A $3 T H O$	Dibello, louis V.; End others
TITLE	Catalogue of piato Mathematics lersons foz Communty
	Colleges and Adult Education.
INSTITUMICN	Illinois Univ.e Urbana. Computer-Based Education
	Lab.
SPONS AGENCY	National Science Foondation, Washington, D.C.
	Nov 75
NOTE	126 p . ${ }^{\text {Not available } i, ~ h a r d ~ c o p y ~ d u e ~ t o ~ m a r g i n a l ~}$
	legibility of lesson descriptions throughout original document
A VAILEBLE FROM	PLATO Publications, Computer-Based Education Research
	Lab, 252 Engineering Research Lab, University of
	Illinois, Orbana, Illinois 61801 (\$6.10 prepaid)
EDRS PRICE DESCRIPTORS	MP- \$0.83 Plus zostage. HC Not Available from EDRS.
	Adult Education; Algebra; *Community Colleges;
	\% Computer Assisted Instructicn; Computers; Geometry;
	Higher Education; *Instruction; *Instructional
	Materials; Lesson Plans; * Mathematics Education:
	Number Systems; Trigonometry
IDENTGPIERS	*PLATO; Programmed Logic for Automatic Teaching
	operations

A BSTR ACT
This catalog presents brief descriptions of all lessons developed by the plaro project for comunity colleges and adult education. One hundred sis lessons are available for computer-based use. Topics range from elementary arithmetic to function theory and trigonometry. Por each of these lessons, this catalog presents the title, code name, author, and a description of the lesson. Lesson descriptions include notations of grade and subject area, amount of student time and computer space needed, a statement of the lesson objectives, and a delineation of the lesson sequence. For most lessons, sample computer displays are pictured. Three programs which allow students to comment upon lessons and teachers to gain information concerning student progress are also provided. (SD)

* Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * to obtain the best copy available. Nevertheless, items of marginal * reproducibility are often encountered and this affects the quality * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDAS is not * responsible for the quality of the original document. Reproductions * supplied by EDRS are the best that can be made from the original.

[^0]

(${ }^{\text {TTATOGUE OF }}$

PIATO MATHEMATICS LESSUNS

for Community Colleges

and Aclult Education
compiled by
Louis V. DiBello Tamar Abeliovich Weaver Keith Bailey

Community Colzege Masthematics Group

November 1975

```
Copyright (c) November 1975
by Board of Trustees,
University of Illinois
```

All rights reserved. No part of this book may be reproduced in any form or by any means without permission in writing from the authors.

This manuscript was prepared with partial support from the National Science Fonndation (USNSF C-723) and the University of Illinois at Urbana-Champaigr.

ACKNOWLEDGEMENTS

We thank R. T. Gladin, photographer, Coordinated Sciences Laboratory, and W. Wilson, qraphic specialist, Computer-based Education Research Iaboratory, for their help in the preparation of this catalogue.

We offer special thanks to Sibyl Pellum, typist, Poz her competence and patience in general, and foc the fine work she has done on this catalogie.

We also wish to thank the individual lesson authors who provided written descriptions of their lessons.

File Name Page Number
Exercises -- Reducing Fractions [reduce] D6
Adding and Subtracting Fractions
with Unjilse Denominators [lcd] D7
Graphic Experiments with Fractions [Erac 2] D8
Dart Game [darts] D9
Introduction to Ratios [ratios] D10
E. Decimals
Decimal Skilis: Introduction [dec] E1
Reading and Writing Decimals E2
Adding and Subtracting Decimals E3
Multiplying and Dividing Decimals E4
Founding and Comparing Decimals [dec4] E5
Kecping a Balanced Checkbook [cleble] E6
F. Percent
Introduction to Percent [per] F1
Percent-Decimal-Fraction Conversions F2
Word Problems with Percent F3
G. Arithmetic Review
Math Review Drills I G1
Math Review Drills II G2
H. Square Root
Finding the Square Root H1
I. Set Theory
Introduction to Sets [ccset] 11
J. Algebraic Expressions
Symbols of Grouping [math95c] J1
Word Pioblems Drills I [mars1] J2
Evaluating Algebraic Expressions [eac] J3
The Distributive Law J4
Collecting Like Terms J5
K. Exponents and Radicals
Introduction to Exponents K 1
Laws of Exponents [math95b] K2
Powers and Roots of Natural Numbers [math95f] K3
File Name Page Number
Introduction to Radicals I [frac] K4
Addition of Radicals [math95d] K5
Irrational Numbers [math951] K6
L. Adding, Subtracting, and MultiplyingAlgebraic Expressions
Introduction to Polynomials [algex] L1
Binomial Products: $(x+2)(x-3)$ etc. \cdot. [quadi] L2
Binomial Products: $(a+b)(a=b)$ etc. . . [park2] L3
Math Special products I [math95e] L4
Crossword Puzzle on A'ysbraic
Vocabulary [puzl] L.5
M* Factoring
Factoring Quadratic Polynomials [quad2] M1
Factoring Polynomials [math95a] M2
N. Solving Linear Equations
Solving Linear Equations [solve1] N1
Word problems Involving Linear Equations . . [wordi] N2
O. Algebuaic Fractions
Reducing Algebraic Fractions [math95g] 01
Multiplying Algebraic Fractions [math95h] 02
Finding the Least Common Multiple ofAlgebraic Expressions[math95i] 03
Adding Algebraic Fractions 04
Solving Fractional Equations 05
P. Plotting Points
How to Plot Points [remttt] P1
Tic $=$ Tac-Toe [cettt] P2
Battleship cobattle] P3
Plotting Points Checkup [cctttest] P4
Q. Graphing straight Lines
Graphing straight Lines -- Table of Values [line1] 21
Intercept of Straight Lines Q2
Slope of a Line Q3
Point-Slope Form [1ine1a] Q4
Graphing Any Line in the Form $y=m x+b$. [1ine3] . . . Q5
The Lines $y=$ and $x=c$. [line4] Q6
Graphing Lines in the Form $a x+b y+c=0$ [1ine5] . . . Q7
More Exercises on Linear Equations and Straight Lines [line7] * . . Q8
R, Sjinultaneous Equations
Introduction to systems of Equations R1
Independent Systems of Equations and Numbers of Solutions R2
How to Write Solutions to Systems of Equations R3
Solving 2×2 systems by Graphing [simequ2] R4
Introduction to Algebraic Methods of Solving 2×2 Systems [simequ3] R5
Solving 2×2 systems by substitution [simequ4] R6
Solving 2×2 Systems by the Addition-
Subtraction Method [simequ5] R7
Exercises on Solving 2×2 Systems of Equations [simequ6] $\overline{7} 8$
Posttest for Simultaneous Equations [simtest] R9
S. Quadratic Equations
Solving Quadratic Equations by Factoring . . [quad3] S1
Solving Quadratic Equations by Completing the Square [math95m] 52
Solving Quadratic Equations by Factoring [solquad] S 3
T. Function Plotting
Function Plotter [coplot] T1
Three-Dimensional Function Plotter [plot3] T2
U. Metric Conversion
Introduction to the Metric System [liter] U1
V. Trigonometry
Introduction to Trigonometry [introtrig1] V1
Similar Triangles and PythagoreanTheorem
[trig1] V2
Special Rignt Triangle [trig2] V3

The Community College Mathematics Project

It would take many pages to mention each person who has been involved in the developinent and implementation of the PiATO Community College Mathematics courseware. In most cases, the initial authoring of a PLATO lesson has been followed by cooperative review procedures involving instructors and PLATO staff, and by the collection and analysis of usage and lesson data. Special recognition is due to the following persons who have served as lesson authors, programers and/or reviewers:

Peter Ash	Kennedy-King College, Chicago
Dan Anderson	Parkland College, Champaign
Keith Bailey	CERL, Urbana
Robert Baillie	CERL, Urbana
Dick Bennett	Parkland College, Champaign
James Bowery	Regional Health Resource Center, Irbana
Rose Brown	Kennedy king College, Chicago
Steve Brayndick	Malcolm X College, Chicago
Donald Cohen	CERL, Urbana
Ruth Chabay	CERL, Urbana
Louis DiBello	CERL, Urbana
Sharon Dugdale	CERL, Urbana
Jerry Glynn	CERL, Urbana
Frances Kennedy	CERL, Urbana
David Kibbey	CERL, Urbana
David Lassner	CERL, Urbana
Ben Lathan	Kennedy-King College, Chicago
Errol Magidson	Kennedy-King College, Chicago
LaVerne McFadden	Parkland College, Champaign
Allan Meers	Wright College, Chicago
Richard Neapolitan	Wright College, Chicago
Gary Peltz	Malcolm X College, Chicago
Carrol Steve Robinson Chicago Urban Skills Institute, Chicago	
Shin Saito	Malcolm X College, Chicago
Bonnie A, Seiler	CERL, Urbana
Noa Shinderman	Malcolm X College, Chicago
Donald Shirer	Valparaiso University, Valparaiso, IN
Martin siegel	CERL, Urbana
Dan Sleator	CERL, Urbana
Paul Thompson	Parkland College, Charmpaign
Charles Weaver	CERL, Urbana
Tamar A. Weaver	CERL, Urbana
Mitsuru Yamada	Malcoln X College, Chicago

This project is part of the Community College Project directed by Daniel Alpert and coordinated by Pauline Jordan. It is the responsibility of the Community College Mathematics Group at CERL, Urbana, under the direction of Louis V. DiBello, to coordinate the development and implementation of the courseware, to collect and interpret formative data on the lessons,
and to keep the individual authors informed of the results of the data analyses. It is the responsibility of the individual authors to make needed revisions, to keep the lessons in working oxder, and to provide for the collection of data in their lessons. Usage of the mathematics lessons is facilitated by the PLATO site coordinators, Errol Magidson of Kennedy-King College, Mitsuru Yamada of Malcolm X College, Richara Neapolitan of Wright College, Elise Spencer Gorun and Carroll Steve Robinson of the Chicago Urban skills Institute and Robert Grandey of Parkland College.

THis Catalogue

This catalogue contains short descriptions of the PLATO lessons that are available under the Communty College Mathematics project. It should serve instructors as a guide for incorporating PLATO courseware into their teaching activities. On-line access to these lessons is available through the PLATO lesson "mathcc", which provides an updated index to all community college mathematics lessons, as well as an indication of their current status.

In an attempt to provide a clearer idea of what these PLATO lessons are, we have included photographs of vaxian prints of selected screen displays. In many cases, screen displays in ELATO lessons are built up in a sequence of steps. New text or graphic parts of a display are often added after the student has responded to a question or otherwise indicated he is ready to proceed. To illustrate this process, and to show some of the interactive capabilities of the PLATO system, we have selected one frame from the fraction lesson "rfrac". Each stage in the development of the final screen display has been varian printed and photographed below. The reader should keep in mind that the varian prints presented in the body of this catalogue usually repxesent an intermediate stage in the dynamic development of the screen displays.

The varian prints below and on the next page show the steps involved in one exercise activity in the fraction lesson "rirac" . In the Eirst four steps, the student's attention is directed to the correspondence between the denominator and the way in which the number line is divided.


```
    HN= H- 早 + %a
```

Now the student is asked to move a pointer to 3/4. (Instructions are given at the bottom of the page-)

When the student has moved the pointer and pressed $L A B$, he is given the current location of the pointer Here, the pointex is at $2 / 4$ instead of $3 / 4$ so he must try again.

Now the pointer was correctly moved to $3 / 4$. The point was then labeled. Next, the student would be asked to move the pointer to añother fraction with denominator 4 -

Uate the in of keys to move the d

foed, the f in 3 fourthe over from i.

