The purpose of this project was the development of comprehensive articulation policies and procedures in three instructional areas common to Greenville Technical College and the Greenville County School System. The areas were Machine Tool Technology/Machine Shop, Engineering Graphics Technology/Drafting, and Industrial Electricity/Electricity. Project activities included development of a competency-based placement program to replace credit and clock-hour requirements, development of counselor skills in implementation of the articulation process, and statements of compatible and sequential behavioral objectives for both secondary and postsecondary instruction. Procedures were developed to allow advanced placement of vocational center students in postsecondary programs, a guidance information form was developed to give feedback to counselors on the progress of articulated students, teacher visitations were encouraged, and a counselor workshop was held. The bulk of this report consists of Program Articulation Booklets for each of the three instructional program. The Booklets contain student articulation flowcharts, articulation evaluation procedures, transcript evaluation forms, guidance information forms, a list of instructional units, and a detailed list of performance objectives. (JDS)
Project No.: 498Ah50303 Grant No.: G00-75-00453

Grantee Organization: Office of Education

Period Covered: July 1, 1975 to September 30, 1976

Project Director: Clifford L. Shisler

OCCUPATIONAL EDUCATION PROGRAM ARTICULATION BETWEEN SECONDARY VOCATIONAL EDUCATION CENTERS AND GREENVILLE TECHNICAL COLLEGE

Final Program Performance Report
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accomplishments</td>
<td>1</td>
</tr>
<tr>
<td>Major Activities and Events</td>
<td>3</td>
</tr>
<tr>
<td>Problems</td>
<td>4</td>
</tr>
<tr>
<td>Publicity Activities</td>
<td>5</td>
</tr>
<tr>
<td>Dissemination Activities</td>
<td>5</td>
</tr>
<tr>
<td>Progress on Data Collection and Evaluation Plans and Procedures</td>
<td>5</td>
</tr>
<tr>
<td>Other Activities (not applicable)</td>
<td>6</td>
</tr>
<tr>
<td>Staff Employment and Utilization (not applicable)</td>
<td>6</td>
</tr>
<tr>
<td>Staff Development</td>
<td>7</td>
</tr>
<tr>
<td>Appendices</td>
<td>8</td>
</tr>
</tbody>
</table>
ACCOMPLISHMENTS

The overall accomplishment of the Occupational Education Program Articulation Project was the development of comprehensive articulation policies and procedures in three instructional areas common to Greenville Technical College and the Greenville County School System. The areas were Machine Tool Technology-Machining, Engineering Graphics Technology-Drafting, and Industrial Electricity-Electricity.

The attainment of the articulation policies and procedures was facilitated by the following:

- Statement of compatible and sequential behavioral objectives by both secondary and post-secondary instructors
- Adjustment of classroom evaluation techniques to conform to a competency-based placement program
- Broadening of counselor information and skills in the implementation of articulation procedures

The Articulation Project was funded for FY-76 and a three month extension (July 1-September 30, 1976).

The status of the grant activities is explained in the following narrative.

Specific performance objectives were developed for three occupational training programs to replace credit and clock-hour requirements. (Included in the appendices of this report are Program Articulation Booklets which contain copies of performance objectives.) The objectives for the Machine Tool Technology program were specified through the South Carolina State Department of Education Career Cluster Project.
The Career Cluster Project provides objectives, materials, and evaluation methods whose usage is required of the area vocational centers. Vocational center and Greenville TEC instructors specified performance objectives for the Industrial Electricity and Engineering Graphics Technology Programs.

Procedures were adopted to allow advanced placement of vocational center students in post-secondary programs. Following the specification of program objectives, instruments to rate student skills were constructed. The Engineering Graphics Technology program will be using a "Skills Proficiency Rating Form" and the Machine Tool Technology Program will use a "Machine Shop Transcript Evaluation Form." Each of the three programs uses a placement exam. (The Industrial Electricity Program uses a competency exam exclusively to determine advanced placement.)

Effective advanced placement is a bilateral decision. The institution must determine a student's competencies and prescribe appropriate instruction. The student must also feel confident of his abilities and of the placement. Students have the option of requesting lower program placement. Counselors encourage students, however, not to choose an entry level lower than the one prescribed.

The vocational centers and Greenville TEC programs utilize advisory committees to ensure instructional compatibility with industrial reality. These committees advise on the specification of curricula, selection of equipment and instruction of new methodologies. The committees also make certain that training practices are commensurate to industrial needs.

Special Articulation Project Committees were established early in the project funding period. Committee membership was composed of counselors, instructors, program administrators, community representatives, and project staff. The varied membership
provided effective constructive criticism of project activities and commitment to the implementation of the project.

Program Completion Requirements were based on graduation standards established by the State Board for Comprehensive and Technical Education and skills levels demanded by employers. The principal goal of the technical college and the vocational centers is to provide opportunities for individuals to enter the labor market with maximum skills.

An integral function of the articulation process was the regularly scheduled meetings of technical college and vocational school instructors. Instructors were able to discuss common goals and frustrations, share teaching methodologies, and become generally more informed about each other's programs.

MAJOR ACTIVITIES AND EVENTS

The major activities and events of the project are described below.

Tuition Scholarships--Greenville TEC established a tuition scholarship for the three departments of each vocational center involved in the project. The ten scholarships are awarded each June and provide one quarter of free tuition. The scholarships are renewable for one quarter after the student's work is satisfactorily reviewed by his college department faculty.

Guidance Information Form--This form was developed to provide feedback to the College and vocational center counselors on the progress of articulated students.

Teacher Visitations--Instructors in the drafting and engineering graphics programs exchanged teaching positions for one day. This exchange facilitated understanding
of the particular instructional needs of each program level.

Counselor's Workshop--Project Staff coordinated a September workshop for Greenville TEC and vocational center counselors. The workshop allowed counselor to "walk through" the program. Program administrators presented synopses of the articulation process as it applied to their instructional areas. Vocational center instructors were given information and materials to use in advising their students.

PROBLEMS

The project was not completed within the fiscal year for which it was funded. At the end of June, four activities remained unfinished. These activities were the validation of the Industrial Electricity Articulation Test, the completion of the counselor training program, the establishment of a testing center to handle placement exams, and the dissemination of developed materials.

The Industrial Electricity Articulation exam was validated during the late summer. Test items were matched with program objectives and difficulty and discrimination indices calculated for each item. A college testing center has not been established. The lack of these facilities, however, has not inhibited the program. The counselor training workshop and procedures for dissemination of materials are explained elsewhere in this report.

Fall 1976, was the first quarter the articulation process had been used to place students in instructional programs. Although comprehensive evaluation of the program is premature, the program does appear to have the necessary mechanisms to support efficient placement of students. The program needs to become more widely accepted, but this acceptance will be a function of time as the participants become more
PUBLICITY ACTIVITIES

Included in the appendices are four articles which were published by the Greenville TEC "in-house" newspaper, "Tectonics". The "Tectonics" circulation includes all full and part-time instructors and administrators and officials of forty other institutions throughout the country. Two newspaper articles were published to promote the program. These articles, also included in the appendices, were announcements of scholarship awards.

DISSEMINATION ACTIVITIES

Copies of the final report and the program articulation booklets will be sent to the ERIC Clearinghouse for Junior Colleges, the Center for Vocational Education (Ohio State University), the sixteen technical colleges of South Carolina, each vocational center in Greenville County, and the offices of the Greenville County School System. Additional copies will be printed and made available to any institution requesting materials.

PROGRESS ON DATA COLLECTION AND EVALUATION PLANS AND PROCEDURES

The Articulation Project was funded for one year only. The year was spent in the activities of initiating the project. The grant did not provide for a formal evaluation process, however, as the program is fully implemented it will be evaluated through the institutional research and program auditing function of the College. This evaluation will be examining such program aspects as:
Are the levels of advanced placement appropriate for the student?

What is the effect of the articulation program on retention/attrition rates?

What is the effect of the program on length of study of vocational center graduates?

How do vocational center students compare with non-vocational center students on characteristics such as academic success, job placement, and wage levels?

What are the attitudes of vocational center and college faculty toward the articulation process?

Greenville TEC hopes to answer these questions when the program enters its second and third years. The grant funded seed activities only and therefore, the College deems it more valuable to assess the effectiveness of the total program rather than the initiating activities.

OTHER ACTIVITIES

(not applicable)

STAFF EMPLOYMENT AND UTILIZATION

(not applicable)
STAFF DEVELOPMENT

The staff development activities which resulted from the accomplishment of the objectives of this grant are best described with respect to those groups served.

Instructors participated in all of the articulation program meetings and became involved in the design and implementation of the program. Instructors also worked individually with a curriculum specialist as they specified their instructional objectives and correlated test items with those objectives.

Counselors participated in the initial and final articulation program meetings. Efforts were made to increase the level of program information, to inform the counselors of the advantages of advanced placement, and to train them in the evaluation of student skills.
Appendix A

Publicity Activities
ARTICULATION GRANT ACTIVITIES

Progress is being made on the goals of the articulation grant. The grant is funding activities to improve articulation between Greenville Tec and the vocational education centers.

Recently DAVE TITUS, J. D. WARREN, OLIVER ROGERS, JANIE McPHERSON, and LARRY SANKEY met with guidance counselors and instructors from the vocational centers and HAROLD KAY of the Greenville County Schools.

The participants agreed on a policy of evaluation for machine technology students. Some of the objectives are based on the Career Cluster Project.

The student placement system will be evaluated four weeks after the quarter begins.

HILL BAILY, RANDY LUCAS, and BRUCE CARDALL are writing objectives in Industrial Electricity for the articulation project.

Engineering Graphics Technology instructors LES CARAWAY and WALTER RICE have met with the area vocational instructors and are coordinating objective writing in their departments.

ARTICULATION GRANT ACTIVITIES

Greenville Tec has a grant to promote articulation and instructional agreements between Tec and the vocational high schools in the area. J. D. WARREN, LES CARAWAY, and SHIRLEY DENTON are coordinating most of the activities from the Tec end. The grant will be of mutual benefit to the schools concerned, but will help students the most. By agreeing on instructional objectives, the faculty at both schools will be able to place students into the Tec program at their skill level. Then students would not have to repeat material they had already learned. The grant is quite comprehensive and requires the involvement of administration, faculty, and counselors from both educational systems.
LES CARAWAY, WALTER RICE, and area vocational instructors are developing objectives for the articulation project. SHIRLEY DENTON is working with BRUCE CARDALL to write industrial electronic objectives.

Greenville Tec faculty continue to meet with instructors from the vocational education centers. On April 6, instructors from the various institutions met to review program and course objectives. A model for the process has been developed. The model depicts student progress through the system.

J. D. Warren has developed a slide-tape set for the Machine Tool Technology program. The program will be used by counselors with prospective students.
Ten high school seniors from Greenville, selected as outstanding graduates of industrial and technical programs at area vocational centers, received scholarship awards from Greenville TEC in ceremonies last week.

The awards, consisting of tuition of $30 for the first quarter of attendance at TEC, are renewable for a second quarter, contingent on the students' maintaining satisfactory progress as set by TEC.

Award recipients from Enoree Vocational Center include Jerry Matthews, Greg Stoudemire and Kermit Shelton; from Foothills, James Liner, Ricky Pruitt and Warren Lewis Anderson; from Donaldson Center, Dennis Finch, Douglas Edward Jackson and Joel Ambrose; and from Wade Hampton High School, David Gaze.
Foothills School Students Get Scholarships

Three seniors at Foothills Vocational Center received scholarship awards from Greenville Technical College in ceremonies this week. J.D. Warren, second from left, chairman of the industrial careers division at Greenville Tech, made the presentations to James Liner, Greer, for drafting; Warren Lewis Anderson, Taylors, for machine shop; and Rickey Pruitt, Greenville, for electricity.
Appendix B

Program Booklets
The work upon which this publication is based was performed pursuant to Grant GOO-75-00453 with the U. S. Office of Education, Department of Health, Education, and Welfare.

