This publication represents a model for the Natural Science Education Curriculum for grades five through eight in Delaware's schools. This guide is meant to serve as a minimal standard for natural science education, but at the same time strives for maximum output of the natural science program. The guide is based on the processes of science education as well as the concepts and attitudes of the biological, physical, and earth sciences. Four basic goals have been identified and a set of terminal objectives has been established for each goal. These goals and objectives are to provide the framework for the development of district, local, building, or classroom programs. The guide lists eleven major processes of science education, suggests process ability levels, and identifies the six major concepts to be included in the natural science curriculum. Each concept grouping (concept-process-objective) is indicated in each of the major disciplines of science: biological, physical, and earth sciences. The mathematics applications in the basic sciences are also indicated. A section on current educational philosophies that relate to the natural science educational program concludes this publication. (BT)
equinox

A MODEL FOR THE NATURAL SCIENCE EDUCATION CURRICULUM FOR THE FIFTH, SIXTH, SEVENTH, AND EIGHTH GRADES IN THE DELAWARE SCHOOLS
EQUINOX

A MODEL FOR THE NATURAL SCIENCE EDUCATION CURRICULUM FOR THE FIFTH, SIXTH, SEVENTH, AND EIGHTH GRADES IN THE DELAWARE SCHOOLS

Prepared By

The Delaware State Department of Public Instruction

in cooperation with the Del Mod System

July 1, 1974
THE STATE BOARD OF EDUCATION

Albert Jones, Christiana, President
Richard M. Farmer, New Castle, Vice-President
Clyde Bishop, Newark
Joseph J. Crowley, Rehoboth
Mrs. Searles Grossman, Wilmington
Robert H. McBride, Wilmington

OFFICERS OF THE DEPARTMENT OF PUBLIC INSTRUCTION

TOWNSEND BUILDING
DOVER, DELAWARE 19901

Kenneth C. Madden, State Superintendent
Randall L. Broyles, Assistant Superintendent,
Instructional Services
Howard E. Row, Assistant Superintendent, Auxiliary Services
John J. Ryan, Assistant Superintendent, Administrative Services
Preparation of this monograph was supported by the National Science Foundation Grant No. G.W. 6703 to the Del Mod System, P.O. Box 192, Dover, Delaware 19901.

THE COUNCIL OF PRESIDENTS

THE UNIVERSITY OF DELAWARE
E. Arthur Trabant, President
Daniel C. Neale, Coordinating Council on Teacher Education
Robert L. Uffelman, Coordinator

DELAWARE STATE COLLEGE
Luna I. Mishoe, President
M. Milford Caldwell, Coordinating Council on Teacher Education
Ralph Hazelton, Coordinator

DELAWARE TECHNICAL AND COMMUNITY COLLEGE
Paul K. Weatherly, President
Ruth M. Laws, Coordinating Council on Teacher Education
Ethel L. Lantis, Coordinator

STATE DEPARTMENT OF PUBLIC INSTRUCTION
Kenneth C. Madden, Superintendent
Randall L. Broyles, Coordinating Council on Teacher Education
John F. Reiber, Coordinator

DEL MOD SYSTEM
Charlotte H. Purnell, State Director
John R. Bolig, Research Director
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>The Reason for Natural Science Education</td>
<td>1</td>
</tr>
<tr>
<td>Philosophy of Natural Science Education</td>
<td>3</td>
</tr>
<tr>
<td>Processes of Natural Science Education</td>
<td>8</td>
</tr>
<tr>
<td>Process Ability Levels Minimum Standards at the Completion of Eighth Grade</td>
<td>10</td>
</tr>
<tr>
<td>Concepts of Science Education</td>
<td>12</td>
</tr>
<tr>
<td>Objectives for Science Education</td>
<td></td>
</tr>
<tr>
<td>Biological Science</td>
<td>14</td>
</tr>
<tr>
<td>Physical Science</td>
<td>21</td>
</tr>
<tr>
<td>Earth Science</td>
<td>29</td>
</tr>
<tr>
<td>Mathematics in Science</td>
<td>36</td>
</tr>
<tr>
<td>Recommended Time Allotments for Science</td>
<td>39</td>
</tr>
<tr>
<td>Requirements for the Teaching of Science</td>
<td>40</td>
</tr>
<tr>
<td>Current Educational Philosophies That Relate to the Natural Science Education Program</td>
<td>41</td>
</tr>
</tbody>
</table>
The development of a scientifically aware generation will have a major impact upon the policies and the policy-making process of a democratic society. Citizens who know their long-run, best interests are most likely to promote them through all the means at hand. Being aware is only the beginning. Once a society perceives a need and sets objectives, it then moves to allocate its available resources to the priorities indicated by the goals and objectives. As every elementary economic student knows, the basic resources of the society are natural resources, capital, and human resources. In an earlier age natural resources determined a society’s wealth and welfare, especially in the fertility of its soil. Consequently, though natural resources never last their importance, capital resources, the technology to expand man’s productivity, rose to prominence.

Now we appear to be entering an age when human resources will dominate. It is a time when the most critical problems of society do not lend themselves to attack based on land, new materials, or machines. The primary tools of this society are the talents and skills of its people. Whatever its problems, the search for peace, the abolition of poverty, the prevention and cure of disease, the reduction of crime or the control of environmental quality, the solutions depend upon dedicated, talented, and well-trained people who understand and who can intelligently use whatever technological tools are available. It is the growing awareness of this new dependency that has pushed the United States economy into an educational investment which has expanded from $6 billion to $65 billion in 25 years. It is the same phenomenon which underlines the emergence of remedial manpower programs to assist those unable to compete successfully in the more sophisticated labor markets. It is the same awareness which has forced us to take a closer look as to what is currently happening in our educational programs and for us particularly the science education program.

Although science education has enjoyed a strong position in the educational hierarchy, little emphasis has been placed on the application of science to society. The major thrust in education today is “career education”. As career education is considered as an inter-disciplinary activity, science is often excluded because “science teachers are so busy teaching subject matter they cannot relate to the processes of science and how science applied to the world of work”.

This reaction is unfortunate and highly inaccurate, because any competent science teacher is constantly attempting to make subject matter relevant and pertinent and what better way to make it more meaningful than to relate it to the world of work. If career education is education for a living, then science might rightfully be considered as the prime essential of life; thus, science career education must therefore be a very practical kind of education. How can science teachers continue to teach in ways which fail to bring practicality into science education?

All too often science students ask “Why do I have to learn that? I don’t need it.” This is especially true of terminal students who need to be better prepared for the cold hard world in which they will suddenly sooner or later be thrust. It is also true in many cases of college-bound students who consider science as a foundational course material. Many science educators are constantly and diligently seeking innovative ideas to teaching the subject matter. Unfortunately, their efforts are focused on the subject matter or course content rather than on the students. It is better if they seek ways to stimulate the students in their desire to learn. We contend that if teachers would make existing programs relevant, then students would act positively. How does one make a science relevant for the non-academic student when it is difficult enough to maintain the interest of those who may need or want the science courses, but to those who neither want or need it, is almost impossible.

Science instruction as related to the career education philosophy becomes the answer to many of the problems in teaching today. It is an excellent way to make science relevant, practical, and interesting. It can stimulate the terminal student because he can make use of it without the need of detailed theory. By the same token, it can be used to teach theory and principles to academic students so that it may be understood easily and applied immediately.
In this approach natural science instruction is and must be focused on the student. One of the major goals in science teaching is to have the student develop the process of making decisions. There are invariably rights and wrongs when it comes to making decisions but as citizens we must make decisions. There may well be no real right or wrong for the simple reason that the product must suit the needs of the buyer. These needs may well vary from one individual to another. What might be emphasized in career science is how to evaluate products in light of needs. The goal should be to investigate awareness and relate to self through logical principles of evaluation. Here every person uses the so-called scientific method without really being aware of it for what it is.