Houn rach of a umit la each part it i/4 ok
Hove the \downarrow to $3 / 4$

LESSON DESCRIPTIONS

15

File Name: speedway
 Speedway

Author: Bonnie Anderson Seiler, Elementary Math group, CERL

Objective:
Student quicciy and accurately answers one-digit adidion, subtraction, multiplication, and division problems.

Description:

1. Game format. The student works ten problems (for each "race") and wins if he beats his previous time.
2. Missed problems are repeated and difficulty level is adjusted according to performance.

Grade Leve1: Basic mathematics Student Time: open
Subject Area: Arithmetic
ecs: 6020

Special Notes:

The student is provided graphs and charts of his performance which he can use to decide where he needs more practice.

File Name:	signex Introduction -- Thermometer, Sea Level
Author: \quad Tamar Abeliovich Weaver, CERL	

Objective:

1. To present a quick and easy introduction to the number line and signed numbers by using temperature anc sea level.

Description:

1. A pretest gives the student the chance to skip all or part of the Iesson.
2. There are two sections: 1) temperature and 2) sea level. In each section the student sees a number scale (a thernometer in section 1 and a sea level scale in section 2) and answers several easy pruestions on reading scale values and differences between scale values.

Grade Level: Basic mathematics
Subject Area: Arithmetic

Student Time: 5-10 minutes
ecs:
1880

17

File Name: signum
Adding and Subtracting on the Number Line
Tamar Abeliovich heaver; CERL

E

Objectives:

1. To introduce the number line and the negative numbers.
2. To teach order on the number line.
3. To teach a number line model of adding and subtracting signed numbers.
4. To present practice problems on adding and subtracting signed numbers.

Description:

1. A pretest lets the student skip all or part of the lesson.
2. After a short introduction to the number line, the student is taught to move a pointer along the number line. The negative numbers are introduced as points that are integral diseances to the left of \varnothing.
3. Order on the number line is introduced (as $=2>-5$).
4. Then the student is taught a number line model of adding and subtracting signed numbers. This arithmetic model is used to introduce each new type of signed number problem. Once each type is introduced, the student is given problems of that type until he can answer them correctly without help. The help consists of either stepping the student through with the number line model, or presenting a diagram of the problem on the number line.

Grade Level:	Basic mathematics	Student Time:
Subject Area:	Arithmetic	ecs:

File Name: | signum |
| :--- |
| Adding and Subtracting on the Number Line |

Author: \quad Tamar Abeliovich Weaver, CERL

File Name: | signadd |
| :--- |
| Addition of Signed Numbers |

Author: \quad Tamar Abeliovich Weaver, CERL

Objectives:

1. To introduce the number line and the negative numbers.
2. To teach order on the number line.
3. To teach a number line model of adding signed numbers.
4. To present practice problems on adding signed numbers.

Description:

1. A pretest lets the student skip all or part of the lesson.
2. After a short introduction to the number line, the student is taught to move a pointer along the number line. The negative numbers are introduced as points that are integral distances to the left of \varnothing.
3. Order on the number line is introduced (as $-2>-5$).
4. Then the student is taught a number line model of adding signed numbers. This axithnetic model is used to introduce each new type of signed number problem. Once each type is introduced, the student is given problems of that type until he can answer them correctly without help. The help consists of either stepping the student through with the number line model, or presenting a diagram of the problem on the number line.

Grade Level:	Basic mathematics	Student Time:
Subject Area:	35 minutes	
Arithmetic	ecs:	5880

Special Notes:

1. This lesson contains the parts of lesson "signum" that involve addition.
2. The sequence of lessons "signadd" and "signsub" is equivalent to lesson "signur", but the order of presentation of the topics is different.
3. Refer to the description of lesson "signum" for several screen displays that also occur in lesson "signadd".

Eile Name: | signsub |
| :--- |
| Subtracting Signed Numbers |

Author: \quad Tamar Abeliovich Weaver, CERL

Objectives:

1. To teach a number line model of subtracting signed numbers.
2. To present practice subtracting and adding signed numbers.

Description:

1. A pretest lets the student skip all or part of the lesson.
2. The student is taught a number line nodel of subtracting signed numbers. The student gets exercises until he can do them without any help.
3. The help consists of either stepping the student through with the number line model, or presenting a diagram of the problem on the number line.

Grade Level:	Basic mathematics	Student Time:	25 minutes
Subject Area:	Arithmetic	ecs:	4800

Special Notes:

1. This lesson should be preceeded by lesson "signadd".
2. The sequence of lessons "signadd" and "signsub" is equivalent to lesson "signum", but the order of presentation of the topics is different.
3. Refer to the description of lesson "signum" for several screen displays that also occur in lesson "signsub".
```
File Name: ccegg
    Eggdropper
Author: Mitsuru Yamada, Malcolm X College
```


Objective:
To provide practice in addition and subtraction of signed numbers.
Description:
The student specifies a move for a helicopter along the number line, or specifies the location of an umbrella on the number line. In both cases the helicopter drops an egg. Its target is a man on the number line.

Grade Level: Basic mathematics
Subject Area: Arithmetic

Student Time: 5-10 minutes
ecs:

File Name: | signprac |
| :--- |
| Exercises -- Adding and Subtracting |

Author: \quad Tamar Abeliovich Weaver, CERL

objective:

To provide drill practice in adding and subtracting signed numbers and a posttest for these skills.

Description:

1. Randomly generated problems in adding and subtracting signed numbers are given. The student must anower seven in a row correctiy on first or second try. For help, the number line model prepared in lesson "signum" is used when the student calls for it.
2. A drill with "eggdropper" on the number line involves adding and subtracting signed numbers.
3. To finish the lesson the student has to go through a posttest for adding and subtracting signed numbers.
4. The student can choose any of the three sections in any ordex, and as often as he likes.

Grade Level: Basic mathematics Student Time: 30 minutes
Subject Area: Arithmetic ecs: 3923

Special Notes:

This lesson should be used after lesson "signum".

```
File Name: signmult
                Double Signs (Flipping) and Multiplication (Patterns)
Author: Tamar Abeliovich Weaver, CERL
```


Objectives:

1. To provide a concrete visual model for getting rid of double signs.
2. To provide a simple introduction to the rules for multiplying signed numbers.

Description:

There are two sections:
a. Flipping: The student is given an arrow on the number line that represents a signed number. He can press $\overline{L A B}$ to flip the arrow about the origin and he is taught that this represents minus the original signed number. By using this flipping model the student is required to answer questions like $-(+3)=?$ and $-(-2)=?$, etc.
b. Patterns: The student fills in the answers to:
$2 \times 2=\quad 2 \times(-2) \equiv$
$1 \times 2=1 \times(-2)=$ $0 \times 2=\quad$ and then $0 \times(-2)=$ $(-1) \times 2=\quad(-1) \times(-2)=$ $(-2) \times 2=\quad(-2) \times(-2)=$
These patterns provide an easy introduction to the rules (negative) \times (positive) $=$ (negative) and (negative) \times (negative) $=$ (positive).

File Name: run
Multiplication (using the running man)
Author: Tamar Abeliovich Weaver, CERL

objective:

1. To teach multiplication of signed numbers by using a concrete visual morkel.

Description:

1. A pretest lets the student skip parts of the lesson.
2. A model of a man running along the number line is used to teach multiplication of signed numbers. His speed is positive or negative according to whether he runs to the right or left; his time is positive or negative according to whether it is after or before g, and his position is interpreted as the product of speed and time.
3. Once the multiplication problems are introduced by using this model, more problems are presented without the model, and the model is used for help if the student needs it. The student works problems of each type until he can answer without asking for help.

Grade Level:	Basic mathematics	Student Time:	45 minutes
Subject Area: Arithmetic	ecs:	4677	

File Name: | run |
| :--- |
| Multiplication (using the running man) |

Author: \quad Tamar Abeliovich Weaver, CERL

File Name:	divide Division of Signed Numbers
Author:	Tamar Abeliovich Weaver, CERL

Objective:

To present an introduction and practice on division of signed numbers.

Description:

1. Division is introduced as the inverse operation of multiplication, and multiplication is used as a check.
2. Sign rules for division are given as the same as those for multiplication.
3. As a help sequence, the student is sent to the section of lesson "run" that provides practice in finding the factors that yield a given product.

Grade Level: Basic mathematics	Student Time:	10 minutes
Subject Area: Arithmetic	ecs:	580

File Name:	bank (jumps out to bank2) Addition, Subtraction, and Multiplication of Signed Numbers.
Authors: \quadDonald Cohen and Jerry Glynn, Elementary Math Group, Bodifilied by Tamar Abeliovich Weaver and Robert	

Objective:

To teach arithmetic of signed numbers and provide practice in adding and multiplying signed numbers.

Description:

1. There are five sections:
a. Introduction $=$ checks and bilis
b. Adding signed numbers
c. Addition exercises
d. Multiplying signed numbers
e. Multiplication exercises
2. In these lessons signed number arithmetic is modeled by sending or receiving checks or bills.
3. In sections b and d each arithmetic problem is associated with a story problem involving checks and bills.
4. In sections c and e sequence of arithmetic problems without the money stories is given.

Grade Level:	Basic mathematics	Student Time:	60 minutes
Subject Area: Arithmetic	ecs: bank	3481	

```
File Nante: wordp
    Signed Number Word Problems on Temperature and
    Sea Level
    Author: Tamar Abeliovich Weaver, CERI,
```


Objective:

To practice word problems involving subtraction of signed numbers.

Descripeion:

1. There are two types of problems:
a. Temperature Changes
b. Sea Level Differences
2. The student sees the picture of the problem and as feedback he sees what his response looks like.

Grade Level:	Basic mathematics	Student Time:
Subject Area:	Arithmetic	ecs:

```
File Name: west2
    Signed Numbers Game -- West
```

Author: Bonnie Anderson Seiler, CFRL Elementary Math Group

Objective:
To provide practice in a game format in combining signed numbers by using the four arithmetic operations with or without parentheses.

Description:

1. The game consists of a race between a stage coach and a locomotive. The student plays against another student or against PLATO.
2. Moves are made by combining three signed numbers using the four arithmetic operations.

Grade Level:	Basic mathematics	Student Time:
Subject Area:	Arithmetic	ecs:

Pile Jame: divr
Divisibility Rules/Reducing Fractions


```
Objectives:
    1: To teach the student the rules for divisibility by 2, 3, 5, 10,
    4, 6, 9 and co drill the student in their use.
    2. To teach the student to use these divisibility rules in reducing
        fractions.
Description:
    There aze eight sections:
    a. Numbers divisible by 2
    b. Numbers divisible by 3
    c. Numbers divisible by 5
    d. Numbers divisible by }1
    e. Reducing fractions quickly
    f. Numbers divisible by 4
    g. Numbers divisible by 6
    h. Numbers divisible by }
\begin{tabular}{lll} 
Grade Level: Basic mathematics & Student Time: & 60 minutes \\
Subject Area: Arithmetic & ecs: & 4118
\end{tabular}
```


Special Notes:

```
Optional topic: Finding the Greatest Common Divisor
```

File Name:	gcd
	Finding the Greatest Common Divisor
Author:	Errol Magidson, Kennedy-King College


```
objective:
            The student will be able to find the greatest common divisor of any
            fraction so he can reduce it when possible.
Description:
    1. Introduction
    2. PLATO reduces student-constructed fractions
    3. Practice exercise/test
Grads Level: Basic mathematics Student Time: 60 minutes
Subject Area: Arithmetic
ecs:
                                2 1 4 1
```

E.le Name:	primefac Prime Factorization of Whole Numbers
Author: \quad Keith Eailey, CERL	

Objective:
To teach how to find the prime factorization of natural numbers and to teach the definition of prime numbers.

