The document presents educational criterion upon which curriculum builders can create a competency-based program of respiratory therapy education. The 11 modules presented supplement and compliment the document Delineation of Roles and Functions of Respiratory Therapy Personnel (CE 005 945) which is listed as appendix D but not included as such. The modules include: (A) medical gas therapy; (B) aerosol humidity therapy; (C) intermittent positive pressure breathing therapy; (D) pulmonary drainage; (E) cardiopulmonary drug administration; (F) infection control; (G) continuous ventilation; (H) introduction to airway care; (I) cardiopulmonary resuscitation; (J) pulmonary function resting; and (K) cardiorespiratory rehabilitation. Units within the modules cover the following materials, generally: introduction, equipment theory and operation, therapeutic techniques, clinical practice, and additional units regarding critical patients. Each unit presents information regarding instructional content and objectives, recommended strategies for teaching and a resource bibliography. The modular format enables a variety of teaching strategies to be employed. Appended materials include: core prerequisites, providing background material on respiratory therapy, integrated sciences, ethics and medical law, compendium of resource bibliographies, listing books and articles; and guide to preparing behaviorally stated objectives (LH).
A GUIDE FOR RESPIRATORY THERAPY
CURRICULUM DESIGN
PROJECT OVERVIEW

INTRODUCTION

Manpower requirements within the respiratory therapy profession has, similar to other health care disciplines, expanded with the demand for increased quality health care. Education of this growing manpower force has become the primary factor to the present and future solution of providing competent personnel. To this end, this Guide is intended to assist those responsible with the development of curriculum for respiratory therapy education. It is further intended to enhance the state-of-the-art of respiratory therapy curriculum design and development.

Because of the prototypic nature of this document, the format is conceptually based on a modular approach to systems education, which will allow this Guide to be updated on a regular basis without deterring from its functionality.

Users of this Guide are advised that this document is not intended to be a complete curriculum. Its utilization is entirely open; however, its primary purpose is to be a foundation upon which curriculum builders can create a viable program of respiratory therapy education.

USING THE GUIDE

Curriculum design and development are activities which include the deliberation of persons involved in the
selection, organization, production and justification of the elements necessary to formulate a given instructional program. In general, this procedure may be defined as a detailed assessment of all pertinent skills and knowledge to be learned by an individual prior to being considered competent to practice.

On this basis, the information contained in this Guide addresses itself to setting forth that which an individual must minimally learn to be competent. Each module is carefully constructed to supplement and complement the corresponding modality in the Delineation of Roles and Functions of Respiratory Therapy Personnel, which can be found in Appendix D.

Relative to its use, the express purpose of this Guide is to articulate educational criterion amenable to competency-based education. Knowledge and skill requirements which are necessary for minimal competency are stated in behavioral terms. In addition, suggestions for sequence of content, recommended teaching strategies and a listing of teaching aids are identified for each instructional objective. Specific attention has been given to providing resource material to those concerned with the instruction of respiratory therapy, while proposing methodology to those within academic programs responsible for designing total curriculum.

The format for this Guide is based on a modular approach, with each Unit within the Module constructed as an autonomous
component. This does not preclude the integration of specific units or modules with others, but allows for a variety of strategies in regard to teaching content. For example, one could use segments from the Guide as an instrument for departmental review and analysis of existing academic programs; as a model for updating or expanding hospital in-service training programs; or as a course of instruction instrument for self-study.

It has been determined that there are areas of knowledge a student should have prior to being taught the objectives detailed in the following modules. This background knowledge is identified as Core Prerequisites and listed by content in Appendix A. No attempt has been made to state behavioral objectives or suggested strategies since the routes to gaining this necessary background knowledge is varied.

Since a major component of the Guide is the instructional objectives, a discussion of the preparation of behaviorally stated performance objectives can be found in Appendix E.

In general, units within the modules are constructed in the following fashion:

a) **Unit One** deals with an introduction to the modality.

b) **Unit Two** deals with equipment theory and operation.

c) **Unit Three** deals with therapeutic techniques and application.

d) **Unit Four** is clinical practice.
e) Additional units follow the same order as above, but deal with critical patients. (Unless otherwise indicated in the titles, all units pertain to non-critical patients.)

It should be noted that there is a direct correlation between the laboratory practice in Unit Three and clinical practice in Unit Four. One would expect to practice procedures in Unit Three on other students, models, etc. prior to entering the clinical setting.

The strategies involved are only recommended. It is left to the resources of the instructor to develop teaching aids that parallel courses of instruction.

The bibliographies included in each unit only list author's last name and title of book. A complete reference can be found in Appendix C.

This is the first such effort of its type. The Association plans to update and add to this Guide on a regular basis, possibly as an annual charge to the Curriculum Development/Career Mobility Subcommittee of the Education Committee. In addition, consideration is being given to the possibility of establishing an educational resource center within the AART National Headquarters for the purpose of providing information and materials to those involved in using this Guide for respiratory therapy education.
PROJECT STAFF

William W. Johnson, MS
HRA Project Director
American Association for Respiratory Therapy
Dallas, Texas

Thomas A. Barnes, BS, ARIT
Director Respiratory Therapy Department
University of Miami Jackson Memorial Hospital
Miami, Florida

David H. Enbanks, M.Ed., ARIT
Chairman, Dept. of Emergency and Critical Care Technology
Division of Allied Health Studies
Miami-Dade Community College
Miami, Florida

Michael Jones, BA, ARIT
School of Allied Health Professions
Southwest Texas State University
San Marcos, Texas

STAFF CONSULTANTS

E. Werner Ahlgren, M.D.
Dept. of Anesthesiology
Children's Medical Center
Dallas, Texas

Clifford Bryan, BS, ARIT
Director, Inhalation Therapy
University of Kansas
Kansas City, Kansas

Donald R. Buckner, Ed.D
Allied Health Professions Branch
Division of Associated Health Professions
Bureau of Health Manpower Education
Health Resources Administration
Bethesda, Maryland

David B. Hoover, M.D.
Associate Director for Program Planning
Division of Associated Health Professions
Bureau of Health Resources Development
Bureau of Health Resources Administration
Bethesda, Maryland

Richard Imbruce, ARIT, Ph.D
Respiratory Therapy Dept.
Norwalk Hospital
Norwalk, Connecticut

Joseph Kadish, Ed.D
Assoc. Director for Professions Development
Division of Allied Health Professions
Bureau of Health Resources Development
Health Resources Administration
Bethesda, Maryland

Jimmy A. Young, MA, ARIT
Director, Respiratory Therapy Dept.
Massachusetts General Hospital
Boston, Massachusetts

PROJECT OFFICER

Robert M. Conant, PhD
Chief, Office of Special Studies
Division of Associated Health Professions
Bureau of Health Resources Development
Health Resources Administration
Bethesda, Maryland
Ilouston R. Anderson, Jr., ARIT
Duke University Medical Center
Durham, North Carolina

Karen P. Comans, ARIT
Div. Allied Health Studies
Miami-Dade Community College
Miami, Florida

Lawrence E. Elliott, ARIT
Chief, Respiratory Therapy
South Miami Hospital
Miami, Florida

John W. Hubbard, ARIT
Technical Director
University of Oklahoma Health Sciences Center
Oklahoma City, Oklahoma

Steven P. McPherson, ARIT
Director, Respiratory Therapy
Tucson Medical Center
Tucson, Arizona

Paul Bowers, ARIT
Inhalation Therapy Dep.
White Memorial Medical Center
Los Angeles, California

Edward A. Scully, ARIT
Respiratory Therapy Dep.
Skyline College
San Bruno, California

G. Willard Truver, Jr., ARIT
Chief, Respiratory Therapy
Broward General Medical Center
Ft. Lauderdale, Florida

James F. Whitacre, ARIT
Inhalation Therapy Dept.
University of Missouri
Columbia, Missouri

CURRICULUM DEVELOPMENT & CAREER MOBILITY SUB-COMMITTEE
OF THE AART EDUCATION COMMITTEE

Thomas A. Barnes, ARIT
Committee Chairman

Ruth Carson, ARIT
Respiratory Therapy Dept.
Broward General Medical Center
Ft. Lauderdale, Florida

John P. Donahue, ARIT
Inhalation Services, Inc.
Innillia Drive
Lexington, Massachusetts

Frederick Helmholtz, M.D.
Mayo Clinic
Rochester, Minnesota

Richard Krumholtz, M.D.
C.F. Kettering Memorial Hospital
Kettering, Ohio

William E. Powers, ARIT
Assistant Professor
Respiratory Therapy Program
School of Allied Health
Springfield, Massachusetts

Joe N. Ross, ARIT
College of Health Related Progs.
Wichita State University
Wichita, Kansas

Louis M. Smaplov, ARIT
Respiratory Therapy Program
Upstate Medical Center
Syracuse, New York

Joyce Wanta, R.N., ARIT
School of Allied Health Science
Weber State College
Ogden, Utah

David H. Fubanks, ARIT
Chairman, Education Committee
ADVISORY COMMITTEE

Houston R. Anderson, ARIT
Director, Inhalation Therapy
Duke University Medical Center
Durham, North Carolina

Frederick R. Bailey, ARIT
Respiratory Care Consultant
Louisville, Kentucky

Gilbert L. Davis, ARIT
Respiratory Therapy Department
Good Samaritan Hospital
Phoenix, Arizona

Donald F. Egan, M.D.
Director, Section of Chest Diseases
The New Britain General Hospital
New Britain, Connecticut

Richard A. Eriach
Administrator
Logewater Hospital
Chicago, Illinois

Michael G. Gilkeson, ARIT
Chief of Inhalation Therapy
Beverly Hospital
Montebello, California

David B. Hoover
Division of Allied Health Programs
Bureau of Health Training
National Institutes of Health

CONSULTANTS TO ADVISORY COMMITTEE

James A. Liverett, ARIT
Division of Pulmonary Diseases
Touro Infirmary
New Orleans, Louisiana

Winfield S. Singletary
Executive Director
American Association for Respiratory Therapy
Dallas, Texas

Jimmy A. Young, ARIT
Director, Respiratory Therapy Department
Massachusetts General Hospital
Boston, Massachusetts
The American Association for Respiratory Therapy has developed this Guide for use by educators and others interested in the instruction of Respiratory Therapy, as well as for use by educators and others interested in the instruction of Respiratory Therapy. This Guide is not intended to replace the GUIDEBOOK FOR RESPIRATORY THERAPY EDUCATIONAL PROGRAM DEVELOPMENT IN INSTITUTIONS PROVIDING EDUCATIONAL SERVICES, developed and endorsed by the American Association for Respiratory Therapy and the American College of Chest Physicians, but should be used in conjunction as a resource document. The contents of this document are based on technical data contributed by educators and others within the profession. In addition, members of the Education Committee and the Curriculum Development/Career Mobility Sub-Committee served in an advisory capacity. A Final Draft of this document was presented to nearly one hundred Respiratory Therapy professionals for their review and analysis. The Association views this publication as an extension of NIH Project 72-4219, DELINEATION OF ROLES AND FUNCTION OF RESPIRATORY THERAPY PERSONNEL, published in July 1973, and work statements contained herein are based on this document, and work statements contained within the PROFESSIONAL STANDARDS OF ASCERTAINED PERSONNEL, published in July 1976.