We have provided this guide to assist the teachers of natural science, grades K-12, by providing the framework for the development of their local district, building, and classroom program. This should also serve as the framework for the pre-service and in-service training of teachers by the higher education institutions.
THE REASON FOR NATURAL SCIENCE EDUCATION

The purpose of the natural science education program for Delaware's students is to lead to the sequential development of a scientifically literate person. Although this is considered to be the central purpose of natural science education, a single or "best way" of pursuing this goal cannot be specified. The diverse nature of schools, students, and teachers necessitates a variety of programs and approaches.

***To develop a scientifically literate citizenry, the State Board of Education recommends that:

* every student K-12 have an opportunity for many natural science experiences every year.

* that the K-12 natural science experience takes into consideration individual differences of students and reflects the students' emotional, ethnic, moral, geographical, and economic background.

* every teacher of natural science be supplied with adequate facilities, equipment, supplies, and the time to utilize these at the various grade levels of the student.

* that natural science be presented as a unified discipline, integrated and coordinated with other disciplines, such as mathematics, social science, economics, political science, reading, and communication skills.

* increasing emphasis be placed on science processes, conceptional schemes and values, and less emphasis on factual information.

* direct experiences with the natural world in laboratory (hands on) activities should comprise the major portion of the science program.

* textbooks should facilitate inquiry, rather than being written to replace laboratory (hands on) experiences. The use of recorded material (other media as well as printed material) should be integral parts and dependent upon laboratory experiences. (The materials used will not discriminate against the ethnic, moral, geographical, or sexual background of students.)

* natural science education programs include environmental education that interrelates natural phenomena, environmental influences, science, technology, social implications of science and technology, and economic considerations.

* natural science education programs incorporate the philosophy of career education, emergency preparedness, health (drug and sex) education, but this is not the sole curricular area responsible for these philosophies.

* opportunities for the professional growth of teachers of natural science be considered an integral part of natural science education programs so that teacher's own deeper insights can be brought to bear on the science programs designed for scientific literacy.

* the achievement of scientific literacy should be the basis for setting objectives; for selecting content, learning experiences, methodology, and for developing a system of evaluation.
This guide is meant to serve as a minimal standard for natural science education but at the same time strive for maximum output of the natural science program. The guide is based on the processes of science education as well as the concepts, and attitudes with terminal objectives in areas of the biological, physical, and earth sciences, at the learning levels of K-1, 2-5, 5-8, and 9-12. These are not the day-by-day activities or materials to be used in the accomplishment of the terminal objectives. The development of this aspect of the curriculum is the responsibility of the classroom teacher, students, and coordinated by the building or district curriculum specialists and the State Department of Public Instruction.
PHILOSOPHY OF NATURAL SCIENCE EDUCATION
FOR DELAWARE'S SCHOOLS

When a student completes his experience in Delaware's schools, he should have reached a level of proficiency in these four basic goals.

Attitude Goal: To develop those values, aspirations, and attitudes which underlie the personal involvement of the individual with his environment and with mankind.

Rational Thinking Goal: To develop the rational thinking processes which underlie scientific modes of inquiry.

Skills Goal: To develop fundamental skills in manipulating materials and equipment and in gathering, organizing, and communicating scientific information.

Knowledge Goal: To develop knowledge of specifics, processes, concepts, generalizations, and unifying principles, which lead to further interpretation and dictation of objects and events in the natural environment.

In order to attain these goals, a set of terminal objectives have been established. Each terminal objective is a culmination of a student's science achievement from kindergarten through his high school experience.

The following pages identify the four basic goals and their terminal objectives to serve as a framework for the development of your science program.
ATTITUDE GOAL.

To develop those values, aspirations, and attitudes which underlie the personal involvement of the individual with his environment and with mankind.

The student has a critical attitude toward unsupported inferences, hypotheses, and theories.

The student is intrigued by objects and events in his environment.

The student appreciates the interrelatedness of science, technology, and society.

The student willingly subjects his data and ideas to the criticism of his peers.

The student is aware of and responds in a positive manner to beauty and orderliness in his environment.

The student conducts and reports the results of his scientific investigations in an honest and objective manner.

The student recognizes the limitations of scientific modes of inquiry and the need for additional, quite different approaches to the quest for reality.

The student habitually applies rational and creative thinking processes when attempting to explain, discrediting events, when trying to find relationships among seemingly unrelated phenomena and when seeking solutions to science-based problems.
RATIONAL THINKING GOAL

To develop the rational thinking processes which underlie scientific modes of inquiry.

The student formulates tentative statements (inferences, hypotheses, theoretical models) to identify and explain natural phenomena.

The student draws inferences from data and distinguishes between empirical data and inferences.

The student formulates and tests predictions derived from inferences, hypotheses, graphic, and theoretical models.

The student identifies the variables which may materially influence a given interaction in a system and find ways to control and manipulate the identified variables.

The student generates relevant data to verify or define inferences, hypotheses, and theoretical models.

The student senses the existence of discrepant events and problems which arise when he is investigating natural phenomena.

The student uses the processes described under this goal, requisite, manipulative, and communication skills and attitudes, and his functional understanding of the concept(s) involved to design, carry out, and report the findings of an experiment.

The student selects criteria for and develops classification systems and uses his systems and those of others to classify given objects and events.
SKILLS GOAL

To develop fundamental skills in manipulating materials and equipment, and in gathering, communicating, and organizing scientific information.

The student communicates with others, orally and in writing, in a manner that is consistent with his knowledge of scientific conventions and that facilitates the learning of his readers or listeners.

The student records observations accurately and organizes data and ideas in ways that enhance their usefulness.

The student gathers descriptive and quantitative information needed for developing or testing inferences and hypotheses by means of purposeful, objective observations of things and events.

The student constructs and handles laboratory apparatus in a skillful manner, giving due attention to accident prevention.

The student gathers needed data, which have been generated by others from a variety of sources.
The student demonstrates a knowledge of specifics—facts, conventions, sequences, classifications, and criteria.

The student demonstrates a knowledge of the relationships between science and society.

The student demonstrates a knowledge of concepts, generalizations, and unifying principles.

The student shows the major processes and procedures which are employed in scientific inquiry.
In order to determine the level of achievement of students in Delaware's public schools, a set of minimum objectives has been established. Each of these objectives is based on one or more processes that give a definite indication of a student's progress.

PROCESS ➔ **OBJECTIVE**

Following is a list of the eleven major processes that have been identified which includes the great majority of student activities that are appropriate for K-12 school experiences. Along with the term associated with each process is a short descriptive paragraph to help clarify the intended meaning of the terms.

These processes are not listed to imply use of the program, Science, A Process Approach (AAAS), but are the processes used for any natural science or environmental education program.

PROCESS - Observing

Observations can be made in a variety of ways using all of the senses. Where direct sense experience is not adequate for making needed observations, indirect methods are used. Objects and events may be observed with respect to many qualities and quantities. When observations are made to accumulate data from which inferences will be drawn, the precision of the observations is critical. Precision is often improved by making quantitative observations. Observations are influenced by the experience of the observer.

PROCESS - Classifying

Classifying is the grouping or ordering of phenomena according to an established scheme. Objects and events may be classified on the basis of observations. Classificational schemes are based on observable similarities and differences in arbitrarily selected properties. Classificational keys are used to place items within a scheme as well as to retrieve information from a scheme.

