This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This document, part B of five parts, covers the topics of Trickling Filtration, Aeration, Secondary Sedimentation and Pond Stabilization. In this guide, the topics and ideas are presented as a series of modules, organized around 16 general objectives common to all processes. The module begins with a statement of purpose which explains what the student will be studying. Next, all the objectives of the module and code numbers keyed to a computerized list of instructional resources are listed. Also included in each module are a glossary of verbs and sections on learning and testing conditions, acceptable performance, instructor activity and student activity. Recommendations on evaluation techniques are included. (BT)
Plant Operations for Wastewater Facilities

Wastewater Technology: A Two-Year Post High School Instructional Program
PLANT OPERATIONS FOR WASTEWATER FACILITIES, Part B

Trickling Filtration
Aeration
Secondary Sedimentation
Pond Stabilization

An Instructor's Guide for Use of Instructional Material
In Wastewater Technology Training Programs

Funded by
US ENVIRONMENTAL PROTECTION AGENCY
Municipal Permits & Operations Division
Water Quality Control Manpower Training Branch
Academic Training Section

Awarded to
CHARLES COUNTY COMMUNITY COLLEGE
La Plata, Maryland

GREENVILLE TECHNICAL COLLEGE
Greenville, South Carolina

LINN-BENTON COMMUNITY COLLEGE
Albany, Oregon

ENVIRONMENTAL SYSTEMS ENGINEERING
Clemson University
Clemson, South Carolina

September 1975
For Information

ON FUNDING OF INSTRUCTIONAL PROGRAMS

Academic Training Section
Water Quality Control Manpower Training Branch
Municipal Permits & Operations Division
US Environmental Protection Agency
Washington, DC 20460
703-557-7355

ON PROJECT ADMINISTRATION AND CURRICULA DEVELOPMENT

John H. Austin, Professor and Head
Environmental Systems Engineering
Clemson University
Clemson, South Carolina 29631
803-656-3278

ON PROGRAM IMPLEMENTATION

Carl Schwing
Charles County Community College
La Plata, Maryland 20646
301-934-2251

James L. Chocklett
Greenville Technical College
Greenville, South Carolina 29606
803-242-3170

Peter C. Scott
Linn-Benton Community College
Albany, Oregon 97321
503-928-2361
Preface

Since 1970 Charles County Community College, Clemson University, Greenville Technical College and Linn-Benton Community College have been working together to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. Through their efforts a two-year wastewater technology instructional program based on performance objectives has been developed and implemented.

Through a grant from the Environmental Protection Agency called Criteria for the Establishment of Two-Year Post High School Wastewater Technology Programs (CEWT) the four colleges set up program criteria and curriculum guidelines which are available in two volumes:

- Program Implementation Procedures
- Volume II: Curriculum Guidelines, Criteria for Establishment and Maintenance of Two-Year Post High School Wastewater Technology Programs

As a result of the implementation of the instructional program at Charles County Community College, Greenville Technical College and Linn-Benton Community College, six guides for instructors based on the course descriptions in Plant Implementation Procedures and the general criterion behaviors of Volume II have been prepared. Plant Operations for Wastewater Facilities, printed in five parts, is the second in the series which includes:

- Volume I Introduction to Environmental Technology
- Volume II Plant Operations for Wastewater Facilities
- Volume III Laboratory Control for Wastewater Facilities
- Volume IV Management and Supervision Procedures for Wastewater Facilities
- Volume V Process Interaction for Wastewater Facilities
- Volume VI Advanced Waste Treatment

ACKNOWLEDGEMENTS

Since the beginning of the project many persons at the four cooperating institutions, as well as outside consultants have participated in the development of this program. Their efforts which have provided source material for this guide have been acknowledged in the volumes to which they made major contributions. Plant Operations for Wastewater Facilities has been written and produced by:

Technical Staff

K. C. Stoakes, Instructor, Environmental Technology Department, Linn-Benton Community College
John F. Wooley, Instructor, Environmental Technology Department, Linn-Benton Community College
John W. Carnegie, Chairman of Environmental Technology, Linn-Benton Community College
Fred L. Delvecchio, Director of Operator Training, Environmental Systems Engineering, Clemson University
John H. Austin, Professor and Head, Environmental Systems Engineering, Clemson University

Editorial and Production Staff

Ada Louise Steirer, Freelance Editor, Clemson, South Carolina
Marie N. Sims, Project Secretary, Environmental Systems Engineering, Clemson University
Charlotte Holmes, Typing Services, Clemson, South Carolina
Jan Willis, Editorial Assistant, Environmental Systems Engineering, Clemson University
Eleanor McLasky, Typist, Environmental Systems Engineering, Clemson University
Roma Norton, Typist, Environmental Systems Engineering, Clemson University
Linda Flagg, Proofreader, Environmental Systems Engineering, Clemson University
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>PERFORMANCE OBJECTIVES</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION TO MODULES OF INSTRUCTION</td>
<td>3</td>
</tr>
<tr>
<td>GLOSSARY OF VERBS</td>
<td>9</td>
</tr>
<tr>
<td>MODULES OF INSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>Module 1 Collection</td>
<td></td>
</tr>
<tr>
<td>Module 2 Chlorination</td>
<td></td>
</tr>
<tr>
<td>Module 3 Screening and Grinding</td>
<td></td>
</tr>
<tr>
<td>Module 4 Grit Removal</td>
<td></td>
</tr>
<tr>
<td>Module 5 Primary Sedimentation</td>
<td></td>
</tr>
<tr>
<td>Module 6 Trickling Filtration</td>
<td></td>
</tr>
<tr>
<td>Module 7 Aeration</td>
<td></td>
</tr>
<tr>
<td>Module 8 Secondary Sedimentation</td>
<td></td>
</tr>
<tr>
<td>Module 9 Pond Stabilization</td>
<td></td>
</tr>
<tr>
<td>Module 10 Thickening</td>
<td></td>
</tr>
<tr>
<td>Module 11 First Stage Digestion</td>
<td></td>
</tr>
<tr>
<td>Module 12 Second Stage Digestion</td>
<td></td>
</tr>
<tr>
<td>Module 13 Sludge Conditioning</td>
<td></td>
</tr>
<tr>
<td>Module 14a Sludge Dewatering</td>
<td></td>
</tr>
<tr>
<td>Module 14b Sludge Dewatering</td>
<td></td>
</tr>
<tr>
<td>Module 15 Solids Disposal</td>
<td></td>
</tr>
<tr>
<td>Module 16 Effluent Disposal</td>
<td></td>
</tr>
<tr>
<td>Module 17 Flow Measurement</td>
<td></td>
</tr>
<tr>
<td>Module 18 Pumping and Piping</td>
<td></td>
</tr>
<tr>
<td>Module 19 Electric Power</td>
<td></td>
</tr>
<tr>
<td>Module 20 Gas Power</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Module 14a and Module 14b are listed under Sludge Dewatering.
- Module 15 is listed under Solids Disposal, but there is no mention of a separate Sludge Disposal module.
- Module 19 and Module 20 are listed under Electric Power and Gas Power, respectively.
Figure 1: Relationship of general criterion behaviors (performance objectives) to the general categories and composite model plant (CMP).
When the treatment plant operators, educators, consultants and representatives from professional water pollution control organizations came together to develop an effective instructional program, they recommended the use of performance or behavioral objectives because such objectives clearly outline:

1. What the student is expected to do as a result of the instructional program.
2. The conditions under which the student shall do it.
3. The standard of performance.

COMPOSITE MODEL PLANT

First, they developed a composite model plant (CMP) of twenty-two process units which is really many wastewater treatment plants in one model. Such a mix of process units seldom occurs in a treatment plant, but if a student becomes competent in the operation and management of the CMP he should be able to perform successfully in any treatment plant.

TASK ANALYSIS

Next, to ensure that the materials were specifically tailored to what the operator does on the job, a task analysis was conducted. They found that the tasks which an operator performs fell into seven general categories which were further divided into 37 tasks or general behaviors. (See figure 1, page vi.) The tasks were organized under:

1. Normal Operation Procedures. These include routine operating activities that do not vary significantly from day to day and that are designed to keep the plant functioning within a normal range of values. For example, the employee conducts routine samplings of the primary sludge and inspects pumping equipment and the wastestream to verify that the process is functioning properly.

2. Abnormal Operation Procedures. These include activities of the plant employee that result from unusual and undesirable conditions of the wastestream. The abnormal procedures enable the plant employee to recognize when the wastestream is abnormal and to return it to an acceptable, normal condition. An abnormal wastestream results when a normal operation procedure is not properly applied, a corrective maintenance procedure is needed or management/supervisory procedures are poor. For example, the plant employee should recognize that a black septic primary sludge sample is an abnormal condition of the wastestream and take appropriate action.

3. Preventive Maintenance Procedures. These include routine maintenance activities of the plant employee which prevent major equipment breakdown and subsequent corrective maintenance. For example, the employee would lubricate bearings and other moving parts, replace worn components and adjust components of the primary sludge pumps.
4. **Corrective Maintenance Procedures.** These include maintenance activities of the plant employee that usually result from the breakdown or malfunction of a unit of equipment or a component. For example, the employee would notice whether the primary sludge pump is malfunctioning and know when and how to correct the disorder or when and how to refer the problem to plant maintenance personnel.

5. **Laboratory Control Procedures.** These include special and routine activities relating to laboratory analysis, the specification of sampling procedures and locations and the general management of the laboratory facilities. For example, the employee would collect primary sludge samples and conduct the analyses.

6. **Systems Interaction Procedures.** These include activities of the plant employee which relate the functioning of specific units of equipment to other process units and to the system as a whole. For example, the employee would determine how the effective functioning of the primary sludge pumps relates to digester performance.

7. **Management/Supervisory Procedures.** These include activities relating to employment practices, record keeping, plant operation policy and the establishment of a constructive and realistic rapport between the plant and the community it serves. For example, the employee would keep records on primary sludge pumping, keep an inventory of spare parts and evaluate the adequacy of maintenance procedures by shift personnel.

CURRICULUM DESIGN

After deciding what process equipment an operator must operate and maintain, and finding out what an operator does through the task analysis, they listed the objectives a student must master to successfully operate a treatment plant. For example, the student will describe and perform the normal inspection procedure for the primary sedimentation unit including frequency of inspection, conditions to look for and the actions he should take.

INSTRUCTOR'S GUIDES

The next step was the design of manuals to guide the instructor. In the guides varied learning activities and imaginative innovations which produce more learning than traditional teaching methods are emphasized. The instructional suggestions do not need to be followed slavishly, but should be modified and improved as much as possible.

The instructor's goal is to achieve the objectives of the curriculum by selecting activities which suit the student's needs and help him to master all the information and skills in the course. The most effective learning occurs when the student is a participant in the learning process, not a spectator.

An instructor should use learning activities which approximate the situations which the student will meet in the treatment plant. If it is not possible to teach in a treatment plant, simulated situations should be set up in the workshop or classroom so that the student can solve rather than discuss problems. Group discussion stimulated by visual materials is an effective learning technique. Lecturing, however, is inefficient. Because the student is not actively involved during a lecture, the instructor should use lectures sparingly.
Introduction to Modules of Instruction

In this instructor's guide the topics and ideas are presented as a series of modules, organized around the general objectives stated in the course descriptions for Plant Operation I, II, III and IV and the In-Plant Practicum which are found in the Program Implementation Procedures of the CEWT Program. Each module is designed to help the instructor plan a course of study for the operation of a treatment process using the CMP process unit. Each module is organized around sixteen objectives common to all processes.

The modules in Plant Operations for Wastewater Facilities are arranged in the order in which the CMP process units occur in the treatment plant. Each process is identified by a letter of the alphabet and the process unit is described in the heading of the module. If the instructor uses the modules in consecutive order, he and his students will follow the treatment of the wastestream from collection to its discharge into the receiving waters. Each module is designed so it can be used as a minicourse in a treatment process. Instructors are urged to group the modules to suit their individual curriculum needs and instructional situations.

Material in the modules can easily be adapted for courses which upgrade the training of operators in normal operation procedures, abnormal operation procedures, preventive maintenance procedures or corrective maintenance procedures by grouping the appropriate objectives from all the modules. For example, an instructor could develop a course in corrective maintenance by grouping objectives 11 and 12 from each module.

INSTRUCTIONAL PROCESS UNITS

Each module assumes that the composite model plant unit will be used for instruction in the process. If the recommended unit is not available, an alternate process unit may be substituted and the instructional materials adapted. The recommended CMP units and alternate units for all the processes are listed in table 1, page 4. Two modules on sludge dewatering are included because it is impossible for a student to master operation of this process by learning to operate one process unit. Remember, however, that a student will be more adequately prepared to work in almost any treatment plant if he is trained on the CMP unit. When it is not possible to use the recommended unit, students should be informed about the operation and function of the unit and hands-on training should be conducted on the best alternate unit available.