This Guide is not intended to replace the GUIDEBOOK FOR RESPIRATORY THERAPY EDUCATIONAL PROGRAM DEVELOPMENT IN INSTITUTIONS PROVIDING EDUCATIONAL SERVICES, developed and endorsed by the American Association for Respiratory Therapy, the American College of Chest Physicians, and the American Medical Association's House of Delegates, but should be used in conjunction as a resource document. The contents of this document are based on technical data contributed by educators and others within the profession. In addition, members of the Education Committee and the Curriculum Development/Career Mobility Sub-Committee served in an advisory capacity. A Final Draft of this document was presented to nearly one hundred Respiratory Therapy professionals for their review and analysis. The Association views this publication as an extension of NIH Project 72-4219, DELINEATION OF ROLES AND FUNCTION OF RESPIRATORY THERAPY PERSONNEL, published in July 1973, and work statements contained herein are based on this document, and work statements contained within the PROFESSIONAL STANDARDS OF ASCERTAINED PERSONNEL, published in July 1976.
CONTENT

<table>
<thead>
<tr>
<th>FOREWORD</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Using the Guide</td>
<td>2</td>
</tr>
<tr>
<td>MEDICAL GAS THERAPY</td>
<td>6</td>
</tr>
<tr>
<td>(Module A)</td>
<td></td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>7</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>9</td>
</tr>
<tr>
<td>Unit Three - Techniques & Applications</td>
<td>12</td>
</tr>
<tr>
<td>Unit Four - Clinical Practice</td>
<td>14</td>
</tr>
<tr>
<td>Unit Five - Techniques & Application (Critical)</td>
<td>15</td>
</tr>
<tr>
<td>Unit Six - Clinical Practice (Critical)</td>
<td>16</td>
</tr>
<tr>
<td>AEROSOL/HUMIDITY THERAPY</td>
<td>17</td>
</tr>
<tr>
<td>(Module B)</td>
<td></td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>18</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>20</td>
</tr>
<tr>
<td>Unit Three - Therapeutic Techniques & Applications</td>
<td>22</td>
</tr>
<tr>
<td>Unit Four - Clinical Practice</td>
<td>24</td>
</tr>
<tr>
<td>Unit Five - Techniques & Application (Critical)</td>
<td>27</td>
</tr>
<tr>
<td>Unit Six - Clinical Practice (Critical)</td>
<td>28</td>
</tr>
<tr>
<td>IPPB THERAPY</td>
<td>30</td>
</tr>
<tr>
<td>(Module C)</td>
<td></td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>31</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>32</td>
</tr>
<tr>
<td>Unit Three - Techniques & Applications</td>
<td>34</td>
</tr>
<tr>
<td>Unit Four - Clinical Practice</td>
<td>36</td>
</tr>
<tr>
<td>Unit Five - Techniques & Application (Critical)</td>
<td>38</td>
</tr>
<tr>
<td>Unit Six - Clinical Practice (Critical)</td>
<td>39</td>
</tr>
<tr>
<td>PULMONARY DRAINAGE</td>
<td>40</td>
</tr>
<tr>
<td>(Module D)</td>
<td></td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>41</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>42</td>
</tr>
<tr>
<td>Unit Three - Therapeutic Techniques & Applications</td>
<td>45</td>
</tr>
<tr>
<td>Unit Four - Clinical Practice</td>
<td>47</td>
</tr>
<tr>
<td>Unit Five - Techniques & Application (Critical)</td>
<td>48</td>
</tr>
<tr>
<td>Unit Six - Clinical Practice (Critical)</td>
<td>50</td>
</tr>
<tr>
<td>CARDIORESPIRATORY DRUG ADMINISTRATION</td>
<td>51</td>
</tr>
<tr>
<td>(Module E)</td>
<td></td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>52</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>53</td>
</tr>
<tr>
<td>Unit Three - Therapeutic Techniques</td>
<td>54</td>
</tr>
<tr>
<td>Unit Four - Clinical Practice</td>
<td>56</td>
</tr>
<tr>
<td>Unit Five - Cardiopulmonary Pharmacology</td>
<td>57</td>
</tr>
<tr>
<td>Unit Six - Techniques & Applications (Critical)</td>
<td>59</td>
</tr>
<tr>
<td>Unit Seven - Clinical Practice (Critical)</td>
<td>60</td>
</tr>
<tr>
<td>INFECTION CONTROL</td>
<td>61</td>
</tr>
<tr>
<td>(Module F)</td>
<td></td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>62</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>64</td>
</tr>
<tr>
<td>Unit Three - Theory & Applications</td>
<td>66</td>
</tr>
<tr>
<td>Unit Four - Clinical Practice</td>
<td>68</td>
</tr>
<tr>
<td>Unit Five - Introduction to Culturing Procedures</td>
<td>69</td>
</tr>
<tr>
<td>Unit Six - Theory & Applications</td>
<td>70</td>
</tr>
<tr>
<td>Unit Seven - Clinical Practice</td>
<td>71</td>
</tr>
<tr>
<td>CONTINUOUS VENTILATION</td>
<td>(Module G) 72</td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>73</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>75</td>
</tr>
<tr>
<td>Unit Three - Therapeutic Techniques & Applications</td>
<td>78</td>
</tr>
<tr>
<td>Unit Four - Clinical Practice</td>
<td>80</td>
</tr>
<tr>
<td>INTRODUCTION TO AIRWAY CARE</td>
<td>(Module H) 82</td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>83</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>84</td>
</tr>
<tr>
<td>Unit Three - Therapeutic Techniques & Applications</td>
<td>85</td>
</tr>
<tr>
<td>Unit Four - Clinical Practice</td>
<td>86</td>
</tr>
<tr>
<td>Unit Five - Special Procedures</td>
<td>87</td>
</tr>
<tr>
<td>Unit Six - Techniques & Applications (Critical)</td>
<td>89</td>
</tr>
<tr>
<td>Unit Seven - Clinical Practice (Special)</td>
<td>91</td>
</tr>
<tr>
<td>CARDIOPULMONARY RESUSCITATION</td>
<td>(Module I) 92</td>
</tr>
<tr>
<td>Unit One - Theory & Practice</td>
<td>93</td>
</tr>
<tr>
<td>Unit Two - Emergency Care</td>
<td>95</td>
</tr>
<tr>
<td>Unit Three - Theory & Operation</td>
<td>97</td>
</tr>
<tr>
<td>Unit Four - Emergency Techniques</td>
<td>98</td>
</tr>
<tr>
<td>PULMONARY FUNCTION TESTING</td>
<td>(Module J) 99</td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>100</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>102</td>
</tr>
<tr>
<td>Unit Three - Diagnostic Techniques & Applications</td>
<td>105</td>
</tr>
<tr>
<td>CARDIORESPIRATORY REHABILITATION</td>
<td>(Module K) 106</td>
</tr>
<tr>
<td>Unit One - Introduction</td>
<td>107</td>
</tr>
<tr>
<td>Unit Two - Equipment Theory & Operation</td>
<td>109</td>
</tr>
<tr>
<td>Unit Three - Hospital Techniques & Applications</td>
<td>111</td>
</tr>
<tr>
<td>Unit Four - Clinical Practice</td>
<td>113</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td></td>
</tr>
<tr>
<td>CORE PREREQUISITES</td>
<td>114</td>
</tr>
<tr>
<td>I. Introduction to Respiratory Therapy</td>
<td>116</td>
</tr>
<tr>
<td>II. Integrated Sciences</td>
<td>118</td>
</tr>
<tr>
<td>III. Ethics and Medical Law</td>
<td>120</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td></td>
</tr>
<tr>
<td>COMPRENDIUM OF RESOURCE BIBLIOGRAPHIES</td>
<td>122</td>
</tr>
<tr>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>APPENDIX C</td>
<td></td>
</tr>
<tr>
<td>GUIDE TO PREPARING BEHAVIORALLY STATED OBJECTIVES</td>
<td>124</td>
</tr>
<tr>
<td>I. Overview</td>
<td>125</td>
</tr>
<tr>
<td>II. Development of Behavioral Objectives</td>
<td>126</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td></td>
</tr>
<tr>
<td>DELINEATION OF ROLES AND FUNCTIONS OF RESPIRATORY THERAPY PERSONNEL (Final Report)</td>
<td>130</td>
</tr>
<tr>
<td>D1</td>
<td></td>
</tr>
</tbody>
</table>
UNIT ONE

INTRODUCTION TO MEDICAL GAS THERAPY

INSTRUCTIONAL CONTENT

1.0 Origin of the earth and its environment
 1.1 Atmospheric division
 1.2 Gases of the atmosphere
 1.3 Pollutants of the atmosphere
 1.4 Medical gases
 1.5 Review of the basic gas laws
 1.6 Historical development of medical gas therapy

INSTRUCTIONAL OBJECTIVES

The student will:
 1.0 Describe one of the theories of Planetary formation proposed and discuss the importance of oxygen as an elemental component of the earth.
 1.1 Draw a model of the atmospheric divisions and describe the characteristics of each atmospheric division.
 1.2 List each gas and discuss its effects on the respiratory system.
 1.3 List the component gases of the earth's atmosphere and discuss the composition produced by the interaction of these gases.
 1.4 List the medical gases and their basic characteristics and how they are used in medical practice.
 1.5 Describe the source of most common air pollutants.

COMMERCIAL PRODUCTION OF MEDICAL GASES

MODULE A
UNIT TWO MEDICAL GAS THERAPY
EQUIPMENT THEORY AND OPERATION

INSTRUCTIONAL CONTENT

2.0 Manufacture, operation and transportation of gas cylinders
2.1 Bulk gas supply and piping systems
2.2 Regulators
2.3 Flowmeters
2.4 Theory and operation of gas therapy equipment:
 a. Nasal catheters
 b. Cannulas
 c. O₂ masks
 d. Venturi-type mask
 e. Environmental chambers
 f. T-tubes and trachmasks
2.5 Oxygen analyzers:
 a. Paramagnetic
 b. Thermoconductive
 c. Polarographic
 d. Galvanic
2.6 Use of O₂/air blending devices
2.7 Portable O₂ systems
2.8 Suction apparatus

INSTRUCTIONAL OBJECTIVES

The student will:

2.0 Demonstrate through practice safe transportation and use of size "H" and size "E" cylinders.
2.1 List problems that may arise in operation and daily maintenance of gas supply lines, the cause of each problem and recommended action to correct each problem.
2.2. Differentiate among various safety index systems employed in use of gas regulators and demonstrate correct techniques of attaching regulators to both large and small size cylinders.

2.3 Describe effects of interchanging flowmeters from one gas to another.

2.4 Demonstrate the correct techniques for patient application of the following equipment:
 a. Nasal catheters
 b. Cannulas
 c. O2 masks
 d. Venturi-type mask
 e. Environmental chambers
 f. T-tubes and trachmasks

2.5 Describe calibration, service, maintenance and technical application of the following types of analyzers:

 a. Paramagnetic
 b. Thermoconductive
 c. Polarographic
 d. Galvanic

2.6 Describe function and demonstrate use of an oxygen blending device.

2.7 Prepare a portable O2 system for use and demonstrate its use on an oxygen breathing device.

2.8 Demonstrate a procedure for checking the availability and demonstration of patient application.

RECOMMENDED STRATEGY

- Lecture/visit to hospital oxygen storage site
- Lecture/demonstrate regulator/return demonstration
- Lecture
- Lecture/laboratory/role playing with partner
- Lecture/demonstration of oxygen analyzers/return demonstration
- Lecture/demonstrate blending devices/return demonstration
- Lecture/demonstrate portable O2 system/return demonstration
- Lecture/demonstrate suctioning devices/laboratory practice

RESOURCE BIBLIOGRAPHY

- Barnes, I. Israel, Pr...j's Programmed Introduction to Respiratory Therapy
- Egan, Pundamentals of Respiratory Therapy
- Sykes, Principles of Measurement for Anesthetists
- Compressed Gas Association, Handbook of Compressed Gases
- National Fire Protection Association Booklets
UNIT THREE
MEDICAL GAS THERAPEUTIC
TECHNIQUES AND APPLICATION

INSTRUCTIONAL CONTENT

3.0 Rationale for administration of oxygen therapy
3.1 Rationale for administration of gas mixtures
3.2 Therapy equipment
3.3 Modifications of equipment for special needs
3.4 Application of gas analyzers
3.5 Hazards associated with administration of gases
3.6 Malfunctions and general trouble-shooting

INSTRUCTIONAL OBJECTIVES

The student will:

3.0 List clinical instances that would require the administration of oxygen and describe the physiological reasons for the beneficial effects in each case.
3.1 Describe the physiological effects of increased O_2, list clinical instances in which this type of therapy might be employed and demonstrate the correct method of administering the therapy.
3.2 Demonstrate procedures for the administration of oxygen via each of the established equipment.
3.3 Choose appropriate equipment and/or modify equipment to administer therapy as indicated by clinical situation.
3.4 Demonstrate correct gas sampling techniques.
3.5 Prepare a report on hazards that may be encountered in administration of gases.
3.6 Diagnose and correct common malfunctions that may occur in various equipment.