The project presented or reported herein was performed pursuant to a Grant from the U. S. Office of Education, Department of Health, Education, and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the U. S. Office of Education and no official endorsement by the U. S. Office of Education should be inferred.
TABLE OF CONTENTS

Overview ... 1
Flow Chart .. 2
Articulation Evaluation Procedure 3
Machine Shop Transcript Evaluation Form 4, 5, 6
Sample of "Machine Shop Transcript" 7, 8
Tuition Scholarship 9
Guidance Information Form 10, 11
Machine Shop Units 12, 13, 14
Machine Shop Objectives 15 - 35

MACHINE TOOL TECHNOLOGY

ARTICULATION GRANT

GREENVILLE TECHNICAL COLLEGE

JUNE, 1976
OVERVIEW

Evaluation for articulation into the Machine Tool Technology program at Greenville Technical College begins with the vocational student at his/her vocational center. The student should properly complete a release form in order to allow his/her "machine shop transcript" to be sent to the Industrial Division counselor at GTEC. This "transcript" should have been completed by the machine shop instructor at the center.

The GTEC guidance counselor will evaluate the "transcript" by the Machine Shop Transcript Evaluation Form. This form has a list of Career Cluster Project objectives that have been correlated to the machine shop courses at GTEC. Completion of objectives listed by each project within the four quarters of courses will be considered completion of that project at GTEC. A recommendation is made by the counselor for placement in the Machine Tool Technology program.

If the student disagrees with the counselor's recommendation and requests a higher placement, there is a detailed procedure for reviewing the evaluation by members of the Machine Tool Technology department. (See "Articulation Evaluation Procedure" in this booklet.) If the student requests a lower placement, his/her request will be honored at this time.
ARTICULATING MACHINE SHOP STUDENT FLOW CHART

VOCATIONAL CENTER

VOCATIONAL CENTER'S GUIDANCE COUNSELOR

ENTERS GT EC

GT EC ADMISSIONS
fill in application, gain acceptance, and pay reservation fee

GT EC'S DIVISION COUNSELOR'S EVALUATION

ACCEPTS

DEPARTMENT HEAD
SCHEDULE CARD
COMPUTER CENTER
BUSINESS OFFICE/PAY

ATTEND FIRST CLASS

EVALUATION OF STUDENT FOUR WEEKS INTO QUARTER BY INSTRUCTOR

CONTINUE IN CLASS

Moved back to level of competence. If by the end of the quarter student hasn't satisfied course requirements he will receive an incomplete

appeals

DIVISION CHAIRMAN, DEPARTMENT HEAD, OR INSTRUCTOR
ARTICULATION EVALUATION PROCEDURE

I. Entering Student Is Evaluated by GTEC Division Guidance Counselor with students signature for release

1. Yellow Card (MTT transcript)

II. Student Accepts - or - IV. Student Appeals -

1. Registers for suggested quarter

1. Division Chairman, Department Head or Instructor will reevaluate student.

2. Deficiencies listed and closer evaluation given - decision re-issued with counseling on its rational
 a. appeal denied - go to #3
 b. appeal accepted - go to #4

3. If appeal denied, student allowed to register for suggested MTT course

4. If appeal accepted, time expectancies on student's performance and quality determined and noted to him

5. At the end of 4 weeks the student must meet with the instructor involved to justify continuance based on performance of heretofore listed deficiencies and appropriate progress into the quarter's work
 a. If student's work acceptable, he continues through the quarter.
 b. If not acceptable, student will be moved back to his level of competency. If by the end of the quarter student hasn't satisfied course requirements, he will receive an incomplete.

III. Evaluation of Student, four weeks into quarter, by instructor to verify acceptable level of performance and appropriate initial evaluation
The evaluation instrument development by the South Carolina State Department of Education for the Cluster Project in the ARC funded program for Machine Shop has been included under Machine Tool Technology by courtesy of the South Carolina State Department of Education.
EVALUATION OF STUDENT BY RELEASING INSTRUCTOR

CIRLE THE MOST APPROPRIATE RESPONSE IN YOUR JUDGMENT USING THE SCALES PROVIDED. UNLESS OTHERWISE SPECIFIED, WRITE "UNANSWERED" TO THE SIDE OF THE ITEM IF NECESSARY. BE SURE TO INDICATE THE CLASS SIZE ON THE LAST ITEM.

KNOWLEDGE AND USE OF SAFETY RULES. Excellent Good Acceptable Poor Unacceptable

KNOWLEDGE AND USE OF TOOLS. Excellent Good Acceptable Poor Unacceptable

ABILITY TO USE HANDS. (Manual) Excellent Good Acceptable Poor Unacceptable

ABILITY TO ACCOMPLISH MULTIPLE SKILLS. Excellent Good Acceptable Poor Unacceptable

PROBLEM DIAGNOSIS AND REPAIR. Excellent Good Acceptable Poor Unacceptable

INTEREST IN THE MACHINIST FIELD. Excellent Good Acceptable Poor Unacceptable

ABILITY TO FUNCTION ACADEMICALLY. Excellent Good Acceptable Poor Unacceptable

ANTICIPATED CHANCES OF SUCCESS IF STUDENT TAKES A JOB IN THE MACHINIST FIELD. Excellent Good Acceptable Poor

ANTICIPATED DEPTH OF ADDITIONAL TRAINING IN THE MACHINIST FIELD THE STUDENT WILL NEED TO BE SUCCESSFUL IN THE FIELD. Excellent Good Acceptable Poor

ABILITY OF STUDENT TO BENEFIT FROM FURTHER TRAINING IN THE MACHINIST FIELD. Excellent Good Acceptable Poor

ABILITY OF STUDENT TO HANDLE THE EXCELLENT PERFORMANCE OF TASKS AND PROCEDURES RELATING TO THE MACHINIST FIELD. Excellent Good Acceptable Poor

ABILITY OF STUDENT TO CONCENTRATE OVER A PERIOD OF TIME. Excellent Good Acceptable Poor

OVERALL RANKING OF STUDENT AS Upper 10% Upper 25% Upper 50% Lower 50% COMPARED WITH OTHER STUDENTS IN THE SAME COURSE. Excellent Good Acceptable Poor

OF A CLASS OF ___ STUDENTS.

PERMISSION TO RELEASE THIS RECORD TO OTHER SCHOOLS AND/OR PROSPECTIVE EMPLOYERS FOR THEIR USE IN MY BEHALF IS HEREBY GRANTED.

DATE: ____________________________

SIGNATURE OF STUDENT: ____________________________

SIGNATURE OF PARENT OR GUARDIAN IF STUDENT IS LESS THAN 18 YEARS OLD:

MACHINE SHOP

TO BE COMPLETED ONLY BY THE RELEASING INSTRUCTOR

IMPORTANT: THIS RECORD WILL BE REVIEWED BY OTHER INSTRUCTORS IN VOCATIONAL HIGH SCHOOLS, AFTC, AND IEC CENTERS AS A PRELUDE TO ALLOWING THIS STUDENT CREDIT TOWARDS THE COMPLETION OF THE INSTITUTION. IT IS IMPESSIVE THAT THIS FORM BE FILLED OUT COMPLETELY. ONLY NO ITEMS. IF THE INFORMATION REQUESTED IS UNANSWERED, DO INDICATE.

UNIT ON SECTIONS COMPLETED BY STUDENT

NOTE: PLACE A CHECK IN THE BLOCKS BELOW THE UNITS OR SECTIONS WHICH WERE AT LEAST PARTIALLY COMPLETED BY THE STUDENT, USE THE PROGRESS RECORD ON THE BACK OF THIS FORM TO DETERMINE COMPLETED UNITS. THE UNITS OR SECTIONS CHECKED HERE MUST AGREE WITH THE PROGRESS RECORD ON THE BACK OF THIS FORM.

TOTAL TEST SCORES

1. Shop Math: _______ DATE: _______

2. Blueprint Reading: _______ DATE: _______

3. Machining: _______ DATE: _______

4. Layout: _______ DATE: _______

5. Draughting: _______ DATE: _______

7. Bench Feed: _______ DATE: _______

9. Drill Grinding: _______ DATE: _______

11. Engine Lathe: _______ DATE: _______

14. Saddle: _______ DATE: _______

RECORD OF GRADES FOR THIS COURSE

GRADES PERIOD

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>(SWR)</th>
<th>(OTR)</th>
<th>(QUI)</th>
<th>OTHER</th>
</tr>
</thead>
</table>

INSTRUCTOR:

Signature of Releasing Instructor: ____________________________

Date: ____________________________

SDE 26-051-00

(This form becomes obsolete 6/30/80) © S. C. State Dept. of Education 1975
AV-AV used, not necessarily objective

() - objective but not necessarily AV used

I - Introduced at this point, proficiency expected next quarter

* - increased expectation tolerance with usage

I* - Introduced in specific units, expected proficiency by end of quarter

+ - performance evaluated

* - pencil & paper evaluated

*, I - tolerance initially less than stated objective

Complete information on back of form before beginning evaluation.
TUITION SCHOLARSHIP

Greenville Technical College is proud to offer tuition scholarships in each of the Articulation Grant programs: Machine Tool Technology, Industrial Electricity, and Engineering Graphics Technology. These scholarships were suggested at an Articulation Grant Advisory Committee meeting and heartily approved by the Greenville Technical College administration. It is hoped their inception will stimulate interest in continuing quality education and training in these fields.

The Donaldson, Enoree, and Foothills Vocational Centers will each select their most outstanding and/or worthy student in their drafting, electricity, and machine shop programs. Wade Hampton High School will select a student from their electricity program. The three scholarship students from each center will receive one quarter of tuition free study at Greenville Technical College. After their first quarter, each student may receive an extension for another quarter based upon review and approval by his or her instructors and department head.

After the selection of the students by their instructors, the director or principal of each school should send a copy of all the names to the heads of the Industrial and Technical Divisions, Mr. J.D. Warren and Mr. Les Caraway. This is necessary to insure the tuition waiver be available when the student begins.
GUIDANCE INFORMATION FORM

This form was designed to supply feedback to guidance counselors, instructors, and administrators. It will be sent by the Greenville Technical College department involved to the vocational center each time there is a horizontal line of asterisks. The information on the form will supply data to evaluate our effectiveness and suggest continuation or change in our procedures.

+ +

IT IS EXTREMELY IMPORTANT THAT THE STUDENT OR HIS/HER PARENT IF THE STUDENT IS UNDER 18 SIGNS THE PERMISSION BLANK ON THE SIDE OF THE FORM. IT WOULD BE ILLEGAL TO DISSEMINATE THIS INFORMATION FROM GREENVILLE TECHNICAL COLLEGE WITHOUT THE PROPER SIGNATURE.
MACHINE SHOP
ARTICULATION STUDENT'S PROGRESS

Your student, __________________________, from ____________________________

Vocational Center has exempted through MTT _____ (quarter _____) and may (conditionally, unconditionally) enroll in MTT _____ (quarter _____).

This placement was based on

_____ the "machine shop transcript" only
_____ the "machine shop transcript" and an interview requested by __________ and conducted by __________ vocational instructor's recommendation

The student

_____ readily accepted placement
_____ requested a lower placement - outcome __________________________
_____ requested a higher placement - outcome __________________________

Date of evaluation ____________________________

The student at mid-term has been re-evaluated and is

_____ progressing satisfactorily
_____ moved back to level of competence (may be able to finish quarter's work, may have to take Inc.)