Description:

1. (section a) Definition of factor with exercises.
2. (section b) Definition of prime.
3. (section c) The student is stepped through the process of finding prime factorizations.
4. (section d) The student is asked to give the prime factorization and can use several steps.
5. (section e) Quiz over the abcve topics. The student must pass this quiz to complete the lesson.
6. (sestion f) The student can choose any natural number from 2 to 10,000 and the prime factorization will be given to him.

Grade Level: Elementary algebra Student Time: 35 minutes
Subject Area: Algebra ecs: 3170

Special Notes:

Each section can be accessed froa an index. If the student fails the quiz, appropriate sections for keview are noted on this index.

```
File Name: claim
    Claim Game
```

Authors: Charles Weaver, CERL, and Bonnie Anderson Seiler, CERL

Objective:

To practice factoring natural numbers,

Description:

1. The gane is for two players either two friends or a student against PLATO. The two players take turns picking numbers from the board (see figures above). As each number is picked, it is removed from the board and added to the player's score.
2. His opponent may then increase his own score by CLAIMing the numbers on the board that are factors of the original number. When all numbers have been removed from the board, the player with the highest score wins.

Grade Level: Basic mathematics Student Time: 15 minutes
Subject Area: Arithmetic
ecs:
2272

Special Notes:
PLATO plays poorly against poor players.

File Name: Erint	
	Introduction to Fractions
Author:	Keith Bailey, CERL

Objective:

To introduce the concept of a fraction and to teach the distinction between the numerator and denominator of a fraction.

Description:

1. The student is taught to represent a fraction by divided and shaded squares $-=$ e.g., to represent $4 / 5$, divide each square in the group into five equal parts and shade four of the equal parts.
2. The student is asked to represent a given fraction and also to give the fraction represented by a given picture of shaded squares.
3. Once this representation has been learned, the student uses it to compare fractions and to add fractions with like denominators.

Grade Level:	Basic mathematics	Student Time:
Subject Area:	Arithmetic	ecs:

35

File Name: frdrill
Equal Fractions
Author: Keith Bailey, CERU

Objective:
To provide instruction in writing equal fractions.
Description:

1. The rule $\frac{n}{d}=\frac{n \times c}{d \times c}$ is derived by multiplying $\frac{n}{d}$ by $\frac{c}{c}$, a fraction equal
to 1. This rule is drilled in several different ways, then the student builds a table of common fraction equalities such as $1 / 2=2 / 4$, $1 / 3=2 / 6$, etc.
2. The notion of factor is introduced and used for reducing fractions.
3. A drill is given in which the student is asked to write a fraction with a given denominator equal to a given fraction - e.g., $2 / 3=3 / 12$.

Grade Level:	Basic mathematics	Student Time:
Subject Area: minutec		
Sithmetic	ecs:	4236

File Name:	rirac Fractions on the Number Line
Author: \quad Keith Bailey, CERL	

Objectives:

1. To ceach how to locate fractions on the number line.
2. To show how this model can be used for comparing fractions, determining equivalent fractions, converting improper fractions to mixed numbers.
3. To demonstrate the relationship between division and fractions.

Description:

1. (sections a - e) The number line is introduced and, for a given fraction, the student is asked how to subdivide each unit length and then move a pointer to locate the fraction. Given a subdivided numberline, the student is asked to use a fraction to give the location of the pointer.
2. (section f) A laveled numberline for a certain denominator is given. The student is asked to move the pointer to locate fractions whose denominators are multiples of the first denominator.
3. (section g) The student can choose two denominators and the corresponding labeled number lines are shown for comparison.
4. (section h) For an improper fraction on the number line, the student is asked to give the corresponding mixed number.
5. (section i) The relationship between division and fractions is demonstrated.

Grade Level: Basic mathematics Student Time: 40 minutes
Subject Area:
Arithmetic
37 ecs:

3707

```
File Name: fracprac
    Exercises -- Arithmetic Operations on Fractions
Author: Keith Bailey, CERL
    programmed by David Lassnex, CERL
```


Objective:

To provide drill practice and checkup quiz on the four arithmetic operations on fractions.

Description:

1. There are six sections:
a. Addition of Fractions with Like Denominators
b. Subtraction of Fractions with Like Denominators
c. Multiplication of Fractions
d. Division of Fractions
e. Addition and subtraction of Any Fractions
f. Mixed Exercises
2. Each section has three options:
a. Instruction: a brief statement of the appropriate rule, and a typical problem of the given type that the student is stepped through.
b. Practice: five problems of the given type -- at any time the student can press DATA to get the rule on the screen or HELP to step through his problem.
c. Checkup: a quiz of six problems. The student has mastered the section if he answers five correctly out of six.

Grade Level:	Basic mathematics	Student Time:	60 minutes
Subject Area:	Arithmetic	ecs:	3446

File Name: fracfun	
	Exercises -- Equal Fractions; Mixed Numbers
Author: \quadKeith Bailey, CERL programmed by David Lassnex, CERL	

[^1]```
File Name: reduce
 Exercises =- Reducing Fractions
Author: Mitsuru Yamada, Malcolm X College
```



## objective:

To provide practice in reducing fractions.
Description:

1. There are two sections:
a. PLATO selects the fraction to be reduced.
b. The teacher selects the fraction to be reduced.
2. In both sections, once the fraction is given, the student is asked to name a common divisor of the numerator and denominator, then to reduce the fraction by that divisor. Definitions of terminology are available by pressing DATA.
3. The student may work as many problems as he wants in either section.

| Grade Level: | Basic mathematics | Student Time: | 30 minutes |
| :--- | :--- | :--- | :--- |
| Subject Area: | Arithmetic | ecs: | 1650 |

File Name: lcd<br>Adding and Subtracting Fractions with Unlike Denominators<br>Author: Errol Magidson, Kennedy-King College



[^2]| File Name: frac2 |  |
| :--- | :--- |
|  | Graphic Experiments with Fractions |



## Objective:

To use squares, rectangles, and the number line to fevelop an understanding of fractions.

## Description:

1. (section a) A divided square is usec to show equivalent Eractions.
2. (section e) Lists of equivalent fractions are generated for the student's choice of two fractions. This can be used for finding conmon denominators.
3. (section f) The student is asked to subdivide unit lengths on the number line so that a bar can be measured.
4. (sections $b, c, d, g$ ) The student uses the number line to draw and measure rectangular bars.

Grade Level: Basic mathematics
Subject Area: Arithmetic
Student Time: open

Special Notes:
This lesson is not ready for classroom use and is only intended for pilot testing some ideas.

```
File Name: darts
 Dart Game
Authors: Sharon Dugdale, David Kibbey, Rlementary Math Group,
 CERL
```



Objective:
To provide practice in locating fractions on the number line.
Description:

1. A vertical number line with several balloons at different locations is displayed. Only integer points on the line are labeled.
2. The student enters a fraction or expression and a dart is shot to that location. If any part of the balloon is touched by the dart, the balloon "bursts."
3. The student's task is to break all the balloons.
Grade Level: Basic mathematics Student Time: open-ended

Subject Area: Arithmetic ecs: 4935

## Special Notes:

The number line and the size of the balloons vary depending on the pexformance of the student,

```
File Name: ratios
Author: Barbara Lederman, Community College Math Group
```


$\frac{\text { Objective: }}{\text { To provide a short introduction to ratios. }}$

$\frac{\text { Description: }}{}$| Introduction to ratios: notation, terminology, writing ratios, |
| :--- |
| expressing ratios in lowest terms. |


| Grade Level: |  |
| :--- | :--- |
| Subject Area: Arithnetic | Student Time: |

```
File Name: dec
 Decimal skills: Introducition
Author: Errol Magidson; Kennedy-King Collegge
```


## Objective:

To provide an overall rationale, set of objectives and index to lessons dec1, dec 2 , dec 3, dec4, and ckbk.

## Description: <br> This lesson contains four sections: <br> a. Rationale for decimals lessons <br> b. Lesson objectives <br> c. Definjition of "decimal" <br> d. The index for the decimal lessons

| Grade Level: | Basic mathematics | Student Time: |
| :--- | :--- | :--- |
| Subject Area: | Arithmetic | ecs: |

```
File Name: deci
 Reading and Writing Decimals
 Errol Magidson, Kennedy-King College
```



## Objective:

1. To enable the student to read and write decimals using place and point methods.

## Description:

1. There are five major sections:
a) Introduction
b) Reading the place value chart
c) Relationship between place value and fractional size
d) Reading decimal numbers (place and point methods)
e) Writing a decimal number
2. In addition there are pre- and posttests in this lesson.
3. Each section has instruction and exercises.

| Grade Level: | Basic mathematics | Student Time: |
| :--- | :--- | :--- |
| Subject Area: | minutes |  |
| Arithmetic | ecs: | 5712 |

```
File Name: dec2
 Adding and Subtracting Decimals
Author: Errol Magidson, Kennedy-King College
```




Objective:
To enable students to add and subtract decimals.
Description:

1. There are three major sections:
a. Lining up decimals for adding and subtracting
b. Adding decimals
c. Subtracting decimals
2. In addition, there are pre- and posttests.
3. Each section has instruction and exercises.

| Grade Level: | Basic mathematics | Student Time: |
| :--- | :--- | :--- |
| Subject Area: | Arithmetic | ecs: |

```
File Name: dec3
 Multiplying and Dividing Decimals
Author: Errol Magidson, Kennedy-King College
```



## Objective:

To enable the student to multiply and divide decimals.
Description:

1. There are two major sections:
a. Multiplication of Decimals
b. Division of Decimals
2. Each section has instruction and exercises.
3. There are pre- and posttests.

| Grade Level: | Basic mathematics | Student Time: |
| :--- | :--- | :--- |
| Subject Area: | minutes |  |
| Surnetic | ecs: | 5911 |

File Name: | dec4 |
| :--- |
| Rounding and Comparing Decimals |

Author: $\quad$ Errol Magidson, Kennedy-King College


## Objectives:

1. To enable the student to round off decimals.
2. To enable the student to convert fractions or mixed numbers to decimals and vice versa.
3. To enable the student to compare decimals and fractions.

## Description:

1. There are five major sections:
a. Rounding off decimals
b. Changing fractions to decimals
c. Changing mixed numbers to decimals
d. Changing decimals to fractions
e. Comparing fractions and decimals
2. Each section contains instruction and exericses. The lesson contains pre- and posttests.

| Grade Level: | Basic mathematics | Student Time: | 60 minutes |
| :--- | :--- | :--- | :--- |
| Subject Area: | Axithmetic | ecs: | 5963 |

$\left.\begin{array}{ll}\text { File Name: } & \text { ckbk } \\ \text { Keeping a Balanced Checkbook }\end{array}\right\}$


Objectives:

1. To enable the student to use his decimal skills to keep a balanced checkbook.
2. To provide a practical setting for the student to strengthen his skills at adding and subtracting decimals.

## Description:

1. There are three sections:
a. How entries are made in a checkbook
b. Finding balance after deposits or checks
c. Making entries in your own checkbook
2. Checking account and money transactions are simulated for the students.

Grade Level: Basic mathematics
Subject Area: Arithmetic

Student Time: 60 minutes
ecs:

```
File Name: per
 Introduction to Percent
Author: Errol Magidson, Kennedy-King College
```

