DOCUMENT RESUME

ED 118 825 95 CE 006 365

INSTITUTION State Fair Community Coll., Sedalia, Mo.

SPONS AGENCY Office of Education (DHEW), Washington, D.C. [75]

PUB DATE 168p.; For related documents, see ED 102 328-331; For volumes 1-3, see CE 006 362-364; For the secondary level component, see ED 117 428-432

NOTE

EDRS PRICE MF-$0.83 HC-$8.69 Plus Postage

DESCRIPTORS Career Awareness; *Career Education; Curriculum Development; *Curriculum Guides; Integrated Curriculum; *Junior High Schools; Learning Activities; *Mathematics; Resource Guides; *Sciences; Teacher Developed Materials; Teaching Procedures; Unit Plan; Units of Study (Subject Fields)

ABSTRACT

The revised guide, prepared to supplement the existing curriculum, suggests activities related to the three student goals: (1) to develop an awareness of who he/she is, and, through effective decision making, what he/she can become; (2) to become aware of the interrelationships of society with his/her school, community, family, work, and leisure; and (3) to become aware of the many facets of the world of work. A definition of career education and an outline of 10 junior high career education concepts open the document and are followed by steps for study. Suggested activities and procedures are presented for the following two subject areas and their related units: mathematics (general business, geometry, metrics, fine arts and humanities, graphic arts, consumer and homemaking education, business and office education, forestry, hotel and motel management, personal service occupations, marketing and distribution careers, and environmental careers) and science (work and machines, general science, meteorology, geology, astrology, botany, ecology, and biochemistry). Objectives, teaching procedures, and resource materials are presented for each unit. A 14-page list of suggested local field trip sites and guest speakers is included. (BP)

**
* Documents acquired by ERIC include many informal unpublished *
* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *
* reproducibility are often encountered and this affects the quality *
* of the microfiche and hardcopy reproductions ERIC makes available *
* via the ERIC Document Reproduction Service (EDRS). EDRS is not *
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original. *
**
CAREER EDUCATION

Learning with a Purpose

- Mathematics
- Science
- Field Trip Sites and Guest Speakers
ACKNOWLEDGMENTS

During 1974 and 1975 in career education workshops, a group of teachers from three counties (Saline, Pettis and Benton) in central Missouri developed these activity guides. Special appreciation is expressed to all those individuals who participated in this program.

This booklet is only one step in the direction of developing career education curriculum. It has been revised and will continue to be reviewed and tested as an instrument for use as infusion of career education activities in middle/junior high levels of school.

Designated Junior High Participants

Sedalia Junior High School
Sedalia, MO 65301
Mrs. Lavonne Krause, Consumer and Career Education
Mr. Phillip Denny, Social Studies
Mr. Conley McAnally, Consumer and Career Education
Mrs. Jewell Fowler, Math

Green Ridge R-VIII School
Green Ridge, MO 65332
Mrs. Jane Parker, English

Warsaw High School
Warsaw, MO 65355
Mr. John Miller, Social Studies
Mr. Alan Meyer, Social Studies
Mr. Ron Wilken, Industrial Arts

Cole Camp R-I School
Cole Camp, MO 65325
Mrs. Lenore Harms, English
Mr. Jay Fajen, Counseling
Mrs. Charldine Smart, Math

Smithton R-VI School
Smithton, MO 65350
Mrs. Hazel Hudson, Math
Mr. Wes Rinnan, Social Studies
Mr. Bob Chaney, Science
Mrs. Ruth Ann Walk, Math

Northwest High School
Hughesville, MO 65334
Mrs. Ruth Ann Darby, Home Economics

La Monte R-IV School
La Monte, MO 65337
Mrs. Kerry Vitkus, Math and Science
Mrs. Marcia Turner, Economics
Mrs. Ruth Hepler, Social Studies

Smith-Cotton High School
Sedalia, MO 65301
Mrs. Ruby Schondelmeyer, General Business
Mr. Ron Henke, Science
Mrs. Sharon Bozarth, Art
Mr. Fred Lovercamp, Science

Sacred Heart School
Sedalia, MO 65301
Mr. David Steele, Science
Mrs. Joyce Schreck, Science

Sedalia Elementary Schools
Sedalia, MO 65301
Mrs. Opal Johnson, Social Studies

Marshall Junior High School
Marshall, MO 65340
Mr. Dan Rippel, Career English
Mrs. Marita Bray, Home Economics
Mr. Edgar Phillips, Science

Marshall Area Voc-Tech School
Marshall, MO 65340
Mr. Mac Christy, Placement

The activity which is the subject of this report was supported in whole or in part by the U. S. Office of Education, Department of Health, Education and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the U. S. Office of Education, and no official endorsement by the U. S. Office of Education should be inferred.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>i</td>
</tr>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>Definition/Description</td>
<td>iv</td>
</tr>
<tr>
<td>Philosophy/Concepts</td>
<td>v</td>
</tr>
<tr>
<td>Steps for Integrating CE</td>
<td>vi</td>
</tr>
<tr>
<td>Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>Science</td>
<td>91</td>
</tr>
<tr>
<td>Field Trip Sites and Guest Speakers</td>
<td>151</td>
</tr>
</tbody>
</table>
FOREWORD

This guide has been prepared with the hope that the following activities will be useful in infusing career education programs in an existing curriculum. The activities presented relate to the three general career education goals set up by the workshop participants for the junior high/middle school level. They are:

For the student

(1) to develop an awareness of who he/she is and through effective decision-making what he/she can become;

(2) to become aware of the interrelationships of society with his/her school, community, family, work, and leisure;

(3) to become aware of the many facets of the world of work.

All objectives, goals and activities included in this guide were developed in relation to these general goals.

The activities which follow are offered as suggestions for supplementing activities in career education programs. This guide's purpose is not to tell the individual instructor what he or she must do. Rather the guide simply offers an example of what the teacher might do. Exactly how the instructor does this will depend upon the interests, talents, abilities and ingenuity of the specific teacher, the students, and the resources available.

Judy Rae Kuhlman
Observation/Exploration Specialist
Career Education Project
State Fair Community College
Sedalia, MO 65301
CAREER EDUCATION
DEFINITION AND DESCRIPTION

There has been a saying used for many years that education is preparation for life. At different points in our nation's history, this point has been overlooked or overshadowed by other interests. It would seem that career education is purposely trying to once again provide this type of education.

Career development, which is a lifelong process, begins at a very early age. Even the pre-schooler does role playing. As a child enters formal education, he should continue a step known as the Awareness Stage. This usually covers pre-school through grade six. The second is the Exploration Stage, which covers the middle or junior high level. The third is the Preparation Stage. This covers a time period as long as necessary for the individual to acquire the skills and knowledge needed to enter and progress through his occupational career.

The educational climate today indicates a growing awareness on the part of increasing numbers of people that living in the most advantageous vocational niche is one of the most critical of cultural aspects to man and society. This is the climate that has given impetus to the concept of career development. The great scientific and technical advances in our country have brought about the age of automation—an age in which every person is a specialist. This is true of both the college-educated person and the worker who terminates his education with graduation from high school. Virtually every person, man or woman, college student or not, is involved in earning a living. Education, then, should provide meaningful, significant experiences designed to equip the individual for work in which he will be successful and properly challenged in accordance with his specific aptitudes, interests and total personality. In the case of these individuals who will eventually graduate from college, the function of the school is an interim step. For many others, high school may be the only formal preparation for a lifetime of work and living.

Career education says: Each individual should be led to develop his own work values after becoming fully aware of the alternatives and the implications, rather than have them dictated.

"Career" itself is a confusing term. To us, it refers to the sum total of all the work done by a person in his lifetime. It differs from an occupation in that an occupation is a component of a career at a point in time.

Career education, then, attempts to help students understand the work ethics imposed by society; develops their work values based on their own personal interests in full awareness of society's demands; helps them become aware of the world of work and its values, prepares for, and ultimately begins and pursues a career, including the possibility of occupational change and the hope for productive use of leisure during that career.
PHILOSOPHY

The interests of the junior high school revolve around the home, school and peer group. Through study of society, self and the world of work, these students begin to see themselves as an integral part of a working whole. Career education brings relativity to the classroom as it seeks to give the students a firm foundation in the basic skills of education.

CONCEPTS

1. Explore and become aware of the many kinds of careers available.
2. Realistically appraise career selections according to his present abilities and interests.
3. Understand that each person is an individual with different capabilities, needs, interests and values.
4. Recognize the value and interdependence of each job choice.
5. Realize that work in school is directly related to future job success.
6. Realize the satisfaction that should be inherent in job choices and in leisure time pursuits.
7. Realize that the cultural and social attitudes of his heritage will not necessarily limit his job choice.
8. Realize that the world is in constant change just as his own abilities, interests and aspirations change and will, therefore, explore many occupational possibilities during his maturation process.
9. Appreciate the responsibility he has to use his potential to contribute to the work force and to wisely use his leisure time to better the standards of cultural and recreational pursuits of his society.
10. Career preparation is not limited to a study for a specific career but necessarily includes all areas of study that broaden his mind and expand reasoning power so that he can make suitable choices in all phases of adult life.
STEPS FOR INTEGRATING CAREER EDUCATION CONCEPTS INTO UNITS OF STUDY

Select a unit that you will be teaching from your content area.

If necessary, further divide the unit into sub-units of 5 to 10 days duration.

Before a teacher can integrate career education into his content, he must first know the teaching purpose of his unit or sub-unit. Write in a declarative sentence what you want your students to know after you finish teaching the unit or sub-unit. This is the major idea.

Select a career objective from any of the five areas that you could incorporate into the unit mentioned above. State it as a major idea so that it can be combined with the content major idea.

Now you may incorporate the career education ideas into your unit in one of three ways.

a. Rewrite the content major idea to include the career education objective. If you do this, then your teaching unit will be primarily career oriented.

b. Keep your original content major idea. All components may not have career implications. If you have listed four components, three may be strictly content oriented. The fourth component may be the only one that has career implications. If you do this, you will have at least one lesson devoted to career education.

c. Your major idea and your components may have no stated implications. You will bring out the career implications in the activities you use for each lesson or component.

List the components that you will need to teach in order to get your major idea across to your students. A component is a word or phrase which will develop into a lesson.

Take each component and write a learning objective for it. The learning objective should tell what you expect the student to be able to do when he has finished the lesson.

For each component or lesson, list the learning activities that you would have your children do.
Objective(s):

To familiarize the students with check writing.

Procedure:

Show the students, with the overlay, a blank check. Explain the lines and markings of the check, date, recipient of check, two lines for amount, and signature line. Show and explain the bank's codings.

Supply the student with five blank checks. Give them enough information to fill out each check properly.

Evaluation:

Look over the checks to see if filled out correctly.

Comments on use:

The amount may be written differently. You may show the differences or choose one for a model. Example: Four and 35/100, Four and 35/00, Four 35/100.

Kerry Vitkus
Objective(s):
To familiarize the student with balancing a check book.

Procedure:
Present a sample balance sheet to the students showing the columns for check number, date, check issued to, amount of check, date of deposits, and balance. Show how to fill in each column for each check and deposit.

Explain service charges and how to calculate amount charged each month.

Supply each student with a balance sheet with a balance amount. Each student should have a different amount. Give them enough information to figure a balance sheet for two deposits and about 5 to 10 checks.

Resources and Materials:
Overlay or laminated cardboard of balance sheet
Balance sheets for each student
Worksheet with deposits and checks

Evaluation:
With each student having a different starting balance, you could have them exchange balance sheets to check for errors. This gives each student more exposure.

Comments on use:
Original balances may be the same or different. This is left to the teacher's discretion.
Objective(s):

To familiarize the student with a personal and family budget.

Procedure:

Have the student write on a sheet of paper the amount of money he or she gets a month for allowance and/or earnings. Have them list their monthly or weekly expenses such as clothes, school supplies, church, food, or any other expenses unique to them.

Have them keep a list for one week to show every expense made that week. The list should include the date, what the money was used for, and the amount spent.

Have the students, at the end of the week, compare their expenses with the estimated ones. Have them write how they could more wisely spend their money.

Evaluation:

Keep the first paper with the students estimated weekly expenses and have the students check them with the actual week's expenses.

Comments on use:

For students with no income, give them a fictitious amount of money so they can keep record of what they would spend if they had the money.

Kerry Vitkus
Objective(s):
To familiarize the student with a personal and family budget.

Procedure:
Have the students set up a budget comparing it to the weekly record they keep. Have them include a 10 percent savings.

Have the students keep a record of the next week's earnings according to their written budget. At the end of the week, have them check to see how close they stayed within their budget. Have them make any corrections to their budget as needed.

Have the students bring in their family budget, if one is used. Write on the board the type of things that consist in a family budget such as rent or mortgage payment, utilities, food, phone bills, charge accounts, car loans, etc.

Have the students rework their family budget so as to have a savings program if one is not already established. If a student's family does not have a budget, have him work with his parents to establish one.

Evaluation:
Check with each student's expenses and budget to see that it is workable. Classroom discussion. Compare remade budget with established one or check budget of students whose families do not have a budget.

Comments on use:
A letter should be sent home to parents to assure them you are not invading into their privacy but using their family budget as a learning experience for their children.

Kerry Vitkus
Objective(s):
To familiarize the student with a personal and family budget.

Procedure:
Supply the students with a monthly income for a family of a specified size and have them set up a budget for the family.

Give them a surprise added expense for the month such as a car repair bill and have them work it into the budget.

Supply them with checks and balance sheets to make the monthly payments.

Resources and Materials:
Worksheet having the income and amounts for rent and all bills for the month.
Checks
Balance sheet

Evaluation:
Check to see if bills can be paid and if the budget is workable.

Comments on use:

Kerry Vitkus
Objective(s):
To show the students how banks and loan companies work.

Procedure:

During the unit on percents and interest, find out how many students have savings accounts and if they know how they work.

Find out how many students' parents have loans or credit cards. See if the students know how much it costs to use a credit card or to take out a loan.

Take the students to a bank or loan company or bring a representative into the class to explain how their business handles loan and savings accounts. A company such as Sears could be called upon to talk on charge accounts.

Have the students set up a classroom bank with tellers, loan consultants, and accounting personnel. With advice from a bank official or with his direct supervision, have the students use play money to start savings accounts and to take out loans. The other students will then be figuring interest on the loans and savings.

Evaluation:
A classroom discussion on what was learned during the activity should be conducted to see if the students had learned the functions of banking institutions.

Comments on use:
The activity could be done over a two or three class periods to concentrate on each aspect of banking per period. Causes and reasons for borrowing money could be added to this activity so that the students will know the qualifications needed for a loan.

Kerry Vitkus
Objective(s):
To show the students how geometric shapes are used and seen in our everyday lives.

Procedure:
When introducing geometry, have cardboard replicas of the shapes to be studied for plane and solid geometry.

Have the students list or suggest for a common list things in everyday life that have these shapes.
Examples to start the discussion might be as follows:
Plane figures
1. a billboard for a rectangle.
2. a yield sign for a triangle.

Solid figure
1. a cereal box for a rectangular solid.
2. a glass for cylinder.

Resources and Materials:
Textbook
Cardboard figures
Home objects such as cereal boxes
Magazines for the students to find pictures with geometric shapes

Evaluation:
Class discussion with no grade.

Comments on use:
A poster or bulletin board could be made by the students to show geometric shapes.
Objective(s):
To use geometric shapes for an art related project.

Procedure:
Have the student chose one or more geometric shapes such as a circle, triangle, and/or square. Using the appropriate instruments, produce the chosen shapes on the cardboard. Mark off the drawn lines equally, 1/4 inch is an easy unit. Punch wholes at each mark along the lines with the needle. With threaded needle, sew through the wholes so that the thread crosses over the front of the cardboard. To make the design completed, the student must go in or out of each whole twice which forms an angle at each whole.

Resources and Materials:
Cardboard—lightweight such as from panty hose packages.
Colored thread
Needles
Tape
Ruler, compass & protractor

Evaluation:
The assignment could be evaluated on neatness as well as complexity of design.

Comments on use:
To make a neater design and to use less thread, have the students had thread on front of cardboard.

Kerry Vitkus
Objective(s):

The student will understand:
the sets of points is geometry known as point, line, line segment, and plane.
the intersection of these sets of points.
the plane geometric figures, especially the triangle and quadrilateral.

Procedure:

Briefly review Sets.

Define and discuss the following sets of points:
point, line, line segment and plane

Give common examples of each and have students give examples.

Examples: Point--a period
dots in news photo, etc.
Line--railroad rail
light or telephone wire
Line segment--edge of desk
needle
free throw line
Plane--floor, ceiling, or walls of room
desk top, etc.

Evaluation:

Students should adequately define the above mentioned sets of points. They should also be able to give an example comparable to each and be able to classify examples of each.

Comments on use:

This is rather simple material, basically an introduction, but should stress the fact that these sets of points have no dimensions, except length, and therefore cannot truly be compared to tangible objects.

David Steele
Objective(s):

The student will understand what set of point(s) is/are formed by the intersection of the afore mentioned sets of points.

Procedure:

Ask students to explain the term "intersection." Then give the definition as it pertains to mathematics. Also give a mathematical definition of intersection, this is Xe(\&nb) if Xea and Xeb.

Have students give examples of "intersections" found in daily situation.

Then define the following:
1. intersection of 2 lines.
2. intersection of 2 planes.
3. intersection of 3 planes.
4. intersection of line and plane.

Examples of intersection of sets of points:
for 2 lines--the actual intersection of two streets
for 2 planes--the edge formed by the intersection of the floor & walls, ceiling and walls, or two walls of the room.
for 3 planes--the corners of a room formed by intersection of ceiling and two walls or floor & two walls. Also, an axle with spokes or fins, where the spokes or fins represent planes.

Evaluation:

Points on use:
Objective(s):

The student will understand the difference between two sets of points that do intersect and those that do not intersect.

Procedure:

Give an explanation of parallel lines.
Give examples, i.e., railroad tracks.

Give explanation of parallel planes.
Give examples, i.e., floor and ceiling.

Give explanation of parallel lines and planes.
Give examples, i.e., wall and a seam in the chalkboard.

Resources and Materials:

Natural surroundings

Evaluation:

Comments on use:

Students tend to forget that lines and planes extend indefinitely in length and they (the students) try to bend these in order to form situations that do not actually exist.

David Steele
Objective(s):

To understand the commutative, associative, transitive, and distributive properties and to be able to apply these in doing some simple proofs.

Procedure:

Review the commutative, associative, and distributive properties.

Lecture on what a Proof actually is. Give the two basic parts to every proof:
- Statements & Supportive Reasons

Stress that in a proof, every statement must be supported by a sound mathematical reason.

Demonstrate some simple proofs such as:

PROVE: \(a + (b + c) = (c + a) + b \)

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a + (b + c) = a + (c + b))</td>
<td>Comm. of Add.</td>
</tr>
<tr>
<td>(a + (c + b) = (a + c) + b)</td>
<td>Assoc. of Add.</td>
</tr>
<tr>
<td>((a + c) + b = (c + a) + b)</td>
<td>Comm. of Add.</td>
</tr>
<tr>
<td>(a + (b + c) = (c + a) + b)</td>
<td>Transitive</td>
</tr>
</tbody>
</table>

Evaluation:

Comments on use:

This same procedure would be excellent for a geometry class.

David Steele
Objective(s):

<table>
<thead>
<tr>
<th>Procedure:</th>
<th>Resources and Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have mock court room procedures.</td>
<td></td>
</tr>
<tr>
<td>Have one student act out the judge. He will call the court to order and have control over the proceedings.</td>
<td></td>
</tr>
<tr>
<td>Designate some students to act as a jury. Their responsibility will be to decide if a proof was done correctly. Designate some students to be lawyers. Defense Attorney: Their job will be to supply the "reasons" for each statement the client makes. Prosecuting Attorney: Their job is to try to find any mistakes or fallacies in the defense's proof. Designate certain students to be "on trial." They will be allotted five minutes with their lawyer to prepare their proof. The prosecuting attorney will be given the same proof so he can review it and look for probable mistakes. Judge calls court to order and reads the proof to be proven to the jury. Defendant puts proof on board, one step at a time. The lawyer must supply the reason. After each step in the proof the prosecuting attorney is allowed to question that step and its reason. If the prosecuting attorney can find nothing wrong with proof, the defendant stands acquitted. If a mistake is minor, the jury may overlook it and acquit the defendant. If the jury decides the proof was wrong, the defendant will be found guilty and will be assigned the proof for homework.</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation:
Teacher can accept jury's decision or overrule it. A test should also be given over this material.

Comments on use:
Teacher will have final say as to whether a proof is valid or not and can override the judge and jury.
Objective(s):
The student will:
- understand what a ratio is.
- be able to recognize a ratio.
- be able to set up ratios.

Procedure:
Lecture on what constitutes a ratio.

Have students set up ratios from word problems in text.

Have students make up some ratios of their own. Example:
\[
\frac{\text{\# of students}}{\text{\# of students who live on a farm}}
\]

Have students collect or reproduce examples of ratios they have seen or heard.

Have students compare their ratios. Then determine if any of the ratios have the same value, yet are written differently. (An introduction to proportion)

Evaluation:
Students will be able to demonstrate their knowledge of ratios by successfully setting up ratios from raw data.

Comments on use:

David Steele
Objective(s):

Overall Objectives for Ratios and Proportions:
Students will understand ratios and proportions and will be able to determine "better buys," and should be able to indirectly measure inaccessible objects.

Procedure:

Lecture on proportions.

Have students solve many proportion problems.

Lecture and assign homework on determining which of two ratios is the smallest and which is largest.

Have students bring in labels or prices from groceries for any type of salable items. Have them compare the "price per unit" of different brands and different quantities to determine the better buy.

Resources and Materials:

Text

Family food labels, newspaper sale ads.

Evaluation:

Three different overall evaluations: Students should successfully:
- pass a written exam over ratios and proportions.
- demonstrate competency in applied consumer purchasing.
- demonstrate competency in applied indirect measurement.

Comments on use:

David Steele
Objective(s):
To supplement work done by students on comparing ratios by setting up proportions.

Procedure:
Give the students a shopping list of certain items to buy. Have them purchase a specified minimum amount of each item. Example:
- at least 30 ozs. of cereal
- at least 10 lbs. of sugar

Each student will "be given" the same amount of shopping money. Those who purchase the items and have the most money left would indicate they know how to compare two ratios by setting up proportions.

NOTE: No financial transactions should actually be allowed.

Resources and Materials:
This could be done two ways.
1. Have students actually take list to grocery stores and write down the different "price per unit" of different brands and different quantities of the same product.
2. Set up a mock store in the classroom with empty boxes and cans as the products. These could have their original prices listed or mock boxes and prices could be made up.

Evaluation:
The students who purchase the required items and also have the most money remaining would understand the concept of proportions the best. This could serve just like a test.

Comments on use:
This could also be introduced in budgeting or budgeting could be introduced here.
Subject Area(s) Mathematics
Unit(s) Proportions

Objective(s):

Students will be able to **apply** their knowledge of proportions by measuring objects indirectly through the use of similar triangles.

Procedure:

Lecture on similar triangles and how they may be used to measure objects that are not easily accessible. (Must get this basic concept across to students very soundly)

Have students actually measure the heights of things such as flagpoles, buildings, trees, telephone poles, etc., by using similar triangles. (Advanced groups might be able to measure distances across lakes, swimming pools, streams, streets, gymnasiums, etc.)

Resources and Materials:

Text

Nearby objects or structures

Evaluation:

Students will demonstrate application of their knowledge of proportions by successfully measuring the height of an inaccessible object.

Comments on use:

Should be careful on the extent of application. This is because it borders on geometry and may be too advanced for this age level.

David Steele

25
18
Objective(s):

To be able to classify some simply polygons.
To be able to classify different types of polygons known as triangles.

Procedure:

Define polygon.

Give examples of polygons as evidenced in some common objects, i.e., stop sign, dominos, musical triangle, etc.

After discussing polygons, have students draw the simplest polygon they can. This would be a triangle.

Give students the different types of triangles.

<table>
<thead>
<tr>
<th>Classification by Sides</th>
<th>Classification by Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilateral</td>
<td>Equiangular</td>
</tr>
<tr>
<td>Isosceles</td>
<td>Acute</td>
</tr>
<tr>
<td>Scalene</td>
<td>Right</td>
</tr>
<tr>
<td></td>
<td>Obtuse</td>
</tr>
</tbody>
</table>

Evaluation:

Comments on use:
Objective(s):

Procedure:

Have students use small objects such as pencils, straws, or match sticks of different lengths and have them construct each of the different types of triangles.