PURPOSE OF THE MODULES

The modules in Plant Operations for Wastewater Facilities help the student to learn how to operate all the process units in the wastewater treatment plant. Normal operation, abnormal operation, preventive maintenance and corrective maintenance procedures are included. When the course is completed, he will know why each unit is
TABLE I
SPECIFIC PROCESS UNITS RECOMMENDED FOR USE IN IMPLEMENTATION OF THE TWO-YEAR POST HIGH SCHOOL WASTEWATER TECHNOLOGY INSTRUCTIONAL PROGRAM

<table>
<thead>
<tr>
<th>Module</th>
<th>Process</th>
<th>CMP Unit</th>
<th>Recommended Teaching Unit</th>
<th>Alternate Teaching Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Collection</td>
<td>A</td>
<td>"Combined system with industrial waste"</td>
<td>Sanitary system with industrial waste</td>
</tr>
<tr>
<td>2</td>
<td>Chlorination</td>
<td>B</td>
<td>Vacuum chlorinator with automatic feed to pipe, pneumatic control and electric evaporator</td>
<td>Vacuum chlorinator with automatic feed to pipe, electrical control and electric evaporator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Vacuum chlorinator with automatic feed to pipe and closed-loop pneumatic control</td>
<td>Vacuum chlorinator with automatic feed to pipe and closed electrical control</td>
</tr>
<tr>
<td>3</td>
<td>Screening and</td>
<td>C</td>
<td>Mechanically cleaned bubbler control unit with grinder</td>
<td>Mechanically cleaned electrode control unit with grinder</td>
</tr>
<tr>
<td></td>
<td>Grinding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Grit Removal</td>
<td>D</td>
<td>Aerated unit with bucket elevator</td>
<td>Aerated unit with screw conveyor</td>
</tr>
<tr>
<td>5</td>
<td>Primary Sedimentation</td>
<td>E</td>
<td>Rectangular unit with telescopic valve drawoff, density meter time clock and trough with scraper</td>
<td>Circular unit with telescopic valve drawoff, density meter time clock and trough with scraper</td>
</tr>
<tr>
<td>6</td>
<td>Trickling Filtration</td>
<td>F</td>
<td>Rotary distributor, standard rate unit with dosing tank</td>
<td>Rotary distributor, high rate unit</td>
</tr>
<tr>
<td>7</td>
<td>Aeration</td>
<td>G</td>
<td>Diffused air unit with swing-type diffuser producing fine bubbles</td>
<td>Mechanical aeration unit with turbine and sparger</td>
</tr>
<tr>
<td>8</td>
<td>Secondary Sedimentation</td>
<td>H</td>
<td>Circular, peripheral-feed unit with suction</td>
<td>Circular, center-feed unit with suction</td>
</tr>
<tr>
<td>9</td>
<td>Pond Stabilization</td>
<td>I</td>
<td>Aerobic pond</td>
<td>Facultative pond</td>
</tr>
<tr>
<td>10</td>
<td>Thickening</td>
<td>J</td>
<td>Floatation unit with air</td>
<td>Floatation unit with vacuum</td>
</tr>
<tr>
<td>11</td>
<td>First Stage Digestion</td>
<td>K</td>
<td>Fixed cover, gas recirculation unit with external heat exchanger</td>
<td>Floating cover, gas recirculation unit with external heat exchanger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Second Stage Digestion</td>
<td>L</td>
<td>Floating cover unit with gas storage</td>
<td>Fixed cover unit</td>
</tr>
<tr>
<td>13</td>
<td>Sludge Conditioning</td>
<td>M</td>
<td>Chemical conditioning unit with counter-current elutriation</td>
<td>None</td>
</tr>
<tr>
<td>14a</td>
<td>Sludge Dewatering</td>
<td>O</td>
<td>Vacuum filter unit with cloth</td>
<td>Vacuum filter unit with coil</td>
</tr>
<tr>
<td>14b</td>
<td>Sludge Dewatering</td>
<td>O</td>
<td>Continuous feed centrifuge</td>
<td>None</td>
</tr>
<tr>
<td>15</td>
<td>Solids Disposal P</td>
<td></td>
<td>Multiple hearth incinerator unit</td>
<td>Fluidized bed incinerator unit</td>
</tr>
<tr>
<td>16</td>
<td>Effluent Disposal</td>
<td>Q</td>
<td>Direct reuse system</td>
<td>Underground disposal system</td>
</tr>
<tr>
<td>17</td>
<td>Flow Measurement R</td>
<td></td>
<td>Centralized recording and totalizing system including Parshall flume, Venturi meter, magnetic flowmeter and rotameter</td>
<td>None</td>
</tr>
<tr>
<td>18</td>
<td>Pumping and Piping S</td>
<td></td>
<td>System with magnetically connected, pneumatically controlled, diesel driven, centrifugal pumps; speed reducer connected, electrically controlled, motor driven, positive displacement pumps and appropriate piping</td>
<td>None</td>
</tr>
<tr>
<td>19</td>
<td>Electric Power T</td>
<td></td>
<td>System using delta transformers, generators, electrical switchgear, automatic gear, automatic circuit actuators on motors and telemetering with alarms</td>
<td>System using Y transformers, generators, electrical switchgear, automatic circuit actuators on motors and telemetering with alarms</td>
</tr>
<tr>
<td>20</td>
<td>Gas Power U</td>
<td></td>
<td>System with internally produced gas with high pressure tanks and rotary positive displacement compressors</td>
<td>System with internally produced gas with high pressure tanks and reciprocating compressors</td>
</tr>
</tbody>
</table>
important to the treatment plant and how it affects and interacts with other process units in the treatment system.

STUDENT PREREQUISITES

Completion of Introduction to Environmental Technology and courses in basic mathematics and biology qualify the student to enter the course in Unit Operations for Wastewater Facilities. Concurrent courses in basic chemistry and laboratory control are suggested. (See pages 7 to 19 of Program Implementation Procedures.)

TERMINAL OBJECTIVE

When the student has completed the modules of instruction in this course, he should be able to do the following for each of the processes in the treatment plant:

1. Identify the process unit.
2. Describe the process unit in technical and nontechnical terms.
3. Describe the safety procedures for the process unit and explain how the procedures protect employees and visitors.
4. Identify the components of the process unit. Explain the purpose of each component, how the component works and why it is important.
5. Describe the normal operation procedures for the process unit components.
6. Perform the normal operation procedures for the process unit.
7. Describe and perform the start-up and shut-down procedures for the process unit.
8. Describe the abnormal operation procedures for the process unit.
9. Describe the preventive maintenance procedures for the process unit.
10. Perform the preventive maintenance procedures for the process unit.
11. Describe the corrective maintenance procedures for the process unit components.
12. Perform the corrective maintenance procedures for the process unit components.
13. Perform the safety procedures for the process unit and demonstrate how they protect employees and visitors.
14. Compare other process units to the composite model plant unit.
15. Name and locate the components of the process unit. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.
16. Perform the abnormal operation procedures for the process unit.

RESOURCES

The listing of instructional resources suggests materials now available to instructors to accomplish the desired performance in the student.

Instructional materials 1 to 1866 are keyed to the reference, Instructional Materials Available which is available from:

Office of Water Program Operations
US Environmental Protection Agency
Washington, DC 20460
Two companion volumes to *Instructional Materials Available*, also available from EPA, offer suggestions for selecting audio-visual equipment:

Selecting Audio-Visual Equipment

Selecting Instructional Media and Instructional Systems

The following journals list addresses of companies from whom literature about the process units which they manufacture can be obtained:

"Environmental Science and Technology"
1155 Sixteenth Street, N.W.
Washington, DC 20036

"Water and Sewage Works"
434 South Wabash
Chicago, IL 60605

"Water and Wastes Engineering"
666 Fifth Avenue
New York, NY 10019

If suitable materials are not available, instructors are urged to develop their own resources.

FORMAT OF THE MODULES

The module begins with a statement of purpose which explains what the student will be studying. Next, all the objectives of the module and code numbers keyed to a computerized list of instructional resources are listed for the instructor's convenience.

Objectives. Each module includes sixteen objectives which bring the student to the performance level required by the terminal objective. The knowledge and skills demanded of the student become more complex as he progresses through the sixteen objectives in a module. He begins by identifying components and learning facts about the components and processes. He uses these facts to develop concepts and ideas. Finally, he relates the concepts and ideas to each other so that he can make decisions about plant procedures.

A glossary of verbs which follows this introduction defines the verbs used in the objectives so that the instructor is aware of what he is instructing the student to do and so that his evaluation of the student is based solely on what is stated in the objective.

Conditions. The conditions define the circumstances under which the student performs and is evaluated and lists the information, equipment and assistance to which the student will have access. The best available learning and testing conditions should be used. A process unit in a treatment plant or workshop has more impact on the students than photographs and drawings. For example, if the student is to be given a process unit, unit components, photographs or diagrams of a unit, the instructor should provide a process unit. If a process unit is not available, he would use components of the unit in combination with photographs of those components which he does not have available. Line drawings and diagrams should not be used if photographs and manufacturers' illustrations are available.

Acceptable Performance. The acceptable performance expands the objective and details the steps a student must follow to reach the objective. To move on to the next objective, at least 70% of each step or category must be mastered with no repeated errors between modules. For example, no student can complete the course of study if he consistently fails to give attention to moving parts as he
performs safety procedures or to describe the odor as "evaluates the characteristics of the wastestream. In this section the instructor will find the main topics of his lesson plan and for the evaluation of the student's performance.

Instructor Activity. The instructor should get to know his class by working with small groups and with each student. He should encourage students to learn from each other as they work together. He should involve the student in the instructional and learning process. Instructional activities are paired numerically with student activities.

Student Activity. This is a listing of activities which the student will take part in, in order to accomplish the specified performance.

EVALUATION TECHNIQUE

The instructor may use or adapt the learning activities listed under instructor activity and student activity as evaluation techniques. The technique chosen should reflect what the objective asks the student to do. For example, if a student is asked to describe, the evaluation technique is a description. The student should be evaluated under the conditions and to the performance level required for each objective.
The glossary of verbs is included here so that the instructor will know exactly what the student is being asked to do to meet his objective. Notice the difference, for example, between the meanings of identify and name. When a student is asked to identify, the instructor is providing the name of the thing to be identified. But, when the student must name something, he must supply the name.

The list includes all the verbs from the objectives and the acceptable performance sections of all the modules, as well as some verbs used in the instructor and student activities.

<table>
<thead>
<tr>
<th>DEFINITION</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLY</td>
<td>To make use of as suitable, fitting or relevant.</td>
</tr>
<tr>
<td>CHECK</td>
<td>To inspect and ascertain the condition of, especially in order to determine that the condition is satisfactory.</td>
</tr>
<tr>
<td>COMMENT ON</td>
<td>To express an opinion or attitude about what has been seen or heard.</td>
</tr>
<tr>
<td>COMPARE</td>
<td>To examine the character or qualities of, especially for the purpose of discovering resemblances or differences.</td>
</tr>
<tr>
<td>CONSIDER</td>
<td>To give thought to with a view to purchasing, accepting or adopting.</td>
</tr>
<tr>
<td>CORRECT</td>
<td>To alter or adjust to bring to some standard or required condition.</td>
</tr>
<tr>
<td>DEMONSTRATE</td>
<td>To illustrate or explain in an orderly and detailed way with many examples, specimens and particulars.</td>
</tr>
<tr>
<td>DEFINITION</td>
<td>APPLICATION</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DESCRIBE: To represent by words written or spoken for the knowledge or</td>
<td>Describe the safety procedures for the screening and grinding unit.</td>
</tr>
<tr>
<td>understanding of others, to transmit an image of the identifying features,</td>
<td></td>
</tr>
<tr>
<td>the nature and characteristics of objects, events and actions.</td>
<td></td>
</tr>
<tr>
<td>DEVELOP: To produce or generate.</td>
<td>Develop a picture file of first stage digestion units.</td>
</tr>
<tr>
<td>DISCUSS: To talk about, to present in detail, to exchange views or</td>
<td>Discuss treatment plant case histories.</td>
</tr>
<tr>
<td>information about.</td>
<td></td>
</tr>
<tr>
<td>EVALUATE: To examine and make a judgment about quality, significance,</td>
<td>Evaluate the wastestream for abnormal conditions.</td>
</tr>
<tr>
<td>amount, degree or condition of.</td>
<td></td>
</tr>
<tr>
<td>EXPLAIN: To make plain or clear, to present in detail.</td>
<td>Explain the purpose of each component, how the component works and why it</td>
</tr>
<tr>
<td>IDENTIFY: To establish the identity of, pick out or single out an object</td>
<td>is important.</td>
</tr>
<tr>
<td>in response to its name by pointing, picking up, underlining, marking or</td>
<td>Identify the components of the chlorination unit.</td>
</tr>
<tr>
<td>other responses.</td>
<td></td>
</tr>
<tr>
<td>INDICATE: To state or express without going into detail.</td>
<td>Indicate whether the process unit is used for secondary sedimentation.</td>
</tr>
<tr>
<td>INSPECT: To view closely and critically, to determine quality or state,</td>
<td>Inspect a treatment plant.</td>
</tr>
<tr>
<td>to detect errors or otherwise appraise.</td>
<td></td>
</tr>
<tr>
<td>LIST: To enumerate or specify.</td>
<td>List routine calculations for the pond stabilization unit.</td>
</tr>
<tr>
<td>LOCATE: To stipulate the position of an object in relation to other</td>
<td>Locate the components of the trickling filtration unit.</td>
</tr>
<tr>
<td>objects.</td>
<td></td>
</tr>
<tr>
<td>DEFINITION</td>
<td>APPLICATION</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>NAME To supply the correct name, in oral or written form, for an object, class of objects, persons, places, conditions or events which are pointed out or described.</td>
<td>Name the components of the primary sedimentation unit.</td>
</tr>
<tr>
<td>OBSERVE To pay careful, directed, analytical attention to.</td>
<td>Observe the thickening process during a plant tour.</td>
</tr>
<tr>
<td>PERFORM To carry out an action or pattern of behavior. (Implies an act for which a process or pattern of movement has already been established, especially one calling for skill or precision, or for the assignment or assumption of responsibility.)</td>
<td>Perform the normal operation procedures for the grit removal unit.</td>
</tr>
<tr>
<td>POINT OUT To indicate the position or direction of, especially by extending a finger toward the thing so indicated, to direct someone's attention to.</td>
<td>Point out characteristics which distinguish the first stage digestion unit from other units.</td>
</tr>
<tr>
<td>RECOMMEND To mention or introduce as being worthy of acceptance, use or trial, to advise.</td>
<td>Recommend procedures to correct the unsafe conditions.</td>
</tr>
<tr>
<td>SELECT To choose something from a number or group usually by fitness, excellence, or other distinguishing feature.</td>
<td>Select the reference materials and tools needed to perform the corrective maintenance.</td>
</tr>
</tbody>
</table>
MODULE 6
TRICKLING FILTRATION
A rotary distributor, standard rate unit with dosing tank
Composite Model Plant Unit F

PURPOSE:
In this module the student will learn to perform all the activities in the objectives as they apply to a rotary distributor, standard rate unit with dosing tank. READ PAGES 1 TO 11 BEFORE USING THIS MODULE.