```
Objective:
 To provide overall rationale, set of objectives, and index to lessons
 per1 and per2.
Description:
 There are four sections:
 a. Rationale
 b. Lesson Objectives
 c. Definition of "percent"
 d. Index to Percent Lessons
Grade Leve1: Basic mathematics Student Time: }10\mathrm{ min:tes
Subject Area: Arithmetic
ecs:
1500
```

| File Name: | peri |
| :--- | :--- |
| Percent-Decimal-Fraction Conversions |  |




[^3]| File Name: | per2 (jumps out to per3 and per4) |
| :--- | :--- |
| Word Problems with Percent |  |






## Practien Exergise *



to pay 49 x of his oricinel offer, if $W_{1}$ litir peid ing. is. what when the

Identify tive rumbers liven in pousir problean II
the numer is not there, prese the question nuaf li,



 trisngity.




To enable the student to solve word problems involving percent.
Description:

1. There are four sections:
a. Introduction to percent word problems.
b. Magic triangle method for solving word problems with percent.
c. More difficult word problems with percent.
d. Problems using simple interest.
2. Each section provides instruction and exercises.
3. The lesson has pre- and posttests.

| Grade Level: | Basic mathematics | Student Time: | 90 m |
| :--- | :--- | :--- | :--- |
| Subject Area: |  |  |  |
|  |  |  |  |
|  |  | ecs: | per2 |
|  |  | 4738 |  |
|  |  | pers | 1776 |
|  |  |  | per. |
|  |  | 4201 |  |

```
File Name: mars
 Math Review Drills I
 Shin Saito, City Colleges of Chicago, and
 Noa Shinderman, Malcolm X College
```



## Objective:

To present review practice with help on fractions and decimals.

## Description:

1. There are six sections:

Fractions
a. Multiplication
b. Division

Decimals
c. Addition (paper and pen needed)
d. Subtraction (paper and pen needed)
e. Multiplication (paper and pen needed)
f. Division (paper and pen needed)
2. In each section there is a short explanation of how to work the problem type indicated on the index. The section then consists of working exercises in that problem type. Help is available to show the student how to work on exercises. He must, however, do four exercises without help to complete the section.

Grade Level: Basic matheratics Student Time: 35 minutes
Subject Area: Arithmetic
ecs:
2788

| File Name: | mars4 |
| :--- | :--- |
|  | Math Review Drills II |
| Authors: $\quad$ | Shin Saito, City Colleges of Chicago, and <br>  |




Objective:
To present review practice with help on signed numbers and powers of ten.

Description:

1. There are five sections:

Signed Numbers
a. Addition and subtraction
b. Double Signs
c. Multiplication
d. More Addition and Subtraction

The Powers of Ten
e. Multiplication and Division
2. In each section there is a short explanation of how to work the problem type indicated on the index. The rest of the section consists of working exercises of that problem type. Help is available to see how to work a given exercise. The student must, however, do six exercises without help to complete the section.

Grade Level: Basic mathematics Student Time: 35 minutes
Subject Area: Arithmetic
ecs: 2451

File Name: sqre
Finding the Square Root

Author: Tamar Abeljovich Weavex, CERL


Objective:
To provide three methods for finding square roots:
a. Guessing and Adjusting
b. Newton's Method
c. The Square Root Algorithm

Description:
The student gets an index from which he can choose one method and/or see an explanation of why the method works. Each technique is taught by helping the student through the steps.

| Grade Level: Basic mathematics | Student Time: | 30 minutes |
| :--- | :--- | :--- |
| Subject Area: $=$ | Arithmetic | ecs: |


| Eile Name: | ccset |
| :--- | :--- |
| Introduction to Sets |  |
| Authors; $\quad$Tamar Nbeliovich Weaver and Louis V. DiBello, CERL <br> $\quad$programed by Tamar Abeliovich Weaver, CERL |  |



Objective:
To provide an introduction to set theory including a discussion of sets, subsets, elements of a set, and the three operations: union, intersection, and complementation.

## Description $=$

1. Each topic is presented via a short description and example.
2. Practice exercises are given which include help and error feedback.
3. The student must correctly complete four exercises in a row for each topic.

Grade Level: Intermediate algebra Student Time: 20 minutes
Subject Area: Albegra ecs: 2524

| File Name: | mathgsc <br> Symbols of Grouping |
| :--- | :--- |
| Authors: $\quad$Mitsuru Yamada, Malcolm X College, Steven Brayndick, <br>  <br>  <br>  <br>  <br> Malcolm X College, and Shin Saito, City Colleges of |  |



## Objective:

To present easy numerical problems involving order of operations and parentheses.

Description:

1. There are five sections:
a. Addition and subtraction without parentheses
b. Addition and subtraction with parentheses
c. Operations without parentheses
d. operations with parentheses
e. Backward drill
2. In each section the student is asked to evaluate arithmetic expressions. Some sections contain expressions with parentheses, while others do not. The student may press DATA to be given a sequence of questions and arrows which lead him through the evaluation in steps; or he may press HELP to be shown how to perform the evaluation. He must perform ten evaluations without HELP to complete a section.

Grade Level: Basic mathematics Student Time: 30 minutes

Subject Area: Arithmetic
ecs: 2941

58

| File Name: | mars <br> Word Problems Drills I |
| :--- | :--- |
| Author: $\quad$ Shin Saito, City Colleges of Chicago |  |


Prode

Tspe the aficiafinte
anciur ar papreselon





ThFe that appoprinte
onger or expragion
2. It Jim aftue thifty milion fer tear, hey maty ming will be arive in $=$ Hedre?
? 3

Grod

If Jin tibrel If lintistel

## Objective: <br> To enable the student to translate simple word problems into algebraic and arithmetic expressions.

## Description:

There are two sections:
a. Beginning Exexcises I
b. Rate Problems II

Each section consists of ten word problems. At the beginning, the problems are arithmetic. At the end it is necessary to solve a linear equation to solve the problem. The student can obtain the correct answer by pressing HELP, However, he must solve all problems without help to complete the section.

Grade Level: Elementary Algebra Student Time: 15 minutes
Subject Area: Algebra ecs: 3164

| File Name: | eac <br> Evaluating Algebraic Expressions |
| :--- | :--- |
| Author: $\quad$ Errol Magidson, Kennedy-King College |  |



## Objective:

The student will be able to evaluate algebraic expressions by substituting numbers for unknowns and then computing the solution.

## Description:

1. Introduction
2. Arithmetic Operations: review
3. Order of Operations
4. Reading Algebraic Expressions
5. Writing Algebraic Expressions
6. Substitution

| Grade Level: | Elementary Algebra | Student Time: |
| :--- | :--- | :--- |
| Subject Area: minutes |  |  |
| Algebra | ecs: | 3768 |

## Special Notes:

Pretest and posttest are available.

```
File Name: dist
 The Distributive Law
 Tamar Abeliovich Weaver, CERL
 programmed by Robert Baillie, CERL
```



## Objectives:

1. To provide a graphic model for the distributive law.
2. To provide practice on the distributive law with signed numbers and variables.

## Description:

1. A model of dots in rows and columns is used to get the rule $a \times(b+c)=a \times b+a \times c$.
2. The student assigns signed numbers to $a, b$, and $c$ and applies this rule.
3. A simple example of repeated addition is provided as an alternative justification of the rule.
4. The student is given practice exercises in applying the law with signed numbers and variables.

| Grade Level: | Elementary Algebra | Student Time: |
| :--- | :--- | :--- |
| Subject Area: minutes |  |  |
|  | Algebra | ecs: |

```
File Name: collect
 Collecting Like Terms
Author: Tamar Abeliovich Weaver, CERL
 programmed by Robert Baillie, CERU
```



```
M,
Objectives:
 1. To introduce the following terminology: like terms, x-term, constant.
 2. To provide practice in simplifying algebraic expressions by collecting
 like terms.
Description:
 After introducing the vocabulary, the student answers simple questions
 on identifying x-terms and constants. The distribution law is used to
 open parentheses and like terms are collected to simplify the results.
Grade Leve1: Elementary albegra Student Time: 25 minutes
Subject Area: Algebra ecs: 3790
Special Notes:
 The distributive law is a prerequisite (available in lesson "dist").
```

| File Name: | exp 3 | | |
|---|---|---|---|
| Introduction to Exponents |  |$\quad$| Carroll (Steve) Robinson, Chicago Urran skills |
| :--- |
|  |
|  |
|  |



## Objective:

To provide an introduction and drill and practice on exponents.

## Description:

There are six sections:
a. What Is an Exponent
b. Practice Writing Exponential Notation
c. Practice Writing Miltiplication Notation
d. Calculating Numerical Value
e. Practice Calculating Numerical Value
f. Final Quiz

| Grade Level: High School and above | Student Time: | $50-60$ minutes |
| :--- | :--- | :--- |
| Subject Area: Algebra | ecs: | 4140 |

## Special Notes

1. A section covering the sUPER key procedes the index.
2. A student is only required to pass the final quiz to complete the lesson.
File Name: mathosb
Laws of Exponents


## objective:

To present practice with help on exponent problems.

## Description:

1. There are seven sections:
a. Writing an expression in exponential form
b. Writing an expression without exponents
c. Multiplying exponential expressions in one variable
a. Multiplying exponential expressions in three variables
e. Dividing exponential expressions
f. Expressions (one variable) to a power
g. Expressions (multiple variables) to a power
2. In each section the student is first shown how to perform the task indicated on the index page. He must then successfully perform that task six times to complete the section. He may, however, request HELP at any time to receive assistance on a given problem. The HELP consists of being shown how to perform the task in steps.

| Grade Level: | Intermediate algebra | Student Time: | 40 minutes |
| :--- | :--- | :--- | :--- |
| Subject Area: | Algebra | ecs: | 2207 |

```
File Name: math95f
 Powers and Roots of Natural Numbers
Authors: Shin Saito, City Colleges of Chicago, and
 Richard Neapolitan, Wright College
```



Objective:
To present practice with help on roots of natural numbers.
Description:

1. There are five sections:
a. Powers
b. Introduction to Radicals
c. Radicands
d. The Principal Square Root
e. The Principal Cube Root
2. Section a teaches the student the concept of a power. The student must find four powers without HELP to complete the section. He may, however, request $H E L P$ to finc a given power. The HELP consists of a sequence of questions and arrows which lead him through the steps involved.
3. Section $b$ introduces him to the concept of roots and radicals.
4. Sections $c, d$, and e test him on the concepts indicated on the index. The format and requirements to complete these sections are exactly those of section $a$.

Grade Level: Intermediate algebra Student Time: 30 minutes
Subject Area: Algebra
ecs: 2339

| File Name: | frac |
| :--- | :--- |
|  | Introduction to Radicals I |
| Authors: | Shin Saito, City Colleges of Chicago, and Richard <br> Neapolitan, Wright Colleges |



## Objective:

To provide an introduction and practice on radicals.

## Description:

1. There are five sections:
a. Properties of Fandicals
b. Simplifying a Square Root
c. Simplifying a Square Root, with a Fraction
d. Simplifying a Cube Root
e. Simplifying a cube root with a Fraction
2. Section a contains the statement of four properties of radicals used in the following four sections.
3. In each of the last four sections the student is first shown how to simplify the radical type indicated on the index. The student must then simplify radicals of that type himself. The student may press HELP to receive a series of questions which will lead to the simplification of a radical. He must, however, simplify four radicals without hewf to complete the lesson.

Grade Level: Intermediate algebra Sturent Time: 30 minutes
Subject Area: Albegra ecs: 4673

```
File Name: mathgSd
 Addition of Radicals
Authors: Shin Saito, City Colleges of Chicago and
 Richard Neapolitan, Wright College
```



Objective:
To present practice with help on addition of radicals.
Description:

1. There are four sections:
a. Addition of Radicals
b. Adding Similax Raticals
c. Adding Two Radicals
d. Adoing Several Radicals
2. In section a the student is shown how to add similar radicals, and shown how to combine radicals which can be simplified into similar radicals.
3. In section $b$, he must add similar xadicals. He must do four problems without HELP to complete the section. He may, however, request HELP at any time, to work a given problem. The HELP consists of a sequence of questions and arrows which lead him through the problem in steps.
4. In sections $c$ and $d$ he must add radicals which are not similar. The criteria and HELP are similar to that of section $b$.

Grade Jevel: Intermediate algebra $\quad$ Student pime: 30 minutes

Eubject Area: Algebre
ecs:
3478

| File Name: | math951 <br> Irrational Numbers |
| :--- | :--- |
| Authors: $\quad$ | Allan Meers, Wright College, Shin Saito, City |
|  | Colleges of Chicago, and Richard Neapolitan, |
|  | Wright College |



[^4]```
File Name: algex
    Introduction to Polynomials
Author: B. F. Lathan, Kennedy-King College
```


Objective:

To provide an introduction and practice exercises on perations with monomials.