Have students locate the different types of triangles in architecture, construction, painting, and sculpture. This could be done independently or as a group on a field trip.

Resources and Materials:

Any type of small objects, pencils, matchsticks, etc. Also need a ruler and a protractor to make sure the triangles constructed are constructed correctly.

Any buildings, houses, particularly very modern or Greek or Gothic type buildings or houses. It would be best if an art museum could be visited to view paintings and sculptures. If this is not readily available, they could simply bring periodicals to school and cut out pictures that contain the different types of triangles.

Evaluation:

Comments on use:

There's no need to dwell on this activity, but I think the students will be surprised to discover that all architecture, construction, art, etc., is constructed of very simple geometric forms.

David Steele
Subject Area(s) Mathematics
Unit(s) Quadrilaterals

Objective(s):

To cover quadrilaterals to the extent that students will be able to classify any type of quadrilateral. An introduction to the "if, then" statement and how it applies to classification of quadrilaterals.

Procedure:

Define quadrilaterals or quadrangles.

List and draw the six types of quadrilaterals.

Ask students to divide these six figures into two groups by any classifications they desire.

The classification should be:

<table>
<thead>
<tr>
<th>Parallelograms</th>
<th>Non-Parallelograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>Trapexium</td>
</tr>
<tr>
<td>Rectangle</td>
<td>Trapezoid</td>
</tr>
<tr>
<td>Rhombus</td>
<td>Rhomboid</td>
</tr>
</tbody>
</table>

Have students construct these six different quadrilaterals. This should be done with both actual objects, such as match sticks, and also with ruler and protractor.

Introduce the "if, then" statement. Give some examples such as:
"If I finish my homework then I can go to the movies."
"If it doesn't rain then we will go fishing."
Ask students to give examples of the "if, then" statement.

Ask students what occupations would use the "if, then" statements quite often. Actually nearly

Evaluation:

Resources and Materials:

Textbook

Ruler

Protractor

Small objects such as pencils or match sticks

Comments on use:
Objective(s):

To determine if an "if, then" statement is true or false, and why it's true or false.

Procedure:

Everyone would use these statements, but some conspicuous ones are a computer programmer, a lawyer and anyone in a position of responsible decision-making.

Give students statements similar to those listed below and have them indicate whether the statement is true or false.

Example: If a quadrilateral is a rectangle, then it is a square. (False)
"If a quadrilateral is a square, then it is a rectangle." (True)
"If a quadrilateral is a rhomboid, then it is a rhombus." (False)

Ask students to explain their answers to the above questions. Explain how people often use an "if, then" statement incorrectly.

Example: "If you went fishing but did not catch any fish, then you did not enjoy yourself." "If then" statements should be used to represent only facts and no assumptions should be made.

Evaluation:

Comments on use:
Objective(s):
To subdivide quadrilaterals into subgroups beyond that of parallelograms and non-parallelograms.

Procedure:
- Have students explain the difference between a square and a rectangle. Also explain difference between a rhombus and a rhomboid.
- Stress the fact that the square is a specific type of rectangle and that the rhombus is a specific type of rhomboid. This should make the "if, then" statements over quadrilaterals much easier.
- Return to daily examples of "if, then" statements and introduce the term fallacy and discuss how fallacies are used to deceive consumers and to make false proofs.

Resources and Materials:

Evaluation:
Students should be able to classify quadrilateral figures. They should also be able to classify these figures just from a written or verbal description.

Comments on use:

David Steele
Objective(s):

The student will better understand what constitutes a graph and what different types of graphs exist.

Procedure:

Lecture and class discussion on graphs

Have students bring in actual graphs from newspapers, magazines, and other sources. Have students bring in:
 a. circular graphs
 b. bar graphs
 c. line graphs

Discuss what the individual graphs refer to and how they are (or can be) employed by different careers.

Evaluation:

Students will be able to correctly classify different types of graphs.

Resources and Materials:

Textbook and personal knowledge

Newspapers, periodicals
Objective(s):
The student will learn to interpret graphs and will also be able to organize raw data.

Procedure:
Have students bring in graphs and/or give them copies of pre-drawn graphs. Then have them interpret the graphs.

Give the students raw data and have them construct an appropriate type of graph that represents the given data.

Evaluation:
Students will be able to correctly interpret and construct graphs.

Resources and Materials:
Newspapers, periodicals, math books, science books
Any type of raw data i.e.: grades, crime, marriages, divorces, murders, barometric pressure, prices, boiling points, solubility, rainfall, snowfall

Comments on use:
There is an endless variety of ways to graph the raw data. Example: Prices vs. Different Gas Stations, Prices vs. Different Chain Stores, Prices vs. Seasons of Year, Prices vs. Different Brands of Soups, Wines, etc.
Objective(s):

To realize how useful and persuasive graphs can be.

Procedure:

Class discussion on how persuasive and helpful well-constructed graphs can be.

Let students write two short reports after collecting their own raw data. One report should use only words to try to get a point across. The second report should try to get the same basic idea across, but it should employ the use of an appropriate graph.

Then have students read each others reports and see which report is easiest understood.

Resources and Materials:

Newspapers, periodicals, technical reports, term papers, thesis

Evaluation:

Student will read both reports of another student, but after reading each report he will write down what he thinks the report was trying to say.

Comments on use:

This is especially important in term papers, thesis, and in reports to employers.

David Steele
Objective(s):
To introduce probability to the students.

Procedure:
As the students are studying probability, have them take a penny and toss it 100 times and record heads and tails after each toss. Take the total from the entire class to see if the probability is close to 1/2.

Take the marbles in a bag or a box and have each student pull one, record the color, and replace the marble. Go around the room until you have either 50 or 100 tries recorded. Check to see how close the probability is to 1/2.

Class discussion on occupations that involve probability, i.e., actuarial science, insurance programs and rates and statistical calculations.

Evaluation:
Classroom project, no grade

Comments on use:
Colored paper of equal size could be replaced for marbles.

Kerry Vitkus
Objective(s):
To familiarize the students with base numbering systems.

Procedure:
After students have been introduced to base two and base five, have them choose a base less than ten other than two or five.

Have them write from one to one hundred in their base.

Have them show place value and the process for changing from base ten to their base and from their base into base ten.

Have them show examples of addition, subtraction, multiplication and division in their base.

Explain that computer science is set up on base two and how the relationship is derived. Discuss computer programming as an occupation.

Resources and Materials:
Any textbook chapter dealing with bases.

Evaluation:
Check calculations and conversions.

Comments on use:
This could be an exercise for only your advanced students as it may prove difficult for the slower student.
Objective(s):

To supplement math bases activities with a Math Bee using base two and base five.

Procedure:

Divide the students into two teams. Have one student go to the board from each team.

Orally give a problem for the two students to put on the board and work. The first person to correctly finish the problem scores a point for their team.

The problems should be average in difficulty—addition and subtraction problems in the two bases.

Resources and Materials:

Chalkboard and chalk
Problems in base two and base five

Evaluation:

The team with the most points at the end of the game is the winner.

Comments on use:

Kerry Vitkus
Objective(s):
The students will be able to change from one unit of measure using a "Stair Step" model.

Procedure:
The students will be shown the units in the Metric System have a difference of a power of 10. Such as 1 meter is equal to 10 decimeters and 1 meter is 1/10 of a dekameter.

The students will be introduced to the names of the linear units from kilometer down to millimeter.

They will be shown the "Stair Step" and shown the direction the decimal point moves for each step. (One for each step up or down)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Step Movements</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>one step to the right for each km = kilometer</td>
</tr>
<tr>
<td>hm</td>
<td>step down</td>
</tr>
<tr>
<td>dam</td>
<td>one step to the left for each</td>
</tr>
<tr>
<td>m</td>
<td>step up</td>
</tr>
<tr>
<td>dm</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td></td>
</tr>
</tbody>
</table>

Resources and Materials:
Chalkboard or overlay and worksheet

Evaluation:
A worksheet will be given with problems to interchange one unit of measure to another using the Stair Step. Such as 15 m = ___ cm, which is two steps to the right of 1500 cm.

Comments on use:
Each time have the students remake the Stair Step for each worksheet.

Kerry Vitkus
Objective(s):
To introduce the student to the metric unit of measure, liter.

Procedure:
Show the student the length of one decimeter. Explain that the liter is based on this unit. Show a container that is a cubic dm. Tell the students that one liter is the same as 1dm³ and show them this by filling one container of water into the liter cylinder.

Explain capacity to the students. Show them that for capacity of objects use the liter.

Show the students that the stair step can be used for liters also. Place the prefixes for each unit on the stair step and replace the m for meter with an l for liter. Show that conversions are done the same for liters as for meters.

Evaluation:
Check worksheet if given.

Comments on use:
One cubic decimeter of water is only equal to a liter of water at a certain temperature and atmospheric pressure so some allowance or explanation may have to be made.
Objective(s):

To familiarize the students with the meter stick and the divisions of the meter stick. The students will become familiar with the terms and quantities of meter, decimeter, and centimeter.

Procedure:

Show the meter (m) stick. Show that it is similar in length to a yard stick. Be sure to use the term meter stick instead of yard stick.

Show the decimeter stick. Show that there are 10 decimeters (dm) in one meter by putting the 10 decimeters end to end next to the meter stick. Do the same with the centimeters (cm).

Give students problems such as 30 dm = ____ m and 30 dm = ____ cm to familiarize them with the interchangability of the units.

Resources and Materials:

- Meter stick and stick showing decimeters (10) and centimeters (10).
- Students should have equipment to use or share between two or three.

Evaluation:

A worksheet will be provided with problems as stated in (3) above.

Comments on use:

Kerry Vitkus
Objective(s):
The students will be able to use a meter stick and tape measure to find the measurements of common objects.

Procedure:
The student will be asked to measure his desk, length and width to a certain unit such as centimeters (cm). They will then be asked to find the perimeter of the desk using his figures. He will then change these to decimeters and meters using the previously established knowledge of multiples of ten.

Students will work in groups of two or three to measure prescribed articles in the room. These measurements will be changed into different units.

Evaluation:
Worksheet will be checked to see if measurements were done accurately, allowing for human error and object measured. Calculations will be checked in the conversion to other units, ex. dm to cm.

Comments on use:
Objective(s):
To give the student more practice in calculating square areas in metric units.

Procedure:
Give the students a worksheet with different shapes such as squares, triangles, and rectangles and the formulas for finding their areas. Have the students measure the shapes in mm and calculate the areas in cm².

Example:
\[a = 30 \text{mm} \]
\[d = 30 \text{mm} \]
\[A = a \times b \]
\[b = 30 \text{mm} \]
\[c = 30 \text{mm} \]
\[A = 9 \text{ cm}^2 \]

Evaluation:
Check the worksheet for errors in converting.

Comments on use:
Have measurements on the worksheet as exact as possible. Have students label each measurement so there is no confusion.

Kerry Vitkus
Subject Area(s) Math
Unit(s) Metrics (Square)

Objective(s):
To give the students more exposure to measuring and working with square area.

Procedure:
Have the students measure length and width of such objects as desks, books, floors and walls. Using their measurements, have them compute the areas. Then have them convert their answers to different square measurements.

Other problems could be given such as: Carpet costs $8 per m² how many m² would cover the room and how much would it cost? Include other problems using measurement and finding square area.

Resources and Materials:
Rulers and tape measure
Common object in the room
Worksheet with problems

Evaluation:
Checks students as they measure to be sure they are measuring correctly. Check worksheet for errors.

Comments on use:

Kerry Vitkus
Objective(s):

To become familiar with the relationship between metric units of area.

Procedure:

Show how to find the area of a room in feet and inches. Explain that with metrics, it is much simpler because you only use one unit of measure and that it is more accurate.

Show that since metrics is based on 10 that square area is based on 100, 10 x 10.

Examples:

1 km² = 1,000m x 1,000m = 1,000,000m² = 10^6m²
1 m² = 100cm x 100cm = 10,000cm² = 10^4cm²
1 cm² = 10mm x 10mm = 100m²

When interchanging units of measure instead of moving the decimal one place to the right or left, they will now move it two places for each unit of measure.

Example:

144 mm² = 1.44 cm²

Worksheet optional.

Resources and Materials:

An overlay on drawing showing 1dm squared with cm marked off resulting in 100cm
Worksheet with simple conversions

Evaluation:

This is a working and discussing assignment. A worksheet may be given if the instructor sees the need for one.

Comments on use:

The problems used on worksheet should only use small numbers and units smaller than meters. More difficult problems should be used after the introduction of the Stair Step Model for square measurement.

Kerry Vitkus
Objective(s):
The introduction of the Stair Step Model for square area.

Procedure:
The Stair Step for linear measurements should be placed on the chalkboard or overlay.

The students will be told that they will use the Stair Step for square area similarly to the one for linear measurements.

Place the exponent of 2 by each measurement, example: cm², mm²

Show that changing from cm² to mm², you go down one step times the exponent of 2 or 2 decimal points to the right. Show several examples until they understand.

Impress the idea of moving so many steps up or down times the exponent to find the number of places to move the decimal point.

Give a worksheet of conversions using the Stair Step.

Evaluation:
Check the worksheet to see that the students are converting the measurements properly. 90 percent accuracy should show a good understanding of the principle.

Comments on use:
Give several problems at different times to catch any misunderstanding. With each worksheet encourage the students to make a new Stair Step Model of their own.

Kerry Vitkus
Objective(s):
To familiarize the student with metric cubic measurements.

Procedure:
Be sure to explain to the students that cubic measure does not mean capacity such as the English system uses gallons and quarts, but cubic area of an object. For capacity in the metric system, liters are used.

Objects are measured in metric units and calculated according to usual formulas. Students should be familiar with these formulas so that the learning activities are using metrics not learning formulas.

Give students a worksheet for problems showing measurements of a different object, such as rectangular solids, cubes, and other solid prisms. Have the students solve for the cubic area for these solids.

The measurements for the objects could be given in the same units or in different units, such as cm and mm, so that the students will have to convert to like units before calculating the cubic area.

Evaluation:
Check the worksheet for math errors but particularly for checking the labeling.

Comments on use:
Home objects such as cereal boxes, liquid containers, and food items, such as cheese, may be brought to the classroom to show how familiar objects are measured.

Kerry Vitkus
Objective(s):

To show the students how to use the Stair Step for unit conversions in cubic metric measurements.

Procedure:

Put the Stair Step with unit symbols on a chalkboard or on an overlay.

For cubic measure, explain that the exponent 3 is used and what it means. Place the exponent of 3 by each unit on the Stair Step.

Explain to the students that when converting units for cubic measurements, the student will move on the Stair Step as usual and take the number of steps up or down times the exponent 3 to find number of decimal places moved. Give a few examples.

Give a worksheet to the student with problems of conversion. These problems may include problems of finding cubic area first then converting to different units.

Resources and Materials:

Chalkboard or overlay
Worksheet

Evaluation:

Check problems for correct number of decimal places moved.

Comments on use:

Kerry Vitkus
Objective(s):
Students will demonstrate: use of percentage and graphs by reporters, importance of reading graphs in the reporting field. Use of multiplying decimals and finding percents of numbers, and create an awareness of everyday use of statistical data and graphs in a reporters career.

Subject Area(s) Mathematics
Unit(s) Fine Arts & Humanities
Newspaper Reporter

Procedure:
Have students observe a school basketball game and keep track of shots taken and shots made by at least 5 players. Then have them figure percentage of shots made both individual and team.

Have students keep track of number of absents in their math class for one week, then plot this information on a line or bar graph.

Give each student a circle graph with information of any type and have them represent this as raw-data.

Collect graphs from magazine or newspaper and interpret them to find what raw data was used originally.

Keep notebook on examples from radio, TV, or newspaper reports that show use of graphical information, statistics and percentages.
 a. Show use of all types graphs---line, bar, circle
 b. Show use of computing statistics
 c. Show use of percentages

Evaluation:

Resources and Materials:
Local basketball game.
Present math class.
Modern Applied Mathematics
Gold-Carlburg
Houghton-Mifflin
Copyright 1971 Chapter 11
Local newspaper or any magazine.
Clippings from local newspaper.
Bring speaker in from radio or TV station.
Have area newspaper reporter speak to class.
Film: "Journalism"
16mm black and white
Rental $1.75 and return postage
Carl F. Mahnke Productions
215 East Third Street
Des Moines, Iowa 50309

Comments on use:
Objective(s):

Procedure:

Resources and Materials:
American Newspaper Publishers Association
730 Third Avenue
New York, NY 10017

The Newspaper Fund, Inc.
Box 300
Princeton, NJ 08540

American Newspaper Guild
Research Department
1126 16th Street, N.W.
Washington, D.C. 20036

American Council on Education for Journalism
School of Journalism
University of Missouri
Columbia, MO 65201

Association for Education in Journalism
425 Henry Mall
University of Wisconsin
Madison, Wisconsin 53706

Evaluation:

Comments on use:

Ruth Ann Walk
Objective(s):
Students should be aware of use of proportions, scale drawing, and accurate measuring needed in advertising field.

Subject Area(s) Mathematics
Unit(s) Fine Arts & Humanities Advertising Illustration Artist

Procedure:
Construct an illustrated advertising page with several ads as a class project.
 a. Show use of scaled drawing.
 b. Show use of ratio and proportion.
 c. Show use of geometric construction.
 d. Stress accurate measuring of lines using both U.S. and metric systems.

Have each student draw at least 3 different views of the teacher's desk given the original dimensions.
 a. Draw this as it might appear in an ad.

Have students use geometric construction to illustrate a possible cover for a geometry book.

Give students data for several smaller ads and have them arrange and illustrate them as they might appear in newspaper.

Have students collect advertisements from any magazine or newspaper that would illustrate a use of mathematical knowledge.

Resources and Materials:
Plan a field trip to the advertising section of newspaper or magazine.
Have speaker from advertising firm.
Class room desk.
Write for Creative Drawing-Bulletin 87, Kansas State University Engineering Experiment Station Manhattan, Kansas 66504
Data from your local school yearbook.
Local newspaper or magazines.
Film: "How a Commercial Artist Works".
16mm black and white, return postage
Modern Talking Picture Service
3 East 54th St.
New York, NY 10022

Evaluation:
Class and individual projects

Comments on use:

Ruth Ann Walk
Objective(s):

The student will be able to convert from seconds, to minutes, to hours. The student will be able to multiply whole numbers and fractions. The student will be able to find the area of a rectangle.

Procedure:

The teacher will discuss what is included in the Graphic Arts Industry.

Problems:

If you worked with printing newspapers for mass graphic communications—up to 85,000 papers per hour in full color, can be completed. How many newspapers would be completed in eight hours?

Electronically programmed controls help craftsmen print six colors simultaneously on sheets 4 1/2 feet wide and 6 1/2 feet long at speeds of two sheets per second. How many of these sheets could be produced in one hour? What would be the surface area of one of these sheets?

Resources and Materials:

"Answers to some questions about Careers in Graphic Communication" Education Council of the Graphic Arts Industry, Inc.
An affiliate of the Graphic Arts Technical Foundation
4615 Forbes Avenue
Pittsburgh, Pennsylvania 15213

"Careers in Graphic Communications" Education Council of the Graphic Arts Industry
4615 Forbes Avenue
Pittsburgh, PA 15213

Evaluation:

Class and individual projects

Comments on use:
Objective(s):
Students will have: awareness of scale drawing and geometric construction necessary to the scenery designer, realization of the necessity of accurate measurement, awareness of complex measurement and spatial knowledge needed in scenery designer profession, awareness of arithmetic used before buying paint supplies.

Procedure:
Have the class as a group develop a simple stage setting on paper. Then let each student figure measurements and construct one piece of the background scenery.

Give the class the dimensions of a stage curtain and have them fit in doors and windows of the right proportions.

Have each pupil observe a play. Then discuss in class where mathematics might have been used in construction of scenery.

Let each student create his own stage setting. Then with cardboard create a scaled version of the finished set.

Given the dimensions of several pieces of scenery (possible from activity #1) and area covered by paint. Have student calculate the amount of paint needed to cover each piece. (teacher supplied dimensions)

Resources and Materials:
Any play book from library or teacher supplied.
Measurement of school stage.
Local play or possibly one on television.
Play books for initial idea.
Cardboard from boxes at grocery store or furniture store.
Paint coverage from local paint store.

Evaluation:
Class and individual projects

Comments on use:
Objective(s):
Students will have: awareness of the importance of fractions in writing music, awareness of the complex work involved to find a wave length which is music related, awareness of the use of geometrical reasoning and spatial forms in the field of a repairman.

Procedure:
Music Writer
a. Take a score of music and evaluate the numerical value of each note. Then use this as a drill for addition of fractions.
b. Have students do research on the new idea of writing music by mathematical formula and a computer.

Music Critic
a. Find the wave lengths for several pieces of music using the mathematical formula FL=V. F=wave, L=length, V=speed of sound.

Stringed Instrument Repairman
a. Have students do research on the spatial forms necessary to use in the repairman's career as well as the analytical ability necessary.

Resources and Materials:
Any song book or piece of sheet music with a wide range of note types.
Career Guidance books in local library.
Film: "Keys to Creativity"
The Wurlitzer Co.
Advertising Manager
DeKalb, ILL 60115
Return postage
Steinway News, Steinway & Sons
Steinway Place
Long Island City
New York 11105

Problems from Modern Algebra I
Dolcina-Wooton
Houghton Mifflin, copyright 1970
pg. 398

Research Music Educational National Conference
The National Ed. Assoc. of U.S.
1201 16th St.
N.W. Washington, D.C. 20036

Evaluation:
Class and individual projects

Comments on use:
Objective(s):
Students will have: an awareness of how important budgeting is in any field showing use of decimal numbers and percentages, an awareness of drawing with using measurements and scale drawings, an awareness of importance of learning ancient numberation systems for a career, an awareness of use of graphs in the administrative part of curators work.

Procedure:

Using a specified amount of money. Set up a budget for managing a museum for one year.
 a. Thought in money management
 b. Use of all basic mathematical skills.
 c. Use of percentages (both finding and using)

Sketch an imaginary finding site and position of the found item.
 a. Use of drawing blueprints
 b. Use of 3-D drawing.

Set flower pot or vase on desk and have students represent its shape graphically. (This is a method of classifying ancient arts by use of computer.)

Using a history approach let students present research done on ancient numberation systems.

Give students numbers showing attendance to museum over a 12 month period and have this plotted on graph.
 a. Analyse this information as to months of high-low attendance, etc.

Resources and Materials:

Consumer Mathematics
2nd Ed. Lankgord, Goe Harcourt, Brace, Jovanovich, Inc.
Copyright 1974, pg. 193-4

Ancient Art from Afghanistan
(2 strips-2 records) $26
BFA Education Media
2211 Michigan Av.
Santa Monica, California 90404

Flower Pot
Mathematics 7
McSwain, Brown Gundlach Cooke
Laidlaw Bros. 1963

Reference Book
History of Mathmatical Notation
Cajori

Evaluation:

Class and individual projects

Comments on use:

53
Ruth Ann Walk
Objective(s):
The student should be able to read and write numbers in Egyptian, Roman, Babylonian, etc. be able to make a scale drawing of an artifact, or of an imaginary excavation site, be able to compare our decimal base ten money system with other money systems.

Procedure:
The teacher will discuss the use of mathematics with the study of anthropology and will direct the student in related activities. Some of these activities might include:
Since anthropology is concerned with the history and development of man, the development of the various numberation systems could be discussed and researched.

An anthropologist must be able to draw scale models of excavation sites—similar to blue prints.

An anthropologist would map out his travels to various excavation sites. If the student were an anthropologist he would need to figure his traveling mileage and expenses to the site. Information concerning the location of an excavation site, then could figure the mileage from his home to the site. They could figure the expenses of food, motel, hotel, etc. Decimals

An anthropologist would need to know something about the economic and money systems used.

Resources and Materials:
- Math textbook
- References which discuss the history of math. Films about the history of math.
- Contact a local architect firm for information concerning how to draw blue prints.
- Write to the Am. Anthropology Assoc.
 1703 New Hampshire Av.
 N.W. Washington, D.C. 20009
- Write to the U.S. Treasury Dept.
 Washington, D.C.
 for information about money and the history of money.

Evaluation:
Class and individual projects

Comments on use:
Objective(s):
Students will develop an awareness of different types of math used by interior decorators including measurement for finding area, use of sq. units.

