ADTA0R - Walzl, F. Neil

TITLE
INSTITUTION POB DATTE NOTE

EDES FBICE DESCRIPTORS

IDENTIPIERS

Walz1, F. Neil
The Development and Implementaticn of a District Computer Education Program. Final Report. Newark School District, Del.
Nov 75
395p.; Ed.D Practicum, Novac University; Not available in hard copy aue to marginal reproducibility of original

MP- $\$ 0.83$ Plus Postage. HC Not Available Erom EDRS. Computer Assisted Instruction; Computers; *Computer Science Education; Doctoral Theses;-Inservice Teacher Education; Master Plans; Models; *Planning; Program Descriptions; *School Districts; *Secondary Education Delaware (Newark); Giasgow High school

## - ABSTRACT

'Computer Education Program conducted at Glasgow High School, Neark, Delaware, was des ned to model full utilization of computer services in a public figh suhool. The phases of the project included: (1) development of goals and objectives at the district level; (2) workshops for teacher training; (3) minicourses for students; (4) developing courses 全or the 1975-76 school year; and (5) establishing a long-range computer services plan for the district. This report discusses the historical development of the project, summarizes events in each phase, provides results of an evaluation including numerous documents and exhibits illustrating the activities uhich took place during the project. (EMH)

[^0]THE DEVELOPMENT AND IMPLEMENTATION OF A DISTRTCT COMPUTER EDUGATION PROGRAM
by
F. Neil Walzl

Submitted in partial fulfillment of the requirement for the degree of Docfor of Education, NOVA, University.

Dr. Randall L. Broyles - , Mr. John F. Brandt Department of Public Instruction Glasgow High School John G. Townsend Building 1901 South College Avenue Dover; Delaware 19901 Newark, Delaware 19702. (302) 678-4646

Mr. H. Neloson Freidly, Jr. (302) 7312381
/ Delaware Cluster Dr. RandaIl, L. Broyles
U. 5 DEPAETMENT OF HEALTH. EDUCATION \& WELFARE NATIONAL INSTITUTE OF EDUCATION

THIS DOCUMENT HAS BEEN: REPRO DUCED EXACTLY AS RECEIVED FROM THE PERSONOR.ORGANIZATION ORIGIN. ATING IT POINTS OF VIEW OR OPINIONS ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NEGESSARILY REPRE. STATED DO NOT NECESSARILY REPRE.
SENT OFFICIAL'NATIONAL INSTITUIE OF EDUCATIONPOSITION OR POLICY

Maxi II. Practicum
FINAL REPORT
November, 1975

## TABLE OF CONTENTS

- 

ABSTRACT ..... i
PREFACE ..... ii
INTRODUCTION ..... 1.
HISTORICAL DEVĖL゚OPMENT ..... 4
EDTECH ..... 5
DSAA and Project DELTA ..... 11
DICE ..... 16
Newark Distrịct Involvement ..... 18
THE DEVELOPMENT OF GOALS AND OBJECTIVES AND A
LONG-RANGE PLAN FOR IMPLEMENTATION ..... 20
Computer Education Workshop, Phase I; is
Eormed ..... 20
Computer Education Workshop., Phase II,
Proceeds on Schedule ..... - 23
STAFF DEVElOPMENT ..... 26
Staff Member Attends In'-Depth Training
Session ..... 26
Spring Computer Inservice Workshop"
Conducted. ..... 28
Informational Meetings Held. ..... 30
Summer Computer Workshop Conducted ..... 31
School Level Workshops Conducted ..... 33$\beta$
STUDENT INVVLVEMENT ..... 35
Glasgow High Schoor Mini-Courses Held ..... 35
Extended Year Program Computer Course Established ..... 39
ReLated ACTIVITIES ..... 44

- State-Wide Council for Computer Education
Formed ..... 44
State-Wide Computer Task Force Formed. ..... 45
H.B. 509 Proposal Submitted: ..... 46
Newark School Board Supports Computer$4 \hat{6}^{\circ} \quad$
EducationComputer Offerings (1975-76)
50
ACTIVITIES PLANNED. FOR 1975-76.50
A Night School Class is Planned ..... 51
Computer Related Activities are Planned for
Inservice Days ..... 52
EVALUATION ..... 53
Introdüction ..... 53
Participants Evaluate Workshops ..... 54
Workshop-Participants are-Evaluated. ..... 55
Composition of Workshop Participation ..... is
Eyaluated ..... 57
make the gathering of data and the writing of this practicum 'a rewarding experience.

$$
=5
$$

A5: Preliminary Goals and Objectives and Preliminary Long-Range Plan
A6: Preliminary Goals and Objectivés Distribution List -
A7: . Long-Range Plan Included as a Part of Report to Deputy Superintendent

A8: List òf Phase.II Workshop Participants
A9: Computer Education Curriqulum GuideInterim Draft

A10: Computer Education Curriculum Guide Distribution List.

APFENDIX B: Staff Development
B1: Funding Approval for Staff Member to Attend In-depth School

B2: Report on the Attendance of a Staff Member at an In-depth Computer Training School

B3: Spring Computer Inservice Wcrkshop Class List

B4: Spring Computer Inservice Workshop Objectives
B5: Spìing Computer Inservice Workshop Assignment'Sheets

B6: Invitations for Computer Informational

- Meetings

B7: Proposal for Summer Computer Workshop for Teachers

B8: Request to Principals-to-Ident-i-fy-Sumer Computer Workshop Participants

B9: Invitation to Summer Computer Workshop Participants
: F10: Summer Computer Workshop Participant List
B1I: Summer Computer Workshop Agenda, Objectives, and Worksheets

B12: Glasgow High School Summer Workshop. Proposai
B13: Christiana High School Summer Workshop Proposal

APPENDIX C: Student Involvement
G1: . School Newspaper Artikle ,Advertising,
C2: 'Invitations Sent to Students for the
C3: Mini-Course Class Lists
C4: Student Materials for Mini-Courses
C5: Tape Cassette Check-Out List
C6: Additional Check-Out Lists-
C7: Samples of Student Gẹnerated Programs
C8: "Mathematics Through the Computer" Course Guide

C9: Summer School Catalog Description for "Mathematics Through the Computer"
C10: Special Flyer for "Mathematics Through the Computer"
C11: "Mathematics Through the Computer" Class
C12: Iitle of Progr-ams-Generated by 'Students Attending "Mathematics Through the Computer"

APPENDIX D: Related Activities
D1: ' Minutes of First Council for Computer Education Meeting

The practicum, "The Develöpment and Implementation of $\mathfrak{a}$ District Computér Education Program," was designed fọr the purpose of insuring full utilization of an in-touse computer system in a high school. A second purpose was. to establish goals, objectives, and directions for computer education on a District-wide basis." Phases conducted to accomplish these goale consisted of staff training, student training, and the preparation of a District Computer Educátion Curriculum Guide.

All phases were comp'leted satisfactorily. Outcome measures indicate that there is a significantly higher number of teachers and students involved in computer education in the District in 1975-76 than in 1974-75. Significant, also, is the number of non-mathematics teachers involved. Finally, a District-wide Curriculum Guide was produced, which will provide the guidance necessary for' the expansion of computer education in the other two high schools in the District.

## PREFACE

A wide array of scientific, economic, social, and technical fartors are reshaping our world and, with it, the course . of modern education... One such technological development is the computer, which is being utilized extensively and is playing, a pervasive role in modern society. Banking, busines's, íransportation, enginecring, med'cine, and social and scientific research are only a few of the many areas which are increasingly dependent upon the computer's speed in problem solving, and its capacity for handing vast amounts of data. In addition, the computer is fast becoming a significant tool in the administrative and instructionsl. processes of education.

The. President's Science Advisory Committee stated that, since the computer is such a valuable and versatile to ${ }^{\circ}$, "in society, students attending school in the 1970's who have not been exposed to knowledge abnut computers will be poor'ly prepared for the world of the 1980's and 1990's. Although most school students will nöt be computer technologists, the influence of the computer on their future is so important that they should be made aware of its nature and function.

The influence of the computer will be felt by students in many ways. These jnclude career selection, leisure activities, and management of personaı finances. Moreover, the constitutional rights and the depersonalization of each individual can be affected.
"The Development, and Implementation of a District Computer Education Program" attempts to formalize and pilot the necessary steps to bring this needed computer awareness to the students and staff in one school district; Although the direction taken was heavily influenced by such local factors as evailabili'y of hardware and funds, it is possible that this project could beeome a model for other school districts to emulate.

Whatever effeçtiveness this presentation might have results to a considerable extent from the interest, cooperation; ${ }^{-}$ and assistance provided by various personnel of the Newark School District. The assistance of Mr. John Brandt, Principal; Mr. Thomas Comer, As $30 c i a t e$ Principal, and Mr. Darrell Pèlley, all of Glasgow High School, was particularly valuable. The insights and encouragement.. constantly extended by Sūperintendent Dr. George V. Kirk, and by "Deputy Superintendent Dr. John E. Allen helped
make the gathering of data and the writing of this practicum a rewarding experience.
7.
iv
11

ERIC
"The Development and Implementation of a District Computer Education Program" is a multi-phaseu project designed, to solve the problem of utilizing fully the computer system at Glasgow High School located in the Newark School District in the State of Delaware.

Briefly, the Newark School District is a K-12 District consisting of thirteen elementary "schools, four middle schools, and three: high schools. There are 16,900 pupils in the District. Elementary schools contain grades K-5, middle schools contain grades $6-8$, and high school si. contain. grades 9-12. In addition, a state school for the hearing impaired is located in; and administered by, the District. There is also a vocational school under construction (scheduled to open'in September; 1976) which will serve several districts but will. be administered by the Newark District. In addition co Glasgow High School, the other two high schools are Christian and Newark. Each of these high' schools has approximately 1600 students enrolled.

The population of the Newark school District contains people representing all socio-ecónonic backgrounds: while
largely suburban middle, class, all strata of society are represented. In short, its population looks more like a miniature cross section of the ration. This, then, is the setting in which this practicum was carried out.

The various phases of the project consisted of the developing of goals and objectivos at the District level * For computer edication, the institutinc of workshops for teacher training, the conducting of mini courses for students, the developing of courses for the 1975-16 school year, and the est.ablishing of a long range plan for the District. In addition, a library of textbooks and programs currently in use, was gathered and a bibliography of pertinent articles and publications was compiled.

The success of"previous attemyts to esizblish computer education has been minămal largely because computer education was regarded as the domain of the mathematics department. To overcome this problem, teachers from many disciplines were involved in the preparation of the District-wide goals and objectives and were also included in the teacher training sessions.

Active student involyement was also considered a necessary condition for the success of the project. Thus, students
were given the opportunity to participate in mini-courses during the spring of 1975. In addition, a formal course was offered through the District's extended year program during the summer of 1975 The students who attended the $\therefore$ summer course wefe given the opportunity to react to the District-wide goals and objectives as these were being formulated.

Although the major emphasis for implementation was to be in one school, efforts were made to include the stscer high schools and the" area vocational high school in the development of District plans. One result of the Districtwide involvement has been a unified, approach to the implementation of computer education. Súbsèquently,--when the decision was reached during the course of the practicum. to inscall in-house equipment in the sister high schools, many of the problems/which Glasgow High School faced had nalready been solved, or at least considered.

While all phases of the practicum have been conducted, severai have been expanded or modified as" the situation warranted. Moreover, several additional activities rekated to the practicum were carried out. Where applicable, -a discussion of these will be ingcluded later in the body of this report.

## HISTORICAL BACKGROUND

For practical purposes, the use of computers in Delaware Public School Districts and, more specifically, in the Newark District, began in the summer of 1966 .-- The initial thrust was aimed largely at the administrative functions of business applications, student-scheduling, and student reporting procedures. Minimal attempts were made to use the computer for instructional purposes.

Basically, three different organizations made, and are continuing to make, contributions to effective utilization-of-the computer in education. The first of these was an ESEA Title III project entitled Educational Development through Technology (EDTECH). The second is a project sponsored by. the Delaware Schools Auxiliary Association (DSAA)* which came to be known in 1971 as Delaware's Total Approach to Computer Knowledge, more conmonly called Project DELTA. The third organization is the Data Information Center for Education (DICE) which is a data processing installation funded wholly by a consortium of local school districts and devoted exclusively
$\therefore$ DSSA is a private, non-profit organization which derives ,its funds from school districts"by providing a building 1-plan inspection service. These monies are then to be used. to fund piiot experimental.projects in education.
to serving school districts. A brief description of the activities of each of these organizations follows.

## EDTECH

EDTECH was conceived; written., and originally funded through the Capital and the Marshallton School Districts in the State of, Delaware under the ESEA Title III Act.

The major goal of this project was to integrate the computerinto the everyday activities of education through a single statewide program. In addition to the sponsoring districts, cooperating agencies included the school districts of Wilmirgton, Newark, and Dickinson-McKean; the Delaware Department of Public Instruction; and the University of "Delaware. The project was funded at $\$ 150 ; 000$ for the 1966-67 school year.

During that summer, several activities were initiated.
"The first was a six-hour seminar tïtled Educational Däta Systems which was designed to acquaint administrators with the potential uses of the computer in education and * to emphasize administrative functions

A'similar seminar devoted to computer-assisted instruction (CAI) was offered. Participants investigated the
psychological implications of this type of instruction as well as an -introduction to writ-i-ng-GAI programs inÇour sewriter I (an IBM CAI language).

Another activity was the computer scheduling of three schools: Wilmington, Dover, and Christian High Schools.

In order to carry out the administrative functions during the pilot year; funds were budgeted to secure computer

- U. services. Through an agreement with the University of Delaware in which each agreed to cover $50 \%$ of the costs, an IBM 140I computer was installed in -August, 1966, at the University's Computing Center.

During the school year of 1966-67, a major activity of the project consisted of implementing administrative functions such as report card printing. Meetings were held for . administrators and teachers to acquaint them with these var iou functions. A minimal attempt was made during the year to pilot Computer Assisted Instruction (CAI) and Math Instruction Program (MIP) techniques. : However, since only $7 \%$ of the budget was devoted to this phase, these activities were minimal.

For various reasons, mainly political, the EDTECH project was not funded during the 1967-68 school year. Because
the second year's proposed budget was approximately $\$ 500,000$, this one project would have tied up all the . Title III funds in the state. This was not popular with. those who were submitting other proposals. There was ${ }^{\circ}$ also a question about which district would assume the leadership role for the project.

The project was funded for a second year in April, 1968. This-caused an awkward financial situation in as much as the project's fiscal year wass not concurrent with the fiscal year of the rest of the state. The funding level. for the second year was approximately $\$ 225,000$, less than half the amount originaliy.requested. Major cuts were. made in the daministrative application aspects of the project. The net result was a project which was $20 \%$ devoted to administrative functions of the cocmputer and $80 \%$ devoted to MIP and CAI.

The summer's activities included many seminars conducted through the University of Delaware to acquaint and train teachers and administrators in various aspects. of the computer in education. The course originally taught relating to the administrative aspects was repeated. In cooperation with DSAA, math and science teachers were
trained in writing Fortran programs and in the use of terminals: Non-math-oriented teachers received training in writing, basic programs, in the use of simulations, and in terminal operations. Still other teachers were being .instructed in CAI and were writing programs which would eventually be used on the Philadelphia system, with which a cooperative venture had been established. The majority of the teachers trained were from the Newark, Marshaliton, and Capital School Districts.

During the 1968-69 school year, three major activities were conducted. The first, called COMDET, was a joint venture between EDTECH and IBM in which, touch-tone telephones were used to enable fifth grade students to interact with a computer for mathematics drill and practice. Thematerials used were adapted from the work of Dr. Patrick Suppes of Stanford University. The telephones, 12 each, were located in three-elementafy sehols
Students would dial the computer which wăs located in
Yorktown Heights, New York. After recognizing the student, Che computer would verbally present a series of drill. problems, the level of which was based on the student."s previous successes or failures. The computer had a limited vocabulary, but it was sufficient to present problems
and respond to students. . The computer recorded the student's results and supplied the teacher with a daily summary. A statistical study showed no significant difference between this method and the traditional paper and pencil dri.ll and practice method employed by control groups.

The second major activity involved three middle schools. using computer-assisted instruction in reading. Two tele Eype terminais ang one CRT terminal with a light pen response were utilized. Although the program was essentially adapted from the one used in the Philadelphia School system, some locally written material was also used. The third majorictivity was called the Math Instruction Program (MIP). Under this phase, each high school in Newark (2) and Dover (1) was equipped with a terminal for
 ways: through formal computer education courses; through informal courses before and after school; and through the existing math and science courses. Compuéer timé was purchased from the Philco Ford Company, Valley Forgé, Pennsylvạina, and the Computer Sciences Corporation, Bala Cynwyd, Pennsylvania. As the utilization of the on-line
terminal incréased, additional equipment was added. The first configuration included one on-line teletype terminal, thres off-line telesty pes for tape preparation, and one Demex card.reader attached to the teletype for card input. (Cärd' preparation could be carried out on key punches. located in the business department ofach school'.)

Under MIP, a portable teletype was available for time-sharing in the middle schools. For periods from two to four weeks". each, the middle schools had the terminal avaiflable for computer instruction: Such instruction was directed toward the goal of increasing the students' (and the teachers') computer literacy under the MIP concept: .
The funding for the tḥ̛ird year was drastically reduced from that of the second year to $\$ 50,000$. Again, state Ievel politics played a significant rode in the amount finally granted:

The only activity, conducted during the summer of 1969, and the follawing school year was devoted to MIP. Ansingle* terminal was supplied to each of the three high schools. The time-sharing service was provided by an IBM 1130 computer housed at. the University of Delaware and funded jointly by EDTECH and DSAA. During this year, the two
projects conducted essentially the same activities, sharing costs and personnel alike. After the sophistication of the equipment utilized, the previous year, the three EDTECH high schools were generally dissatisfied with the sęrvice. Since it was, their first time-sharing experience, however, the schools sponsored through the DSAA project were generally satisfied. The EDTECH project officially was terminated in June, 1970.

## DSAA and:Project DELTA

-The original DSAA project. stafted in the summer of 1966. It was designed to train high school mathematics and .science teacherseto teach computer programming to two or three high-ability seniors in each school during. the 1966-67 school year. Diring the first year; the project was limited to eight public and private high schools located in New Castle County, Delaware.

The teachers chosen to participate attended a summer workshopi in programming at the University of Delaware. The language taught was Fortran, and the machine used was" an IBM $1620^{\circ}$ housed at the University of Delaware. Participating teachers had direct access to the conputer.

During the school year, the teachers instructed their $\because$ : students before or after school. "On alternate Saturdays they accompanied their students to the University of Delaware's computing center. 0 . these days, the students had the opportunity to run the programs they had writtent turing the previous-two weeks. In-order to give the students maximum "hands on" computer time on the 1620 , key punches were provided in each/school for card preparation. The teachers were reimbursed for their time and the cost for computer time and key punches was absorbed by DSAA.

During the 1967-68 year, the project continued much the seme as it had the first year. Contact was established. between DSAA and EDTECH about the possibility of combining efforts shöuld the EDTECH project be' refunded.

During :the summer of 1968, DSAA sponsored the training of additional teachers to expand their project. The training was conducted in cooperation with the EDTECH project. Furthermore the goals were revised to reflect more student involvement during the school year. Teachers' were now encouraged to involve a class of students instead of merely the brightest two or three. "The result was that the DSAA project and the EDTECH project
were now operating along similar lines in the area of MIT.

The next. school year's activities proceeded as in the previous year, but with increased student involvement, reflecting the change in philosophy. Plans were finalized - for the joint funding of the IBM 1130 time-sharíng system with the EDTECH project for the 1969-79 school year, wi, th the result chat DSAA's activities- were essentially the same as EDTECH's.

During. 1970-71, DSAA continued to grant minimal support to schools to provide time-sharing to high schools. This service was supplied through the University of Delaware's expanded computer center utilizing a Burroughs B5500: However, this arrangement proved less than satisfactory. Plans were formulated by DSAA from which the project known as Delaware's Total Approach to Computer Knowledge. (DELTA) emerged. A project director was employed on a. half-time basis; the other half of his time was spent working for the Data Information Center fồr Education (DICE): This sharing arrangement continued through the 1974-72 school year. In succeeding years, a full-cime director has been employed.

For the spring of 1971, a. Digital Equ'ipment Corporation (DEC) PDP8/L was installed as an interim machine for the schools to use, for time-sharing. In 2971-72, the PDP8/L was replaced by a PDP11/20. During this period, the machines were housed at DICE. In $1.9 \mathcal{j}_{0}$, the project moyed to the University of Delaware, campus to facilities. located in the College of Engineering. (It is interesting to note that they remain as a separate entity from the University oí Delaware Computer Center.) In 1973, a PDP11/45 was installed to complement the PDP11/20. Currently," a PDP10 j.s being installed for the 1975-76 schoöl yeay.

These machines were purchased by DSAA with financial support for operations received from. the participating schools: Each school pays a flat rate which covers the teletype terminal, telephone charges, and computer service. "Over the years, the school rate has been increasing to facilitiate their gradual assumption of the total operating costs.

According to Project DELTA literature, its announced goals were to supply time-sharing services for high schools in Delaware; to break the prejudice that computer knowledge is for "math-oriented students;" to expiore how
computer knowledge could become a learnable or a teachable concept; and to make clear to teachers the difference between CAI and computer knowledge.

- In addition to thêse, several new objectives were added in 1974: These are:
-To provide stability and continuity for att least three years -o that rational decisions. can be mace about computer education; - -
To work with the University of Delaware in the development of teaching methods courses in the many disciplines utilizing a computer;
To determine a feasible way whereby all students, K through 12, can eventual il gain computer knowledge;

To establish DELTA at the University as a research . installation to provide all schools with .a resource center constantly improving computertechnology and curricula for the instruction of students on HUC (How to Use the Computer) and to support teachers' ever-incireasing knowledge and interest in computer utilization .and applićatións.
'In addition to offering timè-sharing to teach programming; DELTA hás an extensive program library available and various simulation packages including the Huntington Project materitus. A guidance package taken from the Dartmouth Project (EXPRESS) ${ }^{*}$ data base has beemoffered, but this is being replaced by package marketed by - Time Share Corporation.
, Seventeen schools were"originally affiliated with DELTA in 197. Currently, about $50 \%$ of the high schools in the State are affiliated with DELTA.

Plans are for, Project DELTA to be funded for three more yëars by DSAA, wịth a gradual phasing out of their support as the schocls assume a.greater proportion of the operating costs:

## DICE

The Data Information Center for Education (DICE) iss â data processing' instal lation which was formed by a consortium of schoci districts in 1965. Previous to 1965, several districts maintained their own punch card. shops. For the first two yéars; DICE continued as a.punch . card shop and ititized the EDTECH sponsored computer in 1966-67.

Originally, three school distrïcts, iNewark, Marshallcon, and Dickinson-McKean, were supporting the system. Over che years other school districts have joined this consortium. At present, seven school districts serving approximately 50,000 students are full-member districts.

In 1967-68, DICE installed an IBM 1401 4K card system.

This machine was supplemented by purchasing time on larger machines as needed for functions such as scheduling. In July, 1973, the 1401 system was replaced with an IBM 360 Model 22 computer.

Initially, •DICE provided business and student accounting functions. In 1966, prescheduling data preparation services were provided to the schoois using external computer scheduling, packages. For instance, two high ${ }^{-}$ schools, Dickinson High School and McKean High School, started using the Stanford 4-S Program in 1966. DICE prepared the necessary cards for their scheduling runs. This resulted in a savings to them when they were actually sent to Stanford for their scheduling run. For the schools who had a more traditional schedule, the IBM 360 scheduler ©package was utilized. (Thís package has bèen modified extensively to reflect local needs and to utilize the DİCE computer.) Currently, ..' the IBM EPIC Socrates Package is being utilired on the DICE machine.

In 1971, test scoring and analysis, were added as regular services. For the first two years, the analysis was conducted on a contract basịs by DELTA. In 1973, test
scoring became an in-house function utilizing the IBM EPIC Fast Package.' Extensive modifications to the package were made to reflect local needs.

Over the years, DICE has remainied devoted to serving the administrative needs of the school districts, preferring to leave the educational computer applications to others.

## ${ }^{\text {Newark District Invclvement }}$

Through the years, the Newark District involvement in computer applications and computer education: həs been extensive. The District has contributed persennel and space to each of the three projects previously discussed.

Currently, all business functions, student accounting including secondary report cards, and test scoring are computerized through the services of DICE. The Newark District has had extensive influence on the addition of services by DICE since it was one; of the.original members of the consortium and because it is the largest District in the State.

Through DSAA and EDTECH, many teachers were trained in o programmif techniques and the utilization of computers in the instr ctional process. Time-sharing facilities
. which continue to be supported in the secondary schools are utilized primarily t'y mathematics and science teachers for teaching computer programming. However, some science. and social studies teachers are using simulation packages as an integral part of their instructional program.

Continupus support to computer-related activities has been given by the Newark District administration. The use of the computer for administrative functions has been firmly established, but the degree of instructional utilization has fluctuated. However, in 1974, the opportunity to instial 1 -house equipment in the District's newest - high school became a reality. An outgrowth of this hardward acquisition was this practicum, resulting in a conmitment to establish a complete computer education program in the high schools of the Newark District.

In summary, the preceeding is by no means a-complete history. of organizations and eventis affecting computer education in the State of Delaware and the Newark School District. In fact, the purpose of this historical development is merely to éstablish the level of computer utilizotion at the start of this practicum. Some of the recent activities have been mentiqned and, where necessary, will be discussed in greater detail.

THE-DEVELOPMENT OF GOALS AND OBJECTIVES AND A LONG-RANGE PLAN FOR IMPLEMENTATION

The first major. phase undertaken in this project was the development of are of preliminary goals and objectives and a long-range Distŕrict plan for computer education. Initial planning called for the development of each of these documents by separate committees. However, the two tasks appeared to be so completely interfelated that one committee divided into two subcommittees was formed to accomplish both tasks concurrently.

## Computer Education Workshop, Phase I, is Formed

For obvious' reasons, meetings held at the conclusion of the school day are seldom productive. Thus, a proposal (Appendix - Al) wa's submitted to the Newark School District for the purpose of conducting a workshop for the committee during school hours., The site chosen was Glasgow High School. Eollowing approval of the pròposal, potential participants were identified and invited to the workshop. Concurrentiy, a second proposal (Appendix - A2) for a summer workshop was submitted for the purpose, of preparing a formal computer education curriculum guide for the District.

In addition to insuring that committee members would be fresh and alert, holding, the meetings during the school' day enabled other interested staff members to participate. Also, the committee members could solicit student input immediately when it was needed. In all, four sessions were held during February, March, and April, 1975. Each was ${ }^{\text {a }}$ full day session. $\qquad$
The comimittee consisted of twelve regular members. Included were four members of the Christiana High School staff, three members of the Newark High School staff,** four members of the Glasgow High School staff, and the District Supervísor of Mathematics. Departments. represented were business educaţion, mathematiçs, science, and social studies. Others in attendance at various meetings included district administrators, a University of Delaware professor, and the principal-elect of the district vocational school (Appendix - A3):

Prior to the first full day session, participants were asked to bring any materials which might be pertinent to the.tasks of the committee. Letters requ'esting information relating to computer education at the secondary lével were sent to schools and organizations
which had been identified as having some type of jnvolvement with computer-related activities. The'se. potential sources were identified from ERIC documents and bibliographies included in various articles and books. A sample letter, a sample response, and a list of the organizations contacted are included in Appendix A4. The response to these inquiries was disappointing. Many schools and organizations have implemented computer education programs at the secondary level, but the vast, majority do not have formal goals and objectives established. However, during the course of the workshop, additional letters of inquiry wère sent as additional , sources were identified, in the hope that a welldefined set of goals and objectives could be obtained. None, were received. Thus, for practizal purposes, the committee started at point zero.

The first full day meeting was spent discussing the possible directions the District might take to establish a workable computer education program, to indicate what hardware needs ${ }^{\circ}$ would be necessary to carry out sucel a pregram, and to determine how the program would affect the curriculum as à whole. Subsequent meetings were devoted to discussing the specific needs of students and teachers
and to formulating the long-range District plan and a preliminary set of goals and objectives. A copy of each of these is included in Appendix. A5. In addition, the problem of incorporatíng the se goals and objectives into the curriculum was considered.

At the conclusion of the workshop, the preliminary goals and objectives produced were distributed (Appendix $=A 6$ ) to approximately 60 secondary teachers for their reactịn and comments. : long-range plan-(Appendix - A7) was included as part of the yeariy report on computer activities and was forwarded to the Deputy Superintendent for his information and possible action.

All materials gathered; the preliminary goals and objectives, and the comments received from the teachers were subsequently used as input for the summer workshop.

Computer Education Workshop,' Phase II, Proceeds on Schedule The summer workshop was held during June and Juíy, 1975, and was three weeks in duration. Many of the staff members who served on the original committee participated in the summer workshop: (See Appendix - A8) It was felt that this would help make the task at hand easier. since
less time would be required for orienting people to what had taken place during the first workshop.

In order to facilitate the writing of the final curriculum guide, three members of the workshop worked full-time while the remainder participated only in the afternoons. The three working in the morning's devoted, their time to the "hard" writing; the $\mathrm{fu}^{\text {T}}$ ". group reacted to these efforts in the afternoons. In this way, more people-were available for brainstorming and reactions to urafts which were generated at a'faster rate by fewer people. The composition of the summer workshop was similar to that of the spring workshop.. The total numbër of participants was less, but the tọame departments were represented. Concurrent with the summer workshop, two ather activíties wére held" a.t Glasgow High School. One "was a one-week. - teacher training workshop and the second was a sevenweek summer school class for high school students. Each of these activities will be disc̊us sed later் in greater - detail: However, it is necessary to mention them at this point because input for the curriculum guide was solicited from the students and teachers participating in them.

By the conclusion of the workshop, a curriculum güide for
the Đistrict had been prepared. (See Appendix - A9) The guide is student-oriented, and it attempts to overcome the pérvasive idea that computer education is the sole - responsibility of the mathematics teachers.

In addition to goals and objectives, two appendices were included in the guide. The first is a list of films. which can be used to meet some of the objectives in the - guide. The second is a list of computer programs available in the District.

Approximately 200 'copies of the givide have been prepared and have been circulated to teachers in the secondary schools. The guide is called an interim draft and will be revised as nécessary after the 19i5-7.6 school year: However, to date it has been "ell received by the teachers and should serve the purpose for which it was written

## STAFF DEVELOPMENT

 The seeqnd major phase of this projeçt was directed tỡward staff development. A major objective of thisr phase was to introduce as many of the secondary teachers as ppssible to the computer. To accomplish this, several school and District level workshops were conducted. In addition, Omempistrict-staff member was sent to a workshop conducted by Wang laboraturies, Inc.

Staff Member Attends In-Depth Training; Session
With the installation of the computer system at Glasgow High School in the fall of 1974, it quickly became evident that there was a need for at least one person to have in-depth training on the system. This was especially crucial if the hardware was to be used effectively =ithin the school. Thus, when funds became available, (Appendix Bl) one person, Mr. Darrell Pelley, Mathematics Department Chairmañ of Glasgow High School, was chosen to attend a five-day in-depth training school at Wang Laboratories, löcated in Tewksbury, Massachusetts. The reasons for choosing. Mr. Pelley were his previous computer knowledge and his ability to work constructively with other staff members.

Mr. Pelley attended the school during the week of February 3,:1975. This particular week was chosen in \& order thetre his training would be accomplished prior to the first District-wide inṣervice day. This was necessary because he was scheduled to conduct a workshop on computer education on those days.

Mr. Pelley's reaction to the school was extremely positive.

- He related that the class size was limited to eight participants. Also, an attempt was mầde to create a group with different backgrounds and varjed application interest areas. Thus, he was the only educator in his group and had an opportunity to interact with people involved in military, medical, industrial; and construction applications.
, The training Mr. Pelley received was very valuable for 2. him personally. In addition, his expertise has beedn tapped. $\because$ by having him conduct workshops and by employing him-as a leader of the workshop which developed the final goals and objectives for the District. Thus, the funds (Appendix - B2') used to send him were consideread well spent, especially since similar hardware is being installed in the other high schools of the District for. the 1975-76 school year.


## Spring Compuiter Inservice Workshop Conducted

$\therefore$ Each year thee days during the second semester are designated as District-wide inservice days in the Vyewark School District for which the Office of'Instructional Services is responsible. In recent years, the trend has been to offer mini-courses for teachers designed to prgvide staff members with concrete experiences which can be later used in the performance of their jobs. Staff members are free either to choose any of the $\infty$ offerings provided by the District, or to submit an. independent proposal for consideration.

One such. course offered at the District level was designed to provide teachers with an exposure to computers in, general, and to equipment at Glasgow High School in particular. The workshop wes aimed at., but not limited to, the members of the Glasgow High School staff. Twenty-seven stäff members (Appendix - B3) elected to take the cợurise. "Although some elementary and middle school. teachers participated, the majority of the participants were from the high schoolsoof the District.
Tho sets of objectives ${ }^{7}$ (Appendix - B4) were identified: The first set. for participants who knew little or nothing
about the computers and the BASIC language, and a secondset for participants who: knew BASIC and were alréady familiar. 'with a computer system: .The participants were divided into these two groups, and the "beginners" were further subdivided. into groüps of three.

Following a short overview by the workshóp leader, the inscructional approach used for the "experts" was to turn them tqose on machine assisted by a staff member who had already mastered the machine. Half of the "beginners" se section, where they were given $a^{\text {ris }}$ short presentation of about 15 minutes and then given an assign aent (from the assignment sheet Appendix - B5) $)_{8}$ on the hardware. The second half of the beginners were then given the same presentation followed by the "hands on" assignment. In this wây, the lecture groups and the "hands on". groups were rotated in order that the amount of knowledee to be handled-was not excessive and to insure that immediate reinforcement via the hardware was accomplished.

Throughout the three-day workshop, an informal atmosphere was mainţaiņed. Thè advantages" and disadvantages. of thé Glasgow hardware were pointed. out to the participants,
and efforts were made to provide the participants with examples of applications of the computer within their existing progräms.

In summary, the participants rated the workshop extremely s. SUccessful: This was significant when considering the fact that on the morning of the first day of the workshop, ; a , vote was taken which authorized a state-wide strike, and teachers were highly agitated:

0

## Informational Meetings Held

Following the District inservige workshop, a series of two-hour informational works hops were held for District personnel. Invitations (Appendix' - B6) were. sent to the secondary schools in the District inviting staff members to 'see and try the computer, facilities at Glasgow High School.

Three such meetings were held, with approximately $/$ twenty staff members attending each. The participants pere given a short presentation about the equipment: and Glasgow High School's plans for utilizing, it. Following, the presentation; the participants were given an ópportunity to interact with the hardware, using canned similation and game programs.

The purposes for holding these meetings were to acquaint District personnel with ehe equipment and also to instill a more positive feeling about the use of computers in education. It appeared that these purposés were achieved, since many participants stayed for longer than two hours interacting with the equipinent and discussing its possible applications.