Student's signature ____________________________ Instructor's signature ____________________________ Date ____________________________

The student at the end of the first quarter of work

_____ successfully completed MTT _____ (grade _____) on _____ (date).
_____ received an incomplete
_____ dropped out before end of quarter

Student's status at the end of the first year of work- ____________________________
MACHINE SHOP UNITS

UNIT 1 MATH - MATH DEPT.
UNIT 2 BLUEPRINT READING - ENGINEERING GRAPHICS DEPT.
UNIT 3 MEASURING
UNIT 4 LAYOUT
UNIT 5 BENCH WORK
UNIT 6 BENCH/PEDISTAL GRINDING
UNIT 7 DRILL PRESS
UNIT 8 DRILL GRINDING
UNIT 9 POWER SAWS
UNIT 10 ENGINE LATHES
UNIT 11 MILLING MACHINES
UNIT 12A VERTICAL MILLING
UNIT 12B HORIZONTAL MILLING
UNIT 13 SHAPER
UNIT 14 SURFACE GRINDING
UNIT 15 TOOL POST GRINDING
UNIT 16 UNIVERSAL GRINDING

UNITS TO BE USED AT GREENVILLE TEC

1ST QUARTER AT GREENVILLE TEC
INTRODUCTION
MS-3-1 MS-4-1
MS-3-7 MS-5-1
MS-3-8 MS-5-3
MS-3-10 MS-7-1

PROJECT 1A
MS-9-1 MS-9-11
MS-9-11 MS-12A-10
MS-10-3 MS-3-10
MS-10-12 MS-3-16
MS-10-23 MS-3-19
MS-10-15 MS-12A-10
MS-10-6 MS-3-16
MS-10-13 MS-7-2
MS-3-8 MS-7-7
MS-3-1 MS-14-1
MS-3-10 MS-14-2

PROJECT 1B
MS-9-11 MS-9-1
MS-12A-10 MS-3-10
MS-3-16 MS-3-19
MS-12A-10 MS-3-16
MS-7-2 MS-7-2
MS-7-7 MS-7-7
MS-14-1 MS-14-1
MS-14-2 MS-14-2
MS-14-3 MS-14-3
MS-14-4 MS-14-4
MS-14-5 MS-14-5
1ST QUARTER (Continued)

PROJECT 2A
MS-10-1
MS-10-2
MS-10-3
MS-10-4
MS-10-6
MS-10-8
MS-10-13
MS-10-15
MS-10-20
MS-10-22
MS-3-13
MS-3-8
MS-3-10

PROJECT 2B
MS-12A-10
MS-3-16
MS-3-19
MS-3-18
MS-3-24
MS-3-8
MS-3-7
MS-7-5
MS-4-7
MS-12A-3
MS-12A-4
MS-12A-10 BORING
MS-3-10

PROJECT 3A
MS-11-6
MS-11-7
MS-11-9

INSTRUCTOR MAY SUGGEST REVIEW OF SLIDES AND TAPES AS NEEDED.

PROJECT 3B
MS-10-22
MS-10-23
MS-10-24

INSTRUCTOR MAY SUGGEST REVIEW OF SLIDES AND TAPES AS NEEDED.

PROJECT 4 (2ND QUARTER)
MS-10-25
MS-10-12
MS-11-10
MS-10-11
MS-10-18
MS-10-22 (if needed)
MS-12B-6
MS-11-7
MS-11-9
2ND QUARTER (Continued)

PROJECT 5A
MS-3-10 REVIEW
MS-3-12
MS-15-1 OPTION
MS-15-2 OPTION

THIS PROJECT MUST BE ASSEMBLED.

PROJECT 6A (3RD QUARTER)
MS-10-7
MS-11-7 REVIEW
MS-11-9 REVIEW

ASSEMBLY.

PROJECT 6B
MS-10-21

NOTICE CLOSE TOLERANCE- GRINDING- HOLE CENTER-DISTANCE SPACER LENGTH-ASSEMBLY

PROJECT 10 (4TH QUARTER)

STUDENT DRAWS HIS OWN PRINT- MAKES PARTS TO SPECIFICATION AND ASSEMBLES PARTS-SHOULD BE NO REVIEW AT THIS POINT.
UNrt' 2 - UNIT 2 - BLUEPRINT READING

MS-2-1 INTRODUCTION TO BLUEPRINT READING
When you finish this learning package, you will be able to answer questions about blueprints and about the title block and notes on blueprints.

MS-2-2 ONE, TWO, AND THREE VIEW DRAWINGS
When you finish this learning package, you will be able to identify the different views of objects as shown by isometric drawings of the object.

MS-2-3 ALPHABET OF LINES
When you finish this learning package, you will be able to identify the different types of lines used in blueprints.

MS-2-4 SECTIONS
When you finish this learning package, you will be able to identify the following sections: full, half, offset, broken out, revolved, and removed.

MS-2-5 SCALE DRAWING
When you finish this learning package, you will be able to answer (basic) questions about (interpreting the) scale (of a) drawing.

MS-2-6 FINISH MARKS
When you finish this learning package, you will be able to identify and explain the finish marks on blueprints.

MS-2-7 FREESHAND SKETCHING
When you finish this learning package, you will be able to make freehand sketches of cylindrical, rectangular, and irregularly shaped work pieces.
MACHINE SHOP - UNIT 3 - MEASURING

MS-3-1 THE MACHINIST'S SCALES
When you finish this learning package, you will be able to use the machinist's scale to measure the length and width of a piece of stock. Your measurements must be within ± 1/64 of an inch of specifications.

MS-3-2 CENTER HEAD OF THE COMBINATION SET
When you finish this learning package, you will be able to locate and mark the center on both ends of a round bar or any size from 1/8" to 6" using the center head of the combination set. Your marks must be within ± 1/32 of an inch of specifications.

MS-3-3 SQUARE HEAD OF THE COMBINATION SET
When you finish this learning package, you will be able to use the square head to scribe straight lines and angles to within ±1/32 of an inch of specification.

MS-3-4 DIVIDERS
When you finish this learning package, you will be able to use the machinist's scale and dividers to transfer the dimensions of a drawing to a workpiece. Your transferred measurements must be within ±1/64 of an inch of specifications.

MS-3-5 HERMAPHRODITE CALIPERS
When you have finished this learning package, you will be able to use the hermaphrodite caliper to: a-scribe parallel lines on a workpiece, and b-locate and mark the center of a round workpiece. Your work must be within ± 1/64 of an inch of specifications.

MS-3-6 OUTSIDE CALIPERS
When you finish this learning package, you will be able to use the outside caliper and the machinist's scale to measure the outside diameter of round workpieces to within ±1/64" of specifications.

MS-3-7 BEVEL PROTRACTOR
When you finish this learning package, you will be able to use the bevel protractor of the combination set to lay out, on a workpiece, the various angles called for on a set of specifications to within ±1/2°.

MS-3-8 OUTSIDE MICROMETER
When you finish this learning package, you will be able to use the outside micrometer to measure: the outside diameter of round stock, the thickness of flat stock, and the length of flat stock.

MS-3-9 INSIDE CALIPERS
When you finish this learning package, you will be able to use the inside calipers and the outside micrometer to measure the inside diameters of tubular stock to within ±.002" of specifications.

MS-3-10 TELESCOPING GAGE
When you finish this learning package, you will be able to use the telescoping gage and the outside micrometer to measure internal dimensions to within ±.001" of specifications.
MS-3-12 INSIDE MICROMETER
When you finish this learning package, you will be able to assemble and use the inside micrometer to measure inside diameters of tubular stock to within ±.001" of specifications.

MS-3-13 DEPTH MICROMETER
When you finish this learning package, you will be able to assemble, adjust, and use the depth micrometer to measure the depth of holes and slots to within ±.001" of specifications.

MS-3-14 SCREW PITCH GAGE
When you finish this learning package, you will be able to use the screw pitch gage to measure the number of threads per inch on any given screw or bolt.

MS-3-13A SCREW THREAD MICROMETER
When you finish this learning package, you will be able to use the screw thread micrometer to measure the pitch diameter of screw threads to within ±.001" of specifications.

MS-3-15 VERNIER CALIPER
When you get finished with this learning package, you will be able to use the vernier caliper to measure the outside and inside diameters of round stock and the depths of holes and slots to within ±.001" of specifications.

MS-3-15 SURFACE GAGE
When you finish this learning package, you will be able to use the surface gage to measure and scribe lines on vertical surfaces to within ±.010" of specifications.

MS-3-16 VERNIER HEIGHT GAGE
When you finish this learning package, you will be able to use the vernier height gage to make comparison checks to within ±.001" of specifications.

MS-3-17 OPTICAL COMPARATORS
When you have finished this learning package, you will be able to answer questions about optical comparators and how they work.

MS-3-18 GAGE BLOCKS AND DIAL INDICATORS
When you finish this learning package, you will be able to use gage blocks to verify the accuracy of a dial indicator to within ±.0001".

MS-3-19 DIAL INDICATOR
When you finish this learning package, you will be able to use the dial indicator to check the concentricity (roundness) of round stock to within ±.001".

MS-3-20 DIAL INDICATOR - VISE ALIGNMENT
When you finish this learning package, you will be able to use the dial indicator to align a vice on a milling machine to within ±.001" of specifications.
MACHINE SHOP - UNIT 3 CONTENT - MEASURING

MS-3-21 RADIUS GAGE
When you finish this learning package, you will be able to use a radius gage to measure convex and concave radii of parts.

MS-3-22 PLANER GAGE
When you finish this learning package, you will be able to adjust the planer gage to a given height.

MS-3-23 UNIVERSAL VERIER PROTRACTOR
When you finish this learning package, you will be able to use the universal vernier level protractor to lay out a given angle, with an accuracy of ±0°5'.

MS-3-24 SINE BAR
When you finish this learning package, you will be able to use a sine bar to measure and set up various angles with an accuracy of ±0°5'.

MS-3-25 SNAP GAGE
When you finish this learning package, you will be able to use snap gages to measure lengths, diameters, and thicknesses of parts.

MS-3-26 GEAR TOOTH VERIER CALIPER
When you finish this learning package, you will be able to use a gear tooth vernier caliper to measure the addendum and the chordal thickness of any gear tooth.
FACE II: UNIT 4 - LAYOUT

MS-4-1 INTRODUCTION TO LAYOUT TOOLS AND ACCESSORIES

When you finish this learning package, you will be able to identify basic layout tools and answer questions about their use.

MS-4-2 USING LAYOUT TOOLS: PART 1

When you finish this learning package, you will be able to layout fluid, corner, dividers, try-axes, hemispheroid calipers, and prick punch to do layout work to specifications.

MS-4-3 USING LAYOUT TOOLS: PART 2

When you finish this learning package, you will be able to use the vernier height gage, mitering gage, angle plate, toolmaker’s square, c-clamps, parallel clamps, 1-2-3 step blocks, precision square, gage blocks, and sine bar to do layout work to specifications.

MS-4-4 USING LAYOUT TOOLS: PART 3

When you finish this learning package, you will be able to use the combination set, vernier protractor, and protractor depth gage to do inspection and layout work to specifications.

MS-4-5 USING LAYOUT TOOLS: PART 5

When you finish this learning package, you will be able to use the surface gage, dial indicator, plunger gage, center punch, and hammer to do layout work to specifications.

MS-4-6 LAYING OUT A T-SLOT CLEANER

When you finish this learning package, you will be able to layout a T-slot cleaner to specifications.

MS-4-7 LAYING OUT A DRILL AND TAP BLOCK

When you finish this learning package, you will be able to lay out a series of six holes on a drill and tap block.
ENGINEERING UNIT 5 - WORKSHOP SKILLS

MS-5-1 INTRODUCTION TO TOOL USE
When you finish this learning package, you will be able to identify basic tool use.

MS-5-2 THE LATCH VICE
When you finish this learning package, you will be able to name the parts of a bench vice and do clamping operations on the vice according to specifications.