Procedure:
Give students dimensions of a window. Then have them find how much material would be needed to make curtains (any style they chose).

Give students dimensions of a floor and have them find number of square yards of carpet and square feet of floor tile.

Five students dimensions of wall and have them find the number of square feet of tile needed to cover wall. Also find number for pieces of tile 3" square needed.

Draw plans to redecorate a room either at school or home. Use exact measure of wall and floor space exact measure of existing furniture, suggested size of new furniture, amount of material needed for curtains, papering wall, paint, etc.

Give students the dimensions of a room and number of doors and windows with dimensions of each and have them find the total number of square feet of wall and floor space.

Resources and Materials:
Local carpet sales company.
Local paint or lumber supply store.
Field trip to housing development site.
American Institute of Interior Design, Inc.
Suite 700--157
West 57th St.
New York, N.Y. 11019

American Textile Manufacturing Institute
1501 Johnston Building
Charlotte, N.C. 28202

Film: "Accent Decor"
16 mm color
Return postage
Modern talking Pictures
1212 Avenue of the Americas
New York, NY 10036

Evaluation:
Class and individual projects

Comments on use:

55

Ruth Ann Walk
Objective(s):

Students will see use of geometric construction in pattern industry and accurate measure for both a design model and actual pattern.

Procedure:

Given the pattern for the back of a bodice with single darts have students divide back dart into two parts.

Have students construct a sailor collar on a simple bodice front.

Given basic sleeve patterns let each student design sleeve with shoulder darts.

Using basic bodice pattern--have students construct a pattern with released fullness darts.

Give each student a sewing pattern piece from a small size pattern and have them enlarge the pattern at least two sizes.

Resources and Materials:

Designing Dress Patterns
Tanous Bennett
Copyright 1964 pp. 39, 156, 136, and 82.

Any child size pattern.

Additional Resource
Flat Pattern Methods
Second Edition
Norma R. Hollen
Copyright 1965

Evaluation:

Class and individual activities

Comments on use:

Ruth Ann Walk
Objective(s):
Students will develop awareness of the necessity of a budget. An awareness of how much it actually cost to prepare food. An awareness of the true expense that is involved in borrowing money. An awareness of the use of mathematics in everyday duty of housewife. An awareness of the usefulness of polls to an economist with the use of decimal numbers, interest figuring, multiplication of fractions and percents.

Procedure:
Give each student an amount of money as a monthly income-then have them budget this for a family of four.

Let students plan a meal-then find total cost of buying and preparing food and find total cost per person.

Have each student select two or three pieces of furniture on an installment loan.

Give each student a recipe (preferable with several fractional parts) and have them double and find 1 1/2 times the recipe.

Using a public opinion poll have students find percents of each part to the whole.

Resources and Materials:
Prices from any local grocery.
Speaker from an installment department of bank or financing business and extension center or area home economist.

Management for Modern Families Gross & Crandall Copyright 1954

Personal Adjustment, Marriage, & Family Living Landes Copyright 1970 pg. 300-315

Foundations of Mathematics Wiebe, Copyright 1962 pg. 348-52

Additional General
Borrowing & Installment Buying--film
Set-2 for $20
Ed. Projections Corporation
3070 Lake Terrace
Glenview, ILL 60025

Evaluation:

Comments on use: 57
Objective(s):
Students will have an awareness of use of making change, counting money and simple arithmetic used by routeman including adding and subtracting decimal numbers. Realize the importance of money management. Decimals

Procedure:
Let each student plan a day's work as a routeman and keep a log of money received, change given, and credit given, etc.

Let each student pretend to be a driver of a milk truck--then give each student several different orders with varying items and amounts and have them figure total balls.

Give students information on how much cash, checks charges they took and change they gave for a day and amount they started day with and have them balance at end of day.

Have students write a short paper on job of a routeman and stress the use of mathematics.

Provide several items of varying weights and have students weigh items correct to at least the nearest ounce.

Resources and Materials:
Field trip to trucking firm.
Possible allow students to travel with local routeman.
Local dairy processing plant.
Information from field trip and reference materials.
Career books from counselor or library.
Film: "Driving as a Career" Series of 4 for $32.00 from BFA Ed. Media 2211 Michigan Avenue Santa Montica, CA
United Parcel Service 1001 Second Avenue North Minneapolis, MN 55405
Scales and items to weight from teacher.
International Brotherhood of Teamsters, Chauffers, Warehousemen

Evaluation:

Comments on use:
Objective(s):
Students will have awareness of conversion of pounds to ounces, etc. used as a dietitian, an awareness of the wide variety of prices available on the same items, an awareness of planning that is done by dietitian and use of budgets, an awareness of use of graphs and percentages as a dietitian.

Procedure:

Have students bring grocery ads from local newspaper—group prices of particular products then calculate which selection would be the best buy.

Have students prepare a menu for one day. Three meals for five persons. Then using grocery ads or prices from local grocery compute the total cost of food and the average cost per person.

Let each student plan a budget for a kitchen feeding 20 people—one meal per day. Plan budget for one month.

Give students monthly expenses for 12 months—have them plot these on a graph. Then find the percentage of increase of decrease from one month to the next.

Hand students a prepared budget for one month from a hospital kitchen and have them find the percentage of total that each item used such as labor, utilities, etc. Also find gross and net profits or losses.

Evaluation:
Class and individual projects

Comments on use:
Objective(s): Students will have an awareness of wide variety of prices available and the amount of calculating need to make best buy through the use of decimals. An awareness of the amount of multiplication and addition used to fill a purchase order. An awareness of use of percents to find profit and an awareness of use of graphs and percentages in field of purchasing agent.

Procedure: Have students gather price information from several sources for the purchase of office machinery of any type. Then calculate which offer would be the best buy.

Have students prepare a purchase order for a company such as a plumbing company with varying number of each item. Have them calculate the total cost of each lot of items and total cost of the purchase order.

Give students both wholesale and retail prices for several items of food. Then have them compute the percentage of profit made from each item.

Give students data for the number of cars sold by a car dealer each month for one year. Have them plot this information on a graph and find the percentage of increase or decrease between each month.

Have each student research the work done by a purchasing agent putting emphasis on mathematic aspect. Then have class discussion of the reports.

Resources and Materials:
- Local office supply company and their catalog.
- Ads in local newspaper.
- Modern Applied Mathematics
 Gold-Carlberg
 1971 pp. 334-5
- Price list from local wholesale warehouse and grocery.
- Data from local car dealer.
- Career Opportunities
 New York Life Ins. Co.
 Box 51, Madison Sq. Station
 New York, NY 10010
- National Assoc. of Purchasing Agents
 11 Park Place
 New York, NY 10007
- Field trip to office of a purchasing agent.

Evaluation:

Comments on use:
Objective(s):
Students will develop an awareness of how banks can make money on interest. An awareness of the bankers interest in the farmer through the use of simple and compound interest. An awareness of how banks invest to make money through the use of percent and decimals and interest.

Procedure:
Have each student obtain the price of a new car they would like to own, then using the going rate of interest have them figure interest they would pay if borrowing the money.

Let each student pretend he is buying cattle to start a herd and borrowing the money. Have him calculate the interest he will pay, price he will receive when selling and the profit he will make.

Let each student pick an amount of money to invest at the going rate of interest and calculate the amount of interest the money will draw over a two year period compounded semi-annually.

Let students find which would be the better investment for a banker's money--an investment guaranteed to return 8% compounded quarterly or one guaranteed to return 8½% compounded semi-annually.

Have students visit a bank and visit each department. Then as a class summarize the uses of mathematics in banking.

Resources and Materials:
Local car dealer.
Interest rate from local bank.
Buying and selling price of cattle from stockmarket reports on radio, TV or newspaper.
Interest rates from local bank.
Film: "Banking: No limit to Dimensions"
Continental ILL National Bank
231 S. LaSalle St.
Chicago, ILL 60690
Pay return postage.
Field trip to local bank.
Film: "Banking In Action"
Assoc. Films, Inc.
600 Madison Av.
New York, NY 10022

National Association of Securities Dealers
888 17th Street N-W
Washington, D.C. 20006

Evaluation:
Class and individual projects

Comments on use:
Objective(s):
Students will have an awareness of what an accountant needs to know to advise clients in the line of the use of decimals and wise decision making skills.

Procedure:
Take a field trip to a local accounting firm and have students take note of how mathematics is used by an accountant.

From observations made on field trip have student prepare a discussion of mathematics in the field of accounting.

Give students a ledger of transactions that take place during one month in a checking account. Have them find the balance at the end of the month.

Have each student prepare his or her federal income tax return in class. If they held no job have them create an imaginary income and job situation.

Give students a rough overall view of the financial status of a small business and a current selling price of the business, then as a class have them decide if it would be better to keep the business or sell.

Resources and Materials:
Local accounting firm.
Foundations of Mathematics
Wiebe 1962 pp. 330
Teaching Taxes
Internal Revenue Service
Washington D.C. 20233
Accounting in Business Decisions
Black, Champion, Brown
1967 pp. 22
Accounting Careers Council
National Distribution Center
P.O. Box 650, Radio City Station
New York, NY 10010
National Association of Accountants
505 Park Avenue
New York, NY 10022
The American Accounting Assoc.
School of Commerce
University of Wisconsin
Madison, WI 53700
Am. Institute of Certified Public Accountants, 666 5th Avenue,
New York, NY 10019

Evaluation:

Comments on use:
Objective(s):

Students will be acquainted with an actuary career. Will have an awareness of the use of graphs, statistics, and census information by an actuary.

Procedure:

Have students research the career of an actuary and present the research to the class for discussion.

Give students a set of raw test scores and have them graph the distribution of scores.

Given raw data have students compute the mean, median, and mode.

Have students gather information that an actuary might use, such as expected life spans, number of births and deaths during a year, number of cancer related deaths, etc. Then analyze this for the information an actuary might use.

Given raw data have students arrange in descending order and find a frequency distribution and construct a histogram.

Resources and Materials:

Society of Actuaries
208 S. LaSalle St.
Chicago, ILL 60604

Secretary Casualty
Actuarial Society
200 E. 42nd St.
New York, NY 10017

Career Opportunities
Career Information Service
New York Life Ins. Co.
Box 51 Madison Sq. Stat.
New York, NY 10010

Foundations of Mathematics
Wiebe, 1962 pp. 344

Bureau of Census
Washington D.C. 20233

County Recorder Office

Foundations of Mathematics
Wiebe 1962 pp. 336-7

Film: In Common Cause

Evaluation: Class and individual projects.

Comments on use:
Objective(s):
Students will have: an awareness of the use of percents to find profit by retailing, an awareness of how retailers arrive at sale prices and selling prices, and an awareness of the cost of shipping merchandise.

Procedure:

Give students the wholesale and retail price of an item, then have them find the percent of mark-up.

Give students the retail price of several items then have them find the price of the item if it were sold at a 25% discount.

Given the wholesale price of several items have students find retail price if the item is to be sold at a 42% profit.

Using either real or fake money have students learn and practice giving change as they might do as a clerk.

Using any mail-order catalog have students compute shipping charges on a number of items of varying weights.

Evaluation:

Class and individual projects

Comments on use:

Ruth Ann Walk
Objective(s):
Student will be able to find a percent of a number, to use this information to make a circle graph showing the portions of foresters in each area of work, to add and subtract decimal amounts of money, to figure board feet, to find the volume of a cylinder, to understand the relationship of a diameter and radius of a circle, to write an equation and divide fractions, to write an equation and find a percent when given two numbers.

Procedure:
The teacher will discuss the use of mathematics in forestry. Some activities related to forestry and information about forestry might include:

There are about 25,000 professional foresters in the United States. About 50% of these work for public forestry agencies—federal, state, and local. How many people work for public forestry agencies?

Some 37% of the foresters are self-employed or are employed by private industrial concerns. How many foresters are employed by private industry? The remaining 13% are in teaching and research or are in graduate school. How many foresters are involved here?

Since salaries on the Federal, State, Local, and Private levels of work differ, a comparison could be made of each salary schedule.

Timber cruising. One of the first things to be done is to estimate how much of a certain area of forest land will yield in board feet of lumber or tons of pulpwood. Suppose you are concerned with 20 acres of forest land, figure how many board feet of lumber this land will yield? More than eleven billion board feet of timber are cut each year.

Scaling logs. Another job of a forester is to find out the volume of lumber a log will yield. Suppose

Resources and Materials:

Contact local chip mills or saw mills for information concerning timber cruising. The school industrial arts teacher may be able to assist with figuring board feet.

SRA Occupational Brief 340 "Forest Technicians" Science Research Associates Inc. 259 East Erie Street Chicago, ILL 60611 Reorder No. 05-990340

The University Society Encyclopedia The University Society Inc. Midland Park New Jersey Page 136

Evaluation:

Comments on use:
Objective(s):
Objective(s):
The student will be able to multiply whole numbers, multiply with decimals and add decimals.

Procedure:
Teacher will discuss the duties of a hotel or motel accountant. Some related activities might include:

You are a motel accountant and a family of five stops for an evening. They ask for two rooms and each room is $20 per night. How much would their bill be? Remember to add tax.

Resources and Materials:
"Your Career In The Lodging Industry"
The Educational Institute
Stephen S. Nisbet Building
Michigan State University
1407 South Harrison Road
East Lansing, MI 48823

"Banking"
16mm sound, 18 min., color, 1973
Pay return postage
BK 2 months advance
Aetna Life and Casualty
Public Relations and Advertising Dept.
Film Library
151 Farmington Avenue
Hartford, CT 06115

"Banking In Action"
16mm, sound, 20 min., color
Pay return postage
Give dates wanted well in advance

Federal Reserve Banks
Western Missouri Only
Federal Reserve Bank of Kansas City
Kansas City, MO 64198

Evaluation:

Comments on use:
Objective(s):

Procedure:

<table>
<thead>
<tr>
<th>Resources and Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Bread" (30025)</td>
</tr>
<tr>
<td>16mm, sound, color, 20 min. available to 7th grade and above</td>
</tr>
<tr>
<td>Real life money management decisions</td>
</tr>
<tr>
<td>Pay return postage</td>
</tr>
<tr>
<td>Book one month advance</td>
</tr>
<tr>
<td>Modern Talking Picture Service</td>
</tr>
<tr>
<td>1686 Elmhurst Road</td>
</tr>
<tr>
<td>Elk Grove Village</td>
</tr>
<tr>
<td>Chicago, ILL 60007</td>
</tr>
<tr>
<td>"Budgeting"</td>
</tr>
<tr>
<td>16mm, sound, color, 11 min., 1973</td>
</tr>
<tr>
<td>Aetna Life and Casual</td>
</tr>
<tr>
<td>"Buying"</td>
</tr>
<tr>
<td>16mm, sound, 13 min., color, 1973</td>
</tr>
<tr>
<td>Aetna Life and Casualty</td>
</tr>
<tr>
<td>"Credit"</td>
</tr>
<tr>
<td>16mm, sound, color, 18 min., 1973</td>
</tr>
<tr>
<td>Aetna Life and Casualty</td>
</tr>
<tr>
<td>"Credit (39)"</td>
</tr>
<tr>
<td>16mm, sound, color, 20 min.</td>
</tr>
<tr>
<td>Pay postage and ins. both ways</td>
</tr>
<tr>
<td>Bk 2 months advance</td>
</tr>
</tbody>
</table>

Evaluation:

Comments on use:
Objective(s):

Procedure:

Resources and Materials:
West Glen Films
565 Fifth Avenue
New York, NY 10017

"Death and Taxes"
16mm, sound, color, 18 min., 1968
Traces history of income tax
Block, H and R (local)

"Dollars and Sense (2317)"
16mm, sound, 14 min., color
About insurance, life retirement
Available to high school and above

Association-Sterling Films
8615 Directors Row
Dallas, TX 75247

"Insurance"
16mm, sound, 16½ min.
Aetna Life and Casualty

"The Littlest Giant" (S-416)
16mm, sound, color, 14 min.
Consumer credit information
Association-Sterling Films

Evaluation:

Comments on use:
| Objective(s): |
| Resources and Materials: |

Procedure:

| Resources and Materials: |
| Money on the Move |
| The Federal Reserve Today |
| 16mm, sound, 27 min., color, 1969 |
| Fed. Reserve Bank of Kansas City |
| Kansas City, MO 64198 |
| "Introduction To Digital Computers" (AUU 4756) |
| 16mm, sound, 24 min., color, 1969 |
| Pay return postage |
| BK 2 weeks |
| UNIVAC Film Library |
| UNIVAC Division of Sperry Rand Advertising and Sales Promotion |
| P.O. Box 500 |
| Blue Bell, Pennsylvania 19422 |
| "This Business of Numbers" (AVV 4759) |
| 16mm, sound, color, 20 min., 1969 |
| Gives animated coverage of arithmetic from caveman to present day. |
| UNIVAC Film Library |

Evaluation:

Comments on use:

Ruth Ann Walk
Subject Area(s) Mathematics

Unit(s) Personal Service Occupations
Cosmetologist

Objective(s):
Students will: be able to set up and/or interpret an appointment book. Making charts and writing times. Student should be able to make change and if need be, help with the managerial duties of record keeping, be able to keep a record of supplies, maintenance, or supervision of employees, be able to read data which would help them stay abreast with changing styles and techniques.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to Cosmetology in the area of mathematics.

Set up an appointment book for a cosmetologist.
Get an appointment book from a local source which has been set up, and discuss it.
Work on making change with money.
Make up a mock model of a beauty salon staff.
Set up a chart of beauty shop supplies, another for shop maintenance, and one for employees.
Look at current periodicals for examples of data related to changing styles and techniques.
Get a box of money and let them count change.
Have a guest speaker from a local beauty salon.

Resources and Materials:
Local cosmetologist
Handle, Dorothea Zack
The Hairdo Handbook
Kit: I Want to be a Beauty Operator.

Write to:
National Association of Cosmetology Schools, Inc.
3839 White Plains Road
New York, NY 10067

National Hairdressers and Cosmetologists Association
175 Fifth Avenue
New York, NY 10010

Film:
"Good Looks"
16mm, color, sound, 20 min.
Pay return postage (order 1 month in advance)
Modern Talking Picture Service
1212 Avenue of the Americas
New York, NY 10036

Evaluation:
Class and individual projects

Comments on use:

Charldine Smart
Objective(s):

Student should: have good judgment of space and shape, know something about cost of equipment and money required for starting own business, know the alternatives of other working conditions other than owning own office, be able to interpret or chart statistical data in this field.

Procedure:

The teacher will direct, discuss, and/or supervise activities related to Dentistry in the area of mathematics.

Work a great deal with shapes and space ideas in geometry.

Write a paper on the cost of equipment and money required to set up a business of this type in their own home town.

Do some research on financial expenses other than owning a business.

Set up some charts, graphs, etc. of statistical data in the area of dental work.

Have a local dentist as a guest speaker.

Resources and Materials:

Local dentist
Blackerby, P.E. Jr. "Should You Be A Dentist?" (Pamphlet)
Miner, L.M. Dentistry
Lapp, Carolyn Dentist Tools
Careers in a Medical Center

Filmstrips:
"Introduction to Demonstrative Geometry."
"Basic Angles and Experimental Geometry."

Paffenbarger, George Corbly
Frontiers of Dental Science

Resources--write to:
American College of Dentist
4236 Lindell Blvd.
St. Louis, MO 63108

International College of Dentist
4829 Minntonka Blvd.
Minneapolis, MN 55416

Evaluation:

Comments on use:
Subject Area(s) Mathematics

Unit(s) Personal Service Occupations
Dentist, p. 2

Objective(s):

Procedure:

Resources and Materials:
Films:
"Your Magic Step to Career Opportunity"
16mm, color, sound, 6 1/2 min.
Pay return postage
American Dental Association
Bureau of Audiovisual Service
211 East Chicago Avenue
Chicago, IL 60611

"Set the Stage on Dental Health"
16mm, color, sound, 28 min.
Pay return postage
Association Films, Inc.
600 Madison Avenue
New York, NY 10022

Evaluation:
Class and individual projects

Comments on use:
Subject Area(s) Mathematics

Unit(s) Personal Service Occupations
Health Salon

Objective(s):
Student should be able to work problems related to various areas of this career. (physics, inorganic and organic chemistry, biology). Student should have a good workable understanding of the measuring systems, such as metric, Fahrenheit, and Centigrade scales.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to operating a Health Salon in the area of mathematics.

Make sample charts for people who need different exercises and for young people, old people, those overweight, and/or those who wish to stay fit.

Set up mock situations involving math problems related to diet in helping people who are underweight to gain weight and tone muscles, or who are overweight to lose weight.

Set up examples of indoor heated pools or saunas, and what the correct temperature should be on the Fahrenheit and Centigrade scales.

| Resources and Materials: |
| Local health salon. |
| Hiller, Glyme Put Your Best Foot Forward |
| Health Careers (periodical) |
| Career Education (magazine) Mr. '74 |
| Filmstrips |
| "Foods for Health" |
| "Keeping Healthy" |
| "Getting Acquainted with our Bodies" |
| "The Fitness Challenge" 16mm, color, sound, 26 min. Pay return postage, American Osteopathic Association Order Department 212 East Ohio Street Chicago, IL 60611 |
| "Focus of Fitness" 16mm, color, sound, 19 min. Pay return postage Eastman Kodak Company Audio-Visual Service 343 State Street Rochester, NY 14608 |

Evaluation:

Comments on use:
Objective(s):
The student should know how to record data on charts and tables, graphs, etc., be able to interpret statistical data, be able to work with a high degree of skill any mathematical problem which might relate to basic and applied research, be able to record and interpret test scores of various kinds.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to Psychology in the area of mathematics.

Make examples of a good record to keep on a child who is six years old for a period of time, such as 12 months.

With some record table or graph, such as the one above, be able to explain what the data means.

Do some line graphs which show loss or gain in some areas.

Make up some tests to be given—oral or written—and have some way of recording the outcomes.

Resources and Materials:
- Lewellen, John
 You and Your Amazing Mind
- Alexander, Arthur
 The Hidden You
- Fedder, Ruth
 You the Person
- Lackner, Stephen
 Discover Your Self
- Super, D.
 Opportunities in Psychology
 Careers in Psychology
 Careers in Mental Health

Film:
"Who Cares about Jamie"
16mm, color, sound, 16 min.
Reserve in advance and pay return postage
Ideal Pictures, Inc.
1010 Church Street
Exanston, IL 60201

Write to:
American Psychologist Association
1200 17th Street

Evaluation:

Comments on use:
Objective(s):

<table>
<thead>
<tr>
<th>Procedure:</th>
<th>Resources and Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.W., Washington, D.C. 200</td>
</tr>
<tr>
<td></td>
<td>Department of Mental Hygiene</td>
</tr>
<tr>
<td></td>
<td>State of New York</td>
</tr>
<tr>
<td></td>
<td>119 Washington Avenue</td>
</tr>
<tr>
<td></td>
<td>Albany, NY 12225</td>
</tr>
<tr>
<td></td>
<td>Psychologist</td>
</tr>
<tr>
<td></td>
<td>(cost 10¢)</td>
</tr>
<tr>
<td></td>
<td>Superintendent of Documents</td>
</tr>
<tr>
<td></td>
<td>U.S. Government Printing Office</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20402</td>
</tr>
</tbody>
</table>

Evaluation:

Class and individual projects

Comments on use:
Objective(s):
The student should develop a good working knowledge of mathematical thoughts, analysis, or equipment related to research on health of animals, investigate financial costs of drugs, instruments, etc. of starting own practice, or purchasing one already established, list several job areas related to veterinarians, and have some knowledge of finances involved in proper care of pets at an animal center.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Veterinarian in the area of mathematics.

Play the game of battleship, or any other that involves mathematical ideas.

Set up a chart for a sick animal.

Make a survey of cost of equipment, drugs, etc. for starting a practice of their own or taking over a practice already established.

Make lists of various jobs or duties performed at a center for animal care.

Make a chart on costs of shearing poodles and spaniels, bathing and grooming pets.