RECOMMENDED STRATEGY

3.0 Lecture/discussion
3.1/3.2 Lecture/laboratory/demonstrate administration of gas mixtures/return demonstration
3.3 Laboratory/role playing/evaluation
3.4 Laboratory/role playing of selected patient care situations
3.5 Laboratory/demonstrate sampling techniques
3.6 Individual study
3.7 Laboratory/simulate correction of equipment malfunction

RESOURCE BIBLIOGRAPHY

Barnes & Israel, Brady's Programmed Introduction to Respiratory Therapy
Bellinkoff, Introduction to Inhalation Therapy
Bendixen, et al, Respiratory Care
Bryan & Taylor, Manual of Respiratory Therapy
Chemack, et al, Respiration In Health and Disease
Egan, Fundamentals of Respiratory Therapy
Grenard, et al, Advanced Study in Respiratory Therapy
Grenard, The Hazards of Respiratory Therapy
Grenard, et al, Introduction to Respiratory Therapy
Safar, Respiratory Therapy
Young & Crocker, Principles and Practice of Intratracheal Therapy
UNIT FOUR
MEDICAL GAS THERAPY

CLINICAL PRACTICE
INSTRUCTIONAL CONTENT

4.0
Application of therapeutic techniques involving:

a. Nasal catheters
b. Cannulas
c. O2 mask
d. Venturi-type mask
e. Environmental chambers
f. T-tubes and trachmasks
g. Gas cylinders
h. Flowmeters
i. Regulators
j. Analyzers

4.1
Indications, contraindications and hazards

4.2
Adverse signs and symptoms of gas administration

INSTRUCTIONAL OBJECTIVES
The student will:

4.0
Demonstrate correct practice techniques, attitudes and concern for patients.

4.1
Recognize and describe clinical indications, contraindications and hazards for administration of medical gases.

4.2
Recognize and describe adverse signs and symptoms during gas administration.

RECOMMENDED STRATEGY
4.0
Ward rounds with physician, therapist and other health professionals

4.1
Application of therapy and maintenance procedures

4.2
Ward rounds with instructor/post clinical conference

RECOMMENDED STRATEGY
5.0
Lecture/laboratory/simulation

5.1
Lecture/audiovisual

5.2
Lecture/practice equipment modification and application, of therapy to infants

5.3
Ward rounds with instructor/post clinical conference

5.4
Application of hyperbaric gas therapy

5.5
Medical gas therapy for infants

INSTRUCTIONAL CONTENT

5.0
Blending devices and adapting equipment

5.1
Discussion of advantages of treating patient in a hyperbaric chamber

5.2
Discussion of indications for hyperbaric gas therapy

5.3
Oral and written reports of hyperbaric gas therapy

RESOURCE BIBLIOGRAPHY

Abramson, H. ed., Resuscitation of the Newborn Infant
Avery, The Lung and its Disorders in the Newborn Infant
Bryan Taylor, Manual of Resuscitation
Grenard, The Hazards of Resuscitation
Kendig, ed., Pulmonary Disorders
Korones, High-Risk Newborn Infants
Young & Crocker, Principles and Practice of Therapeutic Gas Therapy
UNIT SIX

MEDICAL GAS THERAPY

CLINICAL PRACTICE

(CRITICAL PATIENTS)

INSTRUCTIONAL CONTENT

6.0 Application of medical gas therapy to patients in acute respiratory failure

6.1 Application of gas therapy to neonates

INSTRUCTIONAL OBJECTIVES

The student will:

6.0 Administer medical gas to patients in acute respiratory failure.

6.1 Administer medical gas to neonates in acute respiratory failure.

RECOMMENDED STRATEGY

6.0 Work in an intensive care unit, recovery room, emergency room or other areas dealing with critical patients.

6.1 Work with qualified registered therapist.

RESOURCE BIBLIOGRAPHY

Abramson, ed., Resuscitation of the Newborn Infant
Avery, The Lung and Its Disorders in the Newborn Infant
Bryan & Taylor, Manual of Respiratory Therapy
Bendixen, et al, Respiratory Care
Egan, Fundamentals of Respiratory Therapy
Grenard, et al, Advanced Study in Respiratory Therapy
Kellin, ed., Pulmonary Disorders
Korones, High-Risk Newborn Infants
Safar, Respiratory Therapy
Shapiro, Clinical Application of Blood Gases
Young & Crocker, Principles and Practice of Inhalation Therapy
UNIT ONE
INTRODUCTION TO AEROSOL/HUMIDITY THERAPY

INSTRUCTIONAL CONTENT

1.0 Rationale and terminology of aerosol/humidity therapy

1.1 Historical development of aerosol/humidity therapy

1.2 Physical factors of aerosol transport and deposition

1.3 Clinical indications

1.4 Hazards associated with inhaled particulates

1.5 Systemic absorption of aerosols from lungs

1.6 Identification of aerosol drugs

1.7 Chemistry of wetting agents and expectation

INSTRUCTIONAL OBJECTIVES

The student will:

1.0 Define and compare terms used in aerosol/humidity therapy.

1.1 Review the historical development of aerosol/humidity therapy.

1.2 Diagram and explain aerosol deposition in the respiratory tract.

1.3 Discuss clinical indications for aerosol/humidity therapy.

1.4 List and discuss hazards associated with inhaled aerosols.

1.5 Discuss systemic aerosol absorption from the respiratory tract.

1.6 Name drugs most frequently used for aerosol therapy.

1.7 List types of wetting agents and explain their application.

RECOMMENDED STRATEGY

1.0 Lecture/discussion

1.1 Lecture/discussion

1.2 Lecture/audio-visual

1.3 Lecture/discussion

1.4 Lecture/discussion

1.5 Lecture

1.6 Lecture

1.7 Lecture

RESOURCE BIBLIOGRAPHY

- Barnes and Isreal, Braig’s Programmed Introduction to Respiratory Therapy
- Egan, Fundamentals of Respiratory Therapy
- Safar, Respiratory Therapy
- Young & Crocker, Principles and Practice of Therapy
- Medical Economics, Inc., Physician’s Desk Reference
- Goodman & Gilman, Pharmacologic Basic of Therapeutics
- Cherniack & Cherniack, Respiratory Care in Reye’s Disease
- Goddard, Inhalation Therapy for Infants and Children
- Hatch and Gross, Pulmonary Deposition and Retention of Inhaled Aerosols
- Dunham, The Inhalation Therapy Technician
- Nunn, Applied Respiratory Physiology
- Audio-Visual:_Grid Series of Slides and Diskettes

INSTRUCTIONAL OBJECTIVES

1.0 Chemistry of wetting agents

1.1 Introduction of aerosol drugs

1.2 Synergistic absorption of aerosol drugs

1.3 Hazards associated with inhaled particulates

1.4 Clinical indications

1.5 Deposition

1.6 Protective agents of aerosol transport and therapy

1.7 Histological development of aerosol/humidity

1.8 Retention and extinction of aerosol/humidity

INTRODUCTION TO AEROSOL/HUMIDITY THERAPY
UNIT TWO
AEROSOL/HUMIDITY THERAPY
EQUIPMENT THEORY AND OPERATION

INSTRUCTIONAL CONTENT
2.0 Review cylinders for medical gas administration
2.1 Review medical gas regulators
2.2 Humidifiers
2.3 Nebulizers
2.4 Aerosol/Humidity enclosures

INSTRUCTIONAL OBJECTIVES

The student will:

2.0 Discuss preparation of medical gas for operation.
2.1 Discuss operation of a pressure regulator.
2.2 Diagram and explain the function of:
 a. bubble-diffusion humidifier
 b. cascade humidifier
 c. pass-over humidifier
2.3 Disassemble, identify and explain the method of aerosol generation in the following devices:
 a. ultrasonic nebulizer
 b. pneumatic nebulizer
 c. impeller nebulizer
2.4 Set-up and appraise the capabilities of an aerosol enclosure.

RECOMMENDED STRATEGY
2.0/2.4 Lecture/demonstration/audio-visual

RESOURCE BIBLIOGRAPHY
Barnes and Israel, "Brady's Programmed Introduction to Respiratory Therapy"
Egan, Fundamentals of Respiratory Therapy
Safar, Respiratory Therapy
Young & Crocker, Principles and Practice of Inhalation Therapy
Vick & Dunham, The Inhalation Therapy Technician
Goddard, Inhalation Therapy for Infants and Children
UNIT THREE
AEROSOL/HUMIDITY

THERAPEUTIC TECHNIQUES AND APPLICATION

INSTRUCTIONAL CONTENT

3.6
d. skin color
e. ease of breathing

3.7
h. basic EKG patterns

Inventory the information which should be recorded

The following is a short following in aerosol therapy

Characteristics of spum
- cough
- blood
- expectorated secretions
- breath sounds
- wheeze or crackling
- skin color

The student will:

INSTRUCTIONAL OBJECTIVES

3.0
Formulate a proper order for aerosol therapy and itemize information required prior to initiating therapy.

3.1
Discuss the capabilities of nebulizers to deliver bland solutions.

3.2
Describe various techniques for administration of aerosol medications.

3.3
Demonstrate the proper position and breathing technique during administration of therapy to mobilize and expectorate secretions.

3.4
Assess patient response to aerosol therapy using:
 a. pulse rate
 b. blood pressure
 c. respiratory pattern and rate

3.5
Interpretation and implementation of physician’s order

RECOMMENDED STRATEGY

3.0/3.5
Lecture/laboratory/demonstration

3.6
Analysis and documentation of treatment response

3.7
Lecture/laboratory/demonstration

RESOURCE

BIBLIOGRAPHY

1. Medical Economics, Inc., Physicians’ Leaks Prevention
 Egan, Fundamentals of Respiratory Therapy
 Young & Crocker, Principles and Practice of Inhalation Therapy
 Vick & Dunham, The Inhalation Therapist
 Cherniack & Cherniack, Respiration in Health and Disease
 et al., Respiratory Disease
 Jain & et al., Respiratory Care
 Shafer, et al., Medical Curves in Asthma
 Riker Laboratories, Living with Asthma
 Bronchitis and Emphysema
UNIT FOUR

AEROSOL/HUMIDITY THERAPY

CLINICAL PRACTICE

INSTRUCTIONAL CONTENT

4.0 Interpretation of physician's order
4.1 Assembly of equipment for aerosol/humidity therapy
4.2 Evaluation of clinical condition of patient
4.3 Administration of aerosol/humidity therapy
4.4 Evaluation of patient response to therapy
4.5 Recording of therapy
4.6 Adverse patient response

INSTRUCTIONAL OBJECTIVES

The student will:
4.0 Demonstrate ability to read and interpret a physician's order and relate the laboratory data, diagnosis and radiologic findings to the prescribed order for aerosol/humidity therapy.
4.1 Assemble equipment required to properly implement physician's order for aerosol/humidity therapy.
4.2 Appraise and record the patient's condition prior to the initiation of aerosol/humidity therapy.
4.3 Instruct and manage the patient during the administration of aerosol/humidity therapy.
4.4 Evaluate the patient's response to aerosol/humidity therapy.
4.5 Properly record and report patient response to therapy.
4.6 Discuss signs of adverse patient response to therapy and formulate and explain management of hypothetical cases.

RECOMMENDED STRATEGY

4.0 Lecture/clinical practice
4.1 Clinical practice
4.2 Clinical practice/lecture
4.3 Lecture/clinical/audio-visual
4.4 Lecture/clinical/discussion
4.5 Lecture/clinical/discussion
4.6 Lecture/clinical/discussion
4.7 Clinical practice
5.0 Patient assessment techniques

5.1 Management of airway

5.2 Management of critical care

5.3 Therapeutic techniques & application

5.4 Aerosol/Neuromuscular

5.5 Inhalation therapy

5.6 Respiratory support

5.7 Therapeutic exercises

5.8 Patient assessment techniques

INSTRUCTIONAL OBJECTIVES

5.0 Demonstrate and describe techniques for assessing breath sounds and ease of breathing.

5.1 Discuss elements of intensive care related to respiratory failure.

5.2 Describe and discuss the management of tracheostomy and tracheal tubes.

5.3 Assemble the necessary equipment and demonstrate the procedure for sterile tracheobronchial suctioning.

RECOMMENDED STRATEGIES

5.0 Lecture/laboratory/demonstration/audio-visual

5.1 Lecture/laboratory/demonstration/audio-visual

5.2 Lecture/laboratory/demonstration/audio-visual

5.3 Lecture/laboratory/demonstration

RESOURCE BIBLIOGRAPHY

Ayres, Glonnelli, Care
UNIT SIX AEROSOL/HUMIDITY THERAPY CLINICAL PRACTICE
(CRITICAL PATIENTS)

INSTRUCTIONAL CONTENT
6.0 Interpretation and evaluation of prescription for aerosol/humidity therapy
6.1 Evaluation of patient's clinical status
6.2 Equipment assembly
6.3 Implementation of aerosol/humidity therapy
6.4 Evaluation of patient response to therapy
6.5 Adverse patient response
6.6 Tracheobronchial suction techniques and related procedures
6.7 Care and maintenance of aerosol/humidity equipment
6.8 Recording of therapy

INSTRUCTIONAL OBJECTIVES
The student will:
6.0 Integrate the respiratory care plan into the patient's total care plan.
6.1 Auscultate the chest of a patient and identify the type of breath sounds heard.
6.2 Assemble equipment to properly implement the prescribed aerosol therapy to a critically ill patient.
6.3 Administer the prescribed aerosol therapy to a critically ill patient.
6.4 Apply techniques of assessment of a treatment according to hospital procedure.
6.5 Demonstrate ability to modify therapy to deal with adverse patient response.
6.6 Assemble the necessary equipment and perform tracheobronchial suctioning.
6.7 Properly clean and disinfect a contaminated aerosol generator.
6.8 Properly record observations of the patient's response to aerosol/humidity therapy.