OBJECTIVES:
6.1 Identify the trickling filtration unit.
6.2 Describe the trickling filtration process in technical and nontechnical terms.
6.3 Describe the safety procedures for the trickling filtration unit and explain how the procedures protect employees and visitors.
6.4 Identify the components of a trickling filtration unit. Explain the purpose of each component, how the component works and why it is important.
6.5 Describe the normal operation procedures for the trickling filtration unit components listed on page 17.
6.6 Perform the normal operation procedures for the trickling filtration unit.
6.7 Describe and perform the start-up and shut-down procedures for the trickling filtration unit.
6.8 Describe the abnormal operation procedures for the trickling filtration process.
6.9 Describe the preventive maintenance procedures for the trickling filtration unit.
6.10 Perform the preventive maintenance procedures for the trickling filtration unit.
6.11 Describe the corrective maintenance procedures for the trickling filtration unit components listed on page 17.
6.12 Perform the corrective maintenance procedures for the trickling filtration unit components.
6.13 Perform the safety procedures for the trickling filtration unit and demonstrate how they protect employees and visitors.
6.14 Compare other trickling filtration units to the rotary distributor, standard rate unit with dosing tank (composite model plant unit F).
6.15 Name and locate the components of the trickling filtration unit listed on page 17. Name and select reference materials.
which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

6.18 Perform the abnormal operation procedures for the trickling filtration unit.

RESOURCES:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>116</th>
<th>120</th>
<th>125</th>
<th>141</th>
<th>143</th>
<th>144</th>
<th>307</th>
<th>308</th>
<th>309</th>
<th>316</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>317</td>
<td>320</td>
<td>321</td>
<td>324</td>
<td>421</td>
<td>459</td>
<td>511</td>
<td>551</td>
<td>552</td>
<td>553</td>
<td>554</td>
</tr>
<tr>
<td></td>
<td>937</td>
<td>990</td>
<td>1033</td>
<td>1034</td>
<td>1399</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVE 6.1: Identify the trickling filtration unit.

CONDITIONS: Given a unit, a model of a unit or a photograph of a unit.

ACCEPTABLE PERFORMANCE: The student will:

- Indicate whether the process unit is used for trickling filtration.

INSTRUCTOR ACTIVITY: 1. Point out characteristics which distinguish the trickling filtration unit from other process units.

STUDENT ACTIVITY: 1. Develop a picture file of trickling filtration units. Mark distinguishing characteristics.

OBJECTIVE 6.2: Describe the trickling filtration process in technical and nontechnical terms.

CONDITIONS: Given photographs of the trickling filtration unit.

ACCEPTABLE PERFORMANCE: The student will:

- Describe the trickling filtration unit, explaining the meaning of:
 - bacteria bed
 - filter
Describe the process variations, defining:
- roughing filter
- polishing filter
- standard rate filter
- high rate filter
- multiple stage filter

Describe the purpose of trickling filtration.

Describe how trickling filtration affects:
- secondary sedimentation
- effluent disposal
- flow measurement
- pumping and piping

INSTRUCTOR ACTIVITY:

1. Use diagrams, photographs and slides to describe secondary sedimentation.
2. Describe the secondary sedimentation process during a plant tour. React to the student's description of the process.

STUDENT ACTIVITY:

1. Describe the secondary sedimentation process while viewing photographs, diagrams and slides.
2. Observe and describe the secondary sedimentation process during a plant tour.

OBJECTIVE 6.3:

Describe the safety procedures for the trickling filtration unit and explain how the procedures protect employees and visitors.

CONDITIONS:

Given a list of operation and maintenance procedures.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the safety procedures for the trickling filtration unit, commenting on:
- High-risk activities
- adjusting distributor
- cleaning distributor nozzles
- removing debris from media
INSTRUCTOR ACTIVITY:
1. Discuss treatment plant case histories.
2. Describe the conditions in a plant and ask for evaluation.
3. Describe the safety procedures for each operation and maintenance procedure.
4. Prepare slides of sources of danger and high-risk activities.

STUDENT ACTIVITY:
1. Read case histories and comment on employee safety procedures.
2. Evaluate conditions which the instructor has described. Suggest remedies.
3. Role play operational or maintenance procedures. Select proper safety equipment and name the sources of danger and high-risk activities. Develop a manual of safety procedures for the trickling filtration unit.
4. Identify sources of danger and high-risk activities pictured in slides.

walking on media
working with switches in automatic position
Sources of danger
acid wastes
cautic wastes
deep wells
electrical equipment
explosive gases
ladders
moving parts
open doors and covers
slippery walks
toxic gases
Safety equipment
first-aid kit
ladders
lockout tags and keys
protective clothing
railings
safety treads on stairs and ladders

Explain how the procedures protect employees and visitors.
OBJECTIVE 6.4: Identify the components of a trickling filtration unit. Explain the purpose of each component, how the component works and why it is important.

CONDITIONS: Given a trickling filtration unit, unit components or a diagram, model or photographs of a unit and a list of components:

ACCEPTABLE PERFORMANCE: The student will:

- Identify components of the trickling filtration unit and associated equipment:
 - bearing
 - blowoff pipe
 - dosing tank
 - fan
 - fire-fighting equipment
 - first-aid kit
 - guy line
 - media
 - mercury seal
 - rotary distributor
 - siphon breaker
 - structure
 - underdrain
 - vent

- Explain the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

1. Point out and name components in diagrams, photographs or models.
2. Arrange photographs or models of components in the workshop for student identification.
3. Point out and name components during a plant tour.
4. Question the students about the purpose of each component, how the component works and why it is important.

STUDENT ACTIVITY:

1. Identify the components which the instructor names on diagrams, photographs or models.
2. Identify the components at stations in the workshop in writing.
3. Identify components during a plant tour.
4. Explain the purpose of each component, how the component works and why it is important.

OBJECTIVE 6.5: Describe the normal operation procedures for the trickling filtration unit components listed above.
CONDITIONS: Given a trickling filtration unit or slides or photographs of a trickling filtration unit, a list of components of the unit, a checklist of characteristics and a normal operation procedures manual.

ACCEPTABLE PERFORMANCE: The student will:

Describe the characteristics of each component which the operator checks to determine whether the component is functioning normally, commenting on:

- biological growth
- motion
- color
- odor
- corrosion
- position
- deterioration
- sound
- flow
- vibration

Name the sense or indicator which monitors each characteristic.

Explain how often the characteristics of each component must be checked and why the component must be checked on this schedule.

Describe what an operator does if the characteristics of a component indicate that it is not functioning normally, including:

- making adjustments
- deciding about corrective maintenance
- reporting to supervisors
- reporting in written records

Explain why a component's characteristics must be returned to normal.

Describe routine sampling for the trickling filtration process.

List routine calculations for the trickling filtration process.

Describe routine procedures for recording data.

INSTRUCTOR ACTIVITY:

1. Describe the characteristics of the components of the trickling filtration unit.
2. Describe the normal operation procedures for the trickling filtration unit. Use color pictures.
3. Describe the normal operation procedures during a slide show of components of the trickling filtration unit.
Trickling Filtration

STUDENT ACTIVITY:

4. Describe and explain the normal operation procedures during a plant tour. Listen to the student's description of the procedures.

OBJECTIVE 6.6:
Perform the normal operation procedures for the trickling filtration unit.

CONDITIONS:
Given a trickling filtration unit, the manual of normal operation procedures which the student has developed for the trickling filtration unit and basic references.

ACCEPTABLE PERFORMANCE:
The student will:

- Check and evaluate the characteristics of each component, explaining his actions.
- Perform the procedures which an operator follows if the characteristics of a component indicate that it is not functioning normally.
- Perform the routine sampling.
- Perform the routine calculations.
- Perform the routine record keeping.

INSTRUCTOR ACTIVITY:

1. Observe the student demonstrating normal operation procedures in a dry run in a treatment plant.
2. Observe the student performing normal operation procedures in a treatment plant.

STUDENT ACTIVITY:

1. Demonstrate the normal operation procedures in a dry run in a treatment plant.
2. Perform and explain the normal operation procedures in a treatment plant.

OBJECTIVE 6.7:

Describe and perform the start-up and shut-down procedures for the trickling filtration unit.

CONDITIONS:

Given a mock-up, model or photograph of a trickling filtration unit and a trickling filtration unit with the manufacturer's operation manual.

ACCEPTABLE PERFORMANCE:

The student will:

Start up and shut down a trickling filtration unit, following the manufacturer's instructions.

INSTRUCTOR ACTIVITY:

1. Demonstrate and perform the start-up procedures in a treatment plant.
2. Demonstrate and perform the shut-down procedures in a treatment plant.
3. Observe the student performing the start-up procedures in a treatment plant.
4. Observe the student performing the shut-down procedures in a treatment plant.
5. Observe the student as he evaluates his start-up procedures.
6. Observe the student as he evaluates his shut-down procedures.

STUDENT ACTIVITY:

1. Describe the start-up procedures in a dry run in a treatment plant.
2. Describe the shut-down procedures in a dry run in a treatment plant.
3. Perform the start-up procedures in a treatment plant.
4. Perform the shut-down procedures in a treatment plant.
5. Evaluate the operation of the trickling filtration unit to determine whether correct start-up procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)
6. Evaluate the operation of the trickling filtration unit to determine whether correct shut-down procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)

OBJECTIVE 6.8: Describe the abnormal operation procedures for the trickling filtration process.

CONDITIONS: Given a wastestream in a treatment plant or color photographs of a wastestream, a checklist of the conditions of the wastestream and plant records and reference materials.

ACCEPTABLE PERFORMANCE: The student will:

- Evaluate the wastestream for abnormal conditions, commenting on:
 - ammonia nitrogen
 - application rate
 - BOD
 - COD
 - color
 - filter flies
 - flow
 - ice
 - industrial wastes
 - nitrate nitrogen
 - nitrite nitrogen
 - odor
 - organic and total Kjedahl nitrogen
 - orthophosphate
 - pH
 - ponding
 - septic sewage
 - suspended solids
 - temperature
 - turbidity

- Describe the cause and effect of the abnormal condition.

- Explain how often the condition of the wastestream must be checked.

- Describe what an operator does if he observes abnormal conditions, including:
 - operational changes
 - reporting to supervisors
 - sampling procedures

- Describe how the action of the operator will improve the condition of the wastestream.
INSTRUCTOR ACTIVITY: 1. Describe and explain the abnormal conditions of the wastestream illustrated in color pictures.
 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
 3. Describe and explain the abnormal operation procedures during a slide show.
 4. Describe and explain the abnormal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY: 1. Evaluate and explain the abnormal conditions of the wastestream which are illustrated in color pictures.
 2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
 3. Describe and explain the abnormal operation procedures in a class discussion after a slide show.
 4. Evaluate and explain the condition of the wastestream during a plant tour. Describe and explain the abnormal operation procedures.

OBJECTIVE 6.9: Describe the preventive maintenance procedures for the trickling filtration unit.

CONDITIONS: Given a trickling filtration unit or pictures and drawings of a trickling filtration unit and reference materials, including:
 - inspection records
 - manufacturer's maintenance guides
 - plant drawings and specifications
 - preventive maintenance schedule

ACCEPTABLE PERFORMANCE: The student will:
 Describe these preventive maintenance procedures for the trickling filtration unit:
 - Cleaning
 - blowoff pipe
 - dosing tank
 - rotary distributor
 - siphon breaker
 - structure
 - Lubrication
 - underdrain
 - vent
 - Lubrication
 - bearing
 - fan
INSTRUCTOR ACTIVITY:

STUDENT ACTIVITY:

OBJECTIVE 6.10:

CONDITIONS:
plant drawings and specifications
preventive maintenance schedule

ACCEPTABLE PERFORMANCE: The student will:

Select the reference materials and tools needed to perform the preventive maintenance procedures.

Apply the preventive maintenance schedule for the trickling filtration unit, explaining his actions.

Perform the procedures which an operator follows when a component needs preventive maintenance, explaining his actions.

INSTRUCTOR ACTIVITY:
1. Set up simulated situations in the workshop.
2. Observe student inspection of a treatment plant.
3. Observe the student performing the preventive maintenance procedures in a treatment plant.

STUDENT ACTIVITY:
1. Small groups of students perform the preventive maintenance procedures in simulated situations in the workshop.
2. Inspect a treatment plant. Evaluate and explain the preventive maintenance procedures.
3. Perform and explain the preventive maintenance procedures in a treatment plant.

OBJECTIVE 6.11: Describe the corrective maintenance procedures for the trickling filtration unit components listed on page 17.

CONDITIONS: Given a trickling filtration unit or a mock-up, photographs or drawings of a trickling filtration unit, the manual of operation procedures which the student has developed for the trickling filtration unit, tools and reference materials, including:
catalogue of replacement parts
equipment catalogues
manufacturer's maintenance guides
ACCEPTABLE PERFORMANCE: The student will:

Describe how an operator evaluates each component of the trickling filtration unit for corrective maintenance, commenting on:
- biological growth
- color
- corrosion
- deterioration
- flow
- motion
- odor
- position
- sound
- vibration

Explain why a component has malfunctioned.