Description:

1e Operation with monomials.
2. Definitions of monomial, binomial, trinomial, and polynomial are introduced.
3. This introduction is followed by four drill sections on:
a. Adding monomials
b. Combining like terms
c. Multiplying monomials
d. Dividing monomials
4. The criterion for each section is to do five problems correctiy (not necessarily in a row).
5. \bar{A} short review can be accessed in each section by using the BACK key.
6. A lesson (file name: puzl) containing a crossword puzzle on algebraic vocabulacy can be accessed from the index of this lesson.

Grade Level: Elementary algebra Student Time: 40 minutes
Subject Area: Algebra ecs: 4331

```
File Name: quad1
    Binomial Products: (x + 2)(x-3) etc.
Author: Iouis V. DiBello, CERL
```


with rimplated by -1 , we ginf

WHT to try acain
Qup AITEYTS

Objective:

To provide arill practice in multiplying binomials

Description:

1. There are four sections:
a. Aquide to these drills
b. Products like $3 x(-2 x+5)$
c. Products like $(x-2)(x+3)$
d. Products like $(-5 x+1)(2 x-4)$
2. In each of the drill sections the problems are generated at random, and the student may work as many problems as he wants.
3. Unacceptable answers are di.gnosed and saved on the screen for the student; the correct answer is given after four mistakes.

Grade Level: Elementary Algebra : Student Time: 45 minutes
Subject Area: Algebra
ecs:
3382

File Name: park2
Binomial Products: $(a+b)(a-b)$ etc.

Authors:
Paul Thompson, Parkland College, and Robert Baillie, CERI

Eueh sid is the sym of the lenathe onder b.

$a^{2}+2 a b+b^{2} \circ k$
Thersfore,

$$
(a+b)^{2} \equiv a^{2}+2 a b+b^{2}
$$

Objective:
To provide instruction and practice in binomial products.

Desceiption:

1. There axe Eive sections:
a. $(a+b)^{2}$
b. $\quad(a-b)^{2}$
c. $\quad(a+b)(a-b)$
d. $\quad(a+b)(c+d)$
e. Review Questions
2. In each of the first foux sections, a geometric diagram is used to justify the appropriate algebraic formula (e.g., $(a+b)^{2}=a^{2}+2 a b+b^{2}$ in section one). Then the student is given exercises of the same type until he has answered four in a row on first or second try. section five contains erercises of all four types.

Grade Level: Elementary algebra
Subject Area: Algebra

Student Time: 60 minutes
ecs:

```
File Name: math95e
    Math Special products I
Authors: Shin Saito, City Colleges of Chicago, and
    Richard Neapolitan, Wright wollege
```


What is the prostuct of the bincmible.

Apely the rules
$(\mathrm{Cx}=\mathrm{by})(\mathrm{ax}=\mathrm{by})=\mathrm{a}^{2} \mathrm{x}^{3}=b^{\frac{2}{2} y^{2}}$
 comifinient of \mathbf{n}^{2} butiow.
$(\mathrm{qz}=5 \mathrm{y})(\mathrm{iz}=5 \mathrm{y}) \cdot \mathrm{x}^{2}-\quad y^{2}$
 bhet is the produet of the bincmicile. (2 (6)

Apply the rulat

$$
\left(0 \times b_{y}\right)\left(b x-b_{y}\right)=a^{3} x^{2}=b^{2} y^{2}
$$

Aceividira to the above rult, write the ge-eflicient of y^{2} bilow:
$12 x=5 y\left(2 x=5 y=3 y^{2}-25 y^{2}\right.$

Objective:

To provide practice with help in special products.
Description:

1. There are three sections:
a. Problem type: (ax + by) (ax - by)
b. Squaring a binorial
c. Multiplying two binomials
2. In each section the student is shown how to find the type of product fidicated on the index page. He must then find six pioducts of that type without HELP to complete the section. The HELP consists of a sequence of questions which lead him to finding the product ir steps.

Grade Level: Intermediate algebra Student Time: 25 minutes
Subject Area: Algebra ecs: 3478

File Name:	Puzi Crossword Puzzle on Algebraic Vocabulary
Author:	B. F. Lathan, Kennedy-King College

File Natne:	quad2
Factoring Quadratic Polynomials	

objective:

To provide arill practice in factoring quadratic polynomials.
Description:

1. There are five sections:
a. A guide to these drills
b. Polynomials like $3 x^{2}-5 x$
c. Polynomials like $x^{2}-x+2$
d. Polynomials like $-2 x^{2}+5 x+3$
e. Polynomials like $10 x^{2}=31 x=63$
2. In each of the drill sections the problems are generated at random, and the student can work as many problems as he wants.
3. The student is required to factor each quadratic into a product of two linear factors by providing the linear factors one at a time. Once the student has given two linear factors, his two factors are multiplied out by PLATO to show him whether his factorization is correct or not. Incorrect factorizations are saved on the screen and diagnosed for the student.

Grade Level:	Intermediate algebra	Student Time:	60 minutes
Subject Area: Algebra	ecs:	2495	

$\left.\begin{array}{ll}\text { File Name: } & \text { math95a } \\ \text { Factoring Polynomials }\end{array}\right\}$

objective:
To present practice with help on factoring polynomials:

Description:

1. There are six sections:
a. Problem type: $a x-k x^{2}$
b. Problem type: $a x^{4}+b x^{2}+c x$
c. Problem type: $a x^{2} y+b x y+c x y^{2}$
d. Factoring the difference at two squares
e. Factoring the trinomial square
f. Factoxing the trinomial
2. In each section the student is first shown how to factor the polynomial type listed for that section. He must then factor four polynomials of that type without HELP to complete the section. He may, however, request HELP at any time to receive assigtance in factoring a given polynomial. The HELP consists of a sequence of questions and arrows which lead the student through the factoring process in steps.

Grade Level: Intermediate algebra

Subject Area: Algebra
ecs:

File Name： | Solve1 |
| :--- |
| Solving Linear Equations |

Author：\quad Mitsuru Yamada，Malcolm X College

In srater ta eet eredit lap doine this kind of

狺話1前

 Ifye nutar，It is advisable to gtart wich＇1：＇ ？

 Pengutation far vou：

1．TOU trat ast the next stef at the equation

4．ficutan the the nest staf of the equat man．

objective：
The student will solve one equation of each type（see the following description）without help from PLATO．

Description：
1．One－step problems like $3 x=4$ ．
2．Two－step problems like $2 x+3=4$ ．
3．Equations where＇x＇appears on both sides of the equal sign．
4．Equations which have terms that can be combined．
5．Equations with parentheses．
6．Equations with fractions．
7．Harder equations with fractions（optional）

Grade Level：	Intermediate algebra	Student Time：
Subject Area：	$2-3$ hours estimated	
Algebra	ecs：	7479

Special Notes：

1．There are four levels of＂help＂available to the student on each problem． At the highest level，PLATO tells the student what to do next and then does the arithmetic for the student．At the lowest level，the student must type in an equivalent equation．
2．There is cumulative data available to all non－student users of this lesson．

File Name:	Word1 Word Problems Involving Linear Equations
Authors: \quadGary Peltz, Malcolm X College, and Mitsuru Yamada, Malcolm X College	

Objective:
The student will be able to write equations for the word problems
presented in this lesson and solve the equations.

Description:
Problems involving age, mixture, and rates are presented.
Grade Level: Intermediate algebra
Subject Area; Algebra

77

File Name: | math95g |
| :--- |
| Reducing Algebraic Fractions |

Author: \quad Richard Neapolitan, Wright College


```
        srat vriminator, i|hol i= it:
            , %
```



```
            z-8
```


What is the new mundiotse ${ }^{2}$

$$
\underbrace{\frac{x^{\frac{3}{2}}+11^{-1}+24}{y}}=
$$

\qquad

fastared ans if thes both rortain the some faytor

and the densmingty that fortar.

 - 8 .
 ohe of theace new speytians.

Objective:

To present introduction and practice with help on reducing algebraic fractions.

Description:

1. There are four sections:
a. Problems of the form $8 x^{4} / 4 x^{2}$
b. Problems of the form $10 x^{6} y^{4} / 2 x^{4} y^{7}$
c. Problems of the form $\left(6 x^{5}=4 x^{4}\right) / 12 x^{2}$
d. Problems of the form $\left(x^{2}+5 x+6\right) /\left(x^{2}+3 x+2\right)$
2. In each section the student is shown how to reduce the fraction shown on the index. He must then reduce two fractions without HELP to complete the section. He may, however, request hemp for any given fraction to receive a sequence of questions and arrows which will lead him through the reduction process in steps.

Grade Level: Intermediate algebra Student Time: 35 minutes
Subject Area: Algebra
ecs:
3471
File Name: math95h

Multiplying Algebraic Fractions \quad| Author: \quad Richard Neapolitan, Wright College |
| :--- |

What is the pew rumerstor 7
$\frac{3^{2}-64+16}{4}=\frac{O^{3}}{\square}$

What is the Fewi rumeratir?
 \qquad

Ene titnex

Objective:

To present practice with help on multiplication of algebraic fractions.

Description:

1. There are three sections:
a. Problems of the form $\left(x^{5} / 3 \mathrm{y}^{2}\right) \times\left(7 \mathrm{x}^{3} / \mathrm{y}^{4}\right)$
b. Problems of the form $\left(x^{4} / 3 y^{5}\right) \times\left(5 y^{2} / x^{3}\right)$
c. Problems of the form $\left[\left(x^{2}+7 x+12\right) / y^{7}\right] \times\left[y^{6} /(x+4)\right]$
2. In each section the student is first shown how to multiply the algebraic fractions shown on the index. He must then perform two multiplications without HELP to complete the section. He may, however, request HELP for any problem to receive a series of questions and arrows which will perform the multiplication for him.

Grade Leve 1: Intermediate algebra Student Time: 35 minutes
Subject Area: Algebra
ecs:
3101

```
File Name: Fu
    Finding the Least Common Multiple of Algebraic
    Exprassions
Author: Richard Neapolitan, Wright College
Author: Richard Neapolitan, Wright College
```


objective:
To present practice with help on finding the least common multiple of algebraic expressions.