PROCESS - Inferring

Inference, while based on observations, requires evaluation and judgment. Inferences based upon one set of observations may suggest further observation which in turn requires modification of original inferences. Inference leads to prediction.

PROCESS - Predicting

Prediction is the formulation of an expected result based on past experience. The reliability of prediction depends upon the accuracy of past observations and upon the nature of the event being predicted. Prediction is based upon inference. Progressive series of observations and, in particular, graphs are important tools of prediction in science. An experiment can verify or contradict a prediction.

PROCESS - Measuring

Measuring properties of objects and events can be accomplished by direct comparison or by indirect comparison with arbitrary units which, for purposes of communication, may be standardized. Identifiable characteristics which can be measured may be interrelated to provide other quantitative values that are valuable in the description of physical phenomena.
PROCESS - Communicating

In order to communicate observations, accurate records must be kept which can be submitted for checking and rechecking by others. Accumulated records and their analysis may be represented in many ways. Graphical representations are often used since they are clear, concise, and meaningful. Complete and understandable experimental reports are essential to scientific communication.

PROCESS - Interpreting Data

Interpreting data requires the application of other basic process skills — in particular, the processes of inferring, predicting, classifying, and communicating. It is through this complex process that the usefulness of data is determined in answering the question being investigated. Interpretations are always subject to revision in the light of new or more refined data.

PROCESS - Making Operational Definitions

Operational definitions are made in order to simplify communication concerning phenomena being investigated. In making such definitions it is necessary to give the minimum amount of information needed to differentiate that which is being defined from other similar phenomena. Operational definitions may be based upon the observable characteristics of the phenomena and upon the operations to be performed. Operational definitions are precise and, in some cases, based upon mathematical relationships.

PROCESS - Formulating Questions and Hypotheses

Questions are formed on the basis of observations made and usually precede an attempt to evaluate a situation or event. Questions, when precisely stated, are problems to be solved through application of the other process of science. The attempt to answer one question may generate other questions. The formulation of hypotheses depends directly upon questions, inferences, and predictions. The process consists of devising a statement which can be tested by experiment. When more than one hypothesis is suggested by a set of observations, each must be stated separately. A workable hypothesis is stated in such a way that, upon testing, its credibility may be established.

PROCESS - Experimenting

Experimenting is the process of designing data-gathering procedures as well as the process of gathering data for the purpose of testing a hypothesis. In a less formal sense, experiments may be conducted simply to make observations. However, even here there is a plan to relate cause-and-effect. In an experiment, variables must be identified and controlled as much as possible. An experimental test of a hypothesis is designed to indicate whether the hypothesis is to be accepted, modified, or rejected. In designing an experiment, limitations of method and apparatus must be considered.

PROCESS - Formulating Models

Models, whether physical or mental, are devised on the basis of acceptable hypothesis or hypothesis that have yet to be tested. Models are used to describe and explain the interrelationships of ideas. In many cases the model implies new hypothesis; if testing these hypothesis results in new information, the model must be altered to include it.

Each of these processes have different levels of difficulty that are based on the age and ability levels of a particular student. With this in mind, the following are the minimum acceptable proficiency levels for students completing the grade levels covered by this guide in a Delaware school.
PROCESS ABILITY LEVELS
MINIMUM STANDARDS AT THE COMPLETION OF EIGHTH GRADE

Observing

Identifying changes in properties and measuring rates of change.
Differentiating constants from variables.

Classifying

Setting limits as a means of grouping on the basis of a continuous variable.
Developing classificational schemes of two or more stages of sub-sets having mutually exclusive categories.
Using an accepted classificational system or key to identify objects or phenomena.
Using characteristics observed under imposed conditions as a basis for grouping.

Inferring

Stating cause-and-effect relationships from observation of related events.
Identifying limitations of inferences.
Modifying and extending inferences to include discrepant events.
Developing plans to test the validity of inferences.
Using inferences to suggest further observation.

Predicting

Limiting variation in conditions affecting prior observations in order to improve the accuracy of predictions.
Demonstrating the accuracy of predictions in order to establish the validity of previously held concepts upon which the predictions are based.

Measuring

Identifying measurable physical quantities which can be used in precise description of phenomena.
Measuring quantities which depend upon more than one variable.
Using and devising indirect means to measure quantities.
Using methods of estimation to measure quantities.

Communicating

Stating questions and hypotheses concisely without ambiguity.
Constructing tables and graphs to communicate data.
Planning for communication of procedures and results as an essential part of an experiment.
Reporting experimental procedures in a form so other persons can replicate the experiment.
Using mathematical analysis to describe interpretations of data to others.
Using tables and graphs to convey possible interpretations of finite data.

Interpreting Data

Describing information as it is displayed on tables or graphs.
Making and explaining inferences from tables or graphs.
Making and explaining inferences from tables or graphs.
Setting criteria for assessing the validity, precision, and usefulness of data.
Comparing sets of related data to test the credibility of inferences and generalizations.
Selecting the most acceptable interpretation from multiple interpretations of the same set of data.
Making Operational Definitions

Stating minimal observable characteristics required for an operational definition.
Establishing the criteria for operational definitions according to the use intended for the definitions.
Evaluating the suitability of operational definitions.
Describing the limitations of operational definitions.
Using mathematical relationships in making operational definitions.

Formulating Questions and Hypotheses

Separating broad questions into parts which, when answered, will contribute to a comprehensive explanation.
Asking questions or stating simple hypotheses which can be tested.
Stating hypotheses in forms which suggest the variable to be manipulated.
Differentiating between hypotheses which must be tested qualitatively and those which can be tested quantitatively.
Stating negative hypotheses in an attempt to eliminate variables.

Experimenting

Identifying relevant variables in an experimental situation.
Maintaining an accurate record of experimental procedures and results.
Controlling those variables not a part of the hypothesis being tested.
Identifying sources of experimental error.

Formulating Models

Constructing a physical representation, a drawing, or a mental image to explain observed phenomena.
Extending physical or mental models to include related phenomena.
Modifying existing models to include new observations.
Moving up the ladder each process is based on a conceptual scheme, thus allowing each objective to be developed under the concepts. Six major concepts have been identified for inclusion in the natural science curriculum in Delaware's K-12 schools. These concepts are defined as follows:

Diversity: The vast number of natural phenomena which can be observed display a wide variety of similarities and differences.

Change: Our environment, living and nonliving, microscopic and macroscopic, is constantly undergoing change.

Continuity: There is constancy in cause-and-effect relationships which precludes any abrupt reversal in natural phenomena.

Interaction: The interactions of living and nonliving matter in an environment and the resulting change of energy determine the nature of the environment.
Organization: Systematic relationships exist in natural phenomena. Systems within systems comprise the universe.

Limitation: Natural phenomena are limited by the fundamental nature of matter and energy. There is an overall tendency toward equilibrium in an environment.

Curriculum Area ➞ Process ➞ Objective

Each concept grouping (concept-process-objective) is indicated in each of the major disciplines of science: biological, physical, and earth sciences. The mathematics applications in the basic sciences are also indicated.

Environmental education is not a separate content area of the natural science programs; it is part of the biological, physical, and earth sciences, with implications for the social sciences.

GOALS & TERMINAL OBJECTIVES

CURRICULUM AREA

CONCEPT

PROCESS

OBJECTIVE

When all this is completed, and the basic objective achieved, the student is then on his way to reaching the long range goals and terminal objectives that should be achieved before graduation.