Name the reference materials and tools needed to perform the corrective maintenance.

Describe what an operator does when he discovers a malfunction, including:
- evaluation of capabilities of plant personnel to perform the procedures
- selection of replacement parts
- record keeping

Describe how the operator corrects the malfunction.

INSTRUCTOR ACTIVITY:
1. Describe and explain the corrective maintenance procedures for the trickling filtration unit, using diagrams and pictures.
2. Describe and explain the corrective maintenance procedures during a slide show.
3. Describe and explain the corrective maintenance procedures during treatment plant tours.

STUDENT ACTIVITY:
1. Describe and explain the corrective maintenance procedures in situations described or pictured by the instructor.
2. Describe and explain the corrective maintenance procedures during a slide show.
3. Observe, describe and explain the corrective maintenance procedures during a treatment plant tour.

OBJECTIVE 6.12: Perform the corrective maintenance procedures for the trickling filtration unit components.
CONDITIONS: Given a trickling filtration unit or unit components, the operation procedures manual which the student has developed, tools and reference materials, including:
catalogue of replacement parts
equipment catalogues
manufacturer's maintenance guides
manufacturer's operation manual

ACCEPTABLE PERFORMANCE: The student will:
Evaluate the components of the trickling filtration unit for corrective maintenance, explaining why a component has malfunctioned and commenting on:
biochemical growth motion
color odor
corrosion position
deterioration sound
flow vibration
Select the reference materials and tools needed to perform the corrective maintenance.
Perform the procedures which an operator follows when a component malfunctions, including:
evaluation of capabilities of plant personnel to perform the procedures
selection of replacement parts
record keeping
Correct the malfunction.

INSTRUCTOR ACTIVITY:
1. Set up simulated situations in the workshop.
2. Observe the student as he evaluates the components in a treatment plant.
3. Observe the student performing the corrective maintenance procedures in a treatment plant.

STUDENT ACTIVITY:
1. Small groups of students perform and explain the corrective maintenance procedures in simulated situations in the workshop.
2. Evaluate the components for corrective maintenance.
3. Perform and explain the corrective maintenance procedures in a treatment plant.
OBJECTIVE 6.13:

Perform the safety procedures for the trickling filtration unit and demonstrate how they protect employees and visitors.

CONDITIONS:

Given a list of operation or maintenance procedures, the student's manual of safety procedures, tools and safety equipment.

ACCEPTABLE PERFORMANCE:

The student will:

- Identify hazardous conditions in the trickling filtration unit, commenting on:
 - high-risk activities
 - sources of danger
 - safety equipment

- Explain how the procedures protect employees and visitors.

- Recommend corrective procedures and correct the unsafe condition.

INSTRUCTOR ACTIVITY:

1. Set up simulated situations in the workshop.
2. Observe the student as he evaluates the safety conditions in a treatment plant.
3. Observe the student performing the safety procedures in a treatment plant.

STUDENT ACTIVITY:

1. Evaluate safety conditions in simulated situations and recommend corrective procedures.
2. Evaluate safety conditions in a treatment plant and recommend corrective procedures.
3. Perform the safety procedures in a treatment plant.

OBJECTIVE 6.14:

Compare other trickling filtration units to the rotary distributor, standard rate unit with dosing tank (composite model plant unit F).

CONDITIONS:

Given a process unit and reference materials, including:
- equipment catalogues
- laboratory reports
- manufacturer's bulletins
manufacturer's operation manuals
plant maintenance and operation records

ACCEPTABLE PERFORMANCE: The student will:

Choose composite model plant unit F with:

- a rotary distributor, high rate unit.
- a rotary distributor, roughing unit.

Consider:
- availability of replacement parts
- capital costs
- dependency on surrounding environment
- ease of repair
- efficiency
- flow-handling capabilities
- maintenance costs
- nuisance to neighbors
- operational costs
- operational skills
- personnel requirements
- reliability
- resistance to upset
- sensitivity of controls
- space requirements
- waste-handling capabilities

INSTRUCTOR ACTIVITY: 1. Prepare a chart for tabulation of information about the units.
2. Compare composite model plant unit F with the other units.
3. Help the student to collect information for reports on the advantages and disadvantages of each unit.

STUDENT ACTIVITY: 1. List information about the units on a chart.
2. Compare the units in a panel discussion.
3. Write a report on the advantages and disadvantages of each unit.

OBJECTIVE 6.15: Name and locate the components of the trickling filtration unit listed on page 17. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.
CONDITIONS: Given a trickling filtration unit, unit components or a diagram, model or photographs of a unit and reference materials, including:
- contractor's plans of trickling filtration unit
- manufacturer's maintenance guides
- operation and maintenance manuals

ACCEPTABLE PERFORMANCE: The student will:
- Name and locate the components of the trickling filtration unit.
- Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:
1. Point out components of the trickling filtration unit on diagrams, photographs or models.
2. Listen to the student naming the components and the applicable reference materials during a plant tour.
3. Name and display the reference materials which describe the trickling filtration unit and normal operation procedures.

STUDENT ACTIVITY:
1. Name the components which the instructor points out on diagrams, photographs or models.
2. Name the components which the instructor points out during a plant tour and name the reference materials which apply to the components.
3. Name and select the reference materials which describe the trickling filtration unit and normal operation procedures.

OBJECTIVE 6.16: Perform the abnormal operation procedures for the trickling filtration unit.

CONDITIONS: Given a wastestream in a treatment plant and reference materials, including:
- industrial waste records
- operation logs
- operator manuals
- plant performance guides
ACCEPTABLE PERFORMANCE: The student will:

Evaluate the wastestream for abnormal conditions, commenting on:
- ammonia nitrogen
- application rate
- BOD
- COD
- color
- filter flies
- flow
- ice
- industrial wastes
- nitrate nitrogen
- nitrite nitrogen
- odor
- organic and total Kjedahl nitrogen
- orthophosphate
- pH
- ponding
- septic sewage
- suspended solids
- temperature
- turbidity

Select the references he needs to return the wastestream to normal.

Perform the abnormal operation procedures.

INSTRUCTOR ACTIVITY:
1. Observe the student as he evaluates the wastestream in a treatment plant.
2. Describe the references needed to correct abnormal conditions of the wastestream.
3. Observe the student performing the abnormal operation procedures in simulated situations and in a treatment plant.

STUDENT ACTIVITY:
1. Evaluate the wastestream in a treatment plant.
2. Select the references needed to correct abnormal conditions of the wastestream.
3. Perform the abnormal operation procedures in simulated situations or in a treatment plant.

<<<<<<>>>>>>
PURPOSE: In this module the student will learn to perform all the activities in the objectives as they apply to a diffused air unit with swing-type diffuser producing fine bubbles. READ PAGES 1 TO 11 BEFORE USING THIS MODULE.

OBJECTIVES:

7.1 Identify the aeration unit.
7.2 Describe the aeration process in technical and nontechnical terms.
7.3 Describe the safety procedures for the aeration unit and explain how the procedures protect employees and visitors.
7.4 Identify the components of an aeration unit. Explain the purpose of each component, how the component works and why it is important.
7.5 Describe the normal operation procedures for the aeration unit components listed on page 35.
7.6 Perform the normal operation procedures for the aeration unit.
7.7 Describe and perform the start-up and shut-down procedures for the aeration unit.
7.8 Describe the abnormal operation procedures for the aeration process.
7.9 Describe the preventive maintenance procedures for the aeration unit.
7.10 Perform the preventive maintenance procedures for the aeration unit.
7.11 Describe the corrective maintenance procedures for the aeration unit components listed on page 35.
7.12 Perform the corrective maintenance procedures for the aeration unit components.
7.13 Perform the safety procedures for the aeration unit and demonstrate how they protect employees and visitors.
7.14 Compare other aeration units to the diffused air unit with swing-type diffuser producing fine bubbles (composite model plant unit G).
7.15 Name and locate the components of the aeration unit listed on page 35. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.
7.16 Perform the abnormal operation procedures for the aeration unit.

RESOURCES:

<table>
<thead>
<tr>
<th>3</th>
<th>116</th>
<th>120</th>
<th>125</th>
<th>141</th>
<th>143</th>
<th>144</th>
<th>206</th>
<th>207</th>
<th>208</th>
<th>307</th>
</tr>
</thead>
<tbody>
<tr>
<td>308</td>
<td>309</td>
<td>316</td>
<td>317</td>
<td>320</td>
<td>321</td>
<td>324</td>
<td>421</td>
<td>459</td>
<td>511</td>
<td>544</td>
</tr>
<tr>
<td>545</td>
<td>546</td>
<td>547</td>
<td>551</td>
<td>552</td>
<td>553</td>
<td>554</td>
<td>586</td>
<td>903</td>
<td>904</td>
<td>937</td>
</tr>
<tr>
<td>990</td>
<td>1033</td>
<td>1034</td>
<td>1089</td>
<td>1399</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVE 7.1:
Identify the aeration unit.

CONDITIONS:
Given a unit, a model of a unit or a photograph of a unit.

ACCEPTABLE PERFORMANCE:
The student will:
Indicate whether the process unit is used for aeration.

INSTRUCTOR ACTIVITY:
1. Point out characteristics which distinguish the aeration unit from other process units.

STUDENT ACTIVITY:
1. Develop a picture file of aeration units. Mark distinguishing characteristics.

OBJECTIVE 7.2:
Describe the aeration process in technical and nontechnical terms.

CONDITIONS:
Given photographs of the aeration unit.

ACCEPTABLE PERFORMANCE:
The student will:
Describe the aeration unit, explaining the meaning of:
activated sludge tank
aeration basin
aeration tank
aerator
Aeration

INSTRUCTOR ACTIVITY:

STUDENT ACTIVITY:

OBJECTIVE 7.3:

CONDITIONS:

contact tank
mixed liquor tank
pre-aeration tank
stabilization basin
stabilization tank

Describe the purpose of aeration.

Describe the process variations, defining:
conventional aeration
step aeration
modified aeration
activated sludge
contact stabilization
complete mix
biosorption
high rate aeration
extended aeration
aerated lagoon
Kraus process

Describe how aeration affects:
secondary sedimentation
effluent disposal
flow measurement
pumping and piping

1. Use diagrams, photographs and slides to describe aeration.
2. Describe the aeration process during a plant tour. React to the student's description of the process.

1. Describe the aeration process while viewing photographs, diagrams and slides.
2. Observe and describe the aeration process during a plant tour.

Describe the safety procedures for the aeration unit and explain how the procedures protect employees and visitors.

Given a list of operation and maintenance procedures.
ACCEPTABLE PERFORMANCE: The student will:

Describe the safety procedures for the aeration unit, commenting on:

High-risk activities
- hoisting diffusers
- removing debris from channels
- working near unrailed pits and wells
- working with switches in automatic position

Sources of danger
- acid wastes
- caustic wastes
- deep wells
- electrical equipment
- explosive gases
- gratings
- loose railings
- moving parts
- open doors or covers
- rotating equipment
- slippery walks
- toxic gases
- wells

Safety equipment
- chain gates where diffusers rise up
- first-aid kit
- gratings over wye walks
- life preserver
- life vest
- lockout keys and tags
- protective clothing
- railings
- safety harness
- stair safety treads

Explain how the procedures protect employees and visitors.

INSTRUCTOR ACTIVITY:
1. Discuss treatment plant case histories.
2. Describe the conditions in a plant and ask for evaluation.
3. Describe the safety procedures for each operation and maintenance procedure.
4. Prepare slides of sources of danger and high-risk activities.

STUDENT ACTIVITY:
1. Read case histories and comment on employee safety procedures.
OBJECTIVE 7.4: Identify the components of an aeration unit. Explain the purpose of each component, how the component works and why it is important.

CONDITIONS: Given an aeration unit, unit components or diagram, model or photographs of a unit and a list of components.

ACCEPTABLE PERFORMANCE: The student will:

- Identify components of the aeration unit and associated equipment:
 - air filter
 - blower
 - diffuser tube
 - elbow joint
 - fire-fighting equipment
 - first-aid kit
 - foam spray system
 - gage
 - harness
 - header
 - indicator light
 - life jacket
 - manometer
 - meter
 - motor
 - piping
 - pump
 - railing
 - safety line
 - valve

- Explain the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

1. Point out and name components in diagrams, photographs or models.
2. Arrange photographs or models of components in the workshop for student identification.
3. Point out and name components during a plant tour.
4. Question the students about the purpose of each component, how the component works and why it is important.
STUDENT ACTIVITY:

1. Identify the components which the instructor names on diagrams, photographs or models.
2. Identify the components at stations in the workshop in writing.
3. Identify components during a plant tour.
4. Explain the purpose of each component, how the component works and why it is important.

OBJECTIVE 7.5:

Describe the normal operation procedures for the aeration unit components listed on page 35.

CONDITIONS:

Given an aeration unit or slides or photographs of an aeration unit, a list of components of the unit, a checklist of characteristics and a normal operation procedures manual.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the characteristics of each component which the operator checks to determine whether the component is functioning normally, commenting on:
- agitation position
- color pressure
- corrosion sound
- flow temperature
- motion vibration
- odor

Name the sense or indicator which monitors each characteristic.

Explain how often the characteristics of each component must be checked and why the component must be checked on this schedule.