## Summer Computer Workshop Cönducted

A proposal (Appendix - B7) for a stimmer workshop for training teachers in the use of computers was quickly submitted in April, 1975, when it became apparent that the installation of computer systems in Christiana High and Newark High Schools was a distinct possibility. Following approval of the workshop proposal in May, 1975, a memorandum (Appendix - B8) was sent to the principals of the three District high schools requesting that they select ten partincipanits for the workshop. . They were encouraged, to send teachers representing as many departments as possible, and in particular, the business education department.

Following receipt of the names of potential participants from the principals, letters of invitation (Appendix - B9)
were sent. In all, thirty teachers representing many -departments, attended the workshóp.. (See Appendix - B10) Departments represented were English, social studies, science, business education, mathematics, indústrial arts, and physical education.

The workshop which was held during the week of June 23, 1975, was similar in format to that of the spring workshop. Activities (Appendix - Bll) inciluded a brief survey of the historical development of computers and the growth of the historical development (educationai and administrative) in the Newark School District. The participants were then given instructions on the use of the Wang 22.00 computer. Following machine familiarization, the participants were introduced to the BASIC computer language and were given an, opportunity to write programs. Finally, the participants were made aware of the canned programs available and were given an opportunity to try several for their reactions.

Throughout, the workshop was conducted informally. As in the spring workshop, the usual method of instruction was for half the participants to be working independently on the machines while the instructor was working more formally
with the remaining halif. In this way, hands.on time was'maximized.

In general, the workshop appeared to meet its objectives. The participants rated the leader excellent, and except for the length (too short) and the number of participants (too many), they rated the workshop above average.

## School Level Wurkshops Conducted

-Two related school-level workshops were also conducted during August, 1975. The first was a one-week workshop (Appendix - B12) held by the mathematics staff of Glasgow High School for the purpose of finalizing their 12th grade mathematics program. In addition, two of their objectives were to finalize the 'plans for the Computers I and Computers II courses and to write computer programs for use in mathematics courses,

The second workshop was a óne-week workshop (Appendix - B13) held by the mathematics staff of Christiana High School for the purpose of introducing the mathematics staff to the computer hardware which was installed in September, 1975. Activities included instruction on this. hardware and identifying and writing canned programs which can be, ب́sed in the current mathematics "classes.


Each of these workshops was planned to supplement work ' . being done at the District level on computer education.
$-\frac{1}{2}$

- $\rightarrow$.



## Glasgow High School Mini-Courses Held

Although teacher invọlvement is a'necessary condition, it is not sufficient for successfully implementing computer education in the district. A second necessary condition is active student involvement. Thus, in order to make students aware of the capabilities of the computer. system and the exciting activities that can be carried out with it, several mini-courses were conducted during the third quarter of the $1974-75$ school year Glasgow High School. Originally, the plan was to offer two such courses, but the student. demand and the structure of the existing master schedule necessitated that six such -courses be formed.

In order to generate student interest in the mini-courses", several methods were utilized. These included: , placing an article $i n$ the student newspaper (Appendix -C1); presenting daily announcements over the school intercom; and making announcements by the mathematics teachers to each of their classes. Efforts were made to encourage students of all levels to participate, and each student who indicated an interest was invited to attend the classes.
-. Since the course was computer-oriented,' student invitations were printed on the computer (Appendix - C2) .. Thus, when the classes were actually initiated, forty-three students (Appendix - C3) representing all grade levels and all ability levels were enrolled.

Classes for instruction consisted of the students meeting with the District Supervisor of Mathematics on a formal basis one, two, or three periods a week. The students then spent several additional periods per week working independently. The instructor (the Supervisor of, Mathematics) was available on Tuesday and Friday mornings. and on Wednesday afternoons for this formal instruction. During the periods when the instructor was not available, several members of the mathematics department donated their time to assist the students. Even with this additional help, there were certain periods when there was no adult supervision. However, the students were still encouraged, to utilize the equipment during these periods if they were free. It was gratifying to note that no acts of vandalism took place during the unsupervised time.

Topics covered during the formal instructional periods included: machine operation, including use of the machine in the immediaten mode: tape loading, and execution of canned programs; element of the BASIC language; diagnosing

Otำ Append': - C4 for sample student materials): For the students who quickly masters these topics, individual. programing problems were assigned. These problems were chosen on the basis of the students current curriculum. For instance, a business eam cation student, world be assigned a problem to write a program which would generate compound interest while $\epsilon$ allege reparatory student would be assigned a problem to write a progren which $\therefore$ Mid find the factors of a gradratir equation.
valuation of students" wasemducten on an individual , isis. Since no credit was being warded, formal letter grates were not kept. Rather: a record of task complexion was compiled. Each student completed the competency $t$ risks in the presence of the insmetor when the student felt he was ready. "For examine, wien a student mastered the handling of the cassette tapes, he requested a competency checkout. He would then perform the tasks on the Tape Cassette Check-art List Appendix - C5) in a random order designated $3 ;$ insmactor. If the silent did not successfully complete the rask, no failure was recorded. Similar check-our lists (Appendix - C6) were used for other tasks. Only successinl completions were recorded.

In addition to the students who formally signed up for this course, many others participated informally. Students who dropped in to see what was going on were encouraged to play a game on the computer or use a canned program. The formal participants were eager to assist these drop-ins by helping them use the games and canned programs and by explaining what they were currently working on. (See Appendix - $C 7$ for examples of studentgenerated programs) Many of these drop-ins were business education students who were encouraged to participate in this manner by their, teachers.

Although the courses were scheduled only for the third quarter, many students requested that the program be continued into the fourth quarter. However , because of time constraints, the instructor was available'on Tuesdays only. Although less formal instruction was now ${ }^{\circ}$ available, the program continued because there were.now many students knowledgeable enough to answer the questions that the new participants would raise.

Overall, the program was considered a. successful one. Students signed up knowing they would not receivè credit. They continued to participate even though it meant
giving up their free time. Further, many of these students elected to take the credit courses established for the $1975-76$ school year.

## Extended Year Program Computer Course Established

Each summer, the Newark School District conducts an extended-year program as part of the regular summer school program. The courses included in this program are designed to give students experiences' they could not obtain during the regular school year." The courses are free and credit is given for the ones designated high school level.

For the summer of 1974, an attempt was made to initiate a course called "Mathematics Through the Computer." For several reasons (the main one being lack of publicity) the course did not "make." However, since it was felt that the course had merit, plans were made to implement a similar one in the summer of 1975:
-In 1974, the only computer service was through a single terminal. "Thus., it was necessary to revise the course guide for the summer of 1975, to reflect the installation of the in-house equipment. The revision of the course
guide (Appendix - C8) was contracted to the potential instructor, Mr. Carl Jacobson, of Glàsgow High School. In addition to a brief description (Appendix - C9) in the summer school catalog, áflyer (Appendix - C10) was distributed to the secondary schools of the District to publicize the course.

Because, the majority of the summer school courses are Conducted at Newark High School; a problem relating to the transporting of students arose. This problem was solved by establishing a shuttle run from Newark'High School' to supplement the regular bus routes. However, the length of 'the course then needed to be'extended to seven weeks to make up the time lost for transporting students in order that a credit could be awarded. Thus, the course met for seven weeks instead of the regular six weekš.

Initially, twelve students (Appendix - Cll) enrolled in the summer course, eleven boys and one girl. Ten students attend Glasgow High School and two attend Newark High -School. Nine of the twelve completed the course satisfactorily. Several other students .ho originally indicated an interest in the course gave as their reasons
for not enrolling the transportation problem and the need for extending the class to seven weeks. There was also a "communication problem in that one high school (Christiana) and the four District middlie schools did not receive the special flyers describing the course. Thus, a sizeable potential pcpúlation wàs mìssed.

Four of the students who completed the course are currently. in eleventh grade while the remaining five are tenth graders's. Three leveīs of students were represented: honors level; regular college preparatory level; and technical track level. On the basis of his- experiences in the summer course, one student ha's changed his math coutse from the technical level (Elementary Geometry) to the colleg pieparatory level (Geometry I).

Many materials were used in the course. These included technical manuals supplied by Wane Laboratories, a text by Neal Golden (Computer Programming in the BASIC Ľanguage), a text by Rudd Crawford and David Copp (Introduction to Computer Programming), and a wide array of regular mathematics textbooks.

Because of the limited enrollment and: the varied backgrounds of the students an individualized instructional appripach
'was desirable and, in fact, necessary. Following an introduction to the hardware and"minimal instruction ó品 elementary computer programing, each student was assigned specific programs to watite. The student's program assignment was chosen on'the basis of his mathematical background. However, intstead of choosing topics which had been covered in his previcus course,the topics were chosen from the course he would be entering'. Thus, the student was not oniy responsible for a programming assignment, he was also responsible fordetermining and then learning the necessary mathematics netded to complete the program:" By using this approach, the student assuned the role of programmer annalyst as a opposed to being mèrely a programmer.

The benefits of this approach were three-fold. The student had the oportunity not only to learn and practice '.programming. skills, but to leaţñ additional mathematical content. The third benefit was the skill that the students "developed concerning the use of mathematics'textboóks as referenices. 'Initially, the studentés were extremely. reluctant to investigate a mathematical topic on their $\because$ Own . However, as the course progressed, the students became less dependent upon the teacher and.relied more
heavily on their own ability to interpret material found in the texts.

Because credit was offered for the course, a more formal evaluation prociedure was nécessary. Students were.given grades based on the number and degree of sophistication of the prograńs written. (See Appendix $: \dot{C} 12$ for a list of 'the more sophisticated programs generated by' the students.) In addition, a-final exam was administered which čovered all aspects of programming. Finál grades; awarded consisted of two A's, four" ${ }^{\circ}$ 's s: and three $\subset{ }^{\prime}$ s. It might have been expected that the grades would closely correspond with the level of the course which the studenc would be entering, but this was not necessarily the case There was a correspondence, but it was weak, at best.

Overall, the sunfiner course wás successful. At the end of the course the student exhibited a knowledge of programming skills which should be usefur to them in future years. Although the enrollment was somewhat disappointing, the course will be offered again next summer. Plaris, are being made to overcome the enrollment problems and, should the se successful, it is expected that many additional stuḍ̂ent́sw willi, tak'e advantáge of the benefits of the course.

RELATED ȦGTVITIES.

Before and during the course of this practicum, several ${ }^{\prime}$ activities took place whick bad a direct bearing on, or were an outgrowth Lf, the practhcum. Some were local in nature, while others have State-wide implications.

## State-Wide Council for Computer Education Formed

In 1973, a State-wide Council for Computer Education was formed by the State Supervisor of Mathematics (Appendix D1). The council consists of members from education, business, and industry and its purpose is to advise the State Department of Public Instruction on matters relating to computer education. This author has been a member of the council since its inception.

Each year, one of the recommendations of the council has been for State support for computer education. In 1975, this recommendation was adopted by the State Board and. included in the State budget; with the result that districts :could apply for matching funds for the 1975-76 school year. A total of $\$ 48,000$ was àrlocated by the Stafe for this purpose. These funds can be used for refminal rental, computer maintenance, or purchasing,
computer hardware. The amount budgeted for 1975-76 is minimal $\{\$ 1,500$ per high school, to be matched by the local district), but it is a step in the right direction. To date, the Newark School Dístrict has received State funds totaling $\$ 4,500$ (Appendix $=D 2$ ), and is scheduled to receive an additional $\$ 2,200$.

The council has also engaged in other activities. These include sponsoring informational meetings (Appendix - D3). and computer education courses at the University of Delaware, such as the one designed to acquaint mathematics Project.

## State-Wi\#e Computer Task Force Formed

A second State-wide effort in which this author is Involved is the State Computer Task Force which is charged with the respqnsioility of creating a State-wide plan fqr computer utilization in education. The task force initially met in July, 1975, and expects to complete 1 ts work by February, 1976, (Appendix - D4). The plan will encompass both educational and administrative uses of the computer. Many df the members of this task force are also members of the State Council for Computer Education; thus;
the task force will be generating a plan very much in line with the thoughts of the advisory conmittee.

## H. B. 509 Froposal Submitted

Shortly after this practicum was started, a conversation with the District Supervisor of Occupational and Vocational Edùcation precipitated a proposal (Appendix - D5) ' for llouse Bill 509 funds. Briefly, H.B. 509 provides State support for teachers, and operational funds for approved óccupational-vocational programs conducted in the comprehensive or vocational schools, grades 7-12. The proposal was submitted and initially rejected. However, after meeting with State officials, minox modifications were made, the project was resubmitted, and approval was granted in May, 1975.

The approval of this proposal at Level 3 funding means that three times the normal operating funds will be available to Glasgow High School for thein Computers I and Computers II courses.

Newark School Board Supports Computer Education
Another item of interest which has been an outgrowth of
this practicum is the complete support of the Newark School District Board of Education to computer education. On May 20, 1975, the Board unanimously pussed a motion (Appendix -. D6) to annend the budget by $\$ 80,000$ for the purpose of installing in-house computer equipment in the District's cther two high schools (Newark and Christiana), and to add a time-sharing terminal at Glasgow High Sçool, wirich only had in-house equipment.

The major presentation to gain support for this motion was made by a student at Glasgow High School. Supportive data were supplied by a teacher and the associate principal at Glasgow High School. Thus, through the unselfish efforts of the people at Glasgow High School, the two sister schools gained immensely.

After the approval of the budget amendment, bids (Appendix - D7) were solicited for computer systems for Newark and Christiana high Schools. The low bidder was Wang Laboratories, Inc. The bid was awarded to them by the Board in July, 1975, (Appendix - D8) and systems similar to the Glasgow in-house system were installed in September, 1975.

Concurrently,.time-sharing terminals were ordered
(Appendix ~ D9) for all three high schools for the 1975-76 school year; one each for Gla'sgow and Newark High Schools, and two for Christiana High School. The decision was made to place two at Christiana High School because of the physical nature of the plant. The school consists of two buildings, with the mathematics and guidance departments housed in one, and the science and social studies departments housed in the other. Placing an extra terminal at Christiana High School seemed to be the logical direction to take because of the heavy utilization " by the departments previously mentioned.

Computer service is supplied by Projećt DELTA's system on a twenty-four hour basis. In adidition to providing computer , time and a library of canned programs, for the first time this year, the system is províding a guidance package.supported by State funds. The guidance package is the one marketed by Time Share Corporation, and provides information on both college and. vocational choices open to students.

Heavy utilization of the guidance, package is expected in each of the three high schools: Guidance "counselors have been given instruction on how to use the package.

Each school has instituted a system utilizing student aides.: These aides assist other students who need help" accessing the package. . In this manner, the schools expect to acquaint each junior and senior with the system.

Mass utilization of the guidance package is now possible because of the installation of in-house computer equipment in each school.. This enables students who are learning programming to do their work on the in house machines, thus leaving the time-sharing terminal free for utilization of the special packages.

ACTIVITIES PLANNED FOR 197.5~76

Computer Offerings (1975-76)
For the 1975-76 school year, two courses, Computers I and Computers II, are being implemented at Glasgow High School. Computers I is a nineweek course, while Computers. II is an eighteen-week course. In addition, an independent study course, Computers III, will be implemented during the $1976-77$ school year.

Seventy-two students have enrolled in Computers $I$, while thirty-seven students have enrolled in Computers II. The majority of the students who elated these courses are juniors and seniors. • In future years, it is hoped that more freshmen and sophomores will be able to elect the courses. This will enable them to use the computerknowledge in subsequent'studies.

To insure that all bus in 3 ss students will have an exposure to computers,, a one-week block of the Typing I class will be devoted to the subject. This subject was chosen because it is the only class in which all business students are enrolled. It is anticipated that the same plan will be utilized at the sister high schools (Newark and Christian) either this year or next.

As schedules had already been established before the decision to install in-house equipment had been made, computel offerings at Newark and Christiana High Schools are limited to a single eightë̈n-week course in each school. This course is comparable to Computers II óffered at Glasgow High School. Eighteen students are enrolled at Christiana High School, and twenty-one students are enrolled at Newark High School. Plans are being made to expand these offerings for the 1976-77 school year, and the meeting of certain objectives in existing courses (especially social studies) will be accomplished during, the 1975-76 school year. In addition, both Newark High School and Christiana High Schooi are planning to offer Computers III (the independent study course) for a few students this year.

Thus, course offerings in computer education have been expanded at Glasgow High School for the 1975-76 school. year, and will be expanded at Christiana and Newark High Schools for the 1976-77 school year.

## A Night School Class is Planned

Plans have been formulated to offer an introductory computer education course in the Newark School District

Adult Evening School. The course will be offered during the spring of 1976, and will be open to anyone who is interested, including students who might not be able to:" schedule a computer course during the regular school day.

Because funds for computer time are no longer necessary, the tuition will be minimal. (I.t has tentatively been set at $\$ 16$ for the ten-week course.) The course can be conducted at any one of the District high schools.

## Computer-Related Activities are Planned for Inservice Days

 Several computer-related activities were planned for the . secondary half-day inservice sessions. The first was a school-wide program, held on October 21, 1975, at Glasgow High School, where the personnel of each department were shown the canned programs available and given an opportunity: to evaluate them. Informational meetings for the business education and social studies departments of Christiana and Newark High Schools were planned for November, 1975, and a "swap" session for all three"high schools is to be held in December; 1975. Additional sessions will be held as the need arises.
## EVALUATION

## Introduction

Because the overall goal of this practicum was to provide a curriculum in computer education for students, and thus utilize the existing computer system at Glasgow High School, the overall success of the implementation phase was to be evaiunted on the basis of the degree of student and teacher involvement in computer education at the school in September, 1975. However, as the practicum progressed, sufficient involy ment of students and teachers from Newark High School and Christiana High School has necessitated that data on their involvement also be included.

In addition an attempt was made at the completion of the practicum to...conduct a goal-free evaluation. That is, what was happening in computer education in the District when the practicum started was compared to what is. happening now.

Throughout the practicum, formative evaluations were carried out based on task completion, evaluation of workshops by participants, the evaluation of workshop
participants, and the evaluation cf student performance.

## Participants Evaluate Workshops.

Newark District policy dictates that participants are to be given the opportunity to evaluate inservice programs and workshops. Thus, at the conclusion of the computer education inservice courses, each participant was "asked to complete the District.'s Inservice and Workshop Opinion Survey. Using this form, participant's can rate the various aspects of the program on a one to five scale where one is low and five is high. In addition, they are asked to list any strengths and/or weaknesses they observed during the workshop.

Twenty of the twenty-seven participants in the spring 'computer inservice proǵram returned a completed form. The vast majority of the participants rated the eleven items on the form above average. That is, they were given a` foür or five rating. Comments listed under strengths of the workshop included the instructor's knowledge, and sufficient equipment for hands-on experiences. Comments noted under weaknesses included too many participants, and mixing "experts" with people. who. "know nothing."

Twenty-eight of the thirty participants of the summer workshop returned a completed form. The responses-were; similar to those obtained from the spring workshop. The majority, of the participants gave nearly all items on the survey sheet a rating of four or five. The single. lexception was the length of the vorkshop. A second item which was not rated as high by this group as the spring group was the one asking about "take home" plans $r_{0}$ : One $e^{\prime}$ possible reason for these lower ratin ses $^{\text {s }}$ was the composition of the classes. .. The spring class contained a significant number of mathematit feachers while the summer class did not.

In summary, the overall impression of the workshops by the participants was highly satisfactory, and plans are being made to provide similar offerings during the 1975-76 school year. The complete results of these surveys are contained in Appendix - El.

## Workshop Participants are Evaluated

During each works.iop, each participant was tèsted to determine his knowledge of hardware utilization and of the BASIC computer language. .Testing was conducted by having each participant demonstrate to the instructor, or his
designee (usually a participant who had lready mastered the skill), his ability to carry out the task. The following is a list of the țasks and the percentage of participants completing each task satisfactorily.

|  | Task | Spring | eted Summ |
| :---: | :---: | :---: | :---: |
|  | Initialize the computer* | 100\% | 100\% |
| . | Use the machine in the imnediate mode | $100 \%{ }^{\circ}$ | $100 \%$ |
| 3. | Load a program, from tape | 100\% | 10\%\% |
| 4. | Save a program on tape | 100\% | 100\% |
| 5. | Write a simple prográm without branching | 100\% | $\text { - } 100 \%$ |
| 6. | Write a simple program with unconditional branching | 100\% ${ }^{\text {\% }}$ | 1400\% |
| 7. | Write a simple program with conditional branching | 100\% | 100\% |
| 8. | Writè a simple program with a loop | 100\% | 100\% |
| 9 | Write "a program which utilizes array variables | $78 \%$ | 63\% |
|  | Write a program' whàich utịlizes string variables | . $52 \%$ | 43\% |
|  | Write a program which uitilizes hex codes |  | $33 \%$ |

Thus, based on the observations made by the instyuctor, every participant was äble to initialize the computer, use
.it in the ${ }^{\text {immediate }}$ mode, load computer programs from. 'tape, saye computer programs on tape, and succes'sfully. write simple p.rograms in "BASIC at the conclusion of the, workshop. In addition, many participants could use more complex commands; and were sțarting to prepare a computer program which could be üsed iñ their own courses. In short $t=$ the majority of the participants met the objectives of the workshop.

## Composition of Workshop Participation is Evaluated

One of the implied goals of:this practicum was to involve as many people as possible on a District-wide basis. To determine if this goal was accomplished, background data
 \#3 summarize this effort.

Composition of Wolrishops by Sex
Table 非

## Workshop

Spring Computer Inservice Workshop
Summer Computer Workshop Computer Education Workshop - Phase I Computer Educáion Workshop - Phase II Glasgow High School Workshop
Çhriscianan H igh School Workshop rotals

| $M$ | $\%$ | $F$ | $\%$ |
| ---: | ---: | ---: | ---: |
| 16 | 59 | 11 | 41 |
| 18 | 60 | 12 | .40 |
| 10 | $83!$ | 2 | 17 |
| 11 | 92 | 1 | 8 |
| 6 | 75 | 2 | 25 |
| 5 | $\frac{62}{}$ | 3 | 37 |
| 66 | 68 | 31 | 32 |

Compo-ition of Workshops by School


*Includes participants from middle schools, élementary
$\underset{ }{*}$ schools., Central Administration, and Sterck School.

Composition of Workshops by' Subject Area


Table 排3

## Workshop

Spring Computer
Inservice
Summer Computer
Computer Education Phase I

Computer Education Phase II

Glasgow High School.
Christian High School TOTALS

*Includes , hysical education, administration, industrial arts, elementary education, and foreign language.

- It can be seen from the preceding tables that members
from all three high schools were involved in the training workshops and in the preparation of the curriculum guide.
Further, it can be seen that, a significant number of
persons representing areas other than mathematics participated. The number of females participating was also encouraging.

Success was not achieved in the attempts made. to involve
the members of the Hodgson Vocatiopal-Technical High School. Nuis was probably due to the fact that only two staff members (principal and curriculum coordinator) have been appointed to date. With construction problems foremost in their minds, they have little time . available to devote to matters pertaining to curriculum. Contact has been maintained, and several teachers who participated in the development of the District Computer Curriculum Guide will be involved when Hodgson's computer curriculum is es+ablished.

Thus, while there is still a tendency for computer education activities to be dominated by males and mathematics teachers (especially in the development of the computer curriculum guide), inroads have been made to dispel the thinking that computers should be controlled by males and are only for the mathematics department.

A Follow. Up Survey of Workshop Participants is Conducted In order to determine if the computer education workshops made an impact on the participants, a survey was conducted in October, 1975. Each person who.attended one of the workshops and who has access to an in-house. computer was asked to complete the follow-up survey form. Sixty-four
forms were sent out and fifty-seven (eighty-nine percent) were returned.

Questions inctuded in the survey were generally directed toward personal knowledge, instructional applications, and other applications. The majority of the participants who returned the survey indicated they thought they could operate the in-house equipment, explain to another person how to operate the equipment, and write a simple program in BASIC; however, only about fifty percent have. actually done so.

In the area of instructional applications, tharty-three percent of the respondents indicated one or more classroom applications were being used. An additional thirty-four percent indicated they were planning to make use of computer applinations in the future. Thus, sixtyseven percent have made use, or are planing to make use, of computer applications in their classroom. In addition, sixty-five per, nt indicated they have discussed computers and their uses in their classrooms, and an alditional twenty-four percent indicated they plan to do so.
.. רe number of people indicating they developed computer
applications in non-instructional areas was the same as the number indicating instructional uses; however, the applications were less varied, with the majority being grading applications.

In summary, sixty-five percent of the respondents discussed computers in their classrooms; thirty-three percent have implemented computer applications in their classrooms; and thirty-three percent tave developed noninstructional uses. If the respondents who have indicated they are planning to discuss or use computers follow through, a significant number of workshop participants will have utilized information gained from one of the workshops. (See Appendix - E2 for a summary of survey results.)

## Students in Mini=Courses are Evaluated

As was done with teachers who participated in workshops, students who participated in the mini-course were tested to determine their knowledge of hardware utilization and of the BASIC computer language...Testing was carried out by having: each student demonstrate his ability to carry out the task. "The following is.a list of the task and the number and percentage of participants completing each tásk sațisfactorily.
Task1. Initialize the computer
Number ..... $\%$
43 ..... $100 \%$
2. Use the machine in the immediate mode ..... 43 ..... 100\%
3. Load a program from tape ..... 43 ..... 10.0\%
4. save a program on tape ..... 42 ..... 98\%
5. Write a simple program without branching ..... 42 ..... 98\%
6. Write a simple program with unconditional branching. ..... 38 ..... 88\%
7. Write a simple program with conditional branching ..... 29 ..... 67\%
8. Write a simple program with a loop ..... 36 ..... 34\%
9. Write a program which utilizes array variables ..... 12 ..... $28 \%$
10. Write a program which utilizes string variables ..... 14. ..... $33 \%$
11. Write a program which utilizes hex codes ..... 19 ..... $44 \%$
As can be seen from the list., all students demonstrated the ability to initialize the computer, use it in the immediate mode, and load specific programs. The majority of the students also demonstrated the ability to write :.... and execute simple programs.
Students were less successful when the more sophisticated commands were presented; however, this was probably due
to their inadequate mathematical background: This was particularly noticeable in their inability to easily master the ideas behind array variables. More success was seen with the use of hex. codes. The novelty of being able to control the curser on the cathode ray screen may possibly have contributed to this.

Overall; however, the mini-courses served their initial purposes. Students were made aware of the capabilities of the computer system, and'they demonstrated the skilis necessary to utilize it.

## A Follow-Up Student Survey is Conducted

 Students who participated in the mini-courses, and those who completed the summer course, were surveyed in Octber, 1975, to determine if they were utilizing the knowledge acquired. The survey was conducted by inspecting the class lists for Computers I and Computers II at Glasgow High School to see how many had signed up for a Eormal course, talking with the students, and contacting staff members who might be utilizing their services.The class lists indicated that twelve of the forty three students had signed up for Computers I and/or Computers II:

Four had signed up for Computers I only; two had signed up for both courses; and six had signed up for Computers II. In addition, nine students have indicated they intend to sign up for one of the courses next year. One student who participated in the mini-course also completed the summer course. Thus, thirteen students, or thirty percent of the mini-course participants, are participating in formal courses, and twenty-one percent have indicated they plan to do so in; the future.

Three summer participants and two mini-course participants are acting as student aides to the guidance counselors responsible for introducing students to the guidance package on the time-sharing terminal. Two of the summer participants are at Newark High School, while the two Glasgow High School mini-course participants are also among those who have signed up for formal courses this year.

Five students (two who were previously included as participating in formal course this year) are, currently working on a project for two social studies teachers in which they are attempting to analyze data for an economics class. Three others are preparing demonstration programs. For four science teachers who are team teaching an
introdirctory science survey course. In addition, rềarly all the students who are currently enrolled in a mathematics course indicated that they are doing some programming in these courses.

Thus, of the fifty-one students who participated in a mini-course and/or the summer course, eighteen, or thirty-five percent, are actively engaged in a formal course and/or an assistant role. In addition, others have indicated they plan to participate at a later date, or are currently using their knowledge in their current mathematics courses. Therefore, it seems safe to conclude :hat a group of knowledgeable and interested students now exists.

## A Computer Curriculum Guide is Produced and Accepted'

 One of the major goals of this practicum was to produce a District Computer Curriculum Guide. . As indicated previously, this was completed in July, 1975. The guide has been endorsed by the Director of Instruction of the Newark School District as indicated by his signature on the Foreward, and has been distributed to all members of the business education, mathematics, science, and social studiés departments of each high school. In addition,..administrators and members of other departments who participated in computer education workshops also received a copy.

Action is Taken on Recommendations and Long-Range Plans The recommendations and long-range hardware implementation $\ddot{p l a n s}$ generated by the committee working in the spring were well received, and action has already been taken on many of them. One measure of success in this area is the amount of money spent by the Newark School District for computer-related activities: $\$ /, 300$ has been spent for workshops; \$12,000 for time-sharing terminals; and $\$ 71,000$ for inthouse computers, for a total of $\$ 90,300$. In addition, $\$ 35,000$ was previously spent for the in-house computers at Glasgow High School.

Thus, with the hardware on hand, 'recommendations are . being accepted relative to establishing courses and involving computers in the curriculum. - School level personnel now view computer education as being here and now/ and not something which would be "nice for the future."

## A Sunimary of "What is) Happening Now" at Glagow Hiyh School

## Is Conducted

In the course of determining what effect the mini-courses and workshops had gn students and teachers at Glasgow High School, an attempt was also made to ascertain the ". scope of current conputer-related activities. In Ortober, 1975, two days were scheduled for an on-site school visitation to accomplish this task. During the visitation, conversations with administrators, teachers, and students produced the following composite list of current activities:

1. Three sections of Computers I with an enrollment of seventy-two;
2. Two sections of Computers II with an enrollment. of thirty-seven;
3. Five students serving as.aides to the guidance counselor responsible for introducing students to the computerized guidance package;
4. Eleven teachers using a computerized grading system. Several others indicated they are going to convert to a computerized system.
5. Three mathematics teachers using the computers for tutorial drills in the basic skill's classes.

These same teacher's also use the computerized games as a reward for student's who satisfactorily complete their work.
6. One mathematics teacher teaching computer programming to a basic mathematics skill's class as an enrichment topic.

The baseball coach utilizing a program which updates the team statistics after each game.
8. The agriculture teacher using the computer for CAI and testing in the area of plant identification.
9: The German teacher and the French teacher each working on a CAI program for the study of vocabulary and sentence structure.
10. Physics students using the computer as a problemsolving tool.
11. Bidlogy students utilizing statistic's programs in connection with yeast growing experiments in two biology classes.
12. Mathematics students (all levels) using the , "computer. as a problem-solving tool.
13. Social studies students preparing computerized simulations for a project.
14. Business education students in the Business Machines course being exposed to the computer.

In addition, many staff members and students indicated that they, are planning additional activities; however, these were ${ }^{\prime n}$ not included in the previous/list as the intent-was to determine what was actually happening. Thus, it secms reasonable to conclude that many computer activities are being carried out and the in-house equipment is being utilized extensively:

## A Comparison of the Past to the Present

From 1968 intil 1974, the use of compluters for instructional purposes, with one exception, was limited to a single time-sharing terminal 4 n each high. school. The exception was during the 1968-69, school year, when additional back-up equipment was inséalled in' the high schools, and some CAI activities took place im one middle school and one elementary school when Federal funding was available. During this period, the student-terminal ratio was approximately 1800 to 1. During the 1974-75 school year, four in-house computers werie installed in Glasgow High School, and terninals'. were maintained in the other two high schools". In "197.5, Christiana High School and Newark High Schoor each received four in-house computers, and two additional
$\therefore \quad$ tine-jharing terminals were installed. Thus, the present - studeat-terminal ratio is approximately 300 to 1'. The literature indicates a maximum ratio of 500 to 1 to successfuiky implement a compúter education program, and - it is/anticipated that the program initiated during the course of this practicum can be maintained. Further, $\because$ since the financial effort has largely been at the local level, the problem of program curtailment duc to the expiration of external funding has been by-passed.

A comparison of the numbers and types of persons involved. over the years also indicates that computer education has become firmly established. Before 1974, the use of computers was basically limited to applications made by mathematics and science teachers, and limited to high school students. During the 'past year, this has been exparided to include students of all abilities ánd teachers of many disciplines. Thus, through hardware acquisition and student and staff training, the Newnrk School District has reached the point where. a meaningful compúter education program, can be maiñtained.

Programming and Operations Lab I - Intermediate, Data
Processing Technology, Miami, Florida: Dade County Public Schools, 1972 .

Programming and Operations Jab II - Intermediate, Data.
Processing Technology, Miami, Florida: $\therefore$ Dade County PuSIic Schools, 1973.

Recommendations Regarding Computers in High School
Fducation, Washington, D.C.: Conference Board of the Mathematical Sciences, 1972.

Rourke, Martha and Patrick W: Rourke', "Şo You Are Plaming to Buy a Computer?," The Education Digest, Jol. 39, Nov., 1973, P. 30.

Sage, Edwin R., Problem-Solving with the Computer, Newburyport, Massachusetts: Entelek, Inc., 1969.

St., Cyr, Frederick, "Deriving Double-Duty Service From. a Teaching Computer Installation," Business Education Norld, Nov.-Dec., 1974., P. 24.

Sass, Richard E., A Computer-Based Instructional Magagement Program for Classroom Use, Pittsburgh, Pennsylvania: Learning Researoh and Development Center, University of Pittsburgh, 1971.
Simns, Richard F., "Busineşs Education and Computer Terminal," The Balance Sheet, Vo1. 56, No: 2, Nov., 1974, P. 119.

Spencer, Donald D., A Guide to Teaching ABout Computers in Secondary Schools, Ormond Beach, Florida: Abacus Computer Corp., 1973.

Spencer, Donald D., Game Playing With Computers, Rochelle - Park, New Jersey: Hayden Book Co., 1968.

Stein, Philip, "That Makes Minis Cheap?," Computer Decisions, Feb., 1975, P. 14.

System 2200: 2200 A/B Basic Programming Manual, Tewksbury, Massachusets: Wang Laboratories, Inc., 1974.
giant step has been taken, and the transitiork will be smoother And more orderly as the District moves coward a more refined program of computer education. $\qquad$

$$
z_{y}
$$



The documents in this bibliography have been secured aitd are currently on file as a "Computer Library" at Glasgow High School.

Anastasio, Eraest J., and Judith S. Morgan, Factors Inhibiting the Use of Computers in Instruction, Princeton, New Jersey: EDUCOM Interuniversity Communications Ccuncil, Inc., 1972.

Andrea, Richard V. . Computer Programming and Related Mathematics, N York, New York: John Wiley and Sons, Inc., 1967.

Baker, Justine, The Computer in the School, Bloomington, Indiana: The Phi Delta Kappa Educational Foundation, 1975.

Ball, Marion J., What is a Computor?, New York, New York: Houghton Mifflin Co:, 1972.
Brown, Dean, and Phyllis M. Cole, "The Classroom Mi'cro-" computer," Computer Decisions, Feb., 1975,' P. 34.

Brown, Dean, "On Computers and Learning," Coroputer Decisions, May, 1974, P. 41.
Ćlayman, ${ }^{\circ}$ David, A Classroom Tool: Computer Solutions fór Business and Indestrial Problems, Tewkskury; Massàchusetts: Wang Laboratories, Inc., 1974.