MS-5-3 FILES AND CHISELS
When you finish this learning package, you will be able to identify basic files used in machining and file work pieces according to specifications.

MS-5-4 HAND HACK SAW
When you finish this learning package, you will be able to identify and properly use hand hack saws to cut materials.

MS-5-5 TAPS AND DIES
When you finish this learning package, you will be able to identify and properly use taps and dies to cut threads on work pieces to specifications.

MS-5-6 HAND REAMERS
When you finish this learning package, you will be able to use hand reamers properly to ream holes in metals to specified sizes.

MS-5-7 HAMMERS, SCREW DRIVERS, CHISELS, PLEDGES, AND WRENCHES
When you finish this learning package, you will be able to identify and properly use hammers, screw drivers, chisels, pliers, and wrenches.
MACHINE SHOP - UNIT 6 - GRINDING AND TOOLMAKING

MS-6-1 GENERAL KNOWLEDGE
When you finish this learning package, you will be able to use reference charts to select proper grinding wheels. You will be able to install the wheels on a grinder, adjust the wheels, and adjust the tool rest.

MS-6-2 PROGRESSIVE WHEELS
When you finish this learning package, you will be able to true and dress a grinding wheel for normal grinding operations.

MS-6-3 GRINDER A SKINNY
When you finish this learning package, you will be able to grind a 1" radius to fit a 3/4" gage.
MS-7-1 INTRODUCTION TO DRILL PRESS
When you finish this learning package, you will be able to name each control on an upright drill press and tell what each control does.

MS-7-2 SETUPS FOR DRILLING
When you finish this learning package, you will be able to use the proper holding devices to set up for the following drilling tasks: round stock, flat stock, sheet metal, irregular shapes.

MS-7-3 DRILL PRESS CUTTING TOOLS
When you finish this learning package, you will be able to identify cutting tools used in a drill press and tell what each one does.

MS-7-4 ADAPTERS AND SLEEVES
When you finish this learning package, you will be able to use sleeves and/or chucks to change the holding capacity of a drill press spindle.

MS-7-5 DRILLING HOLES
When you finish this learning package, you will be able to choose correct feeds and speeds for drilling holes in steel and aluminum. Accuracy will be ± 1/32".

MS-7-6 DEPTH DRILLING
When you finish this learning package, you will be able to use the drill press depth stops to drill holes to a specified depth, with an accuracy of ± 1/16".

MS-7-7 COUNTERBORING, COUNTERSINKING, AND SPOT FACING
When you finish this learning package, you will be able to use the proper tool to counter sink, counterbore, and spot face drilled holes to a tolerance of ± 1/32".

MS-7-8 ANGULAR HOLES
When you finish this learning package, you will be able to make table adjustments and use proper holding devices to drill angular holes in metal, to an accuracy of ± 1/32".

MS-7-9 RADIAL DRILL PRESS
When you finish this package, you will be able to answer questions about the parts and controls of a radial drill press and tell what each one does.

MS-7-10 REAMING
When you finish this learning package, you will be able to use a straight or taper shank reamer to ream holes to a specified size, with an accuracy of ± 1/64".

MS-7-11 MACHINE TAPPING
When you finish this learning package, you will be able to use the proper tap drill size, tap, and tapping attachment to drill tap holes as shown on drawings, with an accuracy of ± 1/32".
PARTS OF A TWIST DRILL

When you finish this learning package, you will be able to name the parts of a twist drill and tell the purpose of each.

TWIST DRILL SIZES

When you finish this learning package, you will be able to use charts and drill gages to select the proper size drill for a given application.

TRANSFER HOLE

When you finish this learning package, you will be able to transfer holes from one piece of work to another by spotting with a twist drill, using a transfer punch, and using transfer screws.
When you finish this learning package, you will be able to use the bench or pedestal grinder to sharpen a dull twist drill. Using a drill bit gauge as a guide, you will be able to: keep the point angle to within \(\pm \frac{1}{2} \)° and keep the point centered to within \(\pm \frac{1}{64} \)" drill lip length.

When you finish this learning package, you will be able to set up and operate a machine drill grinder to sharpen a two-lip twist drill and a three- or four-lip core drill.
UNIT 9 - POWER SAWS

MS-9-1 TOWER SAWs: PARTS AND CONTROLS
When you finish this learning package, you will be able to name the main parts and controls of the horizontal band saw, the vertical band saw, and the power hack saw.

MS-9-2 CHOOSING POWER SAW BLADES
When you finish this learning package, you will be able to choose the correct power saw blade for a given application.

MS-9-3 FREQUENT SAWING PROBLEMS
When you finish this learning package, you will be able to answer questions about diagnosing and correcting problems often met when using the power hack saw, vertical band saw, and horizontal band saw.

MS-9-4 SETTING BLADE SPEEDS
When you finish this learning package, you will be able to use charts or a job dial selector to choose the proper speed of a band saw blade for a given job.

MS-9-5 SETTING UP POWER SAW CONTROLS
When you finish this learning package, you will be able to set up the operational controls of a power hack saw and a power band saw for a sawing operation.

MS-9-6 MOUNTING POWER SAW BLADES AND CUTTING STOCK
When you finish this learning package, you will be able to select, mount guides, and install blades on the vertical band saw, and cut stock with a vertical band saw to an accuracy of ± 1/16".

MS-9-7 WELDING BAND SAW BLADES
When you finish this learning package, you will be able to use the bulk blade provided and the welding attachment on the vertical band saw to weld band saw blades. You will weld blades to specified lengths for particular saws and to the thickness required by the blade thickness gage on the vertical band saw.

MS-9-8 VERTICAL BAND SAW: CUTTING CIRCLES, CONTOURS, AND STRAIGHT LINES
When you finish this learning package, you will be able to use the vertical band saw to cut contours, circles, and straight lines with an accuracy of ± 1/16".

MS-9-9 FRICTION SAWING
When you finish this learning package, you will be able to set up a vertical band saw for friction sawing of thin sheet metal.

MS-9-10 BAND FILING
When you finish this learning package, you will be able to select and set up a band file for a band filing job.

| 44 |
MS-9-11 HORIZONTAL HAND SAW: STRAIGHT AND ANGLE CUTS
When you finish this learning package, you will be able to use the horizontal hand saw to cut stock, with an accuracy of $\pm \frac{1}{16}''$ and to make angular cuts with an accuracy of $\pm 1^\circ$.

MS-9-12 FINISHING A T-SLOT CLEANER
When you finish this learning package, you will be able to finish a T-slot cleaner to blueprint specifications.

MS-9-13 FINISHING A DRILL AND TAP BLOCK
When you finish this learning package, you will be able to finish a drill and tap block to blueprint specifications.
MACHINE SHOP - UNIT 10 - ENGINE LATHE

MS-10-1 LATHE PARTS AND CONTROLS
When you finish this learning package, you will be able to point out the main parts and controls of an engine lathe.

MS-10-2 CUTTING SPEEDS AND FEEDS
When you finish this learning package, you will be able to choose proper feeds and speeds used to machine different kinds of metals on the lathe.

MS-10-3 INSTALLING CHUCKS
When you finish this learning package, you will be able to install all of the chucks used on a lathe.

MS-10-4 TOOL BIT GRINDING
When you finish this learning package, you will be able to identify and sketch basic lathe tools, grind a general purpose tool bit for use on the engine lathe.

MS-10-5 FOUR-JAW CHUCK TRUEING
When you finish this learning package, you will be able to true a piece of round stock in a 4-jaw chuck.

MS-10-6 FACING TO LENGTH
When you finish this learning package, you will be able to machine a workpiece to a given length using a facing tool on an engine lathe with an accuracy of +.001".

MS-10-7 COLLET ASSEMBLY AND CENTER DRILLING
When you have finished this learning package, you will be able to: set up a collet assembly on a lathe, center drill a workpiece on the lathe.

MS-10-8 GRADUATED MICROMETER COLLAR: ROUGH AND FINISH TURNING
When you finish this learning package, you will be able to use a graduated micrometer collar to turn a workpiece to a specified diameter, with an accuracy of ± .001".

MS-10-9 NECKING
When you finish this learning package, you will be able to do a necking operation on an engine lathe.

MS-10-10 MOUNTING WORK BETWEEN CENTERS
When you finish this learning package, you will be able to mount a workpiece between centers properly.

MS-10-11 ALIGNING THE TAILSTOCK
When you finish this learning package, you will be able to adjust the lathe tailstock properly for turning a work between centers with an accuracy of ± .001".
When you finish this learning package, you will be able to:

- Drill and ream a workpiece on an engine lathe to a specified size.
- Use a square to turn a workpiece to a specified size.
- Cut a square and a filleted shoulder properly.
- File and polish a workpiece on a lathe to a specified size.
- Knurl a workpiece on a lathe.
- Turn a taper on a workpiece using the compound rest.
- Calculate proper compound rest angle settings for turning tapers using formulas and trigonometric tables and calculate taper per foot and taper per inch using formulas.
- Turn a taper using the taper attachment for the lathe.
- Cut a taper using the offset tailstock method.
- Use the engine lathe to cut threads on a workpiece with a threading die and holder.
- Cut an internal thread with the lathe by using a tap and holder.
- Cut threads on a workpiece by using the lathe thread cutting mechanisms and chase external threads using a lathe.
MACHINE SHOP - UNIT 10 CONTINUED - ENGINE LATHE

MS-10-23 BORING BAR
When you finish this learning package, you will be able to bore a hole to size on a lathe.

MS-10-24 INTERNAL THREADED
When you finish this learning package, you will be able to cut internal threads using the thread chasing mechanism.

MS-10-25 STEADY REST
When you finish this learning package, you will be able to set up and machine a long workpiece using a steady rest.

MS-10-26 FOLLOW REST
When you finish this learning package, you will be able to set up and machine a workpiece using the follow rest.

MS-10-27 FORM TURNING
When you finish this learning package, you will be able to turn a radius on the lathe by hand.
MACHTTIE SHOP - UNIT 11 - MILLING : INTRODUCTION

MS-11-1 KINDS OF MILLING MACHINES

When you finish this learning package, you will be able to point out and name six different kinds of milling machines and briefly describe their uses.

MS-11-2 LUBRICATION AND PREVENTIVE MAINTENANCE

When you finish this learning package, you will be able to lubricate and perform preventive maintenance on milling machines.

MS-11-3 SPEEDS AND FEEDS

When you finish this learning package, you will be able to figure speeds and feeds on a milling machine for given cutters and work materials.

MS-11-4 CUTTING FLUIDS AND OILS

When you finish this learning package, you will be able to identify, mix, and apply cutting fluids and oils in milling machine operations.

MS-11-5 ACCESSORIES AND ATTACHMENTS

When you finish this learning package, you will be able to point out and name several milling machine attachments and tell what is used for.

MS-11-6 INDEXING HEADS AND DIRECT INDEXING

When you finish this learning package, you will be able to: point out and name the five basic parts of an indexing head, describe the use of each part, and set an indexing head up for direct indexing.

MS-11-7 SIMPLE INDEXING

When you finish this learning package, you will be able to change an index plate and set up an indexing head for simple indexing.

MS-11-8 ANGULAR INDEXING

When you finish this learning package, you will be able to: set up an indexing head for angular indexing and use the proper formulas to figure angular indexing settings.

MS-11-9 PREPARING THE HEAD FOR INDEXING

When you finish this learning package, you will be able to prepare an indexing head along with the footstock (tailstock).

MS-11-10 INDEXING: ALIGNMENT OF CENTERS

When you finish this learning package, you will be able to align the centers of an indexing head and tailstock with an aligning bar and dial indicator.

MS-11-11 VISE AND TABLE ALIGNMENT

When you finish this learning package, you will be able to: align a milling machine vise with a square, a dial indicator, and the marks on the vise base and align the table of a milling machine with the column face.