Resources and Materials:
Dean, Nell
The Vet is a Girl (Fiction)
DeKruif, Paul Henry
Hunger Fighters
Chrystie, Frances
Pets
Haberman, Jules J.
The Farmer's Veterinary Handbook
Jones, T.J.
Veterinarian
Kays, John M.
Basic Animal Husbandry
Riser, Wayne
Your Future in Veterinary Medicine
At an Animal Hospital
School of Veterinary Medicine
(Bulletin) M.U.-Columbia, MO
Filmstrip
"Veterinarian"

Evaluation:

Comments on use:
Objective(s):

Procedure:

Resources and Materials:
"The Veterinarian"
46mm, color, sound, 26 min.
Book several months in advance
Pay return postage
Texaco, Inc.
Sales Promotion Manager
332 South Michigan Avenue
Chicago, IL 60604

Write to:
American Veterinary Medical Assoc.
600 South Michigan Avenue
Chicago, IL 60605

Agriculture Research Service
U.S. Department of Agriculture
Washington, D.C. 20250

Evaluation:
Class and individual projects

Comments on use:
Objective(s):
Students will be able to take the customer's money and give him proper change, have a better understanding of the value of various items in jewelry stores, have a general knowledge of how salespeople relate to customers and manufacturers, and get some exposure to the importance of a computer, and a credit manager in relation to customers who are good or poor credit risks, mailing of notices of delinquent payments, and assisting collectors who settle overdue accounts.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Salesperson in the area of mathematics.

Role play with magazine and newspaper selling.

Write a paper on working in a jewelry firm, include knowledge needed about valuable stones, and mannerisms.

Make a chart of types of real estates available and the cost in their own local area.

Do some research on being a manufacturers' salesperson.

Have a guest speaker from local real estate agency.

Make a list of manufacturers in Missouri who would use the services of an industrial salesperson.

Compile an expense account of a make-believe business to be turned over to a supervisor.

Make a chart of businesses which employ cashiers and/or salespersons.

Prepare a report on credit cards, credit manager, and central credit bureau.

Resources and Materials:
- Houlehen, Robert J. The Battle For Sales Kit
- Schirron & Lyons: Careers in a Department Store
- Schiron & Lyons: Servicemen and Women and What They Do
- Local business hiring salespersons.
- Gross, M. Phill Sterling, Salesman
- Whitney, R. A. Should You Be A Salesman?

Write to:
- Automobile Salesman
 National Automobile Dealers Assoc.
 2000 K Street
 N.W. Washington, D.C. 20006

- Nat. Independent Auto Dealers Assoc.
 1719 West End Avenue

Evaluation:

Comments on use:
Subject Area(s) **Mathematics**

Unit(s): Marketing and Distribution Careers
Salesperson, p. 2

<table>
<thead>
<tr>
<th>Objective(s):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Procedure:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Resources and Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suite 707</td>
</tr>
<tr>
<td>Nashville, TN 37203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Films:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile Salesman</td>
</tr>
<tr>
<td>"A Car Is Born"</td>
</tr>
<tr>
<td>16mm, color, sound, 28 min.</td>
</tr>
<tr>
<td>Book 3 weeks advance, pay return postage</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>"The Automobile Engine"</td>
</tr>
<tr>
<td>16mm, color, sound, 19 min.</td>
</tr>
<tr>
<td>Book 3 weeks advance, pay return postage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order the above from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford Motor Company Film Library</td>
</tr>
<tr>
<td>The American Road</td>
</tr>
<tr>
<td>Dearborn, MI 48121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Write to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Salesman</td>
</tr>
<tr>
<td>Sales & Marketing Executives International</td>
</tr>
<tr>
<td>630 Third Avenue</td>
</tr>
<tr>
<td>New York, NY 10017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Comments on use:</th>
</tr>
</thead>
</table>

80

73
Subject Area(s) Mathematics

Unit(s) Marketing and Distribution Careers
Salesperson, p. 3

Objective(s):

<table>
<thead>
<tr>
<th>Procedure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources and Materials:</td>
</tr>
<tr>
<td>Am. Petroleum Institute</td>
</tr>
<tr>
<td>1271 Ave. of the Americas</td>
</tr>
<tr>
<td>New York, NY 10020</td>
</tr>
<tr>
<td>National Oil Jobbers Council</td>
</tr>
<tr>
<td>1701 K Street</td>
</tr>
<tr>
<td>N.W. Washington, D.C. 20006</td>
</tr>
<tr>
<td>Films:</td>
</tr>
<tr>
<td>Petroleum Salesman</td>
</tr>
<tr>
<td>"American Frontier"</td>
</tr>
<tr>
<td>16mm, black & white, sound, 29 min.</td>
</tr>
<tr>
<td>Pay return postage</td>
</tr>
<tr>
<td>"Conserving a Heritage"</td>
</tr>
<tr>
<td>16mm, color, sound, 16½ min.</td>
</tr>
<tr>
<td>Pay return postage</td>
</tr>
<tr>
<td>Order from American Petroleum Institute Committee on Public Affairs</td>
</tr>
<tr>
<td>1271 Avenue of the Americas</td>
</tr>
<tr>
<td>New York, NY 10020</td>
</tr>
<tr>
<td>Write to:</td>
</tr>
<tr>
<td>Real Estate Salesman</td>
</tr>
<tr>
<td>National Assoc. of Real Estate Boards</td>
</tr>
<tr>
<td>36 South Wabash</td>
</tr>
<tr>
<td>Chicago, IL 60602</td>
</tr>
</tbody>
</table>

Evaluation:

Comments on use:
Objective(s):

<table>
<thead>
<tr>
<th>Procedure:</th>
<th>Resources and Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>American Land Title Association</td>
</tr>
<tr>
<td></td>
<td>1725 I Street,</td>
</tr>
<tr>
<td></td>
<td>N.W. Washington, D.C. 20006</td>
</tr>
<tr>
<td></td>
<td>Films:</td>
</tr>
<tr>
<td></td>
<td>Real Estate Salesman</td>
</tr>
<tr>
<td></td>
<td>"Salesmanship: Art or Science"</td>
</tr>
<tr>
<td></td>
<td>16mm, color, sound, 25 min.</td>
</tr>
<tr>
<td></td>
<td>Pay return postage</td>
</tr>
<tr>
<td></td>
<td>Modern Talking Pictures Service</td>
</tr>
<tr>
<td></td>
<td>1212 Avenue of the Americas</td>
</tr>
<tr>
<td></td>
<td>New York, NY 10036</td>
</tr>
<tr>
<td></td>
<td>Write to:</td>
</tr>
<tr>
<td></td>
<td>Retail Salesman</td>
</tr>
<tr>
<td></td>
<td>Committee on Careers in Retailing</td>
</tr>
<tr>
<td></td>
<td>National Retail Merchants Assoc.</td>
</tr>
<tr>
<td></td>
<td>100 West 31st Street</td>
</tr>
<tr>
<td></td>
<td>New York, NY 10001</td>
</tr>
<tr>
<td></td>
<td>Sales and Marketing Executives International</td>
</tr>
<tr>
<td></td>
<td>630 Third Avenue</td>
</tr>
<tr>
<td></td>
<td>New York, NY 10017</td>
</tr>
<tr>
<td></td>
<td>Films</td>
</tr>
<tr>
<td></td>
<td>Retail</td>
</tr>
<tr>
<td></td>
<td>"The Care and Handling of Buyers"</td>
</tr>
<tr>
<td></td>
<td>16mm, black and white, sound, 45 min.</td>
</tr>
</tbody>
</table>

Evaluation:

Comments on use:
Objective(s):

Procedure: Resources and Materials:
Pay return postage
Modern Talking Picture Service
1212 Ave. of the Americas
New York, NY 10036

Write to:
Speciality Salesman
Sales Occupations (Occupational
Outlook Briefs)
U.S. Department of Labor
Bureau of Labor Statistics
Washington, D.C. 20012

Write to
Wholesale Salesman
National Association of Wholesalers
1725 K Street
N.W. Washington, D.C. 20006

Fashion Saleswoman
Committee on Careers in Retailing
National Retail Merchants Assoc.
100 West 31st Street
New York, NY 10001

Pendleton Woolen Mills
Home Economics Department
218 S. W. Jefferson Street
Portland, OR 97201

Evaluation:

Class and individual projects

Comments on use:

Charldine Smart
Objective(s):
The student will be able to understand a few of the duties of this career, such as arranging displays inside the store and planning for seasonal arrangements of merchandise, be able to show sections of U.S.A. and have fractional numbers or percents used to show comparisons of seasonal affects on merchandise being considered, gain a working knowledge of cost of materials, and other mathematical concepts related to planning, making, setting up a display, work with camera setting on distance, amount of light needed, shutter speed, lens opening and any other mathematical ideas involved with their photography through measurement.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Display Worker in the area of mathematics.

Write a report on activities which a display worker for a large store would be expected to perform.

Make a chart of at least four different sections of the United States and show how the seasons of each area will affect the sale of merchandise, such as clothing.

Make a show card or a sign on cardboard or paper—choosing any size—planning spacing well.

Design, lay out, cut, and finish a display in wood or other materials as animated and/or lighted display unit.

Take photographs which might be used for newspapers, brochures, billboards, catalogs, and television commercials.

Make a drawing related to students particular field of interest.

Evaluation: Class and individual projects.

Resources and Materials:
Freer, M. M.
Showcase for Diane
Display Man
(pamphlet)
Local stores hiring display workers.
Write to:
Society of Illustrators
128 East 63rd Street
New York, NY 10020
Objective(s):

Students will have an idea of making and compiling information necessary to do satisfactory work, be able to prepare an account record of goods received against the shipping invoice, condition of goods received, proper storage, date, and time or dates on certain goods, be able to set up a copy of a receipt which would include all information needed by truck drivers from a receiving clerk.

Subject Area(s) Mathematics

Unit(s) Marketing and Distribution Careers
Stock, Shipping, or Receiving Clerks

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Stock, Shipping, or Receiving Clerk in the area of mathematics.

Prepare a make believe bill of loading, a detailed list of goods which will be sent to a customer.

Make a chart of the duties of a shipping clerk.
 a. See that fragile things are secure.
 b. Know the cost and time needed for the delivery.
 c. Make up duties of lead shipping clerk or one working under a warehouse manager.

Make a check list which would be usable to a receiving clerk.
 a. Checks items against bill of loading or shipping invoice.
 b. Make sure goods are received in good condition.
 c. Notes date, time, proper storage for articles, etc.

Make a receipt which a truck driver would be given for materials received by the receiving clerk.

Make a list of ways receiving, shipping and stock clerks work together.

Look up freight and postal rates, record some weights and put down cost of the shipment.

Evaluation:

Resources and Materials:
Stock Clerk (pamphlet)
Can I Be An Office Worker? (Pamphlet)
Local businesses hiring clerks
Write to:
Material Handling Institute
1326 Freeport Road
Pittsburg, Pennsylvania 15238

American Warehousemen’s Assoc.
222 West Adams Street
Chicago, IL 60606

Committee on Careers in Retailing
National Retail Merchants Assoc.
100 West 31st Street
New York, NY 10001

National Assoc. of Wholesalers
1725 K Street
N.W. Washington, D.C. 20006

Filmstrips:
"Elements of Design"
"Principles of Design"
"Summary of Design"

Comments on use:
Objective(s):

Procedure:

Prepare a list of items the stock clerk in a hospital might use. This list should be for items both entering and leaving stock room.

Resources and Materials:

"What is Behavior"
"Conduct and Behavior"

Poster: Marketing and Distributive Careers

Popeye and Marketing and Distribution Careers, King Features Syndicate
New York, NY 1973

Film: "This Business of Numbers"
16mm, color, sound, 20 min.
BK 2 weeks, in advance
Pay return postage
UNIUAC--Division of Sperry Rand Film Library
Advertising and Sales Promotion
P.O. Box 8100
Philadelphia, Pennsylvania 19101

"The Pacesetter in Aisle Number 3"
16mm, color, sound, 15½ min.
Pay return postage, General Mill Inc.
Film Library
920 Wayzata Boulevard
Minneapolis, Minnesota 55440

Evaluation:

Class and individual projects

Comments on use:
Objective(s):
Students will understand and know there is financial security against damages to the policy holder's property, and this is to protect him when he is responsible for damages to other people's property, be able to work well with numbers relating to percent accounting and finance charges, etc. Example: $10,000 at 7% + $400 x 12 = ? in some experience of working carefully with records which they have set up.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being an Insurance Salesperson in the area of mathematics.

From local insurance agents get some blank forms and sell the insurance among the students.

Sell some life insurance to classmates or faculty members.

Try to sell some property and liability insurance.

Set up a plan for financial protection for a man and his family.

Make up a record of insurance sold, financial statement, etc. of their own sales.

Resources and Materials:
Houlehen, Rob't. J.
The Battle for Sales
Stone, M.F.
Life Insurance
Careers in Insurance Selling
Invitation to Youth: Careers in Life Insurance
Insurance Careers (periodical)
Local Insurance Agency
Kit:
2 records, 2 filmstrips Career Surprises Auto. Insurance
Film:
"In Common Cause" 16mm, color, sound, 22 min. Reserve in advance, pay return postage
Modern Talking Picture Service 3 East 54th Street
New York, NY 10022

Evaluation:
Subject Area(s) **Mathematics**

Unit(s) **Marketing and Distribution Careers**

Routeman or Delivery Man

Objective(s):
Students will be able to check the amount of merchandise in his truck and to keep a record of their business transactions, be able to have a complete record of daily deliveries, be able to replace depleted stock and keep a record of the merchandise which goes into a vending machine, be able to read and/or make a chart of dry cleaning for a typical route truck.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Routemen or Delivery Man in the area of mathematics.

Make a list of merchandise on a delivery truck.

Make a list of payments collected and keep a record of transactions for one week.

Make a list of items to be checked in at plant after completing the day and make a record of money to be turned into cashier.

Make a list of products to be delivered day by day.

Make a mock chart on vending machines which sell foods.

Make a list of money removed from each machine.

Make a chart on a typical day for a dry-cleaning route-man, such as marking soiled articles, notes of the type of stains, or special processes such as waterproofing.

Make an itemized bill and attach to cleaned garments.

Resources and Materials:
- **Rawson, C.B.**
 Opportunities in Motor Transportation.
 Routeman (pamphlet)

Kit
- Job Experiences
- Truck Driver
- Local dry cleaners
- Local businesses hiring delivery men.

Write to:
- United Parcel Service
 1001 Second Avenue North
 Minneapolis, MN 55405
- National Professional Driver Education Assoc.
 1625 North Industrial Bld.
 Dallas, TX 75207

Film:
- *The Truck Driver*
 16mm, color, sound, 16 min.
 Order 3 weeks in advance, pay return postage. American Trucking Assoc., Inc., 1616 P St., N.W. Washington, DC 75207

Evaluation:

Comments on use:

Charldine Smart
Objective(s):
Students will know how to deal with basic laws of the physical world, be able to do research designed to increase man's knowledge of the properties of matter and energy, from applied research, use the knowledge gained from this to develop new products and/or processes, know something about the three major physical science occupations--chemist, physicist, astronomer.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Physical Scientist in the area of mathematics.

Work problems related to any situation in our physical world.

Keep a record of any activity of student's choice, such as feeding a pet, caring for a dairy animal, etc. and from the record of time of feeding, amount, etc. be able to design any changes with improvement for the situation.

Student or students could prepare a lesson to present to other members of the class, role playing as teacher.

Do a chart or graph on the various ways foods are processed and approximate percentage in each category.

Set up or work five problems related to each of the following areas: chemist, physicist, astronomer.

Evaluation:
Class and individual projects

Resources and Materials:
Frifield, D.R.
Careers in Geophysics (bulletin)
Pollack, P.
Your Career in Physics
Opportunities for Women in the Field of Physics
Hammond, M.
Occupational Goals for College Students in Physical Scientist
Employment Outlook for Physicists
Education Requirements for Employment of Geophysicists (Above 2 are from the Bureau of Labor Statistics)
Filmstrips:
"Elements, Compounds, and Mixtures"
"Fish and Amphibians"

Comments on use:
Objective(s):
Students will understand things involved in managing and caring for lands and their resources including; be able to collect and record data such as tree heights, diameter, and mortality, be able to keep a ratio of tree loss to total supply of trees. Figure percentage from this for period of 3 years, be able to collect records from rain gauges, be able to read a streamflow recorder, rain gauge, soil moisture instruments, etc.

Subject Area(s) Mathematics

Unit(s) Environmental Careers
Forestry Technician or aid

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Forestry Technician or Aid in the area of mathematics.

Make a diagram of a forest and a chart to go with it, having a plan for harvesting and cutting trees, purchases, and sale of trees and timber, processing reforestation, such as reseeding and replanting.

Work math problems related to ratio of the height of a tree to the shadow of the tree.

Tree shadow in keeping a record of tree heights.
 a. Do some problems related to the diameter of circular objects.
 b. Write a paper on several kinds of trees and state the average life of each.

Work problems set up related to ratio of trees lost from disease to total number of trees. Figure from this percentage of loss due to disease.

Set up rain guage at school and record rainfall monthly for 3 months.

Take a field trip and have a streamflow recorder. Record these findings.
 a. Record the rain fall from rain guage.
 b. Record findings from a soil moisture instrument.

Evaluation:

Resources and Materials:
Shirley, H.L.
Forestry & It's Career Opportunities

Greeley, W. B.
Forests & Men

Careers in Forestry
U.S. Dept. of Agri.

Floeherty, J. J.
Forest Ranger

Splaver, S.
Forester

Forester (pamphlet)
Chronicle Guidance Publications

McCormick, Jack
The Life of the Forest

Filmsstrip:
"Reptiles and Birds"

Record:
"Forest Conservation Today"

Comments on use:
Objective(s):

Procedure:

<table>
<thead>
<tr>
<th>Resources and Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Films:</td>
</tr>
<tr>
<td>"The Forever Living Forests"</td>
</tr>
<tr>
<td>16mm, color, sound, 25½ min.</td>
</tr>
<tr>
<td>BK one month in advance, pay return postage</td>
</tr>
<tr>
<td>California Redwood Association</td>
</tr>
<tr>
<td>617 Montgomery Street</td>
</tr>
<tr>
<td>San Francisco, CA 94111</td>
</tr>
<tr>
<td>"Science Study and Skills"</td>
</tr>
<tr>
<td>16mm, color, sound, 11 min.</td>
</tr>
<tr>
<td>For rental fee and nearest library write to:</td>
</tr>
<tr>
<td>Coronet Films</td>
</tr>
<tr>
<td>Sales Department</td>
</tr>
<tr>
<td>Coronet Building</td>
</tr>
<tr>
<td>Chicago, IL 60601</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Write to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Service</td>
</tr>
<tr>
<td>United States Dept. of Agriculture</td>
</tr>
<tr>
<td>Washington, D.C. 20250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Society of American Foresters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010 16th Street</td>
</tr>
<tr>
<td>N.W. Washington, D.C. 20036</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>American Forest Products Industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc., 1835 K-St., N.W., Washington, DC 20036</td>
</tr>
</tbody>
</table>

Evaluation:

Comments on use:

91 Charldine Smart
Objective(s):
Students will be able to set up a plan or plans for grazing livestock on range and at the same time have high production yet preserve soil and vegetation using ratio, be able to set up a working plan for restoring deteriorated rangelands through seeding or plant control, be able to understand the multiple use of rangelands and how closely a ranger must work with other related fields, such as wildlife and watershed management, land classification, forest management, and recreation, give a report written or oral related.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Range Manager in the area of mathematics.

Set up a plan of how to manage, develop, and protect the forest lands of 10 acres plot of ground near students homes.

Set up a statistical chart of number of acres of land, number and type of animals to be grazed, and the length of growing season.

Write out a plan for restoring rangelands as to either type of seen and/or plants to be used.

Make a booklet with rules and regulations for forest land designated as recreation areas. Include costs if any are to be included.

Student can either do research and/or have a guest speaker lecture on the subject of range maintenance and improvement.

Prepare a report to give before a group on how to conserve wildlife habitats and how to use rangeland to graze cattle.

Make a chart on when to close an area to stockmen who have over used the land, and include steps to be taken.

Resources and Materials:
- Floherty, J. J. Forest Ranger
- Shirley, H. L. Forestry & Its Career Opportunities
- Greeley, W. B. Forests & Men
- Splaver, S. Forester
- Park Ranger (Chronical Guidance Pub.)
- Forester (Chronical Guidance Pub.)
- Filmstrips (Boonslick Reg. Lib.)
 1. Bulldozed America
 2. Small Animals of the Plains
 3. Nature's Half Acre
 4. Animals Town of the Prairie
 5. The Litterbug
 7. Animal Homes
 8. Our Vanishing Land

Evaluation:

Comments on use:
Objective(s):
to range maintenance and improvement by collecting data.

Procedure:
to restore the damaged land. Include any useful mathematical ideals.

Resources and Materials:
9. Wildlands--Our Heritage

Filmstrips
"The Joint Legged Animals"
"National Parks"

Evaluation:
Class and individual projects

Comments on use:
Charldine Smart
Objective(s):
Students will be able to analyze past records on wind, rainfall, sunshine, temperature, and other areas to determine the general pattern of weather which makes up the area's climate by collecting data, be able to devise a mathematical model of atmospheric motion as an aid to changing weather conditions, be able to file and tabulate large amounts of data, have some understanding of being a well-trained meteorologist and being business administrator of their own weather consulting service.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Meteorologist in the area of mathematics.

Record information from daily papers or records of past weather in own area for a one year period and record general patterns which seem to prevail.

Set up a model, table scene, small display, etc. of atmospheric motions and how this affects weather conditions.

Make a file of weather map, charts, etc. related to some area of weather, and make some mathematical tabulations of this data on a separate sheet or sheets.

Do a research paper on amount and kind of training needed to set up and/or work with a weather consulting service.

Have a guest speaker speak to the class. Examples from commercial airlines, private companies, college or university.

Resources and Materials:
Forrester, Frank H.
The Real Book about Weather

Larlin, A. V.
Meteorologist
Guidance Centre (Canada)

Lehr, Paul, E.
Weather: Air Masses
Clouds--Rainfall--Storms--
Weather Maps--Climate

Acler, Irving
Weather in Your Life

Filmstrip
(Boonslick Reg. Lib.)
Eyes in Outer Space

Filmstrips
Hydrogen, Oxygen, and Water

Why Does It Rain?
"Winds That Kill"
16mm, black & white, sound, 13½ min.
Pay return postage

Evaluation:

Comments on use:
Objective(s):

Procedure:

Resources and Materials:
Modern Talking Picture Service
2323 New Hyde Park Road
New Hyde Park, NY 11040

Write to:
American Meteorological Society
45 Beacon Street
Boston, MA 02108

American Geophysical Union
2100 Pennsylvania Avenue
N.W. Washington, D.C. 20037

Evaluation:

Class and individual projects

Comments on use:

Charldine Smart
Objective(s):
Students will arrive at a better understanding of the relationship between plants and the environment, also about the structure of plants and plant diseases, gain a better understanding of air and water pollution on plant life, get a basic ideas as to the temperature at which some fish stop laying eggs, other eggs die at certain temperatures, understand why the industrial mercury which sinks to the bottom of a waterway changes chemically and is eaten by fish which is dangerous for human consumption.

Procedure:
The teacher will direct, discuss, and/or supervise activities related to being a Life Scientist in the area of mathematics.

Make a study of living organisms and processes which determine the nature of life.
- Men and microbes
- Health and disease
- Environmental influence

Record and/or interpret above ideas.

Write a report on how air and water pollution affect plant life.

Make a graph for the fish of the local area which includes water temperature for fish laying eggs.

Make a list of the density of various liquids.

Resources and Materials:
Careers in Natural Sciences (Pamphlet)
Films:
(Boonslick Reg. Lib.)
"Universe"
"Wonders of a Country Stream"
"Problems of Conservation-Air"
"Why Explore Space?"
"Downstream"
Filmstrips
"Mammals"
"How Animals Are Classified"
"Changes In Matter"
"Fish"

Evaluation:
Class and individual projects

Comments on use:
Objective(s): Students will become familiar with information relative to work and machines and see the relationship between energy, force and work.

Procedure:
Students will read reference material concerning work and machine.

Students will view films relating to energy, forces and work.

Students will calculate work by lifting, pulling and pushing different objects.

Students will see models of the six simple machines.

Students will use the simple machines to move objects and calculate the work done and the effort force gained.

Students will visit the school maintenance shop and industrial arts department.

Students will visit a garage.

Evaluation: Class and individual projects.

Resources and Materials:
Any object may be used, distance measured with a ruler and force with a spring scale from physics laboratory. Models may be provided, but for more involvement students can make them. Any classroom objects may be used and the machines available from physics laboratory.