- Clayman, David, A Classroom Tool: Probability and. Statistics on the Computer, Tewksbury, Massachusetts: Wang Laboratories, Inc., 1974.

Computer Facilities for Mathematics Instruction, Washington, D.E.: National Council of Teachers of Mathematics, 1967.

CONTRACTING FOR COMPUTING: A Checklist of Terms and Clauses for Use in Contracting with Vendors for Cumputing Services, Princeton, New Jersey: EDUCOM Interuniversity Communications Council, Inc., 1973.

Crawford, Rudd A., and-David H. Copp, Introduction to Computer Programming, Boston, Massachusetts: Houghton Mifflin Co., 1969. :

Crowley, Thomas H. Understanding Computers; New York New York; McGraw-Hill Book Co., 1967. .

Delaware Department of Public. Instruction, A Réport on a Survey of Job Opportunities for Graduates of Data Processing Instriction Programs in Delaware High Schools and Community Colleges. 1973.

Douglas; John H., "Computers 1: From. Number Crunchers to Pocket Genies," Science Mews, Vol. 108, Sept. 6, 1975, P. 15.4.

Douglas, John H., "Computers 2: Brave New Components," Science News, Vol. 108, Sept. 13, 1975, P. 170.

Douglas, John H., "Computers 3: Beyond the Industrial Revolution," Science News, Vol. 108, Oct. 4, 1975, P. 220 .

Dwyer, Thomas A., and Michael S: Kaufman, A Guided Tour of Computer Programming in BASIC, Boston, Massrachusetts: Houghton Mifflin Co., 1913:

Forsythe, Alexandra I. et al., Computer Science: A First Course, New York, New York: John Wiley and Sons, Inc., 1969.

Forsythe, Alexandra I. et al, Computer Science: A Primer, New York, New York: John Wiley and Sons, Inc., 1969.
Forsythe, $A \dot{A l}$ exandra $I .$, et al, BASIC Language Prdgramming, New York, New York: John Wiley and Sons, Inc : 1970.
Golden, Neal, Computer Programming in the BASIC Language, New York, New York: Harcourt, Brace and Jovanovich Corp., . 1975.

Hagelbarger, David,. and Saul Fingermän, Cardiac, New York, New York: Bell Telephone Laboratories, Inc., 1968.
Hatfield, Larry L. , The Use of Computers in Mathematics Education Series: II. Computer Extended Problem Solving and Enguiry, Columbis: Ohi, 0 ERIC Information Analysis Center for'Science, Mathematics, and Environmental Education, $19 \% 3$.

Herberg, Theodore, and James D. Bristol; Elementary Mathematical Analysis, Lexington, Massachusetts: D. C. Meath and Co., 1974.

Hickey, Albert E., "Using the Computer to Individualize Instructiongand Save Money," The Individualized Learning Jetter - Special Report, Feb. 1974.
Horwitz, Geoffrey. B., and Michael D. Young, Computer Operating Systens: Investment or Overhead?, New York, New York: ANACOM, $19{ }^{\circ} 75$.
Indiana Department of Public Inctruction, Math Guidelínes For Indiana Schoo? s K-12; 1970 .
Jacobs, Zeney P., et al, Comnunicating with the Computer: $\therefore$ Introductory Experiences, BASIC, Rockleigh, New $T$ Jersey,: Allyn and Baçon. Inc. 1975.
Johnson, David CC., and"Larry L." Hatfield, Computer Assisted Mathematics Program First Course. Dakland; New Jersey: Scott, Foresmand Co., 1268.

Johnson', David C., and John W. Walther, Confputer Assisted Mathematics Program Second Course, Oakland, New Jersey: Scott Foresman and Co., 1969.
-Johnson, Davia ${ }^{\text {C C. . }}$, and Dale.E. LaFrenz, Computer Assirsted Mathematics Program Algebra, Oakland, New Jersey: Scott. Foresman and Co.. 1969.
Johnson, David C., and Pamela W. Katzmán, Computer Assi.sted Mathematic Program Geometry; Oakland; New 'Jersey". SScott, Foresman and Co., 1969.

Johnson; David C., and Thomas E. Kieren, Computer Assisted Mathematics Program Intermediate Mathematics, Oakland, New Jersey: Scott, Foresman and Co., 1969.

Jones., Ben, A Catalog of Non Print Materials Useful in Computer Related Instruction, Fugene, Oregon: Lane County Intermediate Sctrool District; 1973.

Koch, Varren J., "Using Time Shared Computers in Secondary Schools:/A Status. Report," NASSP Bulletin, V०1. 56, No. 363, April, 19?2," P. 46.

Koch, Warren J., "Basic Facts About Using the Computer in Instruction," The Education Digest, Vol.. 38, March, 1973, P. 28.
Letson, John W., "Terminals Open the Door to Individualized - Instruction," AEDS Monitor, Dec., 1971, P. 4.

Lunde11, Jr., E. Drake, "Computers in Society: Impact Still Burning Questión," Gomputer World, Vol. 185, No. 4151, Aug., 1974, P. 9.
Lynch, Robert E., and John R. Rice, Computers: Their Impact and Use, New York, New York: Holt; Rinehart and Winston, Inc., 1975.
'Molnar; Andrew R., The Use of Computers in Mathematics - Education Resource Series: I. Computer Innovations in Education, Columbus, Ohio : ERIC Information Analysis Center for Science, Hathematics, and Environmental Education, 1973.

Moursund, David, "Selecting Goals for an Introductory Computier Programming Course," Mathematics Teacher, Vol. 6a, No. 7, Nov.; 1973, P. 599.
\& My Computer Likes Me When I Speak Basic, Menlo Park,
Nolan, Richard L., Introduction to Computing Through the BASIC Language, 2nd, ed., New York, New York: Holt, Rinehart ạd Winston Co., 19.74.

O'Neil, Carole and Mark Pytliki, Computers in Education: A Report of the Computer Services Branch, Canada: Province of Manitoba Department of Education, 1973.
Òsbrirne, Adam, "The Potential Use óf Mini-Computers in Education," Journal of Educational Data Processing, Vol. 8, No. 6, 1971, P. 1.

An Overview of the TICCIT Program, Washington, D.C.: -The Mitre Corp., 1974.

Pratt, Harold, "Interactive Computer Simulation in Teaching Physies," National Science Supervisors Association Newsletter, Vol. 12, No. 3, Jan., 1975, P. 6. .

Programming and Operations Lab I - Intermediate, Data
Processing Technology, Miami, Florida: Dade County Public Schools, 1972.

Programming and Operations Lab II - Intermediate, Data.
Processing Technology, Miami, 'Florida: : "Dade County Public Schools, 1973.

Recommendations Regarding Computers in High School
Education, Washington, D.C.: Conference Board of the Mathematical Sciences, 1972.

Rourke, Martha and Patrick W: Rourke", "So You Are Planning to Buy a Computer?," The Education Digest, Vol. 39, Nov., 1973, P. 30.

Sage, Edwin R., Problem-Solving with the Computer, Newburyport, Massachusetts: Entelek, Inc., 1969.

St., Cyr, Frederick, "Deriving Double-Duty Service Froma Teaching Computer Installation," Business Education World, Nov.-Dec., 1974., P. 24.
Sass, Kichard "E., A Computer-Based Instructional Magagement Program for Classroom Use, Pittsburgh, Pennsylvania:

- Learning Resenroh and Development Center, University of Pittsburgh, 1971.
Simms, Richard F., "Busineşs Education and Computer Terminal," The Balance Sheet, Vol: 56, No: 2, Nov., 1974, P. 119.

Spencer, Donald D., A Guide to Teaching ABout Computers in Secondary Schools, Ormond Beach, Florida: Abacus Computer Corp., 1973.

Spencer, Donald D., Game Playing With Computers, Rochelle , Park, New Jersey: Hayden Book Co., 1968.

Stein, Philip, "What Makes Minis Cheap?," Computer Decisions, Feb., 1975, P. 14.

System 2200: 2200 A/B Basic Programming Manual, Tewksbury, Massachusetts: Wang Laboratories, Inc., 1974.

System 2200: 2200 A/B Reference Manual, Tewksbury, Massichusetts: Wang Laboratories, Inc., 1974.

System 2200: Finance/Utilities/Games General Program Library, Tewksbury, Massachusetts: Wang Laboratories, -Inc., T973.

System 2200: Finance/Utilities/Games General Programming Library histings, Tcwksbury, Massachusetts: Wang Laboratories, Inc. 1973.
System 2200: General Utilities, Vol. 1, Tewksbury, Massachersetts: Nang Laboratories, Inc., 1974.

System 2200: General Utilities, Vol, 2,.. Tewksbury, Massachusetts: Wang Laboratories, Inc., 1974. .
System 2200: Mathematics General Program Library, Tewksbury, - Massachusetts: Wang Laboratories,. Inc., 1973.

System 2200: Mathematics General Program Library Listings; Towksbury, Massachusetts: Nang Laboratories, Inc., 1973.

System 2200: Programming Tools, Tewksbury, Massachusetts : Wang Laboratories, Inc., 1974.

System 2200: Statistics/Engineering General Programming Library, Tewksbury, Massachusetts: Wang Laboratories, Inc., 1973.

System 2200: Statistics/Engineecing General Program Library Listings, Tewksbury, Massachusetts: Wang Laboratories, Inc., -973.

Topics*in Instructional Computing, ed. by Stuart D. Milner, Hanover', New Hampstire: SIGCUE, 'Kiewit Computation Center, $19 / 5$.
U. S. Office of Education, Computers and Careers: A Suggested Curriculum for Grades 9-12. 1973.

The Use of Computers in Mathematics Education Series: The Use of Computers in Mathematics Education: Bibliography, ed. by Marilyn N. Suydam, Cofumbus, Ôio- ERIC Iniormation Analysis Center for Science Mathematics, and Environmental Education, 1973.,

The Use of Computers in Secondary Schools; ed. by Dudley $\overline{\text { L }}$.
Post, Newburyport, Massachusetts: Entelek Corp., 1970.

Ultal, William, et al, Generative Computer-Assisted Instruction in Analytic Geometry, Newburyport, Massachusetts: Entelek Corp., 1970.

Whner, Gerald E., "Career "Educa'tion via Data Processing," The Balance Sheet, Vol. 56, No. 5, Feb., 1975, P. 196.

Washbarn, Warrén, "Data Processing in the High School Gurriculum," The Balance Sheet, Vol, 56, No: 1, Oct., 1974, P. 61:

THE DEVELOPMENT AND IMPLEMENTATION OF A DISTRICT COMPUTER EDUCATION PROGRAM

APPENDIX A.

The Development of Goals and Objectives and a 'Long-Range Plan for Implementation

Al: Proposal for Computer Education Workshop - Phase I
A2: Proposal for Gomputer Education Workshop - Phase II
A3: Materials Relating to Formation of Phase I Workshøp. and List of Phase I Workshop Participants
A4: List of Sources Solicited for Potèntial Informatión
A5: Preliminary Goảls and Objectives and Preliminary Long-Range P.lan
A6: Preliminary Goals, and Objectives Distribution List
A7: Long-Range Plan Included as a Part of 'Report' to Deputy Superintendent
A8: List of Phase II Workshop Participants
A9: Computer Education Jurriculum Guide - InterimrDraft
A10: Computer Educuation Curriculum Guide - Distribution List

APPENDIX Al

Proposal for Computer Education Workshop - Phase I
(3)
$\$$

FORM 1004 (Rev. 12/74)
FUNDING REQUEST FOR PROGRAM
AND STAFF DEVELOPMENT ACTIVITIES

## DATE SUBMITTED: January 23, 1975

## Vaputer sducatión Norkshop - Phase I

# NEWARK SCHOOL DISTRICT Newark, 'Delaware 

I.

Respond as carefully as possible to each of the following questions:
A. Statement of the problem to be considered;
B. 1. List the alternatives you have already attempted as a means of dealing with this problem;
2. List any activities that others in the district or elsewhere have already undertaken'to deal with the problem;
C. List your major goals and objectives in the following areas:

1. Preparation of instructional materials, curriculum guides,

1 course outlines, etc.i
2. What new or improved competencies do you expect teachers to have as a result of this activity;
3. What new or improved competencies do you expect students to have as a result of this activity;
D. Describe the activities to be carried out (include a copy off the program or an agenda, whichever is, applicable);
E. Given the response to $B$, why is the activity you proposed in D needed?
F. Evaluation:

1. Describe the" procedures for evaluating the activities (upon cômpletion of the activity);
2. Describe the procedures, you will, use, and determine the - date for final evaluation concerning:
a. degree of success in achieving the aims listed in $C$;
b. impact on the school program, including student and/or staff behavioral changes.
IV. . Reporis:
A. A report of your activities, including the evaluation results described in F 1, will be due one, week aftef the activities are concluded.
B. A final report will be due upon completion of your firal evaluatioń.

REQUESTS SUBMITTED ON FURN \#1004 WILL BE CONSIDERED AS FOLLOOS:
Requests for fall inservice (up to cḥristmás break) will be reviewed the third Monday in September
Requests for'winter Inservice (after Christmas break) will be reviewed the third Monday in November
Requests for summer insërvice will be revjewed the third Monday in March
V. B BjDGET (include breakdown by categories, i.e., participants, resource persons, materials, etc.)

| Categories | Justificatioñ * . ' | Amount ** |
| :---: | :---: | :---: |
| Personnel: <br> Leadërs <br> P. Neil- Malizl | To provide/eadership and resource materials |  |
| Participants <br> 10 diatrict. <br> personnel | To produce the dootmerts described in Part $C$ |  |
| Resource Persons | ; |  |
| Reseased time Substitutes Op to 40 tóacher days (26/day | To provide releláse time for distifet teachert who will be serving on the cormittee | 1,040.00 |
| Materials \& Supplies | Most materiala have already bean igathered. | - |
| Clerical and Other | Will be handied by regular secretarial ataff. |  |
| " ${ }^{\text {a }}$, | TOTAL | -1,040.00 |

Justification for each budget category should be presented in terms of the tasks to be accomplished, services rendered, etc., and relation to the realization of the major goals and objectives, by number, listed in C.

末* Parilicipant amount $\$$ should reflect the state scale arid the degree of involvement of the participants.

Part 111.
A. Computer education has baen offered in thie Mewark School' Diserfet in various forms at the high scheol leval for many y ars. Apraver, the progran has bean hit op infss and highly gependent upon the avaliability of staff manter who hat an, interest in aid who is wilifity to put forth the additione? thae necossary to condact program. Further., the prograns vary widely from school to school because there is nolestabished district plan for fimpldentasion and no estabifished district goals and objectivas.

Hith the installation of the compute systre at Glasgom, the need for guidance in the form of a long range pian, goris and objectives, and conrse outlines becrae eiven/more apparent, Thus, the problen is to develop the necessary documents at the district level for compster edueation.
81. A. solution for this problea has not been attemped before in the Nekark District.

B2. Attempts are currently being made to contact persons in other districts to establish whether or not formal plans exist elsewhere which could be utilizad.
Cl. The major outcones expected from this endeavor will be the production of the following:
a. A tentative district long ranye plan for computer edecation.
b. A preliminary set of gosis and objectives for computer education for the Hewark School District.
c. The identiffcation of a seestace of connses for the district in computar education.

C2. It is expected that with the fowal astabisheant of geals, objectives, etc., that teachers will be able to better utilize the computer in their daily insturyction and fierease the nesurar of course orfarings in coanaster education.
W. Students will have the cpportunty to ieselop on understanding of computer knomiedge and skilis nstessery la the bustness and tecinical sreas. Further, stadents will the mie to defelop the skilly in mathemeles ard problen solviag thrash flow chorting, prosjra coding, and on-line testing of computer progrens.
D. The activity to be carrici out will be to bring together ten persons for four days (not consceutivaly) to Establith the necessary documents. One consittee of flvo will be respenstic for establishing apraliminaly est of geve and cijectivas for the district while a second countice of five will be rasponsibie for developing: long range implentateition plan and the fientification of a sequence of course offerings.

After these prelinfnary dacment are devalioped. shas will be distributed to a roprasentative sampie of teachers and zowinistraters in tho district for roula end ceasants. It is oxpected

$$
97^{*}
$$

that these prelifalnary dociumets ileng with the cosmants wil be used is the frout for a sunger workstap at wifch final dociments will be produced and courge offentmss will be fleshed out.

Tentative dates for the compttee reetings are as follews:

| Date | Time | Lecation | Purpose |
| :---: | :---: | :---: | :---: |
| 2/19/75 | 3:15-4:15 | 67asgor High | Organizationel Fieating |
| 2/27/75 | 8:09-4:00 | $\cdots$ | Esctitishing a Fomalizing prol foincry plans |
| 3/13/75 | 3:00-4:00 | * a | " ${ }^{\text {a }}$ |
| 3/20/75 | 8:01-4:00 | " * | $\text { - } \quad \text { "i }$ |
| 4/17/75 | 3:00-4:00 | " * | Firalize preltionary pians for distribution to district personvel |

E. Because the necessary docments do not now exist in tho district and prelininary investigations indicate pea exist elswhore, thew will have to be doveloped locally.

Fi. Documents produced w1ll be evalusted by the Supervisor of Hathenatics on the basts of content. style, ard format.

F2. A follow-up survey wi?? be conducted in the fall of 1975 to detemine whether the documents are being uttlized by tachers.

```
N
1/23/75
```

[^1]FORM 1004 (Rev. 12/74)
FUNDING REQUEST FOR PROGRAM
AND StA FF DEVELOPMENT ACTIVITIES
DATE SUBMITTED: January 23,1875
4 puter Education Workshop - Phase II
NEWARK SCHOOL DISTRICT Newark, Delaware

FOR OFFICE USE ONLY: NO $4-3$ Approved: $C \geq B$
Date:
Amount:
 Budget: $\qquad$
Initial Report Due
Final Report Due: Funds Revert:
I.
IV. Reports:
A. A report of your activities, including the evaluation results described in $F$., will be due one week after the activities are concluded.
B. A final report will be due upon completion of your final evaluation.

REQUESTS SUBMITTED ON FORM \# 1004 WILL BE CONSIDERED AS FOLLOWS:
Requests for fall inservice (up to Christmas break) will be reviewed the third Monday in September
Requests for winter inservice (after Christmas break) will be reviewed the third Monday in November
Requests for summer inservice will be reviewed the third Monday in March
V. BUDGET (include breakdown by categories, i.e., participants, resource persons, materials, etc.)

Categories
Justification *

| Personnel: <br> Leaders <br> 1-75 houre | It is necuganey that any writing team have a respoasible pereon in charge who is knowledgeable about the subject. | \$ 637.50\% |
| :---: | :---: | :---: |
| Participants 5 teachers $75 \mathrm{hrs} /$ teacher | A writing team is necessary to produce the documents. | 2,625.00*: |
| Resource Persons <br> District and State Supervieors of Yerhomatics | The suparvisort will act as consultants and as members of the writing team. | $\ldots$ |
| Released time Substitutes | NA |  |
| Materials a Supplies | Paper, etc. Will be nacassary for production of the final documents. Also. it might be nedessary to purchase gome mdditional resource naterialo. | 200.00 |
| Clerical and other | Secretarial ansiatence is necessary for final tyoing of documents, produced. | 200.00 |

* Tentatively based on $\$ 8.50 / \mathrm{hr}$. * Tentatively based on $\$ 7.00 / \mathrm{hr}$

TOTAL
9.982 .30

* Justification for each budget category should be presented in terms of the tasks to be accomplished, services rendered, etc., and in relation to the realization of the major goals and objectives, by number, listed in $C$.

Participant amounts should reflect the statc scale and the degree of involvement of the participants.


Return in Duplicate to:
Director of Instruction
101

## COMPITER EDMCATIOA YORXSHOP - PMUSE II

III. A. Goals, objectives and condie outlines for compter educaifion courses for the Remark District do not now axist.
81. Tentative pians have been subatited for developing prelininary documints during the spring of 1975.
32. A search of the literature to loenta sources in other districts is currently being conducted.

C1. The major expected outcomes sill ba the production of the following:
a. A final distrifot long ratrge plan for computer aducation.
b. A finalized set of goals and objectives for computer education for the Nexark Scheol District.
c. Course guides for a serfes of computer education courses.

C2.) These documents should provide district tachirs with the - a' necessary background to offer a computer educalion progran wich - C3. will enable students to accomplish the following:
a. Develop an understanding of computer knowladge and skilis necessary in the business and technical areas.
b. Apply and extend mathematical skills using the computer and data processing tachniques as the vehicle.
c. Develop basic job entry skills and knowledge for the fields of data processing and computer programing.
d. Develop positive attitudes absut the role and function of computers and thefr operations.
D. A thrae week computar education curriculum devel opment workshop W11! be held during the sumar of 擎75., Participants will consist of the supervisor of mathematics, one leader, and five teachers. This group will act as a miting toan to produce the final docunents listed in Part $C$.
E. A continuous block of time will be necessary to complete final documents.

F1. Final documents will be evaluated by the supervisor of mathenatics on the basis of content, style, and format. The docurents will then be submitted to the director of instruction for final review.

F2. In the fall, data will be gathered at the school level to determine the degree of student and teacher Involvement in computer education. The number of students enrolled. the nuxber of classes being conducted and planned for, the musber of teachers involved, and the number of departments involved will all be considered.

Finally, an evaluation of student achieyement will be conducted in the spring of 1976 .

APPENDIX A3

Materials Relating to Formation of Phase I Workshop List of Phase I Workshop Participants

# NEWARK SCHOOL DISTRICT 

NEWARK. DELAWARE $19711^{\circ}$
TELEPHONE 302:731.2000

Dear $\qquad$ :

In order to offer a program in computer education in the Newark School District, which will best serve the needs of the students and teachers, it will be necessary to develop district-wide goals, objectives, course guides, and a long-range plan for implementation.
As a first step, a committee is being formed to draft preliminary documents.

This committee will meet on the following days:


- Substitutes will be provided by the district. If you are willing to serve on this committee, please indicate on the bottom of this sheet and return to Neil Walzl, Administration Building.

Should you decide to participate, please bring any documents that you have that might be pertinent to the first meeting. If you have any questions, please call me on Ext. 2220.

F. Neil Wall

Supervisor of Mathematics
FNW: bap
;

I (do) (do not) wish to participate.
103 सHEMARK, DELANARE":

February 6, 1975

MEPORATDUM TO:
Christiana High School

RE: Computer. Education Horkshop
Just a follow-up note to let you know that I have invitod the folloring teachers from your butiding to participate in the workshop.

Jack Baldino
Steve Palmor'
Frank Higen
: The dates are as follows:

$$
\text { February } 27,1975
$$

Herch 13, 1975
March 20.- 1975
Aprit 17, 1975
Substitutes will be provided by the district.
FMNA1zl:bap

February 6. ! 975

MEMORANDLH TO: Mr. COMer
Associate Principal
Glasgow High School
Frow: F. Nell Halzl he.
Supervisor of Mathematics

## RE: Computor Edučtition Horkshop

Just a fcllow-up note to let you know that i have inuit d the following teachers from your building to participate in this workshop:

Carl Jacobs'on
Ted Millar Ronald Hult

The dates are as follows:
February 27, 1975
March 13, 1975
March 20, 1975
Aprl1 17, 1975
Substitutes will be provided by the district.
FNWalzl:bap

## Februs.ry 6, 1975

MEMORANDUM TO: Mr. Mussciman
Associate Principal
Newark High Schopl
FROM: F. Neill Nalż]
Supervisor of Mathematics
RE: Computer Education Workshop
Just a follow-up note to let you know that I have invited the following teachers from your bullding to participate in this workshop.

> Lisa Bartle
> Don Allen
> Rebecca Feikls

The dates are as follows:
February 27, 1975
March 13, 1975
March 20, 1975
April, 17, 1975
Substitutes will be provided by the district.
FWNalıl:bap

HEWARK SCHOOL DISTRICT OFFICE OF INSTRUCTIOMAL SERVICES heyark, DELAHARE

March 17, 1975

Megorandua TO: Mr. Gilmore ott Christiana High School
yROM: F. Heil Kaial Supervisor of mithematics

RE: Atsensance of Mr. Ed Stowell at Computer Education Horkshop

I have invited Mr. Stowell to attend our workshop meeting scheduled for April 17, 1975, at Glasgow High School. I will ask that a substitute authorization form be sent to you so you can arrange for a substitute for htm.

If you have any questions, please call me. Thanks.
FNH:bap

NEWARK SCHOOL•DISTRICT OFFICE OF INSTRUCTIONAL SERVICES

NEWARK; DELAWARE

April 11, 1975

MEMORANDUM TO: Computer Workishop Participants

RE:

Just a note to remind you about the computir workshop meeting next Thursday, April 17, 1975, at viasgow High School.
If possible, pleasse bring along a synopsis of any compu"̈er activities you or others in your building have conducted this year.

FNW: 1 jg

## COMPUTER EDUCATION WORKSHOP - PHASE I

## PARTICIPANT LIST

SPRING;-1975

| $\therefore$ |  |  | DATES ATTENDED- |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NAME | SCHOOL D | DEPARTMENT | $\underline{2 / 27}$ | 3/13 | 3/20 | 4/1 |
| Sohn Baldino | Christiana | Math. | X | X | X | X |
| Frank Hagen | Christiana | Soc.Stud. | X | X | X | X |
| Steve Palmer . | Christiana | Math:- - | X | X- | X | X |
| Edwin Stowell* | Christiana | Science |  |  |  | X |
| Kenneth Klimek | Christiana | Admin. | X | X | X | X |
| Rebecca Feikls. | Newark | Bus. Educ. | X | $\dot{\mathrm{X}}$ |  | X |
| Ifisa Bartle | Newark | Math. | X | X | X | X |
| Donald Allen | Newark | Science | X | X | X | - |
| Thomas Concavage | Glasgow | Bus. Educ. | X | X. | X | X |
| Ronald Hull | Glasgow | Science | X | X | X | X |
| Carl Jacobson | Glasgow | Math. | X | X | X | X |
| Ted MiIler | Glasgow | Math. | X | X | X | X |
| Darrell Pelley* | Glasgow | Math. |  |  |  | X |
| David Yens** | U of D | Educ. |  | X |  | X |
| Douglas Tilley** | Hodgson Vo.Tech. | . Admin. ${ }^{\text {. }}$ |  |  | : | X |
| F. Neil Walzl | Newark District | Math. | X | X | X | X |
| . |  | , |  |  |  |  |
| *Denotes Substitute |  |  |  |  |  |  |
| **Denotes Guest. |  |  |  |  |  |  |

## 111

APPENDIX A4

List of Sources-Solicited-for-Potential Information

Pebzuary 26. 1975

Chairman, Mathematica Deparmene Einstain High School<br>Rensington, Maryland 20795

Dear Sir:

We are currently attampting to establish goals and objectivea and formalize course guiden for computer edncation at tha high achool level in the Newark School District.

I have been informed thet your achool currently offara courges in computer oducation. If you have any documente relating to these aress thet gou could ehare with me, it would be greacly appreciated. If there is any charge, let we know.


FNW: bap

March 25, 1975

Mr. F. Neil Walzl
Supervisor of Mathematics
Newark School District
P.O. Box 360

Newark, Delaware 19711
Dear Mr. Malzl:

In response to your inquiry regarding our courses in computer education $I$ can offer you the following information. A one-semester course in computer mathematics which was scheduled to start this past February was canceled due to lack of enrollment. Because it is a new course in Montgomery County, specific objectives have not yet been completed. The general objectives, as described iñ the Montgomery County Program of studies, Volume 5, are as follows:

By the end of Computer Mathematics, most students should be able to:

Aescribe the historical highliqhts in the development of the computer
name the main components in a computer configuration describe the functions of a computer and its peripheral equipment
construct a flowchart for a given mathematics proplem, commensurate with their backgrounds write a program in either BASIC or FORTRAN for a given mathematics problem, commensurate with their backgrounds diagnose and correct a program.

I hope that this information will prove useful in your attempt to : establish a similar course in the Newark School District.
Sincerely,
(Mrs.) Margarita S . Escatell

## SCHOOLS AND GRGANIZATIONS CONTACTED

RECARDING POSSIBLE INFORMATION relating to computer education

## Organization

 DateMr. Lee Shoff
January 23, 1975
John Dickinson High School
Stanton School District
Stanton, Delaware
Mr. George Brown
Mckean High School
Marshallton-McKean High School
Wilmington, Delaware 19808
Dr. Isabel Miller January 23, 1975
Conrad Senior High School
Conrad Area School District
Wilmington, Delaware 19804
Mrs. Rhoda Witlin January 23, 1975
Concord High School
2501 Ebright Road
Wilmington, DE 19810
Mr. Gary E. Dunkleberger
Alexis I. duPont High School
50 Hillside Road
Greenvilie, DE: 19807
Mr. David Van Wickle
Mount Pleasant High School
Mount Pleasant School District
Wilmington, Delapware
Mr. Harry Kutch
William Penn High School
New Castle-Gunning Bedford School District
New Castle, Delaware 19720
Ms. Cynthia McGee
Delmar High School
Delmar School District
Delmar, Delaware 19940
Dr. Sylvia Charp

January 23, 1975

January 23, 1975

January 27, 1975
January 23, 1975.
-

January 24, 1975
$\infty$ Director of Instructional Systems
Philadelphia School District
Benjamin Franklin Parkway and 21st
Philadelphia, PA 19100

Organizations Contacted (Cont'd.)
Page 2

- Dr. Allen Smith

February 3, 1975
ADCIS
University of Maine
56 Falmouth Street
Portland; Maine 04103
Dr. Thomas Dwyer
Project SOLO
Computer Science Department
University of Pittsburgh
Pittsburgh, Pennsylvania
Mr. Henry Peterson
February 3, 1975

Wayne', N.J. Computer Consortium
Februaxy 7, 1975
, Board of Education
'Wayne, New' Jersey 07470

| Sr. Ignatus, Chairman | February 7, 1975 |
| :--- | :--- |
| Mathematics Department |  |
| St. Marks High School |  |
| Henderson Road |  |
| Wilmington, Delaware 19808 |  |

Director of Instructional Services
February 26, 1975
Education Service Center, Region IV Houston, Texas 77000

Director of Instructional Services
Northwestern Educational Development Laboratory
Portland, Oregon 97200
Chairman, Computer Education Department February 26, 1975
Lane Technical High School
Chicago, Illinois 60600
Directur
Southe East Regional Computer Center
Atlanta Public Schools
Atlantâ, Georgia 30300
Chairman
Computer Education Department
Admiral Feary Vocational-Technical High School Ebensburg, Pennsylvania 15931

SIGCUE
Kiewit Computation Center
Dartmouth College
Hanover, N.H. 30755

Organizations Contacted (Cont'd.)
Page 3

Mr. Robert J. Seidel
S.S.P.A.C.E. Project Director 300 North Washington Street Alexandria, Virginia 22314

May 2, 1975

OBJECTIVES FOR 18. WEEKS
COMPUTER EDUCATION COURSE

1. Demonstrate correct usage of the computer terminal through actual hands-on experience.
2. Translate complex arifhmetic statements into computer language (Basic) and vice versa.'
3. Write a complex flowchart for'a given problem.
4. Write a computer program, incorporating the correct Basic Statements, when given the necessary information.
5. Employ the computer's list of stored programs.for work in related subject areas.

6 Operate a computer teletypewriter sender-receiver :termina $l_{f}$, and use a variety of input-output devices.
7. List, the limitations and strength of the specific computer you use by noting what it can and what it cannot do.
8. Develop a proficiency in the compiler language BASIC in order to write and prepare programs to solve a variety of mathematical and scientific programs.
9. 'Develop an awareness of a computer system other than' your own. Demonstrate how to access and use this other system.
10. The student will be able to compare and contrast computer programming languages.

1. For All Students
A. Each student will be made aware of the capabilities ind limitations of the computer.
B. Each gtudent will be provided with a knowledge of the cultural and social. impacts of computers and automati $n$.
C. Each student will be acquainted with tho kinds of jut openings in data processing and the qualificatic:t; needed to, ifill them.
II. For All College-Bound And Business Education Student:;
A. Each student will be provided with "hands on* expericneer: with the computer in the following areas:
2. Us* $n \mathrm{~m}$, the computer for simulations
3. Using the computer to execute "canned" propram: .- Accessing a computer through at least one input device.
4. Fror All Bu:inesis Education Students
A. Fach student will be provided with a knowlodge of iata handing, technicues and data processing, machinery.
R. Each student will be acquainted with the terminolor.y
of automation.
iv. Por All Collere-Bound Students
A. Each student will have experiences in simple promramimr: as early as possible in school (preferably by the whd. of the loth grade).
B. Each student will have the opportunity to use the computer

- as basic researen tool.
V. For Social Science Oriented Students.
A. Each student will be made aware of and have the opportunity
to use the computer as a research tool.
VI. For Science and Mathematics Oriented College-Bound Students
A. Each student will oe provided the opportunities which will enable him to handle sophisticated propramming, techniques.
B. Each student will be provided the opportunities to apply computer programming techniques in other situations and subjects.

1. State orally and in writing job descriptions of the studied. computer-involved professions.
2. State in writing specific examples of computer usage in industry.
3. State in writing specific examples of computer usage in the business world.
4. State the opportunities of attending the computer course (data processing) offered at the County Vocational-Technical High Schools.
5. State the post-graduate schooling required for computerrelated occupations.
6. List several accredited institutions for computer-related occupations.
7. Describe the on-the-job training program in use by area firins or industries.
8. State the computer-related job opportunities available to a New Castle County resident as compared to other geographic locations.
9. Distinguish and compare the various ways of entry into the identified occupations.
10. State in writing several ways the computer will affect his career interests.
11. State the requirement3, compensations, and advancement possibilities with career-relatid professions.

FNW/clp
4/10/75

OBJECTIVES FOR 9 WEEKS COMPUTER EDUCATION COURSE

1. Demonstrate correct usage of the computer terminal through actual hands -on experience..
2. Translate simple arithmetic statements into computer language (Basic) and vice verṣa.
3. Write an elementary ilowchart for a given problem.
4. Write a computer program, incorporating the correct Basic Statements, when given the necessary information.
5. Employ the computer's list of stored programs for work in related subject areas.
6. Operate a computer teletypewriter sender-receiver terminal, and use a variety of input-output deyices.
7. Lisi the Limitations and strengths of the specific computer yau use by noting what it can and what it cannot do.