MS-11-12 ROTARY TABLE AND SLOTTING ATTACHMENT

When you finish this learning package, you will be able to identify and briefly describe the uses of the rotary table and slotting attachment.
MACHINE SHOP - UNIT 12 - MILLING MACHINES: VERTICAL AND HORIZONTAL

SECTION A - VERTICAL MILLING MACHINES

MS-12A-1 SOUTH BEND RAM TURRET: PARTS AND CONTROLS
When you finish this learning package, you will be able to name the parts and controls of a South Bend Ram Turret vertical milling machine and describe what each control does.

MS-12A-2 CINCINNATI NO. 3: PARTS AND CONTROLS
When you finish this learning package, you will be able to point out and name the parts and controls of the Cincinnati No. 3 vertical milling machine and describe what each control does.

MS-12A-3 MODEL "J" BRIDGEPORT: PARTS AND CONTROLS
When you finish this learning package, you will be able to point out and name the parts and controls of the Model "J" Bridgeport vertical milling machine and describe what each control does.

MS-12A-4 MODEL "J" BRIDGEPORT: VERTICAL HEAD ALIGNMENT
When you finish this learning package, you will be able to align the head of a Model "J" Bridgeport vertical head milling machine.

MS-12A-5 MODEL "2J" BRIDGEPORT: PARTS AND CONTROLS
When you finish this learning package, you will be able to point out and name the parts and controls of the Model "2J" Bridgeport vertical milling machine and describe what each control does.

MS-12A-6 CINCINNATI MODEL "D" TOOLMASTER: PARTS AND CONTROLS
When you finish this learning package, you will be able to point out and name the parts and controls of the Cincinnati Model "D" Toolmaster vertical milling machine and describe what each control does.

MS-12A-7 VAN NORMAN MODEL 13: PARTS AND CONTROLS
When you finish this learning package, you will be able to point out and name the parts and controls of the Van Norman Model 13 milling machine and describe what each control does.

MS-12A-8 VERTICAL MILLING MACHINE CUTTERS
When you finish this learning package, you will be able to point out and name cutters used in vertical milling operations and describe their uses.

MS-12A-9 MOUNTING CUTTERS AND CUTTING A KEYSEAT
When you finish this learning package, you will be able to mount vertical milling machine cutters properly and cut a keyseat, using a 4-flute end mill.

MS-12A-10 VERTICAL MILLING SETUPS AND OPERATIONS
When you finish this learning package, you will be able to identify and make setups on a vertical milling machine.
MACHINE SHOP - UNIT 13 - SHAPER

MS-13-1 SHAPER: PARTS AND LUBRICATION
When you finish with this learning package, you will be able to name the main parts of a shaper and lubricate a shaper to manufacturer's specifications.

MS-13-2 SHAPER CONTROLS
When you finish this learning package, you will be able to name the operating controls of the shaper and tell what each does.

MS-13-3 CUTTING TOOLS
When you finish this learning package, you will be able to name common cutting tools used on the shaper and describe and tell the purpose of the angles ground on each tool.

MS-13-4 VISE ALIGNMENT: SHAPER SAFETY
When you finish this learning package, you will be able to:
level and align a shaper vise using a dial indicator and a precision square or parallel; and state important safety rules about the shaper swivel head and vertical tool head.

MS-13-5 MACHINING A FLAT, HORIZONTAL SURFACE
When you finish this learning package, you will be able to set up and machine a flat, horizontal surface on a shaper.

MS-13-6 SETUPS FOR VERTICAL AND ANGULAR CUTS
When you finish this learning package, you will be able to set up a shaper and machine vertical and angular cuts on a workpiece to given specifications.

MS-13-7 FEEDS AND SPEEDS
When you finish this learning package, you will be able to figure proper feeds and speeds for different shaper operations, using formulas and charts and set a shaper for a given cutting speed, number of strokes per minute, and feed per stroke.
MACHINE SHOP - UNIT 12 - MILLING MACHINES: VERTICAL AND HORIZONTAL
SECTION B - HORIZONTAL MILLING MACHINES

MS-12B-1 CINCINNATI UNIVERSAL NO. 2: PARTS AND CONTROLS
When you finish this learning package, you will be able to name and point out the parts and controls on the above milling machine and describe what each control does.

MS-12B-2 HORIZONTAL MILLING MACHINE CUTTERS
When you finish this learning package, you will be able to point out and name cutters used in horizontal milling operations and describe their uses.

MS-12B-3 MOUNTING HORIZONTAL MILLING CUTTERS
When you finish this learning package, you will be able to mount horizontal milling machine cutters properly.

MS-12B-4 HORIZONTAL MILLING SETUPS AND OPERATIONS
When you finish this learning package, you will be able to identify and make setups on a horizontal milling machine.

MS-12B-5 INSTALLING A VERTICAL HEAD ATTACHMENT
When you finish this learning package, you will be able to install, lubricate, and operate a vertical head milling attachment.

MS-12B-6 CUTTING A SPUR GEAR
When you finish this learning package, you will be able to set up a horizontal column and knee type milling machine for cutting a spur gear and cut a spur gear according to blueprint specifications.

MS-12B-7 CUTTING A RACK GEAR
When you finish this learning package, you will be able to set up a horizontal column and knee type milling machine for cutting a rack gear and cut a rack gear according to blueprint specifications.

MS-12B-8 CUTTING A HELICAL GEAR
When you finish this learning package, you will be able to set up a horizontal column and knee type milling machine for cutting a helical gear and cut a helical gear according to blueprint specifications.
When you finish this learning package, you will be able to name the main parts and controls of a surface grinder.

When you finish this learning package, you will be able to select and change grinding wheels on a surface grinder to meet requirements of the material to be ground.

When you finish this learning package, you will be able to select, test, mount, and dress the proper grinding wheel for a given job by using the diamond tip dresser to true the wheel in relation to the magnetic chuck.

When you finish this learning package, you will be able to position and secure a workpiece on the magnetic chuck of the surface grinder and align the workpiece surface so that it is parallel to the face of the grinding wheel, using a dial indicator to get an accuracy of ±.001".

When you finish this learning package, you will be able to make a finish drawing and grind two parallel bars to the specifications of that drawing with an accuracy of ±.0005".

When you finish this learning package, you will be able to set up a radius dresser and dress a grinding wheel to a convex or concave radius.
MACHINE SHOP - UNIT 15 - TOOL POST GRINDING

MS-15-1 SETTING UP A TOOL POST GRINDER
When you finish this learning package, you will be able to set up a lathe and tool post grinder for a grinding operation.

MS-15-2 EXTERNAL TOOL POST GRINDING
When you finish this learning package, you will be able to grind a lathe center point properly to fit a center gage in 95 minutes.

MS-15-3 REAMER SHARPENING ON THE TOOL POST GRINDER
When you finish this learning package, you will be able to sharpen a machine reamer properly on a tool post grinder in 1 1/2 hours.

MS-15-4 INTERNAL TOOL POST GRINDING
When you finish this learning package, you will be able to grind a drill bushing bore to blueprint specifications with a tool post grinder in one hour and twenty minutes.
The work upon which this publication is based was performed pursuant to Grant GOO-75-00453 with the U. S. Office of Education, Department of Health, Education, and Welfare.

The project presented or reported herein was performed pursuant to a Grant from the U. S. Office of Education, Department of Health, Education, and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the U. S. Office of Education and no official endorsement by the U. S. Office of Education should be inferred.
OVERVIEW

In order for the graduates of the vocational high school drafting programs to enter the Engineering Graphics Technology program at Greenville Technical College at an advanced level, course objectives, an Employability Profile, and articulation procedures have been developed.

The concept sheets have been developed jointly by the instructors in the vocational high schools of Greenville County and the department head, division chairman and members of the Educational Development Team at Greenville Technical College. Their purpose is to help insure uniformity of objectives to be covered at either school or college.

The Student's Employability Profile shows the major mechanical drafting units plus a further breakdown of competencies that can be used by an instructor to keep a running account of a student's progress. The completed form supplied by the vocational school instructor will be used along with other data to help determine at what level the student may enter the Engineering Graphics Department at Greenville Technical College. The same form will be used at Greenville Technical College and the additional tasks and competencies will be checked as they are reached.

When the student leaves GTEC, the completed form may be used by an employer as a guide with reference to his technical skills accomplishments and also as an indication of his attitudes, behavior, and work habits.

The major units and competencies listed in the Employability Profile cover many specialized fields of drafting so that it is highly unlikely that any one student will cover them all even though he completes two years at a vocational school and two years at Greenville Technical College.
The following courses will be considered for exemption:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Graphics I</td>
<td>EGT 111</td>
</tr>
<tr>
<td>Engineering Graphics II</td>
<td>EGT 121</td>
</tr>
<tr>
<td>Engineering Graphics III</td>
<td>EGT 131</td>
</tr>
</tbody>
</table>

Related Drafting Courses

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Drawing I</td>
<td>EGT 112</td>
</tr>
<tr>
<td>Engineering Drawing II</td>
<td>EGT 122</td>
</tr>
</tbody>
</table>
FLOW CHART OF ARTICULATION STUDENTS - EGT

STUDENT
°Decides to go to GTEC
°Informs counselor or instructor
°Assembles portfolio of drawings for interview with department head

COUNSELOR
°Notifies vocational instructor of students placement and progress

INSTRUCTOR
°Provides: Recommendations for advanced placement and employability profile - sends to GTEC EGT department head

GTEC COUNSELOR
°Contacts GTEC Technical division counselor to arrange appointment for students personal visit.

VOCATIONAL CENTER

STUDENT
°Goes to computer center
°Pays fees at Business Office
°Attends Class

GTEC DIVISION CHAIRMAN
°Meets with student to discuss programs
°Arranges tour of drafting labs

EGT DEPARTMENT HEAD
°Meets with student to discuss EGT Program
°Interviews student
°Review: Recommendations employability profile, portfolio and placement test to builds students schedule
°Notifies vocational center counselor of students placement
°Re-evaluates student five weeks into quarter - student advised as to progress
°Notifies vocational center counselor of student progress

Quarter Completed
ARTICULATION EVALUATION PROCEDURE

Students who graduate from any Greenville area vocational centers' drafting program may be permitted to exempt one, two, or three quarters of engineering graphics from the Engineering Graphics curriculum or one quarter of engineering drawing from the Architectural Engineering Technology curriculum at Greenville Technical College.

The following steps should be taken by vocational school students who plan to apply for exemption from engineering graphics or engineering drawing courses.

1. By the middle of your senior year ask your instructor or counselor to contact the Technical Division counselor at GTEC and set up an appointment for you to make a personal visit.

2. Arrangements will be made by the GTEC counselor for you to meet the Technical Division chairman, the department heads and to visit the drafting labs while classes are in session.

3. Your counselor can make arrangements for you to take the placement test administered by GTEC either at your school or at GTEC.

4. The GTEC technical division counselor will evaluate your test and contact you to arrange for an interview.

5. Providing that you have met the general entrance requirements you will need a recommendation from your instructor for advanced placement. (This will be sent directly to the department head).

