Bust: 7000 Miles for Energy</td>
<td>31</td>
</tr>
<tr>
<td>Produced by ERDA's Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Harnessing the Rainbow</td>
<td>31</td>
</tr>
<tr>
<td>Produced by Ross-McElroy Productions for the National Educational Television and Radio Center</td>
<td></td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>Harvest of an Atomic Age</td>
<td>31</td>
</tr>
<tr>
<td>Produced by the U.S. Information Agency with the technical assistance of ERDA's Brookhaven National Laboratory and Michigan State University</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Heart of the Matter, the</td>
<td>31</td>
</tr>
<tr>
<td>Produced by Audio Productions for the National Science Foundation and Energy Research and Development Administration</td>
<td></td>
</tr>
<tr>
<td>For sale by Doubleday Multimedia</td>
<td></td>
</tr>
<tr>
<td>Heavy Particle Beams in Medicine</td>
<td>32</td>
</tr>
<tr>
<td>Produced by Donner Laboratory and ERDA's Lawrence Berkeley Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Here Comes the Sun</td>
<td>32</td>
</tr>
<tr>
<td>Produced by Image Associates for the National Science Foundation</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Horizons Unlimited</td>
<td>33</td>
</tr>
<tr>
<td>Produced by the U.S. Army Pictorial Center for ERDA (formerly AEC), with the assistance of the American Nuclear Society</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Immune Response, the</td>
<td>33</td>
</tr>
<tr>
<td>Produced by Ross-McElroy Productions for the National Educational Television and Radio Center</td>
<td></td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>In Search of a Critical Moment</td>
<td>33</td>
</tr>
<tr>
<td>Produced by ERDA's Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Inside the Yankee Core</td>
<td>33</td>
</tr>
<tr>
<td>Produced by Westinghouse Electric Corporation for ERDA (formerly AEC)</td>
<td></td>
</tr>
<tr>
<td>For sale by Mode-Art Pictures, Inc.</td>
<td></td>
</tr>
<tr>
<td>Introducing Atoms and Nuclear Energy</td>
<td>34</td>
</tr>
<tr>
<td>Produced by Coronet Instructional Films</td>
<td></td>
</tr>
<tr>
<td>For sale by Coronet Instructional Films</td>
<td></td>
</tr>
<tr>
<td>Introduction to Analog Computers</td>
<td>34</td>
</tr>
<tr>
<td>Produced by ERDA's Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>Introduction to High Vacuum</td>
<td>34</td>
</tr>
<tr>
<td>Produced by Brookhaven National Laboratory and Audio Productions for ERDA (formerly AEC) and the American Vacuum Society</td>
<td></td>
</tr>
<tr>
<td>For sale by Audio Productions</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>INVISIBLE HILLS</td>
<td>34</td>
</tr>
<tr>
<td>Produced by Ross-McElroy Productions, for the</td>
<td></td>
</tr>
<tr>
<td>National Educational Television and Radio Center</td>
<td></td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>ISOTOPES IN ENVIRONMENTAL CONTROL</td>
<td>34</td>
</tr>
<tr>
<td>Produced by ERDA’s Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>JOURNAL OF PLUTONIUM</td>
<td>34</td>
</tr>
<tr>
<td>Produced by ERDA’s Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>LANDMARK</td>
<td>34</td>
</tr>
<tr>
<td>Produced by ERDA’s Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td>35</td>
</tr>
<tr>
<td>Produced by ERDA’s Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>LIVING SOLID, THE</td>
<td>35</td>
</tr>
<tr>
<td>Produced by Ross-McElroy Productions for the</td>
<td></td>
</tr>
<tr>
<td>National Educational Television and Radio Center</td>
<td></td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>LIVING WITH A GLOVED BOX</td>
<td>35</td>
</tr>
<tr>
<td>Produced by ERDA’s Lawrence Berkeley Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>MAN AND RADIATION</td>
<td>36</td>
</tr>
<tr>
<td>Produced by ERDA by the Army Pictorial Center</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>MANY FACES OF ARGONNE, THE</td>
<td>36</td>
</tr>
<tr>
<td>Produced by ERDA’s Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>MASS OF THE ATOMS, THE</td>
<td>36</td>
</tr>
<tr>
<td>Produced by Educational Services Inc. for the</td>
<td></td>
</tr>
<tr>
<td>College Physics Film Program</td>