RECOMMENDED STRATEGY
6.0 Lecture/clinical/discussion
6.1/6.6 Clinical/discussion
6.7 Discussion
6.8 Clinical practice
6.9/6.10 Clinical/discussion
UNIT ONE
INTRODUCTION TO IPPB THERAPY

INSTRUCTIONAL CONTENT

1.0 Definition of intermittent positive pressure breathing therapy
1.1 Normal and positive pressure breathing contrasted
1.2 Scientific basis of positive pressure breathing therapy
1.3 Indications, contraindications and hazards

INSTRUCTIONAL OBJECTIVES

The student will:

1.0 Define IPPB therapy.
1.1 Explain the difference between normal and positive pressure breathing.
1.2 Describe objectives of positive pressure breathing therapy, including controversial aspects.
1.3 Distinguish between normal and positive pressure breathing.
1.4 Understand the difference between normal and positive pressure breathing.
1.5 Define IPPB therapy.

RECOMMENDED STRATEGY

1.0 Lecture
1.1 Lecture/demonstration
1.2 Discussion group with two or more instructors

RESOURCE BIBLIOGRAPHY

UNIT TWO

IPPB THERAPY EQUIPMENT, THEORY AND OPERATION

INSTRUCTIONAL CONTENT

2.0 Methods of promoting deep breathing
 2.1 Proper equipment operation
 2.2 IPPB equipment principles of operation
 2.3 Equipment variables influencing the effectiveness of IPPB therapy
 2.4 Disassembly and reassembly

INSTRUCTIONAL OBJECTIVES

The student will:

2.0 Describe methods of promoting deep breathing through the use of positive pressure machines, incentive spirometers, flow bottles, etc.

2.1 Name and describe conditions which must be met for IPPB equipment to function properly.

2.2 Identify selected IPPB equipment and explain its principles of operation.

2.3 Describe variables influencing the effectiveness of IPPB therapy.

2.4 Reassemble each selected piece of IPPB equipment when presented with its component.

RECOMMENDED STRATEGY

2.0 Slides with narration
2.1 Lecture/demonstration
2.2 Taped talk by national authority
2.3 Slides/tape

RESOURCE BIBLIOGRAPHY

Barnes & Israel, Brady's programmed introduction to Respiratory Therapy
Chernick, et al., Respiratory in Health and Illness
Kendig, Primary Standards
Young & Crocker, Principles and Practice of Respiratory Therapy
UNIT THREE
IPPB THERAPEUTIC TECHNIQUES

INSTRUCTIONAL CONTENT

3.0 Preparation, implementation and termination of IPPB treatment

3.1 Adjustment of IPPB machine controls

3.2 IPPB therapy simulation

INSTRUCTIONAL OBJECTIVES

The student will:

3.0 Discuss the following steps involved in preparation, implementation and termination of IPPB treatment:
 a. Read/evaluate physician's order and chart.
 b. Prepare and test equipment.
 c. Prepare/position patient for therapy.
 d. Assess patient response to therapy.
 e. Modify therapy to deal with adverse patient response.
 f. Post-treatment measurements.
 g. Record therapy.

3.1 Demonstrate proper techniques for operation of IPPB machine.

3.2 Demonstrate proper techniques for preparation, implementation, and termination of IPPB treatment.

RECOMMENDED STRATEGY

3.0 Review of patient chart/lecture/audio-visual

3.1 Demonstration/return demonstration utilizing Lung analog

3.2 Simulation utilizing class members

RESOURCE BIBLIOGRAPHY

Articles:
 Gwin, J. "Machines don't give treatments," 17-
 Yapda, R. "Quality Control of IPPB Therapy." 3435
UNIT FOUR IPPB THERAPY CLINICAL PRACTICE

INSTRUCTIONAL CONTENT

4.0 Review of respiratory therapy procedures
4.1 Review of patient care area organization
4.2 Review organization of Nurse's Station
4.3 Patient charts
4.4 Patient contact
4.5 Patient preparation
4.6 IPPB therapy implementation
4.7 Evaluation of patient response

INSTRUCTIONAL OBJECTIVES

The student will:

4.0 Discuss structure and function of respiratory therapy department and procedures relevant to IPPB therapy.
4.1 Discuss organization of patient care areas and function of equipment observed.
4.2 Locate and discuss function of nurse's station, charting area, drug room, cleaning area, storage area and other related areas.
4.3 Locate patient's chart and point out the sections relevant to treatment of the patient.
4.4 Meet and establish rapport with selected patient.
4.5 Demonstrate correct patient approach, including physical and mental preparation for therapy.
4.6 Implement IPPB therapy to selected patient demonstrating proper techniques in conjunction with various patient responses.
4.7 Discuss evaluation of various patient responses.

RECOMMENDED STRATEGY

4.0/4.2 Observation/discussion
4.3 Role-playing
4.4/4.6 Actual performance under direct supervision
4.7 Discussion
UNIT FIVE

INS

IPPB THERAPEUTIC TECHNIQUES

AND APPLICATION

CRITICAL PATIENTS

5.0

Patient chart review

5.1

Equipment systems set-up

5.2

Therapy implementation

RUCTIONAL CONTENT

5.0

Locate physician’s order sheet, check for orders pertaining to respiratory therapy and locate other areas of the chart which contain additional information about the patient.

5.1

Demonstrate the assembly of various IPPB systems appropriate to the treatment of critical patients.

5.2

Demonstrate use of selected IPPB systems according to various critical patient responses.

5.0/5.2

DEMONSTRATION/RETURN DEMONSTRATION

5.0

Lecture/Performance/Group discussion

RECOMMENDED STRATEGY:

5.0/5.2

5.0/5.2

Demonstrate use of selected IPPB systems according to various critical patient responses.

5.0

Lecture/Performance/Group discussion

5.0

Lecture/Performance/Group discussion

UNIT SIX

IPPB THERAPY CLINICAL PRACTICE

CRITICAL PATIENTS

INSTRUCTIONAL CONTENT

6.0

Preparation of critical patient for IPPB therapy

6.1

Demonstration of IPPB therapy

6.2

Administration of IPPB therapy

6.0

Prepare the critical patient to receive positive pressure breathing by observing and implementing the following steps:

6.0

Read/evaluate physician’s order and chart.

6.1

Prepare/retest equipment.

6.2

Prepare/patient.

6.3

Implement IPPB treatment.

6.4

Assess patient response.

6.5

Modify technique to enhance therapy.

6.6

Observe administration of IPPB therapy to critical medical and surgical patients.

6.7

Participate in the administration of IPPB therapy to critical medical and surgical patients.

6.0

Lecture/Performance/Group discussion

RECOMMENDED STRATEGY:

5.0

Lecture/Performance/Group discussion

5.0

Lecture/Performance/Group discussion

INSTRUCTIONAL OBJECTIVES

The student will:

6.0

Prepare the critical patient to receive positive pressure breathing by observing and implementing the following steps:

6.0

Read/evaluate physician’s order and chart.

6.1

Prepare/retest equipment.

6.2

Prepare/patient.

6.3

Implement IPPB treatment.

6.4

Assess patient response.

6.5

Modify technique to enhance therapy.

6.6

Observe administration of IPPB therapy to critical medical and surgical patients.

6.7

Participate in the administration of IPPB therapy to critical medical and surgical patients.

6.0

Lecture/Performance/Group discussion

INSTRUCTIONAL OBJECTIVES

The student will:

6.0

Prepare the critical patient to receive positive pressure breathing by observing and implementing the following steps:

6.0

Read/evaluate physician’s order and chart.

6.1

Prepare/retest equipment.

6.2

Prepare/patient.

6.3

Implement IPPB treatment.

6.4

Assess patient response.

6.5

Modify technique to enhance therapy.

6.6

Observe administration of IPPB therapy to critical medical and surgical patients.

6.7

Participate in the administration of IPPB therapy to critical medical and surgical patients.

6.0

Lecture/Performance/Group discussion
UNIT ONE INTRODUCTION TO PULMONARY DRAINAGE

INSTRUCTIONAL CONTENT

1.0 Physiological principles indications, contraindications and hazards of chest physical therapy
1.1 Topical identification of internal thoracic structures
1.2 Sputum identification and description
1.3 Chest auscultation
1.4 Application of chest physical therapy

INSTRUCTIONAL OBJECTIVES

The student will:

1.0 List and discuss indications, contraindications and hazards generally associated with chest physical therapy.
1.1 Discuss topographical reference points to locate all the major thoracic organs and segments of the lungs.
1.2 Write chart entries describing sample sputum specimens and describe the types of sputum produced by commonly encountered pulmonary pathology.
1.3 Differentiate between ventilated and non-ventilated portions of the chest during auscultation by identifying breath sounds.
1.4 Demonstrate adjunctive therapy techniques that may accompany chest physical therapy.

RECOMMENDED STRATEGY

1.0 Lecture/slide/demonstration of application of chest physical therapy
1.1 Lecture/anatomical models/location of anatomical reference points on thorax of laboratory partners
1.2 Lecture/slides of sputum samples
UNIT TWO: PULMONARY DRAINAGE EQUIPMENT THEORY

INSTRUCTIONAL OBJECTIVES

The student will:

2.0 Practice the use of a manually adjustable tilt-table.
2.1 Practice the use of an electrically powered tilt-table.
2.2 Demonstrate the adaptation of a typical hospital bed for use in postural drainage.
2.3 Demonstrate the adaptation of a typical home bed for use in postural drainage.
2.4 Demonstrate the use of an electrically powered hand vibrator.
2.5 Demonstrate the use of an electrically powered percussion device.
2.6 Demonstrate the use of an electrically powered combination vibrator and percussion device.

RECOMMENDED STRATEGY

Laboratory practice/demonstration/rotation

INSTRUCTIONAL CONTENT

Technique

1.3 Lecture/practice and practical review of

1.4 Recording of chest sounds/demonstration

RESOURCE BIBLIOGRAPHY

- Eames, J. (n.d.). "Brady's Prognostic Introduction to Respiratory Therapy"
- Chernak, et al. (n.d.). "Respiration in Health and Disease"
UNIT THREE PULMONARY DRAINAGE THERAPEUTIC TECHNIQUES AND APPLICATION

INSTRUCTIONAL CONTENT

3.0 Positioning the adult patient
3.1 Positioning the infant or small child
3.2 Techniques of manual clapping and vibration
3.3 Techniques of percussion and vibration with mechanical adjuncts
3.4 Application of therapeutic techniques

INSTRUCTIONAL OBJECTIVES

The student will:

3.0 Demonstrate the correct positioning for total drainage of all lung segments.
3.1 Demonstrate correct positions and techniques for positioning the pediatric patient for postural drainage.
3.2 Demonstrate techniques of manual clapping and vibration.
3.3 Demonstrate proper techniques of percussion and vibration with mechanical adjuncts.
3.4 Demonstrate concern for patient's physical and psychological well being by modifying techniques according to response.

RECOMMENDED STRATEGY

3.0/3.1 Lecture/slides/flash cards
3.2/3.3 Laboratory practice with manikin or partner
3.4 Role-playing
UNIT FOUR
PULMONARY DRAINAGE CLINICAL PRACTICE

INSTRUCTIONAL CONTENT

4.0 Application of theory and techniques

4.1 Evaluation of student-patient rapport and effectiveness of therapy

4.0 Instructional objectives

INSTRUCTIONAL STRATEGIES

4.0 Pre and post clinical practice conferences

4.1 Student/clinical simulation activity

Recommendation statement

Provide a written self-evaluation of clinical experiences

Demonstrate therapeutic techniques and effectiveness of therapy

The student will:

4.0 Demonstrate therapeutic techniques and patient instruction techniques.

4.1 Provide a written self-evaluation of clinical experiences.

INSTRUCTIONAL MATERIALS

Articles:

Hovell & Hill, "Acute Respiratory Care in the Open Heart Surgery Patient: Physical Therapy"

Kurihura, "Pestral Drainage, Clapping and Vibrating," American Journal of Nursing

Rattenberg & Holiday, "Lung Physiotherapy as an Adjunct to Surgical Care," Surgical Clinics of North America

Resource Bibliography

Barnes L Israel, 'Brady's Programmed Introduction to Respiratory Therapy'

Bendixen, et al, Respiratory Care

Bryan & Taylor, Manual of Respiratory Therapy

Egan, Fundamentals of Respiratory Therapy

Caskell & Webber, The Brampton Hospital Guide to Chest Physiotherapy

Crenard, et al, Advanced Study in Respiratory Therapy

Busk, Rehabilitation Medicine

Thacker, Postural Drainage and Respiratory Control

Young & Cracker, Principles and Practice of Inhalation Therapy
UNIT FIVE
'PULMONARY DRAINAGE THERAPEUTIC TECHNIQUES & APPLICATION (CRITICAL PATIENTS)'

INSTRUCTIONAL CONTENT

5.0 Modification of postural drainage positions
5.1 Differential auscultation
5.2 Modifying chest physical therapy to accommodate special equipment
5.3 Altering techniques of therapy

INSTRUCTIONAL OBJECTIVES

The student will:

5.0 Modify postural drainage positions to accommodate the following patient conditions:
 a. Post-abdominal surgery
 b. Partial paralysis
 c. Post-thoracotomy
 d. Open-heart surgery
 e. Trauma
 f. Ventilator

5.1 Given previously recorded chest sounds, evaluate therapeutic situation and alter position and/or technique when necessary to increase effectiveness of therapy.