Description:

1. There are five sections:
a. Two expressions of the form $6 x^{3} y^{4}$
b. Three expressions of the form $6 x^{3} y^{4}$
c. Three expressions of the form $x^{2}+x-6$
d. Two expressions of the form $x^{3}+x^{2}-6 x$
e. Three expressions of the form $x^{2}+x-6$
2. In each section the student is first slown her . the least common multiple of expressions of the form indicated me the index. He must then find the least common multiple in three pxoblems without HELP to complete the section. He may, however, request HElp for any problem to receive a sequence of questions which will find the least common multiple in steps.

Grade Level: Intermediate algebra	Student Time:	30 minutes
Subject Area:	Algebra	ecs:

```
File Name: mth95j
                                    4ding Algebraic Fractions
Author: Richard Neapolitan, Wright College
```


objective:

To present practice with help on addition of algebraic fractions.

Description:

1. There are seven sections:
a. Problems like $4 x / 3+5 x / 4$
b. Problens like $7 x / 2+2 x^{2} / 3$
c. Problems like $3 x / 4+2 y / 5$
d. Problems like $2 / 5 x+5 / 3 x$
e. Froblems like $2 / 7 x+3 / 2 x y$
f. Problems like $(3 x+2) / 4 x+(2 y+5) / 3 y$
g. Problems like $3 /\left(x^{2}-4\right)+2 /\left(x^{2}-3 x+2\right)$
2. In each section the student is shown how to add the algebraic fraction shown on the index. He must then add algebraic fractions of that same variety. He must do this three times without HELP to complete the section. He may, however, request HELP at any time to receive a sequence of questions which will lead him through the addition in steps.

Grade Level: Intermediate algebra Student Time: 45 minutes
Subject Area: Algebra ecs: 4623

File Name: 1 im1
Solving Fractional Equations
Author: Richard Neapolitan, Wright College

objective:

To provide practice with help on solving fractional equations.

Description:

1. There are three sections:
a. Eroblems like $(x+3) / 2+(x+5) / 6=(x+1) / 9$
b. Problems like $3 / 4 x+6 / 5 x=13 / 20$
o. Problems like $2 /(x-1)=3 /(x+3)=6 /(x+2 x-3)$
2. In each section the student is shown how to solve the equation listed on the inder. He must then solve fractional equations of that type himself. He may press HELP to receive a sequence of questions which will lead to the solution. However, he must solve two equations without help to complete the section.

Grade Level:	Intermediate Algebra	Student Time:
Subject Area:	Algebra	ecs:

File Name: remttt
How to Plot Points
Authors: Donald Cohen and Jerry Glynn, Elementary Math Group, CERL
adapted by David Lassner, CERL

Objective:
To provide remediation in plotting points for students who have failcu the checkup in cctttest several times.

Description:

1. The student is taught to move a cursor co a specified x, y location in a grid.
2. He is stepped through this process first, then he is asked to work several similar problems until he ean work them without error.

Grade Level:	Intermediate algebra	S^{\prime} 'ent Time:	30 minutes
Subject Area:	Algebra	ecs:	2679

File Name:	cettt
	Tic-Tac-Toe
Authors: \quadDonald Cohen and Jerry Glynn, Elementaxy Math Group, CERE adapted by David Lassner, CERL	

Objective:

To teach plotting points on a grid by using a tic-tac-toe game formst.

Description:

1. The student plays tic-tac-toe against PLATO on a 4×4 grid. The markers are placed at the grid - oints by giving the coordinates of the grid point.
2. Depending on the level of ple tid may include negati coordinates.

Grade Level:	Intermediate algebra	Student Time:
Subject Area:	Algebra	ecs:

File Name:	ccbattle
	Battleship
Authors: \quad	Donald Cohen and Jerry Glynn, Elementary Math Group,
	CERL
	adapted by David Lassner, CERL

[^5]| File Name: | ectttest |
| :--- | :--- |
| | Plotting Poin:: Hekup |
| Authors: \quad | Donald Cohen and Jerxy Glynn, Elementary Math Group, |
| | CERL |
| | adapted by David Lassner, CERI |

Object:ve:
To provide a che-vin or the student's ability to plot points.

Description:

1. The student is shef tr swer two types of questions:
a. Give the coordinates of a given point ma grid
B. Move a cursor on a grid to a point whose coordinates are given
2. To pass the checkup he must answer three out of four questions correctly.

Grade Levei: Incermediate algebra	Stuent Time:	15 minutes
Subject irea: Algebra	ecs:	1560

File Name: | Line |
| :--- |
| Graphing Straight Lines -... Table of Values |

Author: Barbara Lederman, CERL

Objective:
To provide instruction and practice in getting a table of values satisfying a given equation of the form $y \equiv m x+b$, an using it to graph the forresponsing straight line.

Description:

1. There are three sections:
a. Getting the table o: valyes
b. What's my line (graph it using the table of values)
c. What's my line (greph it by moving a cursor on a grid)
2. In the first two sections the student is giver a linear equation of the form $y=m x+b$ and required to provide x and y values to make a table of values that satisfy the given equation. As each pair is entered in the table it is automatically plotted on a grid.
3. Tn the third section the student moves a cursor to plot points on a G id that satisfy a given linear equation of the form $y=m x+b$. In all three sections at least three correct points are required and all points are checked in the equation.

Grade Level:	Intermedia:	Sa	Student Time:
Subject Area:	Algebra		4713

File Name:	Ine2
Intercept of Straight Iines	

[^6]File Name: $\begin{aligned} & \text { line2a } \\ & \text { Slope of a Line }\end{aligned}$
Author: Barbara Lederman, CERU

objective:
To introduce the slope and to provide instruction and practice in finding it from the graph of a linear equation.

Description:

1. In section a the student fills in the blank in equations of the form $y \equiv \ldots x+b$ and the graph of the resulting equation is displayed on the grid.
2. Section b presents a trial-and-error drill where the student dececmines the slope from a graph. If the student types in an incorrect slope, the graph of the line with that slope is displayed on the grid.
3. Section c presents the rise-over-run definition of slope.
4. Section d develops the two-point formula for slope.

Grade Leve1:	Intermediate Iaceora	Student Time:	30 minutes
Subject Area: Algebra	ecs:	$4 \leqslant 52$	

\(\left.\begin{array}{ll}File Name: \& linela

Point-Slope Form\end{array}\right\}\)| Authors: \quadLaVerne McFadden, Parkland College, Keith Bailey,

 programmed by David Lasnner |
| :--- |

objective:

Given two points or one point and the slope, the student will be able to write an equation of the corresponding line.

Deseciption:

1. There are two sections:
a. Given the slope and point, write an equation
b. Given two points, write an equation.
2. Each sectio. contains instruction and practice exercises all of which can be accessed from an index.
3. In the practice exercises, the student can step through a problem by pressing the HETP key. He is required to do three problems without help in each section to complete the lesson.

Grade Level: Intemediate algebra Student Time: 30 minutes
Subject Area: Algebra
ecs:
1976

objective:

To provide prevtice in using the slope and intercept to find the equation of a given straight line or to graph a given linear equacion.

Description:

1. There are four sections:
a. Sumuary of intercept and slope
b. What's my equation (type it)
c. Graphing hints
d. What's my line (graph it)
2. In the fir: i section, the student is given equations in fors form $y=m x \quad h$ sce which he must give the siope and the y-intercept.
3. In the sich bection, the student is given the graph of a straight line and l ast type in a linear equation with that graph.
4. The third section helps the student step-by-step to graph a linear equation by using the y-intercept and the slope.
5. In the fourth sestion he is given a linear equation and he must gaph it by plotting at least three correct points on a grid. The scodent is expected to make use of the concepts and techniques learned in the previous line lessons.

Grade Level:	Intermediate algebra	Student qime:
Subject Areá: Algebra	eps:	3597

```
File Name: Iine4
            The Lines }\textrm{y}=\textrm{b}\mathrm{ and }\textrm{x}=\textrm{c
Author: Barbara Lederman, CERL
```


objective:

To introduce the lines $y \equiv b$ and $x=c$ and to drill the student in graphing any such equation and in finding the equation of any horizon= tal or vertical line.

Description:

1. There are four sections:
a. Type the equation (horizontal lines)
b. Graph the aquation (horizontal lines)
c. Type the rquation (vertical lines)
d. Graph the equation (vertical lines)
2. These sections introduct horizontal and vertical lines and present drills similar to those used in earlier lessons.
Grade Level: Intermediate algebra Student Time: 30 minutes

Subject Area: Algebra ecs: 3634

```
File Name: line5
                                    Graphing Lines in the Form ax + by +c=0
Author: Barbara Lederman, CERL
```


Objective:

To enable the student to convert a linear equation in the fors
$a x+b y+c=0$ to the form $y=m x+b$ and thereby identif, its slope and intercept and be able to graph it.

Description:

1. There are five sections:
a. Find a, b, c
b. Clange $a x+b y+c=0$ to form $y=m x+b$
c. What's my slope
d. What's my intercept
e. What's my I'ne (graph it)
2. In the first tw sections the student is taught to convert a linear ecuation from we form $a x$ ay $+c=0$ to $y=m x+b$.
3. In the last thw sertions the quations are given in the a, b, c form and the drills ar cherrise the same as in earlier lire lessons.

Grade Level:	Intermediate algebra	Student Time:
Subject Area: minutes		
Slgebra	ecs:	$35:$

Special Notes:

At this time all lines presented in this lesson can be converted to the form $y=m x+b$. At some time in the future, vertical lines in the form $a x+b y+c=0$ will be added to this lesson.

```
File Name: 1ise
Wore Exercises cn Linear Equations and Straight Lines
```

Authois: Donald Cohen and Jerry Glynn, Elementary Math Group, CerL

objective:

To provide a series of problems which require the consolidation of all previously learned skills in graphing straight lines.

Description:

1. There are seven sections:
a. Give the equation of a line through a given point.
b. Give the equation of a line flater than a given line
s. Give the equation of a lime with the same slope as a given line
d. Give the equation of a line whe mees a given line in a given point
e. Give the equation of a lin though two given points
f. Give the equation of a line : "yondicular se a given line
g. Give the equation of a line son fore fonts
2. In each section, the student worl: : the the mecific instancas of the given type of question.

Grale Level: Tntermediate algebra

Subject Area: Algebra

Student Time:	60 minutes;
ecs:	2054

File Name:	simequ
	Introduction to Systems of Equations
Author: \quad Barbara Lederman, CERL	

Objective:
To provide an introduction to systems of linear equations with emphasis the geometric meaning of the solution to a 2×2 system.

Description:
Several large systens are shown. 2×2 systems are discussed. Solutions to a system are shown to be intersections of pairs of inines.

Grade Level: Intemediate algebra Student rime: 15 minutes
Subject Area: Algebra ecs: 3140

File Name:	simequi Independent Systems of Equations and Numbers of Solutions
Author: \quad	Barbara Lederman,

Objective:
To familiari the student with the geometry (graphs) of three different types of systems: independent, inconsistent, and dependert as well as the number of solutions for each type.

Description:

Two snxies of drills are presented:
a. A graph (is equations) is rresented. The student enters which type of system it represents and how many solutions it has.
b. Only the equations are presented nd ratios of coefficionts are discussed. The students give system type and number of solutions as before.

Grade Level:	Intermediate algebra	Student Time:
Subject Area:	Algebra	ecs:

objective:
To provide directions and practice in typing in solutions to the three types of systems.

Description:

1. There are three soctions:
a. Independent
b. Jnconsistent
c. Dependent
2. A help sequence is available for the dependent system section.