<td></td>
</tr>
<tr>
<td>For sale by Educational Development Center</td>
<td></td>
</tr>
<tr>
<td>METALS FRONTIER</td>
<td>36</td>
</tr>
<tr>
<td>Produced by Iowa State University Film Production</td>
<td></td>
</tr>
<tr>
<td>for the Iowa State Institute of Atomic Research</td>
<td></td>
</tr>
<tr>
<td>and ERDA’s Ames Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by Iowa State University</td>
<td></td>
</tr>
<tr>
<td>MICROSCOPE FOR THE UNKNOWN</td>
<td>35</td>
</tr>
<tr>
<td>Produced by Ross-McElroy Production, for the</td>
<td></td>
</tr>
<tr>
<td>National Educational Television and Radio Center</td>
<td></td>
</tr>
<tr>
<td>For sale by NET Film Service</td>
<td></td>
</tr>
<tr>
<td>MIGHTY ATOM, THE</td>
<td>37</td>
</tr>
<tr>
<td>Produced by CBS News for the series, “The</td>
<td></td>
</tr>
<tr>
<td>21st Century”</td>
<td></td>
</tr>
<tr>
<td>For sale by McGraw-Hill Films</td>
<td></td>
</tr>
<tr>
<td>MIRACLE IN THE DESERT: THE STORY OF HANFORD</td>
<td>37</td>
</tr>
<tr>
<td>Produced for ERDA (formerly AEC) by John L.</td>
<td></td>
</tr>
<tr>
<td>Fewtrecker</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>MOLECULAR BIOLOGY: An Introduction</td>
<td>37</td>
</tr>
<tr>
<td>Produced by ERDA’s Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>MOLTEN SALT REACTOR EXPERIMENT</td>
<td>37</td>
</tr>
<tr>
<td>Produced by ERDA’s Holifield National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>NATURE’S FORGE</td>
<td>38</td>
</tr>
<tr>
<td>Produced for ERDA (formerly AEC) by Tom Bemer,</td>
<td></td>
</tr>
<tr>
<td>Levenworth, Washington.</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>NEUTRON ACTIVATION ANALYSIS</td>
<td>38</td>
</tr>
<tr>
<td>Produced for ERDA (formerly AEC) by the General</td>
<td></td>
</tr>
<tr>
<td>Atomic Division, General Dynamics</td>
<td></td>
</tr>
<tr>
<td>For sale by McNamara Productions</td>
<td></td>
</tr>
<tr>
<td>NO TURNING BACK</td>
<td>38</td>
</tr>
<tr>
<td>Produced by the Office of Public Affairs, ERDA</td>
<td></td>
</tr>
<tr>
<td>(formerly AEC)</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>NUCLEAR FINGERPRINTING</td>
<td>39</td>
</tr>
<tr>
<td>ANTIQUE BOTTLES</td>
<td></td>
</tr>
<tr>
<td>Produced by ERDA’s Lawrence Berkeley Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>NUCLEAR INNOVATIONS IN PROGRESS CONTROL</td>
<td>39</td>
</tr>
<tr>
<td>Produced by ERDA (formerly AEC) by Battelle</td>
<td></td>
</tr>
<tr>
<td>Memorial Institute</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>NUCLEAR POWER AND THE ENVIRONMENT</td>
<td>39</td>
</tr>
<tr>
<td>Produced for ERDA (formerly AEC) by</td>
<td></td>
</tr>
<tr>
<td>Starbecker, Inc.</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>NUCLEAR REACTOR SPACE POWER SYSTEMS</td>
<td>40</td>
</tr>
<tr>
<td>Produced by ERDA’s Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>NUCLEAR SPECTRUM</td>
<td>40</td>
</tr>
<tr>
<td>Produced by ERDA’s Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>NUCLEAR WITNESS, THE ACTIVATION ANALYSIS IN CRIME INVESTIGATION</td>
<td>41</td>
</tr>
<tr>
<td>Produced by General Dynamics Corporation for ERDA (formerly AEC)</td>
<td>For sale by McNamara Productions</td>
</tr>
<tr>
<td>OAK RIDGE RESEARCH REACTOR</td>
<td>41</td>
</tr>
<tr>
<td>Produced by ERDA’s Holifield National Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>OF MAN AND MATTER</td>
<td>41</td>
</tr>
<tr>
<td>Produced by ERDA’s Brookhaven Laboratory</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>ON THE MOVE</td>
<td>42</td>
</tr>
<tr>
<td>Produced for ERDA (formerly AEC) by the Sandia</td>
<td></td>
</tr>
<tr>
<td>Corporation</td>
<td></td>
</tr>
<tr>
<td>For sale by National Audiovisual Center</td>
<td></td>
</tr>
<tr>
<td>OPPORTUNITY UNLIMITED: FRIENDLY ATOMS IN INDUSTRY</td>
<td>42</td>
</tr>
<tr>
<td>Produced by the U.S. Army Pictorial Center for ERDA (formerly AEC)</td>
<td>For sale by National Audiovisual Center</td>
</tr>
<tr>
<td>PARK, THE</td>
<td>42</td>
</tr>
<tr>
<td>Produced by the ERDA Office of Public Affairs and ERDA’s Savannah River Plant</td>
<td>For sale by National Audiovisual Center</td>
</tr>
</tbody>
</table>
FILM TITLES INDEX

17. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

18. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

19. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

20. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

21. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

22. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

23. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

24. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

25. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

26. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

27. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

28. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

29. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

30. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

31. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

32. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

33. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

34. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

35. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

36. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

37. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

38. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

39. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

40. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

41. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

42. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

43. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

44. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

45. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

46. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

47. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

48. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

49. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

50. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

51. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

52. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

53. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

54. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

55. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

56. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

57. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

58. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

59. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

60. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

61. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

62. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

63. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

64. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

65. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

66. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

67. PRODUCTION AND USE OF ONE ISOPEIC

Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center
SAFETY HANDLING OF ENRICHED UREON, THE
Produced for ERDA (formerly AEC) by the Nuclear Division of Union Carbide Corporation
For sale by National Audiovisual Center

SAFETY SECOND TO NONE
Produced by Starbecker Inc for ERDA (formerly AEC)
For sale by National Audiovisual Center

SYNDA SPIN OFF
Produced by ERDA's Sandia Laboratory
For sale by National Audiovisual Center

SILHOUETTE CAMERA, THE
Produced by Homer Laboratory and ERDA's Lawrence Berkeley Laboratory
For sale by National Audiovisual Center

SILK WE CAN'T SENSE, A
Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

SEARCHING FOR THE ULTIMATE
Produced by Ross-McElroy Productions for the National Educational Television and Radio Center
For sale by NET Film Service

SHEAR LEACH PROCESS FOR SPENT NUCLEAR FUELS
Produced by ERDA's Holifield National Laboratory
For sale by National Audiovisual Center

SHORT LIVED RADIOISOTOPES IN NUCLEAR MEDICINE
Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

SL-1 ACCIDENT, PHASES 1 AND 2, THE
Produced for ERDA (formerly AEC) by John Feerabender
For sale by National Audiovisual Center (with prior authorization from the Audiovisual Branch, ERDA Office of Public Affairs)

SL-1 ACCIDENT, PHASE 3, THE
Produced by ERDA (formerly AEC) by John L. Feerabender, consultant
For sale by National Audiovisual Center (with prior authorization from the Audiovisual Branch, ERDA Office of Public Affairs)