5.2 Demonstrate techniques for accomplishing therapy while a patient is attached to electronic vital sign measuring devices, chest tubes and other equipment encountered in the intensive care unit.

5.3 Demonstrate emergency procedures initiated in response to rapid or critical changes in the patient's condition.

RECOMMENDED STRATEGY

5.0 Laboratory practice with manikin or partner

5.1 Recorded chest sounds for identification and discussion
5.2 Laboratory practice with manikin or partner
5.3 Slides with narrative

RESOURCE BIBLIOGRAPHY

Barnes & Israel, Brady's Programmed Introduction to Respiratory Therapy
Bendixen, et al, Respiratory Care
Bryan & Taylor, Handbook of Respiratory Therapy
Gaskell & Webber, The BroMpton Hospital Guide to Chest Physiotherapy
Kendig, ed., Pulmonary Disorders
Petty, Intensive and Rehabilitation Respiratory Care
Thacker, Postural Drainage and Respiratory Care

Articles:
Cassara, "Chest Physical Therapy," International Anesthesia Clinics
Howell & Hill, "Acute Respiratory Care in the Open Heart Surgery Patient," Physical Therapy
Kurihara, "Postural Drainage, Clapping and Vibrating," American Journal of Nursing
Rie, "Physical Therapy in the Nursing Care of Respiratory Disease Patients," Nursing Clinics of North America
UNIT SIX
PULMONARY DRAINAGE CLINICAL PRACTICE

INSTRUCTIONAL CONTENT

6.0 Application of theory and techniques in selected intensive and/or critical patient care experiences

INSTRUCTIONAL OBJECTIVES

The student will:

6.0 Demonstrate techniques and attitudes conducive to effective and safe administration of chest physical therapy.

RECOMMENDED STRATEGY

6.0 Selected clinical situations/pre and post-clinical practice conferences/individual and peer evaluation/interview with individuals who were critical care patients at one time

MODULE E

CARDIOPULMONARY ADMINISTRATION

DRUG THERAPY

EXPERIENCE

6.0 Application of theory and techniques in selected intensive and/or critical patient care

INSTRUCTIONAL CONTENT

(CRITICAL PATIENTS)

UNIT SIX
PULMONARY DRAINAGE CLINICAL PRACTICE
UNIT ONE INTRODUCTION TO AEROSOL MEDICATIONS

INSTRUCTIONAL CONTENT
1.0 Terminology of drugs
1.1 Historical development and use of aerosolized drugs
1.2 Types of medications delivered by aerosol
1.3 Review of respiratory physiology pertaining to drug administration

INSTRUCTIONAL OBJECTIVES
The student will:
1.0 Define terms related to aerosol drug therapy.
1.1 Discuss the historical development of medications delivered by aerosol.
1.2 Given a list of medications, correctly identify the medications commonly delivered by aerosol.
1.3 Describe the function of the respiratory tract as a drug interface.

RECOMMENDED STRATEGY
1.0/1.1 Lecture/discussion group
1.2 Lecture
1.3 Lecture/inquiry

RESOURCE BIBLIOGRAPHY
Barnes & Israel, Brady's Programmed Instruction to Respiratory Therapy
Chernetick & Chernetick, Respiration in Health and Disease
Cutting, Handbook of Pharmacology
Egan, Fundamentals of Respiratory Therapy
Safar, Respiratory Therapy
Young & Crocker, Principles and Practice of Inhalation Therapy

UNIT TWO CARDIORESPIRATORY-DRUG ADMINISTRATION
EQUIPMENT THEORY AND OPERATION

INSTRUCTIONAL CONTENT
2.0 Review of aerosol properties
2.1 Principles of aerosol generation
2.2 Equipment used to produce aerosol

INSTRUCTIONAL OBJECTIVES
The student will:
2.0 Describe the factors that affect the physical properties of aerosol.
2.1 List and describe methods of aerosol generation.
2.2 List examples of aerosol generators and identify their methods of aerosol production.

RECOMMENDED STRATEGY
2.0/2.2 Lecture/audio-visual

RESOURCE BIBLIOGRAPHY
Barnes & Israel, Brady's Programmed Instruction to Respiratory Therapy
Bryan & Taylor, Manual of Respiratory Therapy
Egan, Fundamentals of Respiratory Therapy
Safar, Respiratory Therapy
Young & Crocker, Principles and Practice of Inhalation Therapy
UNIT THREE
CARDIORESPIRATORY DRUG ADMINISTRATION

THERAPEUTIC TECHNIQUES

3.3 Given a sample patient order, identify, assemble and set up the required equipment.

3.4 Describe and demonstrate patient positions for effective distribution of aerosolized medications particles to the patient's airway.

INSTRUCTIONAL CONTENT

3.0 Physical state of medications

3.1 Pharmacologic action of aerosolized medications

3.2 Assessing technical information for aerosolized medications

3.3 Review of equipment assembly for therapy

3.4 Effective patient positioning

3.5 Identification of pertinent physical signs to observe for patient assessment

3.6 Interpretation of physician's order

RECOMMENDED STRATEGIES

3.0 Formal instruction of drug administration

3.1 Interprofessional drug administration

3.2 Reciprocal drug administration

3.3 Review of equipment assembly for therapy

3.4 Effective patient positioning

3.5 Identification of pertinent physical signs to observe for patient assessment

3.6 Interpretation of physician's order

RESOURCE BIBLIOGRAPHY

Barnes & Israel.
Bryan & Taylor.
Cutting.
Egan.
Medical Economics, Inc.
Safar.
Young & Crocker.
UNIT FOUR
DRUG ADMINISTRATION CLINICAL PRACTICE

INSTRUCTIONAL CONTENT

4.0 Interpretation and correlation of physician order to patient condition
4.1 Assembly of equipment
4.2 Patient positioning for therapy
4.3 Preparation of medication
4.4 Administration of prescribed therapy
4.5 Evaluation of patient's response
4.6 Techniques dealing with adverse patient response
4.7 Record therapy

INSTRUCTIONAL OBJECTIVES

The student will:
4.0 Interpret physician's order and correlate the patient's condition to the prescribed drug therapy.
4.1 Select and assemble appropriate equipment needed to deliver drug therapy.
4.2 Place patient in correct position to allow administration of treatment.
4.3 Prepare and add medication to nebulizer.
4.4 Correctly administer prescribed treatment.
4.5 Assess patient response to drugs administered.
4.6 Implement required steps to deal with adverse patient response resulting from drug therapy.
4.7 Demonstrate correct procedure in recording therapy.

RECOMMENDED STRATEGY

4.0 Inquiry/demonstration
4.1/4.7 Demonstration

UNIT FIVE
INTRODUCTION TO CARDIORESPIRATORY PHARMACOLOGY

INSTRUCTIONAL CONTENT

5.0 Review basic pharmacologic principles
5.1 The autonomic nervous system
5.2 Cardiorespiratory drugs affecting the autonomic nervous system
5.3 Mucolytic and proteolytic drugs
5.4 Wetting and anti-foaming agents
5.5 Anti-inflammatory drugs
5.6 Antibiotic drugs

INSTRUCTIONAL OBJECTIVES

The student will:
5.0 List and describe the following pharmacologic principles:
 a. drug sources
 b. routes of administration
 c. drug interfaces
 d. principal effects and side actions
 e. allergic or toxic reactions
 f. termination of drug effect
5.1 Identify structure and function of the autonomic nervous system, emphasizing the following areas:
 a. Structure of the parasympathetic and sympathetic nervous system.
 b. Receptor concepts of the sympathetic nervous system.
 c. Nicotinic and muscarinic effects of the parasympathetic nervous system.
5.2 Describe the activity of the following list of autonomic drugs:
 a. epinephrine
 b. isoproterenol
 c. isopethamine
 d. atropine
Describe the action and side effects of the following mucolytic and proteolytic drugs:

- N-acetylcysteine
- deOxyribonuclease

Describe the action and side effects of the following wetting and anti-foaming agents:

- H2O
- saline
- bicarbonate
- ethyl alcohol

Explain the action and side effects of anti-inflammatory drugs.

Identify the microorganisms sensitive to specific antibiotics.

Resource Bibliography:

- Cutting, Handbook of Pharmacology
- Goodman & Gilman, Pharmacologic Basis of Therapeutics
- Medical Economics, Physicians Desk Reference
- Hountcastle, Medical Physiology (Vol. 1)

UNIT SIX
CARDIORESPIRATORY DRUG ADMINISTRATION
TECHNIQUES AND APPLICATIONS
CRITICAL PATIENTS
INSTRUCTIONAL CONTENT

The student will:

6.0 Review of auscultation and percussion techniques used during cardiorespiratory drug administration.
6.1 Demonstration of auscultation and percussion techniques used during cardiorespiratory drug administration.
6.2 Review of auscultation and percussion techniques used during cardiorespiratory drug administration.
6.3 Lecture and demonstration of auscultation and percussion techniques used during cardiorespiratory drug administration.

INSTRUCTIONAL OBJECTIVES

6.0 Physical demonstration of drug effect
6.1 Lecture on demonstration of drug effect
6.2 Lecture on demonstration of drug effect
6.3 Lecture on demonstration of drug effect

INSTRUCTIONAL STRATEGY

Lecture/demonstration/laboratory
Lecture/audio-visual/laboratory
Discussion group/laboratory

RECOMMENDED STRATEGY

Lecture/audio-visual/laboratory
Lecture/discussion
Lecture/audio-visual
Lecture

RESOURCE BIBLIOGRAPHY

- Cutting, Handbook of Pharmacology
- Goodman & Gilman, Pharmacologic Basis of Therapeutics
- Medical Economics, Physicians Desk Reference
- Hountcastle, Medical Physiology (Vol. 1)
UNIT SEVEN
CARDIORESPIRATORY DRUG ADMINISTRATION
CLINICAL PRACTICE
(CRITICAL PATIENTS)

INSTRUCTIONAL CONTENT

7.0 Evaluation of physician order and correlation to patient's condition
7.1 Implementation of prescribed therapy
7.2 Evaluation of patient response
7.3 Discrimination of adverse patient response and application of specified preventative or emergency techniques

INSTRUCTIONAL OBJECTIVES

The student will:

7.0 Describe correlation between patient's pathophysiologic condition, laboratory data on the chart and physician's prescribed therapy.
7.1 Implement prescribed therapy according to established criteria.
7.2 Correlate therapeutic rationale for and observe effects of prescribed therapy to patient's diagnosis.
7.3 Identify and initiate measures for countering nontherapeutic responses to drug therapy under a physician's supervision.

RECOMMENDED STRATEGY

7.0 Demonstration/inquiry
7.1 Demonstration
7.2/7.3 Demonstration/discussion
UNIT ONE
INTRODUCTION TO INFECTION CONTROL
INSTRUCTIONAL CONTENT

1.6 Describe the role of the public health agencies in the community in the prevention of communicable disease.

1.7 Verbally discuss the role of the respiratory therapy department and other members of the health team in hospital infection control.

1.0 Introduction to microorganisms:
 a. bacteria
 b. viruses
 c. rickettsias
 d. fungi

RECOMMENDED STRATEGY

2.0 Lecture/audio-visual

1.1 Historical development of modern aseptic techniques and the microbial theory of disease.

1.1 Lecture/audio-visual/evaluative composition

1.2 Lecture/laboratory

1.2 Mechanisms of defense by the body

1.3 Common infectious diseases produced

1.4 Lecture/field trips

1.5 Factors in the transmission of disease

1.6 Lecture/class discussion/seminar

1.7 Factors in the prevention of disease

1.0 RESOURCE BIBLIOGRAPHY

Perkins, P. and Zee, J. Microbiology and the Prevention of Communicable Diseases

Williams, E., et al., Principles of Modern Asepsis

INSTRUCTIONAL OBJECTIVES

The student will:

1.0 Identify and define characteristics of the primary types of microorganisms.

1.1 Write a synopsis of the development of modern aseptic techniques and microbial theory of disease.

1.2 List and describe major defense mechanisms provided by the human body for protection from invasion by pathogens.

1.3 List and discuss types of microorganisms responsible for most frequently encountered communicable diseases.

1.4 List the factors that govern the transmission of infectious disease.

1.5 List the factors in the prevention of disease.

1.6 Lecture/audio-visual/presentation

1.7 Lecture/class discussion/seminar

RECOMMENDED STRATEGY

1.0 Introduction to infection control

1.1 Lecture/field trips

1.2 Lecture/class discussion/seminar

1.3 Lecture/audio-visual/presentation

1.4 Lecture/field trips

1.5 Lecture/field trips

1.6 Lecture/audio-visual/presentation
UNIT TWO INFECTION CONTROL EQUIPMENT THEORY AND OPERATION

INSTRUCTIONAL CONTENT

2.0 Arrangement of department equipment supply and maintenance areas to promote proper aseptic procedures.

2.1 Packaging methods for equipment sterilization

2.2 Equipment drying cabinets

2.3 Steam autoclave

2.4 Pasteurization-type equipment disinfection unit

2.5 Chemical disinfection units

2.6 Ethylene oxide gas sterilizing units

2.7 Gas sterilizer aeration units

INSTRUCTIONAL OBJECTIVES

The student will:

2.0 Prepare a functional floor plan of a respiratory therapy department supply and maintenance area to promote correct aseptic technique.