Grade Level:	Intermediate algebra	Student Time: 5 minutes
Subject Area: Algebra	ecs:	3072

Special Notes:

Solutions to the systens are given as follows:
a. Independent systems: an order pair
b. Inconsistent systems: the word "none"
c. Dependent systems: first eithex equation is typed; then three points on the "solution" line must be given.

```
Fite vene: minema
    Golving 2* 2 Sytems by com, ing
Nuther: Bumber ordemam, &RR,
```


[^7]```
File lime: simoqus
 Intron lucticn to nlgebtaic Methods of Solving
 2 a 2 Systema
Althor: Barioaca Eedemmar, CERT
```



[^8]```
T10 NOM: 5:m6G:4
    \xisIving 2 < 2 EyNtems by Substithtion
```


cbjectiva:

To provide instruction and exercises in sulving 2×2 systens of linear equations using the substitution metroc.

Describtion:

1. The substitution method is presented step-by-step using flowcharts. The student then practices eash step typing in the resulting equations. Graphs are used to picture what is happening to the systen.
2. Dependent and inconsistent systems are also solved.

Grade Level:	Intermediate Alyebra	Student Time:	45 rinutes
Supject Area:	Algebra	ecs:	5560

```
Wira Nemm: Gimmos
    Golvind ? : System:; by the Additaon-Suttraction
    Mothom
Asthof: Barbara Lociormar, CERL
```


objective:

To provide instruction and exercises in solving 2×2 systems of linear equations using the addition-subtraction method (this method is also known as the method of linear combinations).

Description:

1. The addition-subtraction method is presented step-by-step using flowcharts.
2. The student then practices each step, typing in the resulting equations. Graphs are used to picture what is hdppening to the system.
3. Independeni, dependent, and inconsistent systems are presented.

Grade Level:	Intermediate algebra	Student Time:
Subject Area:	Algebra	ecs:

File Name:	sineque
	Exercises on Solving 2
Author:	Barbara Lederman, CeRL

$\frac{\text { Objective: }}{\text { Te }}$
To provide practice in solving each type of 2×2 system of linear equationa: independent, inconsistent, and dependent.

Description:
This lesson is strictly a drill. No instruction is provided. A student gives solutions to systems of equations.

Grade Level: Intermediate algebra \quad Student Time: 15 minutes, minimum

Subject Area: Algebra
ecs: $\quad 2572$

```
Fils Name: sintest
    Posttest for Simultareous Equations
    Anthor: Barbara Ledermat, CERL
```


Objective:
To provide a posttest for the sequence of PLATO lessons on si:nultaneous equations.

Description:

1. The test consists of twelve questions. There are two multiple choice questions, six yes or no type questions, and four questions where the student must give the solution to a system.
2. The student can skip any question by pressing IAB and return to that question later.
3. Within each problem trpe, paratneters for the exercises are randomly generated so that new questions will be presented to students who repeat the test.

Grade Level: Intermediate algebra	Student Time:	$15-20$ minutes
Subject Area: Aljebra	ecs:	2821

```
File Name: quad3
                                    Solving Quadratic Equations by Factoring
Author: Louis V, DiBello, CERL
```


Objective:
To give drill practice in solving quadratic equations by factoring.

Description:

1. There are five gections:
a. A guide fox these drills
b. Equations like $3 x^{2}-5 x \equiv 0$
c. Equations like $x^{2}=x+2=0$
a. Equations like $-2 x^{2}+5 x+3=0$
e. Equations like $10 x^{2}-31 x-63=0$
2. In each of the drill sections the problems are generated at random, and the student may work as many problems as he wants.
3. The student can choose to give the solutions right away or to factor the equation first. Any solution he gives is checked by plugging it into the equation and the student is shown this check.
4. If the student cannot give the solutions, he is required to factor the equation first. Incorrect factorizations are multiplied out for the student and saved on the screen.
5. After four incorrect factorizations, the correct factorization is given and the student is required to solve the equation. After three incorrect attempts to give a solution, the factorization is analyzed to find a solution from it.

Grade Level:	Intermediate algebra	Student Tine:
Subject Area: minutes		
Slgebra	ecs:	3370

File Name: mathosm

Solving quadratic Equations by Completing the Square
Author: \quad Richard Neapolitan, Wright College

objectives:

1. To present an introduction and practice with help on completing the square.
2. To present practice with help in solving quadratic equations by completing the square.

Description:

1. There are two sections:
a. Completing the Square
b. Solving by Completing the Square
2. In section a the student is shown how to complete the square. He must then complete four squares himself without HELP to complete the section. He may, however, press HELP to receive a sequence of questions which will complete the square in steps.
3. In section b he is shown how to solve a quadratic equation by completing the square. Again he must solve four problems without HELP, but may request HELP to solve any particular problem.

Grade Level:	Intermediate algebra	Student Time:
Subject Area:	30 minutes	
Algebra	ecs:	4668

Fila Nanc: Solquad
Solving Quadratic Equations by Factoxing
Nuthor:
Richard Neapolitan, Wright College

Objective:

To present practice exercises with help on solving quadratic equations by factoring.

Description:

1. The student is first shown, step-by-step, how to solve a quadratic equation by factoring. He must then solve quadratic equations himself. He can press LAB to see the equation solved in steps, or HELP to receive a sequence of questions and arrows which lead to the solution.
2. He must solve two equations without any help to complete the lesson.

Grade Level:	Intermediate Algebra	Student Time:
Subject Area:	Algebra	ecs:

```
File Name: soplot
Punction 1'lottor
Author: Foith Bailey, GERL
    goction Eour designed and mrogranmed by Dan Sleator,
    CERI
```


Objective:
To provide a function plotter for the students to use.
Description:

1. There are four main sections.
a. $y=f(x)$: y a function x
b. $r \equiv f(t)$; polar functions
c. $x \equiv f(t), y=g(t)$; parametric equations
d. Implicit functions
2. In each section the student can type in any function or equation of the appropriate type and PLATO will graph it on a rid. The student can graph several functions on the same grid for purposes of comparison, and he can choose the x and y scales.
3. A section containing instructions is available from the index or by pressing the HELP key.

Grade Level: High School and above	Student Time: open-ended	
Subject Area: Function Plotting	ecs:	2954

Special Notes:

Previously entered formulas can be recalled and modified using the COPY, EDIT, and ERASE keys. Use of this lesson has been most effec: tive when students were provided by their instructors with sequences of equations to be graphed. 10%
Eile Name: plot3
Thzee-Dinensional Eunction Plotter
Author: James Eowery, RuRC


```
objective:
    To provide a three-dimensional surface plotter.
Description:
    An expression in }x\mathrm{ and }y\mathrm{ , coordinates of the observation point, and
    size can be entered. The corresponding surface is then plotted.
Grade Level: Community College and above Student Time: open
Subject Area; Graphing functions ecs: 951
```

File Name:	liter
	Introduction to the Metric System
Author:	Rut $\overline{\text { I }}$ Chabay, Department of Chemistry, University of Illinois at Urbana-Champaign

objective:

To presente an introduction and practice on metric measures and conversions.

Description:

1. Instruction and practice on metric measures of distance, weight, volume, and temperature.
2. Covexs conversions within the metric system and conversion between metric and english units.

Grade Leve 1: Basic mathematics Student Time: 30 minutes
Subject Area: Arithmetic
ecs:
5521

Special Notes:
contains an index from which each topic can be accessed.

File Narne:	introtrig 1 Introduction to Trigonometry
Author: \quad Richard Neapolitan, Wright College	

Objective:
To provide an introduction to the basic concepts of angles, triangles, and the terminology used in defining sine, cosine, and tangent of angles in a right triangle.

Description:

There axe four sections, each of which is available from an indexa. Argle. The meaning of "angle" and measuring angles in degrees, batsd on dividing a circle into 360 equal parts, axe presented.
b. Triangle. The student is asked to select figures which are triangles from a display of a variety of plane figures. Exercises based on the fact that the sum of the angles in a triangle is 180 degrees are given.
c. Right triangles. The definition and examples are given.
d. Basic trigonometric concepts. Instruction and exercises on hypotenuse, side opposite an angle, and side adjacent to an angle are given. Sine, cosine, and tangent of angles in a right triangle are defined and the student is asked to compute these values for triangles with given sides and angles.

Grade Level: High School and above	Student Time:	30 minutes
Subject Area: Trigonometry	ecs:	4526

```
File Name: trigl
    Similar Triangles and Pythegorean Theorem
Authors: Paul Thompson, Parkland College, and Robert Bailiie, CERL
    programmed by Robert Baillie, CERL
```


Objective:
To provide review of geometric concepts prexequisite to trigonometry.
Description;

1. Review of the concepts of acute, obtuse, and right triangles.
2. Introduction to similar triangles and corresponding parts in them. The student is asked to rotate one triangle until it is in the same position as a similar triangle (see picture).
3. The student calculates ratios of sides and finds missing sides by similarity.
4. The Pythagorean Theorem is presented $-=$ along with the terminology: hypotenuse, opposite side, adjacent side, opposite angle, adjacent angle.

Grade Level:	High School and above	Student Time: 40 minutes
Subject Area: Trigonometry	ecs:	4024

Special Notes:

The student gets an index and can review the sections in any order,

111

```
File Name: trig2
    Special Right Triangle
Authors: Paul Thompson, Parkiand College, and Robert Bailiie, CERL
    progranmed by Robert Baillie, CERL
```


objective $=$
To familiarize the student with facts about right triangles.
Description:

1. Instruction in typing the degree symbol (${ }^{\circ}$), and a proof for "The sum of the angles of a triangle equals $180^{\circ} "$ are provided.
2. Properties of the $90^{\circ}-45^{\circ}-45^{\circ}$ and $90^{\circ}-60^{\circ}-30^{\circ}$ right triangles are developed. The student uses these and the Pythagorean Theorem to find the unknown sides.

Grade Level: High School and above	Student Time:	30 minutes
Subject Area: Trigonometry	ecs:	2110

Special Notes:
The student gets an index and he can study the sections in any oxdex.

118

```
File Name: trig3
    The Sine of an Angle
Authors: Paul Thompson, Parkland College, and Robert Baillie, CERt
    progranuned by Robert Baillie, CERL
```


Objective:
To provide instruction in using the sine for finding missing sides ur angles of a right triangle.

Description:

1. A definition of sinA is provided and used to find sinA when the sides are known.
2. The student finds missing parts of a right triangle when the sine of an angle is given. Examples and practice are provided.
3. The student uses tables of sines to find sines or angles when one of them is given.

Grade Level: High School and above

Subject Area: Trigonometry

Student Time: 30 minutes
ecs:
3113

File Name:	trig4
	The Cosine and Tangent of an Angle
Authors: \quadPaul Thompson, Parkland College, and Robert Baillie, CERL \quadProgramed by Robert Baillie, CERL	

Objective:

To provide instruction and practice on using the cosine and the tangent to find missing sides or angles of right triangles.

Description:

1. A definition of cosA is provided and used to find cosA when the sides are given.
2. The student uses tables of cosines to find cosines or angles when one of them is given.
3. Use of cosine to find missing parts of a right triangle.
4. Finding sinA by using $\cos (90-A)$ and vice versa. Proof and practice are provided.
5. Definition of tanA, and finding tanA when the sides are given.
6. Ufing tables of tangents to find tanA or A when one is given.
7. Use of tangent to find missing parts of a right triangle.

Grade Leve1:	High School and above	Stuaent Time;
Subject Area; minutes		
Sráscnometr;	ecs:	4150

114

File Name:	trig5
	Solving Right Triangles
Author: \quad	Robert Baillie, CERL

Objective:
To provide a review for the sine, cosine, and tangent of an angle and applications to solving right triangles.