SPACE AND THE ATOM
Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

SIRE CORE RECOVERY FOLLOWING FUEL ELEMENT DAMAGE
Produced by Atomics International for ERDA (formerly AEC)
For sale by National Audiovisual Center

STORY OF OAK RIDGE OPERATIONS, THE
Produced by ERDA's Holifield National Laboratory
For sale by National Audiovisual Center

STUDY OF GRAIN GROWTH IN BOOS USING A NEW TRANSMITTED LIGHT HOT STAGE, A
Produced for ERDA (formerly AEC) by Atomics International
For sale by National Audiovisual Center

SUPERCONDUCTING MAGNET FOR FUSION RESEARCH, A
Produced by the Lawrence Livermore Laboratory for ERDA (formerly AEC)
For sale by National Audiovisual Center

SUPERCONDUCTING MAGNETS
Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

SYNCHROTRON
Produced by Harvard Project Physics
For sale by Holt, Rinehart, & Winston, Inc.

TERNARY PHASE DIAGRAM
Produced by ERDA's Lawrence Berkeley Laboratory
For sale by National Audiovisual Center

THERMODYNAMICS
Produced by ERDA's Sandia Laboratories
For sale by National Audiovisual Center

TESTING FOR TOMORROW
Produced by Ross-McElroy Productions for the National Educational Television and Radio Center
For sale by NET Film Service

THORIUM-233 UTILIZATION
Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

TIME: THE SUREST POISON
Produced by Ross-McElroy Productions for the National Educational Television and Radio Center
For sale by NET Film Service

TO BOTTLE THE SUN
Produced by the National Science Foundation in cooperation with ERDA (formerly AEC) and Princeton University
For sale by Audio Productions

TO IMITATE THE SUN
Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center

TRANSURANUM ELEMENTS: SYNTHESIS, SEPARATION AND RESEARCH
Produced by ERDA's Lawrence Berkeley Laboratory
For sale by National Audiovisual Center

TRANSURANUM ELEMENTS, THE
Produced by ERDA (formerly AEC) based on videotape made at the University of Sydney, Australia
For sale by National Audiovisual Center

THIP STEEL
Produced by ERDA's Lawrence Berkeley Laboratory
For sale by National Audiovisual Center

UNDERGROUND NUCLEAR WEAPONS TESTING
Produced by ERDA (formerly AEC)
For sale by National Audiovisual Center

WARM COAT, THE
Produced by the Office of Public Affairs, ERDA (formerly AEC)
For sale by National Audiovisual Center

WASTE DISPOSAL BY HYDRAULIC FRACTURING
Produced by ERDA's Oak Ridge National Laboratory
For sale by National Audiovisual Center
WEATHER EYE, THE 59
Produced by Office of Public Affairs, ERDA (formerly AEC)
For sale by National Audiovisual Center
WEB OF LIFE: Endless Chain 60
Produced by Films of the Great Outdoors and ERDA's Office of Public Affairs (formerly AEC)
For sale by National Audiovisual Center
WHEN THE CIRCUIT BREAK 60
Produced by Concept Films for the Federal Energy Administration
For sale by the National Audiovisual Center
WOODEN OVERCOAT, THE 61
Produced for ERDA (formerly AEC) by the Sandia Corporation
For sale by National Audiovisual Center
WORKING WITH RADIATION 61
Produced by Ross McElroy Productions for the National Educational Television and Radio Center
For sale by NET Film Service
WORLDS WITHIN, THE 61
Produced for ERDA (formerly AEC) by Stanford University
For sale by National Audiovisual Center
XENON TETRAFLUORIDE 61
Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center
YANOMAMA: A MULTIDISCIPLINARY STUDY 61
Produced by the Center for Documentary Anthropology of Brandeis University and the Department of Human Genetics of the University of Michigan
For sale by National Audiovisual Center
YOUR PLACE IN THE NUCLEAR AGE 62
Produced by the U.S. Army Pictorial Center for ERDA (formerly AEC) with the assistance of the American Nuclear Society
For sale by National Audiovisual Center
ZONAL ULTRACENTRIFUGE, THE 62
Produced by ERDA's Argonne National Laboratory
For sale by National Audiovisual Center
Sales Source Addresses