2.1 Demonstrate sterile methods of packaging selected respiratory therapy equipment.

2.2 Operate an equipment drying cabinet.

2.3 Operate a steam autoclave.

2.4 Operate a pasteurization unit.

2.5 Operate a chemical disinfection unit.

2.6 Operate an ethylene oxide gas sterilizing unit.

2.7 Operate a gas sterilizer aeration unit.

RECOMMENDED STRATEGY

2.0/2.6 Lecture/return demonstration/laboratory

2.7 Lecture/demonstration/model construction

RESOURCE BIBLIOGRAPHY

Perkins, Principles and Methods of Sterilization in Health Sciences
Sykes, Deinfection and Sterilization
Williams, et al, Hospital Infection Causes & Prevention

ARTICLES:
Haselhuhn, et al, "In-Use Study of Buffered Glutaraldehyde for Cold Sterilization of Anesthesia Equipment," Anesthesia and Analgesia
Nelson & Ryan, "A New Use for Pasteurization: Disinfection of Inhalation Therapy Equipment," Respiratory Care
UNIT THREE
INFECTION CONTROL THEORY AND APPLICATION

INSTRUCTIONAL CONTENT

3.0 Terminology

3.1 Medical aseptic techniques

3.2 Sterile aseptic techniques

3.3 Hospital infection control procedures

3.4 Isolation techniques

3.5 Cleaning procedures for respiratory therapy equipment

3.6 Selection of appropriate methods for disinfection and sterilization

- Dry heat methods
- Pasteurization
- Steam autoclave
- Liquid -- chemical
- Gas -- chemical
- Gamma ray radiation
- Ultrasonic

3.7 Bacteria filters

3.8 Use of disposable materials

INSTRUCTIONAL OBJECTIVES

The student will:

3.0 Define terminology associated with aseptic techniques.

3.1 Describe medical aseptic techniques.

3.2 Describe sterile aseptic techniques.

3.3 Discuss hospital infection control procedures.

3.4 Discuss and demonstrate isolation techniques.

3.5 Describe cleaning procedures for respiratory therapy equipment.

3.6 Discuss theory and apply the following disinfection and sterilization procedures:

- Dry heat methods
- Pasteurization
- Steam autoclave
- Liquid -- chemical
- Gas -- chemical
- Gamma ray radiation
- Ultrasonic

3.7 Describe the use and function of bacteria filters.

3.8 List advantages of using disposable materials.

3.9 Discuss the use and function of bacteria filters.

RECOMMENDED STRATEGY:

3.0/3.3 Lecture/slides

3.4 Lecture/laboratory/slides/role-playing

3.5/3.8 Lecture/laboratory

ARTICLES:

Rosenberg, "Home Care: Cleaning of Equipment," Respiratory Therapy.

RECOMMENDED BIBLIOGRAPHY:

3.0 Lecture/laboratory/reading/role-playing

3.4 Lecture/laboratory/reading/role-playing

3.5/3.8 Lecture/reading

INSTRUCTIONAL OBJECTIVES:

3.0 Use of disposable materials

3.1 Bacteria filters

- Ultrasonic
- Gamma ray radiation
- Steam autoclave
- Liquid -- chemical
- Gas -- chemical
- Ultrasonic

3.6 Selection of applicable methods for disinfection and sterilization

3.7 Cleaning procedures for respiratory therapy

3.8 Isolation techniques

3.9 Hospital infection control procedures

3.10 Medical aseptic techniques

3.11 Heat therapy

3.12 Infection Control Theory and Application
UNIT FOUR
INFECTION CONTROL
CLINICAL PRACTICE

INSTRUCTIONAL CONTENT
4.0 Cleaning of equipment used in respiratory therapy
4.1 Disinfecting and sterilizing equipment
4.2 Application of appropriate aseptic techniques

INSTRUCTIONAL OBJECTIVES
The student will:
4.0 Clean equipment used in respiratory therapy and prepare it for disinfection or sterilization.
4.1 Disinfect and sterilize equipment using chemicals and other agents.
4.2 Demonstrate appropriate aseptic techniques for care of patient.

RECOMMENDED STRATEGY
4.0/4.2 Clinical practice

UNIT FIVE
INTRODUCTION TO CULTURING PROCEDURES

INSTRUCTIONAL CONTENT
5.0 Review of microorganisms
5.1 Cultivation and reproduction of microorganisms
5.2 Historical evolution of culturing techniques
5.3 Application of culturing techniques

INSTRUCTIONAL OBJECTIVES
The student will:
5.0 Review classification and characteristics of microorganisms and differentiate characteristics.
5.1 Describe conditions necessary for the growth and reproduction of microorganisms.
5.2 Write a brief summary of the historical development of culturing techniques.
5.3 Select appropriate culturing techniques as applied to respiratory therapy.

RECOMMENDED STRATEGY
5.0 Review/discussion
5.1/5.3 Lecture/laboratory

RESOURCE BIBLIOGRAPHY
Perkins, Principles and Methods of Sterilization in Health Sciences
Sykes, Infection and Sterilization

ARTICLES:
UNIT SIX
CULTURING PROCEDURES
THEORY AND APPLICATION

INSTRUCTIONAL CONTENT

6.0 Theory and application for obtaining cultures

6.1 Selection of methods and establishment of procedures for culturing

6.2 Analysis of data obtained from cultures

6.3 Protection of patients and hospital personnel from infection

INSTRUCTIONAL OBJECTIVES

The student will:

6.0 Describe methods of obtaining cultures in respiratory therapy practice.

6.1 Demonstrate judgment by selecting appropriate methods and procedures for obtaining cultures.

6.2 Analyze the data obtained from the cultures.

6.3 Develop a procedure to correct the disinfection or sterilization procedures in an area where contamination has taken place.

RECOMMENDED STRATEGY

Lecture/laboratory procedures for evaluation of data

UNIT SEVEN
CULTURING PROCEDURES
CLINICAL PRACTICE

INSTRUCTIONAL CONTENT

7.0 Observation of culturing procedures

7.1 Practice of culturing techniques

INSTRUCTIONAL OBJECTIVES

The student will:

7.0 Observe proper methods in the culturing of microorganisms.

7.1 Culture respiratory therapy equipment and discuss bacteriological reports.

RECOMMENDED STRATEGY

Clinical practice/clinical practice/conferences
UNIT ONE
INTRODUCTION TO CONTINUOUS VENTILATION
(STANDARD PROCEDURES)

INSTRUCTIONAL CONTENT

1.0 Indication for continuous ventilation
1.1 Variances in using a pressure-cycled ventilator for continuous mechanical ventilation
1.2 Merits of the volume controlled ventilators
1.3 Vulnerability inherent in volume controlled ventilators
1.4 Responsibilities and duties associated with using continuous ventilation.

INSTRUCTIONAL OBJECTIVES

The student will:

1.0 List indications for using mechanical ventilation and explain each.
1.1 List instances and demonstrate by example how changes in compliance and/or resistance can effect reliability of a pressure cycled ventilator.
1.2 List clinical conditions requiring use of a volume controlled ventilator and demonstrate understanding of the value of a volume-controlled ventilator.
1.3 Demonstrate possible weaknesses associated with volume controlled ventilators.
1.4 Demonstrate concern for patient and obligation to colleagues by participating in a group discussion of the general responsibilities and duties of respiratory therapy personnel.

RECOMMENDED STRATEGY

1.0 Lecture/slides/audio-visual
1.1 Lecture/demonstrate change using lung analog
UNIT TWO

CONTINUOUS VENTILATION EQUIPMENT THEORY

INSTRUCTIONAL CONTENT

1.2.4 Establishing tidal volume

INSTRUCTIONAL OBJECTIVES

The student will:

1.2.2 Describe the theoretical operation of ventilation pressures and flow producing mechanisms.

1.2.1 Identify a representation of each type of power producing mechanism.

1.2.2 Describe various mechanisms used in ventilators to generate power and demonstrate understanding of power by solving sample calculations.

1.2.3 Discuss compliance and how it relates ventilator performance when applied to patients requiring small tidal volumes and high airway pressure.

1.2.4 Cycling mechanisms

1.2.5 Pressure cycle vs. pressure time delivery

1.2.6 Control of inspired oxygen concentration

1.2.7 Depth of ventilation

1.2.8 Respiratory rate change

1.2.9 Monitoring

1.2.10 alarms

1.2.11 Intermittent mandatory ventilation

1.2.12 Pre-use testing and correction of malfunction

RESOURCES

Barnes & Israel, Brady's Programmed Introduction to Respiratory Therapy
Bouhuys, ed., AirWay Dynamics
Cherniack, et al, Respiration in Health and Disease
Crews & LaPuerta, Tracheostomy, Endotrachetal Intubation and Mechanical Ventilation
Egan, Fundamentals of Respiratory Therapy
Feldman & Crawley, Tracheoetomy and Artificial Ventilation
Heironimus, Mechanical Artificial Ventilation
Hunter, Essentials of Artificial Ventilation of the Lungs
Mackintosh, et al, Physics for the Anaesthetist
Mushin, et al, Automatic Ventilation of the Lungs
Naclerlo, Chest Injuries
Shapiro, Clinical Application of Blood Gases
Sykes, Principles of Measurement for Anesthetists
Sykes, et al, Respiratory Failure
Young i Crocker, Principles and Practice of Inhalation Therapy
2.4 Demonstrate understanding of the difference between the terms pressure cycled and pressure-limited.

2.5 List and describe the mechanism for cycling a ventilator and modes of operation for each.

2.6 Explain the theory for controlling the inspired oxygen in a ventilator.

2.7 List clinical applications of sigh and understand differences between time and volume-controlled sigh maneuvers.

2.8 Demonstrate understanding of relationship between gas flows and tidal volumes explaining their effects on inspiratory and expiratory phases of ventilation.

2.9 Demonstrate understanding of monitoring ventilators by explaining clinical conditions and relevance of mechanisms to determine adequacy of ventilatory function.

2.10 List and explain the function of different categories of alarms used in conjunction with continuous ventilation.

2.11 Explain indications and theory for weaning patient from ventilators and include the use of inspiratory force meters and intermittent mandatory ventilation.

2.12 List steps involved in testing a ventilator prior to use and identify a common malfunction problem by taking corrective action.

RECOMMENDED STRATEGY

2.0/2.1 Lecture/slides

2.2/2.3 Lecture/demonstration

2.4 Demonstration

2.5/2.6 Lecture/demonstration

2.7 Lecture

2.8/2.12 Lecture/demonstration

RESOURCE BIBLIOGRAPHY

Bolenkov, _Introduction to Inhalation Therapy_
Bryan & Taylor, _Manual of Respiratory Therapy_
Crews & LaFuerza, _Tracheotomy, Endotracheal Intubation and Mechanical Ventilation_
Dobkin, ed., _Ventilation and Inhalation Therapy_
Egan, _Fundamentals of Respiratory Therapy_
Feldman & Grady, _Principles and Artificial Ventilation_
Gudewell, _The Basis of Respiratory Therapy_
Heironimus, _Mechanical Artificial Ventilation_
Hunter, _Mechanical Ventilation of the Lungs_
Mushin et al., _Automated Ventilation of the Lungs_
Safar, _Respiratory Therapy_
Young & Crocker, _Principles and Practice of Inhalation Therapy_
CONTINUOUS VENTILATION THERAPEUTIC TECHNIQUES

UNIT THREE AND APPLICATIONS

INSTRUCTIONAL CONTENT

3.0 Check of physician's order
3.1 Preparation of machine
3.2 Prepare, position patient
3.3 Methods of attachment
3.4 Patient monitoring
3.5 Management of a continuously ventilated patient
3.6 Weaning techniques

INSTRUCTIONAL OBJECTIVES

The student will:

3.0 List ingredients comprising a complete order for continuous ventilation.
3.1 Demonstrate steps involved in preparation of a ventilator for patient use.
3.2 List and explain the concerns involved when preparing a patient for continuous ventilation.
3.3 Select from a variety of airway attachments the one most appropriate for use with mask ventilation and explain the basis for selection.
3.4 List and explain parameters for monitoring patient status while attached to a ventilator.
3.5 List and explain hazards associated with mechanical ventilation of a patient.
3.6 Suggest weaning procedure for a patient receiving ventilation including clinical and laboratory criteria and weaning methods.