Maintenance shop and industrial arts department

Local garage or a filling station

Comments on use:
Objective(s):
Students will see hydraulics as a field with new career potentials. Students will be able to calculate the mechanical advantage of the jack. Students will appreciate fluids as agents of work and a power medium. Students will understand reason for water towers, precautions in deep sea diving, and the structure of submarines.

Procedure:
Students will read material on behavior of fluids.
Students will experiment with surface tension and cohesion and adhesion.
Students will experiment with a simple hydraulic jack.
Class will be visited by a hydraulic repairman.
Students will take a field trip to see a hydraulic hoist system at work.
Students will see a power steering unit cutaway, diagram, or a film on hydraulic motors.
Students will do an experiment showing the effect of depth of liquid on pressure.

Resources and Materials:
(a) Glass and other containers. Wetting agents.
(b) Various adhesives.
(a) Hydraulic jack
(b) Cross sectional diagram of hydraulic jack
(c) Demo device showing hydraulic system using pistons of two sizes.
(a) Local truck or farm tractor repairman
(b) Hydraulic engineer
(a) Farm tractor
(b) Service station automobile hoist
(a) General motors
(b) Power mechanics instructor
Tall container, pressure measuring device.

Evaluation:
Class and individual projects

Comments on use:
Edgar A. Phillips
Objective(s): Students will become aware of the importance of light in daily life; see the application of light in photography and optometry; better understand the effects of bending light rays; and see the application of light in common use and become aware of the career possibilities in this area.

Procedure:

Students will read reference material about light.

Students will view films concerning light.

Visit the school photography department of a local photography studio.

Students will be visited by photographer

Students will examine and note the effect of a prism, concave and convex lenses.

Students will be visited by an optometrist.

Resources and Materials:

Science films: "How To Bend Light" and "Light and Color"
School photography dept.
Interstate Studio, Sedalia, MO
Representative of Interstate Studio
These materials provided by the physics laboratory

A local optometrist

Evaluation: Class and individual projects.

Comments on use:

99 Fred Lovercamp
Objective(s):
Students will learn the difference between temperatures, degrees, and calories or BTU's. Students will see that there are differences between quantities and intensities of heat and the practical application the heat transfer principles. Students can outline how school is heated. Students can list 5 areas of career opportunities in heating and cooling industry. Students will become aware of ways to save money and our dwindling supply of fuel.

Procedure:
Students will read about heat and temperature in a book.

Students will make a water thermometer and calibrate it.

Students will experiment with heating different quantities of water for equal lengths of time.

Students will tour the school heating plant.

Students will make a field trip to heating cooling dealer.

Class will be visited by a heating engineer.

Students will either design a heating system or describe heating system in their own home.

Students will write a report on the conservation of heat in their homes.

Resources and Materials:
(b) Science in Modern Life Mallinson. Ginn & Co. pp. 336-48

Glass tubing, ice, salt, and burner.
Beakers, burners, thermometers. Preferably a lab.
School heating engineer.
Local cooling and heating place of business.

(a) Local heating engineer or contractor.
(b) Tech. school instructor

Science in Modern Life pp. 360-64
(a) Parents
(b) Science in Modern Life pp. 359-60
(c) Local builder

Evaluation:
Class and individual projects

Comments on use:
Edgar A. Phillips
Objective(s):
Students will define climate as an average of weather conditions for an area. Students will have general knowledge of the great variety of climate in the U.S. Students will be aware of the tremendous effect of climate on the kinds of jobs and leisure time activities available. Students will be aware of strides being made in long range forecasting.

Procedure:
Students will read and study material from a reference book.

Students will prepare a chart of average yearly rainfall, January and July temperatures for the United States.

As a class project students will examine and/or prepare a relief map of the United States and try to predict the various climates of the country by looking at the physical features.

Students will make a list of jobs available, food supply, cost of living, recreation, and other factors in everyday life as affected by climate in various areas of the U.S.

Students will locate a long range weather forecast map in a newspaper or magazine. Their will watch and see how accurate it is in the ensuing days.

Resources and Materials:
Science in Modern Life
(a) Geography text
(b) Set of encyclopedias
(c) Personal experience

Relief map
Atlas

U.S. News & World Report
Mo. Ruralist

Evaluation:
Class and individual projects.

Comments on use:
Objective(s):
Students will define various weather terms including: weather patterns, meteorologist, weather predictions, relative humidity and temperature change in producing precipitation, the role of the jetstream in development of weather patterns, prevailing winds, and the importance of taking cover during storm warning. Students will name the major factors in weather formation.

Procedure:
Students will read material in a book.
Class will subscribe for weather maps and/or cut out the daily weather maps from the newspaper. They will trace the movements of the highs and lows on the maps, noting the direction and speed of their movement. They will attempt to predict the next day's weather.

Students will visit a weather station.

Students will visit a weather radar station or be visited by a weather radar technician.

Students will record humidity, temperature, pressure, and precipitation each day.

Students will do an experiment to determine dew point.

Students will be visited by a pilot or meteorologist who know something about jet streams.

Students will fill a balloon with helium or hydrogen (preferably helium) with a self-addressed postal card attached and will release it.

Students will bring pictures of destruction caused by hail, tornadoes, or hurricanes.

Resources and Materials:
Science in Modern Life
Mallinsen & Meppelink
Ginn & Co. pp. 252-269

US Weather Bureau Regional Office
Federal Office Bldg.
601 E. 12th Street
Kansas City, MO

K.C. Star
(a) Local weather Bureau Station
(b) Weather hobbyist.

Local weather radar installation.

Rain gauge, psychrometer, barometer and wind vane.

Shiny cup, ice, salt, thermometers
(a) meteorologist
(b) local airport

plastic bag or large rubber balloon.
Zinc-acid hydrogen generator or helium supply.

Newspapers and magazines from home.

Evaluation:
Class and individual projects.

Comments on use:
Objective(s):
Students will understand heat on the molecular level, that different substances have different heat holding capacities, bimetallic thermostats, and engineering for thermal expansion due to weather changes.

Procedure:
Students will read a textbook about heat; particularly the "caloric theory" and von Rumford.

Students will experiment with heating different metals, by finding calories of heat needed to raise equal masses of different metals in temperature.

Students will experiment with expansion of various solid, liquid, and gaseous materials.

Students will examine, roads, buildings, bridges.

Students will be visited by an architect or civil engineer.

Resources and Materials:
(b) Science in Modern Life Mallinson. Ginn & Co. pp. 341-42, 345-48

Samples of different metals, calorimeters or styrofoam cups, thermometers.

(a) IPS Thermal expansion kit.
(b) Syringes for gas expansion experiment.
(c) Glass tubing and test tubes for liquid expans.
(d) IPS, Haber-Schaim, et. al. Prentice-Hall Inc. 2nd Ed. pp. 31-40

(a) Local Concrete roads
(b) Local bridges
(c) School building

(a) Local architect
(b) Local engineer

Evaluation:
Class and individual projects

Comments on use:

Edgar A. Phillips
Objective(s):
Students will get an overview of the many practical ramifications of state change including: boiling point, the role of state change in air conditioning, power generation, and in function of heat engines.

Procedure:
Students will read about boiling and freezing in a book.
Students will experiment with boiling water to see what happens to the temperature after boiling occurs. They will also try boiling water at different pressures.
Students will experiment with a wet-dry bulb thermometer.
Students will be visited in class by person knowledgable in refrigeration.
Students will visit steam power plant.
Students will study diagrams of various types of heat engines. (Models if available)

Resources and Materials:
(a) Science in Modern Life Mallinson. Ginn & Co. pp. 365-66, 343-45
(b) Physical Science Brown & Anderson. Lippincott pp. 119-21, 130-40
(a) Ordinary lab. Glassware
(b) Vacuum pump if possible
(a) Hygrometer
(b) Sling Psychrometer
(a) Air conditioner installer
(b) Refrigerator repairman
Local electric power plant
(a) Diagram of model of piston petrol. engine
(b) jet
(c) gas turbine
(d) steam

Evaluation:
Class and individual projects

Comments on use:
Objective(s): Students will become familiar with various gases and particularly the composition of air; experience the importance of and application of uses of various gases and see the workers involved in the production and distribution of oxygen.

Procedure:
Students will read reference material concerning gases.

Students will view films about gases.

Students will experiment by:
(a) burning of a candle flame in presence and absence of air; (b) heating mercuric oxide to generate oxygen; (c) prepare carbon dioxide by combining baking soda and vinegar and submerge a burning splint in the gas formed.

Students will visit a commercial liquid oxygen plant.

Resources and Materials:

Necessary chemicals can be secured from the Chemistry Laboratory

Mo-Ox Company, Sedalia, MO

Evaluation: Class and individual projects.

Comments on use:

Fred Lovercamp
Objective(s): Students will become familiar with information concerning measurement of matter; learn about the metric system of measurement; and be made aware of the use of the metric system as related to their health and the possibility of pharmacy as a career.

Procedure:
Students will read reference material concerning measurement.

Students will view film concerning measurement.

Students will practice measurement activities in the laboratory.

Students will compile list of as many things as they can find with quantity stated in metric system.

Students will be visited by pharmacist.

Resources and Materials:

Science film: "The Metric System"

Instruments for measuring both in English and metric systems available in physics laboratory

Local pharmacist

Evaluation: Class and individual projects.

Comments on use:
Objective(s): Students will become familiar with information about different types of building materials; see the numerous kinds of building materials and the workers involved in their sale; be exposed to the many job opportunities in the construction business; and see the production of concrete building materials and the employment possibilities.

Procedure:
Students will read reference materials concerning building materials.

Students will visit a lumber yard.

Students will be visited by a representative of a construction firm.

Students will visit a concrete production facility.

Resources and Materials:
Modern Physical Science, Holt, Rinehart, Winston, "Materials for Building"
Sutherland Lumber Co., Sedalia, MO
Tempel-Callison, Sedalia, MO
Dean Construction Co., Sedalia, MO
Howard Construction Co., Sedalia, MO

Evaluation: Class and individual projects.

Comments on use:

Fred Lovercamp
Objective(s):
Students will be aware of order in nature and that there are counteracting forces working on the Earth's crust. Students will become aware of the effect of erosion on agriculture and the economy. Students will know why topography is different in different areas. Students will learn of available careers in geology.

Unit(s) Geology - Forces shaping the Earth's Surface

Procedure:
Class will study and be tested over material from a reference book about aggradation and degradation of the earth's surface.

Students will take pictures or make written reports on the effects of both recent and ancient erosion in their own community.

Students will present methods of retarding weathering and erosion where desirable to do so.

Students will collect pictures of Grand Canyon and other areas around the country and try to identify the geologic forces which formed them.

Class will be visited by a physical geologist.

Students will write reports about earthquakes and volcanoes.

Students will visit a seismograph if one is available or will build a model of one.

Students will do a soil profile.

Resources and Materials:
Science in Modern Life
Mallinson & Meppelink
Ginn & Co. pp. 150-166

Camera
(a) Soil conservation agent
(b) Agri. teacher

(a) Travel folders from the Chamber of Commerce and Tourism Depts. of the various States
(b) National Geologist Mag.

(a) local person who knows geology
(b) Oil Co. Geologist

Any set of Encyclopedias

Earthquake reporting laboratory

(a) Shovel
(b) Unexcavated or untilled area

Evaluation:
Class and individual activities

Edgar A. Phillips

Comments on use:
Objective(s):
Student will have some concept of the Inverse Square Law. Students will recognize that vertical and horizontal motion are independent. Students will understand that acceleration follows the same rules as deceleration.

Procedure:
Read about gravity in a resource book.

Students will experiment with the acceleration of a freely falling object.

Demonstration will be given to the class showing different shape and mass objects falling in a cacuum.

Demonstration will be given showing acceleration of gravity and horizontal motion.

Students will calculate the speed of a baseball as it leaves their hand and how high it goes.

Students will see a film on rockets and satellites.

Students will launch model rockets that they build themselves.

Students will write a short report on terminal velocity of falling bodies.

Resources and Materials:

(a) Special acceleration of gravity apparatus.
(b) Door bell and carbon tape.

Long glass vacuum tube designed for "Galileo's experiment"

(a) Metal tube (pipe) and two steel bearings
(b) Special apparatus

Baseball and measuring tape, also homemade sextant.

Free film catalog

Model rocket supplier.

Local parachute enthusiast

Evaluation:
Class and individual projects

Comments on use:
Subject Area(s) Science

Unit(s) Geology - Topography map

Objective(s):
Students understand the meaning of topography and how it affects the society of the people. Students will be familiar with topographic terms. Students will be able to use maps more efficiently, including road maps. Students will understand basic cartography. Student will see how maps are made. Students will know fundamentals of land description used in the sale of land. Students will learn basics of surveying, mapping elevations, and contour lines.

Procedure:
Students will study topography in a good textbook.

Students will study topographic maps and will find various elevations and physical and man-made features on them.

A map maker may visit the class.

Students may visit map making office.

Person with knowledge of U.S. Standard Land Survey will visit the class.

The class will be visited by a surveyor.

Students will try surveying, and drawing a profile.

Class will be visited by ag. teacher of person who can lay out contours.

Resources and Materials:
Exploring Earth Science
Thurber & Kilburn
Allyn & Bacon pp. 396-407

(a) U.S. Geological Surv. Denver, Colorado
(b) Mo. Geol. Survey, Rolla, MO.

(a) Geol. Survey employee
(b) Army engineer from Corps of Engineers

(a) Army Map Service, 601 Hardesty, K.C., MO.
(b) Geol. Surv. Map agency
(c) Local map maker

(a) Local abstractor
(b) County recorder or collector's office employee

(a) County Surveyor
(b) Professional Surveyer

(a) Surveyor's chain
(b) Transit level
(c) Surveyor's rod

Ag. Teacher

Evaluation:
Class and individual projects

Comments on use:

110

Edgar A. Phillips
Objective(s):
Students will know the difference between weight and mass and that matter has 3 forms, each having volume. They will know the difference between square measure and cubic measure. Students will know about weighting in the metric system. Students will be aware that density considers both mass and volume. Students will know that state changes, chemical changes, and dissolving does not appreciably change the quantity of matter. Students will see the difference between pure science and applied science careers in working with matter.

Procedure:
Students will read textbook material on the subject.
Students will experiment with volume.
Students will learn to use balance scales.
Students will do an experiment in which they find the density of objects.
Students will do experiments in buoyancy.
Students will experiment with conservation of mass.
Students will be visited by a physicist and engineer.

Resources and Materials:
Plastic cubes volume kit.
Balances, metric wts.
Graduated cylinder, scales, irregular shaped objects regular shaped objects, ruler.
Toy boats, various heavier and lighter than water objects.
Calibrated liquid container.
IPS. experiments 2.7 through 2.13. pp. 16-21
(a) local physics prof.
(b) local engineer.

Evaluation:

Comments on use:
Objective(s): Students will become familiar with information concerning fuels; learn the process of distribution of natural gas and the different types of workers involved in this process; be provided information about the steps in production of fuels from crude oil and the many and varied career opportunities involved; and become aware of the many types of fuels, their uses and the workers necessary in providing their availability.

Procedure:

Students will read reference material about fuels.

Students will visit a natural gas supplying facility.

Students will be visited by a representative of a major oil company.

Students will examine and identify different types of fuels.

Resources and Materials:

Modern Physical Science, Holt, Rinehart, Winston, "Fuels"

Panhandle Eastern Pipeline, Houstonia, MO

Phillips Petroleum Co.

Readily accessible specimens of: hard coal, soft coal, charcoal, coke, wood, fuel oil, kerosene, gasoline, and propane

Evaluation: Class and individual projects.

Comments on use:

Fred Lovercamp
Objective(s): Students will become aware of kinds, sources and classification of rocks and minerals; be able to identify various kinds of rocks and minerals; see the methods of obtaining rock, its preparation and distribution for use and the workers involved in these processes; be more cognizant of the uses of rocks and minerals.

Procedure:

Students will see film concerning rocks and minerals.

Students will see a rock and mineral collection.

Students will visit a rock quarry.

Students will do research on kinds of rocks and minerals and their uses.

Resources and Materials:

Science film: "Understanding Our Earth: Rocks and Minerals"

Collection available in local school system

Students will visit a rock quarry

Local school library
Sedalia Public Library
Boonslick Library, Sedalia

Evaluation: Class and individual projects.

Comments on use:
Objective(s): Students will become familiar with information about metals and metallurgy; discover the properties of metals; see the uses of metals in manufacturing and the workers involved in the process and become knowledgeable of properties and uses of precious metals and the facets of the jewelry business.

Procedure:

Students will read reference material concerning metals.

Students will view film concerning metals.

Students will visit a factory using metals in producing products.

Students will be visited by a local jeweler.

Resources and Materials:

Science film: "Metals and Non-Metals"

Rival Manufacturing Co., Sedalia, MO

Hudson Jewelry, Sedalia, MO

Evaluation: Class and individual activities.

Comments on use:
Objective(s): Students will see how weather predictions are made and how this affects everyone's activities, understand the workings of common weather instruments, be able to relate atmospheric conditions to weather and apply this knowledge to personal activities; be able to intelligently interpret the weather report, and see an actual weather station in operation, and see possibilities of related jobs.

Procedure:

Students will view film about weather forecasting.

Students will set up a weather station, using instruments they make when possible, i.e., hygrometer, psychrometer, wind vane.

Students will be provided with available reference material about weather, its changes, reasons for change and prediction of change.

Students will keep record of observations of daily weather conditions for a period of one week and on a map of the U. S. show these conditions and predict weather.

Visit a local weather observation station.

Resources and Materials:

Science film: "How Weather is Forecast"

Materials to be provided in classroom for construction of weather instruments to include thermometers, test tubes and related materials

U. S. Dept. of Commerce, Washington, DC

Weather maps, pamphlets on storms and weather conditions

Local newspaper
K. C. Star-Times

Sedalia Water Dept.
Radio Station KSIS

Evaluation: Class and individual projects.

Comments on use:

Fred Lovercamp
Objective(s): Students will understand the chemical properties of water, its importance and how it is distributed for use, know principles involved in water purification, and understand how the consumer pays for water used, and also the types of work involved in calculating and distributing bills.

Procedure:
Students will view films concerning the properties and uses of water.

Students will read reference material concerning water and its treatment for use and consumption.

Students will perform laboratory experiments to purify water by sedimentation, filtration and distillation and the effect of hard water on effectiveness of detergents as compared to soft water.

Students will take a field trip to water plant.

Students will figure a monthly water bill.

Resources and Materials:
Science films: "Properties of Water," "Water for the Community"
Modern Physical Science, Holt, Rinehart, Winston, "Water and the Chemistry of Its Treatment"
Sedimentation
Filtration
Distillation
Detergents in hard and soft water
Water plant
Rate sheets from water company

Evaluation: Class and individual projects.

Comments on use:
Objective(s): Students will understand principles of electricity, know meaning of complete broken circuit by use of switch, meaning of and need for insulated wire and sound energy produced by electrical energy, and observe how electric power is generated and the numerous workers involved in getting the electric current to our homes.

Procedure:

Students will view films concerning electricity and magnetism.

Students will construct an electric bell circuit.

Students will be visited by an electrician.

Students will visit an electric power plant.

Students will discuss how electricity affects their everyday life.

Resources and Materials:

Students will be provided with insulated copper wire, push button switch, bell and 1.5 volt dry cell.

Local commercial electrician

Truman Dam, Warsaw, MO

Appliances and uses in the home

Evaluation: Class and individual projects.

Comments on use:
Subject Area(s) General Science

Unit(s) Heat Energy

Objective(s): Students will be more familiar with meaning of terms heat, temperature, Btu, calorie, fuel, convection, radiation, conduction and heat energy; see operation of heating plant, fuel used, method of transfer throughout building, knowledge necessary for operation and equipment needed; see how heat is removed and the resulting ice and how it is used by them, even the cokes they drink; observe change of temperature as heat is added to ice, the heat coming from fuel, transferred; understand prices of different size units based on Btu's; learn of career possibilities in heating & air conditioning.

Procedure:
Students will be provided with reference materials concerning heat, its meaning, sources, and uses.

Students will see the school heating system.

Students will visit ice and cold storage plant.

Students will heat ice to boiling water to observe transfer of heat. This change to be plotted by graph.

Students will secure prices of different sizes of heating units and air conditioners.

Students will be visited by heating and air conditioning company representative.

Resources and Materials:

School heating system

Sedalia Ice and Cold Storage Plant

Use of ice, ringstand, beaker, alcohol burner, watch, thermometer and graph paper

Local business establishments and ads in local newspaper

Local representative Sedalia Heating and Air Conditioning

Evaluation: Class and individual projects.

Comments on use:

Fred Lovercamp
Objective(s): Students will learn relationship between music and noise; learn that sound and vibrations will be reinforced; see transfer of sound by telephone and the numerous job opportunities in this field and see the advancement of sound transfer accomplished through the years and how this also has brought about problems.

Procedure:
Students will be provided with reference materials on wave motion, sound and music.

Students will view films on sound waves and vibrations.

Students will visit Southwestern Bell Telephone Company.

Students will discuss modern communication and use of sound. To include radio, telephone, television, music and noise pollution.

Resources and Materials:
Modern Physical Science, Holt, Rinehart, Winston, "Wave Motion and Sound" and "Sound and Music"

Science films: "Waves and Energy, "Vibrations"

Bell Telephone Company

Visiting speaker from radio station, KDRO, Sedalia, MO

Evaluation: Class and individual projects.

Comments on use:
Objective(s):
Students will be aware of some of aspects of the practical and mysterious manifestations of astronomy. Student will become aware in tools of astronomy which may lead to a career in astronomy or optics or leisure time activity. Students will know about movement of the earth on its axis, will understand how time zones are defined. Students will have some understanding of navigation by the heavenly bodies. Students will understand that many discoveries in astronomy have had practical applications.

Procedure:
Students will read about astronomy in a reference book.

The class will examine a telescope which a student will bring into class.

Students will draw a sky chart on a clear night and compare with sky chart from a different time of year.

An amateur astronomer or even a professional will visit the class.

Students will practice pinpointing locations on a map or globe by degrees latitude and longitude.

Students working in pairs will make a map of "perfect time zones" with only astronomy in mind. Using overlays they will superimpose Standard Time Zone map and observe differences. Then they will design a more practical time zone map than either of the above.

Class will see a demonstration illustrating eclipses.

Students will use a sextant to find positions of North Star and various other heavenly bodies.

(Do not allow students to look directly at the sun).

Students will make individual reports to the class about famous astronomers and the contributions that they made.

Evaluation:
Class and individual activities.

Resources and Materials:
Science in Modern Life
Mallinson & Meppelink
Ginn. pp. 14-59
Student with a telescope
Navigational charts
Local astronomer
Map or globe
(a) Text above
(b) Encyclopedia
(c) Atlas
Flashlight, globe, rubber ball.
(a) Sextant if available
(b) Homemade sextant, using a protractor and cheap telescope of refracting type.
Set of encyclopedias.

Comments on use:
Objective(s):
Students will have general knowledge of and an appreciation for trees and their uses. Students will know something about choosing, caring for, and protecting trees. Students will be able to identify some common Missouri trees. Students will get first hand knowledge of careers in forestry, commercial tree utilization, and the timber industry.

Procedure:
Students will read and do some exercises of trees.
Students will hear guest speaker, from agency with information in horticulture of forestry.
Students will make a leaf collection.
Students will make a field trip to a local park or woods.
Students will view films with emphasis on:
 a. forest protection
 b. reforestation
 c. lumber industry
Students will prepare radio or TV skit for local station on trees.
Students will have a speaker from lumber yard or other lumber industry.

Evaluation:
Class and individual projects

Resources and Materials:
(a) Trees, Zim and Martin, Western Publishing Co. pp. 1-156
County ext. agent
Local woodlots
(a) Park
(b) Farm woodlot
Local station program director
(a) Local yard owner
(b) Sawmill operator
(c) Lumber products manufacturer

Comments on use:

Edgar A. Phillips
Objective(s):

To help students investigate and become familiar with various responsibilities associated with certain health occupations.

Procedure:

From previous compiled list, select by group preference 10 most frequently appearing health occupations.

Assign worksheet having students determine responsibilities and obligations of each occupation.

Discuss orally all points compiled by students.

Resources and Materials:

Lists from assignment No. 1
Occupational Handbook

Evaluation:

Comments on use:

Jane Parker
Objective(s):
To make students aware of various occupations related to health occupations.

Procedure:
Discuss with students obvious occupations associated with health.

Make assignment.