6. You will need an Employability Profile. (This will be sent directly to the department head by your instructor).

7. You will need a portfolio of your drawings either originals or prints. (Bring this with you when you are called for an interview with the GTEC department head).
EMPLOYABILITY PROFILE

Occupation: Drafting

SKILLS PROFICIENCY RATING

<table>
<thead>
<tr>
<th>NAME</th>
<th>Last</th>
<th>First</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOWN, STATE, ZIP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVALUATOR</td>
<td>TITLE</td>
<td>DATE</td>
<td></td>
</tr>
</tbody>
</table>

RATING LEVELS:

1. Instruction Not Received
2. Needs More Instruction
3. Satisfactory
4. Outstanding

BASIC TECHNIQUES

- Use & care of instruments & materials
- Alphabet of lines
- Lettering
- Use of scales

GEOMETRIC CONSTRUCTIONS

- Basic constructions
- Basic applications

MULTIVIEW DRAWINGS

- Orthographic projection
- Major views
- Selection of scales, sheet size, views

DIMENSIONING

- Methods
- Rules

PRECISION DIMENSIONING

- Standard fits and limits
- Tolerances
- Surface finishes

SPECIAL VIEWS

- Full and half section, other sections
- Primary and double auxiliary views

62
<table>
<thead>
<tr>
<th>FASTENERS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification and representation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinds and classifications of threads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Springs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELDING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards and symbols</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCTION DRAWING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly and detail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layout and design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bills of Materials, standard notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revisions and related forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detailed assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETAILED DRAWING - SPECIALIZED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casting and pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stamping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploded view</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICTORIAL DRAWING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isometric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oblique Projection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNIQUES IN INK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lettering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKETCHING REPRODUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATED INFORMATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time cards and clock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time sheets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing no. and part no. system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machinery's Handbook</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Handbook</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial catalogs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

63
BASIC MATH INCLUDING METRIC SYSTEM
- Fractions and decimals
- Volumes and arms
- Weights
- Basic slide rule

SPECIAL PROJECTS (LIVE WORK)
- Mechanical
- Electrical
- Construction
- Architectural
- Graphs & charts

GEARS AND CAMS
- Nomenclature and profiles
- Introduction to formulae ratios
- Bearings

OTHER DRAFTING AREAS
- Architectural
- Structural
- Plumbing, heating and air conditioning
- Electrical and electronic
- Map and topographical

PRECISION DIMENSIONING
- Positional and form tolerances (true position)
- Maximum Material Condition
- Numerical control

APPLYING FOR A JOB
- Appearance
- Attitude and feeling
- Filling out applications
- Resume
- What not to do
- References
- Interview Know-How

COMMENTS
ATTITUDES, BEHAVIOR, AND WORK TRAITS

EVALUATION: Please draw circle around numbers that are most appropriate.

RELATIONSHIP WITH OTHERS
1. Unable to determine at this time
2. Has difficulty with others
3. Gets along satisfactorily
4. Exceptionally well accepted

CONCENTRATION
1. Unable to apply self to job at hand
2. Concentration fluctuates
3. Satisfactory concentration level
4. Highly satisfactory

ADAPTABILITY TO NFW JOB TASKS
1. Cannot adjust to new assignment
2. Has difficulty adjusting
3. Adjusts adequately
4. Adjusts well to new assignments

COOPERATION
1. Unable to determine at this time
2. Generally not cooperative
3. Generally cooperative
4. Exceptionally cooperative

MOTIVATION IN OCCUPATIONAL AREA
1. Unable to determine at this time
2. Lacks motivation
3. Average interest and application
4. Highly motivated

COURTESY
1. Unable to determine at this time
2. Poor attitudes, needs improvement
3. Generally courteous
4. Exceptionally courteous and considerate

DEPENDABILITY
1. Unable to determine at this time
2. Needs constant follow-up
3. Generally accepts responsibility
4. Exceptionally reliable

ADAPTABILITY
1. Unable to determine at this time
2. Has difficulty in adapting
3. Usually accepts change
4. Self reliant, imaginative

INITIATIVE
1. Unable to determine at this time
2. Never initiates action
3. Seldom needs prodding
4. Exceptionally good "self starter"

JUDGMENT
1. Unable to determine at this time
2. Often uses poor judgment
3. Usually makes the right decision
4. Above average in making decisions

DEXTERITY REQUIREMENTS FOR THE OCCUPATION
1. Unable to determine at this time
2. Prognosis for success is poor
3. Is well suited, shows potential
4. Highly suited to needs of occupation

CRAFTSMANSHIP AND SKILLS
1. Unable to determine at this time
2. Substandard work
3. Average performance
4. High standards of performance

SELF CONTROL
1. Unable to determine at this time
2. Tends to be excitable
3. Well balanced
4. Exceptionally well balanced

EFFICIENCY AND PRODUCTION
1. Unable to determine at this time
2. Often wastes time and effort
3. Makes effort to work effectively
4. A steady and productive worker
SAFETY
1. Unable to determine at this time
2. Lacks genuine concern for safety
3. Satisfactory practice of safety
4. High regard for safety requirements

WRITTEN PERFORMANCE
1. Unable to determine at this time
2. Work is self on good
3. Work is generally good
4. Work is consistently good

TOLERANCE
1. Cannot tolerate many obstacles
2. Has difficulty with obstacles
3. Generally sticks to job
4. Sticks to job in face of obstacles

CONSISTENCY OF WORK BEHAVIOR
1. Very unstable work behavior
2. Generally more erratic than not
3. Showed moderately steady work behavior
4. Showed steady work behavior
TUITION SCHOLARSHIP

Greenville Technical College is proud to offer tuition scholarships in each of the Articulation Grant programs: Machine Tool Technology, Industrial Electricity, and Engineering Graphics Technology. These scholarships were suggested at an Articulation Grant Advisory Committee meeting and hardily approved by the Greenville Technical College administration. It is hoped their inception will stimulate interest in continuing quality education and training in these fields.

Donaldson, Enoree, and Foothills Vocational Centers will each select their most outstanding and/or worthy student in their drafting, electricity, and machine shop programs. Wade Hampton High School will select a student from their electricity program. The three scholarship students from each center will receive one quarter of tuition free study at Greenville Technical College. After their first quarter, each student may receive an extension for another quarter based upon review and approval by his or her instructors and department head.

After the selection of the students by their instructors, the director or principal of each school should send a copy of all the names to the heads of the Industrial and Technical Division, Mr. J.D. Warren and Mr. Les Caraway. This is necessary to insure the tuition waiver be available when the student begins.
GUIDANCE INFORMATION FORM

This form was designed to supply feedback to guidance counselors, instructors, and administrators. It will be sent by the Greenville Technical College department involved to the vocational center each time there is a horizontal line of asterisks. The information on the form will supply data to evaluate our effectiveness and suggest continuation or change in our procedures.

+ +

IT IS EXTREMELY IMPORTANT THAT THE STUDENT OR HIS/HER PARENT IF THE STUDENT IS UNDER 18 SIGNS THE PERMISSION BLANK ON THE SIDE OF THE FORM. IT WOULD BE ILLEGAL TO DISSEminate THIS INFORMATION FROM GREENVILLE TECHNICAL COLLEGE WITHOUT THE PROPER SIGNATURE.
ENGINEERING GRAPHICS
ARTICULATION STUDENT'S PROGRESS

Your student, ______________________, from ______________________

Vocational Center has exempted EGT ____, ____, ____ and may
(conditionally, unconditionally) enroll in EGT ____ (quarter __).

This placement was based on

portfolio

employability profile filled out by ______________________

vocational instructor's recommendation

Date of evaluation ______________________

The student at mid-term has been re-evaluated and is

progressing satisfactorily

moved back to level of competence (may be able to finish
quarter's work, may have to take Incomplete)

Student's signature ______________________

Instructor's signature ______________________

Date ______________________

The student at the end of the first quarter of work

successfully completed EGT ____ (grade ____) on ____(date).

received an incomplete

dropped out before the end of the quarter

because of ______________________

Student's status at the end of the first year of work - __________

69

12
ARTICULATED DRAFTING UNITS

FIRST QUARTER
1. Instrument Drawing (One View)
2. Lettering
3. Geometric Construction
4. Sketching and Shape Description
5. Dimensioning
6. Reproduction and Control of Drawing
7. Multiview Projection

SECOND QUARTER
8. Section Views
9. Auxiliary Views
10. Revolutions
11. Screw Threads and Fasteners
12. Isometric Drawings
13. Oblique Drawings
14. Intersections and Developments