FNW/Clp
4/10/75

OBJECTIVES FOR 18 WEEKS
COMPUTER EDUCATION COURSE

1. Demonstrate correct usage of the computer terminal through actual handseon experience
2. Translatè complex arichmetic statements into compuier language (Basic) and vice versa.
3. Write a complex.flowchart for'a'given problem.
4. Write a computer program', incorporating the correct Basic Statements, when givèn the necesŝary information.
5. Employ the computer's iist of stored programs. for work in related subject arèas.
6: Operaţe a computer teledypewriter sender-receiver terminal ${ }_{\gamma}$, and use a variety of input-output devices.
6. List ${ }^{\text {the }}$ limitations and. strengths of the specific computer you use by noting what it can and what it cannot do.
7. ©Develop a proficiency in the compiler language• BASIC in order to write and prepare programs to solve a variety of mathematical and scientific programs.
8. 'Deveiop an awareness of a computer system other than' your own. Demonstrate how to access and use this other šystem.
9. The student will be able to compare and contrast computer programming languages.
-Objectives, for 18 weeks
Computer Education Course
ב;
Page. 2
10. The student will be introduced to the basics of documentation procedures.
11. The student will solve a problem which requires compldx computer programming techniques.
mhh
4/10/75

OBJECTIVES FOR 18 WEEKS INDEPENDENT STUDY COMPUTER EDUCATION COURSE

1. The student will be able to apply proper documentation techniquès. .
2. The student will be able to refine an existing computer . program.
3. The student will be able to write a special program(s) for solving problems arising from any subject area.
$\therefore$ mhh 4/10/75

Goals for Computer Education Will Be Met in the Following Places in the Curriculum
`I. Goals IA, IB, and IC for all students will be met in existing. mathematics, science, and.social studies courses.
II. Goals IIA, IVÁ, and IVB for college bound students will be met in a 9 weeks survey course in computer education.

- III. Goals IIA, IIIA, and IIIB for business education students will be-met in existing business education courses such as business machines, etc.
IV. Goal VA for social science oriented sturents will be met in existing sociai studies courses.
V. Goal VIA will be met in an 18 weeks course in computer education.
VI. Goal VIA (Extended) and VIB will be met in an i8 . Weeks independent study course in computer education.

FNW:j9g
4/10/75

## RECOMENDATIONS

A. Establish a district-wide standing committee for computer education.
1.-The Social Science, Mathematics, Science, and Business Education departments should be represented on this committee.
2. The cormittee would be responsible for reviewing (and recormendating changes when necessary) the district goals and objectives for computer education.
3. The committee would be responsible for investigating the latest computer hardware developments and recoimnending hardware changes to enable the goals and objectives to be accomplished better.
4. The committee would be responsible for determining the extent to which schools in the district want to be Involved in computer education.
B. Establish the interrelationships between the Vocational Technical High School computer education program, DICE, and the computer education program in the comprehensive high schools as soon as possible.
C. Continue to partictpate in Project DELTA by supporting terminals at Christiana High and Newark High until such time as in-house (or other facilities) are capable of supporting all computer instructional activities in the district.
D. Install in-house computer systems at Christiana High and Newark High at the earliest possible time.

Install small ir-house computer systems at each middle school at the earliest possible time.
F. Provide each elementary school with à programable machine at the earliest posisible tine.
G. Install small in-house computers in two e:lementary schools at the earliest possible time.
H. Support" DICE "as a separate facility devoted to administrative functions.
I. Expand DICE to include time sharing capabilities for administrative functions.
J. Limit the initial computer facilities to be instäled at the Vocational Technical High' School to a.small system which would be devoted to instruction.
K. Establish a positinn for computer education on the supplemental pay schedule. (For want of a better name this will be referred to as the position of "computer coach")
L. Establish a series of on-going computer education workshops which would be offered during the summer and during the academic year.

1. Ievel 1 courses would be directed toward familiarizing teachers with computer operations and utilizing them within the curriculum (Personalizing canned materials, etc.)
2. Level 2 courses would be directed toward updating and disseminating in-district and out-of-district accomplishments and developments.

FNW/clp
4/10/75

INSTALLATION COSTS FOR ALL INSTRUCTIONAL COMPUTER SYSTEMS EXCEPT VOCATIONAL-TECHNICAL SCHOOL
.I. Phase-in Plan One (Üne Year)
A. 1975-76

1. Two computer systems for two high schools.

## Hardvare

a. six 4 K machines
b. two 12 K machines
c. two disks
d. two printers.

Overall Total

Per Unit
Total
$\$ 5,400$
\$32,400
23,200
12,000
6,000
3,600
$\$ 71,200$
2. Four computer systems for middle schools

|  | Hardware | Per Unit | Total |
| :---: | :---: | :---: | :---: |
| a | four 4 K machines | \$ 5,400 | \$21,600 |
|  | Overall Total |  | \$21,600 |

3. Hardware for elementary schools
Hardware Per Unit Total
a. thirteen programmable machines
$\$ 2,500$
$\$ 32,500$
-5. two 4 K machines
5,400. 10,800

Overall Total
$\$ 43,300$
GRAND TOTAL
II. Phase-in Plan Two (3 years)
A.- 1975-76

1. Computer systems for two high schools

| Hardware". | Per Unit | "Total |
| :---: | :---: | :---: |
| a. two 12 K machines | \$11,600 | \$23,200 |
| b. two 4K machines | 5,400 | 10,800 |
| c. two printers | 1,800 | 3,600 |
| Overall total |  | \$37,600 |

B. 1976-77

1. Expansion equipment for two high schools.

| Hardware" | Per Unit | Total |  |
| :--- | ---: | ---: | ---: |
| a. two disks | $\$ 6,000$ | $\$ 12,000$ |  |
| b. "four 4K machines | 5,400 |  | 21,600 |

2. Computer systems for middle schools
a. two 4 K machines
Overall total
$\$ 5,400$
$\$ 10,800$
\$44,400
C. 1977-78
3. Computer systems for middle schools
a. two 4 K machines
$\$ 5,400$
$\$ 10,800$
4. Computer system for elementary schools
a. two 4K machines $\$ 5,400$, $\$ 10,800$
b. thirteen programmable machines

2,500
32,500
A Overall total
GRAND TOTAL
\$54,100
$\$ 136,100$.
III. Phase-in Plan Three (3 years)
A. 1975-76

1. Computer systems for two high schools

Hardwäre
a.- two 8 K machines
b, two printers
c. two 4 K machines.

Overall total

| Per Unit | Total |
| ---: | ---: |
| $\$ 7,000$ | $\$ 14,000$ |
| 1,800 | 3,600 |
| 5,400 | $\underline{10,800}$ |
|  | $\underline{\$ 28,400}$ |

B. 1976-77

1. Expansion •uipment for two high schools

Hardware Per Unit Total
a. two disks
$\$ 6,000$
\$12,000
b. two 4 K machines

5,400
10,800
2. Computer systems for middle schools

| a. two 4 K machines |
| :--- |
| Overall Total |$\quad \$, 5,400 \quad$| $\$ 10,800$ |
| ---: |
| $\$ 33,600$ |

C. 1977-78

1. Computer systems for middle schools

| a. two $\frac{\text { Hardware }}{4 K \text { machine's }} \quad \frac{\text { Per Unit }}{\$ 5,400}$ | Total |
| :--- | :--- | :--- |
| $\$ 10,800$ |  |

2. Computer systems for elementary schools
a. two 4 K machines
$\$ 5,400$
\$10,800
b. four programmablé machines

2,500
10,000
Overall total
GRAND TOTAL
IV. Phase-in Plan Four (4 years)

- $\bar{A}-1975=76$

1. Computer systems for two high schools

Hardware Per Unit Total
a. -two 8 K machines $\$ 7,000$ - $\$ 14,000$
b. two printers

1,800
3,600
Overall total . . $\$$
B. 1976-77
"1. Expansion equipment for two high schools

| Crardware | Per Unit | Total |  |
| :--- | ---: | ---: | ---: |
| a. two disks | $\$ 6,000$ | $\$ 12,000$ |  |
| b. two 4 K machines |  | 5,400 | $\underline{10,800}$ |
| Overall total |  |  | $\underline{\$ 22,800}$ |

C. 1977-78

1. Expansion equipment for two high schools.
$\frac{\text { Hardware }}{4 \mathrm{~K} \text { machines }} \quad \frac{\text { Per Unit }}{\$ 5,400} \quad \frac{\text { Total }}{\$ 10,800 .}$
2. Computer systems for middle schools
a. two 4 K machines
Overall totai
\$ 5,400
$\$ 10,800$
$\$ 21,600$
D. 1978-79
3. Expansion equipment for high schools
a. two 4 K machines
$\$ 5,400$
$\$ 10,800$
4. Computer systems for middle schools
a. two 4 K machines
\$ 5,400
$\$ 10,800$
5. Computer systems for elementary schools
a. two 4 K machines
\$ 5,400
$\$ 10,800$ Overall total
V. Phase-in Plan Five (4 years)

## A. 1975-76

1. Computer systems for two high schools

| Hardware | Per Unit | Total |
| :---: | :---: | :---: |
| - 8 K machines | \$ 7.000 | \$14;000 |
| - ${ }^{\text {printers }}$ | 1,800 | 3,600 |
| verall total |  | \$17,600 |

B. 1976-77

1. Expansion equipment for two high schools

| Hardware | Per Unit |  | Total |
| :--- | ---: | ---: | ---: |
| a. two disks | $\$ 6,000$ |  |  |
| b. two 4K machines | 5,400 | $\$ 12,000$ |  |
| Overall total |  | $\underline{10,800}$ |  |
|  |  |  | $\underline{\$ 22,800}$ |

C. 1977-78

1. Expansion equipment for two high schools

| . Hardware | Per Unit | Total |
| :---: | :---: | :---: |
| a. two 4 K machines | $\$ 5,400$ | $\$ 10,800$ |

2. Computer systems for middle schools
a. one 4 K machine
$\$ 5,400$
$\$ 5,400$
$\$ 16,200$
D. 1978-79
3. Computer systems for middle schools.
a. one 4 K machine
$\$ 5,400$
$\$ 5,400$
4. Computer systems for elementary schools
a. one 4 K machine
Overall total
$\$ 5,400$
$\$ 10,800$
\$67,400

GRAND TOTAL

## APPENDIX A6

Preliminary Goals and Objectives Distribution List. :

133

NEWARK SCHOOL DISTRICT
OFRICE OF INSTRUCTIONAL SERVICES
NEWARK, DELAWARE

$$
\text { April 24, } 1975
$$

MEMORANDUM TO: Secondary Teachers


Supervisor of Mathematics
RE: Computer Goals and Objectives

Attached you wi-1l find a copy of Computer Goals and Objectives which are in a draft form. I would like you to react to these goals and objectives and make any changes you feel, are necessary. If you think there are goals and/or objectives which are missing, please write them on the sheets that are attached. Please send any comments you might have about these goals and objectives to me at the Administration Building. We welcome your comments as we would like to complete a final draft of the goals and objectives for the district during this summer.

Thank you.
$\%$

FNW: bap
Attachments

April 24,. 1975

NAME

1. Carol Brown
2. James Owens
3. Barbara Jones
4. George Cressman
5. Cathy Waller
6. Jack Chelucci
7. Raymond Kendzierski
8. Johnnye Sue Baker.
9. Ken Brown
10. Anna Billey
11. James Halligan
12. William Adkins
13... Howard Gerken
13. 'Thomas Mahler
14. William Murphy
15. Mary Pritchett
16. Franklin Sykes
17. Sharon Allen
18. Robert Dericks on
19. Harry Dillner
20. Carol Ellis
21. Leonard Ference
22. Ralph Graham
23. Terry Smith
24. Robert Hable
25. James Owen
26. Joan Caldwell
27. Elinor Short
28. Elaine Matt
29. Carol Brown
30. Nicola Fera
31. Juen Fessler
32. Dock Williams
33. Janice Yorke
34. Edward Davis
35. James Pletcher
36. John Reinholt:
37. Verne Woud
38. Rosemarie Bakos
39. Rosie Mickey
40. Hubert Prettyman
41. Mary Hynson
42. George T. Alderson
43. Francis Fulghum
44. George Hart
-46. Barbara Kendall
45. Dorothy Munroe
46. Ricky Reedy .
47. Richard Skovronski
48. Mary A'n Pelley

SCHOOL
Central Middle
Central Middle
Gauger Middle
Gauger Middle
Gauger Middle
Ogletown Middle
Ogletown Middle
Shue Middl'e School
Shue Middle School
Christiana High Schoo?
Christiana High School
Christiana High S.chool
Christiana High School
Christiana High `School
Christiana High School
Christiana High School
Christianá High School
Christiana High School
Christiana High School
Christiana High School
Christiana High School
Chṛis.tiana High . School
Christiana High School
Christiana High S.chool.
Christiana High School
Christiana High School
Christiana High School
Christiana High School
Glasgow High School
Newark High Schtool

## .DEPARTMENT

Mathematics
Mathematics
Mathematics
Mathematics
Social Studies
Mathematics
Science
Social Studies
Mathematịcs
Language Arts
Language Arts
Mathematics
Mathematics
Mathematifcs
Mathematics
Mathematics
Mathematics
Science
Science
Science
Science
Science
Science
Science
Social Science
Social Science
Business Education
Business Education
Social Sciences
Mathematics
Mathematics

- Mathematics

Mathematics.
Mathematics
'Science
Science
Science.
Science
Business Education
Business Education
Business Education
Language Arts
Mathematics
Mathematics
Mathematics
Mathematics
'Mathematics
Mathematics
Mathematics.

- Mathematics

Distribution List (Cont',d.)
Page 2

NAME
51. Arthur Whittaker
52. Stephen Fisher

- 53. Clair Clawson

54. Eugene Hester '. Newark High School
55. Constance Dunbar Newark High School
56. William Johnstone
57. William Sokol
58. Donald Allen
59. Wayne Hill"
60. Charlene Coder
61. Grant Ewell
62. David Nichols
63. J. Robert Parsons

Newark Hig School.

- Newark High School Newark High School
Newark High School
Newark Hjgh School
Newark High School
Newark_High School
Newark High School

DEPARTMENT
Mathemátics

- Mathematics Science.
- Science

Science
Science

- Science

Science
Social Sciences
Business Education
Business Education
Business Education
Business Educatićn

## APPENDIX AT

Long-Range Plan. Included as a Part of aa Report to Deputy Superintendent


MEMORANDTM TO: DT. John Allion
FROM: F. Ne11 Walel. $/ \mathrm{M}$
RE: Report on Computer matication in the Newark school Diekerict

Attached are two copias of a roportion computar education ectivitien conductid in thi diltilot during the 1974-75 chool year. appondix $A$ conterine the recominandations, proliminazy goale prolifinary objectiven, and hardraies phate 10 prians wht ah the oomputar education ocmittee conpilen. I have ouvered Mr. Freidiy and Mrs. Bonney with a oopy. It you woald " like to diccuss this paper, pleaee iet man Kiow.

Thankw.

FNW/Clp
nttachments

REPORT ON THE STATUS OF COMPUTER EDUCATION IN THE NEWARK SCHOOL DISTRICT, 1974-75

FUTURE RECOMMENDATIONS

## I. Existing Hardware

During the 1974-75 school year, time sharing terminals were located at Christiana and Newark High Schools. Glasgow High School's equipment. consists of three 4 K Wang 2200 B computers and one 12K Wang 2200B computer with a disk and'a thermal printer.
II. Utilization of Existing Equipment at Christiana High School and Newark High School

The terminals at Christiana and Newark were utilized in the following ways:
'1. Computer knowledge courses
2. Problem solving in mathematics \& science courses
3. Simulations in science courses
4. Simulations in social studies courses
5. Equipment familiarization by business students.

The computer knowledge courses served approximately 25 students in the two schools. These-students utilized the terminals extensively and many have reached a high level of sophistication with their programming skills.

Students in mathematics and science courses wexe exposed to the use of the terminal as a problem solving tool. This was usually done by the classroom teacher during a one or two. week period in the fall of the year. Utilization in this mode was greater in this area of science than mathematics due to the large number of programs devoted to that area available on the systems library. Approximately 300 students. were reached in this manner. Unfortunately, not all classes had equal exposure. Exposure and utilization ranged from extensive to none. There are several possible reasons for the uneveness of the exposure. They are: the limitations of the hardware available; teacher interest and background; and a lack of formal district and goals and objectives to guide the teachers. Each of these problems is currently being considered by the Computer Education Committee about which more will be said later in this report.

Simulations were used by students in the areas of biology., earth-science, chemistry, physics, and various social studies courses.. In this mode, students were confronted with a situation in which they could control certain variables. Examples of programs utilized in this mode include "POLUTE" and "MARKET." "POLUTE" is a program in biology in which students can control the variables of a pond while "MARKET" allows students to control the variables of a simulated economiz system. In addition, social studies classes draw on the various data banks ávailable for. analysis and study. Approximately 300 students were reached in this manner.

Business education students in the business machines courses at Newark High were introduced to the terminal. While this is a natural place to accomplish this, only a small percentage of business education students take this course. Thus, éfforts must be made to introduce more business education students to the uses of the computer and data processing.
III. Utilization at Glasgow High School

Because the final decision to install at Glasgow High School wasn't made until August, 1974, and the actual installation didn't take place until October, 1974, no formal computer education courses were included in Glasgow's master schedule for the 1974-75 school vear. Utilization of the equipment has been high however, and has been accomplished mainly through the introduction to programming through existing mathematics courses. 250 students were exposed in this manner. In addition, an informal course was offered by the . Supervisor of Mathematics during the third quarter of the school.year. Forty students elected to give up their free time to attend this course and many have become quite proficient in programming techniques.

A presentation was also made to the distributive education class and several periods were spent in familiarizing them with the uses of the computer.

Other uses include some attempts by teachers to utilize the system for classroom administrative purposes, the administration of make-up tests and review lessons, and simulations of various sorts.

Many students have also become familiar with the operation the computer by using the computerized games which are available.

For the 1975-76 school year, two courses were included in the master schedule. Approximately 100 students have elected these courses and it is hoped that in future years this number will. increase.
'IV. Teacher Tralning Efforts
In August, 1974, the mathematics and science teachers of Glasgow High were given a brieff traising session on the equipment which was installed at the school. As a followup, the mathematics department chairman was sent to the five day intensive school conducted by Wang Laboratories in February, 1975.

A course in the uses of computers and introductory programming was conducted on the district-wide-inservice days. Over 30 teachers attended this workshop and rated it as highly beneficial.

Preliminary plans have been made to conduct an additional workshop of a similiar nature during the summer of 1975.

## V. The Computer Education Committee

Funds were requested by the Supervisor of Mathematics to form Computer Education Committee to formulate preliminary goals and objectives for computer education and to develop recommendations and a long range plan for the district. These funds were granted, and the committee was formed. Because computer education has been considered in the past as an activity of the mathematics department, committees of this type have usually not been particularly effective." Therefore, the committee chosen is composed of science, social studies, and business ed. teachers in addition to mathematics teachers:

This committee met for a full day on each of four different dates during February, March, and April 1975. The first day was devoted to establishing ground rules, definitions, and discussing various hardware configurations. Each person was charged with*locating as many sources as possible which, might yield information or data relating to the establishment of ${ }^{\text {a }}$ s computer education program in secondary schools. Over 50 letters were then written requesting any material which might be helpful.

The remaining three days were then devoted to compiling goals, objectives, and recommendations for the district. In addition, the committee is attempting to become familiar with latest developments in computer hardware and how it might be utilized in the secondary school program. One such effort is a visit the committee has scheduled on May 6, 1975, to work with the PLATO time sharing terminal located at the University of Delaware.

In addition to contacting potential sources of info related to computer education by letter, a search of ERIC documents submitted from 1972 to the present was conducted. To the committees" dismay, this search yielded only two documents which were useful.

The committee also touçhed bases with Mr. Doug Tilley, Principal of.the Hodgson Vocational Technical School about his plans for the computer education program there. In addition, Dr. David Yens, Computer Utilization Consultánti: for the College of Education, University of Delaware, was invited to spend a day with the committee. The interaction with Dr. Yens was considered by the committee to lie extremely valuable.

At the completion of the four sessions, the committee had formulated a•jist of recommendations, hardware implementation plans (with prices based on the latest Wang Laboratories figures), and preliminary goals and objectives for computer education in the district. These documents are included in Appendix A. The goals and objectives have been distributed to 60 teachers in the district for their reaction and input for a group who will finalize them this summer.
VI. Projected Activities

A workshop has been approved for the summer of 1975 to finalize the goals and objectives and course guides and to compile them in its approved district format.

A course is being prepared for students in computer education which will be offered through the extended year program. This
$* \quad$ experience should yield valuable information for future use.
A proposal has been submitted to offer a 15 hour workshop for 30 teachers in the utilization of computers and introductory programming.
VII. Other Developments

Through efforts at the State level, a college and career guidance package will be available through Project DELTA next school year. Funding for terminals for this use is being sought through 509.

Also, at the State level, attempts are being made to have a matching fund type of line item for computer education hardware. Currently, this item is back in the budget.

A 509 project was submitted by Glasgow High for computer education. The project was rejected, but has since been resubmitted and has a much greater chance of being approved n-ow.
VIII. Summary \& Recommendations

Overall, computer education and the uses of the computer in the instructional process in Newark District compares favorably with that which is being done elsewhere. More students are being exposed than is the case elsewhere. However, the computer is still being viewed by many in the district as an extension of the mathematics department. Also, equipment limitations
at Christiana High and Newark High do not make expansion plans feasible. Further, with the installation of the guidance package., the systems in these two schools will not be sufficient to continue at the present level.

Thus, a strong recommendation must be made for in-house equipment at Christiana High and Newark High to maintair existing programs and for further expansion. Possible phase-゙ in plans developed by the computer education committee to accomplish this are included in ${ }^{*}$ Appendix $A$;

A second recommendation is for the installation of a project DELTA terminal at Glasgow for utilization of the guidance package. This would enable all secondary students to be able to access this most valuable guidance package.

The combination of a Proiect Delta terminal and inhouse equipment would enable the Newark District to meet the educational computer needs of the secondary students for many years to come.

FNW: bap
5/75

## APPENDIX A

RECOMMENDATIONS OF .THE CCMPUTER
EDUCATION COMMITTEE

APRIL, 1975

Computers are here to stay. With over 100,000 computers in use in the United States today, and thousands mọre being used eack month, it is safe to conclude that computers have become a permanent aspect of American life. The computer exercises such an important and widespread influence on our modern day society that it is essential that every well educated person know something about the potential benefits and changes of it,

Today, the majority of colleges and universities teach about and with computers. However, only about $30 \%$ of the students who © graduate from high school go on to college. Thus, if we are to introduce computer training to the $70 \%$ who do not continue on to college, then we must educate them while they are in secondary school. Further, the $30 \%$ who do go on to higher education should have computer experiences as preliminary training for their post secondary education experiences.

With these thoughts in mind, the computer education committee makes the following recommendations.
A. Establish a district-wide standing commitṭee for computer education.

1. The Social Science, Mathematics, Science and Business Education departments should be - represented on this committee.
2. The committee would be responsible for reviewing (and recommendating changes when necessary) the district goals and objectives for computer education.
3. The committee would be responsible for investigating the latest computer hardware

- developments and recommending hardware changes to enable the goals and objectives tọ be accomplished better.

4. The committee would be responsible for determining the extent to which schools in the district want to be involved in computer education.
B. Establish the interrelationships between the Vocational Technical High School computer education program, DICE, and the computer education program in the comprehensive high schools as soon as possible.
C. Continue to participate in Project DELTA by supporting terminals at Christiana High, Glasgow High, and Newark High until such time as in-house (or otber facilities) are capable of supporting all computer instructional activities in the district (including a Guidance package).
D. Install in-house computer systems at Christiana High and Newark High at the earliest possible time.
E. Install small in-house computer systems a $\mathfrak{t}$ each middle school at the earliest possibie time.
F. Provide each elementary school with a programmable machine at the earliest possible time.
G. Install small in-house computers in two elementary schools at the earliest possible time:
H. Support DICE as a separate facility devoted to administrative functions.
I. Expand DICE to include time sharinis capabilities for administrative functivis.
J. Limit the initial computer facilities to be installed at the Vocational Technical High School to a small system which would be devoted to instruction.
K. Establish a position for each high school computer education - on the supplemental pay schedule. (For want of a better name this will be referred to as the position of "computer coach").
L. . Establish a series of on-going computer education workshops which would be offered during the summer and during the academic year.
5. Level 1 courses would be directed toward familiarizing teachers with computer operations and utilizing them within the curriculum (Personalizing canned materials,.etc.)
6. Level 2 courses would be directed toward updating and disseminating in-district and out-of-district accomplishments and developments.
M. Offer Computers I, Computers II, and Computers III, (or equivalents) at Christiana High School and Newark High School.

SUGGESTED TIME-LINE FOR IMPLEMENTATION OF COMPUTER ACTIVITIES

Recommendation $A$
Recommendation B
Recommendation $D$

Recommendation E
Recommendation $F$
Recommendation $G$
Recommendation I

- Recommendation K

Recommendation L
Recommendation $M$

Immediately ${ }^{\circ}$
Immediately
See attachment for suggested phase-in plans
" " • "
" " "
September, 1977
Sêptember, 1975
1975-76 school year
1975-76: Glasgow High School 1976:77; 'Christiäna' and Newark.High Schools

## I. For All Students

A. Each student will be made aware of the capabilities and limitations of the computer. Wherever possible, this will be provided via a "hands on" experience.
B. Each student will be provided. with a knowiedge of the cultural and social impacts of computers and automation.
C. Each student will be acquainted with the kinds of jòb openings in the computer field and the qualifications needed to fill them.
II. For All College-Bound And Business Education Students
A. Each.stüdent will be provided with "hands on" experiences with the computer in the following areas:

1. Using the computer for simulations
2. Using the computer to execute "canned" programs
3. Accessing a compurier through at least one input device.

For All Búsiness Education Students
A. Each student will be nrovided with a knowleqea of data handling technigues and data processing madhinery.
B. Each student will be acquainted with the terminology of automation.
IV. For All College-Bound Students
A. Each student will have experiences in simple programing as early as possible in school (preferably by the end of the 10 th grade).
B. Each student will have the opportunity to use the computer as basic research tool.
V. For Social Science Oriented Students
A. Each student will be made aware of and have the opportunity to use the computer as a research tool.
VI. For Science and Mathematics Oriented College-Bound Students
A. Each student will be previded the opportunities which will enable him to use sophisticatyed programing techniques.
B. Each student will be provided the opportunities to apply computer programing techniques in other situations and subjects.

Goals for Computer Education Will Be
Met in the Following Places in the Curriculum
I. Goals IA, IB, and IC for all students will be met in existing mathematics, science, and social studies courses.
II. Goals IIA, IVA, and IVB for college bourd students will be met in a, 9 weeks survey course in computer education.
III. Goals IIA, IIIA, and IIIB for business education students will be met in existin' business education courses such as business machines, etc.
IV. Goal VA for social science oriented students will be met in existing social studies courses.
V. Goal VIA will be met in an 18 weeks course in - computer education.
VI. Goal VIA (Extended) and VIB will be met in an 18 weeks independent study course in computer education.

COMPUTER OBJECTIVES (TO BE MET IN EXISTING COURSES)

1. State orally and in writing job descriptions of the studied computer-involved professions.
2. State in wrițing specific examples' of computer usage in industry.
3. . State in writing specific examples of computex usage in the business world.
4. State the opportunities of attending the computer course (data processing) offered at the County vocational-Techififal High Schools.
5. State the post-graduate schooling required for computerrelated occupations.
6. List several accredited institutions for computer-related occupations.
7. Describe the on-the-job training program in use by area. firms/ . or industries.
8. State the computer-related job opportunities available to a New Castle County resident as compared to other geographic locations.
9. Distinguish and compare the various ways of entry into the. 'iv identified occupations.
10. State in writing several ways the computer will affect his career interests.
11. State the requirements, compensations, and advancement possibilities with career-related professions.

OBJECTIVES FOR 9 WEEKS * COMPUTER EDUCATION COURSE

1. Demonstrate correct usage of the computer terminal.through actual hands -on experisnce.
2. Translate simple arithmetic statements intó computer language (Basic).and vice versa.
3. Write an elementary'flowchart for a given problem.
4. Write a computer program incorporating the correct Basic Statements, when given the necessary information.
5. Employ the computer's list of stored programs: for work in related" subject areas.
6. Operate a computer, teletypewriter sender-receiver texminal; and use a variety of input-output devices.
7. List the limitations and strengths of the specific computer you use by noting what it can and what it cannot do...

OBJECTIVES FOR 18 WEEKS COMPÙTER EDUCATION COURSE

1. Demonstrate correct usage of the computer terminal through actual hands-on experience.
2. Translate complex arithmetic statements into computer language (Basic) and vice versa.
3. Write a complex flowchart for a given problem.
4. Write a computer program, incorporating the correct Basic Statements, when given the necessary information.
5. .Employ the computer's list of stored programs for work in related subject areas.
6. Operate a computer teletypewriter sender-receiver terminal, and use a variety of input-output devices.
7. List the limitations and strengths of the specific computer you use by noting what it can and what it cannot do.
8. Develop a proficiency in the compiler language BASIC in order to write and prepare programs to solve a variety of ma+`ematical and scientific programs.
9. Develop an awareness of a computer system other than your own. Demonstrate how to access and use this other system.
10. The student will be able to compare and contrast computer programming languages.

Objectives for 18 weeks
Computer Education Course
Page 2
11. The student will be introduced to the basics of documentation procedures.
12. The student will solve a problem which requires complex computer programming techniques.
mhh 4/10/75

OBJECTIVES FOR 18 WEEKS INDEPENDENT STUDY COMPUTER EDUCATION COURSE

1. The student will be able to apply proper documentation techniques.
2. The student will be able to refine an existing computer program.
3. The student will be able to write a special program(s) for solving problems arising from any subject area.
mhh 4/10/75

## 153

INSTALLATION COSTS FOR ALL INSTRUCTIONAL COMPUTER SVSTEMS EXCEPT VOCATIONAL-TECHNICAL SCHOOL
I. Phase-in Plan One (One Year)
A. 1975-76

1. Two compliter systems for two high schools.

| Hardware | Per Unit | Total |  |
| :--- | ---: | ---: | ---: |
| a. six 4K machines | $\$ 5,400$ |  | $\$ 32,400$ |
| b. two 12K machines | 11,600 |  | 23,200 |
| c. two disks | 6,000 | 12,000 |  |
| d. two printers | 1,800 | $\underline{3,600}$. |  |
| Overall Total | . | $\underline{\$ 71,200}$ |  |

2. Four computer systems for middle schools

Harunare Per Unit $\quad$ Total
$\begin{array}{lll}\text { a. four } 4 \mathrm{~K} \text { machines } & \$ 5,400 & \underline{\$ 21,600} \\ \text { Overail Total } & \$ 21,600\end{array}$
3. Hardware for elementary schools

Hardware Per Unit Total
a. thirteen programmable machines
\$ 2,500
$\$ 32,500$
b. two 4 K machines

5,400
10,800
Overall Total
$\$ 43,300$
GRAND TOTAL
II. Phase-in Plan Two (3 years)
A. 1975-76

1. Computer systems for two high schools
Hardware $\quad$ Per Unit
a. two 12 K machines $\$ 11,600$

Total $\$ 23,200$
b. two 4 K machines
5.,400

10,800
c. two printers

1;800
3,600
Overall total
$\$ 37,600$
B. 1976-77

1. Expansion equipment for two high schools Hardware

Per Unit Total
a. two disks $\$ 6,000$ \$12,000
b. four 4 K machines

5,400
21,600
2. Computer systems for middle schools
a. two 4 K machines
$\$ 5,400$
$\$ 10,800$
Overall total
$\$ 44,400$
C. 1977-78

1. Computer systems for middle schools
a. two 4 K machines
$\{5,400$
$\$ 10,800$
2. Computer system for elementary schools
a. two 4 K machines $\$ .5,400 \quad \$ 10,800$
b. thirteen programmable machines $\quad 2,500$

32,500
Overall total
GRAND TOTAL
$\$ 24,100$
$\$ 136,100$

155
111. Phase-in Plan Three (3 years)
A. 1975-76

1. Computer systems for two high schools

| Hardware | Per Unit | Total |
| :--- | ---: | ---: |
| a. two. 8 K machines | \$ 7,000 | $\$ 14,000$ |
| b. two printers | 1,800 | 3,600 |
| c. two 4K machines | 5,400 | $\underline{10,800}$ |
| 0verall total |  |  |

1. Expansion equipment for two high schools

| Hardware | $\frac{\text { Per Unit }}{}$ | $\frac{\text { Total }}{}$ |
| :--- | :--- | :--- |
| a. two disks | $\$ 6,000$ | $\$ 12,000$ |

2. Computer systems for middle schools
a. two 4 K machines
$\$ 5,400$
$\$ 10,800$
Overall Total
$\$ 33,600$
C. 1977-78
3. Computer systems for middle schools Hardware Per Unit Total
a. two 4K machines $\$ 5,400 \quad \$ 10,800$
4. Computer systems for elementary schools
a. two 4K machines $\$ 5,400$ \$10,800
b. four programmable machines $\quad 2,500$

10,000
Overall total $\quad \$ 31,600$
GRAND TOTAL
\$93,600
IV. Phase-in Plan Four (4 years)
A. 1975-76

1. Computer systems for two high schools

| Hardware | Per Unit | Total |
| :--- | ---: | ---: |
| a. two 8 K machines. | $\$ 7,000$ | $\$ 14,000$ |
| b. two printers | 1,800 | 3,600 |
| Overall total |  | $\$ 17,600$ |

B. 1976-77

1. Expansion equipment for two high schools

Hardware
a. two disks
b. two 4 K machines Overall total Per Unit
$\$ 6,000$
\$12,000
10,800
$\$ 22,800^{\circ}$
C. 1977-78

1. Expansion equipment for two high schools

Hardware
'a. two 4 K machines

Per Unit
\$. 5, 400

Total
$\$ 10,800$
2. ©omputer systems for middle schools
a. two 4 K machines
\$ 5,400
$\$ 10,800$
Overall total
$\$ 21,600$
D. 1978-79

1. Expansion equipment for high schools
a. two 4 K machines
$\$ 5,400$
$\$ 10,800$
2. Computer systems for middle schools
a. two 4 K machines
\$ 5,400
$\$ 10 ; 800$
3. Computer systems for elementary schools
a. two 4 K machines
$\$ 5,400$
$\$ 10,800$
Overall total
\$32,400
\$94,400
V. Phase-in Plan Five (4 years)
A. 1975-7
4. Computer systems for two high schools
Hardware Per Unit. . Total
a. two 8 K machines
$\$ 7,000 . \quad \$ 14,000$
b. two printers

1,800
3,600
Overall total
$\$ 17,600$
B. 1976-77.