RECOMMENDED STRATEGIES

3.0 Lecture/review of actual prescriptions
3.1 Demonstration/return demonstration
3.2 Role playing situations
3.3 Demonstration
3.4 Lecture/demonstration/return demonstration
3.5/3.6 Lecture

RESOURCE BIBLIOGRAPHY

- Bendixen, et al., "Respiratory Care"
- Bryan & Reapirated racare,
- Cherniack, et al., "Respiratory Care"
- Crews & LaPuerta, "Tracheotomy"
- Intubation: Mechanical Ventilation
- Heironimus, "Artificial Ventilation"
- Kendig, ed., "Anesthesia and Critical Care"
- Modell, "The Pathophysiology and Treatment of Drowning and Near Drowning"
- Moore, et al., "Pulmonary Insufficiency"
- Macleod, "Chest Intensive Care"
- Petty, "Intensive Care”
- Sykes, et al., "Respiratory Failure"
UNIT FOUR
CONTINUOUS VENTILATION CLINICAL PRACTICE

INSTRUCTIONAL CONTENT

4.0 Physician's order and patient's chart
4.1 Selection of ventilator
4.2 Preparation of ventilator
4.3 Pre-testing ventilator
4.4 Preparation and positioning of patient
4.5 Connection of ventilator to proper power source
4.6 Pre-testing and attaching ventilator to patient
4.7 Adjustments of ventilatory parameters
4.8 Patient assessment
4.9 Recording therapy
4.10 Ventilator rounds

INSTRUCTIONAL OBJECTIVES

The student will:

4.0 Read chart of patient requiring continuous ventilation and assess physician's order for completeness and possible error.
4.1 Select a pressure-cycled or volume-cycled ventilator per physician's prescription.
4.2 Prepare various types of ventilators for use.
4.3 Test ventilator for leaks and control malfunction.
4.4 Explain procedure to patient and/or family in terms that will not infringe on the rights of the physician but serve to abate apprehensions of patient and/or family.
4.5 Transport ventilator to bedside and connect it to proper power source.

4.6 Re-test the ventilator for possible malfunction and make necessary adjustments.
4.7 Connect ventilator to the patient and make necessary adjustments for tidal volume, inspired oxygen and other parameters.
4.8 Assess patient's condition and acceptance of ventilator.
4.9 Chart procedure in the appropriate part of the chart, using correct form.
4.10 Make check rounds according to the policy of the department.

RECOMMENDED STRATEGY

4.0/4.10 Pre and post clinic conferences with student

RESOURCE BIBLIOGRAPHY

Bendick, et al, Respiratory Care
Bryan & Taylor, Manual of Respiratory Therapy
Dobkin, Ventilators and Inhalation Therapy
Moore, et al, Post-Anesthetic Pulmonary Therapy
Macerlo, Chest Injuries
UNIT ONE
INTRODUCTION TO AIRWAY CARE

INSTRUCTIONAL CONTENT

1.0 Review anatomy and physiology

1.1 Indications and contraindications for tracheal intubation and bronchoscopy

1.2 Hazards of intubation and tracheostomy

1.3 Patient needs

INSTRUCTIONAL OBJECTIVES

The student will:

1.0 List the anatomical structures and discuss physiology of the respiratory system.

1.1 List hazards involved with intubated or tracheostomized patients.

1.2 Identify and discuss indications and contraindications of tracheal intubation and bronchoscopy.

1.3 Show concern for patient as an individual by listing and discussing emotional and psychological needs.

RECOMMENDED STRATEGY

1.0 Lecture/laboratory

1.1 Lecture/audio-visual

1.2 Seminar/role playing

1.3 Lecture/model

RESOURCE BIBLIOGRAPHY

Barnes & Israel, Brady's Principles of Respiratory Therapy
Young & Crocker, Principles and Practice of Inhalation Therapy
UNIT TWO AIRWAY CARE EQUIPMENT THEORY & OPERATION

INSTRUCTIONAL CONTENT

2.0 Tracheal aspiration equipment
2.1 Use of tracheal aspiration equipment
2.2 Identification of various tracheostomy and tracheal tubes used in airway care
2.3 Oral pharyngeal airways

INSTRUCTIONAL OBJECTIVES

The student will:

2.0 List equipment necessary for airway care.
2.1 Identify the principles of operation of equipment necessary for airway care.
2.2 Identify various tracheostomy and tracheal tubes and list indications for use.
2.3 Select and insert oropharyngeal airways.

RECOMMENDED STRATEGY

2.0 Lecture/audio-visual
2.1 Lecture
2.2/2.3 Lecture/audio-visual

RESOURCE BIBLIOGRAPHY

Barnes & Israel, Brady's Programmed Introduction to Respiratory Therapy
Egan, Fundamentals of Respiratory Therapy
Safar, Respiratory Care

UNIT THREE AIRWAY CARE THERAPEUTIC TECHNIQUES AND APPLICATION

INSTRUCTIONAL CONTENT

3.0 Maintenance of patent airways
3.1 Indications for bronchoscopy
3.2 Indication for intubation
3.3 Tracheobronchial aspiration
3.4 Tracheostomy care

INSTRUCTIONAL OBJECTIVES

The student will:

3.0 List and discuss reasons for maintaining patent airway.
3.1 List basic steps and discuss therapeutic value of bronchoscopy.
3.2 Name indications for intubation and identify equipment necessary to carry out procedure.
3.3 Observe and perform tracheobronchial aspiration identifying steps.
3.4 List complications associated with tracheostomy.

RECOMMENDED STRATEGY

3.0/3.4 Lecture/audio-visual

RESOURCE BIBLIOGRAPHY

Grenard, et al, Advanced Study in Respiratory Therapy
PAMPHLET:
Hudson, Handbook on Tracheostomy Care
UNIT FIVE
INSTRUCTIONAL CONTENT

5.0. Continuous ventilation equipment theory

5.1. Introduction to positive end expiratory pressure (PEEP)

5.2. Negative pressure ventilation

5.3. Inspiratory plateau

5.4. Expiratory resistance and recoil

5.5. Continuous positive airway pressure (CPAP)

5.6. Intermittent mandatory ventilation (IMV)

INSTRUCTIONAL OBJECTIVES

5.0. List methods of producing PEEP and explain the indications, contraindications, and possible hazards associated with its use.

5.1. Demonstrate on a ventilator the methods of providing expiratory retard and explain the process.

5.2. Define inspiratory plateau and explain methods of providing.

5.3. Write a definition of PEEP and list indications and contraindications for using this procedure.

5.4. List various types of ventilators currently used for neonatal ventilation.

5.5. Explain the component parts of an IMV system.

5.6. Explain the component parts of continuous ventilation equipment.
RECOMMENDED STRATEGY

5.0/5.1 Lecture/laboratory demonstration
5.2 Laboratory practice
5.3 Laboratory demonstration
5.4/5.5 Lecture/laboratory demonstration
5.6 Lecture/laboratory demonstration/return demonstration

RESOURCE BIBLIOGRAPHY

Abramson, ed., Resuscitation of the Newborn Infant
Avery, The Lung and its Disorders in the Newborn Infant
Bendixen, et al, Respiratory Care
Bryan & Taylor, Manual of Respiratory Therapy
Egan, Fundamentals of Respiratory Therapy
Kendig, ed., Pulmonary Disorders
Korones, High-Risk Newborn Infants
Modell, The Pathophysiology and Treatment of Drowning and Near Drowning
Shapiro, Clinical Application of Blood Gases

UNIT SIX
CONTINUOUS VENTILATION THERAPEUTIC TECHNIQUES AND APPLICATIONS (SPECIAL PROCEDURES)

INSTRUCTIONAL CONTENT

6.0 Read/evaluate physician order for PEEP, CMV, NEEP, IMV
6.1 Prepare/retest special equipment
6.2 Implementation of special procedures
6.3 Assessment of patient response
6.4 Modifying special procedures
6.5 Recording therapy

INSTRUCTIONAL OBJECTIVES

The student will:

6.0 Read physician's order relating to the implementation of a special procedure used in conjunction with continuous ventilation and list parts of the order necessary for carrying out procedure.
6.1 List the steps involved in preparing and testing equipment required to implement special procedure.
6.2 List the steps for implementing special procedures.
6.3 List and explain methods for assessing patient's response to special procedures.
6.4 List possible alternatives in modifying special procedure to deal with drop in blood pressure, decreased arterial oxygen, tachycardia and other possible adverse responses to treatment.
6.5 Correctly record the special procedure.

RECOMMENDED STRATEGY

6.0 Reading and evaluation of actual orders
UNIT SEVEN
CONTINUOUS VENTILATION CLINICAL PRACTICE

INSTRUCTIONAL OBJECTIVES

The student will:

7.0 Prepare both volume and pressure cycled ventilators for operation with PEEP.

7.1 Adjust both volume and pressure cycled ventilators to deliver expiratory retard.

7.2 Modify ventilator to deliver intermittent mandatory ventilation during weaning.

7.3 Access to deliver expiratory retard.

7.4 Access for operation with PEEP.

7.5 Use of PEEP techniques

7.0 Use of expiratory pressure plateau

7.1 Use of expiratory and expiratory pressure

7.2 Use of TV

7.3 Use of CPAP

7.4 Use of expiratory retard

7.5 Use of expiratory pressures

INSTRUCTIONAL CONTENT

(Special Procedures)

INSTRUCTIONAL GUIDANCE

RECOMMENDED STRATEGY

7.0/7.4 Pre and post clinic conferences

RESOURCES/BIBLIOGRAPHY

Abramson, ed., Resuscitation of the Newborn Infant
Avery, The Lung and its Disorders
Bendixen, et al, Respiratory Care
Bryan & Taylor, Manual of Respiratory Therapy
Egan, Fundamentals of Aspiratory Therapy
Kendig, ed., Pulmonary Disorders
Korones, High-Risk, Newborn Infants
Modell, The Pathophysiology and Treatment of Drowning and Near Drowning
Shapiro, Critical Application of Blood Gases

UNIT SEVEN CONTINUOUS VENTILATION CLINICAL PRACTICE

INSTRUCTIONAL OBJECTIVES

The student will:

7.0 Prepare both volume and pressure cycled ventilators for operation with PEEP.

7.1 Adjust both volume and pressure cycled ventilators to deliver expiratory retard.

7.2 Modify ventilator to deliver intermittent mandatory ventilation during weaning.

7.3 Use NEEP in the ventilation of an infant and adult with reduced venous return.

7.4 Adjust the ventilator to deliver inspiratory plateau and explain its function.

INSTRUCTIONAL GUIDANCE

RECOMMENDED STRATEGY

7.0/7.4 Pre and post clinic conferences

RESOURCES/BIBLIOGRAPHY

Dobkin, ed., Ventilators and Inhalation Therapy.
Naclerio, Chest Injuries.
UNIT ONE
CARDIOPULMONARY RESUSCITATION (CPR)
THEORY AND PRACTICE

INSTRUCTIONAL CONTENT
1.0 History and development of modern resuscitation techniques
1.1 Assessment of cardiopulmonary status
1.2 Breathing and circulation
1.3 Theory "A" of the ABCs of CPR
1.4 Theory "B" of the ABCs of CPR
1.5 Theory "C" of the ABCs of CPR
1.6 Demonstration and practice of CPR
1.7 CPR of children and infants
1.8 Manual resuscitators and accessories

INSTRUCTIONAL OBJECTIVES
The student will:
1.0 Discuss the history of CPR, list the advantages of expired air resuscitation as compared to other resuscitative measures.
1.1 List and define parameters to be observed in determining whether CPR is indicated.
1.2 Review ventilation, respiration and circulation and explain function of the heart and lungs as related to CPR.
1.3 Explain and practice proper methods of airway maintenance, identify alternatives and discriminate between complete and partial airway obstruction.
1.4 Explain and practice effective ventilation by mouth-to-mouth resuscitation.
1.5 Explain and practice effective external cardiac compression and discriminate between adults and children.

1.6 Demonstrate CPR and methods of assessing effectiveness of performance.

1.7 Relate the use of CPR to performance in infants.

1.8 Identify the function and mechanical operation of various resuscitators, flowmeters, accessories and suction devices as compared to manual resuscitation.

RECOMMENDED STRATEGY

Lecture/audio-visual

UNIT TWO

CPR INTRODUCTION TO EMERGENCY CARE

INSTRUCTIONAL OBJECTIVES

2.0 The student will:

2.1 Identify and distinguish the therapeutic and pharmacologic actions and interactions associated with conditions, diagnoses, and procedures associated with cardiovascular, respiratory, renal, gastrointestinal, endocrine, and oncologic systems.

2.2 Identify and distinguish the therapeutic and pharmacologic actions and interactions associated with conditions, diagnoses, and procedures associated with cardiovascular, respiratory, renal, gastrointestinal, endocrine, and oncologic systems.