THIRD QUARTER
15. Shop Processes
16. Working Drawings
<table>
<thead>
<tr>
<th>CONCEPT/PERFORMANCE</th>
<th>CONDITIONS</th>
<th>CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Instrument Drawing (One View)</td>
<td>Given a drafting assignment to do on the drafting board where instruments and other basic drafting equipment is necessary. Drawings will be drawn to scale using the proper pencils on the assigned sheet size and title block layout. Drawing will be centered on the sheet. Use the proper pencil to get dark, sharp lettering. Drafting standards and handout examples will be followed. Proper number of strokes and direction of stroke must be used.</td>
<td>To the instructors' satisfaction. ANSI Standards will be used to the instructors' satisfaction. It must be dark enough to make a good readable reproduction. Lettering must be easy to read, reproducible and not more than a 5 variation away from vertical. Spacing between letters must have equal area within a 5% variation. Spacing between sentences must be uniform using two letter heights as the optimum.</td>
</tr>
<tr>
<td>1.1 Demonstrate the use of drafting instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Do the assigned one view drafting problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Letter the necessary notes on the drawing and in the title block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 Lettering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Perform legible lettering exercises (letters, numbers, fractions symbols)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Perform lettering exercises of words, sentences, and paragraphs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCEPT/PERFORMANCE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3.0 Geometric Construction</td>
<td>Use drafting instruments as required to do the problems on the handout sheet or as assigned by instructor.</td>
<td>Bisected lines must measure within a tolerance of 1/64". Angles must be within 1/2 constructed figures must be to instructors' satisfaction.</td>
</tr>
<tr>
<td>3.1 Bisect lines, angles and construct figures.</td>
<td>Same as above.</td>
<td>To instructors' satisfaction.</td>
</tr>
<tr>
<td>3.2 Draw regular polygons.</td>
<td>Same as above.</td>
<td>Arcs and lines must be tangents to the instructors' satisfaction.</td>
</tr>
<tr>
<td>3.3 Draw tangents to arcs, lines and circles.</td>
<td>Complete one view drawings with points of tangency indicated.</td>
<td>To instructors' satisfaction.</td>
</tr>
<tr>
<td>3.4 Make drawings that show the above techniques applied.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCEPT/PERFORMANCE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>4.0 Sketching and Shape Description</td>
<td>On paper using drafting instruments</td>
<td>100%</td>
</tr>
<tr>
<td>4.1 Illustrate the six principle views used in describing the shape of an object graphically.</td>
<td>Make 3 view drawings and label on each view length, width, and/or depth as appropriate.</td>
<td>100%</td>
</tr>
<tr>
<td>4.2 Illustrate the three principles dimensions.</td>
<td>Use the problems assigned in the text and do them on the grid paper provided.</td>
<td>All three views must be shown to scale in their proper positions.</td>
</tr>
<tr>
<td>4.3 Convert an isometric picture drawing on grid paper to three view sketches on grid paper.</td>
<td>Problems assigned in text shows 2 views on grid paper, the third one is to be added.</td>
<td>The 2 views as shown plus the 3rd view must be shown in its proper position to scale with all necessary lines.</td>
</tr>
<tr>
<td>4.4 Sketch 3 views of assigned objects on grid paper.</td>
<td>3 view problems are given with missing lines.</td>
<td>All lines must be added before assignment is complete.</td>
</tr>
<tr>
<td>4.5 Add missing lines to complete the shape description of objects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCEPT/PERFORMANCE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>5.0 Dimensioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Demonstrate an understanding of how and where shape dimensions are placed on a drawing.</td>
<td>Problems will be given which show undimensioned views of a part. The student will measure the shape and place the dimensions on the view.</td>
<td>To the satisfaction of the instructor.</td>
</tr>
<tr>
<td>5.2 Demonstrate an understanding of how and where size dimensions are placed on a drawing.</td>
<td>Same as above, except that some additional information may be partially given i.e., thread class.</td>
<td>The same as above.</td>
</tr>
<tr>
<td>5.3 Demonstrate ability to completely define a part by selecting the views necessary to completely and correctly dimension it.</td>
<td>Both textbook problems and layout drawings will be used. The student must prepare the drawings and dimension them using drafting instruments.</td>
<td>To the satisfaction of the instructor: ANSI Y14 will serve as a standard for dimensioning practices. (Emphasis will be placed on linework, lettering, proper placement of dimensions, and choice of optimum method of dimensioning.)</td>
</tr>
<tr>
<td>6.0 Reproduction and Control of Drawings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1 Demonstrate an understanding of a drawing identification system.</td>
<td>He will provide drawing and/or part number identification for a set of detail and assy drawings (See Para 5.2 & 5.3).</td>
<td>Drawing numbers must be chosen so as to avoid duplication, to the satisfaction of the instructor.</td>
</tr>
<tr>
<td>6.2 Demonstrate the ability to make a diazo print from a tracing.</td>
<td>Given a tracing, he will properly and safely operate a diazo print machine.</td>
<td>To instructor's satisfaction using both vellum and polyester base drawings</td>
</tr>
<tr>
<td>6.3 Demonstrate an understanding of the preparation and use of brownline drawings.</td>
<td>He will prepare a brownline of a tracing using similar technique as 6.2 above.</td>
<td>Ditto</td>
</tr>
<tr>
<td>CONCEPT/PERFORMANCE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>7.0 Multiview Projections</td>
<td>To be made on 8 1/2 X 11 cross section paper from Isometric Sketching Problems on handouts or the ones in the textbook.</td>
<td>All three principal views must be in their proper positions and sketching must be to the instructors' satisfaction</td>
</tr>
<tr>
<td>7.1 Make 3 view sketches.</td>
<td>Given: 2 orthographic views to copy on cross section paper and the third view.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>7.2 Do the assigned Missing View Problems.</td>
<td>Given: 3 orthographic views with lines missing--Lines to be sketched in. May be either on a handout sheet or problems in the textbook.</td>
<td>All lines must be shown.</td>
</tr>
<tr>
<td>7.3 Do the assigned Missing Line Problems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCEPT / PERFORMANCE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8.0 Section Views</td>
<td></td>
<td>Pass as a written test.</td>
</tr>
<tr>
<td>8.1 Demonstrate a proficiency in the correct terminology relating to section views.</td>
<td>Written</td>
<td>Problems will be drawn until they show clearly to the instructor's satisfaction that the principles of sectioning are being applied in a neat and orderly manner.</td>
</tr>
<tr>
<td>8.2 Make section drawings of cylindrical shaped objects.</td>
<td>Apply good standard sectioning principles to simple cylindrical shaped objects. Drawings will consist of one circular view and a full or half section as assigned by instructor.</td>
<td>Problems will be assigned until they are done to instructor's satisfaction.</td>
</tr>
<tr>
<td>8.3 Make section drawings of irregular shaped objects.</td>
<td>Same conditions as above.</td>
<td>To instructor's satisfaction.</td>
</tr>
<tr>
<td>8.4 Make section drawings showing revolved sections and broken-out sections.</td>
<td>Problems will be assigned from textbook or handouts.</td>
<td></td>
</tr>
<tr>
<td>CONCEPT/PRACTICE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9.0 Auxiliary Views</td>
<td></td>
<td>Make a passing grade on a written test.</td>
</tr>
<tr>
<td>9.1 Demonstrate a proficiency in the use of correct terminology relating to auxiliary views.</td>
<td></td>
<td>To the instructor's satisfaction.</td>
</tr>
<tr>
<td>9.2 Construct primary auxiliary view of objects with symmetrical planes</td>
<td>Written</td>
<td></td>
</tr>
<tr>
<td>9.3 Construct auxiliary view of objects that have asymmetrical planes.</td>
<td>Problems showing orthographic views of objects will be given from which the auxiliary view will be drawn.</td>
<td>To the instructor's satisfaction.</td>
</tr>
<tr>
<td>9.4 Construct auxiliary views of objects with curved surfaces.</td>
<td>Textbook problems or handout sheets will be provided.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problems to be assigned.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>CONCEPT/PERFORMANCE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>10.0 Revolutions</td>
<td></td>
<td>100% correct projection methods 1.01 accuracy answers line quality.</td>
</tr>
<tr>
<td>10.1 Construct a three view drawing of an object with a revolution of the given front view about an axis perpendicular to the frontal plane.</td>
<td>Given a 3-view drawing and direction and/or degree of revolution.</td>
<td></td>
</tr>
<tr>
<td>10.2 Same as above except revolve the right view about an axis perpendicular to profile plane.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>10.3 Same as above with top view revolved about axis perpendicular to horizontal plane.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>10.4 Successive revolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5 Revolve a point about a normal axis.</td>
<td>Given axis, point and degrees of revolution.</td>
<td></td>
</tr>
<tr>
<td>10.6 Revolve a point about an inclined axis.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>10.7 Revolve a point about an oblique axis.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>10.8 Revolve a line about as normal, inclined or oblique axis.</td>
<td>Given axis, line and degrees or position criteria for revolved line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. To 1.01 accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Answers, line quality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. And example</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Using revolution & auxiliar view methods as required.</td>
</tr>
<tr>
<td>CONCEPT/PERFORMANCE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>11.0 Screw Threads & Fasteners</td>
<td>Written</td>
<td>Make a passing grade on a written and/or performance test.</td>
</tr>
<tr>
<td>11.1 Demonstrate knowledge concerning terminology used with screws, bolts, nuts, threads, and fasteners.</td>
<td>Problems assigned by instructor.</td>
<td>To instructor's satisfaction.</td>
</tr>
<tr>
<td>11.2 Make drawings that show simplified, schematic and detailed threads complete with notes and dimensions.</td>
<td>Problems assigned by instructor.</td>
<td>To instructor's satisfaction.</td>
</tr>
<tr>
<td>11.3 Make drawings that show square head and hex head bolts and nuts assembled. Complete with notes, and dimensions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCEPT/PERSISTENCE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>12.0 Isometric Drawing</td>
<td>Given cube size and instruction to use principles of isometric construction.</td>
<td>To instructor line quality and accuracy standards ANSI lines and ±.01 accuracy to isometric form.</td>
</tr>
<tr>
<td>12.1 Draw an isometric drawing of a cube.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 Draw ellipse in face of cube using template.</td>
<td>Given cube size and circle size.</td>
<td></td>
</tr>
<tr>
<td>12.3 Draw ellipse in each face of cube using approximate four-center ellipse method.</td>
<td>Given cube size and circle size.</td>
<td></td>
</tr>
<tr>
<td>12.4 Draw an isometric view of object that has inclined planes and angles.</td>
<td>Given object in 3-view, oblique or physically.</td>
<td></td>
</tr>
<tr>
<td>12.5 Draw an isometric of an object that has an irregular curved surface.</td>
<td>Given object, 3-view drawing or pictorial.</td>
<td></td>
</tr>
<tr>
<td>12.6 Draw and dimension completely an isometric view of an object having angles and circles.</td>
<td>Given object or pictorial of object.</td>
<td></td>
</tr>
<tr>
<td>CONCEPT / PERFORMANCE</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>13.0 Oblique Drawing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1 Draw an oblique view of a cube using oblique pictorial method.</td>
<td>Given size of cube and angle of sight, percent of depth protection and viewing direction (cabinet, cavalier, etc.)</td>
<td>ANSI line quality +.01 accuracy to oblique form.</td>
</tr>
<tr>
<td>13.2 Draw oblique view of object having angles and inclined surfaces.</td>
<td>Given object, 3-view of object or pictorial of object.</td>
<td></td>
</tr>
<tr>
<td>13.3 Draw oblique view of object having circular planes or features.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0 Intersection and Developments</td>
<td></td>
<td>To the instructors' satisfaction</td>
</tr>
<tr>
<td>14.1 Construct prisms and cylinders by parallel line development.</td>
<td>Assigned problems to be done on the drafting board using standard drafting techniques.</td>
<td>When cut out and folded or rolled they must form into the intended shape.</td>
</tr>
<tr>
<td>14.2 Construct pyramids and cones by radial line developments.</td>
<td>Assigned problems to be done on the drafting board using standard drafting techniques.</td>
<td></td>
</tr>
<tr>
<td>14.3 Construct transition pieces by triangulation.</td>
<td>Same as above.</td>
<td>Pieces must join together to form the intended shape when cut out, rolled, folded and stuck together.</td>
</tr>
<tr>
<td>Concept/Performance</td>
<td>Conditions</td>
<td>Criteria</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>15.0 Shop Processes</td>
<td>Parts are to be machined from castings. Correct terminology must be shown in the notes and specifications.</td>
<td>To the instructors' satisfaction</td>
</tr>
<tr>
<td>15.1 Make working drawings of machine parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.2 Make working drawings of fabricated parts</td>
<td>Parts are to be shown assembled by welding. Written test to cover terms, notes, machine tools, manufacturing processes, dimensioning, techniques and applications, etc.</td>
<td>To the instructors' satisfaction</td>
</tr>
<tr>
<td>15.3 Take a test on terminology relating to shop processes</td>
<td></td>
<td>85%</td>
</tr>
<tr>
<td>CONCEPT/TASK DEFINITION</td>
<td>CONDITIONS</td>
<td>CRITERIA</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>16. Working Drawings</td>
<td>The student will prepare part drawings from problems assigned by the instructor. Problems will be given in either of two formats: a) Exploded pictorial drawings with dimensions and materials noted b) Cross sectioned assembly layout drawings with design parameters defined. The advanced students will be appointed as job leaders and will be assigned one or more detail draftsmen. The job captain will prepare a layout of a more complicated device from a problem assigned by the instructor. When the layout is complete, he will assign detail drawings to the draftsmen and supervise their work.</td>
<td>Each drawing must include all information necessary to properly fabricate the parts to the satisfaction of the instructor. The student must determine which parts require detail part drawings, and must prepare these drawings as noted above. He then must prepare all necessary sub-assembly and assembly drawings which will include a listing of parts in family-tree order. The layout will be completed to the satisfaction of the instructor, and will include a sequenced assembly procedure. The responsibility for handing in a complete drawing package will be on the job leader. (The job leader will check all detail and assembly drawings for completeness and correctness.)</td>
</tr>
<tr>
<td>16.1 Demonstrates an understanding of a detail part drawing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.2 Demonstrate an understanding of assembly drawings and the relationship that detail and assembly drawings have to each other.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.3 Advanced student work: Demonstrate an understanding of the responsibilities of a layout draftsman.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INDUSTRIAL ELECTRICITY ARTICULATION

Greenville Technical College
GReenville, South Carolina 29606
The work upon which this publication is based was performed pursuant to Grant G00-75-00453 with the U. S. Office of Education, Department of Health, Education, and Welfare.

The project presented or reported herein was performed pursuant to a Grant from the U. S. Office of Education, Department of Health, Education, and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the U. S. Office of Education and no official endorsement by the U. S. Office of Education should be inferred.
TABLE OF CONTENTS

- Overview .. 1
- Flow Chart ... 2
- Tuition Scholarships ... 3
- Placement Tests .. 4
- Guidance Form ... 5, 6
- Course Objectives .. 7 - 38

GREENVILLE TECHNICAL COLLEGE - ARTICULATION GRANT

INDUSTRIAL ELECTRICITY

MAY, 1976

OVERVIEW

The vocational school graduate will have the opportunity to exempt some of the Industrial Electricity courses at Greenville Technical College that are repetitious of his vocational school studies. The student may exempt a course after attaining an acceptable proficiency level on the appropriate placement test. Each placement test may be taken once a quarter with a limit of one retake during another quarter.

The course objectives that are covered in each placement test will be given to each vocational electricity instructor. They are also available for inspection at GTEC's Industrial Electricity department.