1. Expansion equipment for two high schools

| - Hardware | Per Unit | Total |
| :--- | ---: | ---: |
| a. two disks | $\$ 6,000$ | $\$ 12,000$ |
| b. two 4 K machines | 5,400 | $\underline{10,800}$ |
| Overall total |  |  |

C. 1977-78

1. Expansion equipment for two high schools

Hardware
Per Unit
Total
a. two 4 K machines
\$ 5, 400
$\$ 10,800$
2. Computer systems for middle schools
a. one 4 K machine
$\$ 5,400$
Overall total
$\$ 5,400$
$\$ 16,200$
D. 1978-79

1. Computer systems for middle schools
a. one 4 K machine
$\$ 5,400$
$\$ 5,400$
2. Computer systems for elementary schools
a. one 4 K machine
$\$ 5,400$
S 5,400
Overall total

GRAND TOTAL

## Prices Fcr Wang Computer Systems As of 4/8/75

2200 S


Lease with intent to purchase plans
A. Five year blan (breakable) a pèrcentage of purchase price. 50\% of amount paid applied to purchase.
B. Three year plan (unbreakable) 40\%-40\%-30\%
C. Two year plan (unbreakable) 50\%-50\%

All Prices subject to $31 / 2 \%$ discount.

| Electrical Maintenance | $6 \%$ |
| :--- | :--- |
| Mechanical Maintenance |  |
| II |  | (Thermal printer, Disk) per year

APPENDIX A8

List of Phase II Workshop Participants

NEWARK SCHOOL DISTRICT
.OFFICE OF INSTRUCTIONAL SERVICES NEWARK, DELAWARE

May 8, 1975

MEMORANDLM TO: Computer G $\$ 1 \%$, Ob.ectives ard
Course, Guides Writ ng Team
FROM. F. Neil Walzl of
Supervisor of Mathematics
RE: Summer Schedule

Thefdates for the writing team have been set for June 23 to July iz, inclusive, and the meeting place will be Glasgow High school.

Individual time assignments on these dates are as follows:
Mr. Darrell Pelley (leader) 9:00 a.m. to A:00 p.m.
Full-Time
Mr. Tom Concavage - 9:00 a.m. to 4:00 p.m. Mr. Ron Hull - 9:00 a.m. to 4:00 p.m.

## Part-Time

Mr. Frank Hagen - ?.00 p.m. to 4:00'p.m.
Mr. Carl Jacobson - 1:00 p.m. to 4:00 p.m.
Mr. Ted Miller - 1:00 p.m. to 4:00 p.m.
Ms. Lisa Bartle - 1:00 p.m. to 4:00 p.m.
Mr. Jack Baldino - 1:00 p.m. to 4:00 p.m.
Mr. Steve Palmer - 1:00 p.m. to 4:00 p.m.

FNW: bap

## COMPITER GOALS \& OBJECTIVES WORKSHOP - PAYROLL LIST







$$
\begin{aligned}
& \text { FOREWORD } \\
& \text { Computer education has been a part of the high school curriculum in the Newark } \\
& \text { School District for several years; however, no formal district direction has } \\
& \text { heretofore existed. With the addition of a third high school and expanded } \\
& \text { computer facilities in all high schools, the need for a formal guide has become } \\
& \text { apparent. Thus, in the summer of l975, a committee of Newark staff members } \\
& \text { developed this curriculum guide as an aid for teachers and administrators when } \\
& \text { planning expanded computer education experiences for students. } \\
& \text { This guide is presented to you in draft form. you are encouraged to record } \\
& \text { comments at appropriate points in the guide to aid in evaluating and improving its } \\
& \text { content. At the end of the l975-76 schoolyear, please forward your suggestions } \\
& \text { for improvement, to the computer Education committee. your comments, pro and con, } \\
& \text { will be most welcome and will help facilitate refinement and expansion of the guide. } \\
& \text {. }
\end{aligned}
$$

A wide array of scientific, economic, social, and technical factors are
reshaping our world, and with it, thé course of modern education. One such tech-
nological development is the computer which is being utilized extensively and
 engineering, medicine, and social and scientific research are only a few of the many areas which are increasingly dependent upon the computer's speed in problem solving and capacity for handling vast amounts of data. In addition, the com-
puter is fast becnming a significant tool in the administrative and instructional processes of education.
' The President's Science Advisory Committee said that since the computer is
such a valuable and versatile tool in society, students attencing school in the.
$1970^{\prime} s$ who have not been exposed to knowledge about computers will be poorly prepared for the world of the $1980^{\prime} \mathrm{s}$ and $1990^{\prime} \mathrm{s}$. Although most school students will ndt be computer technologists, the influence of the computer on their . future is so. important that they should be made aware of its nature and function Recognizing the fact that students of the Newark School District have 'a
need for computer awareness, a committee of district staff members was appointed




| GOAL NO． | 1 |
| ---: | ---: |
| $\ddots$ |  |
| GOAL NO． | 2 |

GOAL NO． 3
GOAL NO． 4
GOAL NO． 5
COMPUTER APPLICATIONS IN ACADEMIC SUBJECT AREAS．
ALL SOCIAL SCIENCE ORIENTED COLLEGE－BOUND STUDENTS SHOULD BE
AWARE OF AND INVOLVED WITH COMPUTER APPLICATIONS IN THE STUDY
OF SOCIETY．
ALL SCIENCE AND MATHEMATICS ORIENTED COLLEGE－BOUND STUDENTS
SHOULD BE INVOLVED IN－DEPTH WITH COMPUTER APPLICATIONS AND COMPUTER
PROGRAMMING．
COMPUTER APPLICATIONS IN ACADEMIC SUBJECT AREAS．
ALL SOCIAL SCIENCE ORIENTED COLLEGE－BOUND STUDENTS SHOULD BE
OF SOCIETY．
ALL SCIENCE AND MATHEMATICS ORIENTED COLLEGE－BOUND STUDENTS
SHOULD BE INVOLVED IN－DEPTH WITH COMPUTER APPLICATIONS AND COMPUTER
PROGRAMMING．
COMPUTER APPLICATIONS IN ACADEMIC SUBJECT AREAS．
ALL SOCIAL SCIENCE ORIENTED COLLEGE－BOUND STUDENTS SHOULD BE
OF SOCIETY．
ALL SCIENCE AND MATHEMATICS ORIENTED COLLEGE－BOUND STUDENTS
SHOULD BE INVOLVED IN－DEPTH WITH COMPUTER APPLICATIONS AND COMPUTER
PROGRAMMING．
COMPUTER APPLICATIONS IN ACADEMIC SUBJECT AREAS．
ALL SOCIAL SCIENCE ORIENTED COLLEGE－BOUND STUDENTS SHOULD BE
OF SOCIETY．
ALL SCIENCE AND MATHEMATICS ORIENTED COLLEGE－BOUND STUDENTS
SHOULD BE INVOLVED IN－DEPTH WITH COMPUTER APPLICATIONS AND COMPUTER
PROGRAMMING．
GOALS FOR COHPUTER EDUCATION
ALL STUDENTS SHOULD BECOIE AWARE OF THE COMPUTER ORIENTED
：ヨ ヨ IT XIHL HOIHM NI XLヨIOÒS
AND INVOLVED WITH IEIP． ＇f
ALL BUSINESS STUDENTS．SHOULD BE AWARE
COMPUTER APPLICATIONS IN THE BUSINESS
WITH
$\qquad$
ALL COLLEGE．－BOUND STUDENTS SHOULD BE AWARE
ALL COILEGE－－BOUND STUDENTS SHOULD BE AWARE OF AND INVOLVED WITH
COMPUTER APPLICATIONS IN ACADEMIC SUBJECT AREAS．
ALL SOCIAL SCIENCE ORIENTED COLLEGE－BOUND STUDENTS SHOULD BE
OWARE OF AND INVOLVED WITH COMPUTER APPLICATIONS IN THE STUDY
ALL SCIENCE AND MATHEMATICS ORIENTED COLLEGE－BOUND STUDENTS
SHOULD BE INVOLVED IN－DEPTH WITH COMPUTER APPLICATIONS AND COMPUTER








$$
\begin{aligned}
& \text { Non-thinking, does only wh: } \\
& \text { pxogrammed to do, can work }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Non-thinking, does only what } \\
& \text { pxogrammed to do, can work only } \\
& \text { on data given it, expense. }
\end{aligned}
$$


Contact ERA．for potential
speakers and field trip．
See Appendix A for annotated
fimlist．
C


10 Each student will
have an understand－
ing of a variety
of computer appli－
cations．
3.11 Describe examples
 エəユ几duos fo səse7

 of computer applica－
tions． － $\operatorname{suOt}$ 3． 20 Each student will be ． provided with knowledge
 and terminology．

3．00 All college－bound are
GOALS AND OBJECTIVES
students should be
of and involved wit
computer applicatio
in academic subject
areas：
3.10 Each student will
.


$18 ?$

$$
4.10
$$ レOT7EโnuȚS โeutitixo

$$
00^{\circ} 7
$$

$$
\begin{aligned}
& \text { of and involved with } \\
& \text { computer applications }
\end{aligned}
$$

$$
4.11
$$

swexßoxd पכлeəsəa pue ม0 8ินฺ7sṭว KOTdu'g
the social sciences. cations.
4.21
" provided with oppor-
tunities to use an 4.20 Each student will be $\cdot$ savūtos
Tețoos oчך ut 8uțтәрqu pue, чวлeәsax
oriented college-bound sciences.

号


$$
\text { IO 8ินโ̣ } 7 \text { sṭ }
$$

$$
\begin{aligned}
& \text { computer applications } \\
& \text { the study of society. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Each student will have } \\
& \text { an understanding of why } \\
& \text { and how computers axe } \\
& \text { used as "tools" for }
\end{aligned}
$$

available system for Describe compufer
applisations for
әدeme әq pqnọus siuopnzs Topics:
Improved speed and accuracy
in analyzing social problems,
ability to handle large
amounts of information. Topics:
Improved speed and accuracy
in analyzing social problems,
ability to handle large
amounts of information. Topics:
Improved speed and accuracy
in analyzing social problems,
ability to handle large Topics:
Improved speed and accuracy
in analyzing social problems,
ability to handle large
amounts of information.

## Guest speakers <br> -

$$
\begin{aligned}
& \text { Strategies: } \\
& \text { Discussion } \\
& \text { Lecture } \\
& \text { Problem solving } \\
& \text { Brain storming } \\
& \text { Film/filmstrip }
\end{aligned}
$$



$$
\frac{\text { Strategies }}{\text { Discussion }}
$$

Organizing and presenting
demographic studies, mapping.
archeological dig sites,
sales and revenue projection,
hypothesis testing. ing
.






1.


$$
\because .\rangle
$$




-

Introduction to Digital Computers 7-A
 does. Animation explains input,
Available from: UVAC. Rental: Free.
.Appendix A (Cont'd.) , out of computers: punched cards.
film and cathode ray tubes.
Available from: BELT. Rental: F
BELT. Rental:
Introduction to Digital Computers
punched cards, magnetic tape, micro-
magnetic tape, micro-

## it works and what good it

 memory and output--the five basic computer parts.$$
4
$$

- 



$$
3.21
$$

$\square$



 be lived in 1999, including education, health, recreation,
occupation, and home life. Emphasizes the technological



666T Available from: NCRC. Rental: Free.

 บวง
 yכN

Appendix A (Cont:d.)

$$
\begin{aligned}
& \text { Modern Merćhandise Management } \\
& \text { Motion picture. } 23 \text { min. }
\end{aligned}
$$


多

$$
\begin{aligned}
& \text { woxI, əTqettent } \\
& \text { andut suteidx }
\end{aligned}
$$ anzota uotzow

$\because \forall-0 T$ Iag wox］әTqeiteny



## əอエฐ

## tequey


 ゅT「 $0 \overbrace{}^{\cdot 2}$




 Bell Telephone Laboratories
(Contact your local P.N.W.B. Office)

220 S.E. 102nd
Portland, OR 97216
Idustrial Management
C/O Modern Talking
P.C. Box 1005
International Business Machines
(Check with your local IBM Office)
Lane County I.E.D.
Instructional Materials ${ }^{\text {Conter }}$
748 Pearl Street
Eugene, OR 97301 .
Mu?tnomah Co., I.E.D.
ITAg
"

Appendix $A$ (Cont'd.)
NCRC National Cash Register Co.
Audio Visual Services
Dayton, Ohio 45409
OCEP Oregon State A.V. Section
Division of Continuing Education
Coliseum 131
Corvallis, OR 97331
RAND $\begin{aligned} & \text { Rand Corporation } \\ & \text { J.700 Main Street } \\ & \text { Santa Monica, CA } 90406\end{aligned}$
RARI Rarigs Inc

## Seattle, Washington

品

USNA U.S. Navy Public Affairs Office
USNA U.S. Navy Pub lh Naval District
U.S. Naval Air Station
Seattle, WA $98115^{\circ}$
Seattle, WA 98115
Univac Division
.
1
$\stackrel{N}{N}$


TTYSET
$\quad$ This program is used to set terminal 'characteristics for the user's
terminal.
Foreign Language
 : . . .
!
1
III.

EDSARD
This program generates random poetry.

## Mathematics

A. Algebra
 of any polynomial equation up to the 20 th degree. :
CURFIT * performs a least squares curve. fit to' the 'following
to the following
$A+E X P(B+X)$

division on vectors expressed in either cartesian or polar systems. complex.
$\stackrel{\rightharpoonup}{-}$



to any real
is.


Appendix B
D. Political Science and Law
COMUNE
 communist island and must try to remain"in power.

## ELECT 1)

ELECT
ELECT
See descriptions under "C. History."

See descriptions under "C. History.
ELECT 3)
GVOTE
This si transitive preferences among mutually exclusive alternatives using majority votes.
JUDGE

of the defense attorney in a court trial.
:IASPAR
This program contains a model that illustrates the relationship that
exists in a society between social status and organizational involvement on the one hand and mass political participation on the other.
This simulation determines the probability that a committee will have
transitive preferences among mutually exclusive alternatives using
majority votes.
$\cdots$ $\qquad$

1

## POLICY

This is a simulation of interest groups,
public policy enacted by the government.
This is a simulation of the processes which groups and individuals use in an effort to influence city hall.
E. Psychology
ROBOT
program enables you to influence the personality of a robot
Appendix B (Cont'd.)
35
equilibrium systems．
 uotsinffTp uo
This program looks at membrane characteristics by simulating an experiment


| $\square$ |
| :---: |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| $\vdots$ |
| $\mathbf{O}$ |
| $\vdots$ |
| 0 |
| 0 |
| $R$ |


－suotaejtidde sचt
Id sṭप゙
（ $P$ ，Juoう）g xtpuəddy

$$
\begin{aligned}
& 0 \text { acids } \\
& \ddots
\end{aligned}
$$

なqeztuot Jo
Appendix $B$（Cont＇d．）
HARDY
This program instructs the user about
its appiriations．
PH
This program examines the theory that
（P1，
Appendix B (Cont'd.)
KINET
This program calculates equilibrium concentrations. MASSD
Mis program investigates and cailculates the mass defect of an element. PHPOH
PHPOH This program computes the $\mathrm{PH}, \mathrm{POH}$, and percent dissociation for any weak monoprotic acid.
PRCNT
This
STOICH
This
D. Chem
D. Chemistry Labs




Appendix B (Cont'd.)

## CHARGE

experiment.
วч7
s re-
program will calculate half-life and mass of a radioactive sample.

## DECAY 2

This
drop
op experiment.

(•p, quoj) g xtpuadc:

CONSMP:
This program simulares economic depression and equilibrium as effects
on consumption.

The cobweb model for supply and demand is illustated based upon current prices and quantity within the American onion market. B. General
This program is a computer system for selective fetrieval and analysis
of large date files in the social sclenees.
.42

Appendix B (Cont'd.)
D. Political Science and Law
 communist island and must try to remain in power.

See descriptions under "C. History."

## ELECT 1) ELECT 2) ELECT 3)

GVOTE
 transitive preferences among mutually exclusive alternatives using majority votes.
JUDGE
This is a judicial process simulation in which the user plays the role of the defense attorney in a court trial. .
:IASPAR
This program contains a model that illustrates the relationship that
 participation on the other.
$\rightarrow$



$$
\begin{array}{r}
+ \\
4
\end{array}
$$

Computer Education Curriculum Guide Distribution List

219

September, 1975

## Christiana High

1. Business Education Department through Mrs. Grace Owen
(8)
2. Mathematics Department through Mr. Jack Baldino
(8)
3. Science Départment through Mr. Edwin Stowell
(7)
4. Social Studies Department through Mr. Frank Hagen,
(11)
5. Mrs. Anna Billey, Summer Workshop participant
6. Mr. Peter Dewitt, Summer Workshop participant
7. Mr. Richard Groo, Summer Workshop participant
8. Mr. Gilmore Ott, Principal
9. Mr. Vern Wolf, Associate Principal

## Glasgow High

1. Business Education Department through Mr. Thomas Concavage (5)
2. Mathematics Department through Mr. Ted Miller
3. Science Department through Mr. Ronald Hull
4. Social Studies Department through Mr. Thomas Stewark
5. Miss Sally Bowser, Summer Workshop participant
6. Mr. Phillip DeWeese, Summer Workshop participant
7. Ms. Frank Dickerson, Summer Workshop participant
8. Ms. Jane McFann, Summer Workshop participant
9. Ms. Nancy Pierce, Summer Workshop participant
10. Mrs. Suzanne Steinberger, Summer Workshop participant
11. Mr. John Brandt, Principal
12. Mr. Thomas Comer; Associate Principal

Newark High

1. Business Education Department through Ms. Begecca Feikls
2. Mathematics Department through Mr. Rodney Hart
3. Science Department through Mr. Donald Allen
4. Sociall Studies Department through Mr. Michael Epler
5. Mr. Kenneth Weinig, Summer Workshop participant
6. Mr.James Otto, Summer Workshop participant
(1)
7. Mr. William Stockebrand, Principal
(1):
8. Mr. Richard Musselman, Associate Principal
(1)

Others

1. Dì. John Allen, Deputy Superintendent
2. Mr. Nelson Freidly, Director of Secondary Education
3. Dr. Loren Thompson, Director of Instruction

THE DEVELOPMENT AND IMPLEMENTATION OF A
DISTRICT COMPUTER EDUCATIUN PROGRAM

APPENDTX B

## Staff Development

B1 Funding Approvai for Staff Member to AttendIn-depth School
B2: Report on the Attendance of a Staff Member at anIn-depth Computer Training School
B3: Spring Computer Inservice Workshop Class List
B4: Spring Computer Inservice Workshop Objectives
B5: Spring Computer Inservice Workshop Assignment Sheets
B6: Invitations for Computer Informational Meetings
B7: Proposal for Summer Computer Workshop for Teachers
B8: Request to Principals to Identify Summer Computer Workshop Participants
B9: Invitation to Summer Computer Workshop Participants
B10: Summer Computer Workshop Participant List
B11: Summer Computer Workshop Agenda, Objectives, andWorksheets
B12: Glasgow High School Summer Workshop Proposal
B13. Christiana High School Summer Workshop Proposal

## APPENDIX B1

Funding Approval for Staff Member to Attend In-Depth School $=$


## APPENDIX B2

- Report on the Attendance of a Staff Member at. an ${ }^{c}$ In-Depth Computer Training School

A REPQRT ON MR. DARRELL PELLEY'S ATUTENDANCE
AT THE WANG LABORATOREES IN-DEPTH COMPUTER TRAINING SCHOOL Fëbruary 12, 1975

With the installation of the computer system at Glasgow High School in the fall of 1974, it quickly became evident that there was a need for at least one person to have in-depth training on the system. 'This was especially crucial if the hardware was to be used effectively in furthering individualization in the areas of mathematics and science. Thus, the funds which remained from the Del Mod "Humanizing Mathematics and Science" Project were used to send Mr. Darrell A. Pelley, to the five day in-depth training school at Wang Laboratories located in Tewksbury, Massachusetts.

Mr. Pelley attended the school during the week of February 3, 1975. This particular week wa chosen in order that his training would be accomplished prior to the first district-wide inservice day. This was necessary because Mr. Pelley was scheduled to conduct a workshop on computer education on those days.

Mr. Pelley's reaction to the school was excremely positive. He related that the class size was limited to eight participants. Also, an attempt was made to create a group with different backgrounds and varied application interest areas. Thus, he was the only educator in his group and had an opportunity to interact with people involved in military, medical, industrial, and construction applications.

The training Mr. Pelley received was very valuable for him personally. His expertise can also be tapped as the district moves forward with its plans for computer education.

Funds e.:pended for Mr. Pelley's training were as follows:
A. Tuition $\$ 385.00$
B. Travel and Motel . 209.11
C. Substitution $\underline{\underline{130.00}}$

TOTAL $\$ 724.11$
mhh

APPENDIX B3 a

Spring Computer Inservice Workshop Class List

## ATTENDANCE VERIFICATION FORM

DATE: $\qquad$

## Participants:

Carol Brown, GHS
Ted Miller, GHS
Darrell Pelley, GHS
Ron Hull, ${ }^{\circ}$ CHS
Dock Williams, GHS
G. Alderson, NHS
M. A. Paley, NHS
L. Bartle, NHS
M. Doughty, NHS
R. Feikls, NHS

Glenn Craig, Smith
William Lewis, Chris-Salem
Kathy Williams, Gauger
Barbara Jones, Gauger
Georgia Cressman, Gauger
Faye deFarkas, McVey
Nicole Fer, GHS
Elaine Matt, Gus
Carl Jacobson, GHS
John Persinger, Sterck

Jack Baldino, CHS
Kathleen Elliston, CHS
Steven Palmer, CHS
William Murphy CHS
Bill Johnstone, NHS
Ken Klimek, CHS
Lois Watson, GHS

ADD:
RODNEY ART NI AS
Janice yonne GHS
JOAN EESSLER GUS
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
 $\xrightarrow{2}$

please verify your attendance on this date by initialing next to your name.

Verified by:
GROUP LEADER
DATE
Return completed form to: DIRECTOR OF IINSTRUCTION
mph
228

APPENDIX B4

Spring Coraputer Inservice Workshop Objectives

COMPUTER WORKSHOP
No. 22
February 14, 1975

## . I. The objectives of this workshop

A. $\%$ For participants who know little or nothing about computers and BASIC language:

1. Learn some elementary BASIC commands and proEramming techniques.
2. Practice programming the Vang 2200 and use some of its peripherals.
3. Discover some tasks that Glascow's Wang system can do for you and your subject area.
E. For participants who know BASIC and are already familiar with a computer system:
4. Learn how to operate Glasgow's Wang 2200 system.
5. Use your knowle lage of BASIC and programming techniques on the 2200 to"learn of its specific powers (and Iimitarcions).


Spring Computer Inservice Workshop Assignment Sheets

A SIC

1. $3+\div+6$
2. $2(5+7)-3$

3: $5(2 i), 5^{2}, 5^{10}, 5^{50}$
4. $\sin \frac{\pi}{3}, \cos \frac{\pi}{3}, \tan \frac{\pi}{4}$
5. $\sin 60^{\circ} y \operatorname{cox} 60^{\circ}, \tan 45^{\circ}$,
6. LET $X=5$

PRINT X
7. $\operatorname{IET} X \dot{=} X+1$
8. A B C8 C28 XY DD FF Wi NI 1 N 2 H7 OS II JG IOU Fl $3 \times{ }^{1} .1$
9. ${ }^{10} 10$ "LET X $=1$

20 PRINT $\bar{x}, X \nmid 2, X 13$
30: $\operatorname{LET} X=X+1$ 40 GO TO 20
＊

THEN
conditional branch
transfers to given line if condition is sałisfied， otherwise goes on to next line．

END：
stops program execution and disnlays amount of available memory．

PRINT＂
characters enclosed in quotes are displayed on screen．
－SAVE
stores clirrent program on tape
－IOAD
places previously saved program． from tape into computer menory

PRIN＇；
semicolon causes fields
to be ignored and output
is packed together．

INPUT
causes computer to stop execution and await operator input．Displays question mark．

10 $x=1$

$30 x=x+1$
40 IF $x$＜ 10 THEH E！
Sil ENII

```
    #2
10 }\because=
こ0 FRINT 汭 E*O, Xtご, ごふ
30}=\therefore+
40 IF }X<10\mathrm{ THEN E0
EIO ENII
```

15 FRINT "HidMEEF". "DJuPleg", "SOM:

+ 3
$10 \%=1$
E0 $\because=E$
30 Z $=3$
40 FRINT 8 Bソ:
F. 4
$10 \therefore=1$
$20=E$
$30=3$
40 FFINT NGY:
50 FFINT $X: Y$ :
伴 5
INFUT $\therefore$, $\because$,

50 FFIINT X: Y:


## GRADES


(3)

FOR $\quad$ TO

provides automatic looping

NEXT
" ", same as PRINT " and INPUT
";
INPUT

Tray variables
lists of related quantities may be given a single name. egg.


DIM
$A(n)$
reserves computer space for an array of $n$ elements.
string variables
same as variables except store strings of characters in the "box" instead of values

## (4)

5. IIM Es

10 PRINT "ENTER DEGREE"
50 FOR I = 1 TR E
ES PINT "TEST "; I;
3 INPUT GuI:
40 $\quad=\mathrm{s}+\mathrm{BCD}$
sin fiext I
Gi) $A=S$
PO PRINT "HUE = "; A

## APPENDIX B6

Invitations for Computer Informational Meetings
.

230

NEWARK SCHOOL DISTRICT OFFICE OF INSTRUCTIONAL SERVICES NEWARK, DELAWARE

May 5, 1975

MEMORANDUM TO: Mr. Ott, Christiana High Mr . Stockebrand, Newark High

FROM: F. Neil Walzi fir

- Supervisor of Mathematics

RE: Visitation to Glasgow Computer Facilities

We are having a short workshop on Wednesday, May 104, at Glasgow High for the purpose of giving staff members of Christiana High and Newark High an opportunity to see and try the computer facilities there. If you or any members of ycur staff are interested in attending, we will start about 3:15 in Room $M-208$ and continue as long as necessary.

Some of your staff members are already familiar with the equipment because they attended the district in-service workshop or are serving on the district computer education committee. However, there are probably others who also have an interest in computer education.

This meeting, while of interest to Math and Science teachers, should not be considered as exclusively for them. It is open to all staff members. If any are interested, please tell them they are welcome to attend. It is not necessary to pre-register, but if you get an approximate count, please let me know.

Thank you.

FNW/Clp
cc: Mrs. Bonney
Mr. Freidly

NEWARK SCHOOL DISTRICT
OFFICE OF INSTRUCTIONAL SERVICES
NEWARK: DELAWARE

May 5, 1975

MEMORANDUM TO: Mr. Bab, Shue Middle School Mr. Levy, Ogletown Middle School

FROM: F. Neil Walzl Mo.
Supervisor of Mathematics
RE: VISITATION TO GLASGOW COMPUTER FACILITIES

We are havings a short workshop on Wednesday, May 21 at Glasgow High for the purpose of giving staff members of Christiana High and Newark High an opportunity to see and try the computer facilities there. If you, or any member of your staff, are interested in attending we will start about 3:15 in Room M-208 and continue as long as necessary.

Some of your staff members are already familiar with the equipment because they attended the District inservice workshop or are serving on the District computer education committee. However, there are probably others who also have an interest in computer education.

This meeting, while of interest to Math and Science teachers, should not be considered as exclusively for them. It is open to all staff members. If any are interested please tell them they are welcome to attend. It is not necessary to pre-register, but if you get an approximate count please let me know.

Thank you.

FNW/cip

```
cc: Mrs. Bonney Mr. Freidly
```

NEWARK SCHOOE DISTRICT
OFFICE OF INSTRUCTIONAL SERVICES
NEWARK DELAWARE

May 5, 1975

MEMORANDUM TO: Dr. Ferguson, Central Middle School Dr. Thompson, Gauger Middle School

FROM: F. Neil Walzl Supervisor of Mathematics

RE: VISITATION TO GLASGOW COMPUTER FACILITIES

We are having a short workshop on Thursday, May 22, at Glasgow High for the purpose of giving staff members of Christiana High and Newark High an opportunity to see and try the computer facilities there. If you, or any members of your staff, are interested in attending, we will start about 3:15 in Room M-208 and continue as long as necessary.

Some of your staff members are already familiar with the equipment because they attended the District inservice workshop or are serving on the District computer education committee. However, there are probably others who also have an interest in computer education.

This meeting, while of interest to Math and Science teachers, should not be considered as exclusively for them. It is open to all staff members. If any are interested, please tell them they are welcome to attend. It is not necessary to pre-register, but if you get an approximate count, please let me know.

Thank. you.

FNW/clp
cc: Mrs. Bonney Mr. Freidly

Proposal for Summer Computer Workshop for Teachers

239

NEWARK SCHOGI, DISTRICT
OFFICE OF THE DIRECTOR OF INSTRUCTION

- NEWARK, DELAWARE
MEMORANDUM TO: $\quad$ Neil Walzl
FROM: Catharine Y. Bonney
RE: WORKSHOP PROPOSAL - Staff Development, Computers

We art in receipt of your request for funds to conduct a workshop. Approval has been granted for this proposal in the amount of \$ 2,506.50

Grant is awarded pending receipt of the following:
$\mathrm{X} \quad$ List of participants by name. Please indicate if the person is a workshop coordinator/leader and should receive $\$ 8.10$ per hour, a participant and should receive $\$ 5.30$ per hour, or under contract and should receive no additional pay;

Name, title, social security number, and DELAWARE: LICENSE NUMBER of paid resource persons/consultants. Their function and remuneration rate should be spelled out: CONSULTANTS MAY NOT BE: EMPLOYED UNLESS THEY HAVE A DELAWARE LICENSE NUMBER AND HAVE: SIGNED A CONSULTANT CONTRACT (Available upon request from this office).

Copies of materials and curriculum guides developed. (These may be submitted at the conclusion of the workshop) ;
plans and procedures for evaluation of the workshop:
$\qquad$ Upon completion of the workshop, a workshop evaluation and attendance record report should be submitted:
$-\frac{x}{x}$

Finalized Agenda including dates, times, and locations
THIS GRANT WILL EXPIRE, ON July 18,1975
Funds not encumbered through this office by $7 / 18 / 75$ will revert without further notice.
please notify this office of any. change in workshop dates which might affect this grant.

ADDITIONAL COMMENTS:
X_ Initial report due July 18,1975 Final report due December, 1975

1. Person(s) Making Request $\qquad$ F. Neil Walzl

Administration Building Type of Request: Check appropriate line in BOTH Column $A$ and $B$

Column A
$x$ stafr development

- program development

EOR OFFICE USE Approved: $\qquad$ Date:
Amount:
t: $\qquad$
histial Report Due: $\qquad$
Final Repori Due: $\qquad$
Funds Revert: Column B
$\square$ school level
$x$ district level

Respond as carefully as possible to each of the following questions:
A. Statement of the problem to be considered;
B. . 1. List the alternatives you have already attempted as a means of dealing with this problem;
2. List any activities that others in the district or elsewhere have already undertaken to deal with the problem;
C. List your major goals and objectives in the following areas:

1. preparation of instructional materials, curriculum guides, course oûtlines, etc.;
2. What new or improved competencies do you expect teachers to have as a result of this activity;
3. What new or improved competencies do you expect students to have as a result of this activity:
D. Describe the activities to be carried out (include a copy of the program or an agenda, whichever is applicable);
E. Given the response to $B$, why is the activity you proposed in $D$ needed?
F. Evaluation:
4. Describe the procedures for evaluating the activities (upon completion of the activity);
5. Describe the procedures you will use, and determine the date for final evaluation concerning:
a. degree of success in achieving the aims listed in $C$; b. impact on the school program, including student and/or staff behavioral changes.
IV. Reports:
A. A report of your activities, including the evaluation results described in $F 1$, will be due one week after the activities are concluded.
B. A final report will be due upon completion of your final evaluation.
REQUESTS SUBMITTED ON FORM \#1004 WILL BE CONSIDERED AS FOLLOWS:
Requests for fall inservice" (up to Christmas break) will be reviawed the third Monday in September
Requests for winter inservice (after Christmas break) will be reviewed the third Monday in November
Requests for summer inservice will be reviewed the third Monday in March
V. BUDGET (include breakdown by categories, i.e.. participants, resource persons, materials, etc.)

| Categóries | Justification * | Amount ** |
| :---: | :---: | :---: |
| Personnel: <br> Leaders <br> 1 | 15 hours $08.10 / \mathrm{hr}$. <br> To conduct the workshop \& provid the necessary leadership. $\qquad$ <br> 5. | \$121.50 |
| Participants <br> 30 Teachers | 15 hours at $\$ 5 \cdot 30 / \mathrm{hr}$. <br> Partipants will learn the techniques necessary to apply computer concepts in their classrooms. | $\begin{aligned} & 2430.0 \\ & \$ 2,385.00 \end{aligned}$ |
| Resource Persons <br> Supervisor of Mathematics | - | - |
| Released time Substitutes $\cdots$ |  | - |
| Materials \& Supplies |  |  |
| Clerical and Other | . |  |
| TOTAL |  |  |

* Justification for each Budget category should be presented in terms of the tasks to be accomplished, services rendered, etc., and in relation to the realization of the major goals and objectives, by number, listed in $C$.

Participant amounts should reflect the state scale and the degree of involvement of the participants.


A REQUEST FOR STAFF DEVELOPMENT FUNDS
FOR THE SUMMER OF '1975
TO TRAIN TEÅCHERS TO USE COMPUTERS
III. $A \& B$. In order for students to meet the updated goals and objectives for computer education in the district, there is a need for additional teacher training in the field of computer education. In the past the training of teachers in computer education has been largely lamited to'mathematics and science teachers. Through courses which have been offered at the University of Delaware, many math and science teachers have been trained in computer programming, but there has been no training in the actual utilization of computers in the curriculum of the district. Furthermore, the training that has been received by teachers has been highly theoretical in nature. Activities attempted elsëwhere in training people in computer education have been also largely limited to mathematics and science teachers. Thus, the problem is two fold. One, to involve teachers otber than mathematics and science teachers in the field of computer education and two, to instruct all teachers, including mathematics and science teachers, as to how computer education activities can be incorporated into their classroom teaching techniques.
C. A list of the major goals and objectives are as follows:

1. Teachers will be able to access and utilize canned programs for - computer education.
-2." Teachers will be able to make simple computer programs which can be, used in their classroom.
2. Teachers will utilize their computer programming techniques and knowledge of canned programs, etc. in their existing courses to add a dimension to these courses which will help students meet the goals and objectives of the district in,
D. Activities will include a 15 hour workshop designed to:
3. Teach teachers how to access existing compuţer faciḷities.
4. Teach teachers how to, write simple
computer programs.
5. Teach teachers how to utilize computer programming techniques and canned computer programs in their courses.
6. Make teachers aware of those things that exist in the computer education field which are applicable in their own subject areas.

The tentative dates of the workshop will be June 23-27 inclusive.
E. This kind of activity is needed due to the fact that there are no other places to which teachers can turn to learn how computer education can be specifically used at the high school level. Activities or, courses which are offered at the university level are usually directed toward indepth computer programming or specific topics in mathematics related to computer programming. There have been no offerings at that leveI which teachers can turn tio to learn about the implementation of computer education in their courses.
F. Evaluation techniques will include the following:

1. Participants will ${ }_{z}$ evaluate the degree to which the workshop met the objectives as spelled out on the first day.
2. A follow-up study will be conductèd during the fall of the year by, the supervisor of mathematics to determine if the techniques learned'by the teachers during the workshop are being utilized in their courses.

3: A follow-up stidy will also be done during the school year to determine if there are additional students invo? ved in activities in computer education.
A. A report of the activities of the workshop will be completed and submitted approximately one week after" the summer, workshop activities have concluded:
B. A final report will be submitted at the end of the first semester of the 1975-76 school year.