Describe what an operator does if the characteristics of a component indicate that it is not functioning normally, including:
- making adjustments
- deciding about corrective maintenance
- reporting to supervisors
- reporting in written records

Explain why a component's characteristics must be returned to normal.
INSTRUCTOR ACTIVITY:

1. Describe the characteristics of the components of the aeration unit.
2. Describe the normal operation procedures for the aeration unit. Use color pictures.
3. Describe the normal operation procedures during a slide show of components of the aeration unit.
4. Describe and explain the normal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

1. Develop a checklist, listing the components of the aeration unit and their normal characteristics.
2. Develop a manual of normal operation procedures.
3. Describe the normal operation procedures during a slide show of components of the aeration unit.
4. Observe and describe the normal operation procedures during a plant tour.

OBJECTIVE 7.6:

Perform the normal operation procedures for the aeration unit.

CONDITIONS:

Given an aeration unit, the manual of normal operation procedures which the student has developed for the aeration unit and basic references.

ACCEPTABLE PERFORMANCE:

The student will:

- Check and evaluate the characteristics of each component, explaining his actions.
- Perform the procedures which an operator follows if the characteristics of a component indicate that it is not functioning normally.
- Perform the routine sampling.
- Perform the routine calculations.
- Perform the routine record keeping.
INSTRUCTOR ACTIVITY: 1. Observe the student demonstrating normal operation procedures in a dry run in a treatment plant.
2. Observe the student performing normal operation procedures in a treatment plant.

STUDENT ACTIVITY: 1. Demonstrate the normal operation procedures in a dry run in a treatment plant.
2. Perform and explain the normal operation procedures in a treatment plant.

OBJECTIVE 7.7: Describe and perform the start-up and shut-down procedures for the aeration unit.

CONDITIONS: Given a mock-up, model or photograph of an aeration unit and an aeration unit with the manufacturer's operation manual.

ACCEPTABLE PERFORMANCE: The student will:
Start up and shut down an aeration unit, following the manufacturer's instructions.

INSTRUCTOR ACTIVITY: 1. Demonstrate and perform the start-up procedures in a treatment plant.
2. Demonstrate and perform the shut-down procedures in a treatment plant.
3. Observe the student performing the start-up procedures in a treatment plant.
4. Observe the student performing the shut-down procedures in a treatment plant.
5. Observe the student as he evaluates his start-up procedures.
6. Observe the student as he evaluates his shut-down procedures.

STUDENT ACTIVITY: 1. Describe the start-up procedures in a dry run in a treatment plant.
2. Describe the shut-down procedures in a dry run in a treatment plant.
3. Perform the start-up procedures in a treatment plant.
4. Perform the shut-down procedures in a treatment plant.
5. Evaluate the operation of the aeration unit to determine whether correct start-up procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)
6. Evaluate the operation of the aeration unit to determine whether correct shut-down procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)

<<<<<>>>>>>

OBJECTIVE 7.8:

Describe the abnormal operation procedures for the aeration process.

CONDITIONS:

Given a wastestream in a treatment plant or color photographs of a wastestream, a checklist of the conditions of the wastestream and plant records and reference materials.

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions, commenting on:

- ammonia nitrogen
- odor
- BOD
- organic and total Kjedahl
- COD
- nitrogen
- color
- orthophosphate
- DO
- pH
- flow
- relative stability
- foam
- residence time
- ice
- septic sewage
- industrial wastes
- SDI
- level
- sludge age
- nitrate nitrogen
- suspended solids
- nitrite nitrogen
- SVI

Describe the cause and effect of the abnormal condition.

Explain how often the condition of the wastestream must be checked.
Describe what an operator does if he observes abnormal conditions, including:
- operational changes
- reporting to supervisors
- sampling procedures

Describe how the actions of the operator will improve the condition of the wastestream.

INSTRUCTOR ACTIVITY:

1. Describe and explain the abnormal conditions of the wastestream illustrated in color pictures.
2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
3. Describe and explain the abnormal operation procedures during a slide show.
4. Describe and explain the abnormal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

1. Evaluate and explain the abnormal conditions of the wastestream which are illustrated in color pictures.
2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
3. Describe and explain the abnormal operation procedures in a class discussion after a slide show.
4. Evaluate and explain the condition of the wastestream during a plant tour. Describe and explain the abnormal operation procedures.

OBJECTIVE 7.9:

Describe the preventive maintenance procedures for the aeration unit.

CONDITIONS:

Given an aeration unit or pictures and drawings of an aeration unit and reference materials, including:
- inspection records
- manufacturer's maintenance guides
- plant drawings and specifications
- preventive maintenance schedule
ACCEPTABLE PERFORMANCE: The student will:

Describe these preventive maintenance procedures for the aeration unit:

Cleaning
- air filter
- blower
- diffuser tube
- foam spray system
- header
- manometer
- meter
- motor
- piping
- pump
- railing

Lubrication
- air filter
- blower
- motor
- pump
- piping
- valve

Mechanical adjustment
- blower
- elbow joint
- gage
- header

INSTRUCTOR ACTIVITY:

Explain how often each preventive maintenance procedure must be performed.

Explain how an operator determines whether a component needs preventive maintenance.

Describe what an operator does if a component needs preventive maintenance.

Explain why each preventive maintenance procedure is important.

1. Describe and explain the preventive maintenance procedures for the aeration unit.
2. Describe and explain the preventive maintenance procedures during a slide show.
3. Describe and explain the preventive maintenance procedures during a plant tour.
STUDENT ACTIVITY:

1. Develop a preventive maintenance schedule and a manual of preventive maintenance procedures.
2. Observe, describe and explain the preventive maintenance procedures during a slide show.
3. Observe, describe and explain the preventive maintenance procedures during a plant tour.

OBJECTIVE 7.10:

Perform the preventive maintenance procedures for the aeration unit.

CONDITIONS:

Given an aeration unit and tools and reference materials, including:
- inspection records
- manufacturer's maintenance guides
- plant drawings and specifications
- preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

Select the reference materials and tools needed to perform the preventive maintenance procedures.

Apply the preventive maintenance schedule for the aeration unit, explaining his actions.

Perform the procedures which an operator follows when a component needs preventive maintenance, explaining his actions.

INSTRUCTOR ACTIVITY:

1. Set up simulated situations in the workshop.
2. Observe student inspection of a treatment plant.
3. Observe the student performing the preventive maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

1. Small groups of students perform the preventive maintenance procedures in simulated situations in the workshop.
2. Inspect a treatment plant. Evaluate and explain the preventive maintenance procedures.
3. Perform and explain the preventive maintenance procedures in a treatment plant.
OBJECTIVE 7.11: Describe the corrective maintenance procedures for the aeration unit components listed on page 35.

CONDITIONS: Given an aeration unit or a mock-up, photographs or drawings of an aeration unit, the manual of operation procedures which the student has developed for the aeration unit, tools and reference materials, including:
- catalogue of replacement parts
- equipment catalogues
- manufacturer's maintenance guides

ACCEPTABLE PERFORMANCE: The student will:
- Describe how an operator evaluates each component of the aeration unit for corrective maintenance, commenting on:
 - agitation
 - color
 - corrosion
 - flow
 - motion
 - odor
 - pressure
 - sound
 - temperature
 - vibration
- Explain why a component has malfunctioned.
- Name the reference materials and tools needed to perform the corrective maintenance.
- Describe what an operator does when he discovers a malfunction, including:
 - evaluation of capabilities of plant personnel to perform the procedures
 - selection of replacement parts
 - record keeping
- Describe how the operator corrects the malfunction.

INSTRUCTOR ACTIVITY:
1. Describe and explain the corrective maintenance procedures for the aeration unit, using diagrams and pictures.
2. Describe and explain the corrective maintenance procedures during a slide show.
3. Describe and explain the corrective maintenance procedures during treatment plant tours.

STUDENT ACTIVITY:
1. Describe and explain the corrective maintenance procedures in situations described or pictured by the instructor.
OBJECTIVE 7.12: Perform the corrective maintenance procedures for the aeration unit components.

CONDITIONS: Given an aeration unit or unit components, the operation procedures manual which the student has developed, tools and reference materials, including:
- catalogue of replacement parts
- equipment catalogues
- manufacturer's maintenance guides
- manufacturer's operation manual

ACCEPTABLE PERFORMANCE: The student will:
- Evaluate the components of the aeration unit for corrective maintenance, explaining why a component has malfunctioned and commenting on:
 - agitation
 - color
 - corrosion
 - flow
 - motion
 - odor
 - position
 - pressure
 - sound
 - temperature
 - vibration
- Select the reference materials and tools needed to perform the corrective maintenance.
- Perform the procedures which an operator follows when a component malfunctions, including:
 - evaluation of capabilities of plant personnel to perform the procedures
 - selection of replacement parts
 - record keeping
- Correct the malfunction.

INSTRUCTOR ACTIVITY:
1. Set up simulated situations in the workshop.
2. Observe the student as he evaluates the components in a treatment plant.
3. Observe the student performing the corrective maintenance procedures in a treatment plant.
STUDENT ACTIVITY:
1. Small groups of students perform and explain the corrective maintenance procedures in simulated situations in the workshop.
2. Evaluate the components for corrective maintenance.
3. Perform and explain the corrective maintenance procedures in a treatment plant.

OBJECTIVE 7.13:
Perform the safety procedures for the aeration unit and demonstrate how they protect employees and visitors.

CONDITIONS:
Given a list of operation or maintenance procedures, the student's manual of safety procedures, tools and safety equipment.

ACCEPTABLE PERFORMANCE:
The student will:
- Identify hazardous conditions in the aeration unit, commenting on:
 - high-risk activities
 - sources of danger
 - safety equipment
- Explain how the procedures protect employees and visitors.
- Recommend corrective procedures and correct the unsafe condition.

INSTRUCTOR ACTIVITY:
1. Set up simulated situations in the workshop.
2. Observe the student as he evaluates the safety conditions in a treatment plant.
3. Observe the student performing the safety procedures in a treatment plant.

STUDENT ACTIVITY:
1. Evaluate safety conditions in simulated situations and recommend corrective procedures.
2. Evaluate safety conditions in a treatment plant and recommend corrective procedures.
3. Perform the safety procedures in a treatment plant.
OBJECTIVE 7.14: Compare other aeration units to the diffused air unit with swing-type diffuser producing fine bubbles (composite model plant unit G).

CONDITIONS: Given a process unit and reference materials, including:
- equipment catalogues
- laboratory reports
- manufacturer's bulletins
- manufacturer's operation manuals
- plant maintenance and operation records

ACCEPTABLE PERFORMANCE: The student will:

Compare composite model plant unit G with:
- a mechanical aeration unit with turbine and sparger.
- a diffused air unit with fixed-type diffuser producing fine bubbles.
- a diffused air unit with swing-type diffuser producing large bubbles.
- a diffused air unit with fixed-type diffuser producing large bubbles.
- a flat-plate diffuser.
- a mechanical aeration unit with brush.
- a mechanical aeration unit with propeller.
- an ejector nozzle aeration unit.
- an ejector aeration unit.

Consider:
- availability of replacement parts
- capital costs
- dependency on surrounding environment
- ease of repair
- efficiency
- flow-handling capabilities
- maintenance costs
- nuisance to neighbors
- operational costs
- operational skills
- personnel requirements
- reliability
- resistance to upset
- sensitivity of controls
- space requirements
- waste-handling capabilities

INSTRUCTOR ACTIVITY: 1. Prepare a chart for tabulation of information about the units.
2. Compare composite model plant unit G with the other units.
3. Help the student to collect information for reports on the advantages and disadvantages of each unit.

STUDENT ACTIVITY:
1. List information about the units on a chart.
2. Compare the units in a panel discussion.
3. Write a report on the advantages and disadvantages of each unit.

OBJECTIVE 7.15:
Name and locate the components of the aeration unit listed on page 35. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

CONDITIONS:
Given an aeration unit, unit components or a diagram, model or photographs of a unit and reference materials, including:
- contractor's plans of the aeration unit
- manufacturer's maintenance guides
- operation and maintenance manuals

ACCEPTABLE PERFORMANCE:
The student will:
- Name and locate the components of the aeration unit.
- Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:
1. Point out components of the aeration unit on diagrams, photographs or models.
2. Listen to the student naming the components and the applicable reference materials during a plant tour.
3. Name and display the reference materials which describe the aeration unit and normal operation procedures.

STUDENT ACTIVITY:
1. Name the components which the instructor points out on diagrams, photographs or models.
2. Name the components which the instructor points out during a plant tour and name the reference materials which apply to the components.

3. Name and select the reference materials which describe the aeration unit and normal operation procedures.

OBJECTIVE 7.16:

Perform the abnormal operation procedures for the aeration unit.

CONDITIONS:

Given a wastestream in a treatment plant and reference materials, including:
- industrial waste records
- operation logs
- operator manuals
- plant performance guides

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions, commenting on:
- ammonia nitrogen
- BOD
- COD
- color
- DO
- flow
- foam
- ice
- industrial wastes
- level
- nitrate nitrogen
- nitrite nitrogen
- odor
- organic and total Kjedahl nitrogen
- orthophosphate
- pH
- relative stability
- residence time
- septic sewage
- SDI
- sludge age
- suspended solids
- SVI

Select the references he needs to return the wastestream to normal.

Perform the abnormal operation procedures.

INSTRUCTOR ACTIVITY:

1. Observe the student as he evaluates the wastestream in a treatment plant.
2. Describe the references needed to correct abnormal conditions of the wastestream.
3. Observe the student performing the abnormal operation procedures in simulated situations and in a treatment plant.

STUDENT ACTIVITY:
1. Evaluate the wastestream in a treatment plant.
2. Select the references needed to correct abnormal conditions of the wastestream.
3. Perform the abnormal operation procedures in simulated situations or in a treatment plant.