Description:

1. Right triangle problems are provided with the following parts given:
a. A11 three sides
b. Two sides
c. One side and one acute angle
2. The student is given help in finding the missing parts by breaking the procedure into steps.

Grade Level: High School and above Student Time: 30 minutes
Subject Area: Trigonometry
ecs:
4150

Special Notes:
An index is provided so that the student can review the sections in any order.

Lle Name:	trig6 Solving Oblique Triangles
Auchor: \quad Robert Baillie, CERL	

Objective:
To introduce the laws of sines and cosines and provide examples and
practice in solving oblique triangles.
Description:
1. The laws of sines and cosines are presented without proofs but with
examples.
2. Oblique triangle problems are provided with the following parts given:
a. All three sides
b. Two sides and the included angle
c. One side and two angles
3. The student gets help with the algebraic manipulation of the laws as
needed in the problems. Answers are given in some places after several
mistakes are made.
Grade Level: High School and Above Student Time: 30 minutes
Subject Area: Trigonometry ecs: 4720

File Name: | trig7 |
| :--- |
| Sine of Angles Greater than 90 Degrees |

Author: \quad Robert Baillie, CERL

objective:
To teach the student how to use tables to find values of the sine for angles greater than 90 degrees.

Description:
This is a short lesson with exercises which develop the formula $\sin A=\sin (180-A)$ from the pattern in a table of sine values.

Grade Level: High School and above Student Time: 5 minutes
Subject Area: Trigonometry ecs: 568

Special Notes:
This lesson will be expanded to include a similar treatment for cosine.
\qquad

```
File Name: word2
    Word Problems with Trigonometry
Author: Gary Peltz; City Colleges of Chicago
```

Objective:
To provide practice in solving word problens.

Description:

1. Given the angles of elevation from two observation points of a tree on the opposite side of a river, the student is asked to generate an equation which can be solved for the width of the river. When he has entered such an equation, he must then find its solution.
2. Several types of help are available: see a general explanation of the procedure to use, have the problem solved, or be stepped through the problem. In the step-through help sequence, the answers can always be obtained by pressing the HELP key.

Grade Level:	High School and above	Student Time:	20 minutes
Subject Area:	Trigonometry and Elementary Algebra	ecs:	4362

118

```
File Name: scienot
Scientific Notation
Author: Barbara Lederman, CERL
programmed by David Lassner, CERL
```


Objective:
To provide instruction and exercises on scientific notation.

Description:

1. In the instructional section which precedes the practice exercises, the relationship between the exponent in the power of 10 and moving the decimal point is taught.
2. There are two types of practice exercises:
a. Multiply out a number given in scientific notation.
b. Fill in the correct exponent in the power of ten so that the number will be in scientific notation.

Grade Level: High School and above	Student Time:	$10-15$ minutes
Subject Area: Arithmetic	ecs:	1873

119

File Name:	cclog
	Introduction to Logarithms
Author: \quad Donald Shirer, Valparaiso University	

Objective:

To provide an introduction to logarithms and logarithm tables.

Description:

1. The legson includes instruction and exercises on powers of 10 logarithms, log tables, antilogs, use of logs, and a quiz.
2. There are also two optional topics: construction of log tables, and logarithmic relations between two quantities.

Grade Jevel:	Elementary Algebra	Student Time: 45 minutes
Subject Area: Algebra	ecs:	5679

Special Notes:

1. Use of on-1ine calculator is explained and made available.
2. Topics are accessed from an index.

File Name: | sri (jumpout to sr and scienot) |
| :--- |
| Slide Rule |

Author: \quad| Barbara Lederman, fonmerly of CERL |
| :--- |
| programmed by David Lassner, CERL |

Objective:
To provide ingtruction and practice in the use of a slide rule for multiplication and division problems.

Description:

1. There are five sections:
a. Review of scientific notation
b. Reading a slide rule
c. Estimating answers
d. Multiplication
e. Division
2. Each section has instruction and practice drills.
3. A simulated slide rule is used for the instruction. The student uses his own slide rule to work the exercises, with remediation provided by the simulated slide rule.

Grade Level: Technical math or Student Time: 3.5 hours physical science courses

Special Notes:
The student needs his own slide rule to work the exercises in sections four and five.

File Name: coprob
Introduction to Probability
Author: Robert Bailiie, CERL

$$
\begin{aligned}
& \text { Furncer at ine is: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { frim is ver : in -ritat.... }
\end{aligned}
$$

Qbjective:

To acquaint the student with the meaning of randonness and probability,

Description:

1. Randomness experiment shows that randomess involves unpredictability (the outcome of a coin toss can not always be predicted in advance).
2. Formal definition of probability is given, followed by examples which use the definition to calculate the values of various probabilities.
3. Example to show that inpossible events have probabilities of 0 , events that are certainties have probabilities of 1 , and all other events have probabilities between 0 and 1 .
4. Coin and dice throwing experiments (see Special Notes).
5. Explanation of the fact that, if 100 consecutive tosses of a balanced coin come up "heads," the probability that the 101 st toss will also be "heads" is still 1/2.
6. Examples show the diffexence between independent and dependent events, and the product law for independent events is obtained from examples.

Grade Level:	Community College	Student Time:	60 minutes
Subject Area:	Elementary probability	ecs:	6200

Special Notes:
Two sections simulate coin and dice throwing experiments. The student can see what is likely to happen when a large number (up to a billion) of coins or dice are tossed.

122

File Name:	Community College Math Index
	Contact:
Louis V. DiBello, CERL	


```
File Name: studnotes
Author: Tamar Abeliovich Weaver, CERL
adapted from the Elementary Math Group lesson "kidnotes"
```


Objective:
To let the student write notes or conments on the lessons he has completed.

Description:

1. The student is given a blank note space and a simple editor to write notes or comments. His name, course, date and time are automatically saved along with the lesson the student has come from.
2. The note is stored in a dataset and these are readable by instructors and authors through lesson "studnotesr".

| Grade Level: | not applicable | Student Time: not applicable |
| :--- | :--- | :--- | :--- |
| Subject Area: not applicable | ecs: | $79^{\circ} \%$ |

Special Notes:
In order to make comments lesson available at the end of a lesson, the author must insert a short unit of code in the lesson. For more information, contact Tamar Abeliovich Weaver.

Antho: : Tamar Abeliovich Weaver, CERt, adapted from the Elementaty Math Group Lesson "kidnotos"

Objective:
To allow reading of student's comments about lessons that have been collected via lesson "studnotes".
Description:
Instructors and authors are able to read notes including the information about the student and which lesson he came from.

Grade Level:	not applicable	Student Time: not applicable
Subject Area: not applicable	ecs:	1568

Special Notes:

This file must be periodically emptied to allow for more notes. A file of copies of student notes is kept for notes that have been deleted. For information, contact Tamar Abeliovich Weaver.

```
File Nome: mathmotes
    Muth Noter:
Contact: lomis V Dibulbo, CLRN
```

```
objective:
    To mrovide a nommmication file for authors, users, instructors, and
    other persomnel intwruted in the community college math group.
Doscription:
    Space is available Eor messagos to be written fo individuals or
    groups: Messages will be maintained until they are no longer needed
    and then deleted.
Grade Level: not applicable
Subject Arca: not applicable
    Student Time: not applicable
    ecs: }383
```


[^0]:

[^1]: Objective:
 To provide drill practice and checkup quiz in reducing fractions, writing equal fractions and nixed number conversions.

 ## Description:

 1. There are three sections:
 a. Reducing Fractions
 b. Writing an Equal Fraction
 c. Mixed Number Conversions
 2. Each section has three options:
 a. Instruction: a brief statement of the appropriate rule, and a typical problem of the given type which the student is stepped through.
 b. Practice: five problems of the given type -- at any point the student can press DATA to get the rule on the screen, or HBLP to step through the given problem.
 c. Checkup: a quiz of six problems. The student has mastered the section if he gets five correct out of the six.

 | Grade Leve1: | Basic mathematics | Student Time: |
 | :--- | :--- | :--- |
 | Subject Area: | Arithmetic | ecs: |

[^2]: Objective:
 To teach the student how to add or subtract fractions with unlike denominators.

 ## Description:

 1. There are four sections:
 a. Steps to Finding a Solution
 b. Finding a Common Denominator
 c. Finding the New Numerators
 d. Having PLATO solve student=constructed problems
 2. Pre- and posttest are available.

 | Grade Level: | Basic mathematics | Student Time: |
 | :--- | :--- | :--- |
 | Subject Area: | 40 minutes | |
 | Suthmetic | ecs: | 5006 |

[^3]: Objective:
 To enable the student to convert from one to another among percents; decimals, and fractions.

 Description:

 1. There are three major sections:
 a. Introduction
 b. Converting from decimals to percents and vice versa
 c. Converting from fractions to percents and vice versa
 2. Each section has instruction and exercises.
 3. The lesson has pre- and posttests.

 | Grade Level: | Basic mathematics | Student Time: |
 | :--- | :--- | :--- |
 | Subject Area: minutes | | |
 | Surithmetic | ecs: | 4146 |

[^4]: Objectives:

 1. To present a rationale for the existence of irrational numbers.
 2. To present practice in recognizing irrational roots of whole numbers.

 Description:

 1. There are two sections:
 a. Introduction
 b. Drili
 2. Section a demonstrates how the need for more numbers gave rise to the rational numbers; then further need gave rise to the irrationals.
 3. Section b is a drill designed to teach tre student which rooth of whole numbers ane irxational. He must recognize four nimbers cis "ectily to complete the lesson.

 | Grade Level: | High School and above | Student mime: |
 | :--- | :--- | :--- |
 | Subject Area: | 20 inutes | |
 | Sugera | ecs: | 2595 |

[^5]: Objective:
 To provide remediation on plotting peints if student fails the checkup ir cettest.

 Description:

 1. Similar to the commercial game "gattleship." The markers are placed on grid points by typing their cocrdinates. The grid consists of all four quadrants.
 2. The student plays agsiast Plato.

 Grade Level: Intermediate algebra \quad Student Time: 30 minutes
 Subject Area: Algebra ecs: 2340

[^6]: Objective:
 To introduce the y-intercept and to provide instruction and practice in finding it from the graph of a linear equation.

 Description:

 1. There are two sections:
 a. What is the y-intercept
 b. What's my equation (fill in the y-intercept)
 2. Section a starts by allowing the student to fill in the biank in an equation of the rom $y=m x+\ldots$ and displaving t^{\prime}.e graph of that equation. In shotion b, he is taken through a series of exercises until he can determine the intercept by looking at the graph.

 Grade Level: Intermediate algebra Student Time: 15 nimten

 Subject Area: Algebra
 ecs:
 2123

[^7]: objective:
 To provide instruction in solving 2×2 listar systens by graphing. Descrijution:

 The student graphs one equation at a time, and then estimatee the zolution to ths system by reading the graph.

 | Ogade Level: | Intermediate Algebra | Student Time: |
 | :--- | :--- | :--- |
 | Subject Area: | Algebra | ejs: |

[^8]: objectives:

 1. To provide motivation for laaning algebraio methods for solving systems of equations.
 2. To promote an urderstanaing of why the methods work through the use of graphs.

 ## Descriptions:

 1. Several systerns are presented which can almost be solved by inspection. The student solves these with any requested help.
 2. The idea of equivalent systems is presented using equations and graphs.
 3. The student is tole that algebraic methods can be used to change "ugly" systems into equivalent systems whose solutions are easy to read.

 | Grade Level: Intermediate Algebra | Student Timé | 30 minutes |
 | :--- | :--- | :--- | :--- |
 | Subjest Area: Aggubra | ecs: | 3459 |