Create list of 25 health occupations, other than doctor and nurse.

Evaluation:
Evaluate as to creativity and ingenuity of students.

Comments on use:

Jane Parker
Objective(s): To observe harmful chemicals that may exist in the air which we breathe.

Procedure:
Stretch a piece of nylon stocking across a 35 mm slide frame. Staple the edges. Take the slide frame home and hang it outside in a place where the air can get at it but where it is protected from the sun and rain. Leave it there for at least a month. Then bring the slide frame back to school and place it in a slide projector.

How does the image projected on screen compare with the image of a new piece of nylon?

Stick a piece of the transparent tape that is sticky on both sides to a clean glass slide. Put the slide in a sheltered place as you did with the nylon. Bring it in after a week. Look at it closely. Use a low-power microscope.

Evaluation:
The exposed piece will have broken threads resulting from acid-producing chemicals such as sulfur dioxide.

Comments on use:
About 10 minutes actual class time.
Objective(s):
You will investigate dormant and germinating seeds. You will make seeds germinate and test their responses to the environment. This investigation introduces the concept of behavioral responses by seeds and young plants to environmental factors. By pooling the data from their germination experiments, students should be able to infer the survival value of various responses of seeds to environmental conditions.

Procedure:
On the following pages are three experiments involving seed germination. It would be best to divide the class into small groups, assigning each group to an experiment, rather than requiring each student to do all experiments. Then, through class discussion and comparison of data, the students can share their experiment results with the class.

Resources and Materials:
Man and the Environment, Houghton Mifflin

Evaluation:

Comments on use:
These experiments do not require any equipment that couldn't be found in a science room. They can easily be done by 7th graders. The knowledge gained could be applied in further projects.

Joyce Schreck
Objective(s):

What influences seed germination?

Procedure:

How do seeds respond to water? In this problem, you will investigate how water affects seeds. Does it affect the way seeds look? Can you look at a seed and tell when it is beginning to germinate? Does water affect the time it takes seeds to germinate?

A. Cut 4 pieces of filter paper or paper towel to fit in bottom of petri dish. Label top disk by dividing into three sections.
B. Take 10 untreated seeds and place in section 1.
C. Take 10 more untreated seeds and file a small groove in each seed. File just through seed coat on 1 flat side of each seed. Then put in section 2 with grooved side down.
D. Place 10 acid-treated seeds in section 3. (Teacher soaked seeds in concentrated sulfuric acid 20 minutes before class. Acid washed off with water and the seeds were dried.)
E. Cover dish and place in small plastic bag to slow down evaporation.
F. Put dish on flat surface. Add more water when necessary.
G. Record the number of seeds that germinate in each section each day.

Recording data—Need 2 tables: for length of seeds measured each day, for germination data. Daily record the number of seeds that germinate in each section of dish. Keep a record for 7 days.

Resources and Materials:

2 petri dishes
8 disks cut from paper towels or pieces of filter paper
40 untreated seeds
20 acid-treated seeds (same kind)
small plastic bag

Evaluation:

Look at data you got from measuring your seeds. Discuss this data with the class. Try to answer these questions.
Did any of the seeds change after they were kept in water for two days?
Did you observe any differences among the three groups of seeds?
If some groups changed more than others, was only water responsible?
What effect does acid or filing through seed coats have on germination?
What indifference can you make to explain the data from the untreated seed group?
What hypothesis can you make about the way other kinds of seeds might react to the same treatment?
What good is it for a seed to have a coat that resists letting water through?
Objective(s):
How does temperature affect germination? Will seeds germinate faster or slower depending on the temperature? Do different seeds germinate better at different temperatures?

Procedure:
A. Place 4 disks in each petri dish. Label the top disk for each disk.
B. Add water to each dish.
C. Space 10 seeds of 1 kind over half of a dish. Add 10 seeds of another kind to the other half. Prepare all 3 dishes the same way.
D. Cover the dishes. Place each dish in its own plastic bag, to reduce evaporation.
E. Keep the seeds in a place where the temperatures will be nearly constant. 1 dish (50° F or 10° C) Must be kept in a refrigerator. 2 dish (75° F or 24° C) 3 dish (95° F or 35° C)
F. Check dishes daily for germination. Add more water if necessary.
G. Keep a record of data for 7 days. Remove seedlings if necessary.

Recording data--In a data table, record for each day the total number of germinated seeds in each half of each dish. Record any other observations. Analyzing data--In what order did the groups of seeds begin to germinate? Did any kind of seed germinate at the same rate at all 3 temperatures? Could it be helpful for seeds to react to different temperatures? Did some seeds fail to germinate because water did not get inside? Does this experiment help you answer any of the questions from the beginning of this investigation?

Resources and Materials:
3 petri dishes
12 paper disks cut from paper towels or filter paper
2 kinds of seeds, 30 of each kind
3 small plastic bags

Evaluation:

Comments on use:

Joyce Schreck
Objective(s):
Do seeds respond to light and green plants can't live very long without eight. But what about seeds? Most seeds lose their green color as they ripen. Unlike parent plants, they don't contain chlorophyll. Do seeds need light to stay alive? Do they need certain light conditions to germinate?

Procedure:
A. Place 4 dishes in each dish with the labeled disk on top.
B. On half the dry paper, space 10 seeds of 1 kind. Add 10 seeds of another kind to the other half. Prepare both dishes the same.
C. Add water along the edge of the dish marked dark. Dishes should get wet but don't add too much so that the seeds float.
D. Within a minute after the water is added, seal the dish in black plastic sheeting.
E. Add water (same amount) to dish marked light. Seal it in a clear plastic bag within a minute after adding water.
F. Don't open dishes for 7 days. Record how many seeds germinate each day.

Recording data: Record how many seeds of each kind germinated in the light. Record how many seeds of each kind germinated in the dark. Also record other observations, especially any differences between the 2 containers.

Analyzing data—Did any kind of seed germinate better in darkness? In light? What was the purpose of not observing seeds in the dark until the last day of the experiment? Does your data tell you the best light conditions for germination? Do you think some seeds might need both light and dark? How could you test this? Were seedlings grown in the dark different from those in the light? You have no data to show when the seeds in the dark germinated. Can you think of a way to get this data?

Evaluation:

Resources and Materials:
2 petri dishes
8 disks cut from paper towels or pieces of filter paper
2 kinds of seeds, 20 of each kind
black plastic sheeting
small plastic bag
tape scissors
eye dropper
Objective(s):
For the students to apply the knowledge gained in the experiment.

Procedure:
Have the students plan and prepare their own ecology plot. This could be a variety of things, depending on the facilities available. It could be preparing and planting a garden. The students should clear the area, work up the soil, and plant the area themselves. They should decide in advance what they want to plant. They should also take care of up keep. It may work best if divide the class in groups and hold each group responsible for an area.

Resources and Materials:
Hoes, rakes, clippers, etc., seeds, plants, small trees

Evaluation:

Comments on use:
This is practical application of knowledge. I tried this with my students and it worked very well. I was amazed at the number of students who had never actually done this type of work before.
Objective(s):
To make the students aware of the effects of the environment on them.

Procedure:
Have a class discussion or have the class make up skits to illustrate this. Things to bring out are:
1. different clothes we wear at different times of year
2. different foods we eat
3. different recreational activities
4. certain occupations are seasonal
5. coats of pets change

It may also help to exaggerate the opposite illustrating what it would be like if we ignored our environment completely. The students could then make a bulletin board illustrating man in harmony with nature. A collage-type bulletin board with magazine pictures would be good.

Resources and Materials:

Evaluation:

Comments on use:

This is a good follow-up activity or it would be a good activity to have at the beginning of an ecology unit.
Objective(s):
Why does food rot? When decomposition occurs to objects we wish to keep, then it is considered undesirable. When it operates on waste products, we consider it desirable and promote the process. This experiment will give the students evidence that microorganisms are associated with rotting or decomposition.

Procedure:
Place a piece of hamburger about ½ inch square in each test tube. (Be sure to put the same amount of meat in each.)

Fill each test tube half full of water. Plug the tubes.

Place 1 tube in boiling water for 15 minutes.

Then remove the hot tube with a test tube holder.

Place both test tubes in the same test tube rack in a warm place.

Mark the boiled tube #1 and the other #2.

Observe the appearance of the meat and the liquid in each tube every day for three days. Look for such things as changes in color, texture, or odor. On the third day, remove the plugs to make final observations.

Evaluation:
Does the data help answer these questions: Why does food rot? How could you apply what you have learned to food handling and preparation at home? In restaurants? As part of the summary, discuss possible sources of contamination of the meat. These sources include human handling at many stages, such as the slaughter house, the butcher, and the students themselves. Ground meat provides a greater surface area for bacterial contamination.

Comments on Use:
Objective(s):
Do microbes cost you money? Students generally know that food is treated and packaged in a variety of ways, but few have developed the generalization that most of these processes are intended to reduce contamination and spoilage. This problem asks students to go into their community and gather data which will give them a specific, practical sense of microbial competition with man for food.

Subject Area(s) Science
Unit(s) Ecology
Competing with Microbes

Procedure:
The people who manage the grocery store in your neighborhood are experts on food spoilage. The students will gather data from them on preserving food. About 4 students should gather data from each store. Pick a time when the store is not very busy. Interview the manager. If the store has a "meat man," a baker and a "vegetable man," talk to them too. Here are some questions you could ask.

Questions for Manager
1. Which foods can you keep the longest? Which foods have the shortest storage times?
2. What ways are there to keep goods from spoiling?
3. Is there any law that tells you how long you can keep food in the store and still sell it?
4. Do you ever have to send some foods back to the supplier? Why?
5. Do other kinds of food besides vegetables become usable if they are in the store too long?
6. Do you have any idea how much it costs the store each week to keep food from spoiling? Or how much food has to be thrown out?
7. When food spoils and is thrown out, how is this loss paid for?

Questions for Meat, Vegetable & Bakery Specialist
1. How long can you keep meat, vegetables, fruit or baked goods?
2. What kinds of items do you have to sell most rapidly?
3. What special way do you have to keep foods from spoiling?
4. Why is it difficult to keep meat, vegetables, or baked goods?

Evaluation: Students should share their data with the rest of the class. (1) Why can some foods be stored longer than others? (2) What are several ways to prepare foods so they stay edible? (3) Does the cost of operating a store include losses from spoiled food? Who pays for this loss? (4) How does the local grocery store ensure that its customers get unspoiled food? Help students to focus on the consumer cost that results from microbial competition with man. The discussion could lead to a consideration of other serious issues such as the effect of food treatment on the taste or texture of foods, or the effects of food additives on health.

Comments on use: By rewording the questions, this exercise could also be carried out with restaurant managers.

Joyce Schreck
Objective(s):
What happens to garbage and trash? Students will learn that microbial decomposition is responsible for the destruction of natural organic wastes, but many materials currently produced by man do not decompose. This experiment should lead to discussion of possible solutions to the trash problem. Ask students, "Where does trash and garbage go?"

Procedure:
Have each student bring to school a piece of junk or garbage about 1 inch square. The class should test as many materials as possible. Include discarded food, several kinds of metals, glass, plastic, styrofoam packaging and aluminum cans. Place the materials on a layer of wet dirt. Carefully record the color, size and texture of each kind of material. Sketches or photographs of experiment. Cover the materials with an inch or so of damp soil and set the container in a warm place. Let it set for a week. Don't let the soil dry out. After one week, carefully remove the top layer of soil and record the condition of the materials.

Evaluation: Which of your materials changed? What do you think caused the changes? Which of the materials did not seem to change? If the materials you tested are found in city trash, do you think that cities will be able to use dumps over and over? Can you make any suggestions to help prevent the world from being covered with junk? What can your family do to keep down the amount of junk to be buried down?

Comments on use: If the storage room has a low humidity, cover the boxes to keep the soil moist. Since some odor could come from decomposing organic waste, keep the size of pieces reasonably small. Two or three pieces of food waste per box should be sufficient.

Joyce Schreck
Objective(s):
Is your body the kind of environment that some microbes need? Your eyes and mouth are places where microbes can enter your body. Some can also live there. How does your body defend itself against microbes? Do you think tears or saliva might affect microbes? You can test the effect of tears or saliva on bacteria and molds. For example, you can mix tears with bacteria and observe the results.

Procedure:
Collect tears from a classmate. Have him hold a slice of onion near his nose. Then you can catch the tears in the small test tubes. Collect 7 or 8 tears in a test tube for each kind of bacteria you plan to test. Label each test tube with the name of the kind of bacteria you plan to use. Then add 1 ml (20 drops) of bacteria to each tube. Plug the tubes. Gently shake them to mix the bacteria and tears together. Then mix hot and cold water in a small jar to get a temperature between 110°-115°F. Put your tubes in the jar of water. Place the jar in an incubator at 110°-115°F (43°-46°C) for 15-20 minutes. Now observe the liquid in each tube. Does it look less cloudy? Is it thicker? If you don't see any change, leave the tubes in the incubator until tomorrow. If possible, check them several times before then.

Evaluation:
Tears contain an antibiotic enzyme called lysozyme. This enzyme is capable of breaking open bacterial cells. When they break, the solution becomes clear or thick or both. A high concentration of lysozyme will usually cause a dramatic reaction within a half hour.

Comments on use:
If you want to work with saliva, use procedures similar to those described for tears. Rinse your mouth with water before collecting the saliva.

Resources and Materials:
Piece of fresh onion
Several small sterile test tubes
Several kinds of bacteria
Medicine droppers
An incubator or heater that will keep a temperature of 110°-115°F (43°-46°C)
Objective(s):
How do you affect your environment? Do you think about pollution when someone spreads weed killer on your lawn or when you run soapy bath water down the drain? This experiment will help you find out how you affect your environment.

Procedure:
Think about an experiment you would like to do to discover how common household products affect living things. Choose the organisms which you would like to study.
1. First select a product to test and an organism to test it on. Then find out about the normal behavior of your organism and how to care for it. Find out where it lives and the kind of food it eats if it is an animal.
2. When you have learned about the life of your plant or animal, write out a plan for your investigation. Decide on how much of the household product to use. The amount of that substance in a bottle of lake water would probably be very small.
3. Run your experiment. Observe your organism very carefully. Look out for pollution effects you did not plan to test for. If it looks like the chemical is seriously harming your plant or animal, stop the experiment at once. Place the organism in clean water.
4. Report your results to the rest of the class.

Evaluation:
Did the product you tested cause pollution? You experimented with organisms alone in their containers. Think now about how changes in your organism might affect entire lakes, rivers, or harbors? Are there any ways that you can reduce pollution?

Comments on use:
Environmental change and its rate can be affected by individual action. Examples: pollution build-up can be reduced by using no more detergent than necessary when doing dishes, operating a washing machine only when having a full load, avoiding routine use of pesticides and herbicides. Sanding icy sidewalk is less harmful to the environment than salting it. Citizens should try to find out the long- and short-range biological effects of household products before using them.

Joyce Schreck
Objective(s):
To get an idea of how fast the waste is piling up around us, try making a model of pollution.

Procedure:
Clear a space in the center of the room and put an ungreased pan on a hot plate. Pour in a cup of unpopped popcorn. Cover the pan and turn up the heat. Shake the covered pan every 15 seconds. After the first kernels pop, remove the cover. As the popping continues, try to pick up all the corn and throw it in the wastebasket. When the popping stops you stop. (One student performs as the class watches.) Be sure to use fresh popcorn seeds. If the container has been left open, the seeds won't jump from the pan. Remember not to use any oil.

The popped kernels represent the waste produced by man. The popped kernels you throw away stand for wastes that are removed from the air, land, and water by the environment. The popcorn left on the floor stands for waste that is piling up because the environment can't keep up with us.

Evaluation:
What happened? How long did it take the waste production (popcorn) to get ahead of the environment (the cleaner-upper)?
Was equilibrium reached?

Comments on use:
Takes about 20 minutes. Good activity to use as an illustration or introduction to a unit.

Joyce Schreck
Objective(s):
To illustrate the concept of equilibrium. This game is an example of dynamic equilibrium.

Procedure:
Divide the class into 2 teams, 1/3 of students on 1 side and 2/3 on the other. A strip of tape across the center of the room marks off the playing territories. Each team must stay on its own side of the room at all times. The teacher dumps 800 plastic foam balls on the floor of the bigger team's half of the room. At the signal "go," the big team tries to throw as many balls as possible to the other side of the room in 2 seconds. The small team tries to send them back as fast as they come over the tape. At the end of 2 seconds, the small team counts the plastic foam balls in its half of the room. All 800 balls are then piled in the big team's half of the room for another round. Second round lasts for 5 seconds. The balls that end up in the small team's half of the room are counted again. The balls are gathered in the big team's half of the room for another round, this one lasting 10 seconds. Experiment could continue if desired. Data could be plotted on graph.

Resources and Materials:
800 plastic foam balls or styrofoam balls
(Experiment can be just as effective with less balls, depending on the number of students. I used 104 balls and it worked well for my class.)

Evaluation:
Even though the small team works as hard and fast as it can, the number of unreturned balls seems to increase as the throwing time gets longer. There are always 800 balls in circulation, however. Examples of equilibrium in nature should follow. Bring out how pollution and extinction upset this balance.

Comments on use:
Takes about 15 minutes. This activity can be a wild one. Supervise the class carefully setting up rules if necessary. Due to the noise factor, it would be difficult to do in any setting other than a self-contained classroom.

Joyce Schreck
Objective(s):
To illustrate how the population has doubled. Also shows the students' positions in the increasing population and how they themselves affect population growth.

Subject Area(s) Science
Unit(s) Ecology
Overpopulation

Procedure:
Gather information from parents and grandparents about your family tree. Have each student draw their family tree from their great-grandparents (or as far back as they wish). Make a simple chart using stick men. (The object here is to illustrate numbers of people.) Have the students share their family trees. Add up the number of people added to the world in each generation just with the class.

Evaluation:

Comments on use:
Good activity for junior high age. Could be extended for other purposes such as heritage if desired.

Joyce Schreck
Objective(s):
The following class exercise is designed to illustrate the effect of overpopulation on the food supply and land space.

Procedure:
(To be done during the noon hour on consecutive days. Length will depend on number of students involved.)

First day have 2 students eat in closet with 2 lunches.

Second day double the amount of people but keep the quantity of food the same with only 2 lunches.

Third day double the number of people eating in the closet again but keep the amount of food the same.

Continue until all the students are in the closet.

Discussion should follow. Such topics as our food waste, ways to eliminate food shortages, and crowded conditions should be discussed.

Evaluation:
Can be an effective illustration of over-crowdedness and food shortages. Students get a chance to feel hunger.

Comments on use:
In our affluent society, it is hard to get across to the students' hunger and shortage of food. Can carry it farther by comparing our food waste to the amount some people have to eat.

Joyce Schreck
Objective(s):
This experiment can be used to illustrate water pollution.

Procedure:
Put a drop each of rain water, stream or pond water, drinking water, and distilled water on a clean piece of glass. (Do not use cleaners to polish the glass.) Label each drop with a marker. Let each of the samples evaporate in the sunlight. Examine the spot where each drop of water used to be. How much of the staff left on the slide is harmful to people and animals? Which water sample left the most stuff? Should rainwater leave anything at all? Write a letter to your local health department asking if they have checked out the water in your area.

Resources and Materials:
Piece of glass or 4 glass slides
Eye droppers

Evaluation:

Comments on use:

Joyce Schreck
Objective(s):
How Does Light Affect Euglenas?
Each living thing is affected by everything around it. Ecology is the study of how the environment affects living things and how they affect their environment. This investigation is designed to illustrate how the environment affects animal behavior. Students should predict some of the characteristics these animals need to survive.

Procedure:
The students first must understand the process of photosynthesis. They also must understand what chlorophyll is and its role in the photosynthesis process.

Have the students observe euglenas under a microscope, so they know what the organisms look like and they can see the chlorophyll in their bodies.

Experiment--How do euglenas react to light and dark?
Take a piece of black paper large enough to wrap around the vial. Make a hole in it with paper punch. Tape paper so it fits snugly around vial. Cut another piece to form a cap. Light should come through cap only. Take cover off so students can note where euglenas are before experiment begins. Slide paper cover on. Then put the vial where it will get bright light for 2 or 3 hours before next class period (but not direct light). Next class meeting remove paper cover without stirring up liquid. Note where euglenas are. Record data and discuss light reactions of euglenas. Emphasize the affect that the environment has on euglenas relating this to you. How does light affect your life?

Evaluation:

Resources and Materials:
Teacher should grow a population of euglenas for this lesson. They will live in a thin "pea soup" made from water and ordinary split peas. Microscope, slides vial of euglenas

Container of euglenas filled almost to top
Black construction paper

Comments on use:
Discussion could also be extended to include the students' environments. What has as important of an effect on their life as light does for the euglena? Emphasis could be placed on the importance of light in our lives.

Joyce Schreck
Objective(s):

To introduce the students to the basic concepts of ecology.

Procedure:
Define and discuss the meanings of basic terms: ecology, biological community, ecosystem, food chain, food web, prey, predator, biome.

Have the students make up food chains which man is included. Show how these different food chains form a food web emphasizing man's role in biological community.

In discussing biological community, could relate to the "community" which exists in their own back yard or at a pond.

Make posters illustrating food webs. Could make a food web of a particular biome. Cut out magazine pictures of animals and paste on paper, including vegetation also.

Resources and Materials:
Could use transparencies to better explain these terms.

Could show the film "Nature's Half-Acre," by Disney "The Changing Forest" by McGraw, or "Way of Life" by Mo. Conservation

Evaluation:
The understanding and mastering of the basic ecological terms is necessary in the study of ecology.

Comments on use:
This will take several class periods, in order for the students to fully understand these basic concepts.
Objective(s):
To make student aware of natural things around him. To help student develop his own creativity. To expose him to possible leisure time activity.

Procedure:
Introduce topic and purpose

Show film. Have a person from florist shop come to class or visit a florist shop etc. to make student aware of sources, techniques, etc.

Students gather weeds, flowers, seed cones, etc.

Dry flowers

Make arrangements

Resources and Materials:
Film on flower arranging
Tour to Kim Originals, etc. to see arrangements being made
Speaker from florist shop come to class

Evaluation:
Students will be aware of procedure involved in arrangement creation.

Comments on use:
Can be used not only for career exploration but also for ecological emphasis using natural things around us.

Joyce Schreck
Objective(s):
To expose student to pharmacology. To make student aware of hazards involved in use of drugs. Exposing student to procedure involved in drug control.

Procedure:
Class study different types of drugs, uses and abuses, effects on body, etc.

Have physician or pharmacist visit and talk with class or have students visit a local pharmacy. (Student will also have opportunity to observe the job of pharmacist.)

Have policeman visit or visit local police station. Not only have police officer discuss hazards of drugs but also ask him to include the role and duties of a police officer working on drug control.

Resources and Materials:
Local pharmacist
Local physician
Member of police force

Evaluation:
Students will learn hazards of drugs.
Students will become aware of the physical hazards and the social hazards of using drugs.

Comments on use:
Objective(s):
Students will be aware of some of the great strides made in the field of pest control and the dangers of their use. Students will be aware of biological control methods. Students will observe selectivity of herbicides and their residual effects. Students will see various control methods through eyes of the manufacturer.

Procedure:
Students will read about Biochemistry in a textbook.

Students will hear a guest speaker who knows about chemicals for controlling crop enemies and household pests.

Students will hear from a visiting environmentalist about natural methods of pest control.

Students will experiment with effects on "weeds" of herbicides.

Students will view film about pesticides and herbicides.

Resources and Materials:

(a) Agricultural chemicals sales-
(b) County agent
(c) Exterminator

(a) biologist
(b) ecologist
(c) college professor

2, 4, D
Amiben
Treflan
Atrazine, etc.

(a) Chemagro Corp.
7000 Roberts, K.C., MO
(b) Shell Oil Co.

Evaluation:

Class and individual activities

Comments on use:
Objective(s):
Students will know why fertilizers are used and their make up. Students will get an idea of soil need and will get experience in doing work of a soil technician and view the effects of soil deficiencies and over compensation.

Procedure:
Students will read about chemical fertilizers.

Students will see various fertilizers.

Students will run simple soil tests for nitrogen, phosphorus, potassium, magnesium, and organic matter.

Students will be visited by a person knowledgable in soils and or plant chemistry.

Students will do a series of experiments with plants grown in soils deficient in various elements.

Students will do experiments using too much fertilizer and will catch runoff water and do experiments with it.