<<<<<<>>>>>

56
MODULE 8

SECONDARY SEDIMENTATION
A circular, peripheral-feed unit with suction
Composite Model Plant Unit H

PURPOSE:
In this module the student will learn to perform all the activities in the objectives as they apply to a circular, peripheral-feed unit with suction. READ PAGES 1 TO 11 BEFORE USING THIS MODULE.

OBJECTIVES:
8.1 Identify the secondary sedimentation unit.
8.2 Describe the secondary sedimentation process in technical and nontechnical terms.
8.3 Describe the safety procedures for the secondary sedimentation unit and explain how the procedures protect employees and visitors.
8.4 Identify the components of a secondary sedimentation unit. Explain the purpose of each component, how the component works and why it is important.
8.5 Describe the normal operation procedures for the secondary sedimentation unit components listed on page 55.
8.6 Perform the normal operation procedures for the secondary sedimentation unit.
8.7 Describe and perform the start-up and shut-down procedures for the secondary sedimentation unit.
8.8 Describe the abnormal operation procedures for the secondary sedimentation process.
8.9 Describe the preventive maintenance procedures for the secondary sedimentation unit.
8.10 Perform the preventive maintenance procedures for the secondary sedimentation unit.
8.11 Describe the corrective maintenance procedures for the secondary sedimentation unit components listed on page 55.
8.12 Perform the corrective maintenance procedures for the secondary sedimentation unit components.
8.13 Perform the safety procedures for the secondary sedimentation unit and demonstrate how they protect employees and visitors.
8.14 Compare other secondary sedimentation units to the circular, peripheral-feed unit with suction (composite model plant unit H).
8.15 Name and locate the components of the secondary sedimentation unit listed on page 55. Name and select reference materials.
which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

8.16 Perform the abnormal operation procedures for the secondary sedimentation unit.

OBJECTIVE 8.1: Identify the secondary sedimentation unit.

CONDITIONS: Given a unit, a model of a unit or a photograph of a unit.

ACCEPTABLE PERFORMANCE: The student will:
Indicate whether the process unit is used for secondary sedimentation.

INSTRUCTOR ACTIVITY: 1. Point out characteristics which distinguish the secondary sedimentation unit from other process units.

STUDENT ACTIVITY: 1. Develop a picture file of secondary sedimentation units. Mark distinguishing characteristics.

OBJECTIVE 8.2: Describe the secondary sedimentation process in technical and nontechnical terms.

CONDITIONS: Given photographs of the secondary sedimentation unit.

ACCEPTABLE PERFORMANCE: The student will:
Describe the secondary sedimentation unit, explaining the meaning of:
final clarifier
final sedimentation tank
Describe the purpose of secondary sedimentation.

Describe how secondary sedimentation affects:
- trickling filtration
- aeration
- thickening
- first stage digestion
- second stage digestion
- sludge conditioning
- post-chlorination
- sludge dewatering
- effluent disposal
- sludge dewatering
- pumping and piping

INSTRUCTOR ACTIVITY:
1. Use diagrams, photographs and slides to describe secondary sedimentation.
2. Describe the secondary sedimentation process during a plant tour. React to the student's description of the process.

STUDENT ACTIVITY:
1. Describe the secondary sedimentation process while viewing photographs, diagrams and slides.
2. Observe and describe the secondary sedimentation process during a plant tour.

OBJECTIVE 8.3:
Describe the safety procedures for the secondary sedimentation unit and explain how the procedures protect employees and visitors.

CONDITIONS:
Given a list of operation and maintenance procedures.

ACCEPTABLE PERFORMANCE:
The student will:
Describe the safety procedures for the secondary sedimentation unit, commenting on:
- High-risk activities
- Lifting and lowering objects with ropes and pulleys
High-risk activities (continued)
 making adjustments with switches in automatic
 position
 raking floating materials from tank surface
 removing debris from channels
 working inside tank
 working near open pits and tanks

Sources of danger
 acid wastes
 bullets
 caustic wastes
 deep wells
 electrical equipment
 explosive gases
 moving parts
 open doors and covers
 pits
 slippery walks and stairs
 tanks
 toxic gases
 water hoses

Safety equipment
 explosion proof flashlight
 first-aid kit
 handrails
 ladders
 life preserver
 lockout tags and keys
 protective clothing
 stair safety treads

Explain how the procedures protect employees and visitors.

INSTRUCTOR ACTIVITY:
 1. Discuss treatment plant case histories.
 2. Describe the conditions in a plant and ask for evaluation.
 3. Describe the safety procedures for each operation and maintenance procedure.
 4. Prepare slides of sources of danger and high-risk activities.

STUDENT ACTIVITY:
 1. Read case histories and comment on employee safety procedures.
 2. Evaluate conditions which the instructor has described. Suggest remedies.
3. Role play operation or maintenance procedures. Select proper safety equipment and name the sources of danger and high-risk activities. Develop a manual of safety procedures for the secondary sedimentation unit.

4. Identify sources of danger and high-risk activities pictured in slides.

OBJECTIVE 8.4:

Identify the components of a secondary sedimentation unit. Explain the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a secondary sedimentation unit, unit components or a diagram, model or photographs of a unit and a list of components.

ACCEPTABLE PERFORMANCE:

The student will:

- Identify components of the secondary sedimentation unit and associated equipment:
 - baffle
 - belt
 - collector sweep
 - coupling
 - density meter
 - drive motor
 - fire-fighting equipment
 - first-aid kit
 - gate
 - gear box
 - indicator
 - limit switch
 - motor
 - piping
 - pulley
 - pump
 - scum tank
 - scum trough
 - shear pin
 - skimmer
 - sludge tank
 - valve
 - variable speed drive
 - water seal unit
 - weir

- Explain the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:

1. Point out and name components in diagrams, photographs or models.
2. Arrange photographs or models of components in the workshop for student identification.
3. Point out and name components during a plant tour.
4. Question the students about the purpose of each component, how the component works and why it is important.

STUDENT ACTIVITY:
1. Identify the components which the instructor names on diagrams, photographs or models.
2. Identify the components at stations in the workshop in writing.
3. Identify components during a plant tour.
4. Explain the purpose of each component, how the component works and why it is important.

OBJECTIVE 8.5:
Describe the normal operation procedures for the secondary sedimentation unit components listed on page 55.

CONDITIONS:
Given a secondary sedimentation unit or slides or photographs of a secondary sedimentation unit, a list of components of the unit, a checklist of characteristics and a normal operation procedures manual.

ACCEPTABLE PERFORMANCE:
The student will:
Describe the characteristics of each component which the operator checks to determine whether the component is functioning normally, commenting on:
- biological growth
- color
- corrosion
- flow
- motion
- odor
- position
- pressure
- sound
- temperature
- vibration

Name the sense or indicator which monitors each characteristic.

Explain how often the characteristics of each component must be checked and why the component must be checked on this schedule.

Describe what an operator does if the characteristics of a component indicate that it is not functioning normally, including:
- making adjustments
- deciding about corrective maintenance
reporting to supervisors
reporting in written records

Explain why a component's characteristics must be returned to normal.

Describe routine sampling for the secondary sedimentation process.

List routine calculations for the secondary sedimentation process.

Describe routine procedures for recording data.

INSTRUCTOR ACTIVITY:

1. Describe the characteristics of the components of the secondary sedimentation unit.
2. Describe the normal operation procedures for the secondary sedimentation unit. Use color pictures.
3. Describe the normal operation procedures during a slide show of components of the secondary sedimentation unit.
4. Describe and explain the normal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

1. Develop a checklist, listing the components of the secondary sedimentation unit and their normal characteristics.
2. Develop a manual of normal operation procedures.
3. Describe the normal operation procedures during a slide show of components of the secondary sedimentation unit.
4. Observe and describe the normal operation procedures during a plant tour.

OBJECTIVE 8.6: Perform the normal operation procedures for the secondary sedimentation unit.

CONDITIONS: Given a secondary sedimentation unit, the manual of normal operation procedures which the student has developed for the secondary sedimentation unit and basic references.
ACCEPTABLE PERFORMANCE: The student will:

Check and evaluate the characteristics of each component, explaining his actions.

Perform the procedures which an operator follows if the characteristics of a component indicate that it is not functioning normally.

Perform the routine sampling.

Perform the routine calculations.

Perform the routine record keeping.

INSTRUCTOR ACTIVITY: 1. Observe the student demonstrating normal operation procedures in a dry run in a treatment plant.

2. Observe the student performing normal operation procedures in a treatment plant.

STUDENT ACTIVITY: 1. Demonstrate the normal operation procedures in a dry run in a treatment plant.

2. Perform and explain the normal operation procedures in a treatment plant.

OBJECTIVE 8.7: Describe and perform the start-up and shut-down procedures for the secondary sedimentation unit.

CONDITIONS: Given a mock-up, model or photograph of a secondary sedimentation unit and a secondary sedimentation unit with the manufacturer's operation manual.

ACCEPTABLE PERFORMANCE: The student will:

Start up and shut down a secondary sedimentation unit, following the manufacturer's instructions.

INSTRUCTOR ACTIVITY: 1. Demonstrate and perform the start-up procedures in a treatment plant.

2. Demonstrate and perform the shut-down procedures in a treatment plant.

3. Observe the student performing the start-up procedures in a treatment plant.
4. Observe the student performing the shut-down procedures in a treatment plant.
5. Observe the student as he evaluates his start-up procedures.
6. Observe the student as he evaluates his shut-down procedures.

STUDENT ACTIVITY:

1. Describe the start-up procedures in a dry run in a treatment plant.
2. Describe the shut-down procedures in a dry run in a treatment plant.
3. Perform the start-up procedures in a treatment plant.
4. Perform the shut-down procedures in a treatment plant.
5. Evaluate the operation of the secondary sedimentation unit to determine whether correct start-up procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)
6. Evaluate the operation of the secondary sedimentation unit to determine whether correct shut-down procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)

<<<<<<<<<<<

OBJECTIVE 8.8:

Describe the abnormal operation procedures for the secondary sedimentation process.

CONDITIONS:

Given a wastestream in a treatment plant or color photographs of a wastestream, a checklist of the conditions of the wastestream and plant records and reference materials.

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions, commenting on:

- BOD level
- COD pH
- DO sludge density
- floating material suspended solids
- flow velocity
- ice
Describe the cause and effect of the abnormal condition.

Explain how often the condition of the wastestream must be checked.

Describe what an operator does if he observes abnormal conditions, including:
- operational changes
- reporting to supervisors
- sampling procedures

Describe how the actions of the operator will improve the condition of the wastestream.

INSTRUCTOR ACTIVITY:

1. Describe and explain the abnormal conditions of the wastestream illustrated in color pictures.
2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
3. Describe and explain the abnormal operation procedures during a slide show.
4. Describe and explain the abnormal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

1. Evaluate and explain the abnormal conditions of the wastestream which are illustrated in color pictures.
2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
3. Describe and explain the abnormal operation procedures in a class discussion after a slide show.
4. Evaluate and explain the condition of the wastestream during a plant tour. Describe and explain the abnormal operation procedures.

<<<<<<>>>>>>

OBJECTIVE 8.9:

Describe the preventive maintenance procedures for the secondary sedimentation unit.

CONDITIONS:

Given a secondary sedimentation unit or pictures and drawings of a secondary sedimentation unit and reference materials, including:
- inspection records
ACCEPTABLE PERFORMANCE: The student will:

Describe these preventive maintenance procedures for the secondary sedimentation unit:

Cleaning
- motor
- pump
- valve
- variable speed drive
- water seal unit
- weir

Painting
- drive motor
- gear box
- motor
- piping
- pump
- valve

Lubrication
- variable speed drive
- weir

Replacement
- belt
- fire-fighting equipment
- first-aid kit
- indicator
- limit switch
- shear pin

Mechanical adjustment
- collector sweep
- coupling
- density meter
- drive motor
- gate
- pump
- gear box

Wear measurement
- belt
- collector sweep
- coupling
- pulley
- pump

Name the reference materials and tools needed to perform the preventive maintenance procedures.

Explain how often each preventive maintenance procedure must be performed.

Explain how an operator determines whether a component needs preventive maintenance.

Describe what an operator does if a component needs preventive maintenance.

Explain why each preventive maintenance procedure is important.
INSTRUCTOR ACTIVITY:

1. Describe and explain the preventive maintenance procedures for the secondary sedimentation unit.
2. Describe and explain the preventive maintenance procedures during a slide show.
3. Describe and explain the preventive maintenance procedures during a plant tour.

STUDENT ACTIVITY:

1. Develop a preventive maintenance schedule and a manual of preventive maintenance procedures.
2. Observe, describe and explain the preventive maintenance procedures during a slide show.
3. Observe, describe and explain the preventive maintenance procedures during a plant tour.

OBJECTIVE 8.10:

Perform the preventive maintenance procedures for the secondary sedimentation unit.

CONDITIONS:

Given a secondary sedimentation unit and tools and reference materials, including:
- inspection records
- manufacturer's maintenance guides
- plant drawings and specifications
- preventive maintenance schedule

ACCEPTABLE PERFORMANCE:

The student will:

Select the reference materials and tools needed to perform the preventive maintenance procedures.

Apply the preventive maintenance schedule for the secondary sedimentation unit, explaining his actions.

Perform the procedures which an operator follows when a component needs preventive maintenance, explaining his actions.

INSTRUCTOR ACTIVITY:

1. Set up simulated situations in the workshop.
2. Observe student inspection of a treatment plant.
3. Observe the student performing the preventive maintenance procedures in a treatment plant.
STUDENT ACTIVITY:

1. Small groups of students perform the preventive maintenance procedures in simulated situations in the workshop.
2. Inspect a treatment plant. Evaluate and explain the preventive maintenance procedures.
3. Perform and explain the preventive maintenance procedures in a treatment plant.