On the following pages you will find the concept groupings listed under their specific curriculum areas. It is hoped that this will help to serve as a guide in planning for and implementing natural science education in the classroom.
The vast number of natural phenomena which can be observed display a wide variety of similarities and differences.

- Communicating
- Formulating questions and hypothesis
- Distinguish between statements that are hypotheses and those that are not.
- Interpreting data
- Formulating questions and hypothesis
- Identify data collected from a test conducted by himself which support or do not support his hypothesis.
- Experimenting
- Distinguish between statements that are hypotheses and those that are not.
- Observing
- Inferring
- Communicating
- Formulating questions and hypothesis
- Experimenting
- Demonstrate a method for analysis of a system by identifying sources of the problem and describe a method to test for each problem identified, e.g., a light bulb that will not grow.
- Observing
- Classifying
- Communicating
- Identify five different biomes and give five examples of major plants or animals that may live there.
- Observing
- Classifying
- Communicating
- Interpreting data
- Discuss three major ways in which plants or animals obtain food from raw materials.
- Observing
- Classifying
- Communicating
- Interpreting data
- Order plant reproductive methods on the basis of complexity.
- Observing
- Classifying
- Communicating
- Interpreting data
- Make a comparison of plant and animal cells.
- Communicating
- Communicating
- Describe the ways in which plants reproduce.
- Communicating
- Identify major organs of the human body that are involved in converting food to energy.
- Classifying
- Communicating
- Interpreting data
- Construct a classification key to identify a small group of common minerals.
- Observing
- Predicting
- Communicating
- List several ways that man can conserve natural resources and identify places in the community where conservation practices might be improved.
- Observing
- Experimenting
- Demonstrate chemical test for carbonates by the use of hydrochloric acid.
Our environment, living and nonliving, microscopic and macroscopic, is constantly undergoing change.

Communicating
Making operational definitions
Experimenting

State a definition of "variable".

Observing
Predicting
Communicating
Interpreting data

List several ways that man can conserve natural resources and identify places in the community where conservation practices might be improved.

Observing
Predicting
Communicating
Interpreting data
Experimenting

Design an experiment illustrating how energy is transformed from one form to another.

CONCEPT CONTINUITY

There is a constancy in cause-and-effect relationships which precludes any abrupt reversal in natural phenomena.

Interpreting data
Formulating questions and hypothesis
Experimenting

Identify data collected from a test conducted by himself which support or do not support his hypothesis.

Communicating
Interpreting data
Experimenting

Demonstrate the ability to record information by constructing a graph using data containing two variables.

Communicating
Making operational definitions
Experimenting

State a definition of "control".

Observing
Predicting
Communicating
Interpreting data

List several ways that man can conserve natural resources and identify places in the community where conservation practices might be improved.
CONCEPT INTERACTION

The interactions of living and nonliving matter in an environment and the resulting change of energy determine the nature of the environment.

Communicating
Identify the variables held constant, the manipulated variable and the responding variable in an investigation.

Experimenting

Observing
Distinguish how man is directly and indirectly dependent upon soil.

Interpreting data
Describe the need for state parks, national parks, forests, water areas, historical sites, camping areas, nature sanctuaries and arboreta, and why their location is important.

Communicating
Identify five different biomes and give five examples of major plants or animals that may live there.

Classifying
Identify ways in which plants and animals compete for basic needs in their environment.

Communicating

Interpreting data
Describe how man used genetic factors for the breeding of plants and animals.

Experimenting

Observing
Discuss three major ways in which plants or animals obtain food from raw materials.

Classifying

Communicating
Name endangered plant and animal species and describe ways in which natural habitats may be maintained and developed so the species may continue natural reproduction and replenishment.

Interpreting data

Observing
Identify stimuli in an environment and the response of living things to these stimuli.

Predicting

Communicating
Demonstrate chemical test for carbonates by the use of hydrochloric acid.

Formulating

questions and hypothesis

Experimenting

List several ways that men can conserve natural resources, and identify places in the community where conservation practices might be improved.

Communicating
Construct a diagram or model to show that a plant is a food factory.

Formulating
models
Communicating
Describe ways in which plants reproduce.

Communicating
Identify major organs of the human body that are involved in converting food to energy.

Observing
Predicting
Communicating
Interpreting data
Experimenting
Design an experiment illustrating how energy is transformed from one form to another.

CONCEPT ORGANIZATION

Systematic relationships exist in natural phenomena. Systems within systems comprise the universe.

Communicating
Interpreting data
Formulating questions and hypothesis

Interpreting data
Experimenting
Demonstrate the ability to carry out an individual activity from printed or oral direction.

Communicating
Interpreting data
Experimenting
Demonstrate the ability to record information by constructing a graph using data containing two variables.

Observing
Inferring
Communicating
Formulating questions and hypothesis
Experimenting
Demonstrate a method for analysis of a system by identifying sources of the problem and describe a method to test for each problem identified, e.g., a light bulb that will not glow.

Observing
Measuring
Communicating
Making operational definitions

Measuring
Communicating
Experimenting
Demonstrate the ability to properly use, handle, and care for a microscope.

Measuring
Communicating
Experimenting
Mount a slide on the stage of a microscope and focus the scope using both low and high power objectives.

Inferring
Communicating
Interpreting data
Identify a current article from popular periodic literature (newspaper or popular magazine) as to its probable scientific credibility.
Construct a classification key to identify a small group of common minerals.

Identify five different biomes and give five examples of major plants or animals that may live there.

Describe how man uses genetic factors for the breeding of plants and animals.

Order plant reproductive methods on the basis of complexity.

Identify stimuli in an environment and the response to living things to these stimuli.

Describe and compare the life cycle of different vertebrates and invertebrates.

Construct a diagram or model to show that a plant is a food factory.

Make a comparison of plant and animal cells.

Describe the need for state parks, national parks, forests, water areas, historical sites, camping areas, nature sanctuaries and arboretums, and why their location is important.

Describe how man perceives color; differences in the visual spectrum.

Design an experiment illustrating how energy is transformed from one form to another.

Describe and practice safety measures common to any experiment.
CONCEPT LIMITATION

Natural phenomena are limited by the fundamental nature of matter and energy. There is an overall tendency toward equilibrium in an environment.

- **Observing**
 - Demonstrate chemical test for carbonates by the use of hydrochloric acid.

- **Communicating**
 - Identify major organs of the human body that are involved in converting food to energy.

- **Conceiving Limitation**
 - Natural phenomena are limited by the fundamental nature of matter and energy. There is an overall tendency toward equilibrium in an environment.

- **Communicating**
 - Describe what a model is and how models can be helpful.
 - Formulating models

- **Observing**
 - Distinct how man is directly and indirectly dependent upon soil.

- **Observing**
 - Identify ways in which plants and animals compete for basic needs in their environment.

- **Classifying**
 - Communicating
 - Interpreting data
 - Experimenting

- **Predicting**
 - Communicating
 - Interpreting data

- **Observing**
 - Name endangered plant and animal species and describe ways in which natural habitats may be maintained and developed so the species may continue natural reproduction and replenishment.

- **Communicating**
 - Identify stimuli in an environment and the response of living things to those stimuli.