FNW: bap
4/25/.75

APPENDIX B8
. Requést' to Principals to Identify Summer, Computer Workshop Participants


## NEWARK SCHOOL DISTRICT

 OFFICE OF INSTRUCTIONAL SERVICESNEWARK, DELAWARE

May 8', 1975

MEMORANDUM TO: Mr. Ott, Christiana High
Mr. Wolf, Christiana High
Mr. Brandt, Glasgow High
Mr. Comer, Glasgow High
Mr. Stockebrand, Newark High
Mr. Musselman, Newark High
FROM: F. Neil Walzl hel
Supervisor of Mathematics
. RE: Computer Training Workshop for Teachers

Approval has been granted by the district for a 1.5 hour computer training workshop for teachers. This workshop will be held from l:00 p.m. to 4:00 p.m., on June 23-27, inclusive. The site will be.Glasgow High School, Room M208.

Each school can send 10 participants. No credit will be given, but participants will be paid at the rate of $\$ 5.40$ per hour.

The choice of whe you send is yoursbut; I would encourage you to send teachers representing as many departments as possible. In particular, the business department should be represented. Pafticipants do not need to have a mathematical background only a desire to learn something about computer education.

Would you please send me a list of those planning to attend by June 2, 1975.

Also, you or any of your administrative staff are most welcome to attend. If any administrators do plan to attend, do not count them as part of the 10 positions allocated unless they are 10 month employees.

Thanks.
FNW: bap

PLEASE RETURN BY JUNE 1,1975 TO F. NEIL WALZL, ADMINISTRATION

$$
\frac{\text { Participants for Computer Training Workshop }}{z}
$$

Name

1. $\qquad$
2. $\qquad$
$\qquad$
3. $\qquad$
$\qquad$
4. $\qquad$
$\qquad$
5. $\qquad$
$\qquad$
6 $\qquad$
$\qquad$

$\qquad$
6. $\qquad$
$\qquad$
7. 



## APPENDIX BS

- Invitation to Summer Computer Workshop Participants

May 30, 1975

Dear
The following information pertains to the computer training workshop which you will be attending.

> Place - Glasgow High School, Room M-208
> Dates - June 23-27, 1975 inclusive
> Time - l:00 p.m. 4:00 p.m.
> Rate of Pay - $\$ 5.40$ per hour
> Instructor - Carl Jacobson, Glasgow High Mathematics Teacher

The purpose of the workshop will be to familiarize you with the equipment at Glasgow High School and to consider ways you might incorporate the use of the computer into your instructional strategiss. The instructor will assume that you are entering the "world of computers" at point zero so don't be concerned if you, have no previous experience.

If you find that you cannot attend, please let me know as soon as possible.

If I don thear from you, I will assume you will be attending and will expect to see you at Glasgow High on June 23rd.

Sincerely,

```
Neil Walzl
Supervisor of Mathematics
```

FNW/mhh

PARTICIPANT LIST
I. CIRISTIANA HIGH

## NAME

1. Ralph Graham
2. Edwin Stowell
3. Srace Owen
4. Howard Gerkin
5. Anna Billey
6. Peter DeWitt
7. Richard Groo
8. Robert Hable
9. Myrod Lazarus
10. Thomas Mahler
11. Kristine Rosenberger
12. Kenneth Williamson
II. GLABGOW HIGH
13. Hubert Prettyman
14. Frances Dickerson
15. Jane McFann
16. Suzanne Steinberger
17. Judith Gushman
18. Elaine Matt
19. Thomas Stewart
20. Sally Bowser
21. Phillip Dewrese
22. Nancy Pierce
23. Cheryl Wheatley

## III. NEWARX HIGH

1. Claix Clawson
2. Willfam Narifison
3. Charlene Coder
4. Rodney Hart
5. Barbara Rendall
6. Kenneth Weinig
7. Michael Doughty
8. Michael Epler
9. Harry Hudson
10. James Octo

DEPARTMETH
Scimana
Sci.ance
Buefness Education
Mathematica
EnsIIsh
Englimh
Englieh
Social Studies
Social 8tudiea
Social Studies
Social Studies
Social Studies

Business Educetion
Reading
Eng11ah
Eng11ak
Social Studian
Social Serodia
Social Studies
Phyelcal Eduention
Phymical Education
Comaciling
Special Education

Science
Science
Buininess Education
Mathamatics
Mathematice
English
Social Studies
Soclal Studies
Socisl studies
Industrial Arte
mhb
6/16/75
I. CHRISTIANA HIGH SCHOOL

NAME

1. Ralph Graham
2. Grace Owen
3. Anna Billey .
4. Peter DeWitt
5. Richard Groo
6. Robert Hable
7. Myron Lazarus
8. Thomas Mahler
9. Kenneth Williamson

## DEPARTMENTS

Scleace
Buainess Education
Eng118h
English
English
Social Studies
Social Studies
Social Studies
Social Studies

Business Education
Reading
Engliah
Enolish
Social Studies
Social Studies
Social Studies
Physical Education
Mhysical Education
Counseling
Mathematics

## Science

Science
Business Education
Mathematics
Mathematics
Eng11sh
Social Studies
Social Studies
Social Studies
Industrial Arts

## APPENDIX B11

Summer Computer Workshop Agenda, Objectives, and Worksheets

## COMPUTER WORKSHOP FOR TEACHERS

June 23-27, 1975

AGENDA*
I. Introduction
II. Objectives of the Course
III. "The World of Computers" - An Overview
IV. Computer Applications at Glasgow High School
V. An Introduction to the Wang Computer "
VI. The Power of Computers
VII. The Limitation of Computers
VIII. The Wang Computer in the Immediate Mode
IX. Communicating with the Computer $s$ BASIC Commands
X. Computer Goals and Objectives for the Newark Schooi District
*Due to the nature of the workshop and the varied backgrounds of the participants, the order of items might be changed and/or items can be modilied.

## I. For all participants

To develop an awareness of the role of computers in education and administration.

To provide each participant with minimal "hands on" computer experience with the WANG 2200 system.

To expose the capabil.ities and limitations of an "in. huuse" system.

To consider the usefulness of the computer as a tool with many educational and administrative applications.

To introduce each participant to the BASIC language and some elementary programming techniques.
II. For participants already familiar with BASIC and a computer system

To learn to operate the WANG 2200 and its peripheral devices.

To utilize the participants'existing programming knowledge to learn the specific power's and weaknesses of the "in house" system.
-
mhh 6/19/75

256

BASIC

Vocauulary
PaInT
$+,-, *, 1, \uparrow$
order: ()


ABS, I:M, SNA, IOG, EXP, SGN
SII, $\cos , \operatorname{TAN}$, ARC
SELECT $\stackrel{\text { 「 }}{\mathrm{g}}$

LaT
Assimment statemeni
Variables: letter letter digit:
-RESE:
i. Ciears screen
-CLEA?
․ Ciears screen
2. Removes all program statements
j. Initializes all variables

Line numbers
From I to 9999
GO TO
Unconditional branch
-RUN
-HALT/ Instru
Execute program statements
Execute program one line at a time -RESE:
2. Halts program execution -LIST
neprintis ail current program statements

Exercises

1. $3+4+6$
2. $2(5+7)-3$
3. $5(2), 5^{2}, 5^{10}, 5^{50}$
4. $\sin \frac{\pi}{3}, \cos \frac{\pi}{3}, \tan \frac{\pi}{4}$
5. $\sin 60^{\circ}, \operatorname{cox} 60^{\circ}, \tan 45^{\circ}$
6. LET $X=5$

PRINT $X$
7. $\operatorname{LET} X=X+1$ PRINT X
8.

$$
\begin{array}{lllll}
A & B & C 8 & C 28 & X Y \\
2 D & 5 F & W 8 & W 13 & W 2 \\
H 7 & 09 & \text { II } & \text { J9 } & \text { IOU } \\
\mathrm{F}-2 & 3 & X 3.1 &
\end{array}
$$

9. 10 LET $X=1$

20 PRINT X, XY2, XT3

| 30 | IET $X=x+1$ |
| :--- | :--- |
| 40 | TO 20 |

```
IF TH`N
    conditional branch
    transiers to given line if
    condition is satisfied,
    otherwise goes on to next
    line.
```

END
siops program execution and displays amount of available memory．

PRINT
＂
characters enclosed in quotes are displayed ors screen．
－SAVE
stores current program on tape
－LOAD
places previously saved program from tape into computer memory

## PRINT；

semicolon causes fields
to be ignored and output
is packed together．

## INPUT

causes computer to stop execution and awaic operator input．Displays question mark．

H3
10． $\mathrm{X}=1$
$20 \quad y=2$
$30 \geq=3$
PRINT X，Y，z
$\neq 4$
$10 x=1$
$\Sigma 0 \quad y=E$
$30 z=3$
40 FRINT X，Y，Z
$10 X=1$
20 PRINT X，2＊X，X个2；こ个ห
$30 x=X+1$
4il IF $X$＜ 10 THEH 20
$50 \cdot$ END
－ $1+2$
$10 x=1$

$30 x=x+1$
to IF $x<10$ THEN 20
50 END
15 FRINT＂NUMEER＂．＂DGURLED＂，＂SOKA

PFINT X：$Y: Z$
\＃ 5
Gil INPUT $x, y, z$
40 PRINT $X: Y, z$
50 FRINT X：Y；Z


APPENDIX B12

Glasgow High School Summér Workshop Proposal

$$
230
$$

NEHARK SCHOOL DISTRICT Newark y Delyaware

DHTE SUBMITTED:__Apri1 23, 1975

Person(s) Maki.ig Request

Glasgow High School

Type of Request: Check appropriste line tin Bowicolunn and Column A staff development program development
$\frac{C o l u m n}{X}$ B district level
A. Statement of the problem to be considered:
B. 1. List the alternatives you have already attempted as a means of dealing with this problem;
2. List any aetivities that others in the dietrict or elsewhere have already undertaken to daal with the problem;
c. List your major goals and objectives ir the following areas:

1. Preparation of instructional materials, curriculum guides, course outlines, etc.:
2. What new or improved competencien do you oxpect teachers to have as a result of this activity;
3. What new or improved competencies do you expect students =o have as a result of this activity,
D. Descripe the activities to be carried out (include a copy of the program or an agendia, whichever is applicable):
E. Given the response to $B$, why is the activity you proposed in $D$ needed?
F. Evaluation:

1: Describe the procedures for avaluating the activities (upon completion of the activity):
2. Describe the procedures you will use', and determine the date for final evaluation concarning:
a. degree of success in achieving the aims listed in C; b. impact on the school program, including student and/or staff behavioral changes.
A. A report of your activities, including the evaluation results described in F 1, will be due one woek after the activities are concluded.
B. A final report will be due upon completion of your final evaluation.

## REQUESTS SUBMITTED ON FORM 1004 WILL BE CONSIDERED AS FOCEOWS:

Rcquests for fall inservice (up to Christmas break)'will be reviewed. . the third Monday in September
requests fur iinitar ingervice (After Christmas break) will be reviewed the third Monday in November
Requests for sumer inservice will be reviewed the third Monday in Marcin

V: BUDGET

Categories


* Justification for each budget category should be presented in terms of the tasks to be accomplished, services rendered, etc.. and in relation to the realization of the major goals and objectives, by number, listed in $C$.
Participant amounts should reflect, the state scale and the degree of involvement of the participants.


Return in Duplicate to:
Director of Instruction
Administration Building
nth
4. The opening of school in September, 1975"at Giagow High will require further conedination and refinement in the Mathematics curriculutin in preparation for the implementation of a full, four-year mathematics program. The following program areas need special consideration:

1. 'rimation of added staff members regarding departmental structure, procedires and policies, and curriculum.
$\therefore$ Refine existing and generate new procedures and policies for sequential course offerings.
2. Finalize course objectives and outlines for the new courses of the expanded mathematics program.
3. Develop methods to integrate computer usage and application within the entire vurriculur.
R.
4. Freliminary work has been doen through present school-year department work. llowe:cr, nur situation now warrants a full-time concentrated department effort.
5. Wi:han the district, the other mathematics prograns are on-going but our comem is in the development of totally new course offerings. popegailes
3 A Disixicr armitito
Lirite cmurse outlines and objectives for:
a. Calculus
h. Trigonmetry/Analysis of Functions
$\therefore$ Intermediate Algebra
6. 


: H Wite and expand existing course objectives.

1. Fimmlate specific recommendations for sequential courses regarding student nl:cement and earned credits.
i. 'rient the inconing department members regarding:.,
a. lepartment curriculum
b. available rescurce and supplemental materials
c. departmental philcsophics and policies
II. Activities:
2. Deparment discussions and identification of problem-areas.
$\therefore$ Small-group work to cevelop recomended solutions.
3. Deparonent review and finalization of recommendations.
4. Small-groum work on new course outlines and objectives,

$$
\text { Fin: Attachment Page } 2
$$

5. Present deparment members will wort hdivitudily with incoing departinent members to apprise them of availability and location of necessapy as well as supplemental teaching materialsh
6. The problems and situations described in "A requiresaditional time and concentrated efforts beyond weekly departinent sessions.
7. It the conclusion of the entire session, revised and new course outlines, obectives, and departmental policies will be presented te the appropriate issociate Principal for his approval and/or modification.

## APPENDIX B13

Christiana High School Summer Workshop Proposal

Initial Report Due:
Final Report Due: $\qquad$
Funds Revert:
$\qquad$ Christian High School
Person (s) Making Request
Name
School
Type of Request: Check appropriate line in BOTH Column $A$ and $B$ $\begin{array}{ll}\text { Column } A & \text { Column B } \\ X \text { staff development } & \text { school level } \\ X \text { district. level }\end{array}$
Respond as carefully as possible to each of the following questions: A. Statement of the problem to be considered;

* B. 1. List the alternatives you have already attempted as a means of dealing with this problem;

2. List any activities that others in the district or elsewhere have already undertaken to deal with the problem;
C. List your major goals and objectives in the following areas:
3. Preparation of instructional materials, curriculum guides. course outlines, etc.:
4. What new or improved competencies do you expect teachers to have as a result of this activity;
5. What new or improved compecencies do you expect students to have as a result of this activity:
D. Describe the activities to be carried out (include a copy of the program or an agenda, whichever is applicable);
E. Given the response to $B$, why is the activity you proposed in $D$ needed?
F. Evaluation:
6. Describe the procedures for evaluating the activities (upon completion of the activity);
7. Describe the procedures you will use, and determine the date for final evaluation concerning: a. degree of success in achieving the aims listed in $C$; b. impact on the school program, including student and/or staff. behavioral changes.
Reports:
A. A report of your activities, including the evaluation results described in F 1, will be due one week after the activities are concluded.
B. A final report will be due upon completion of your final evaluation.
REQUESTS SUBMITTED ON FORM 1004 WILL BE CONSIDERED AS FOLLOWS:
Requests for fall inservice (up to Christmas break) will be reviewed the third Monday in September
Requests for winter inservice (after Christmas break) will be reviewed the third Monday in November
Requests for summer inservice will be reviewed the third Monday in March
V. BUDGET (include breakdown by categories, eiceparticipants, resource persons, materials, etc.)

| Categories | Justification * | Amount * |
| :---: | :---: | :---: |
| Personnel: <br> Leaders <br> 2 | John J. Baldino - Steven C. Palme to conduct, the workshop and provide the necessary leadership 60 hours ac $\$ 8.10 / \mathrm{hr}$. | \$ 486.00 |
| Participants <br> 6 for 3 days | Participants will learn to use computers and how to apply them effectively, in their classrooms. 108 hrs. at $\$ 5.40$ per hour | $583.20$ |
| Resource Persons <br> Supervisor of Mathematics | . ${ }^{\text {- }}$ |  |
| Released time Subs.titutes | . ${ }^{\text {- }}$ | -- |
| Materials \& Supplies 20 computer tapes | - . | $25.00$ |
| Clerical and other |  |  |
|  | TOTAL " | \$1.094.20 |

* Justification for each budget category should be presented in terms of the tasks to be accomplished, services rendered, etc.. and in relation to the realization of the major goals and objectives, by number, listed in $C$.
** Participant amounts shquid reflect the state scale and the degree of involvement of the participants.


Return in Øuplicate to:
III. A. Wi.th the proposed acquisition of computers for Christiana High School, there is a need to orient more fully the mathematics staff to their capabilities. in order that effective utilization be achieved throughout the year. In addition, there is a need to adopt existing programs to the hardware and determine where these will fit into the existing mathematics curriculum at Christiana High.
B. 1. Alternatives had not been attelinted previously because the hardware was not available:
2. Several Christiana mathematics teachers have attended an introductory workshop on the hardware during the 1974-75 district-wide inservice days. In addition, others will be attending an introductory course which will be conducted during the summer of 1975 .

The developments of the district-wide computer objectives writing workshop and the work of the Glasgow High staff during the 1974-75 school year will be used as input for this workshop.
C. 1. At the completion of the workshop each teacher will:
a. demonstrate his ability to access "canned programs."
b. demonstrate his knowledge of programming techniques.
c. demonstrate his ability to cope with normal technical machine peculiarities.
d. demonstrate his ability to write a sample program.
2. At the completion of the workshop, each teacher will demonstrate his ability to function as a lab supervisor for the purpose of helping students to overcome difficulties they will encounter : regarding machine operations and programming problems.
3. At the completion of the workshop, a set of "canned programs" for classroom applications will have been prepared and debugged. Where appli-

* cable, "canned programs" would have been modified and improved.

FUNDING REQUEST FOR PROGRAM
AND STAFF DEVELOPMENT ACTIVITIES
4. At the completion of the workshop, a list of additional applications (with a description and outline) that are not available will have been compiled.
D. Agenda

August 25, 1975
Participants: John Baldino, Steven Palmer
Time: 8:30-3:30
Place: Christiana High School
Activities: 'Preparation, organization, and final planning for workshop
Test machiñes for proper working conditions ${ }^{\prime}$
nabugging of existing 1 Iibrary functions
Duplicating and translating personal programs developed for the Delta - system from paper tape to casettes

August 26, 27, 28, 1975
Participànts: John Baldino, Steven Palmer, Mary Pritchett, Franklin Sykes, Howard Gerkin, Linda Davidson, Teacher X, Teacher Y.

Time: 8:30-3:30
Place: Christiana High ${ }^{\text {TSchool }}$
Actidities: Familiarize staff with existing "canned programs."

Familiarize staff with methods of accessing "canned program."

Instruct staff on general machine operation, programming techniques, and knowledge necessary to function as a lab supervisor.

Compile a list of classroom applications with a description and outline for each.

Modify and improve existing programs.

August 29, 1975
Participants": John Baldinọ, Steven Palmer
Time: 8:30-3:30
Place: Christiana High School

* Activities; Outline department activities relating to computer education for the 1975-76 school year.

Start writing and debugging. suggested programs for classroom applications which were compiled during the previous workshop days.
E. In order for all teachers to utilize the computer hardware immediately, the necessary per-planning must take place before the start of the 1975-76 school year and should involve as many of the staff members as possible.
F. 1. Each participant will be evaluated on an individua? basis to determine if he has achieved the objectives listed in C1 and C2.
2. "Canned programs" which have been modified or developed will be judged by the supervisor of mathematics on the merits of their applicability and usability.
3. Written documents which will be prepared will be judged by the supervisor of mathematics to determine if they are consistent with district format and are applicable in other schools.
4. Participants will evaluate the degree to which the objectives of the workshop have been met.
5. A follow-up study will be done to ascertain the degree of utilization by students and teachers during the 1975-76 school year. (This will be incorporated in the existing method of determining the utilization of the mathematics laboratory.)
$\cdot m h h$

THE DEVELOPMENT AND IMPLEMENTATION OF A DISTRICT COMPUTER EDUCATION PROGRAM

## APPENDIX $C$

Student Involvement

1
C1 School Newspaper Article Advertising Mini-Courses
C2: Invitations Sent to Students for the Mini-Courses
C3: Mini-Course Class Lists
C4: Student Materials for Mini-Courses
C5: Tape Cassette Check-Out List
C6. Additional Check-Out Lists
C7: Samples of Student Generated Programs
C8: "Mathematics Through the Computer". Course Guide
C9: Summer School Catalog Description" for "Mathematics Through the Computer"

C10: Special Flyer for "Mathematics Through "the Computer:
Cll: "Mathematics Through the Computer" Class List
Cl2: Title of Programs Generated by Students Attending "Mathematics Through the Computer"

APPENDIX Cl

School Newspaper Article Advertising Mini-Courses
n

APPENDIX CZ

Invitations Sent to Students for the Mini-Courses
©

8

## TO



RUEM MEO8. WE GUSEESZZ


 FOP THE FIRST:MEETIMG:
-

## APPENDIX C3

Mini-Course Class Lists
3.
$27 \%$

## GLASGOW HIGH SCHOOL

SPRING, 1975
INSTRUCTOR; F. NEIL
COMPUTER MINI-CC OSE CLASS LIST

| Name | Hr. | Most Recent Math Course $\qquad$ | 1 | $\begin{gathered} \text { eric } \\ 2 \\ \hline \end{gathered}$ | $\begin{array}{r} \mathrm{d} \mathrm{~s} \\ \dot{3} \\ \hline \end{array}$ |  | $\begin{aligned} & b 1 \\ & 5 \\ & \hline \end{aligned}$ | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene Bradfield | 1602 | Algebra II (H) |  |  |  |  | $X$ |  |  |
| Michael Brown | 1803 | Basic Skills |  |  | $X$ |  |  |  |  |
| Art Bachman | 1701 | Geometry I | MWF |  |  |  |  | $X$ |  |
| Gary Baker | 1720, | Elem. Algebra II |  |  | $X$ | $X$ |  | MWF |  |
| Steve Bunvilfe | 1803 | Algebra I |  |  | $X$ | $X$ |  |  |  |
| Harry Blaine | 1802 | Algebra I | $x^{2}$ |  |  | X |  |  | $X$ |
| Fred Biesecher | 1802 | Elem. Algebra |  |  | $X$ |  |  |  | X |
| Della Banks | 1801 | Elem. Algebra |  |  |  | $X$ |  |  |  |
| Erick Bergstrom | 1601 | Algebra I |  |  |  | X |  | $X$ |  |
| Steve Borst | 1602 | Rec. Math |  |  |  |  |  |  | X |
| Jeff Cook | 1720 | Geometry |  | $\cdots$ |  |  | $X$ |  |  |
| Brett Carmine | 1602 | Algebra II |  | TRF |  |  |  | $X$ |  |
| Eairy Clement | 2710 | Geometry I |  |  |  |  | . | $X$ |  |
| Wade Catt | 1720 | Geometry I |  |  |  |  | MWF | $X$ |  |
| Ben Cameransi | 1602 | Algèbra II |  |  |  | $X$ |  |  |  |
| Greg Clinton | 1603 | Elem. Geometry | $X$ |  |  |  |  | $X$ |  |



[^2]230

## APPENDIX C4

Student Materials for Mini-Courses

COMPUTER MINI-COURSE
GLASGO'N HIGH SCHOOL
SPRING, 1975
Instructor: F. Neil Walzl

To The Student:
In this course, you will be learning to use the in-house computers located here at Glasgow High Schoon. The course will be informal: no grades will be given, no credit will be awarded, and your attendance (or lack of) will not be reported to the office.

We will spend only a minimal amount of time formally discussing various topics. The rest of the time you will be working independently for in small groups) with the hardware. However, I will provide you with help as the need arises.

The objectives I would like to see each of you master are as follows:

1. Initialize the computer.
2. Use the machine as a calculator.
3. Load a program from tape.
4. Save a program on tape.
5. Write a simple program without branching.
6. Write a simple program with unconditional branching.
7. Write a simple program with conditional branching.
8. Write a simple program with a loop.
9. Write a program which utilizes array variables.
10. Write a program which utilizes string variables.
11. Write a program which utilizes hex codes.

As you master the various BASIC commands, functions, and statements, it will be your job to let me know in order that I can "check out" your skills.

Finally, the attached materials are for your use. Keep them handy, but remember, they are only a synopsis of some of the BASIC commands, functions, and statements. For further information, use the books and manuals found here in the computer room.

WANG 2200 SERIES
I．KEY BOARD（MODEL 2215）


There are 5 zones on the keyboard
Zone 非 contains the BASIC language keyboard keys ard alpha and special characters．

Zone 非2 contains numeric entry keys．
Zone 非 3 contains the arithmetic operators，math functions，and the punctuation symbols．

Zone 非4 contains the edit and error correction keys．
Zone $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 5 contains the user defined special function keys：

II．USING THE SYSTEM AS A CALCULATOR
To use the system as a calculator，perform the following steps：
a．Tcuch the print key
b．Enter your calculation
c．Touch the execute key
The answer will automatically print．For example， to add $25+8$ ：
a．Touch DRINT
b．Enter $25+8$
c．Touch execute

The display will look like the following.
FRINT $25+8$ 33

Perform the following calculations.

1. $\quad 86.2+155.86$
2. $6723-1965$
3. $47 \div 16$
4. $52 \times 7$
5. The sum of 47.3 and 92.8
6. The product of 3,4 , and 5
7. 842 minus 681
8. The quotient of 481 divided by 3.2

## II. CALCULATOR FACTS

The system follows all the accepted rules associated with algebra.

The order of execution-is as follows:
a. Exponentation ( $\uparrow$ ) compùted first
b. Division (/) $\quad$ Multiplication ( $~$ ) $\}$ computed second
c. $\underset{\text { Addition }(+)}{(-)}\}$ computed third

Using these priorities, all expressions are evaluated left to right.

If you want to change the order of operations (execution), insert parentheses. You may insert as many sets of parentheses, as necessary.

For example, $25+3 * 7$ would equal 46 , while $(25+3) * 7$ would equal 196.

Note: Implied multiplication is not allowed. For example, $3 *(4+5)$ is correct, while $3(4+5)$ is not.

FLOATING POINT NUMBERS
When entering numbers, you are limited to 13 digits. If you want to enter very large or very small numbers, another format, referred to as floating
point, can be used. (You might be familiar with the special case called scientific notation.)

Examples of numbers represented in floating point are:
a. $\quad 6.02 \times 10^{24}$
b. $195 \times 10^{-18}$
c. $\quad 5.1 \times 10^{-5}$
d. $.016 \times 10^{5}$

These numbers would be entered in the following manner.

| a. | 6.02 E 24 |  |
| :--- | :--- | :--- |
| b. | 195 E 18 |  |
| c. | $5.1 \mathrm{E}-5$ |  |
| d. | .016 E | 5 |

The largest exponent you can use is 99 while the smallest is -99. The exponent, must always be an integer.

## V. ERROR DETECTORS

If you do not follow the established rules when entering numbers and formats, the system will automatically tell you by displaying an error message.

An error message on the screen will look like the following.

PRINT 3 * SQR(17
$T_{\text {ERR }} 05$
ERR 05 means that a right parentheses is missing. For a complete listing of the error messages, check the appeṇdix in the programming manual'.
vi. USING VARIABLES AND ASSIGNING Thim VALUES

The use of variables. is mathematical shorthand which allows you to assign a numeric value to a letter (variable) and use this letter in several. different expressions where the variable has the same value for each expression.

There are . 286 different variable names available. The names consist of a single letter (A-Z) or a letter and a digit ( $0-9$ ). These variables are called numeric scalar variables.

Example of legal variable names are: "

$$
A, B ; C, R 2, S 6, \widehat{Y} 0 .
$$

When a numeric variable is given a value, the process is called assigning it arvalue. numeric variable cán have only one value, fat a time. The format is as forllows:

$$
\begin{array}{ll}
X=25 & \stackrel{F}{F}=4 / 3 * झ P \dot{i} * 7 \uparrow 2 . \\
Y 6=30 & \dot{C}=S Q R(A \uparrow 2+B \uparrow 2) .
\end{array}
$$

The variable is always on the left hand sive off the equality sign and the value assigned, is always on the right. The equality sign must always be uşed:
VII. PERFORMING MORE THAN ONE CALCULATION PER LINE

It is possible to enter more than one statement per statement line. Simply separate each statement by a colon (:). By doing this you can take advantage of the size of the CRT (i.e. 64 characters per line) ${ }^{\prime}$.

The following example contains three statements.
PRINT 15: PRINT SQR (15): PRINT 15个 (1/3)
VIII. PRINTING OUT MORE THAN ONE VALUE PER LINE
A. Zored Format

The CRT display i. divided into four 16-space fields or zones.

To generate more than one output value per fine, with each value, in a separate zone, values are prinfed in a single PRINT statement, with commas sepafating the-values
237.

For example! PRINT 1, 2, 3, 4 would look like
1
2
3
4
on the CRT.
B. Packed Format

While a zoned format four values per line; a packed format enables you to prinf more than four values on one line. To generate packed formats, semicolons are used between each of the values.
For example, PRINT 1; 2; 3; 4; 5; 6; 7 would look like
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
on the CRT.
It is permissible to mix zoned and packed formats on the same line.

For example, PRINT "VALUE="; 50, ,"NEW VALUE=": 51 would. look like

VALUE $=50$. NEW VALUE $=51$
on the CRT.
C. The TAB function

The TAB function works like the tab stop on a typewriter. When the machine comes to a TAB (A) function, it spaces in A spaces automatically, and then proceeds to print the next part of the statement.

For example; PRINT TAB (20); 25 would look like (25 spaces) 25
'on the CRT ${ }^{\prime}$
The contents of the pareitheses of a TAB function can be any number or algebraic expression: For example, PRINT TAB ( $2 \uparrow 3$ ) would space in 8 spaces.
IX. LOOPING
A. Using the FOR-TO/NEXT statements

The FOR-TO/NEXT: type of loop consists of three parts. Part 1 consists of establishing the loop. Part 2 consists of any computation, etc. that you wish to do. Part 3 consists of the command to repeat the loop.

An example of this type of loop could look like the following:
For $\underbrace{x}_{\text {tart } 1} \underbrace{1}_{\text {to } 10}$ : $\underbrace{\text { PRINT } X}_{\text {Part } 2}$ : $\underbrace{\text { NEXT } X}_{\text {Part } 3}$
This loop would print the numbers 1 to 10 sone to a line.

The loop need not start at one, and the step can be changed by adding one additional command. For example,

FOR $X=3$ to 12 STEP. $5:$ PRINT $X:$ NEXT $X$
will generate 19 values ( $3,3.5,4,4.5, \ldots . .12$ ) and print them one to a line.

By inserting various punctuation symbols, you can change the printing format.

## X. FLOWCHARTING

When someone decides to write a program, one does not sit down and immediately enter the program into the machine. Rather, it is first necessary to begin by thoroughly analyzing the problem. Part of this process includes making a flowchart. A flowchart is a visual rep-esentation of all the steps required to solve a problem.

The common flowcharting symbols are:
An oval which indicates a starting or stopping operation.

Arrows $\longrightarrow$ which indicate the direction flow

A Rectangular Box $\square$ which indicates an operation A Diamond no which indicates a decision

A Circle

which indicates a continuation
A Cutoff Rectangle $\square$ which indicates a printout
or display.
$\square$

An example of a flowchart follows:

XI. S•IMPLE COMPUTER PROGRAMMING

After a problem is anaiyzed, the next step is to write a program. The only difference between using the system as a calculator or a programmable calculator is the use of statement line numbers. When a statement line number precedes a line, it immediately, indicates to the system that it is in the progranming mode. The use of a line number enables you to execute a line again and again.

Remember, each line must start with a statement number.

Statement numbers do not have to be sequential. In fact, it is to your advantage to leave spaces in order that $y_{i}{ }^{\prime \prime}$ can insert additional lines if necessary.

Before entering a program, you should clear the machine. There are 3 CLEAR commands.

CLEAR - clears memory completely
CLEAR V - clears only variables from memory

CLEAR P - clears only program text from memory

The following is a simple program ready for entering:

$$
\begin{aligned}
& 10 \mathrm{~A}=10 \\
& 20 \mathrm{~B}=25 \\
& 30 \mathrm{C}=\mathrm{SQR}\left(\mathrm{~A} \boldsymbol{T}_{2}+\mathrm{B} \uparrow 2\right) \\
& 40 \cdot \text { Print } \mathrm{A}, \mathrm{~B}, \mathrm{C} \\
& 50 \text { END }
\end{aligned}
$$

This program will square $A$, square $B$, add the results, print the original $A \& B$, print the final results.

See if you can enter and run this program. If you want to change a line, enter the same line number followed by the new line.

If you want to delete a line, enter the line number and touch execute.

Inserting a stop statement merely halts the execution of the program. It does not disturb any variables. If a literal message follows the stop statement, it is automatically printed. To start the program again, touch CONTINUE.
B. END

In addition to the STOF statement, another statement which terminates program execution is the END statement. This statement is optional. It performs two functions:

1. Halts program execution
2. Displays the total amount of unused memory.
C. REM

The REM (or remark) statement is used to insert explanatory notes into a program. It does not print but is used only as a programming aid. However, it does take up available memory' space.
D. GO TO

The GO TO statement is always usad with a line number. For instance, GO TO 20 will cause the program to branch to line' $20^{\prime}$ each time it is executed.

Its advantages are obvious. First, you can repeat parts of your program over and over and second you can carry out the program in an order other than which it was written.
E. GO SUB

The GO SUB statement causes a branch to subroutine. A subroutine is a program within a program. For instance, GO SUB 200 would branch to the subroutine that starts at line 200. The
subroutine must always end with A RETURN statement. Execution will then return to the next statement immediately following the GO SUB statement.
F. IF - THEN

The IF - THEN statement is a conditional branch which has the ability to test values and branch if a condition is met, and not branch if the condition is not met. s

The general form of the IF - THEN statement is as follows:

Where the operand can be a literal string, alphanumeric variable, or an expression.

The following are examples of legal $\mathrm{IF}=\mathrm{THEN}$ statements:

20 IF X $X$ THEN 50
20 IF T<14 THEN 50
20 IF ATB $\left\rangle_{C \uparrow D}\right.$ THEN 50
Can you tell when each of the preceeding statements will jump to line 50?
XIII. ADDITIONAL METHODS OF ASSIGNING VALUES TO VARIABLES

In addition to the assignment statement, there are two other methods of changing the vaiue of a variable in a program. These are (1) the READ \& DATA statements and (2) the INPUT statement.
A. The READ and DATA statements are used together. An example of the data statement is:
$\underbrace{100}_{\text {Statement }}$ DATA $\underbrace{5,3,17.2,6}_{\text {Data Separated by Commas }}$ Line No.

The system automatically sets a data, pointer ${ }^{\text {" }}$ to the location of the first value in the DATA statement. It does not matter whether the data is included in one statementor severs. For instance,

> 100 DATA 5
> 110 DATA $3,17.2$

120 DATA 6
is equivalent to the previous example,
In order to use the data contained in the DATA statement, it is necessary to use the READ statement.

For example: $10_{\mathrm{w}}$ DATA 3, 4, 5, 6, 7, 8, 9, 10
20 READ A, B, C, D
will cause the system to assign 3 to $\mathrm{A}, 4$ to B , 5 to $C$, and 6 to $D$. If line 20 is executed a second time, the system will then assign 7 to A, 8 to B, 9 to C, and 10 to D.

This imples that all the data need not be read at one time. Further, several READ statements can be used to read the data. However, it is very important to consider the order in which the data appears.
B. The INPUT statement is used to enable a person to enter data after execution is started. Thus, the input data dơes not become a part . of the program text.