AEROJET GENERAL CORPORATION
Electronics Division
Von Karman Center
Azusa, California 91706

AUDIO PRODUCTIONS
500 9th Avenue
New York, New York 10036

BAY STATE FILM PRODUCTIONS, INC.
Post Office Box 129
Springfield, Massachusetts 01101

COLOR REPRODUCTION CO.
7936 Santa Monica Boulevard
Hollywood, California 90036

CORONET INSTRUCTIONAL FILMS
65 East South Water Street
Chicago, Illinois 60601

DOUBLEDAY MULTIMEDIA
Box 14687
1371 Reynolds Avenue
Santa Clara, California 95050

EDUCATIONAL DEVELOPMENT CENTER
55 Chapel Street
Newton, Massachusetts 02160

GENERAL ELECTRIC COMPANY
Corporation Park, Bldg. 705
Schenectady, New York 12302

GERALD PRODUCTIONS, INC.
121 West 54th Street
New York, New York 10019

HANDEL FILM CORPORATION
8750 Sunset Boulevard
West Hollywood, California 90069

HOLT, RINEHART AND WINSTON, INC.
383 Madison Avenue
New York, New York 10017

IOWA STATE UNIVERSITY
Film Production Unit
Alice Norton House
Ames, Iowa 50010

McGRAW-HILL FILMS
330 West 42nd Street
New York, New York 10036

McNAMARA PRODUCTIONS
170 South Beverly Road
Beverly Hills, California 90212

MODE ART PICTURES, INC.
1022 Forbes Avenue
Pittsburgh, Pennsylvania 15219

NAC
National Audio-Visual Center (GSA)
Washington, D.C. 20409

N.E.T. TELEVISION, INC.
2715 Packard Road
Ann Arbor, Michigan 48104

OWEN MURPHY PRODUCTION, INC.
27 Madison Avenue
New York, New York 10016

U.S. DEPARTMENT OF AGRICULTURE
Motion Picture Service
Room 1081, South Building
Washington, D.C. 20250

UNIVERSAL EDUCATION AND VISUAL ARTS
221 Park Avenue South
New York, New York 10003

WRS MOTION PICTURE LABORATORY
210 Semple Street
Pittsburgh, Pennsylvania 15213
REQUEST FOR ERDA FILMS

Send Films To

State

City

Zip Code

Date

Requested By (Signature)

<table>
<thead>
<tr>
<th>File Number</th>
<th>Film Title</th>
<th>Show Date</th>
<th>Alternate 1 Show Date</th>
<th>Alternate 2 Show Date</th>
<th>Check If You Will Take First Available Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTICE TO ERDA FILM REQUESTER

You will receive a film which has been cleaned and inspected by our Film Library and is in serviceable condition.

Please prepare it for projection in motion picture sound equipment and by a trained operator.

Film should be rewound after the last showing and be returned to the ERDA Film Library on or before the due date.

You will be required to provide information on the size of the audience and other miscellaneous data, as well as observe the following:

1. Use returnable means, including air express mail, or personal delivery, to assure that film being returned will reach the ERDA Film Library on or before the due date. Return shipment charges are borne by the borrower.

2. No borrower under any circumstances may remove, even temporarily, any footage from ERDA Library film on loan, unless other than deleted or damaged sprocket holes or to edit or digest selected scenes.

3. No borrower may hold a film past scheduled return date without express prior permission of the ERDA Film Library.

4. No borrower may release an ERDA film from his personal possession for loan to another individual or agency without express prior permission of the ERDA Film Library.

5. Borrowers are obligated to complete and return to the ERDA Film Library a form concerning audience size and other miscellaneous data.

Owing the service to the thousands of borrowers utilizing the Film Library is possible only when each individual borrower complies fully with the above instructions.