- **Observing**
 - Design an experiment illustrating how energy is transformed from one form to another.
CONCEPT DIVERSITY

The vast number of natural phenomena which can be observed display a wide variety of similarities and differences.

| Communicating | Distinguish between statements that are hypotheses and those that are not. |
| Formulating questions and hypothesis |
| Interpreting data | Identify data collected from a test conducted by himself which support or do not support his hypothesis. |
| Formulating questions and hypothesis |
| Experimenting |
| Observing |
| Inferring |
| Communicating |
| Formulating questions and hypothesis |
| Experimenting |
| Classifying |
| Experimenting |
| Distinguish between acids and bases using litmus or other indicator papers. |
| Communicating |
| Distinguish between molecules and atoms. |
| Formulating models |
| Observing |
| Classifying |
| Making operational definitions |
| Measuring |
| Communicating |
| Making operational definitions |
| Observing |
| Classifying |
| Measuring |
| Communicating |
| Classifying |
| Making operational definitions |
| Observing |
| Classifying |
| Measuring |
| Communicating |
| Classifying |
| Communicating |
| Making operational definitions |

31
Observing Distinguish between the physical and chemical properties of a given substance.
Classifying
Interpreting data
Making operational definitions
Communicating Explain the difference between kinetic and potential energy:
Making operational definitions
Observing List various forms of energy and give an example of work done by each.
Classifying
Communicating
Interpreting data
Observing Name the source of all forms of energy except nuclear energy and list those forms that come directly from the source and those forms which come indirectly from the source.
Classifying
Communicating
Observing Demonstrate chemical test for carbonates by use of hydrochloric acid.
Experimenting
Observing Distinguish between concave-convex lenses and explain how each affects light rays.
Communicating
Making operational definitions
Experimenting

CONCEPT CHANGE

Our environment, living and nonliving, microscopic and macroscopic, is constantly undergoing change.

Communicating State a definition of "variable".
Making operational definitions
Experimenting
Interpreting data Interpret collected data to develop an operational definition of acceleration.
Making operational definitions
Observing Design an experiment illustrating how energy is transformed from one form to another.
Predicting
Communicating
Interpreting data
Experimenting
Communicating Identify plane, convex, and concave mirrors and describe what each does to light rays striking it.
Making operational definitions
Formulating models
CONCEPT CONTINUITY

There is a constancy in cause-and-effect relationships which precludes any abrupt reversal in natural phenomena.

- Interpreting data: Identify data collected from a test conducted by himself which support his hypothesis.
- Formulating questions and hypothesis:
- Experimenting:
- Communicating:
- Interpreting data:
- Experimenting:
- Communicating:
- Interpreting data:
- Experimenting:
- Communicating:
- Making operational definitions:
- Experimenting:
- Observing:
- Measuring:
- Communicating:
- Interpreting data:
- Making operational definitions:
- Experimenting:
- Communicating:
- Formulating models:
- Classifying:
- Experimenting:
- Measuring:
- Experimenting:
- Measuring:
- Communicating:
- Interpreting data:
- Making operational definitions:
- Experimenting:
- Formulating models:
- Observing:
- Classifying:
- Measuring:
- Communicating:

Describe the basic properties of all matter (mass and space occupancy).

Observing: List various forms of energy and give an example of work done by each.

Classifying: Communicating Interpreting data

Observing: Communicating
Making operational definitions

Distinguish between concave-convex lenses and explain how each affects light rays.

Measuring: Demonstrate a method of determining the specific gravity of rock, mineral, or of an object.

CONCEPT INTERACTION

The interactions of living and non-living matter in an environment and the resulting change of energy determine the nature of the environment.

Communicating: Identifying the variables held constant, the manipulated variable and the responding variable in an investigation.

Observing: Determine by experiment effects of mass, size of arc, and length of string on time required for the swing of a pendulum.

Classifying: Measuring Communicating Experimenting

Communicating: Describe and demonstrate the basic Laws of Motion and Gravitation.

Classifying: Measuring

Demonstrate chemical test for carbonates by the use of hydrochloric acid.

Measuring: Demonstrate method of determining the specific gravity of rock, mineral, or of an object.
CONCEPT ORGANIZATION

Systematic relationships exist in natural phenomena. Systems within systems comprise the universe.

Communicating
Interpreting data
Formulating questions and hypothesis

Construct an hypothesis from a set of observations.

Interpreting data
Experimenting

Demonstrate the ability to carry out an individual activity from printed or oral directions.

Communicating
Interpreting data
Experimenting

Demonstrate the ability to record information by constructing a graph using data containing two variables.

Observing
Inferring
Communicating
Formulating questions and hypothesis
Experimenting

Demonstrate a method for analysis of a system by identifying sources of the problem and describe a method to test for each problem identified, e.g., a light bulb that will not glow.

Observing
Classifying
Measuring
Communicating
Experimenting

Determine by experiment effects of mass, size of arc, and length of string on time required for the swing of a pendulum.

Inferring
Communicating
Interpreting data

Identify a current article from popular periodical literature (newspaper or popular magazine) as to its probable scientific credibility.

Observing
Predicting
Communicating
Interpreting data
Experimenting

Design an experiment illustrating how energy is transformed from one form to another.

Communicating
Experimenting

Describe and practice safety measures common to any experiment.

Communicating
Experimenting

Describe and demonstrate the basic Laws of Motion and Gravitation.

Interpreting data
Experimenting
Formulating models

Construct a simple electric circuit and show the advantages and disadvantages of parallel and series circuitry.

Communicating
Formulating models

Distinguish between molecules and atoms.
Observing
Classifying
Making operational definitions

Classify a group of objects as: transparent, translucent, opaque, and reflective.

Observing
Classifying

Construct a classification system whereby items can be identified on the basis of their observable properties, when given a number of common household substances.

Observing
Communicating
Experimenting

Describe how man perceives color differences in the visual spectrum.

Measuring
Communicating
Interpreting data

Construct a system showing the relationship between lever arms, force applied, and resistance overcome, and apply this relationship to mechanics.

Classifying
Communicating
Making operational definitions

Define element, compound, and mixture, and state properties that distinguish them from one another.

Communicating
Making operational definitions

Use a periodic table and show how to find atomic mass and atomic number.

Interpreting data
Interpreting data

Interpret collected data to develop an operational definition of acceleration.

Communicating
Making operational definitions

Define momentum in operational terms.

Observing
Experimenting

Demonstrate chemical test for carbonates by the use of hydrochloric acid.

Communicating
Making operational definitions

Identify plane, convex, and concave mirrors and describe what each does to light rays striking it.

Formulating models
Making operational definitions

Demonstrate method of determining the specific gravity of rock, mineral, or of an object.
CONCEPT LIMITATION

Natural phenomena are limited by the fundamental nature of matter and energy. There is an overall tendency toward equilibrium in an environment.