OBJECTIVE 8.11:

Describe the corrective maintenance procedures for the secondary sedimentation unit components listed on page 55.

CONDITIONS:

Given a secondary sedimentation unit or a mock-up, photographs or drawings of a secondary sedimentation unit, the manual of operation procedures which the student has developed for the secondary sedimentation unit, tools and reference materials, including:
- catalogue of replacement parts
- equipment catalogues
- manufacturer's maintenance guides

ACCEPTABLE PERFORMANCE:

The student will:

Describe how an operator evaluates each component of the secondary sedimentation unit for corrective maintenance, commenting on:
- biological growth
- color
- corrosion
- flow
- motion
- odor
- position
- pressure
- sound
- temperature
- vibration

Explain why a component has malfunctioned.

Name the reference materials and tools needed to perform the corrective maintenance.

Describe what an operator does when he discovers a malfunction, including:
- evaluation of capabilities of plant personnel to perform the procedures
- selection of replacement parts
- record keeping

Describe how the operator corrects the malfunction.
INSTRUCTOR ACTIVITY:

1. Describe and explain the corrective maintenance procedures for the secondary sedimentation unit, using diagrams and pictures.
2. Describe and explain the corrective maintenance procedures during a slide show.
3. Describe and explain the corrective maintenance procedures during treatment plant tours.

STUDENT ACTIVITY:

1. Describe and explain the corrective maintenance procedures in situations described or pictured by the instructor.
2. Describe and explain the corrective maintenance procedures during a slide show.
3. Observe, describe and explain the corrective maintenance procedures during a treatment plant tour.

OBJECTIVE 8.12:

Perform the corrective maintenance procedures for the secondary sedimentation unit components.

CONDITIONS:

Given a secondary sedimentation unit or unit components, the operation procedures manual which the student has developed, tools and reference materials, including:
- catalogue of replacement parts
- equipment catalogues
- manufacturer's maintenance guides
- manufacturer's operation manual

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the components of the secondary sedimentation unit for corrective maintenance, explaining why a component has malfunctioned and commenting on:
- biological growth
- color
- corrosion
- flow
- motion
- odor
- position
- pressure
- sound
- temperature
- vibration

Select the reference materials and tools needed to perform the corrective maintenance.
INSTRUCTOR ACTIVITY:

1. Set up simulated situations in the workshop.
2. Observe the student as he evaluates the components in a treatment plant.
3. Observe the student performing the corrective maintenance procedures in a treatment plant.

STUDENT ACTIVITY:

1. Small groups of students perform and explain the corrective maintenance procedures in simulated situations in the workshop.
2. Evaluate the components for corrective maintenance.
3. Perform and explain the corrective maintenance procedures in a treatment plant.

OBJECTIVE 8.13:

Perform the safety procedures for the secondary sedimentation unit and demonstrate how they protect employees and visitors.

CONDITIONS:

Given a list of operation or maintenance procedures, the student's manual of safety procedures, tools and safety equipment.

ACCEPTABLE PERFORMANCE:

The student will:

Identify hazardous conditions in the secondary sedimentation unit, commenting on:

- high-risk activities
- sources of danger
- safety equipment

Explain how the procedures protect employees and visitors.

Recommend corrective procedures and correct the unsafe condition.
INSTRUCTOR ACTIVITY:
1. Set up simulated situations in the workshop.
2. Observe the student as he evaluates the safety conditions in a treatment plant.
3. Observe the student performing the safety procedures in a treatment plant.

STUDENT ACTIVITY:
1. Evaluate safety conditions in simulated situations and recommend corrective procedures.
2. Evaluate safety conditions in a treatment plant and recommend corrective procedures.
3. Perform the safety procedures in a treatment plant.

OBJECTIVE 8.14:
Compare other secondary sedimentation units to the circular, peripheral-feed unit with suction (composite model plant unit H).

CONDITIONS:
Given a process unit and reference materials, including:
- equipment catalogues
- laboratory reports
- manufacturer's bulletins
- manufacturer's operation manuals
- plant maintenance and operation records

ACCEPTABLE PERFORMANCE:
The student will:
Compare composite model plant unit H with:
- a circular, center-feed unit with suction.
- a rectangular unit.
- a circular, center-feed unit with scraper.
- a circular, peripheral-feed unit with scraper.

Consider:
- availability of replacement parts
- capital costs
- dependency on surrounding environment
- ease of repair
- efficiency
- flow-handling capabilities
- maintenance costs
- nuisance to neighbors
- operational costs
- operational skills
- personnel requirements
- reliability
Secondary Sedimentation

resistance to upset
sensitivity of controls
space requirements
waste-handling capabilities

INSTRUCTOR ACTIVITY:
1. Prepare a chart for tabulation of information about the units.
2. Compare composite model plant unit H with the other units.
3. Help the student to collect information for reports on the advantages and disadvantages of each unit.

STUDENT ACTIVITY:
1. List information about the units on a chart.
2. Compare the units in a panel discussion.
3. Write a report on the advantages and disadvantages of each unit.

OBJECTIVE 8.15:
Name and locate the components of the secondary sedimentation unit listed on page 55. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

CONDITIONS:
Given a secondary sedimentation unit, unit components or a diagram, model or photographs of a unit and reference materials, including:
- contractor's plans of the secondary sedimentation unit
- manufacturer's maintenance guides
- operation and maintenance manuals

ACCEPTABLE PERFORMANCE:
The student will:
Name and locate the components of the secondary sedimentation unit.
Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.
INSTRUCTOR ACTIVITY: 1. Point out components of the secondary sedimentation unit on diagrams, photographs or models.
2. Listen to the student naming the components and the applicable reference materials during a plant tour.
3. Name and display the reference materials which describe the secondary sedimentation unit and normal operation procedures.

STUDENT ACTIVITY: 1. Name the components which the instructor points out on diagrams, photographs or models.
2. Name the components which the instructor points out during a plant tour and name the reference materials which apply to the components.
3. Name and select the reference materials which describe the secondary sedimentation unit and normal operation procedures.

OBJECTIVE 8.16: Perform the abnormal operation procedures for the secondary sedimentation unit.

CONDITIONS: Given a wastestream in a treatment plant and reference materials, including:
- industrial waste records
- operation logs
- operator manuals
- plant performance guides

ACCEPTABLE PERFORMANCE: The student will:
Evaluate the wastestream for abnormal conditions, commenting on:
- BOD level
- COD pH
- DO sludge density
- floating material suspended solids
- flow velocity
- ice ice

Select the references he needs to return the wastestream to normal.
Perform the abnormal operation procedures.
INSTRUCTOR ACTIVITY:

1. Observe the student as he evaluates the wastestream in a treatment plant.
2. Describe the references needed to correct abnormal conditions of the wastestream.
3. Observe the student performing the abnormal operation procedures in simulated situations and in a treatment plant.

STUDENT ACTIVITY:

1. Evaluate the wastestream in a treatment plant.
2. Select the references needed to correct abnormal conditions of the wastestream.
3. Perform the abnormal operation procedures in simulated situations or in a treatment plant.

<<<<<<<<<<<
PURPOSE: In this module the student will learn to perform all the activities in the objectives as they apply to an aerobic pond. READ PAGES 1 TO 11 BEFORE USING THIS MODULE.

OBJECTIVES:

9.1 Identify the pond stabilization unit.
9.2 Describe the pond stabilization process in technical and non-technical terms.
9.3 Describe the safety procedures for the pond stabilization unit and explain how the procedures protect employees and visitors.
9.4 Identify the components of a pond stabilization unit. Explain the purpose of each component, how the component works and why it is important.
9.5 Describe the normal operation procedures for the pond stabilization unit components listed on page 75.
9.6 Perform the normal operation procedures for the pond stabilization unit.
9.7 Describe and perform the start-up and shut-down procedures for the pond stabilization unit.
9.8 Describe the abnormal operation procedures for the pond stabilization process.
9.9 Describe the preventive maintenance procedures for the pond stabilization unit.
9.10 Perform the preventive maintenance procedures for the pond stabilization unit.
9.11 Describe the corrective maintenance procedures for the pond stabilization unit components listed on page 75.
9.12 Perform the corrective maintenance procedures for the pond stabilization unit components.
9.13 Perform the safety procedures for the pond stabilization unit and demonstrate how they protect employees and visitors.
9.14 Compare other pond stabilization units to the aerobic pond (composite model plant unit I).
9.15 Name and locate the components of the pond stabilization unit listed on page 75. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.
9.16 Perform the abnormal operation procedures for the pond stabilization unit.
OBJECTIVE 9.1: Identify the pond stabilization unit.

CONDITIONS: Given a unit, a model of a unit or a photograph of a unit.

ACCEPTABLE PERFORMANCE: The student will:
- Indicate whether the process unit is used for pond stabilization.

INSTRUCTOR ACTIVITY:
1. Point out characteristics which distinguish the pond stabilization unit from other process units.

STUDENT ACTIVITY:
1. Develop a picture file of pond stabilization units. Mark distinguishing characteristics.

OBJECTIVE 9.2: Describe the pond stabilization process in technical and nontechnical terms.

CONDITIONS: Given photographs of the pond stabilization unit.

ACCEPTABLE PERFORMANCE: The student will:
- Describe the pond stabilization unit, explaining the meaning of:
 - lagoon
 - oxidation pond
 - polishing lagoon
 - polishing pond
 - sewage lagoon
 - waste stabilization lagoon
 - waste stabilization pond
- Describe the purpose of pond stabilization.
INSTRUCTOR ACTIVITY:

1. Use diagrams, photographs and slides to describe pond stabilization.
2. Describe the pond stabilization process during a plant tour. React to the student's description of the process.

STUDENT ACTIVITY:

1. Describe the pond stabilization process while viewing photographs, diagrams and slides.
2. Observe and describe the pond stabilization process during a plant tour.

OBJECTIVE 9.3:

Describe the safety procedures for the pond stabilization unit and explain how the procedures protect employees and visitors.

CONDITIONS:

Given a list of operation and maintenance procedures.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the safety procedures for the pond stabilization unit, commenting on:

High-risk activities
- removing debris from channels
- removing debris from pond
- removing vegetation next to electrical wire
- working in boat
- working with switches in automatic position

Sources of danger
- acid wastes
- boat and motor
- caustic wastes
- chuck holes
- contamination by contact
Sources of danger (continued)
- electrical equipment
- electrical wires in damp areas
- herbicides
- holes in fence
- moving parts
- open doors and covers
- pesticides
- short circuits
- slippery dikes
- slippery walks
- soil sterilizers
- toxic gases
- undercut banks
- ungrounded control panel
- wells
- wet grass
- wet rocks

Safety equipment
- adequate lighting
- barricades
- enclosed electrical wires
- fences
- fire-fighting equipment
- first-aid kit
- life preserver
- lockout tags and keys
- locks
- protective clothing
- railings
- safety equipment in boat
- signs

Explain how the procedures protect employees and visitors.

INSTRUCTOR ACTIVITY:
1. Discuss treatment plant case histories.
2. Describe the conditions in a plant and ask for evaluation.
3. Describe the safety procedures for each operation and maintenance procedure.
4. Prepare slides of sources of danger and high-risk activities.

STUDENT ACTIVITY:
1. Read case histories and comment on employee safety procedures.
OBJECTIVE 9.4:
Identify the components of a pond stabilization unit. Explain the purpose of each component, how the component works and why it is important.

CONDITIONS:
Given a pond stabilization unit, unit components or a diagram, model or photographs of a unit and a list of components.

ACCEPTABLE PERFORMANCE:
The student will:
- Identify components of the pond stabilization unit and associated equipment:
 - baffle
 - chemical conditioning unit
 - comminutor
 - coupling
 - dike
 - diversion box
 - drive-reduction gear
 - effluent line
 - fire-fighting equipment
 - first-aid kit
 - influent line
 - inlet screen
 - motor
 - outlet depth control
 - piping
 - pump
 - siphon
 - valve
- Explain the purpose of each component, how the component works and why it is important.

INSTRUCTOR ACTIVITY:
1. Point out and name components in diagrams, photographs or models.
2. Arrange photographs or models of components in the workshop for student identification.
3. Point out and name components during a plant tour.
4. Question the students about the purpose of each component, how the component works and why it is important.
STUDENT ACTIVITY:

1. Identify the components which the instructor names on diagrams, photographs or models.
2. Identify the components at stations in the workshop in writing.
3. Identify components during a plant tour.
4. Explain the purpose of each component, how the component works and why it is important.

OBJECTIVE 9.5:

Describe the normal operation procedures for the pond stabilization unit components listed on page 75.

CONDITIONS:

Given a pond stabilization unit or slides or photographs of a pond stabilization unit, a list of components of the unit, a checklist of characteristics and a normal operation procedures manual.

ACCEPTABLE PERFORMANCE:

The student will:

Describe the characteristics of each component which the operator checks to determine whether the component is functioning normally, commenting on:

- color
- odor
- corrosion
- position
- depth
- pressure
- erosion
- slope
- exfiltration
- sound
- flow
- temperature
- infiltration
- vegetation
- motion
- vibration

Name the sense or indicator which monitors each characteristic.

Explain how often the characteristics of each component must be checked and why the component must be checked on this schedule.

Describe what an operator does if the characteristics of a component indicate that it is not functioning normally, including:

- making adjustments
- deciding about corrective maintenance
- reporting to supervisors
- reporting in written records
INSTRUCTOR ACTIVITY:

1. Describe the characteristics of the components of the pond stabilization unit.
2. Describe the normal operation procedures for the pond stabilization unit. Use color pictures.
3. Describe the normal operation procedures during a slide show of components of the pond stabilization unit.
4. Describe and explain the normal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:

1. Develop a checklist, listing the components of the pond stabilization unit and their normal characteristics.
2. Develop a manual of normal operation procedures.
3. Describe the normal operation procedures during a slide show of components of the pond stabilization unit.
4. Observe and describe the normal operation procedures during a plant tour.