The placement for exemptions will begin during the regular registration days just before fall quarter. They will continue to be offered during each pre-registration time in a testing center at Greenville Technical College. Mr. J.D. Warren, Industrial Division Chairman, in the Industrial Electricity department may be contacted for details.

Specifically, the following courses will be considered for exemption upon completion of the placement test:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Electricity</td>
<td>ZEM 101</td>
</tr>
<tr>
<td>Residential Electricity-Codes and Ordinances-A</td>
<td>EEM 345</td>
</tr>
<tr>
<td>Residential Electricity-Codes and Ordinances-B</td>
<td>EEM 346</td>
</tr>
<tr>
<td>DC Electricity</td>
<td>EEM 113</td>
</tr>
<tr>
<td>AC Electricity</td>
<td>EEM 123</td>
</tr>
<tr>
<td>AC Machines and Devices</td>
<td>EEM 127</td>
</tr>
<tr>
<td>Electrical Control Circuits</td>
<td>ZEM 136</td>
</tr>
<tr>
<td>Electrical Math I</td>
<td>MAT 115</td>
</tr>
<tr>
<td>Electrical Math II</td>
<td>MAT 126</td>
</tr>
</tbody>
</table>
PROPOSED FLOW CHART OF ARTICULATION STUDENTS - EEM

STUDENT
- decide to go to GTEC
- speak with vocational instructor

VOCATIONAL INSTRUCTOR
- students decide which placement tests to take

PLACEMENT TESTS

ADMISSIONS
- fill out application
- gain acceptance
- pay reservation fee

VOCATIONAL COUNSELOR
- provide orientation
- explain and begin registration procedures

PLACEMENT TESTS

GTEC COUNSELOR
- provide orientation
- explain and begin registration procedures

PLACEMENT TESTS (last chance)

VOCATIONAL COUNSELOR
- is notified by EEM of placement test results

EEM DEPARTMENT
- build schedule from placement test results

STUDENT
- go to computer center
- pay fees at business office
- attend class

RE-EVALUATION
- five weeks into quarter
- student advised as to progress

VOCATIONAL COUNSELOR
- is notified as to student's progress by EEM

VOCATIONAL INSTRUCTOR
- is notified of student's progress by voc. coun.
TUITION SCHOLARSHIP

Greenville Technical College is proud to offer tuition scholar-
ships in each of the Articulation Grant programs: Machine Tool Tech-
nology, Industrial Electricity, and Engineering Graphics Technology.
These scholarships were suggested at an Articulation Grant Advisory
Committee meeting and hardly approved by the Greenville Technical
College administration. It is hoped their inception will stimulate
interest in continuing quality education and training in these fields.

The Donaldson, Enoree, and Foothills Vocational Centers will
each select their most outstanding and/or worthy student in their
drafting, electricity, and machine shop programs. Wade Hampton High
School will select a student from their electricity program. The
three scholarship students from each center will receive one quarter
of tuition free study at Greenville Technical College. After their
first quarter, each student may receive an extension for another
quarter based upon review and approval by his or her instructor and
department head.

After the selection of the students by their instructors, the
director or principal of each school should send a copy of all the
names to the heads of the Industrial & Technical Divisions, Mr. J.D.
Warren and Mr. Lee Caraway. This is necessary to insure the tuition
waiver be available when the student begins.
PLACEMENT TESTS

Course objectives for each course offering a placement test are in this booklet and on file in the Industrial Electricity department at Greenville Technical College. Each vocational instructor may review these objectives and advise his students as to which placement tests would be most appropriate to take.

The placement tests will be offered at Greenville Technical College during the registration days immediately preceding each quarter. They will begin just before fall quarter, 1976, and be offered each quarter thereafter.

It is the student's responsibility to find out the location of the testing center and schedule him/herself so that all the desired placement tests may be taken in the time the center is open. The Industrial Electricity department and Mr. J.D. Warren, Industrial Division Chairman, may be called for details. It is planned that the guidance counselors at TEC will also know specific details.

Tentative schedules for registration (and therefore the placement tests) for the next year are as follows:

- Fall, 1976 - Sept. 1,2,3
- Winter, 1976 - Nov. 29,30
- Spring, 1977 - March 1,2
- Summer, 1977 - May 24,25

It is hoped that through the urging of the vocational instructors that each vocational student will take full advantage of these placement tests.
GUIDANCE INFORMATION FORM

This form was designed to supply feedback to guidance counselors, instructors, and administrators. It will be sent by the Greenville Technical College department involved to the vocational center each time there is a horizontal line of asterisks. The information on the form will supply data to evaluate our effectiveness and suggest continuation or change in our procedures.

+ +

IT IS EXTREMELY IMPORTANT THAT THE STUDENT OR HIS/HER PARENT IF THE STUDENT IS UNDER 18 SIGNS THE PERMISSION BLANK ON THE SIDE OF THE FORM. IT WOULD BE ILLEGAL TO DISSEMINATE THIS INFORMATION FROM GREENVILLE TECHNICAL COLLEGE WITHOUT THE PROPER SIGNATURE.
INDUSTRIAL ELECTRICITY
ARTICULATION STUDENT'S PROGRESS

Your student, ____________________________, from _________________________

Vocational Center has exempted the following courses:

EEM __, MAT ________________.

The student will be enrolling in the following EEM courses next quarter:

______________________________________, MAT course: ________________

This placement was based on

placement test score(s)

vocational instructor's recommendation

interview requested by ____________ and conducted by ________________

The student

readily accepted placement

requested a lower placement, outcome ________________________________

requested a higher placement, outcome ________________________________

Date exemption(s) granted ________________________________

The student at mid-term has been re-evaluated and is

progressing satisfactorily

not progressing satisfactorily

Student's signature ____________________________

Instructor's signature ____________________________

Date ________________________________

The student at the end of the first quarter of work

successfully completed the following courses in EEM / MAT

EEM ________ (grade ____) ________ (grade ____) EEM ________ (grade ...
CONCEPT / PERFORMANCE

Concept 1.0 Special Purpose Outlets

1.1 Given a blueprint, recognize special-purpose outlet designations.

1.2 Given nameplate reading, or specs, or equipment, calculate the load to be connected to a special outlet and use configuration chart for selection of outlet.

1.3 Illustrate the proper grounding connections when using armored cable and nonmetallic-sheathed cable.

1.4 Illustrate the proper connections to insure grounding continuity between a grounded outlet box and the grounding circuit of the receptacle.

Concept 2.0 Special Purpose Outlets for Water Pump and Heater

2.1 List the basic requirements for motor to be used on deep-well jet pump.

2.2 Given the rating of motor, calculate the conductor size and overcurrent protection required for the pump circuit.

2.3 List the basic steps in various water heating methods which can be used.

2.4 Describe the operation of the water heating system, including the functions of the tank, the heating elements, and the thermostats.

2.5 Illustrate the proper grounding connections for the water heater.

Concept 3.0 Special Purpose Outlets for Dryers and Over Garage Door Openers

3.1 Illustrate the proper wiring and grounding connections for large appliances based on the type of wiring method to be used.

3.2 List the requirements for using service entrance cable to connect large appliances.

(Sometimes) Covered or Not Covered?
SC, C, or NC
When is it covered? 1-1, 1-2, 2-1, 2-2
3.3 Illustrate the proper connections involved in remote control switching such as in an overhead garage door opener based on manufacturer's installation recommendations.

3.4 Given Code tables, select the proper overcurrent protective device based on the amperage rating of the device.

Concept 4.0 Special Purpose Outlets for Kitchen Appliances

4.1 Interpret electrical plans and construction blueprints to determine any special installation requirements for electrical appliances.

4.2 Given NEC table 310/16-19 and notes and based on the ratings of appliances, select proper conductor sizes for wiring installation.

4.3 Illustrate how to ground all appliances properly regardless of the wiring method used.

4.4 Illustrate proper wiring of 7-heat control and 3-heat control for a dual element cooking unit-heating unit. (phasing out)

4.5 List the advantages of infinite over 7- and 3-heat control.

4.6 Illustrate the 3 options in the installation of various types of stove and oven units: group circuit, single circuit, and load center.

Concept 5.0 Telephone, Television, and Signal Systems

5.1 Describe the proper precautions to prevent line voltage interference with television signals.

5.2 Given specifications, describe the installation of outlet boxes, outlets, and provide cable or conduit to which the telephone installer will make final connections.

5.3 Define what is meant by signal circuit.
5.4 Describe the operation of a two-tone chime and a four-tone chime with one or more extension chimes.

Concept 6.0 Heating Systems

6.1 List the advantages of electric heat.

6.2 Describe the several types of electric heating systems.

6.3 Describe the various thermostat control systems for electric heating units.

6.4 Describe the installation of electric heaters with appropriate temperature controls according to NEC requirements.

6.5 Interpret typical schematics provided by heating system control manufacturers.

6.6 Describe the functions of the control devices provided in a typical system.

6.7 Explain the principle of the thermopile and the thermocouple.

6.8 Compare and contrast the electrical requirements for the following heating systems: oil, gas fire-water gravity, gas fire - self-contained.

Concept 7.0 Service Entrances, Equipment, and Calculations

7.1 Define these terms: electrical service, overhead service, service drop, and underground service.

7.2 Describe the installation of a mast-type overhead service and an underground service.

7.3 Discuss the NEC requirements for disconnecting the electrical service by means of a main panel and load centers.
CONCEPT / PERFORMANCE

7.4 Differentiate between the various types of fuses and select the proper fuse for a particular installation.

7.5 Explain the operation of fuses and circuit breakers.

7.6 Explain the term, "interrupting capacity".

7.7 Determine available short-circuit current using a simple formula.

7.8 Determine the total calculated load of a residence using the methods in Article 220 of the NEC.

7.9 Calculate the size of the service entrance conductors, including the neutral conductor.

Concept 8.0 Remote Control Systems for Lighting Control Circuits

8.1 Explain the operation of the various components of a low-voltage, remote control system for lighting circuits.

8.2 Interpret the wiring diagrams of various types of low-voltage, remote control circuits.

8.3 Describe the installation of a low-voltage, remote control system using the proper conductors, wiring, and components according to NEC requirements.
<table>
<thead>
<tr>
<th>CONCEPT / PERFORMANCE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5 Define bandwidth and contrast it with voltage gain and explain their use in amplifiers and receivers.</td>
<td></td>
</tr>
<tr>
<td>7.6 Explain the effects of (Q) on bandwidth.</td>
<td></td>
</tr>
<tr>
<td>7.7 Tell how many series resonant circuits may be employed as filters.</td>
<td></td>
</tr>
</tbody>
</table>

Concept 8.0 Parallel-Reactive Circuits

| 8.1 Explain the current and voltage relationships of series versus parallel circuits. | |
| 8.2 Calculate current, impedance, power, and power factor in a parallel RL circuit. | |
| 8.3 Analyze a parallel RL circuit by varying frequency, resistance, applied voltage, and inductance; prove the effects by mathematical calculations. | |
| 8.4 Calculate current, impedance, power, and power factor in a parallel RC circuit. | |
| 8.5 Calculate current, impedance, power, and power factor in an RLC circuit. | |
| 8.6 Analyze an ideal parallel LC circuit. | |
| 8.7 Define the conditions for parallel resonance. | |
| 8.8 Diagram current and impedance curves at the resonant frequency. | |
| 8.9 Define a tank circuit. | |
| 8.10 Analyze a practical tank circuit. | |
| 8.11 Analyze circuit behavior above and below the resonant frequency. | |

(Sometimes) Covered or Not Covered?
C, SC, or NC
When is it covered? 1-1, 1-2, 2-1, 2-2
CONCEPT / PERFORMANCE

8.12 Tell how parallel resonant circuits may be used as filters.

8.13 Define when the effective resistance of the coil in an RL circuit must be considered.

8.14 Calculate figure of merit, impedance, and current in a practical RL circuit.