<table>
<thead>
<tr>
<th>Communicating</th>
<th>Formulating models</th>
<th>Describe what a model is and how models can be helpful.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observing</td>
<td></td>
<td>Determine by experiment effects of mass, size of arc, and</td>
</tr>
<tr>
<td>Classifying</td>
<td>Measuring</td>
<td>length of string on time required for the swing of a pendu-</td>
</tr>
<tr>
<td>Communicating</td>
<td>Experimenting</td>
<td>lum.</td>
</tr>
<tr>
<td>Observing</td>
<td></td>
<td>Identify ways that gravity is the moving force in the natural</td>
</tr>
<tr>
<td>Measuring</td>
<td></td>
<td>phenomena</td>
</tr>
<tr>
<td>Communicating</td>
<td>Interpreting data</td>
<td>Describe and demonstrate the basic Laws of Motion and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravitation.</td>
</tr>
<tr>
<td>Experimenting</td>
<td>Interpreting data</td>
<td>Construct a simple electric circuit and show the advantages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and disadvantages of parallel and series circuitry.</td>
</tr>
<tr>
<td>Formulating models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring</td>
<td>Experimenting</td>
<td>Demonstrate that light travels in a straight line except</td>
</tr>
<tr>
<td></td>
<td></td>
<td>when passing from one medium to another.</td>
</tr>
<tr>
<td>Measuring</td>
<td>Communicating</td>
<td>Construct a system showing the relationship between lever</td>
</tr>
<tr>
<td></td>
<td>Interpreting data</td>
<td>arms, force applied, and resistance overcome, and apply</td>
</tr>
<tr>
<td></td>
<td>Making operational</td>
<td>this relationship to mechanics.</td>
</tr>
<tr>
<td></td>
<td>definitions</td>
<td></td>
</tr>
<tr>
<td>Experimenting</td>
<td>Formulating models</td>
<td></td>
</tr>
<tr>
<td>Classifying</td>
<td>Communicating</td>
<td>Define element, compound, and mixture, and state proper-</td>
</tr>
<tr>
<td></td>
<td>Making operational</td>
<td>ties that distinguish them from one another.</td>
</tr>
<tr>
<td></td>
<td>definitions</td>
<td></td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td>State the Laws of Conservation of Matter and Energy.</td>
</tr>
<tr>
<td>Observing</td>
<td></td>
<td>List various forms of energy and give an example of work</td>
</tr>
<tr>
<td>Classifying</td>
<td></td>
<td>done by each.</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpretting data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observing</td>
<td>Predicting</td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td></td>
<td>Communicating</td>
<td>ed from one form to another.</td>
</tr>
<tr>
<td></td>
<td>Interpreting data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimenting</td>
<td></td>
</tr>
</tbody>
</table>

37
EARTH SCIENCE
CONCEPT DIVERSITY

The vast number of natural phenomena which can be observed display a wide variety of similarities and differences.

- Communicating
- Formulating questions and hypothesis
- Interpreting data
- Formulating questions and hypothesis
- Experimenting
- Observing
- Inferring
- Communicating
- Classifying
- Communicating
- Interpreting data
- Observing
- Classifying
- Measuring
- Communicating
- Making operational definitions
- Classifying
- Communicating
- Interpreting data
- Observing
- Predicting
- Communicating
- Interpreting data
- Observing
- Classifying
- Communicating
- Interpreting data
- Observing
- Classifying
- Communicating

<table>
<thead>
<tr>
<th>Activity</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating</td>
<td>Distinguish between statements that are hypothesis and those that are not.</td>
</tr>
<tr>
<td>Formulating questions</td>
<td>Distinguish between statements that are hypothesis and those that are not.</td>
</tr>
<tr>
<td>and hypothesis</td>
<td></td>
</tr>
<tr>
<td>Interpreting data</td>
<td>Identify data collected from a test conducted by himself which support his hypothesis.</td>
</tr>
<tr>
<td>Formulating questions</td>
<td></td>
</tr>
<tr>
<td>and hypothesis</td>
<td></td>
</tr>
<tr>
<td>Experimenting</td>
<td></td>
</tr>
<tr>
<td>Observing</td>
<td>Demonstrate a method for analysis of a system by identifying sources of the problem and describe a method to test for each problem identified, e.g., a light bulb that will not glow.</td>
</tr>
<tr>
<td>Inferring</td>
<td></td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
</tr>
<tr>
<td>Classifying</td>
<td>Construct a classification key to identify a small group of common minerals, plants, and animals.</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
</tr>
<tr>
<td>Interpreting data</td>
<td>Identify common rocks: igneous, metamorphic, sedimentary.</td>
</tr>
<tr>
<td>Observing</td>
<td></td>
</tr>
<tr>
<td>Classifying</td>
<td></td>
</tr>
<tr>
<td>Measuring</td>
<td></td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
</tr>
<tr>
<td>Making operational</td>
<td></td>
</tr>
<tr>
<td>definitions</td>
<td></td>
</tr>
<tr>
<td>Classifying</td>
<td>Classify similarities and differences in fossil specimens.</td>
</tr>
<tr>
<td>Inferring</td>
<td>Infer some of the major events in the geological history of an area from a study of its topographic features and other data.</td>
</tr>
<tr>
<td>Making operational</td>
<td></td>
</tr>
<tr>
<td>definitions</td>
<td></td>
</tr>
<tr>
<td>Inferring</td>
<td>Describe a possible explanation for the origin of the solar system.</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
</tr>
<tr>
<td>Formulating questions</td>
<td></td>
</tr>
<tr>
<td>and hypothesis</td>
<td></td>
</tr>
<tr>
<td>Observing</td>
<td>List several ways that man can conserve natural resources and identify places in the community where conservation practices might be improved.</td>
</tr>
<tr>
<td>Predicting</td>
<td></td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
</tr>
<tr>
<td>Interpreting data</td>
<td></td>
</tr>
<tr>
<td>Observing</td>
<td>List various forms of energy and give an example of work done by each.</td>
</tr>
<tr>
<td>Classifying</td>
<td></td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
</tr>
<tr>
<td>Interpreting data</td>
<td></td>
</tr>
<tr>
<td>Observing</td>
<td>Name the source of all forms of energy except nuclear energy and list those forms that come directly from the source and those forms which come indirectly from the source.</td>
</tr>
<tr>
<td>Classifying</td>
<td></td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
</tr>
</tbody>
</table>
CONCEPT CHANGE

Our environment, living and nonliving, microscopic and macroscopic, is constantly undergoing change.

Communicating
Making operational definitions
Experimenting

Inferring
Communicating
Formulating questions and hypothesis

Observing
Communicating
Making operational definitions

Observing
Predicting
Communicating
Interpreting data

Observing
Predicting
Communicating
Interpreting data
Experimenting
CONCEPT CONTINUITY

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpreting data</td>
<td>Identify data collected from a test conducted by himself which support his hypothesis.</td>
</tr>
<tr>
<td>Formulating questions and hypothesis</td>
<td></td>
</tr>
<tr>
<td>Experimenting</td>
<td></td>
</tr>
<tr>
<td>Communicating Interpreting data Experimenting</td>
<td>Demonstrate the ability to record information by constructing a graph using data containing two variables.</td>
</tr>
<tr>
<td>Communicating Making operational definitions Experimenting</td>
<td>State a definition of “control”.</td>
</tr>
<tr>
<td>Communicating Interpreting data</td>
<td>Interpret the basic data recorded on a weather map.</td>
</tr>
<tr>
<td>Communicating</td>
<td>Describe evidence of past continental glaciation.</td>
</tr>
<tr>
<td>Inferring Making operational area from a study of its topographic features and other definitions</td>
<td>Infer some of the major events in the geological history of an area from a study of its topographic features and other definitions.</td>
</tr>
<tr>
<td>Communicating</td>
<td>Describe the water cycle in meteorologic terms.</td>
</tr>
<tr>
<td>Inferring Communicating Formulating questions and hypothesis</td>
<td>Construct inferences concerning the present feasibility of interplanetary travel.</td>
</tr>
<tr>
<td>Inferring Communicating Formulating questions and hypothesis</td>
<td>Describe a possible explanation for the origin of the solar system.</td>
</tr>
<tr>
<td>Observing Communicating Making operational definitions</td>
<td>Identify misuses of land areas within his school district and suggest possible corrective steps.</td>
</tr>
<tr>
<td>Interpreting data</td>
<td>Identify the adaptations man must make when he leaves the earth and enters space.</td>
</tr>
<tr>
<td>Observing Interpreting data</td>
<td>Distinguish how man is directly and indirectly dependent upon soil.</td>
</tr>
<tr>
<td>Observing Communicating Interpreting data</td>
<td>Describe the need for state parks, national parks, forests, water areas, historical sites, camping areas, nature sanctuaries and arboretums, and why their location is important.</td>
</tr>
</tbody>
</table>
CONCEPT ORGANIZATION

Systematic relationships exist in natural phenomena. Systems within systems comprise the universe.