OBJECTIVE 9.6: Perform the normal operation procedures for the pond stabilization unit.

CONDITIONS: Given a pond stabilization unit, the manual of normal operation procedures which the student has developed for the pond stabilization unit and basic references.

ACCEPTABLE PERFORMANCE: The student will:

- Check and evaluate the characteristics of each component, explaining his actions.
INSTRUCTOR ACTIVITY:
1. Observe the student demonstrating normal operation procedures in a dry run in a treatment plant.
2. Observe the student performing normal operation procedures in a treatment plant.

STUDENT ACTIVITY:
1. Demonstrate the normal operation procedures in a dry run in a treatment plant.
2. Perform and explain the normal operation procedures in a treatment plant.

OBJECTIVE 9.7:
Describe and perform the start-up and shut-down procedures for the pond stabilization unit.

CONDITIONS:
Given a mock-up, model or photograph of a pond stabilization unit and a pond stabilization unit with the manufacturer's operation manual.

ACCEPTABLE PERFORMANCE:
The student will:
Start up and shut down a pond stabilization unit, following the manufacturer's instructions.

INSTRUCTOR ACTIVITY:
1. Demonstrate and perform the start-up procedures in a treatment plant.
2. Demonstrate and perform the shut-down procedures in a treatment plant.
3. Observe the student performing the start-up procedures in a treatment plant.
4. Observe the student performing the shut-down procedures in a treatment plant.
5. Observe the student as he evaluates his start-up procedures.
STUDENT ACTIVITY:

1. Describe the start-up procedures in a dry run in a treatment plant.
2. Describe the shut-down procedures in a dry run in a treatment plant.
3. Perform the start-up procedures in a treatment plant.
4. Perform the shut-down procedures in a treatment plant.
5. Evaluate the operation of the pond stabilization unit to determine whether correct start-up procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)
6. Evaluate the operation of the pond stabilization unit to determine whether correct shut-down procedures have been used. Use the normal operation procedures manual which the student has developed. (See objective 1.4.)

Describe the abnormal operation procedures for the pond stabilization process.

CONDITIONS:

Given a wastestream in a treatment plant or color photographs of a wastestream, a checklist of the conditions of the wastestream and plant records and reference materials.

ACCEPTABLE PERFORMANCE:

The student will:

Evaluate the wastestream for abnormal conditions, commenting on:
- alkalinity
- ammonia nitrogen
- BOD
- COD
- coliforms
- color
- DO
- floating material
- flow
- foam
- ice
- industrial wastes
- level
- nitrate nitrogen
- nitrite nitrogen
- odor
- organic and total Kjedahl nitrogen
- orthophosphate
- pH
OBJECTIVE 9.9: Describe the preventive maintenance procedures for the pond stabilization unit.

INSTRUCTOR ACTIVITY:
1. Describe and explain the abnormal conditions of the wastestream illustrated in color pictures.
2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
3. Describe and explain the abnormal operation procedures during a slide show.
4. Describe and explain the abnormal operation procedures during a plant tour. Listen to the student's description of the procedures.

STUDENT ACTIVITY:
1. Evaluate and explain the abnormal conditions of the wastestream which are illustrated in color pictures.
2. Describe and explain the abnormal operation procedures illustrated in pictures and described in plant records and case histories.
3. Describe and explain the abnormal operation procedures in a class discussion after a slide show.
4. Evaluate and explain the condition of the wastestream during a plant tour. Describe and explain the abnormal operation procedures.

- relative stability
- short circuiting
- septic sewage
- suspended solids
- settleable matter
- temperature

Describe the cause and effect of the abnormal condition.

Explain how often the condition of the wastestream must be checked.

Describe what an operator does if he observes abnormal conditions, including:
- operational changes
- reporting to supervisors
- sampling procedures

Describe how the actions of the operator will improve the condition of the wastestream.

Describe the preventive maintenance procedures for the pond stabilization unit.
CONDITIONS: Given a pond stabilization unit or pictures and drawings of a pond stabilization unit and reference materials, including:
- inspection records
- manufacturer's maintenance guides
- plant drawings and specifications
- preventive maintenance schedule

ACCEPTABLE PERFORMANCE: The student will:

Describe these preventive maintenance procedures for pond stabilization unit:

Cleaning
- baffle
- comminutor
- dike
- diversion box
- effluent line
- influent line
- inlet screen
- motor
- outlet depth control
- pump
- siphon

Lubrication
- drive-reduction gear
- motor
- pump
- valve

Mechanical adjustment
- baffle
- chemical conditioning unit

Painting
- drive-reduction gear
- motor
- piping
- pump

Replacement
- fire-fighting equipment
- first-aid kit
- Wear measurement
- comminutor
- coupling
- dike

Name the reference materials and tools needed to perform the preventive maintenance procedures.

Explain how often each preventive maintenance procedure must be performed.

Explain how an operator determines whether a component needs preventive maintenance.

Describe what an operator does if a component needs preventive maintenance.

Explain why each preventive maintenance procedure is important.
INSTRUCTOR ACTIVITY:

1. Describe and explain the preventive maintenance procedures for the pond stabilization unit.
2. Describe and explain the preventive maintenance procedures during a slide show.
3. Describe and explain the preventive maintenance procedures during a plant tour.

STUDENT ACTIVITY:

1. Develop a preventive maintenance schedule and a manual of preventive maintenance procedures.
2. Observe, describe and explain the preventive maintenance procedures during a slide show.
3. Observe, describe and explain the preventive maintenance procedures during a plant tour.

OBJECTIVE 9.10: Perform the preventive maintenance procedures for the pond stabilization unit.

CONDITIONS: Given a pond stabilization unit and tools and reference materials, including:
- inspection records
- manufacturer's maintenance guides
- plant drawings and specifications
- preventive maintenance schedule

ACCEPTABLE PERFORMANCE: The student will:

- Select the reference materials and tools needed to perform the preventive maintenance procedures.
- Apply the preventive maintenance schedule for the pond stabilization unit, explaining his actions.
- Perform the procedures which an operator follows when a component needs preventive maintenance, explaining his actions.

INSTRUCTOR ACTIVITY:

1. Set up simulated situations in the workshop.
2. Observe student inspection of a treatment plant.
3. Observe the student performing the preventive maintenance procedures in a treatment plant.
STUDENT ACTIVITY:

1. Small groups of students perform the preventive maintenance procedures in simulated situations in the workshop.
2. Inspect a treatment plant. Evaluate and explain the preventive maintenance procedures.
3. Perform and explain the preventive maintenance procedures in a treatment plant.

OBJECTIVE 9.11:

Describe the corrective maintenance procedures for the pond stabilization unit components listed on page 75.

CONDITIONS:

Given a pond stabilization unit or a mock-up, photographs or drawings of a pond stabilization unit, the manual of operation procedures which the student has developed for the pond stabilization unit, tools and reference materials, including:
- catalogue of replacement parts
- equipment catalogues
- manufacturer's maintenance guides

ACCEPTABLE PERFORMANCE:

The student will:

Describe how an operator evaluates each component of the pond stabilization unit for corrective maintenance, commenting on:
- color
- odor
- corrosion
- position
- depth
- pressure
- erosion
- slope
- exfiltration
- sound
- flow
- temperature
- infiltration
- vegetation
- motion
- vibration

Explain why a component has malfunctioned.

Name the reference materials and tools needed to perform the corrective maintenance.

Describe what an operator does when he discovers a malfunction, including:
- evaluation of capabilities of plant personnel to perform the procedures
- selection of replacement parts
- record keeping
Describe how the operator corrects the malfunction.

INSTRUCTOR ACTIVITY:

1. Describe and explain the corrective maintenance procedures for the pond stabilization unit, using diagrams and pictures.
2. Describe and explain the corrective maintenance procedures during a slide show.
3. Describe and explain the corrective maintenance procedures during treatment plant tours.

STUDENT ACTIVITY:

1. Describe and explain the corrective maintenance procedures in situations described or pictured by the instructor.
2. Describe and explain the corrective maintenance procedures during a slide show.
3. Observe, describe and explain the corrective maintenance procedures during a treatment plant tour.

OBJECTIVE 9.12:

Perform the corrective maintenance procedures for the pond stabilization unit components.

CONDITIONS:

Given a pond stabilization unit or unit components, the operation procedures manual which the student has developed, tools and reference materials, including:
- catalogue of replacement parts
- equipment catalogues
- manufacturer's maintenance guides
- manufacturer's operation manual

ACCEPTABLE PERFORMANCE: The student will:

Evaluate the components of the pond stabilization unit for corrective maintenance, explaining why a component has malfunctioned and commenting on:
- color
- odor
- corrosion
- position
- depth
- pressure
- erosion
- slope
- exfiltration
- sound
- flow
- temperature
- infiltration
- vegetation
- motion
- vibration
Select the reference materials and tools needed to perform the corrective maintenance.

Perform the procedures which an operator follows when a component malfunctions, including:
- evaluation of capabilities of plant personnel to perform the procedures
- selection of replacement parts
- record-keeping

Correct the malfunction.

INSTRUCTOR ACTIVITY:
1. Set up simulated situations in the workshop.
2. Observe the student as he evaluates the components in a treatment plant.
3. Observe the student performing the corrective maintenance procedures in a treatment plant.

STUDENT ACTIVITY:
1. Small groups of students perform and explain the corrective maintenance procedures in simulated situations in the workshop.
2. Evaluate the components for corrective maintenance.
3. Perform and explain the corrective maintenance procedures in a treatment plant.

OBJECTIVE 9.13:
Perform the safety procedures for the pond stabilization unit and demonstrate how they protect employees and visitors.

CONDITIONS:
Given a list of operation or maintenance procedures, the student's manual of safety procedures, tools and safety equipment.

ACCEPTABLE PERFORMANCE:
The student will:
- Identify hazardous conditions in the pond stabilization unit, commenting on:
 - high-risk activities
 - sources of danger
 - safety equipment
- Explain how the procedures protect employees and visitors.
Recommend corrective procedures and correct the unsafe condition.

INSTRUCTOR ACTIVITY:

1. Set up simulated situations in the workshop.
2. Observe the student as he evaluates the safety conditions in a treatment plant.
3. Observe the student performing the safety procedures in a treatment plant.

STUDENT ACTIVITY:

1. Evaluate safety conditions in simulated situations and recommend corrective procedures.
2. Evaluate safety conditions in a treatment plant and recommend corrective procedures.
3. Perform the safety procedures in a treatment plant.

OBJECTIVE 9.14:

Compare other pond stabilization units to the aerobic pond (composite model plant unit I).

CONDITIONS:

Given a process unit and reference materials, including:
- equipment catalogues
- laboratory reports
- manufacturer's bulletins
- manufacturer's operation manuals
- plant maintenance and operation records

ACCEPTABLE PERFORMANCE:

The student will:

Compare composite model plant unit I with:
- a facultative pond.
- an anaerobic pond.

Consider:
- availability of replacement parts
- capital costs
- dependency on surrounding environment
- ease of repair
- efficiency
- flow-handling capabilities
- maintenance costs
- nuisance to neighbors
- operational costs
- operational skills
- personnel requirements
INSTRUCTOR ACTIVITY:

1. Prepare a chart for tabulation of information about the units.
2. Compare composite model plant unit I with the other units.
3. Help the student to collect information for reports on the advantages and disadvantages of each unit.

STUDENT ACTIVITY:

1. List information about the units on a chart.
2. Compare the units in a panel discussion.
3. Write a report on the advantages and disadvantages of each unit.

OBJECTIVE 9.15:

Name and locate the components of the pond stabilization unit listed on page 75. Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.

CONDITIONS:

Given a pond stabilization unit, unit components or a diagram, model or photographs of a unit and reference materials, including:

- contractor's plans of the pond stabilization unit
- manufacturer's maintenance guides
- operation and maintenance manuals

ACCEPTABLE PERFORMANCE:

The student will:

- Name and locate the components of the pond stabilization unit.
- Name and select reference materials which explain the normal operation procedures, the purpose of each component, how the component works and why it is important.
OBJECTIVE 9.16: Perform the abnormal operation procedures for the pond stabilization unit.

CONDITIONS: Given a wastestream in a treatment plant and reference materials, including:
- industrial waste records
- operation logs
- operator manuals
- plant performance guides

ACCEPTABLE PERFORMANCE: The student will:
- Evaluate the wastestream for abnormal conditions, commenting on:
 - alkalinity
 - ammonia nitrogen
 - BOD
 - COD
 - coliforms
 - color
 - DO
 - floating material
 - flow
 - foam
 - ice
 - industrial wastes
 - level
 - nitrate nitrogen
 - nitrite nitrogen
 - odor
 - organic and total Kjedahl nitrogen
 - orthophosphate
 - pH
 - relative stability
 - septic sewage
 - settleable matter
 - short circuiting
 - suspended solids
 - temperature
Select the references he needs to return the waste-stream to normal.
Perform the abnormal operation procedures.

INSTRUCTOR ACTIVITY:
1. Observe the student as he evaluates the wastestream in a treatment plant.
2. Describe the references needed to correct abnormal conditions of the wastestream.
3. Observe the student performing the abnormal operation procedures in simulated situations and in a treatment plant.

STUDENT ACTIVITY:
1. Evaluate the wastestream in a treatment plant.
2. Select the references needed to correct abnormal conditions of the wastestream.
3. Perform the abnormal operation procedures in simulated situations or in a treatment plant.

<<<<<<>>>>>>