The general form is INPUT (variable). When the system reaches an INPUT statement, it stops and prints out a question mark (?). The user is then expected to enter data values, one for each variable named in the INPUT statement, separated by commas.

A literal string can be included in the INPUT statement. For example, 10 INPUT " BEXT VALUE" A
would be displayed on the CRT as NEXT VALUE?
and enables the user to see what is expected to be-entered.
$\operatorname{minh}$

Directions: Determine whether the syntar of the following BASIC statements is correct. If it is incorrect, cite the appropriate definftion (s) and statement requifements.
$\therefore \quad 1$. REM JOE PROGRAMMER
2 REA ÁD AI
3 READ $\Lambda 1, B, C(2), L, K, " H I "$
4.2 PRINT $\breve{b}^{\circ}(1,2)$.
5.PRINT 1,2, "TWO NUMBERS"
6. $\operatorname{LET} A=1$.

7 LET B $=A$.
$8 \operatorname{LET} \hat{E}=A+1.5$
$9 \operatorname{LET} B=((A+D) / C \uparrow(E-F))^{\circ}-75.43$
10 LET $G(A+B)=((A+B) / C \uparrow(E-F)-75.43$.
i1. IF $7=\because$ THEN 7
12 IF $\dot{B}=25.4$ THEN 61.3
13 IF Y $+J=17 / \mathrm{K}$ THEN $54+\mathrm{K}$
$14 \operatorname{DIM} \operatorname{K}(10,20)$
15. DIM $A(K)$

- 16 FOR $I(5)=1$ TO 10 STEP . 5

17 GOTO 37854
18. STOP 61

19 PRINT PROCESSING FINISHED 20 FOR AO $=1$ TO 7

1. Write a program, which' witl compute the "sum of the first - T00 whole numbers and print the sum.
2. Write a program which will compute the sum of the first 100 whole numbers, compute the sum of the squares of the first 100 whole numbers, and print the answers.
3. Revise your program for Problem \#2 so you can compute the sum of a series which starts anywhere and ends anywhere.
4. The quadratic formula is:

$$
y=-b+\frac{\sqrt{b^{2}}-4 a c}{2 a}
$$

Where $a, b$, and $\dot{c}$ are found in the general form of the quadratic $a x^{2}+b x+2=0$. Write a program to find the solution for a quadratic $\stackrel{\circ}{\circ}$ equation using this program.
NOTE: "You will have a problem if $\left(\sqrt{b^{2}-4 a c}\right)<0$.
5. Write a program to find the hypotenuse of a right traingle if the ${ }^{\text {D }}$ legs are known.
(Rule of Rythagoras is a ${ }^{2}+b^{2^{2}}=\left(b^{, 2}\right)$.
6. Write a program to find a ${ }^{\circ}$ leg of a right triangle if the hypotenuse and one leg are known.
7. The formula for simple interest is $\mathfrak{j}=$ Prt. Write a program, for computing simple interest.

FNwalzl:bap
2/75


APPENDIX CF

Tape Cassette Check-0ut List
$\qquad$

0

The soudent. Will demonstrate to the instruction the ability to successfuliy carry out the following tasks. For successful completion; the proficiency - level múst be $100 \%$.

1. Load the first program from tape, into memory.
2. Skip the first $n$ files and load the $n+1$ program into. memory.
3. Backspace over $n$ files and load the next program into memory.
4. Save a program with or without a name:


$$
\begin{gathered}
\text { COMPUNER MINI-COURSE- } \\
\text { GLASGOW HIGH SCHOOL } \\
\text { Spring, } 1975 .
\end{gathered}
$$

- INIRIALIZING THE MACHINE CHECK-OUT

The student will demonstrate to the instructor the ability to successfully carry out the following tasks. For successful completion, the proficiency level must be $100 \%$.

1. Turn the power on.
2. Clear memory.
3. Glear the CRT screen and adjust the intensity to the proper level.
```
COMPUTER MINI-COURSE
    GLASGOW HIGH SCHOOL
    Soring, 1975
```

USGUG THE COMPUTER IN THE IMMEDIATE MGDE CHECK-OUT

The student wiri demonstrate to the instructor the ability to successfully carry out the following tasks. A proficiency Ievel of $100 \%$ is expected'in part I. The proficiency level, for part II will depend on the math background of the student.
I. Using the system as a calculator, perform the fol-.
-lowing calculations.
A. $14+6$
B. $\quad 8 \times 6$
C. $8-12.66$
D. $\quad 96 \div 853$
E. $\quad 73^{-12.6+8-.002}$
F." $\quad 5^{3}$. 70.0
Q. Print the sum of 86.2 and 155.6 .
H. Print the result of 8522 minus 1498
I. Print the quotient of 20 divided by 4.25
i1. Using the system in the immediate mode, find the following.
A. Sin. of 3.2 radians"
B. Cos. of 35 degrees
C. Square root of 148
D. The absolute value of $(3+-8)$
E. The greatest integer value of the square root of $3.27 \times 9.25 \div .003$.

## ELEMENTARY BASIC STATEMENTS CHECK-OUT

The student will demonstrate to the instructor the aisility to successfully carry out the following tasks. The tasks need not all be done at the same time. Also, tie proficiency level must be $100 \%$.
I. PRINT STATEMENT

$$
\frac{10}{20} \quad A=B: B=15: C=20: D=25
$$


II. LCOPING
A. Write a one-step program whlch will print the first 10 integers...
B. Write a:one-step program which will print the numbers from -3 to +3 in steps of $\frac{1}{2}$.

IE天. UNDERSTAND BRANCHING
$10 \quad \mathrm{~A}=10$
$20 \quad E=A+5$
30 PRINi B, A
$40 \cdot A=A+1$
50
Cumplete line 50 so the program will always. jump
to line 20.
TV. INPUT STATEMENT
10
$20 I=\dot{P} * R * T$
30 PRINT I
40 END
Complete line ${ }^{\text {co }}$ so you can put in your own values for $F, R$, and $T$.

10
$20 \mathrm{I}=\mathrm{P} * \mathrm{R} * \mathrm{I}$
30 PRINT I.

Complete lines 10 and 50 using the READ and CATA statements to compute the interest on $\$ 1000$ at $5 \AA^{\circ}$ for 3 years.

COMPUTER MINI-COURSE
GLASGOW HIGH SCHOOL
Spring, 1975.

FLOWCHARTING CHECK-OJT
A. Construct a flowchart illustrating how you might drive a car to school. Use at least two decision boxes.
B. Construct a flow chart illustrating, the following program.

| 10 | $A=1,: B=2$ |
| :--- | :--- |
| 20 | $C=A+B+C$ |
| 30 | IF $C>15$ THEN 50 |
| 40 | PRINT $C$ |
| 50 | $G O T O 10$ |
| 60 |  |

APPENDIX CT

Samples of Student Generated Programs $\frac{1}{1}$


EOFFIMT "IF LEGE ARE KNDUHY."
30 INF:IT A. E

$50:=$ COFC GOFFINT C TOENT


C $\%$

10FFIHT "FGRNULH FOF THE HIPATENUKE LFF R RLGHFT 2UPRINT "IF DRE LEG IS KMDWN: ". 3 INFUT E.E
 SHFPITIT A 6OBEIT

1OFFINT "SIMPLE INTEREST"
2aINFUT "FFIMCIFAL",R SOINEITT "RATE": tBIMFUT "TIME", $T$
Si: $I=F * F * T / 100$
sif fRIMT I
FO ENI

308
5 REM SIMLILATES A GAME. COIN IS TOSSED. 'HEADS' ROLL A DIE6. KEM TO. LIETERHINE FUINTS GAINED. TTALLS'i. REM DETERMINE FGINTS LOST. FRRINTS TOTHL GAINKLISSS AT. END
1BFRINT "HEADS". "TAILS"
2GFOF-I=1-Tロ-20


5GPEINT " H ";
EGLET H=6
TG W=INT $(6 * \mathrm{FNO}(3))+1$
REFRINT W
rigute 1 Ha
BGFRINT "T":
GQLET $W=0$

105FFRINT 4
11ELET $M=M+N$
IZGNEXT I 1
$130 I F M$ M $=$ QTHEN 150140FRINT "YOU-LOST ":M:" FUINTS:
14.5 STOF
15BFRINT "YOUL GHINED ";M:" FOINTS"
1\%OENS
5 FEM SIMULATES TOSSING OF A COIN 20 TIMES. RËPORTS TOTAL
6 FEM NLIMEER OF HEADS AND TAILS AT END
1HET T=H
calet $\mathrm{H}=1$$\therefore$ ETFOR $I=1$ TO 2 Z

- $\mathrm{AEHET} \cdot \mathrm{K}=\mathrm{RND}(1)$
SEIF RC: 5THEN TO
6GIF RO=STHEN 90
Teltet. $\mathrm{H}=\mathrm{H}+1$
BEFRINT "HERDS"
8EGUTO 110
$93 L E T$ $T=T+1$
1Bgerint "teils"
11GNENT I
1こOFFIHT "NUMEERS OF HEADS=" H
1TGFEINT "NUHEER XF TAILS=": $T$
1HUERN

SINFUTT "IF Y'QU RRE REFFIY'" TO. BEGIN TYPE OUT READY", $2 \overline{5}$ EIF Z\$3 "REACH"" THEN 5 PFFINTT HEX(BS)
$16 \mathrm{~A}=\mathrm{G} \cdot \mathrm{B}=\mathrm{B}: \mathrm{C}=0: E=0 ; F=0: G=0 ; H=0: I=0: J=0: K=0: M: 0: P=0$
ZGPFINT "THIS FFUGRAM IS DESIGNED TO TAKE VARIOUS GRADES AND COM
EUTE - THE BYERAGE THE MEANE AND GIVE-YOU-YOUR GRADES IN ORD ER"
SUOIM A(26): DIM' E1 (20)
4GINFUUT "HON MANY GRADES DO YOU WIEH TO USE (LIMIT 20)", B
5 EIF - CO O THEN 40
GEFOR D=1 TA BA
IUINEUT "FUT IN A GRADE", A(D)
$\mathrm{BLC=}=+\mathrm{ACD}$ )
GENEST D
LGGE=ETE:PRINT E; "IS YOUR RYERAGE"
1 1OF=E: IF $F=I N T$ (F) THEN 130

$13: \quad \mathrm{H}=[\mathrm{NT}(F): I=H+1: J=A(H)+\mathrm{A}(\mathrm{I}): G=7,2$
14WFRINT Gi:"IS YOUF MERN"
15UFOR R=1 TO B:L=Q
1EGFOR $M=1$ TO E: IF LSR(M)THEN 180
$176610 T 196$
$1 \theta \because T=L: L=A(M) \div F(M) \doteq T$
19GNEST M
2ESE1 (K) = L : NEXT $K$
ZIGFRIMT "YOUR GRADES IN ORDER. FROM LARGEST TO SMALLEST" OGFDR F:=1TO B:FRINT EI(P)-NEXT F:

$\operatorname{LiH}=6 \mathrm{E}=\mathrm{G} \quad \mathrm{E}=9 \cdot \mathrm{E}=0 \cdot \mathrm{~F}=0$
 Aldt＇
SGIPFUT＂NHAT RRE YOUR 2 PUSTIIVE INTEGERS R WG

GGIF ACEOTHEN ？
bagoina 80
TGFFIHT＂PLERSE USE 2 FOSITIVE INTEGERS＂．：GOTO SOM
SOIR FIEE THEN 1010

 30
11时借 $\Gamma=E$ TO $F$

1 SQIOTO 160
14GIT［420 1THEN E1日．
$15000 T O 206$
1EGIF D＝STHEN 2GO
1FOFOF G＝STG SQR（D）STEP 2
180IF O． $0=$ INT（ A G）THEN 210．
19GHEST G
2GHFEINT D；＂IS A PRIME＂：$C=C+1$
2 ONENT O
ZZQFEINT＂THERE PRE（IS）＂；C：＂PRIMES5）BETLEENM；A；＂AND＂；$B$
2sún

2RFFINT＂．SEMI－PERIMETER＂
SUFFINT＂＊＊＊＊：＊＊：k＊：＊：k：＊：＊：＊：＊：＊：＊＊＊：＊：＊＊：＊：＊＊＊＊＊：＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊：＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ：＊＊f＊＊＊＊＊＊＂
HGINFLIT＂IANFUT THE THREEく3）STDES＂，q；R，C

GOFRINT＂
THE SEMI－PERIMETER IS＊；S
 ＊＊＊：＊＊＊＊＊＊＂
BEFFRINT＂
HERON＇S THEUREM＂
GEIFRINT＂；：＊＊＊：＊＊：＊＊＊：＊＊：＊＊＊＊＊：＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊：＊：k＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ＊4：＊：世＊：＊＊＂
1GRR $=5$ SR（ $5 *(S-R) *(S-B) *(5-C)$
11UFFINT R

10INFUT. N
2NIF $N=1$ THEN 50
3GFRINT "HOT A PUSITIVE JNTEGER"
4060150
SUFGR $D=1$ TOTN

GGFRINT NIOSD
$9 E$ NENT D 1GGENC

1UFRINT" "FINDING ALL 'FOSITILE INTERGRFL FACTORS OF ANH-NUMBER" $2 G$ INFITT "WHAT IS THE NUMEER YOU WQULD LIKE TO BE FACTGRED:", A 302 $=0$
4G FUR $N=1$ TO A
50 IF ANPN=INT (ANM) THEN 70.
ES NEYT N
FG Z=2+1.
SUPPINT N:M.":AGN
go PEEST H
lolic EIJ.

1G EFTNT "THIE PROGRFM WILL GIVE YOU PRIME FACTORIZATION OF"
15 FFFINT "RNY POSS. INT."
20 FRIIAT "RHART INTEGER DO YOL WANT TO USE"
30 INFLIT $N$
40 IF N>1 THEN 70
50 FRINT "N IS NOT GRERTER THEN 1 "
SAG GOTO 160 TO SQR(N)
SG IF N $N=I N T(N, B)$ THEN $12 G$
90.0070140

10 IF IF $\mathrm{N} \cdot \mathrm{E}=1$ THEN 150
110. FRINT E: "
1: LET $N=N / E$

134 GOTO 30
14E NENT E
150 FRFINT N: "*: "
LEAENC

19 FRINT "THIS PROGR'AM WILL TELL YOU WETHER THE NUMEER THAT" 20' FFII功. "YOU GIVEN TO N IS FERFECT, RBUNDANT, OR DEFICIENT" 73 DIM A(140)
$4: 3$ [IM E(106)
45 FRIMT "DEFICIENT NUITBERS: ":
561 LET $F=1$
G3 LET [ $=1$
TA FUR $N=1$ TO 200
813 LET T=6
91 FOR $I=1$ TO N/2
106 IF $N / I=1 N T(N / 1)$ THEN 126
110 GOTO 136
LET $T=T+I$
130 NEXT I
140 IF T=N OTHEN 180
158 IF TCN THEN 24
100 IF TDN THEN 210
120 giota 250
$150 \mathrm{~F}(\mathrm{~F})=\mathrm{N}$

210 ElOD=N
$220[2=0+1$
230 goto 250
240 PRINT N;
ESS FRINT : FRINT "REUNDTANT NUMBERS: ";
2en FOR $I=1$ TO D-1 : ${ }^{\circ}$ FRINT B(I); : NEXT I
ES5 PFINT • FRINT "FERFECT NLIMBERS: ";



## 

 HEMARE, DEAMAK

Mareh 11, 1975


PROR
T. Hall Malel

Suparviaot of Mathmation
RE: Computer Programoing Courte for the Bxtanded Iant Erogram








1 will be getting sogethar ofth Carl in the mar futurn to anke further plans and I idill keap you pouted aboat our progrksa.

Fin: bap

```
cc: Mr. Carl Jacobson, Glaegow Histh
    Mrs. Catharing Y. Bonnay
    Hr. Ealson Freidly
```

I. TITLE; Mathematics Through Computers

## II. GENERAL COURSE DESCRIPTION

This is a comprehensive introduction to the world of computers. The topics to ve explored include the history of computing, conputers in everyday life, operating a computer, communicating with the computer, and computer programming. A knowledge of alfebra is helpful, but not necessary. The individualized nature of the course permits the parifcipation of students with varied tnowledge in this field. .

Classes will consist of short lectures accompanied by "hands on" computer experionce. Assigaments will include the writing, refinement, and execution of computer programs relating to many topics. A field trip is planned to explore the vast computer system at the University of Delaware.

Upon successful completion of this course a student should have a high degree of literacy in the computer languageBASIC, a proficiency in computer programming, and an ability to operate both "in house" mini-computers and time sharing systems. It is also expected that a students general mathematic's skills and problem solving abilities will be enhanced.
III. COURSE REQUIRENEITTS
A. Attendance: Attendance and participation are required for all class sessions and fieła trips.
B. Assignmenta: Satisfactory completion of all assignments is required.
C. Projects: The'student is expected to write, refine, and execute assigned computer programs.
$\dot{\mathrm{D}}$. Exams: The student is expected to complete, with at least 70\% proficiency, three written examinations
E. Evaluation: A grare of A, B, C, D, or F will be awarded at the end of this course. This grade will be determined by the level of proficiency with which the student achieved course objectives within the structure of the preceeding requirements.

## IV. MAJOR COURSE ACTIVITIES

The course will be laboratory-oriented in that the major course activities include the classroom developement of computer programs and the subsequent "hands-on" computer execution oi these programs. Short lecture sessions utilizing traditional classroom techniques will be combined with comphter assisted instruction and individualized instruction. Other activities include in-class readings, viewing of films and at least one visit to a large computing facajity.

## V. COURSE GUIDE

Educational Objective No. 1
To develope a student awareness of the roze of coraputers in today's world.

Instructional Objectives:
Each student will:
Exhibit knowledge of the historical development of machine computing.
Illustrate the cultural and social impacts of computing and data processing.
Demonstrate the capabilities and limitations of the computer.

Educational Objective No. 2
To provide each student with meaningful "hands-on" computer experience.

## Instructional Objectives:

The student will:
Demonstrate the operation of the resident computer. Exhibit an understanding of the operation of a time share system.
Utilize the immediate mode of the mini-computer
as a calculator to aid in problem solving.
Demonstrate correct and efficient usage of the keyboard. Access the computer's library of stored programs for . work in related subject areas.
Demonstrate the ability to address the various peripheral devices of the resident system.

Educational Objective No. 3
To introduce to the student the logic of computer programming.

Instructional Objectives: $\circ$

The student will:
vilize the mini-computer's TRACE command to follow the chain of logic of an existing program. perform program analysis by constructing flow charts

- of existing programs.

Design simple algorithms for the solution of selected problems.

Educational Objective No. 4
To expand the students problem solving abilities through the study of computer logic.

Instructional Objectives:
The student will:
Analyze a given problem intuitively.
Conduct a "Guess and Test" investigation of a problem utilizing a calculator.
Enlist mathematics skills to confirm results and/or refine methods of a particular problem solving strategy. Refine algorithms and formulate a generalized problem solution.

Educational Objective No. 5
To develope a proficiency in the computer languageBASIC.

## Instructional Objectives:

The student wiil:
Translate simple/complex arithmetic statements into computer language and vice versa.
Demonstrate a competency in the fundamentals of the BASIC language.
Refine and rewrite program statements which are insufficient or faulty.
Write and execute simple computer programs utilizing the correct BASIC statements.

Educational Objective No. 6
To expose the student to the usefulness oi the computer as a tool with many applications.

Instructional Objectives:
The student will:
Demonstrate the usage of the computer as a problemsolving tool.

- Exhibit an understanding of themunctions of data processing.
Illustrate the role of the computer as \& research tool. Demonstrate the mini-computers value as an educational aid.

Educational Objective No. 7.
To expand the students programming abilitios.

## Instructional Objectives:

The student will:
Demonstrate a high degree of literacy in the BASIC language.
Utilize sophisticated programming techniques to refine, compact, and customize existing computer programs. Illustrate proper documentation procedures. Employ program debugging techniques to correct rejected programs.
Write original, efficient programs to solve problems relaiing to many fields.

## VI. COURSE OUTLINE

## I. Introduction

A. What is a Computer'?
B. History of Machine Computing
C. Meet the Mini-computer
II. Computer Operration
A. Fundameitals

B, Immediate Mode
C. Canned Programs
D. Peripheral Devices
E. Other Systems
III. The Computer's Way of Thinking
A. Computer Logic
B. Algorithms
C. Hand Simulations,
D. Flow Charts
IV. Communication With The Computer-BASIC
A. Fundamentals
B. Commands
C. Variables
D. Loops
E. Transfers
F. Alphanumerice
G. Input/Output
H. Subscripts
V. The Computer As a Tool
A. Probiem Solving
B. Data Processing
C. Research
D. Education
VI. Advanced Programming
A. Arrays
B. Functions
C. Documentation
D. Debugging
E. Subroutines
F. Advanced BASIC

APPENDIX C9

Summer School Catalog Description for "Mathematics Through the Computer"

A knowledge of algebra will be useful but not necessarily a prerequisite for che student. Computer programming techniques will be taught, but the course is not a programming course per se. Students will study problems and situations in which the use of the computer naturally arises.

Fligible Students: : ewark School District students n grades $9,10,11$, and 12 in , he 1975-76 school year.
location: Glasgow High School
Length of course: 6 weeks
Limit:
25 students
Credit: 1

## APPENDIX C10

Special Flyer for "Mathematics Through the Computer"

This is a comprehensive introduction to the world of comoturt. . The topics to be explored include the history of computingy computersutainesydiny life, operating a computer, communicating with the confriter, indiprogramalng the computer.
 of the course permits the participation of studente with fivited knowledge in this field.

Classes will consist of short lectures accompented by finimse work with Glasgow's four new mini-computers. Assignments will include, the witing, refinement, and. execution of computer programs relating to many topics. A fleld crip is planned to explore the vast computer system at the Univeraity of Delaware.

Students - Newark School District studento who will be in grades 9, 10, 11, or 12 in the 1975-76 school year.
length of Course - 7 weeks, June 23 to Augusti 8
Location - Glasgow High School
Time - 8:40-11:50 a.m.
Credit - One Credit, Mathematics Elective
Fee - None
For Further Information -
Contact Mr. Carl Jacobson, Glasgow High school (731-2381) or
 Summer School Office (731-2320)

Cut llong This lifine

Name $\qquad$
Home Address $\qquad$


Telephone $\qquad$
Return to your gchool office by June:
District School please return to: Summer Schooi Offica; Newark Bigh School

APPENDIX CII
'Mathematics Through the Comptiter" Class List

ERIC

## CLASS LIST

## SUMMER SCHOOL 1975.

MATH Through the computer

> INSTRUCTOR - Carl Jacobson SESSION ONE
|r


APPENDIX Cl2

Title of Programs Generated by Students Attending "Mathematics Through the Computer"

## MATH T.HROUGH THE COMPUTER

## Titles of Student Generateḑ Programs Summer, 197.5

I: Linea: Argebra - "Two Paint"

1. . Distance
2. Midpoint
3. Silope
4. $x$-intercept.
5. y-intercept
6. Equation
7. Perpendicular Bisector

If. Conic Sections - "Conics"
1: cỉrcie:
2. Ellipse
.3.. Hyperbola
4." Parabola
III. Arithmetic Sequences - "Sequence"
1.- Print ni terms
2. Print nth term?
3. Common, difference
4. Generâl Rule * * *. Linear Algebra
5. Arithímetic Means
$\therefore$ iv. Seriest.

1. . Partial Sums
v. . Square. Root
2. "Pinchiching"

VF. Limit

- ${ }^{\prime} 1$. Convergenče $\quad$ -
xI: Matrix Algebra" - "Mat" "

1. Identify. Corner Pojints
2. Evaluate corners
$3_{f}$ Find:minimum/maximum.
3. List cons traint
equations
4. List minimum/maximum equations
$\cdots$. Addition
'2: Sub traction
5. Multiplication
6. Determinant
7. Cofactor
8. Inverse
9. Transpose
10. Identity-
11. Roots
12. Real
13. Imaginary
mhh

# THE DEVELOPMENT AND IMPLEMENTATION ${ }^{\circ}$ OF A 

 DISTRICT COMPUTER EDUCATION PROGRAMAPPENDIX D

Related Activities,

DI: Minutes of First Council for Computer Education Meeting

- D2: . Notification of Transfer of Computer Education Funds and Related Documents
D3: Announcement of an Informational Meeting. Sponsored by the Council for Computer Education
.D4: 'Documents Related to Computer Task Force D5: House Bill 509 Proposal.

D6: Motion to Board of Education to. Amend the/ Budget for the. Purchase of Computer Hardware
$\therefore$ D7: Computer Hardware Bid Notice
D8: Purchase, Order for Computer Hardware
D9: Letter Ordering Project Delia Terminals

APPENDIX D1

Minutes of First-Council for Computer Education Meeting

Members off the Council for Computer Eaucation
Dr. Earl Abrahamson . Mr: Ralph Mahan

- Dr. Kobert Doozer

Dr. Dariel Neale
Mr. Arthur Bragg

- Dr. James Pugh

Mrs. Vera Bures

- Mrs. Charlotte Purnell

Mr. Earl Carpenter
Dr. Henry Reynolds
Mr. Winston Cleland
Dr. Davia Robinson
Mr. John Donahue
Mr. Edvard Goate
Mr. Jack Graybeal Mrs. Teresa Green Mr. Jol:n Hornby :Dr. David Lamb
Ar. Dennis Loftus Mr. Paul Schmidt
Mr. Alex Taylor
Nr. Neil Walzl
Mrs. Rhoda Witlin
*Mr. Mort Witlin (Guest)
*Dr. David Yens (Guest)
Mr. Thomas Luff
*Mr. Andrew Allison (Guest)
Dr, Kanảall Broyles (Guest)
FROM: Wizliam J. Geppert
State Supervisor of Mathematics
SUBBECT: MINUTES OF FEBRUARY 22, 1973 HEETING

The meeting was opened at l:30 p.m, by lir Geppert. Mr. Ceppert introduced Dr. Broyles to the committee. Dr. Broyles thanked the committee for their willingness to serve on the council. He gave a brief review of. computer education in the state. He then expressed the concern that the council view computer education as a total concept in the instructional program, i.e., all applications of the computer in the areas of instruction including the use of the computer in data processing application as vell as computef literacy in the schpols.

Finding is not forthcoming at this time, but he commented on a $£$ ew items in respect to the Lepartment. The Department buaget request for computer education, a fitle III ESEA
*ivenotes attendance.
computer profosal for lower Delaware, the use of House Bill 509 in the areas of business education, were mentioned as part of tne recent involvement of the vepartment in computer. education. The use of the computer in the process of instruction has been a rather sle'\% aevelopment in our schools: The ". conputer carries with it many ramifications for education. These ramifications are what the Department will be using the council for in seeking advice and recommendations for computer education in the schools.
ur: Broyles then turned the meeting over to lir. Geppert. Nir. Geppert comnented uriefly on a few of the materials for the committee's perusal'. The Conference Board of the Nathematical sciences Committee on Computer bducation, Recommendations Regarding Computers in I!igh School Education, a national study on the use of the computer in secondary schools by charles Larby in 19714 vere distributed. Mr. Geppert, then shared With the committee a comparative study he had completed with Project ivelta. Also, upon completion of his report to Dr. Madden on Project Delta, he would make it available for the conmittee at their next meeting. Mr. Geppert further elaborated on the activities in the Department with computer education. 'That' is, the buaget request, House Bill 509, the Title III ESLA computer project, and the Brown Book request. .

Mr. Geppert then opened the meeting for comments and discussion of the various committee memwers' concerns, present activities, and their resources for computer education. . A great deal of ciiscussion ensued with participation by the members. Each person discussea his or her interest in computer education and the group reacted with questions or comments. It was found that data processing activities, computer-based instruction via Eroject Delta, were predominate in the present computer applications'with the schools. A Computer Nanagerial Instruction system has been proposed in tise ilarshallton-mickean School District. The use of the computer in the area of guidance applications has been consilered for the Career Education programs. A consortium of school districts in ivew Castle County have been operating the last few years in providing administrarive services to its member schools. A few ciistricts have reported their own systems for administrative use primarily with some applications for specific subjects (e.g.; business education, mathematics, sciencel'.
'Ihe comittee expressed a concern that Computer Education and Computer Literady were tho inoadly interpreted terms. A, precise definition of the terms and what they encompass should ke determinea for the council. Dr. Folinson pointed cut, at tile the, computer literacy is one of the most cifficult terms to react to lecause of the grossly encompassing
interpretations. He perceived it as a student's familiarity and ability to function in a computing environment.

Mr. Geppert pointed out that the council would operate with informal procedures, but requested that the council elect a chairman and vice-chairman for future meetings.. The topics on the agenda for the council meetings are, for the most part, determined by the Department. Committee members are requested to submit items for the agenda to Hr . Geppert if they are appropriate for the council. The council's primary purpose is tó advise and make recomendations on matters relative to the state department's involvement with computer education:

The council will probakly not meet again till next Fall. In -the event a draft for the Brown Book is requested for Fiscal Year '75, the council will ke informed. . Néetings of the advisory council are dependent on the state's activities in computer education. It would seem that the next few years will kring increased use of the computer into our Delaware school:s:

Dr. Kovinson nominated Mrs. Witlin as chairman for the council. Mr. Iaylor secondec the motion. Nr.. Walzl then moved that nominations be closed. It was unanimously approved Mrs. Witlin is the chairman for the committee. Mrs. Witlin in turn noninateci dr . Robinson for vice-chairman. Dr. Robinson declinea. lir. John liornivy volunteered as vicechairman for the committee. lie was unanimously approved. Tine meeting was acjourned at 3:30 p:f..
kJG/nlt
cc: Dr. Fennetn C. Nadicen
ur. Ranciall "L. Eroyles
:r. Ldwara J. Sioyainan
Mir. Conrad C. Snuman

APPENDIX D2

Nc :ification of Transfer of Computer Education Funds ar:d Related Documents

DEWAR SCHz JOL DIEARICK
OFPLOE OF DEPUYY BUPRRTNENDDE: Fawnath, Delawart

Juas 3. 1975
$\therefore$ AISARANDLAZ.
${ }^{-x}$ ):


H Hix E. ALHEA
Al
$R:$









 firia hatin broosls.
lcarm
"q Air. "reldis
Mra. Bonimy
ïr. shompsion

- 3. r . Whan!

OCNNEME MAEOEN

May 27, 1975
MEMORANDUM


T0:
Chief School Officers-Public Schools

FOR DISTRIBUTION TO:
FROM:
High School Principals
William J. Geppert, State Supervisor of Mathematics

SUBJECT:
STATE AID FOR COMPUTER EDUCATION
The Joint Finance Committee has recomended an additional amount of $\$ 48,000$ to be used to help school districts in providing computer education for the school year 1975-76. The General Assembily and the Governor

- will. have to approve and sign the Budget Bill. However, we are absuming at this point that the monies will be made available. The money was determined by the total number of public high schools in the State. ( 32 high schools @ $\$ 1,500$ per school $=\$ 48,000$ ). It is our understanding at .this point that the money will be distributed in the following manner:

Each high school in the State can qualify for an amount up to a maximum $\$ 1,500$ from the state fund on a matching basis (1.e., local high scinool requests $\$ 2,600$ for computer education- $\$ 1,300$ will be used from the local district funds and $\$ 1,300$ willwe granted from the state fund for computer education). This is similar to NDEA Title III funding.

The monies will be made available and disbursed to schools who voluntarily wish to support computer education:- Many of the high schōols in the State are presently involved with the Delaware School Auxiliary Association Computer Project "Delta." It is projected that the costs for the school year $1975-76$ wi, 11 be $\$ 3,000$ in that project. The state funds are not limited to a project but must be used in purchasing, leasing, or rental of computer hardware and software in the schools for computer education.

Guidelines will be prepared which will incorporate the above statements in anticipation of the approved budget.

Since this represents an initial effort by the State, the Department is requesting additional data at thts time concerning your request for these runds. If your district is planning to request funds for computer education,

State Aid for Computer Education:
please indicate on the tear sheet provided. Your cooperation in returning this form by July 1, 1975, will be appreciated.

WJ̄G/va
CC: Dr. Madden
Dr. Broyles
9
Dr. Wachter

TEAR SHEET ${ }^{\circ}$
District Newark School Eistrict

1. Plan to use state, funds for computer education. ( $x$ ) yes. ( ) nb
2. Request $\$ 40,000$. fröm state funds: (An equal amount will be matched from-local funds).
3. Type of equipment:
(X) Computer (mini-computer, etc.)
(X ) Computer terminal
( ) Programmable calculators
( ) Other (specify equipment)
4. Use of çmputer in instructional program. Check one or more which apply.
( $X$ ) Teaching computer skills (Programming)
( $X$ ) Using the computer for problem sol ing
( X) Using the computer for modeling and simulation
( ) Tutorial uses of the computer (CAI)
( ) Instructional diagnosis by means of the computer (CMI)
( X) Computer oriented for all students
( X ) Vocational and technical trainfing (For approved HB509 Program)
(X) Guidance package

Name $\frac{\text { F. Neil Walzl. Supervisor of }}{\text { Mathematics }}$

School Office of Instruction, Newark School District

Date June 12, 1975
(For Christiana, Newark, and Glasgow High Schools)


APPENDIX D3

Announcement of an Informational Meeting Sponsorednby the Council For Computer Education.

## DEPARTMENT OF PUBLIC INSTRUCTION

## DOVER. DELAWARE 19901

November 7, 1973

T0: Members of the Council for Computer Education

Dr. Earl Abrahamson
Dr. Robert 'Boozer
Mr. Ärthur Bragg
Mrs. Vera Bures
Mr. Earl Carpenter
Mr. Winston Cleland
Mr. John Donahue

- Mr. Edward Goate

Mr. Jack Graybeal
Mrs. Tereṡa Green
Dr. David Lamb
Mr. Deñis Loftus.

Mr. Thomas Luff
Mr. Ralph Mahan
Dr. Daniel Neale
Dr, James, Pugh
Mrs. Charlotte Purnell
Dr. Henry Reynolds
Dr. David Robinson
Mr. 'Paul Schmidt.
Mr. Alex Taylor
Mr. Neil Walzl
Mrs. Rhoda Witlin
Mr. John Hornby
.FROM:
William U. Geppert
Supervisor of Mathematics.

## SUBJECT: DECEMBER 6, 1973 MEETING

## Happy Thanksgiving!!

The first meeting of the Council will be held Thursday, December. 6, 1973 from .1:00-3:00 p.m., at the Hub Restaurant in Dover.

In an effort to stimulate and encourage interest in computer education, the State Department of Public Instruction, in cooperation with the: Del lod System, will sponsor a presentation by the TIES Project for school districts in Delaware.

The presentation will, be the main topic on the agenda. "Attached" is a copy of the notica sent to the Chief School. Officers. Please complete the attached form and return.