Communicating
Interpreting data
Formulating questions and hypothesis

Interpreting data
Demonstrate the ability to record information by constructing a graph using data containing two variables.

Observing
Inferring
Communicating

Inferring
Communicating
Interpreting data

Classifying
Communicating
Interpreting data

Construct a classification key to identify a small group of common minerals, plants, and animals.

Communicating
Interpreting data
Demonstrate a method for analysis of a system by identifying sources of the problem and describe a method to test for each problem identified, e.g., a light bulb that will not glow.

Communicating
Interpreting data
Identify a current article from a popular periodic literature (newspaper or popular magazine) as to its probable scientific credibility.

Communicating
Interpreting data
Demonstrate the ability to carry out an individual activity from printed or oral directions.

Communicating
Interpreting data
Formulating questions and hypothesis

Interpreting data
Demonstrate the ability to recognize and to collect specimens of rocks, minerals, and fossils.

Communicating
Interpreting data
Formulating models

Interpreting data
Describe conditions necessary for eclipse of the sun and moon.

Communicating
Interpreting data
Observing

Observing
Preading
Interpreting data

Classifying
Measuring
Communicating
Experimenting

Measuring
Demonstrate method of determining the specific gravity of rock, mineral, or of an object.

Classifying
Communicating
Interpreting data

Experimenting

Experimenting

Experimenting

Classifying
Communicating
Interpreting data

Experimenting

Demonstrate physical tests for minerals: hardness, luster, crystal, shape, cleavage, fracture, magnetism, and streak.

Observe
Communicating
Interpreting data

List several ways that man can conserve natural resources and identify places in the community where conservation practices might be improved.

Observe
Communicating
Interpreting data
Classifying
Classify similarities and differences in fossil specimens.

Inferring
Describe a possible explanation for the origin of the solar system.

Communicating
Formulating questions and hypothesis

Observing
Communicating
Interpreting data
Describe the need for state parks, national parks, forests, water areas, historical sites, camping areas, nature sanctuaries and aborotums, and why their location is important.

Making operational
Construct a diagram or model to illustrate various cycles definitions involving living things such as water, carbon, nitrogen, and oxygen cycles.

Formulating models

Observing
Classifying
Communicating
Name the source of all forms of energy except nuclear energy and list those forms that come directly from the source and those forms which come indirectly from the source.

Observing
Predicting
Communicating
Interpreting data
Experimenting
Design an experiment illustrating how energy is transformed from one form to another.

Observing
Communicating
Interpreting data
Formulating models

Observing
Classifying
Measuring
Communicating
Experimenting
Demonstrate the ability to use and interpret types of maps.

Observing
Classifying
Measuring
Communicating
Experimenting
Demonstrate the ability to recognize and to collect specimens of rocks, minerals, and fossils.

Observing
Classifying
Communicating
Interpreting data
Experimenting
Demonstrate physical tests for minerals: hardness, luster, crystal, shape, cleavage, fracture, magnetism, and streak.

Measuring
Demonstrate a method of determining the specific gravity of rock, mineral, or of an object.
Natural phenomena are limited by the fundamental nature of matter and energy. There is an overall tendency toward equilibrium in an environment.

<table>
<thead>
<tr>
<th>Communicating</th>
<th>Formulating models</th>
<th>Describe what a model is and how models can be helpful.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating</td>
<td>Interpreting data</td>
<td>Describe evidence of past continental glaciation.</td>
</tr>
<tr>
<td>Inferring</td>
<td></td>
<td>Infer some of the major events in the geological history of</td>
</tr>
<tr>
<td>Making</td>
<td></td>
<td>Making operational an area from a study of its topographic</td>
</tr>
<tr>
<td>operational</td>
<td></td>
<td>features and other data.</td>
</tr>
<tr>
<td>definitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td>Describe the water cycle in meteorological terms.</td>
</tr>
<tr>
<td>Inferring</td>
<td></td>
<td>Construct inferences concerning the present feasibility of</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td>Construct inferences concerning the present feasibility of</td>
</tr>
<tr>
<td>Interpreting</td>
<td></td>
<td>Construct inferences concerning the present feasibility of</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>Construct inferences concerning the present feasibility of</td>
</tr>
<tr>
<td>Interpreting</td>
<td></td>
<td>Construct inferences concerning the present feasibility of</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>Construct inferences concerning the present feasibility of</td>
</tr>
<tr>
<td>Inferring</td>
<td></td>
<td>Describe a possible explanation for the origin of the solar</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td>Describe a possible explanation for the origin of the solar</td>
</tr>
<tr>
<td>Formulating</td>
<td></td>
<td>Describe a possible explanation for the origin of the solar</td>
</tr>
<tr>
<td>questions and</td>
<td></td>
<td>Describe a possible explanation for the origin of the solar</td>
</tr>
<tr>
<td>hypothesis</td>
<td></td>
<td>Describe a possible explanation for the origin of the solar</td>
</tr>
<tr>
<td>Interpreting</td>
<td></td>
<td>Identify the adaptations man must make when he leaves earth</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>Identify the adaptations man must make when he leaves earth</td>
</tr>
<tr>
<td>Interpretive</td>
<td></td>
<td>Identify the adaptations man must make when he leaves earth</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>Identify the adaptations man must make when he leaves earth</td>
</tr>
<tr>
<td>Observing</td>
<td></td>
<td>Distinguish how man is directly and indirectly dependent</td>
</tr>
<tr>
<td>Interpreting</td>
<td></td>
<td>Distinguish how man is directly and indirectly dependent</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>Distinguish how man is directly and indirectly dependent</td>
</tr>
<tr>
<td>Observing</td>
<td></td>
<td>List several ways that man can conserve natural resources</td>
</tr>
<tr>
<td>Predicting</td>
<td></td>
<td>and identify places in the community where conservation</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td>and identify places in the community where conservation</td>
</tr>
<tr>
<td>Interpreting</td>
<td></td>
<td>and identify places in the community where conservation</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>and identify places in the community where conservation</td>
</tr>
<tr>
<td>Observing</td>
<td></td>
<td>List various forms of energy and give an example of work</td>
</tr>
<tr>
<td>Classifying</td>
<td></td>
<td>List various forms of energy and give an example of work</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td>List various forms of energy and give an example of work</td>
</tr>
<tr>
<td>Interpreting</td>
<td></td>
<td>List various forms of energy and give an example of work</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>List various forms of energy and give an example of work</td>
</tr>
<tr>
<td>Observing</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>Predicting</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>Interpreting</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>Formulating</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>models</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>Communicating</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>Formulating</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
<tr>
<td>models</td>
<td></td>
<td>Design an experiment illustrating how energy is transform-</td>
</tr>
</tbody>
</table>

44
MATHEMATICS
IN SCIENCE
CONCEPT DIVERSITY

The vast number of natural phenomena which can be observed display a wide variety of similarities and differences.

Communicating
Interpreting data
Formulating

CONCEPT CONTINUITY

There is a constancy in cause-and-effect relationships which precludes any abrupt reversal in natural phenomena.

Communicating
Interpreting data
Formulating
questions and hypothesis

Communicating
Interpreting data
Experimenting

CONCEPT ORGANIZATION

Systematic relationships exist in natural phenomena. Systems within systems comprise the universe.