Resources and Materials:
Physical Science: A Search for Understanding. Brown & Anderson Lippincott pp. 219-220

Local garden store

Soil test kits from science or agricultural lab. supplier.
(a) County ag. agent
(b) Lawn and garden dealer
(c) Ag. chemist
(d) Soil conservation specialist

Corn, beans, peas, farm or store.

Ecology or biology textbooks or lab. manuals.

Evaluation:
Class and individual projects

Comments on use:

Edgar A. Phillips
Objective(s):
Students will understand that artificial fabrics derived from organic compounds. Students will be able to list three raw materials used in making synthetics and will make an organic plastic. Students will be able to list 4 jobs in plastics. Students will know the uses, advantages, disadvantages, and limitations of various kinds of synthetics.

Procedure:
Students will view a film about plastics.

Students will read about and answer questions about plastics.

Students will make a plastic in the laboratory.

Students will visit a plastics manufacturing plant.

The class will be visited by an organic chemist.

Students will bring to class and classify and identify common plastics.

Resources and Materials:
EPS Free Film Catalog

Physical Science: A Search for Understanding
Brown & Anderson
Lippincott pp 248-52

Baby food jars, tin cans, formalin, analine hydrochloride.

Local plastics plant.

(a) Local college prof.
(b) Chemist from a petrochemical plant.

Samples from home, etc.

Evaluation:
Class and individual projects,

Comments on use:
Subject Area(s) Science

Unit(s) Biochemistry - Pollution

Objective(s):
Students will receive a broad overview of the pollution problem from a balanced point of view and develop an awareness of the problems. Students will be aware of at least three job possibilities in pollution control.

Procedure:
Students will do some reading on the pollution problems.

Students will report on cases of pollution that they can find in their own area.

Students will form a project to clean up an area of pollution.

Students will experiment with burning fuels, the major source of air pollution.

Students will test water samples for various pollutants.

Class will be visited by a pollution control engineer or other informed person.

Students will take a field trip to a business or industry with a pollution awareness.

Students will view film of pollution.

Resources and Materials:
(a) Physical Science: Challenges to Science. Williams, Bolen, Doerrhoff McGraw-Hill, pp. 257-69
(b) Science in Modern Life Mallinson. Ginn. & Co. pp. 515-69
(a) Local streams
(b) Local industries
(c) Their own back yards, etc.

Trash filled lot, stream, park, etc.

Candle, kerosene, or diesel fuel and a cold dish, limewater and palladium sulfate.

Water Pollution Test Kit
(a) Local pollution engineer.
(b) College student majoring in pollution control.

A local manufacturer employing pollution control methods.

The Poisened Planet by McGraw-Hill films. 1221 Ave. of Americans New York, N.Y. 10020

Evaluation:
Class and individual projects.

Comments on use:

Edgar A. Phillips
Objective(s):
Students will know that a study of chemistry can include all material things. Students will have some idea of the difference between the jobs of lab. technician and the chemist and the prerequisites of each. Students will create spontaneous change of chemical energy to electrical energy and see inorganic chemistry at work.

Procedure:
Students will study the Basic Chemistry section of their textbook.

Students will experiment with oxygen.

Students will be visited by a chemist.

Students will make a field trip to some kind of laboratory.

Students will examine as many samples of pure elements as possible.

Students will split the water molecule and chemically recombine it, by using electrolysis and combustion.

Students will make a battery.

Students will take a field trip to a business where electroplating is done.

Resources and Materials:

Physical Science: A Search for Understanding Brown and Anderson Lipplincott. pp. 150-80

Potassium chlorate, ordinary laboratory glass ware, candles, splints, steel wool.

(a) Local chemist
(b) Pharmacist

(a) Quality control lab. of a local manufacturer.
(b) Hospital laboratory.
(c) College research lab.

(a) Scientific supply houses.
(b) Local sources

Electrolysis kit and batteries from a school supplier.

Voltmeter, various kinds of metal strips and electrolytes.

(a) Local rechrome shop
(b) Jeweler who does silver, gold, and copper plating.

Evaluation:

Class and individual projects

Comments on use:

Edgar A. Phillips
Objective(s):
Students will see a practical use of chemistry. Students will have some idea of the tools and work of an analytical chemist. Students will learn about 4 job opportunities in analytical work.

Procedure:
Students will read about the chemist as a detective in their textbook or other reference.

The class will visit the crime laboratory of a law enforcement agency.

Students will visit an analytical laboratory.

Experiments will be done by students used to analyze.

Class will be visited by an analytical chemist.

Resources and Materials:

Local crime lab.
(a) quality control lab.
(b) water purity lab.
(c) soil analysis lab.
(d) local college analytical laboratory.

Introductory Physical Science
Haber-Schaim et. al.
Prentice-Hall pp. 77-96

(b) Common laboratory equipment and supplies. (much of which can be had at low cost and some can be improvised)

Local chemist or technician involved in analytical work.

Evaluation:
Class and individual activities

Comments on use:

150
145

Edgar A. Phillips
Objective(s):
Students will understand the properties of magnetism and its practical application.
Students will learn the principles of electromagnetism and magnetic fields.

Procedure:
Students will use text to find out about magnetism.
Students will experiment with magnets.
Students will make a model (working) electric motor.
Students will map magnetic lines of force with a small compass and a magnet.
Students will be using a large compass, and by striking a piece of soft iron held parallel to the earth's magnetic field will consider the earth as a magnet.

Resources and Materials:
Science in Modern Life
Mallinson Ginn & Co.
pp. 401-413
Magnets, coils of wire, galvanometer, various liquids and solids to determine attractability
Nails, insulated wire, iron wire, boards, batteries.
Small compasses and magnets.
(a) Large compass, soft iron bar, hammer.
(b) Charts of van Allen belts

Evaluation:
Class and individual projects

Comments on use:
Objective(s):
Students will get an overview of the basics of electricity and its practical uses. Students will learn about skills involved in wiring installation. Students will understand difference between technical and design aspects of electrical applications. Students will see the application of electricity to machines that are common in their homes.

Procedure:
Class will have a section of study using book as a guide.

Students will be visited by a local electrician.

Students will be visited by an electrical engineer.

Students will take a field trip to power plant if permissible.

Students will visit a house or business under construction with "rough in" wiring already done.

Students may visit an appliance repair shop or repairman will visit the class.

Students will build a working model of an electric motor.

Resources and Materials:

| Science in Modern Life Mallinson. Ginn & Co. pp. 414-437 |
| Local electrician. |
| Local engineer of college engineering professor. |
| Field trips: |
| (a) City power plant |
| (b) Hydroelectric damsite power house. |
| Local new home under construction. |
| Local shop |
| Nails, insulated wire, glass tubing, batteries. |

Evaluation:
Class and individual projects

Comments on use:

152

Edgar A. Phillips
Objective(s):
Students will be aware of the various aspects of sound including speed, interference in waves reflection, and absorption. The student will be aware of the meanings of the terms: quality, pitch, and overtones. Student will have his attention directed to careers in music other than musician. Students will know basic structure of ear and larynx.

Procedure:
Students will read about sound in the reference materials.
A piano tuner or musician will visit the class.
Students will experiment to find the speed of sound in air.
Students will visit auditorium or recording studio acoustically designed.
Students will be visited by a physician.

Resources and Materials:
Physical Science
Brown & Anderson, Lippincott pp. 402-424
Science in Modern Life
Mallinson. Ginn pp. 444-455
(a) Local piano tuner
(b) Local instrument repairman
(c) Local musician
(d) Music teacher
(e) Gifted class member
(a) Large diameter tube, tuning forks, water pails
(a) School auditorium or
(b) Local recording studio
Local eye, ear, nose and throat specialist

Evaluation:
Class and individual projects

Comments on use:
Objective(s):
Students will get an overview of computer technology including working with circuits.
Students will get first hand information in careers in computers.

Procedure:
Students will do some reading research on electronic computers.

Students will review binary numbers.

Students will compose a letter to a large computer manufacturer asking for information on computers and careers in computer technology.

Students will build some simple computer like circuits.

Students will be visited by a teacher with special training in computers or by a computer programmer.

Students will take a fieldtrip to see a computer in operation.

Resources and Materials:
Physical Science Challenges to Science Williams, et. al.
McGraw-Hill pp. 341-352

Any recent Math text
Physical Science
Williams, et. al.
McGraw-Hill pp. 345-6

IBM Corp.

Switches from Allied Radio Shack or Lafayette.
Wire and batteries locally or from Cenco or other school supplier.

Local math teacher
Computer repair man
Computer programmer

Local business or agency with a sophisticated computer.

Evaluation:
Class and individual projects

Comments on use:

154

Edgar A. Phillips
Subject: Science

Unit(s): Electronics-Radio and Television

Objective(s):
Students will get an overview of the subject of radio and television and may form ideas for a career in film, electronics technician, broadcasting, etc. Students will be aware of the use of electromagnetic waves in carrying messages. Students will build a working model.

<table>
<thead>
<tr>
<th>Procedure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will study radio and television and electromagnetic waves in various references.</td>
</tr>
<tr>
<td>Students will see a film about modern communications.</td>
</tr>
<tr>
<td>Students will build a diode radio set.</td>
</tr>
<tr>
<td>Students will visit a radio-television station.</td>
</tr>
<tr>
<td>Class will be visited by a guest technician.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resources and Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encyclopedias</td>
</tr>
<tr>
<td>Science in Modern Life Mallinson, Ginn & Co. pp. 459-471</td>
</tr>
<tr>
<td>EPS Free Film catalog</td>
</tr>
<tr>
<td>1N34 transistors, ear plugs, insulated 27 ga. wire, variable condensor from old radio. Kits from supplier</td>
</tr>
<tr>
<td>Local radio-TV station</td>
</tr>
<tr>
<td>Local TV repairman</td>
</tr>
<tr>
<td>Vo. tech instructor</td>
</tr>
</tbody>
</table>

Evaluation:
Class and individual projects

Comments on use:

Edgar A. Phillips
<table>
<thead>
<tr>
<th>NAME</th>
<th>ADDRESS</th>
<th>CONTACT REPRESENTATIVE</th>
<th>TELEPHONE</th>
<th>FIELD TRIP</th>
<th>GROUP SIZE</th>
<th>GRADE LEVEL</th>
<th>GUEST SPEAKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adco</td>
<td>900 W. Main, Sedalia, MO</td>
<td>Dr. Alexander</td>
<td>826-3300</td>
<td>Yes</td>
<td>1-6</td>
<td>9-12</td>
<td>No</td>
</tr>
<tr>
<td>Allstate Insurance Co.</td>
<td>4800 E. 63rd, Kansas City, MO</td>
<td>Mr. John Irish</td>
<td>333-6800</td>
<td>Yes</td>
<td>20</td>
<td>11-16</td>
<td>No</td>
</tr>
<tr>
<td>American Electrical Industries</td>
<td>Highway 50, Sedalia, MO</td>
<td>Mr. Russ Woodyard</td>
<td>827-1712</td>
<td>Yes</td>
<td>30</td>
<td>6-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Archias Floral Co.</td>
<td>4th & Park, Sedalia, MO</td>
<td>Mr. Don King</td>
<td>826-4000</td>
<td>Yes</td>
<td>20</td>
<td>K-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Artist</td>
<td>203 N. Jefferson, Sedalia, MO</td>
<td>Ms. Thelma Hansen</td>
<td>886-8464</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Attorney at Law</td>
<td>Cole Camp, MO</td>
<td>Mr. Pete Stelling</td>
<td>668-4858</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Attorney at Law</td>
<td>Warsaw, MO</td>
<td>Mr. Edwin F. Brady</td>
<td>438-5116</td>
<td>Yes</td>
<td>4-5</td>
<td>9-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Attorney at Law</td>
<td>Farmer's Savings Bank, Marshall, MO</td>
<td>Mr. Larry McClure</td>
<td>886-6986</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Ault's Skelly Station</td>
<td>1570 S. Kentucky, Marshall, MO</td>
<td>Mr. Bob Ault</td>
<td>886-6792</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>No</td>
</tr>
<tr>
<td>B & E Market</td>
<td>1701 S. Kentucky, Marshall, MO</td>
<td>Mr. Jim Dick</td>
<td>886-2188</td>
<td>Yes</td>
<td>30</td>
<td>3-12</td>
<td>No</td>
</tr>
<tr>
<td>Banges</td>
<td>78 S. Jefferson, Marshall, MO</td>
<td>Ms. Dolly Kiser</td>
<td>886-3716</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Banquet Foods</td>
<td>253 W. Marion St., Marshall, MO</td>
<td>Mr. Caton Martin</td>
<td>886-3301</td>
<td>Yes</td>
<td>20</td>
<td>4-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Benton County Enterprise</td>
<td>Warsaw, MO</td>
<td>Mr. Mahlon White</td>
<td>438-6312</td>
<td>Yes</td>
<td>4-5</td>
<td>9-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Benton County R-I School</td>
<td>Cole Camp, MO</td>
<td>Mr. Vergil Oglovie</td>
<td>668-4427</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Possibly</td>
</tr>
<tr>
<td>Address</td>
<td>Contact</td>
<td>Telephone</td>
<td>Field Trip</td>
<td>Group Size</td>
<td>Grade Level</td>
<td>Guest Speaker</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Benton County R-IX, Warsaw, MO</td>
<td>Dr. John Boise</td>
<td>438-7351</td>
<td>No</td>
<td>0</td>
<td>8-10</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Benton County Sheriff's Dept., Warsaw, MO</td>
<td>Mr. Robert Breshears</td>
<td>438-5252</td>
<td>Yes</td>
<td>5-6</td>
<td>9-10</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bingham's Super Saver, La Monte, MO</td>
<td>Mrs. Bingham</td>
<td>347-5426</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Body Shop, Cole Camp, MO</td>
<td>Mr. David Luetjen</td>
<td>668-3155</td>
<td>Yes</td>
<td>2-4</td>
<td>9-10</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Bohling Grocery, Cole Camp, MO</td>
<td>Mr. E. G. Bohling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boonslick Regional Library, Sixth & Lamine, Sedalia, MO</td>
<td>Ms. V. Corley</td>
<td>826-6195</td>
<td>Yes</td>
<td>20</td>
<td>K-9</td>
<td>Possibly</td>
<td></td>
</tr>
<tr>
<td>Borchers & Heimsoth, Cole Camp, MO</td>
<td>Mr. Ervin Borchers</td>
<td>668-4923</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Bothwell Hospital, Physical Therapy, Sedalia, MO</td>
<td>Ms. Nevin Almquist</td>
<td>826-8833</td>
<td>Yes</td>
<td>7-15</td>
<td>7-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bothwell Hospital, Sedalia, MO</td>
<td>Ms. Marie Nicholson</td>
<td>826-8833</td>
<td>Yes</td>
<td>20</td>
<td>12-16</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Breech Academy - TWA, 6300 Lamar Avenue, Mission, KS</td>
<td>Ms. Mickey Holiday</td>
<td>842-4000</td>
<td>Yes</td>
<td>20</td>
<td>11-16</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Brick Mason, RFD 3, Warsaw, MO</td>
<td>Mr. Lee Slavens</td>
<td>438-5360</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Possibly</td>
<td></td>
</tr>
<tr>
<td>Broadway Car Wash, 310 W. Broadway, Sedalia, MO</td>
<td>Mr. Dale Arms</td>
<td>826-0375</td>
<td>Yes</td>
<td>25-30</td>
<td>1-12</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Broadway Lanes, Inc., 2119 W. Broadway, Sedalia, MO</td>
<td>Ms. Edith Simons</td>
<td>827-0404</td>
<td>Yes</td>
<td>Large</td>
<td>K-14</td>
<td>Possibly</td>
<td></td>
</tr>
<tr>
<td>Brown, McCloskey, Buckley, 309 E. 5th St., Sedalia, MO</td>
<td>Ms. Mabel Glenn</td>
<td>826-7373</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Business Mens Assurance, BMS Building, Kansas City, MO</td>
<td>Ms. Almeta Wilcher</td>
<td>753-8000</td>
<td>Yes</td>
<td>20</td>
<td>11-16</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>ADDRESS</td>
<td>CONTACT REPRESENTATIVE</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRAD LEVEL</td>
<td>SPEAKER</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>C-B Shop</td>
<td>Cole Camp, MO</td>
<td>Mr. Dave Wordeman</td>
<td>826-3200</td>
<td>Yes</td>
<td>4</td>
<td>9-12</td>
<td>No</td>
</tr>
<tr>
<td>C. W. Flower</td>
<td>219 S. Ohio, Sedalia, MO</td>
<td>Mrs. Austin</td>
<td>826-0933</td>
<td>Yes</td>
<td>15-20</td>
<td>11-16</td>
<td>Yes</td>
</tr>
<tr>
<td>Cablevision, Inc.</td>
<td>600 S. Osage, Sedalia, MO</td>
<td>Mr. Lynn Harrison</td>
<td>826-0933</td>
<td>Yes</td>
<td>20</td>
<td>5-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Cargill Incorporated</td>
<td>Marshall, MO</td>
<td>Mr. Jack Hartwick</td>
<td>886-7473</td>
<td>Yes</td>
<td>20-25</td>
<td>9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Cargill Nutrena Feeds</td>
<td>Smithton, MO</td>
<td>Mr. Gene Hudiburg</td>
<td>343-5319</td>
<td>Yes</td>
<td>10</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Cash U. S. Super</td>
<td>Cole Camp, MO</td>
<td>Mr. Jim Cash</td>
<td>668-3700</td>
<td>Possibly</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>City Offices</td>
<td>214 N. Lafayette, Marshall, MO</td>
<td>Mr. Ron Collins</td>
<td>886-2226</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Classic Studio</td>
<td>6th & Kentucky, Sedalia, MO</td>
<td>Mr. Ed Brummet</td>
<td>826-8888</td>
<td>Yes</td>
<td>5-10</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Clay Mead Furniture</td>
<td>Highway 65, Marshall, MO</td>
<td>Ms. Kay Perkins</td>
<td>886-5354</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Coffman's Marina</td>
<td>Highway 65 South, Sedalia, MO</td>
<td>Mr. John Smith</td>
<td>827-3692</td>
<td>Yes</td>
<td>1-6</td>
<td>9-12</td>
<td>No</td>
</tr>
<tr>
<td>Commerce Bank</td>
<td>10th & Walnut, Kansas City, MO</td>
<td>Mr. John Wells</td>
<td>234-2000</td>
<td>Yes</td>
<td>20</td>
<td>11-16</td>
<td>No</td>
</tr>
<tr>
<td>Consumers Supermarket</td>
<td>Hancock & Broadway, Sedalia, MO</td>
<td>Mr. Bill Smillie</td>
<td>827-3190</td>
<td>Yes</td>
<td>15</td>
<td>K-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Courts Lawn and Garden</td>
<td>Marshall, MO</td>
<td>Mr. Delford Thompson</td>
<td>886-5000</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Creasy's Insurance Agency</td>
<td>Warsaw, MO</td>
<td>Mr. Gordon Creasy</td>
<td>438-5621</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Dala's Boutique</td>
<td>Tipton, MO</td>
<td>Ms. Dala Yantz</td>
<td>433-2626</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Day Care</td>
<td>321 W. Second, Sedalia, MO</td>
<td>Mrs. Zimmerschied</td>
<td>826-5040</td>
<td>Yes</td>
<td>1 a day</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>CONTACT FIELD</td>
<td>ADDRESS</td>
<td>REPRESENTATIVE</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRADE LEVEL</td>
<td>GUEST SPEAKER</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>DeKalb Ag. Research</td>
<td>Marshall, MO</td>
<td>Mr. Don Wert</td>
<td>886-7438</td>
<td>Yes</td>
<td>10-40</td>
<td>5-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>DeLong Dry Goods</td>
<td>Warsaw, MO</td>
<td>Mrs. DeLong</td>
<td>438-5307</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Possibly</td>
</tr>
<tr>
<td>Deluxe Cafe</td>
<td>Cole Camp, MO</td>
<td>Ms. Marie Musser</td>
<td>668-4521</td>
<td>Yes</td>
<td>2-4</td>
<td>9-10</td>
<td>Yes</td>
</tr>
<tr>
<td>Democrat News</td>
<td>Marshall, MO</td>
<td>Mr. Jerry Arnett</td>
<td>886-2233</td>
<td>Yes</td>
<td>25</td>
<td>7-9</td>
<td>Yes</td>
</tr>
<tr>
<td>Dentist</td>
<td>Warsaw, MO</td>
<td>Dr. Shepardson</td>
<td>438-5421</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Possibly</td>
</tr>
<tr>
<td>Dentist</td>
<td>1810 W. 11th</td>
<td>Dr. Robert Vit</td>
<td>826-5445</td>
<td>No</td>
<td>0</td>
<td>K-12</td>
<td>No</td>
</tr>
<tr>
<td>Dentist</td>
<td>Cole Camp, MO</td>
<td>Dr. D. V. Reimsnitter</td>
<td>668-3312</td>
<td>Yes</td>
<td>4-6</td>
<td>9-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Doctor of Osteopathy</td>
<td>1701 S. Lafayette</td>
<td>Dr. Joe Bennett</td>
<td>826-6633</td>
<td>Yes</td>
<td>5 at a time, 40 maximum</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Don's Dive Shop</td>
<td>3312 S. Highway 65</td>
<td>Mr. Don Kabler</td>
<td>826-4681</td>
<td>No</td>
<td>0</td>
<td>8-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Don's Welding</td>
<td>Highway 65 South</td>
<td>Mr. Don Carr</td>
<td>826-7310</td>
<td>Yes</td>
<td>1-10</td>
<td>8-12</td>
<td>No</td>
</tr>
<tr>
<td>Duke Manufacturing</td>
<td>Main & Duke Road</td>
<td>Mr. Ivan Stuart</td>
<td>827-2661</td>
<td>Yes</td>
<td>10</td>
<td>4-12</td>
<td>No</td>
</tr>
<tr>
<td>Durham Chevrolet</td>
<td>Warsaw, MO</td>
<td>Mr. Floyd Durham</td>
<td>438-5133</td>
<td>Yes</td>
<td>10</td>
<td>8-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Eckhoff Clothing</td>
<td>Cole Camp, MO</td>
<td>Mr. Raymond Eckhoff</td>
<td>668-4707</td>
<td>Yes</td>
<td>4</td>
<td>9-12</td>
<td>No</td>
</tr>
<tr>
<td>Essers</td>
<td>18 S. Jefferson</td>
<td>Mr. David Esser</td>
<td>886-2107</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Estes' 66 Station</td>
<td>Warsaw, MO</td>
<td>Mr. Gary Estes</td>
<td>438-6022</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Possibly</td>
</tr>
<tr>
<td>Farmer's Bank of Lincoln</td>
<td>Lincoln, MO</td>
<td>Mr. Karl Kroenke</td>
<td>547-3311</td>
<td>Yes</td>
<td>4-5</td>
<td>9-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Farmer's Insurance</td>
<td>1806 W. 11th</td>
<td>Mr. Newby</td>
<td>827-0122</td>
<td>Yes</td>
<td>1-5</td>
<td>9-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>NAME</td>
<td>ADDRESS</td>
<td>CONTACT REPRESENTATIVE</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRADE LEVEL</td>
<td>GUEST SPEAKER</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Fire Station</td>
<td>211 S. Kentucky Sedalia, MO</td>
<td>Mr. Jabas</td>
<td>826-8044</td>
<td>Yes</td>
<td>1-15</td>
<td>0</td>
<td>Possibly</td>
</tr>
<tr>
<td>Flat Creek Vet. Hosp.</td>
<td>1701 W. Main Sedalia, MO</td>
<td>Dr. Peacock</td>
<td>827-2057</td>
<td>Yes</td>
<td>10-15</td>
<td>K-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Gambles</td>
<td>2 S. Jefferson Marshall, MO</td>
<td>Mr. Norvelle Brown</td>
<td>886-6823</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Bill Greer Body Shop</td>
<td>Main Street Sedalia, MO</td>
<td>Mr. Orval Burd</td>
<td>827-2162</td>
<td>Yes</td>
<td>5</td>
<td>10-12</td>
<td>No</td>
</tr>
<tr>
<td>Hallmark</td>
<td>25th & McGee Kansas City, MO</td>
<td>Ms. Rose A. Lightle</td>
<td>274-4667</td>
<td>Yes</td>
<td>20</td>
<td>11-16</td>
<td>Yes</td>
</tr>
<tr>
<td>Harris & Reid</td>
<td>Farmer's Savings Bank Marshall, MO</td>
<td>Mr. Mike Reid</td>
<td>886-5544</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Heinzler Bros. Welding</td>
<td>Marshall, MO</td>
<td>Mr. Frank Heinzler</td>
<td>886-7775</td>
<td>Yes</td>
<td>20-25</td>
<td>7-9</td>
<td>No</td>
</tr>
<tr>
<td>Holiday Inn</td>
<td>32nd & Limit Sedalia, MO</td>
<td>Mr. Jim Grieshaber</td>
<td>826-6100</td>
<td>Yes</td>
<td>40-50</td>
<td>8-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Home Lumber</td>
<td>207 E. North Marshall, MO</td>
<td>Mr. Roland Wood</td>
<td>886-3342</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Horse Racing</td>
<td>P.O. Box 951 Sedalia, MO</td>
<td>Mr. Anderson</td>
<td>826-7114</td>
<td>Yes</td>
<td>1-10</td>
<td>9-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Howard Construction</td>
<td>1509 N. Ohio Sedalia, MO</td>
<td>Mr. Olen Howard</td>
<td>826-5750</td>
<td>Yes</td>
<td>5-15</td>
<td>8-12</td>
<td>No</td>
</tr>
<tr>
<td>Hurtt's Pharmacy</td>
<td>504 W. 16th Sedalia, MO</td>
<td>Mr. Hurtt</td>
<td>826-2872</td>
<td>Yes</td>
<td>1-10</td>
<td>8-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>IBEW Local 814 Credit Union</td>
<td>2111 W. Broadway Sedalia, MO</td>
<td>Ms. June Kuhlman</td>
<td>826-0814</td>
<td>Yes</td>
<td>6 at a time</td>
<td>8-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>IGA</td>
<td>2402 W. Broadway Sedalia, MO</td>
<td>Mr. Ralph Huff</td>
<td>827-1452</td>
<td>Yes</td>
<td>25</td>
<td>K-12</td>
<td>Yes</td>
</tr>
<tr>
<td>TITLE</td>
<td>ADDRESS</td>
<td>CONTACT NAME</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRADE LEVEL</td>
<td>GUEST SPEAKER</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Industrial Loan & Investment</td>
<td>120 W. Fifth Sedalia, MO</td>
<td>Mr. Firman Boul</td>
<td>826-4800</td>
<td>Yes</td>
<td>25</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>J & J's</td>
<td>1421 S. Limit Sedalia, MO</td>
<td>Mr. Jack Smith</td>
<td>827-2485</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Possibly</td>
</tr>
<tr>
<td>Jack Couts' Running Quarter Horses</td>
<td>Mo. State Fair Grounds Sedalia, MO</td>
<td>Ms. Tina Brown</td>
<td>826-1135</td>
<td>Yes</td>
<td>5-10</td>
<td>K-12</td>
<td>No</td>
</tr>
<tr>
<td>Jim's Garden Center</td>
<td>1000 W. Main Sedalia, MO</td>
<td>Mr. James L. Foster</td>
<td>826-4411</td>
<td>Yes</td>
<td>15</td>
<td>4-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Bob Johnson TV & Appliance</td>
<td>2907 W. Broadway Sedalia, MO</td>
<td>Mr. Ray Thompson</td>
<td>827-2326</td>
<td>Yes</td>
<td>15-20</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>KDRO Radio</td>
<td>West Highway 50 Sedalia, MO</td>
<td>Mr. Herb Brandes</td>
<td>826-5005</td>
<td>Yes</td>
<td>15</td>
<td>K-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Keeharts</td>
<td>Marshall, MO</td>
<td>Ms. Alice Alexander</td>
<td>886-5611</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Kim Originals</td>
<td>2500 E. Broadway Sedalia, MO</td>
<td>Mr. Bill Cline</td>
<td>826-2500</td>
<td>Yes</td>
<td>15</td>
<td>K-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Kings Court</td>
<td>Marshall, MO</td>
<td>Mr. Bill Coman</td>
<td>886-5444</td>
<td>Yes</td>
<td>15</td>
<td>7-12</td>
<td>No</td>
</tr>
<tr>
<td>KMMO-KMFL</td>
<td>Highway 65 North Marshall, MO</td>
<td>Mr. Harold Douglas</td>
<td>886-7422</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>KNOS TV Station</td>
<td>2100 W. Broadway Sedalia, MO</td>
<td>Mr. Stuart Gressley</td>
<td>826-1651</td>
<td>Yes</td>
<td>15</td>
<td>K-12</td>
<td>Yes</td>
</tr>
<tr>
<td>KSIS Radio</td>
<td>North 65 Highway Sedalia, MO</td>
<td>Mr. Carl Yates</td>
<td>826-1050</td>
<td>Yes</td>
<td>10</td>
<td>K-14</td>
<td>Yes</td>
</tr>
<tr>
<td>Lacuma Builders, Inc.</td>
<td>2800 W. Main Sedalia, MO</td>
<td>Mr. Bob Cook</td>
<td>826-0522</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>NAME/ADDRESS</td>
<td>CONTACT REPRESENTATIVE</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRADE LEVEL</td>
<td>GUEST SPEAKER</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Lamm, Barnett, Crawford, Barnes, Fritz Law Firm</td>
<td>Mr. Donald Barnes</td>
<td>826-5428</td>
<td>No</td>
<td>0</td>
<td>11-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Lee's Archery Manufacturing</td>
<td>Mr. LeRoy Young</td>
<td>826-6762</td>
<td>Yes</td>
<td>20</td>
<td>7-16</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Lee's Studio</td>
<td>Mr. Lee Beardon</td>
<td>886-7313</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Lifeguard</td>
<td>Ms. Diane Cordry</td>
<td>826-7719</td>
<td>No</td>
<td>1-15</td>
<td>8-10</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Lincoln New Era Newspaper</td>
<td>Mr. George Williams</td>
<td>547-3800</td>
<td>Yes</td>
<td>Inquire</td>
<td>Inquire</td>
<td>Possibly</td>
<td></td>
</tr>
<tr>
<td>Locker Plant</td>
<td>Mr. Bill Wheeler</td>
<td>826-8630</td>
<td>Yes</td>
<td>10-15</td>
<td>1-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Macy's</td>
<td>Mrs. Cullen</td>
<td>221-3737</td>
<td>Yes</td>
<td>20</td>
<td>11-16</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Magistrate Judge--Pettis County</td>
<td>Ms. Hazel Palmer</td>
<td>826-8816</td>
<td>No</td>
<td>0</td>
<td>11-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Marshall Chamber of Commerce</td>
<td>Mr. Leo Hayob</td>
<td>886-7464</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Marshall Floral & Greenhouse</td>
<td>Ms. Juanita Dametz</td>
<td>886-7177</td>
<td>Yes</td>
<td>20</td>
<td>7-9</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Marshall Police</td>
<td>Mr. Gerald Stone</td>
<td>886-7411</td>
<td>Yes</td>
<td>15-20</td>
<td>1-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Marshall Public Schools</td>
<td>Dr. John Payne</td>
<td>886-2244</td>
<td>Yes</td>
<td>20-30</td>
<td>7-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Martin Lumber</td>
<td>Mr. Con Scott</td>
<td>826-7556</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Mattingly's Variety Store</td>
<td>Mr. Bill Stratton</td>
<td>826-5270</td>
<td>Yes</td>
<td>20</td>
<td>7-12</td>
<td>Possibly</td>
<td></td>
</tr>
<tr>
<td>ADDRESS</td>
<td>CONTACT REPRESENTATIVE</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRADE LEVEL</td>
<td>GUEST SPEAKER</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Merle Norman Cosmetics</td>
<td>Ms. Sandra Bou</td>
<td>826-6430</td>
<td>No</td>
<td>0</td>
<td>11-16</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MFA Elevator</td>
<td>Mr. Ed Schnakenberg</td>
<td>668-3231</td>
<td>Yes</td>
<td>6-8</td>
<td>9-10</td>
<td>Possibly</td>
<td></td>
</tr>
<tr>
<td>MFA Grocery</td>
<td>Mr. Joe McKnight</td>
<td>547-3621</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MFA Implement</td>
<td>Mr. Clarence Frisch</td>
<td>547-3318</td>
<td>Yes</td>
<td>4</td>
<td>9-12</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>MFA Insurance</td>
<td>Mr. Vic Ohman</td>
<td>445-8441</td>
<td>Yes</td>
<td>20</td>
<td>11-16</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Missouri Division of E. S.</td>
<td>Mr. Bill Giles</td>
<td>826-8184</td>
<td>Yes</td>
<td>25</td>
<td>11-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Missouri Pacific Railroad</td>
<td>Mr. D. M. Tutke</td>
<td>314-2944</td>
<td>Yes</td>
<td>Arr.</td>
<td>7-12</td>
<td>Possibly</td>
<td></td>
</tr>
<tr>
<td>Missouri State Bank</td>
<td>Mr. William Claycomb</td>
<td>826-1213</td>
<td>Yes</td>
<td>20-25</td>
<td>4-12</td>
<td>Possibly</td>
<td></td>
</tr>
<tr>
<td>Missouri State Fair</td>
<td>Ms. Myrna Ragar</td>
<td>826-0570</td>
<td>Yes</td>
<td>30</td>
<td>3-7</td>
<td>Possibly</td>
<td></td>
</tr>
<tr>
<td>Missouri Valley College</td>
<td>Mr. Ed Leslie</td>
<td>886-6924</td>
<td>No</td>
<td>0</td>
<td>9-12</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Model Cleaners</td>
<td>Mr. Richard Kingma</td>
<td>438-5831</td>
<td>Yes</td>
<td>20</td>
<td>K-12</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ollison's Garage</td>
<td>Mr. Keith Ollison</td>
<td>826-4077</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Otten Truckline</td>
<td>Mr. Pete Otten</td>
<td>668-3117</td>
<td>No</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patricia Stephens Modeling Finishing School</td>
<td>Mr. V. Stephens</td>
<td>531-5860</td>
<td>Yes</td>
<td>60</td>
<td>7-17</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Pepsi-Cola Bottling Co.</td>
<td>Mr. William Reese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>ADDRESS</td>
<td>CONTACT REPRESENTATIVE</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRADE LEVEL</td>
<td>GUEST SPEAKER</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Pettis County Ambulance</td>
<td>626 E. Fifth</td>
<td>Mr. Joe Wasson</td>
<td>826-5316</td>
<td>Yes</td>
<td>10-15</td>
<td>6-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Phyllis's Beauty Shop</td>
<td>Cole Camp, MO</td>
<td>Ms. Phyllis Templeton</td>
<td>668-3750</td>
<td>Yes</td>
<td>6</td>
<td>9-12</td>
<td>No</td>
</tr>
<tr>
<td>Pittsburgh Corning</td>
<td>16th & Missouri Pacific Spur</td>
<td>Ms. Rita Kenney</td>
<td>826-4660</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Post Office</td>
<td>205 N. Lafayette</td>
<td>Mr. Weislocker</td>
<td>886-6200</td>
<td>Yes</td>
<td>25</td>
<td>7-9</td>
<td>No</td>
</tr>
<tr>
<td>Post Office</td>
<td>405 E. Fifth</td>
<td>Mr. Roy Hinton</td>
<td>826-8887</td>
<td>Yes</td>
<td>25-30</td>
<td>4-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Quality Body Shop</td>
<td>501 N. Park</td>
<td>Mr. Bill Utz</td>
<td>826-2126</td>
<td>Yes</td>
<td>1-10</td>
<td>8-12</td>
<td>No</td>
</tr>
<tr>
<td>Rainbow Radio & TV</td>
<td>Lincoln, MO</td>
<td>Mr. Rainbow</td>
<td>547-3317</td>
<td>Yes</td>
<td>4</td>
<td>9-12</td>
<td>No</td>
</tr>
<tr>
<td>Ramada Inn</td>
<td>3501 W. Broadway</td>
<td>Mr. Darrell Olsen</td>
<td>826-8400</td>
<td>Yes</td>
<td>15</td>
<td>5-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Reinhart Fajen, Inc.</td>
<td>Warsaw, MO</td>
<td>Ms. Eloise Atkins</td>
<td>438-5111</td>
<td>Yes</td>
<td>8-10</td>
<td>9-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Rest Haven Retirement Home</td>
<td>1800 S. Ingram</td>
<td></td>
<td>827-0845</td>
<td>Yes</td>
<td>10</td>
<td>1-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Retail Bakery</td>
<td>Sixth & Ohio</td>
<td>Mr. Mallory</td>
<td>826-6920</td>
<td>Yes</td>
<td>20</td>
<td>K-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Rick's Body Shop</td>
<td>R. R. #2</td>
<td>Mr. Rick Geer</td>
<td>826-1157</td>
<td>Yes</td>
<td>25-30</td>
<td>7-12</td>
<td>No</td>
</tr>
<tr>
<td>Rival Manufacturing Co.</td>
<td>16th & Lamine</td>
<td>Mr. Jim Houchen</td>
<td>826-6600</td>
<td>Yes</td>
<td>15</td>
<td>4-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
<td>Contact Representative</td>
<td>Telephone</td>
<td>Field Trip</td>
<td>Group Size</td>
<td>Grade Level</td>
<td>Guest Speaker</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Rival Manufacturing Co.</td>
<td>Miller's Park Plaza, Sedalia, MO</td>
<td>Ms. Nyra Price</td>
<td>827-3860</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Rose & Buckner</td>
<td>72 N. Jefferson, Marshall, MO</td>
<td>Mr. Bob Rose</td>
<td>886-2002</td>
<td>Yes</td>
<td>15-20</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Russell Brothers</td>
<td>Marshall, MO</td>
<td>Mr. Casey Kotowiez</td>
<td>886-7340</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Russell Brothers</td>
<td>214 S. Ohio, Sedalia, MO</td>
<td>Mr. Bob Johnson</td>
<td>826-5154</td>
<td>Yes</td>
<td>1-10</td>
<td>8-12</td>
<td>No</td>
</tr>
<tr>
<td>Scott's Jewelry</td>
<td>East Highway 7, Marshall, MO</td>
<td>Mr. Scott</td>
<td>438-5700</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>Possibly</td>
</tr>
<tr>
<td>Sears</td>
<td>110 W. Third, Sedalia, MO</td>
<td>Mr. Finis Galloway</td>
<td>826-6500</td>
<td>Yes</td>
<td>10</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Sedalia Computer Service</td>
<td>210 E. 7th, Sedalia, MO</td>
<td>Mr. Larry McRoy</td>
<td>827-1990</td>
<td>Yes</td>
<td>10-15</td>
<td>9-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Sedalia Democrat-Capital</td>
<td>700 S. Massachusetts, Sedalia, MO</td>
<td>Mr. Don Keller</td>
<td>826-1000</td>
<td>Yes</td>
<td>15</td>
<td>K-16</td>
<td>No</td>
</tr>
<tr>
<td>Sedalia Implement Co.</td>
<td>2205 S. Limit, Sedalia, MO</td>
<td>Mr. John Joy</td>
<td>826-0466</td>
<td>Yes</td>
<td>15-25</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Sedalia Memorial Airport</td>
<td>East Highway 50, Sedalia, MO</td>
<td>Mr. James Addas</td>
<td>826-9796</td>
<td>Yes</td>
<td>Small</td>
<td>K-14</td>
<td>Possibly</td>
</tr>
<tr>
<td>Sedalia Police Department</td>
<td>3rd & Osage, Sedalia, MO</td>
<td>Mr. Bill Miller</td>
<td>826-0214</td>
<td>Yes</td>
<td>10-15</td>
<td>1-14</td>
<td>Yes</td>
</tr>
<tr>
<td>Sedalia Water Department</td>
<td>11 W. Fourth, Sedalia, MO</td>
<td>Mr. C. H. Taylor</td>
<td>826-1234</td>
<td>Yes</td>
<td>15</td>
<td>6-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Sheriff's Department</td>
<td>Warsaw, MO</td>
<td>Mr. Bob Breshears</td>
<td>438-5252</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>NAME</td>
<td>ADDRESS</td>
<td>CONTACT REPRESENTATIVE</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRADE LEVEL</td>
<td>GUEST SPEAKER</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Paul Shinn Oil Company</td>
<td>RFD 3, Warsaw, MO</td>
<td>Mr. Paul Shinn</td>
<td>438-5013</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Sho-Me Stables</td>
<td>State Fair Grounds, Sedalia, MO</td>
<td>Ms. Elaine Knight</td>
<td>827-2243</td>
<td>Yes</td>
<td>5-10</td>
<td>K-12</td>
<td>No</td>
</tr>
<tr>
<td>Sound Shop</td>
<td>1716 W. Ninth, Sedalia, MO</td>
<td>Mr. Al Reese</td>
<td>827-2223</td>
<td>Yes</td>
<td>20</td>
<td>K-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Southwestern Bell Telephone</td>
<td>220 E. 5th St., Sedalia, MO</td>
<td>Mr. Bob Johnson</td>
<td>826-9800</td>
<td>Yes</td>
<td>25</td>
<td>K-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Sowers' Horses</td>
<td>Callis Stables, Sedalia, MO</td>
<td>Ms. Susan Sowers</td>
<td>827-1778</td>
<td>Yes</td>
<td>5-10</td>
<td>8-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Stan's TV</td>
<td>P.O. Box 856, Rt. 2, Warsaw, MO</td>
<td>Mr. Stan Johnson</td>
<td>438-6859</td>
<td>No</td>
<td>1</td>
<td>9-10</td>
<td>Yes</td>
</tr>
<tr>
<td>State Fair Community College</td>
<td>1900 Clarendon Road, Sedalia, MO</td>
<td>Mr. Fred Davis</td>
<td>826-7100</td>
<td>Yes</td>
<td>5-10</td>
<td>9-12</td>
<td>Yes</td>
</tr>
<tr>
<td>State Fair Riding Academy</td>
<td>Route 3, Sedalia, MO</td>
<td>Ms. Faith Lovell</td>
<td>826-9767</td>
<td>Yes</td>
<td>1-5</td>
<td>8-12</td>
<td>No</td>
</tr>
<tr>
<td>T & O Phosphate</td>
<td>Hughesville, MO</td>
<td>Mr. Larry Owen</td>
<td>826-1813</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>The Craft Shop</td>
<td>318 S. Ohio, Sedalia, MO</td>
<td>Mrs. Boatman</td>
<td>827-3041</td>
<td>Yes</td>
<td>15-20</td>
<td>5-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>The Dog House</td>
<td>116 W. 16th, Sedalia, MO</td>
<td>Mr. Antoine</td>
<td>827-1941</td>
<td>Yes</td>
<td>1-10</td>
<td>8-12</td>
<td>No</td>
</tr>
<tr>
<td>Third National Bank</td>
<td>301 S. Ohio, Sedalia, MO</td>
<td>Mr. Bob McDonald</td>
<td>826-0611</td>
<td>Yes</td>
<td>30-40</td>
<td>6-9</td>
<td>Possibly</td>
</tr>
<tr>
<td>Town and Country Shoes</td>
<td>201 N. Missouri, Sedalia, MO</td>
<td>Mr. Charles Rayl</td>
<td>826-4490</td>
<td>Yes</td>
<td>Small</td>
<td>K-12</td>
<td>Yes</td>
</tr>
<tr>
<td>CONTACT FIELD</td>
<td>ADDRESS</td>
<td>REPRESENTATIVE</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRADE LEVEL</td>
<td>SPEAKER</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Tullis Hall Dairy Co.</td>
<td>541 E. Fifth, Sedalia, MO</td>
<td>Mr. Funnell</td>
<td>826-3030</td>
<td>Yes</td>
<td>10</td>
<td>3-12</td>
<td>No</td>
</tr>
<tr>
<td>Tygart & Arth Body Shop</td>
<td>207 E. Belle, Marshall, MO</td>
<td>Mr. Ray Arth</td>
<td>886-3033</td>
<td>Yes</td>
<td>25</td>
<td>7-8</td>
<td>Yes</td>
</tr>
<tr>
<td>Unitog</td>
<td>Warsaw, MO</td>
<td>Mr. Osborne McMillen</td>
<td>438-5117</td>
<td>Yes</td>
<td>Arr.</td>
<td>7-12</td>
<td>No</td>
</tr>
<tr>
<td>Verl's Amoco Service</td>
<td>1801 W. Broadway, Sedalia, MO</td>
<td>Mr. Verl Schnepf</td>
<td>827-0040</td>
<td>Yes</td>
<td>1-10</td>
<td>8-12</td>
<td>No</td>
</tr>
<tr>
<td>Veterinary</td>
<td>Cole Camp, MO</td>
<td>Dr. Taylor</td>
<td>668-4523</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Viebrocks Welding</td>
<td>Cole Camp, MO</td>
<td>Mr. Harold Viebrock</td>
<td>668-3233</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vogue Styles</td>
<td>22 Jefferson, Marshall, MO</td>
<td>Mrs. Howell</td>
<td>886-6161</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td>W-K Chevrolet Garage</td>
<td>Cole Camp, MO</td>
<td>Mr. Vern Dean</td>
<td>668-4421</td>
<td>Yes</td>
<td>4-6</td>
<td>9-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Walker Publishing Co.</td>
<td>2016 W. Main, Sedalia, MO</td>
<td>Mr. Mark Kitch</td>
<td>826-8200</td>
<td>Yes</td>
<td>15</td>
<td>5-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Warren Grocery</td>
<td>Green Ridge, MO</td>
<td>Mr. Warren</td>
<td>527-3317</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Warsaw Auto Supply</td>
<td>Warsaw, MO</td>
<td>Mr. Stan Intelman</td>
<td>438-7321</td>
<td>Yes</td>
<td>Small</td>
<td>1-14</td>
<td>No</td>
</tr>
<tr>
<td>Warsaw Sewing Center</td>
<td>Warsaw, MO</td>
<td>Mr. Jerome Kelly</td>
<td>438-6919</td>
<td>Yes</td>
<td>6</td>
<td>8-12</td>
<td>Possibly</td>
</tr>
<tr>
<td>Warsaw Veterinary Clinic</td>
<td>Warsaw, MO</td>
<td>Dr. N. V. Roff</td>
<td>438-7333</td>
<td>Yes</td>
<td>8</td>
<td>8-12</td>
<td>Yes</td>
</tr>
<tr>
<td>WESCEMO, Inc.</td>
<td>651 E. 14th, Sedalia, MO</td>
<td>Mr. Steve Laslo</td>
<td>827-3760</td>
<td>No</td>
<td>0</td>
<td>8-12</td>
<td>Yes</td>
</tr>
<tr>
<td>Western Auto</td>
<td>Jefferson & Morgan, Marshall, MO</td>
<td>Mr. Gerald Leach</td>
<td>886-6813</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>No</td>
</tr>
<tr>
<td>Wilken Music</td>
<td>Thompson Hills, Sedalia, MO</td>
<td>Mr. Wilken</td>
<td>826-9356</td>
<td>Yes</td>
<td>10</td>
<td>4-12</td>
<td>Yes</td>
</tr>
<tr>
<td>NAME</td>
<td>ADDRESS</td>
<td>CONTACT REPRESENTATIVE</td>
<td>TELEPHONE</td>
<td>FIELD TRIP</td>
<td>GROUP SIZE</td>
<td>GRADE LEVEL</td>
<td>GUEST SPEAKER</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Williams Press</td>
<td>Cole Camp, MO</td>
<td>Mr. George Williams</td>
<td>668-4418</td>
<td>Yes</td>
<td>4-6</td>
<td>9-12</td>
<td>Possibly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>547-3911</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson's Company, Inc.</td>
<td>Box 340</td>
<td>Mr. Don Nutten</td>
<td>886-5522</td>
<td>Possibly</td>
<td>12</td>
<td>7-12</td>
<td>Possibly</td>
</tr>
<tr>
<td></td>
<td>Marshall, MO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood & Huston Bank</td>
<td>27 North Street</td>
<td>Mr. Mitchell</td>
<td>886-5575</td>
<td>Yes</td>
<td>25</td>
<td>7-9</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Marshall, MO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeager's Cycle Sales</td>
<td>3001 S. Limit</td>
<td>Mr. Rick Yeager</td>
<td>826-2925</td>
<td>Yes</td>
<td>1-15</td>
<td>8-12</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Sedalia, MO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yost Chevrolet</td>
<td>Odell Avenue</td>
<td>Mr. Ken Yost</td>
<td>886-3348</td>
<td>No</td>
<td>0</td>
<td>7-12</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Marshall, MO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>