WJĠ/scp
Attachment
CC: Dr. Kenneth C. Madden
Dr. Randall L. Broyles
Mr. Edward J. Moynihan

October 25, 1973

MEMOR'AN,DUM

## DEPARTMENT OF PUBLIC INSTRUCTION <br> THE'TOWNSEND. BUILDING <br> dover, deliware ig90i

GENNETMC MAOOEN



T0: . Chief School Officers
FOR: School Einance and Administration Personnel District Instructional Personnel
Secondary School Principals.
F̛́rom: William J. Geppert, Ştate Supervisor of Mathematics
John F. Reiher, State Supèrvisor of Science and Environmental
Education
SUBJECT: TIES PRESENTATION IN COMPUTER EDUCATION

In an effort to stimulate and encourage interest in computer education, the State Department of Pưbilc Instruction; in cooperation with the Del Modwfystem; is
pleased to announce a presentation by the TIES Project for school districts in
Delaware.
In 1967, twenty Minnesota school, districts formed the Minnesota School Disfricts Data Processing Joint Board and established a unique equcational service called ${ }^{2}$ Total Information for Educational Systems - TIES: Philosophically, the Joint Boird had determined that a regional; cooperative data center (utilizing the most advanced computer concepts and capabilities) was its neecessary objective. The information system would pursue development and produce services in three metor functional areas - administration, inistruction and résearch. TIES is an established on-line information system, utiliziris telecommunications; an integrated data base and advanced information systems concepts.' Described as "the most complex' and sophisticated educational computer system in the country," TIES is now providing: ? administrative, instructional and research services for over, 325 schools which enroll approximately 300,000 students in Minnesota and Illinois.

The first presentation will be held Thursday, December 6, 1973, at the Hub Restaurant i! Dover, from 1:00-3:00 P.M., for Kent and Sussex Counties sc̣hool personnel.

Chief School Officers October 25, 1973 - Page 2

A second presentation will be held Friday morning, December 7, 1973, at the Ramada Inn (off ${ }^{\circ}$ I-95) in Wilmington, from 9:30-11:30-A.M., for New Castle County school personnel.

We, are hoping to expose ast many school administrators as possible to the TIES System. The TIES concept represents a dramatic departure from most current practices. Its concept is that people come first - systems second - and hardware third.. All three can be integrated into a total system for education: Dr. Thomas C. Canp̀ell, a former school administrator and now. Executive Director of the Minnesota School Districts Data Processing Joint Board, will conduct the presentations

To enable us to more clearly determine the number of people attending, please complete the form below and return to this office on or before November $21,1973$.

Thank you.

WJG.jr:rie
cc: Dr. Kenneth C. Madden, Superintendent
Dr. Randall L. Broyles, Assistant Superintendent
Mr. Edward J. Moynihen, Directior of Secondary Education Mrs. Charlotte Purnell; Director of Del Mod System

Return on or before November 21, 1973, to Mr. Thomas M. Báker, State Department of Public Instruction

NAME $\qquad$


SCHOOL DISTRICT
$\qquad$


THE TOWNSEND BULDING DOVER, DELAWARE 19901

March 18, 1975
MEMORANDUM

10 :
FROM: William J. Geppert, State Supervisor of Mathematics
SUBJECT: APRIL 18, 1975 LUNCHEON MEETING
The second-meeting of the-Gguncil for Computer Education will be held Fríday, April 18, 1975, beginning at $10: 15 \mathrm{~A} . \mathrm{M}_{4}$. In the Sheraton Motor Inn at Dover. A copy of the agenda is attached.

Your support is apprectated in making your staff member, Neil Walzl , who is a member of the Council, available to attend the meeting. This is a luncheon meeting provided by computer hardware vendors for the Council.

A separate announcement of the presentation and demonstration of hardware equipment by Wang Laboratories for all school districts rifday afternoon will be sent to you shortly.

- Thank you for your support in the Council's activities.

WJG/va
ce: Dr. Kenneth C. Madden
Dr. Randad L. Broyles
Dr. Donald H. Wachter

Attachments

THE TOWNSEND BUILDING DOVER DELAWARZE 19901

March 18, 19;5

## Maknow

TO: Members of Council for Computer Education

Dr. Earl Abrahauson Mr. Jack D. Graybeal Mrs. Charlotte M. Purnell
Dr. Roverl Booser
Ar. Arthur Brage
Ms. Vera Bures
Mr. Anthony holanṣki
Mr. Ninston Cleland
Mr. John r. Dotahue
Dr. Edward K. Goate

Mrs. Teresa Green
Dr. David Lamb
ind. William Curlote
Mr. Thomas Luff'
Mr. Ralph Mahan - . Mr. NejI Walzl
Dr. Daniel C. Neale
Dr. James Pugh

Dr. Henry Reynolds
pr. David Robinson
Mr. Paul Schmidt
Mr. Andrew Mllinson
Mrs; Rhoda Witlin
Mr:"John D. Hornby
Mr. Morton Uitlin

Fhi: ' Wigham J. Geppert, State Supervisor of Mathematios
$\bigcirc$

The sêcond"meeting of the Council for Computer Education will be held Frias , April 18. 1975, beginning at 10:15 A.M. at the Sheraton Motor Ima in hover. The agenda will be as follows:
$\begin{aligned} & 10: 15-12: 00 \text { UNIVAC-presentation oria CAJ programiused } \\ & \text {. in the Chicago Public Schools }\end{aligned}$
12:00-1:00 Luncheon (Courtesy of the Vendors)
1:15-3:15 Wang Jib presentation and dxmonstration of computer. equipment. (All school districts will be invited to participate fin the after-: noon seśsion).
"Somethie in batween we will have a short meeting with the Council.
Please plan to attend the meeting!!
$\therefore \quad$ My choice for the luncheon is:

Name

APPENDIX DU

Documents Related to Computer Task Force

$$
310
$$

ERIC

I'ASK FORCE-TIME LINE

STATE PLAN FOR USE OF COMPUTER IN EDUCATION

July, 1975

August, 1975

September, 1975

October, 1975

November, 1975

January, 1976

February, 1976

Initial meeting and organization of Task Force members

Two meetings

## 1

Two meetings (tentative deadline) Completion of final working draft for submissioin to various groups in education community

Submit working draft to other state agencies for further input

Completion of final draft with appropriate review, revisions, additions and deletions by various groups

Submit plan to State Board of Education

> WJG/va

7-24-75
 OPFICE OF Inswitctiosat stivicus

- MEMAKK, DIEATARE

Auguty 27. 1975

MEMORARDUE TO: DK. LOTEA Thompson
YROM: V. Més Walsi


RE: State IIan for Une of Computary in Bducation (Hillian Gappartis mamo of $6 / 26 / 75$ )
 tank force to atmay thit problom and to formulate tiva. year plan for computer aducasion for the tatio.

To Martin and I have been evked tie serva on thte emattieez
 Project Dilfa; Dave loblasen, Project Dzixis Fera Murris. Kent County Vo-Toeb; Eary abrahminom, Kount Rhamont Sehoel Doard; and lobert looser, DYI.

He met once in Auguet as full somitte to diecwis the problem and at that point decised to work, an three eubcomittees. Thete arei imstructiomal manem. administrativí usages, and teito involvement. I am mervins on the tinctiveEIonal sub-comittec and Tom Martia is entving on the administrative aub-conaltee.

Our next full commitee mathit will be bila on september 12. At that cime ach aub-eomittee expecta to have seme ideas for give year plam for chelí aree. I vill keñ you porifad on further developmints.

If you have any guestione, let. ma kmaw.
Fiwsbap
ce: Dr. Allen

APPENDIX D5

House Bill 509 Proposal

Course ${ }^{\# 1} 1$ - Introduction to Datie Processing and Computer Carens (03.17010000)/(03.17040000)

Courae $\# 2$ - Data"Procemining Syatoms and Introductory Computer Programmine (03.17020000)/(03.170s0000)

Course \#3 - Computer Oriented Mathematics and Advanced Computer Programing. I $(03.17030000) /(16.04010000) /(03427040000)$

Cóurse \#4 - Advanced Computer Programuing II (03.17040000)/(16.04020000)


To be implomentod in 1976


Progran'Title: Data Proceneling and Computer Programaing

## 8A. Statement-of Purpose

The purpose of this presran is to anable astudent to become acquainted with developments in data procemining computer proEramming techniques, the interaction of mathematics and the computer, and a knowledge of the job requirements necemary to enter the data procesing and computor programang fields.

8B. Need of Instruction
In todey's computer orientod society, etudents in the business world naed both basic knowledge and akille of computers and data processing to function offectively and efificiontly.

Studenta intereated in further aducation if technicnl skill areas noed this knowledge as a basic skill. In short, there is a demand for people who have both mathematical and computer skilis in all plelds.

8C. Specific Objectivos of the Program
$\rightarrow$ a. To develop un understanding of computer knowlede and skilla nocomary in the businesw and techolonl mran.
b. To apply and oxtend mathemitical skills using the computer and datn procesaing techniques ax the vohicle.
c. To develop basic job entry skills and knowleage tor the fields of data psocenting and computer programing:
d. To dovolop positipe attitudes sböut the rolo and function of computers and their operations.

8C. -. To develop the bance olizin nopontry to function
 oriented worla,
?. To develop an andoretandine of the "various employment opportunities and job requironentie for all levele of direct and indirect computer utilization.
mhb
12/10/74

Course \#3

Caxime : ${ }^{\prime} \mathbf{1}^{\prime}$

Suggested orade Level Placement of Courses
Course \#1. Grades 3 or 10
Course \#2, Grades 10 or 11
Course \#3; Grades 11 or 12
Course सi, Grade 12
mhh
12/10/74



F：$\because q^{\prime} \because: 1 \times$ I（f．L．89－313）handicapped

Esisisit．\}e ILI


V，aisigral procixdin： ［．crguler Ocçuri／joc． Suinar．Occun／Joc． Fecteral
ND：＇R 「うとle III
 Data Processing \＆Computer Programing（USOE Code－See Attached）
－
（i．．：：ul ：colvol，ietc．）
Glasgow High School
1901 South College
Newark，Delaware 19711

# Course \#1 - Introduction to Data Processing add Computer Caforés (03.17010000)/(03.17040000). 

Course \#2 - Data Processing Systems and Introductory Compate
(03.17020000)/(03.17040000)

| Course \#3 $=$ | Computer Oriented Mathematics and Advanced Computin |
| ---: | :--- |
|  | Programming I |
|  | $(03.1703000) /(16.04010000) /(03.17040000)$ |

Course 44 - Advanced Computer Programming II
(03.17040000)/(16.0402000\%)


12/10/i.9

> operations.
understanding of the various employment oppertunities and job requirementsifor all
levels of direct and indirect computer
utilization.

In today's computer oriented society, students in the business machines world need both basic knowledge and skills of computers and data processing to function effectively and
efficiently. Students interested in further education in technical skill areas need this knowledge as a basic skill. In short, for people who have both mathematical.and computer skills in,
all fields. The purpose of this จโqеนэ of Sțuexsoxd a student to become acquainted with developments in data processing, computer programming techniques, the interaction of mathematics and the computer, and a knowledge of the job requirements necessary to enter the data processing and computer programming
fields.
and research.

$$
\begin{aligned}
& \text { 1.2 Students"will develop } \\
& \text { skills in mathematics and". }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Skills in mathematics and } \\
& \text { problem solving through }
\end{aligned}
$$

$$
\begin{aligned}
& \text { problem solving through } \\
& \text { flowicharting, program }
\end{aligned}
$$

$$
\begin{aligned}
& \text { coding and on-line computer } \\
& \text { testing of computer }
\end{aligned}
$$

programs.
1.3 Students will operate
and enter pre-written
programs in order to
interact with various

$$
1.3 \text { Students will be }
$$

exposed to job and career.
operations through readings,
speakers, field trips and
research.



Course $\# 1$
Course \#2
(additional lab)
Total Pupil Minutes Units, ...

Implemented in 1976
Course\#3 36 wks.
(additional 1ab)
: Implemented in 1977
Course 44. (additional lab)



18 W'ks.


Students

250

| 50 |
| :--- |
| 50 |

Minutes/Wk.
. .250
.$\quad 50$
. ${ }^{\text {. }}$

23,125
0.86
-
$\begin{array}{lr}25 & 250 \\ 25 & 50\end{array}$

LUATION PROCEDURES
I.
by stadents will developed
criterion-
references test.
$\rightarrow 3$

-

1. 2 Students

 operation with a computer. 1.3 Actual printed results of programs written and run
with solutions.
 exposed to job and career operations through readings speakers, research.

l.2 To develop basic.
job entry skills and
knowledge for the
fields of data
processing and computer
programming.
1.3 To develops
positite attitudes
about the role
and function of
computers and their.
operations.
utilization.
the interaction of
mathematics and the
computer, and a knowledge
of the job requirements necessary: to enter the data processing and
computer programming
fielis.

360

Momark School Oast office of Durey Sat

June 19, 1975

Ur. George V. Kirk
Superintendent
Newark School District
83 East Main Street
.Newark, Delaware' 19711

Dear Dr. Kirk:
The State Board of Education at its meeting on June 19, 1075, "approved the following suppleriental list of occupationalvocational erogras (h.B. 509) and units:


Please iaclucie this addendum with your original listing. Should there oe further questions; please contact Mr. Conrad C. Siuman, Director of Vocational Education, under whose direction tie programs'mere approved and funds allocated..
Sincerely,


Randall L. broyles
Assistant. State Superintendent
Instructional. Services is ranch
RLB:egb
cc: Conrad C. Shaman

APPENDIX ${ }^{\prime}$ D6

Motion to Board of. Education to Amend the Budget for the
Purchase of Computer Hardware

# NEWAKK 8CHOOL DISIRICT <br> OFFICE OR DIPUTY SUPMINTENDENT 

## Newark, Delaware.

May 5, 1975
MEMORANDUM
iv:
DR. RIRK
.1
FRUM: $\quad \div$ JOHN E. ALLEN
RE:
COMPUTER EDUCATION AND COLLEGE AND CAREER SELECTION PROGRAM

I would like to recommend an amondment to the Distrlct Budget to provide $\$ 80,000$ to purchase computer systems for Christiana High 8chool and Newark High School comparable to the system how in operation In Glasgow High'School. Acquisition of this equipment would make it posithle to etfer comparable programe In data processing and computor education in all three high schools. The computer system'at Glasgow High School has been in operatlon during the ourrent schoul year and has been evaluated by the staff at Ginsgow, - w will as Mr. Neil Wialzi, Dlstrict Math Supervisor. It has been Judged to be a successiful and satisfactory approach to computer education. The cost of providing csmparable service through project Delta would be $\$ 12,000$ par school per year; cost of the equipmont would thus be amortized in four years.

I would recommend continuing participation In Prolect Delta by prowiding one terminal in each high achool so thit we may pirticipate in any unique programs which Project Delta prouldes, particularly the college and caroer selection program which would be used in thi high sahool guidanoe program. This computerized guldance program was uthlized on a trial basts at Christiana. High. School last year and is highly endorsed by the guidance stafi.

I belleve by providing computers and terminale at Christiana and Newark. similar to the one at Glasgow and by partiolpating in Project Delta through one terminal at each high school we will be able to offer an extensive and effective computer education program.

JEA/m

APPENDIX D7

- Computer Hardware Bid Notice


# NEWARKSCHOOL DISTRICT OFFICE OF DEPUTY SUPERINTENDENT 

Newark, Delaware
May 22, 1975

MEMORANDUM
TO:
FROM:
MR. WAIZLL
JOHN E! ALLEN
R.E.

COMPUTORS FOR ÑEWARK AND CTHRISTIANA HIGH SCHOOLS

I would like for you to be responsible for getting specifications developed and working.with Bill Maurer to obtain bids for the computors at Christiana and Newark High Schools. I think you should consult with the Heads of the Math Departments, and the Principals at those schools to be sure that there is agreement as to the kind of equipment we are purchasing. I presume we will purchase equipment either exac̣tly like Glasgow's or comparaille to it. In the event something-other than the Wang system is considered I would like for that to be brought to my attention for approval before the specs go out.

I would also like for you to make arrangements with Theresa Green for our participation in Project Delta at all three high schools. We would need to have one terminal in each high school located for use by the Guidance Department with the Career and College Selection Program. \&oordinate this with the Principals and Guidance Departments of the respective high schools.

Please keep me informed as you move ahead with these projects.

Dr. Thompson
Mr. Freidly.
Dr. Auletto
336


QUOTATION REQUEST No. - 52775 ...............

QUOTATION MUST BE IN BY $-\frac{\text { June } 252}{11: 00 \text { AM 10cal time }}$ 11:00 AM local time.

TAX EXEMPT


 mercratalise ev, issing mandiacturer's modeh number, elc;


To: Office wh the Suerintedent of Schools, Nwark School District. Newąrk. Delaware $\because$ We quote you Fo.k. Newark School District
-FIRM.
sigried By
Dafe
$\therefore$ ERIC

Time reaured for delivery fism recers" of order.

The right to. rejee a! or $A$. pave of thas morese is resnexen
 vemara- isto: Eistuct.


Four uso: Conputer System eavh unit completely independent of the others. © Each central prosessing unit (CPU) must have at least 4096 bytes of memory, expandable in 4096 increments 32,588 bytes. An edit feature must be wired into the cPU. The CPU must support the following peripheral devices: cathode ray tube display (16. lines $x 64$ characters per line); an input keyboard consisting of single keystroke Rasic language verbs; an 80 colurin dot matrix; (lat least one system must have the eapability: of supporting a flexible disc storage unit with the aapacity of 262,144 bytes; single or multiple magnetic tape cassette drives. The units shali have hard wired Basi intespreter capable of supporting string array manipulation and file handling on sassette without preformatting.

The systers shall ponsist of the following components:

WAN Model ze20 ntegrated Control Module 2" (Keybeard, CBT \& Cassette) or equal Consicting of:
A) An input keybord containing most of the BASIC: - Laroujuge verbs and commands as single keystroke Entries, e.. ats. The keyboard contains all the alphabetic ancactere and 'the following special characters and the followihg special characters: + ,,$*^{\prime}$; $i, r,(, i,\langle\rangle,,=$, semicolon, and period. A - $\quad$ n-key" keyboard for entry of numerics, 0-9; riad veciamal yoint. Trig functions, arithmetio anerators, and control keys are also standard v:i the keyboard; in addition to sixteen special Iutation keys capable of accessing lic user-defined ongrations.
B) : B $^{3}$ mbined Cathode Ray Tube Displav and Single Wenetic rape Cassette Drive: The CRT must be靬解ie ot displaying a minimum of 16 lines, Th olt sharacters each at one time. The; CRT hust be $9^{\prime \prime}$ diagonal.



CPU 4 K Yemory WANG Model $2200 \mathrm{~S}-1$ or equal

High Speed Printer - WANG Model 2231 or equal Specifications:

A high-speed printer providing complete, highspeed, alphar:umeric printing capability to the System; mast print at a rate of 100 characters per second, using a matrix impact printing. techuique which can generate four carbon copies i: adaition to the original.' Must print two seleqtable type sizes, composed either from a $j$ a 7 dot matrix in normal size, or from a $10 \times 7$ jot matrix in expanded size. Instructions must consist of a complete Rlphabetie and nuneric sharat tés- set, ail printable under progran control :mon the System.

CPU, Stands - WANG Model 2290 or'equal

ONE SYSTEY SHALE CONSEST OF:
$\therefore$ II A Nomery, HANG WCS/20 or eque?
A) cunsole.
3) . 22" Cathode Ray Thbe inoorporating. a display with 10 lines by 64 characiters per line.
c) sncut eseyboard or typewriter characters and single keystroke BASIC languaze verbs:

A Auma viple fiexicie aisk arive rapable, of srocter zrgrams and data/for the System. the rix irive must provide a storage capacity of 2. Least $\mathrm{Ec} 2,144$ bytes. Disk platters must as easily inserver in and removid fran the unit;




## Sate of priamare CONTINUATION. SHEET

## PURCHASE

ORDER NO. OL5201
PAGE $2 \times$ OF $\qquad$ PAGES
$\therefore$ VeNDOR: Wang Laboratories, Inc.


NEWARK SCHOOL DISTRICT S Ml NEWARK. DELAWARE 197!!

TELEPHONE 302731.2000 काष


$$
\begin{gathered}
\ddots \\
\text { May } 30,1975
\end{gathered}
$$

 $\therefore$

Mrs. Teresa Green, Director Project DELTA
: Rom 248, Du' Mont Ha 11
..University of Delaware
Newark. Delaware. 19711
Dear Mrs. Green:
The Newark School District would luke to partichpace 14

- Project DELTA for the 1975-76 school year. Our needs are .as follows.:
(a) Christian High School - two terminals
(b) Glasgow High School - one terminal
(c) Newark High School - one terminal.

It is our $_{\text {r }}$ understanding that the cost is $\$ 3$, oo per terminal cr a total of \$12.000. The locations for the terminals has not been determined as yet, but will be established within the next few weeks.

In addition to the services that have been offered by project" MEITA in previous years, we are assuming that a college/career gividance package will be available during the 1975-76 school year: If the guidance package wilt not be available, please let us know immediately, as our decision to participate is partially: based on the availability of this package and our needs will not be the same.

Sincerely.


APPENDIX E1

Summary Results of Workshop Participants. Insèrvice and Workshop

PRRLNG INEGRVICE CUHEULER WORKSHOP SUMMARY SHSEI-INUMBER OF RESPONSES

NEWARK SCHOOL DISTRICT NEWARK, DELAWARE

## INSERVICE AND WORKSHOP OPINION SURVEY

(Please indicate your response on the scale provided)

> Preparation by leader:
> Inclusion of pertinent tópics:
> Budgeting of time:

> Explanation of Objectives:
> Participant's Awareness of objectives:

Length of Time of Workshop:

Physical facilities:

Resourcie materials and/or personnel:

Variety of Activities:

Accomplishment of objectives:
"Take:Home" plans ox ideas:
$\frac{20}{20} \frac{4}{\text { Adequate }}$
$\underset{\text { Sufficient }}{15} \cdot \frac{5}{5} \cdot \frac{2}{\text { Insufficient }}$

| 11 | 9 | 4 | 2 |
| :--- | :--- | :--- | :--- |
| $\frac{5}{\text { With Wisdom }} \quad \frac{1}{2}$ | Wasteful |  |  |


| 16 | $4 *$ |  |  |
| :---: | :---: | :---: | :---: |
| 5 | 4 | 3 | 2. |
| Thorough |  |  | 1 |


| 17 | 2 |  | 1 |  |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 4 | 3 | 2 | 1 |
| Clear |  |  |  | Vague |




| 18 | 2 | 3 | 2 |
| :---: | :---: | :---: | :---: |
| 5 | 4 | 3 | 1 |
| Available |  | . Lacking |  |


| 9. | 10 | 1 |  |
| :--- | :---: | :---: | :---: |
| Sufficient |  | $\frac{1}{3}$ | Insufficient |




## - MENTS : . (Use back of page)

Strengths of Workshop
Weakne'ssés of Workshop
Suggestions for 1975-76
(PLEASE GIVE THOUGHT TO THIS. YOUR SUGGESTIONS WILL BE USED IN PIAANNING FOR NEXT YEAR. THIS IS YOUR OFPORTUNITY FOR INPUT IN THE DISTRICTT'S INSERVICE PLANNING. TTHANK YOU.)".

NEWARK SCHOOL DISTRICT
NEWARK, DELANARE

## INSERVICE AND WORKSHOP OPINION SURVEY

(Please indicate your response on the scale provided),s

Preparation by leader:


Physical facilities:
8. Resource materials and/or personnel:
9.: Vá 'ety of Acṭivitiès:
0. Accomplishment. of Objectives:
"Pake, home." "plans or ideás:


MentTS: (Use bac! of page)

## Strengths of Workshop

Wraknesses of Workshop
Suggestions for 19.75-76
(PJEASE GIVE THOUGHT TO THIS. YOUR SUGGESTIONS WILL BE
USED. IN PIANNING FÓR NEXT YEAR. MHIS IS-YOUR
OPPORTUNITY FOR INPUT IN THE DISTMICT'S INSERVICE
PLANNING. THANK YOU.)

* SPRING İNSERVIGE TRAINING WORKSHOP (Workshop "\#22)

SUMMARY OF COMMENTS UNDER WEAKNESSES OF WORKSHOP

1. Too many participants .
2. None:
-3. None:
3. Not wise'to have "experts" in class with people who "know nothing!!"

SUMMARY OF COMMENTS UNDER STRENGTTHS OF WORKSHOP

1. Sutpl'cient" hardware $\qquad$ - $\qquad$
2. Handiston experience available
3. I learned something new:!!
4. Best Itve ever been to.
5. An opportunity was provided to have hands-on experiences and apply.theories to my particular field.
6. A knowledgeable instructor who was well versedexcellent equipment.
7. This workshop was excellent. I would like to participate in more"workshops on the same subject matter with the same persons in charge.
 workshop was conducted at Glasgow High School. The epurpose of the workshop was to train non-mathematics oriented teachers in the use of the computer: 'Thirty teachers (nine from Christiana High, eleven from Glasgow High; and ten from Newark•High) átended the Workshop. Mr: Cary Jacobson, a. mathematićs teacher' at. Glasgow High' was the instructor:

Activities included/aibrief survey of the historical deveiopment of computers and the growth of computer utilization (educational and adininistrative) in the Newark School District. ' Ine participants where then given instruction on the use of the Wang 2200 computer. Following machine) familiarization, the participants were introduced torthe BASIC computer fánguage and were given àn opportunity to write programs. Finally, the participants were made aware of the canned programs available and were given an opportunity to try several for their feactions/

Throughout, the workshop was conducted informally. The usual method of instruction was for half the participants to be working independently pniti machines while the instructor was working more formally fith the remaining half, In this way, handis-on time on the mâchines was maximized.

Participants weŕe given an epportunity to cvaluate the workshop at i,ts conclusion. Except for the length, majority of the participants rated-the workshop above average. Comments concerring Mr. Jacobson's preparation andimethod of presentation were. extremely positive.

Weaknesses noted were moştly related to too many participants and a lac'. of time.

Summhry sheets of participants' rosponses aire attached.
Basced on the responses of the participantṣ; additional workshops will be plpnined for the 1975/76 school year.

COMPURER TRAINING WORKSHOP SUMMARY SHEET-NUMBER OF RESPONSES NEWARK SCHOOL DISTRICT NEWARK, DELANARE

## INSERVICE AND WORKSHOP OPINION SURVEY

(Please indicate your. response on the scale provided)
piceparation by leader:
(-) rinclusion of pertinnent topics
Budgeting of time:
"Explanation of objedtives:

Participant's Awareness of Objectiyds:

- Length of Time of Workhop:

7.     * physich facilities:

Resource materials. andor persoñel:
varie Cy of Activities
Accomplishment of objectives:
"Take home" plans or ideas:

MmbNTS: (Use back of page)
Streneths of workshop, Weaknessés pi Forkshop Suggestions for 1975-76 - PLEASE GIVE THOUGHT TO THIS. YPUR SUGGESTIONS WILL BE
 ELANNING. THANK• YOU.) ${ }^{-7}$

## INSERVICE AND WORKSHOP̈ OPINION SURVEY

(Please indicate your response on the scale provided)

Prebaration by leader:

Inclusion of pertinent topics:

Budgeting of time:

Explanation of Objectives:

Participant's Awareness, of Objectives:

Length of Time of "Workshop:

(Use back of page)
Strengths of Workshop
Weaknesses of Workshop.
Suggestions-for 1-97-5-76:
(PLEASE GIVE THOUGHT 'IO THIS. YOUR SUGGESTIONS WILL BE USED IN PLANNING FOR NEXT YEAR. THIS IS YOUR OPPORTUNITY FOR INPUT IN THE DISTRICT!S INSERVICQE PLANNING. THANK YOU.):

SUMMARY' OF COMMENTS UNDER STRENGTHS OF WORKSHOP
1.- The time devoted to participants who were not "computerminded."
2. Time "was available to discuss computer apylications with others.
3. You receiỵed both explanation and practical application. It was great for the novice:
4. The instructor worked at our level.
5.- Carl Jacobson did an excellent, job presenting the material.
"6. The instructor was patient, knowledgeable, and well-versed.
7. We were able to work with teachers in various fielád of study and from differônt schools, which helped to improve communication and associations. It helped to exchange ideas for programs.
8. A good experience: I now have a good attitude toward computers and computer know-how.
9. Meeting the objectivès
-10: The diversity of people participating.
11. The length.
12. Excellent instructor - activities were made enjoyable.

13: Carl was well prepared and able to communicate the subject $t_{i}$ matter to even those of us who have grown stale in the mathscience orientation. The experience has "wet" my appetite to perhaps study". the area further.
14. Good presentation
15. An enthusiastic and knowledgeable instructor: A good man!
16. A cohesive, interested group of students.

17: $\sqrt[F]{ }$ An insight into the world of computers
18. : A good exposure.

19: The mini-course was well-organized and proceeded quite rapidly from total ignorance (on my part) to some sort of understanding.
20. Carl easily understoód.
$21 \%$ Good instructor.


1. The workshop was great except for number of people and too. few computers. Also some more people to help Carl "would. have been good.
2. There should have been more instructors to give more individualization.
3.: More tị̂ for neophytes ís needed.
3. Too many people per instructor. A limit of 15 would-be bétter. Aisog itwould be nice to go 2 weeks.
4. Possibly someone to aid while we re working on the computers and the instructor is lecturirg.,
5. I would like to work on a more advançed level of programming so that $\dot{F}$ improve my quiz and test programs. Also; I would: like to supervise the student's operation of the computer to get a better understanding of their capabilities.
7.- The workshop probably was too short for those people who gefinitely want to use computers in their program.
6. -Too many peoplè - not enough time on machine.

9: Not enough time.
10. A longer time is, needed for more programming.
11. Some of us needed more time.
12. Troo mùch idle tïme:
13. Somé inactive spots during the "shi.ft changes" from the machine group to the "listening", group.
14.' Some difficulty in hearing while the machine group was at work.'
15.: The instructor could probably have used knowledgeable $\therefore$ aides in instruction of operation of machine to use time more efficiently.
16. More time, more machines.
$\because$
17:- Not enough computers-
18. "Budgeting'of time - handouts on instructions would bé usèful.
19. Needed more time to completely understand how to program and.score tests. a
20. Too short in length.

ENY: bap.
8/1/75

1. Repeat the same procedure.
2. Perhaps a continuation of this would be desirable
3. I strongly suggest a similiar experience for al fiaculty members at each high school. As an educational tool, we probably have hardly begun to explore the possibilities of computer.
4. Bring back the same instructor - he is excellent.
5. There is a need for an extended workshop to more fully learn $a^{\circ}$ computer language.
6. For those who are going to use computers during the year, hold another hìgh level workshop:
7. Hold a workshop for each teacher in the district.
8. Compile an actual list of progims useful to particular. course or subject matter.
9. Plan a 3-week workshop next year.
10. English, math, and other teachers to work separately and decide if and how the computer can be used in their classes..

RE: Follow-up Sürvey
In order to find out. what impact was made by the computer education workshops held last spring and summer, it is necessary that I receive some feedyback from you. Thelefore, would you please take a few minutes to answer the followng questions. After completing the questions, please return the sheet to me at the Administratión Building.

## Thank-s: :

1. Which workshop díd you attend?
2.. ' Based on your experiences in the workshop do you think you can?
a. operate the in-house computer in your school?
Have you?
b. Write a simple program in BASIC?
c. Explain to 'another person how to operate the in-house computer?
Have you? ....... Yes. $\frac{45}{25}$ No $\frac{12}{32}$.
2. Have you discüsed computers and their uses with - your classes? Yes 37 No 20
3. If your answer to \#3 is no, do you plan to in the future? $\because$ Yes 14 No _ 6 .
4. Have you made use of any computer applications in your clăsses?

Yes 19 No 38.
If your answer is yes, please list the applications.
6. If your answer to \#5 is no, do you plan to in the future?

Yes 20 No 10
7. Are any of your students using the computer in conjunction with your course?

Yes 23 No 34
8. Have you developed any computer applications for use in areas other than instruction? (grading, etc.)

Yes $19 \mathrm{NO}^{9} 38$
If your answer s yes; please lïst the applications.
9. Are you familiar with the Computer Curriculum Guide? ............ 45 No 12
10. Please list any additional comments you deem appropriate.

NFWARK SCHOOL DISTRICT

- In order to find out what impact was made by the computer education workshops held"last spring and summer, it is necessary that I receive some feedback from you.: Therefore, would you please tảke a few minutes to answer the following questions. After completing the questions, please return the sheet to me at the. Administration Building.

Thanks.

1. Which workshop -did you a ttend?
2. Based on your experiences in the workshop do you think you can?
a. operate the in-house computer in your school?.

Yes $89 \%$ No $11 \%$
Ves $51 \%$ No $49 \%$
b. Wri-te a simple program in BASIC?

Have you?
c. Explain to another person how to operate the in-house "computer?"

Have you?
3. Have you discussed conputers and their uses with your classes? Yes $6.5 \%$ No $35 \%$
4. If your answer to \#3 is no, do you plan to in the future?. Yes 24\% No I1\%
5. Have you made use of any computer applications in your classes?

Yes $33 \%$ No $67 \%$
If your answer is yes, ploase list the applications.
6. If your arswer to \#5 is no, do you plan to in the future?
7. Are any of your students using the "computer" in conjunction with your course?

Yes $35 \%$ No 18\%

Yes 40\% No 60\%
8. Have you developed any computer applications, for use in areas other than instruction? (grading, etc.)

If your answer i's yes, please list the applications.
9. Are yout familiar with the Computer Curriculum Guide?

Yes $79 \%$ No $2 \underline{2}$
10. - Please list ary additional comments you deem appropriate.
 SUMMARY" OF CLAOSS APPLICASIONS
i. October r $^{2}$, $1975^{\circ}$

Evaluation of determinants
Finding slope and y-intercept
Prime Factorization
Canned programs: Policy, Onions, Market, Psychology Review:
Limit program
$\therefore$ Graphing.
Review questions for English grammar
Simulatións for Engligh granmar ©
Random test generatori
Evaluation of data bases
Multiple choice review questions for German
Probability
Pascal's Triangle.
Factoring exercises..
Compound interest
Use canned programs for aero-space course frograms for solution of physics problems Input-output of functions
Calculus ixmit demoristirations.
Sasic Skills drills.
Basic Skills homework checks
394

COMPUTER EDUCATION WORKSHOP FOLLOW:UP SURVEY SUMMARY-OF OTHER APPLICAMICNS
I.. Grading applicattons (7)
-2. Statisficar analysis of tests for driver education
3. Record keeping for chess club
4. Ṡchoolrwile atitendence
'5. Introduce the computer to the "Sci-Fi" club
6. Baseball statistics keeping
7. Test administer jof


[^0]:    ********************************************************************

    * . Docurents acquired by ERIC $-n c l u d e$ nany informal unpublished * materials not available from other sources. ERIC makes every effort
    * to obtain the best copy available. Nevertheless, items of marginal
    * reproducibility are often encountered and this affects the quality
    .* of the microfiche and hardcopy reproductions ERIC makes available
    * via the ERIC Document neproduction Service. (EDYS). EDRS is not
    * responsible for the quality of the original document. Feproductions *
    * supplied by EDRS are the best that can be made from the oriǵinal.
     **

[^1]:    Proposal for Computer Education Workshop -. . ${ }^{-}$. II

[^2]:    FNW:r1s
    $11 / 13 / 75$