Observing
Classifying
Measuring
Communicating

Measuring
Communicating
Making operational definitions

Predicting

Demonstrate the ability to properly identify relevant information and construct a data table or graph using that information.

Demonstrate the ability to record information by constructing a graph using data containing two variables.

Demonstrate methods for making indirect observations of length, width, and volume.

Identify the characteristics of a measurement system.

Describe zero as an instrument of measurement and read a scale to the nearest appropriate unit.

Demonstrate skill in development of units of measurement and standards of measurement.
Measuring Communicating Experimenting
Demonstrate skill in using a meter stick and metric units including the millimeter, centimeter, and meter in measurement of distance and in reporting the answer to an accuracy of ± 0.5 degrees.

Communicating Interpreting data Experimenting
Demonstrate the ability to record information by constructing a graph using data containing two variables.

Observing
Demonstrate skill in using a graduated cylinder in measuring to an accuracy of ± 5 millimeters.

Measuring Communicating
Identify measurement as never exact.

CONCEPT LIMITATION

Natural phenomena are limited by the fundamental nature of matter and energy. There is an overall tendency toward equilibrium in an environment.

Measuring Communicating
Apply a rule for calculating a quantity from two or more measurements (velocity from distance and time).

Measuring Communicating
Identify measurement as never exact.
RECOMMENDED TIME ALLOTMENT FOR SCIENCE AT THE 9-12 LEVEL

At the junior high and/or middle school level, (grades 5-8) it is recommended that the teacher spend a minimum of 30 minutes a day, 5 days a week, exploring natural science with the students. Instructional time spent in related areas of science education such as health, drug, sex and/or emergency preparedness is not part of this basic time allotment.

This time allotment complies with the suggested time allotment adopted for middle schools by the Delaware State Board of Education on May 15, 1969.
Requirements For Teaching Science

REQUIREMENTS FOR TEACHING SCIENCE
AT THE JUNIOR HIGH AND/OR MIDDLE SCHOOL LEVEL [5-8]

The teacher of science in the middle and/or junior high school (grades 5-8) should possess a strong background in the various disciplines of natural science and hold a certificate in the area of natural science as approved by the State Board of Education.

If the teacher holds an elementary certificate, it is further recommended that the teacher of natural science in the junior high and/or middle school level (5-8) have at least 5 semester hours in the following areas of natural science:

- Biology (botany, zoology)
- Chemistry
- Physical Science (physics)
- Earth Science (geography, geology)
- Mathematics

and 3 semester hours in environmental education. Adequate instruction in environmental education is defined as including the following:

- History and philosophy of the conservation movement
- Appreciative understanding of the wide variety of natural resources
- Importance of conservation of natural resources in a national and international setting
- Relationship of supply of natural resources and economic structure
- Natural resource management: techniques, need for, and types of controls
- Role and importance of resource use planning for the future.
CURRENT EDUCATIONAL PHILOSOPHIES THAT RELATE TO THE NATURAL SCIENCE EDUCATION PROGRAM

Light to Read (Science and Reading).

It is our belief that every area of the elementary school curriculum, including natural science, should contribute to the reading program. Children's experiences in science should help them learn how to read in other areas. Conversely, as children develop general reading and communication skills these will contribute to their development in natural science.

Reading is essentially the recognition of relationships between symbols and objects or events.

The emphasis in the natural science program is on first-hand experiences with concrete materials. Children handle and study rocks, plants, animals, magnets, etc. These are concrete objects and primary experiences to which symbols can be related. Words and sentences take on meaning for children when they signify objects that they have handled and experiences in which they have taken part.

Thus the natural science program is an integral part in building a sound reading and communication skills program.

Career Education

The main thrust of career education is to prepare all students for a successful life of work by increasing their options for occupational choice, by eliminating barriers—real and imagined—to attaining job skills, and by enhancing learning achievement in all subject areas and at all levels of education.

Career education recognizes critical decision points at which students must be prepared and equipped to decide whether to pursue a job, seek further education, or choose some combination of both.

The implementation of the world of work ideas should be an intrinsic part of any science curriculum. The development of curriculum materials including this idea is recommended and the focus of career education at the elementary level (K-4) is Career Awareness; Middle or Junior High School level (5-8) is career exploration, and Senior High (9-12) the world of work.

In depth health education as such is not considered part of the natural science program. This is an area where there are basic relationships to the biological sciences, but the proper way to bathe, brush teeth, and cut fingernails is not natural science as such.

The importance of learning about drugs, their use and abuse is essential. The education of students in this area draws a fine line between natural science and health education. The natural science objectives are not specifically related to drug education. There are basic relationships with the physical (chemistry) and biological sciences.
This is an area of importance in preparing the student to be a productive member of the community. The natural science objectives are not specifically related to emergency preparedness. There are basic relationships for the application of the earth sciences.

The outdoor classroom has a multitude of opportunities for natural science education programs. The use of the immediate area about the school for application of the various aspects of natural science education is strongly recommended. A guide as to how to utilize these areas has been prepared by the Department of the Interior, and the local soil conservation groups in cooperation with the State Department of Public Instruction. Copies of this guide are available from the office of the State Supervisor of Science and Environmental Education.

The use of field trips to various locations in the State and the surrounding areas is recommended when the field trip is an integral part of the learning situation. There is a great deal of planning and preparation required if the field trip is to be a meaningful experience. The field trip should provide an excellent means for the application of natural science to the other learning areas such as social studies, art, and communication skills. (We should note that a field trip requiring a two-hour bus ride, then spending a half hour at a site and a two-hour return trip has questionable value).

The display of student projects and activities is an excellent method of building interest in the natural science program among the students and parents of a particular school or school district.

Particularly in grades K-6 judging should not be conducted for the award of prizes in any form. Each student should receive some type of recognition for his efforts.

The fair should not be just a natural science, but be a multidiscipline event where the talents and efforts of the students in all areas are presented.

Throughout his recorded history, man has been vitally concerned to find out all that he can about his universe. He has explored it in many ways, raised questions about it, designed methods by which he could increase and organize his knowledge, and developed systems to aid him in understanding and explaining his own origin and nature and his place in the universe. Among these systems are: philosophy, religions, folklore, the arts, and science.

Science is the system of knowing about the universe through data collected by observation and controlled experimentation. As data are collected, theories are advanced to explain and account for what has been observed. The true test of a theory valid in science is threefold: (1) its ability to explain what has been observed; (2) its ability to predict what has not yet been observed; and (3) its ability to be tested by further experimentation and to be modified as required by the acquisition of new data.
WRITING TEAM

Thomas M. Baker Del Mod/DPI Specialist
Darlene Bolig Caesar Rodney School District
Catherine Bounney Newark School District
Mitchell Gordon, Jr. Capital School District
James Gussett Del Mod Field Agent
Louise Jones Laurel School District
Barbara Logan Del Mod Field Agent
Dennis Reilly Del Mod Field Agent
Thomas F. Shaw Mount Pleasant School District

STATE ADVISORY COUNCIL FOR SCIENCE AND ENVIRONMENTAL EDUCATION

Thomas M. Baker Del Mod/DPI Specialist
Marie Bonner Alexis I. duPont School District
Edward Casey Appoquinimink School District
Winston Cleland Marshallton-Ken School District
Audrey Conaway Cape Henlopen School District
Arthur W. Ellis Seaford School District
Carlton Knight University of Delaware
Barbara Logan Del Mod Field Agent
Sister Mary Michael St. Mary Magdalen School
Edward Riddle Indian River School District

Artwork - Carolyn Brown
Layout - Thomas M. Baker