2.3 Identify and distinguish the therapeutic and pharmacologic actions and interactions associated with conditions, diagnoses, and procedures associated with cardiovascular, respiratory, renal, gastrointestinal, endocrine, and oncologic systems.

2.4 Identify and distinguish the therapeutic and pharmacologic actions and interactions associated with conditions, diagnoses, and procedures associated with cardiovascular, respiratory, renal, gastrointestinal, endocrine, and oncologic systems.

ARTICLES:

JAM 1994

RESOURCES:

Resource Bibliography

RECOMMENDED STRATEGY

1.0 Lecture/audio-visual

1.1 Lecture/audio-visual/presentation/practice

1.2 Lecture/audio-visual/presentation/practice

1.3 Lecture/audio-visual/presentation/practice

1.4 Lecture/audio-visual/presentation/practice

2.0 Lecture/audio-visual/presentation/practice

2.1 Lecture/audio-visual/presentation/practice

2.2 Lecture/audio-visual/presentation/practice

2.3 Lecture/audio-visual/presentation/practice

2.4 Lecture/audio-visual/presentation/practice
UNIT THREE CPR EQUIPMENT THEORY AND OPERATION

INSTRUCTIONAL CONTENT

3.0 Defibrillators and EKG monitors
3.1 Emergency airway equipment and accessories
3.2 Resuscitators

INSTRUCTIONAL OBJECTIVES

The student will:

3.0 Operate defibrillator and EKG monitors and demonstrate understanding of life-threatening arrhythmias.
3.1 Discuss various types of equipment used in respiratory emergency situations.
3.2 Complete a comparative evaluation of various manual resuscitators.

RECOMMENDED STRATEGY

3.0/3.3 Lecture/audio-visual/demonstration

RESOURCE BIBLIOGRAPHY

Egan, The Fundamentals of Respiratory Therapy
Gilston & Resnekov, Cardio-Respiratory Resuscitation
Ravin & Modell, Introduction to Life Support
Safar, Respiratory Therapy
UNIT ONE
INTRODUCTION TO PULMONARY FUNCTION TESTING

INSTRUCTIONAL CONTENT

1.0 %Indications for function testing:
 a. Presence of lung disease
 b. Presence of abnormal function
 c. Extent of disability

1.1 Components of respiratory physiology:
 a. Amount and distribution of ventilation through airways and energy cost of delivering this gas to the alveoli
 b. Diffusion across capillary membranes
 c. Amount and distribution of blood circulating to alveolar membrane and energy cost of delivering it

1.2 Components of lung function:
 a. Lung volumes
 b. Mechanics of breathing
 c. Distribution of blood to the lungs
 d. Diffusion across capillary membranes
 e. Amount and distribution of ventilation
 f. Amount and distribution of blood
 g. Arterial blood gases
 h. Exercise testing
 i. Response to drug therapy
 j. Capillary blood

1.3 Review of physiology of oxygen transport and acid-base mechanisms

INSTRUCTIONAL OBJECTIVES

The student will:

1.0 List rationales for pulmonary function testing.

1.1 Make sketches and models of the lungs, depicting the relationship between normal and abnormal distribution of ventilation and perfusion.

1.2 Name elements studied in lung function testing.

1.3 Demonstrate knowledge of the physiology of oxygen transport and acid-base mechanisms

RECOMMENDED STRATEGIES

1.0/1.3 Lecture/reference/audio visual

RESOURCE BIBLIOGRAPHY

Astrup, et al, A New Approach to Acid Base Metabolism
Bates, et al, Respiratory Function in Disease
Cherniack, et al, Respiration in Health and Disease
Conroe, et al, The Lung
Cotes, Lung Function
Davenport, The ABC of Acid Base Chemistry
Egan, Fundamentals of Respiratory Therapy
Fenn, A Textbook of Physiology
Peters, Quantitative Clinicalistry
Siggaard Anderson, The Acid-Base Status of the Blood
Slonim & Chapin, Respiratory Physiology
West, Ventilation/Blood Flow and Gas Exchange
Winters, et al, Acid Base Physiology in Medicine

UNIT ONE
INTRODUCTION TO PULMONARY FUNCTION TESTING

RECOMMENDED STRATEGIES

1.0 Oxygen transport and acid-base mechanisms
 a. Demonstration: Interaction of the Physiology of Oxygen Transport
 b. Demonstration: Acid-Base Mechanisms

FUNCTION TESTING

INSTRUCTIONAL CONTENT

UNIT ONE
INTRODUCTION TO PULMONARY FUNCTION TESTING

RECOMMENDED STRATEGIES

1.0 Oxygen transport and acid-base mechanisms
 a. Demonstration: Interaction of the Physiology of Oxygen Transport
 b. Demonstration: Acid-Base Mechanisms

FUNCTION TESTING

INSTRUCTIONAL CONTENT
UNIT FOUR CPR CLINICAL APPLICATION OF EMERGENCY TECHNIQUES

INSTRUCTIONAL CONTENT

4.0 Practice of endotracheal intubation
4.1 Airway management
4.2 Emergency care

INSTRUCTIONAL OBJECTIVES

The student will:

4.0 Establish patent airway by performing endotracheal intubation.
4.1 Demonstrate ability to maintain patent airway in a comatose patient.
4.2 Demonstrate proficiency in emergency care procedures.

RECOMMENDED STRATEGY

4.0/4.2 Clinical practice
UNIT TWO
PULMONARY FUNCTION TESTING EQUIPMENT, THEORY AND OPERATION

INSTRUCTIONAL CONTENT

2.0 Review of gas laws
2.1 Review of lung volumes
2.2 Review of pressure, flow and volume
2.3 Spirometers
2.4 Spirometry
 a. Volume and capacity
 b. Basic mechanics
2.5 Functional residual capacity:
 a. Nitrogen washout
 b. Helium dilution
 c. Body plethysmography
2.6 Distribution measurement methods:
 a. Single-breath nitrogen
 b. Multi-breath nitrogen
 c. Radioactive scan techniques
2.7 Diffusion measurement methods
2.8 Mechanics measurements and methods
2.9 Analyzers
2.10 Theory and operation of blood gas analyzers
2.11 Oximeters
2.12 Nomograms - calculations
2.13 Astrup system
2.14 Quality control methods

INSTRUCTIONAL OBJECTIVES

The student will:

2.0 Discuss major gas laws and their relationships

2.1 Draw and label a normal spirometry tracing:

2.2 Demonstrate the effects of pressure, volume and flow on lung model by changing compliance, resistance and cycle rate.

2.3 Demonstrate the use of water and electric spirometers and draw and label a transducer that is used in the body plethysmograph.

2.4 Define and give the normal volumes from a list of lung volumes and capacities and calculate values from a tracing of a forced vital capacity.

2.5 Determine functional residual capacity measurements.

2.6 Draw and label normal and abnormal single breath nitrogen washout tracings, depicting distribution of ventilation.

2.7 Demonstrate knowledge of diffusion testing by listing tests normally used to determine diffusion and explaining the principles involved in each.

2.8 Write the formula for resistance and compliance and explain in rights, used to measure each.

2.9 Calibrate all analyzers as presented.

2.10 Demonstrate knowledge of blood gas analyzers by describing the principle of each electrode.

2.11 Calibrate an oximeter, analyze end state, the values of all arterial blood samples.

2.12 Give values of all arterial blood samples.

2.13 Demonstrate knowledge of the Astrup system by defining standard, bias, and base excess.

2.14 Discuss methods for quality control of pulmonary function tests.

RECOMMENDED STRATEGY

2.0 Lecture/audio-visual

2.0/2.14 Lecture/laboratory/audio-visual
UNIT THREE
PULMONARY FUNCTION TESTING
DIAGNOSTIC TECHNIQUES AND APPLICATION

INSTRUCTIONAL CONTENT

3.1 Obstructive and restrictive lung disease.

3.1.1 Special uses of diagnostic tests:
 a. Diffusion
 b. CO₂ Response Test

3.2 Technique of arterial puncture

3.3 Testing and calibration of pulmonary function equipment

3.4 Data analysis

3.5 Correlation of pulmonary function testing with arterial blood gas interpretation.

INSTRUCTIONAL OBJECTIVES

The student will:

3.1 Compare the difference between obstructive and restrictive disease and discuss abnormal mechanics involved in each.

3.2 Describe the test normally used to determine the presence of multiple pulmonary emboli.

3.3 Analyze an arterial blood sample obtained from a patient.

3.4 Perform a complete pulmonary function test on another student and discuss the patient's feeling during the various testing procedures.

3.5 Calculate data obtained from a test using the manual means.

3.6 Construct a table depicting a comparison between normal, obstructive and restrictive lungs, list all parameters measured in lung testing and indicate how they vary from normal values.

RECOMMENDED STRATEGY

3.0/3.5 Lecture/laboratory/audio-visual
INTRODUCTION TO CARDIORESPIRATORY REHABILITATION

INSTRUCTIONAL CONTENT

1.0 Overview
1.1 Assessment of cardiorespiratory disease
1.2 Patient history
1.3 Methods of treatment
1.4 Patient response
1.5 Patient education

INSTRUCTIONAL OBJECTIVES

The student will:

1.0 Define rehabilitation and list its modalities.
1.1 Discuss the prevalence of lung diseases.
1.2 Review the content of a patient history selecting objective criteria for assessment.
1.3 List and compare the equipment used for rehabilitation.
1.4 Compare patient responses.
1.5 Restate the elements that are essential to proper patient and family education.

RECOMMENDED STRATEGY

1.0/1.5 Lecture/audio-visual

RESOURCES/BIBLIOGRAPHY

Egan. Fundamentals of Respiratory Therapy

ARTICLES:

UNIT TWO

INSTRUCTIONAL CONTENT

2.0 Breath sounds

2.1 Sputum collection and analysis

2.2 Treadmill

2.3 Bicycle ergometer

2.4 Cardiac monitor and defibrillators

2.5 Heart rate controller

2.6 Stress testing

2.7 Blow bottles and incentive spirometers

2.8 Calculations of physiological work functions

2.9 Portable liquid oxygen systems

INSTRUCTIONAL OBJECTIVES

The student will:

2.0 Auscultate the chest and describe the breath sounds of a patient with COPD.

2.1 Induce a sputum sample.

2.2 Demonstrate use of the treadmill.

2.3 Demonstrate the use of the bicycle ergometer.

2.4 Set up an EKG monitor for stress testing.

2.5 Adjust ergometer maintaining constant heart rate on subject.

2.6 Set up and collect expired gas sample for calculation of respiratory quotient.
2.7 Demonstrate the use of blow bottles

2.8 Accurately record and calculate the work and oxygen consumption.

2.9 Differentiate between portable gaseous liquid oxygen and demonstrate the use of the latter systems.

RECOMMENDED STRATEGY
2.0/2.9 Lecture/audio-visual

INSTRUCTIONAL CONTENT
3.0. Respiratory physical examination

3.1 Evaluate physician's order and implement drug therapy.

3.2 Select appropriate training equipment for use on an elderly patient with COPD.

3.3 Perform postural drainage and chest percussion.

3.4 Demonstrate techniques for an effective cough.

3.5 Compare aerosol therapy with and without the use of IPPB.

3.6 Schedule a regimen for retraining of the respiratory muscles.

3.7 Review the physiological information needed in order to administer supplemental oxygen safely.

INSTRUCTIONAL OBJECTIVES
3.0. List the steps involved in a respiratory physical examination.

3.1. Evaluate physician's order and implement drug therapy.

3.2. Select appropriate training equipment for use on an elderly patient with COPD.

3.3. Perform postural drainage and chest percussion.

3.4. Demonstrate techniques for an effective cough.

3.5. Compare aerosol therapy with and without the use of IPPB.

3.6. Schedule a regimen for retraining of the respiratory muscles.

3.7. Review the physiological information needed in order to administer supplemental oxygen safely.
UNIT FOUR

INSTRUCTIONAL CONTENT
4.0 Psychosocial orientation of patient and family
4.1 Implementation of program
4.2 Orientation of patient to hospital-based program
4.3 Use and installation of electromechanical monitors and feedback systems
4.4 Objective data evaluation and permanent record storage
4.5 Adverse patient response
4.6 Criteria for grading performance
4.7 Home care
4.8 Use and maintenance of home equipment
4.9 Program evaluation

INSTRUCTIONAL OBJECTIVES
The student will:
4.0 Review the program with a fellow student.
4.1 Outline and implement program.
4.2 Describe the advantages of a bicycle ergometer.
4.3 Identify life threatening arrhythmias on an EKG monitor and evaluate the necessity of notifying physician.
4.4 Record heart rate for a one-hour period on a fellow student.
4.5 Recognize premature ventricular contractions on an EKG strip.
4.6 Measure the time it takes for return to baseline after heavy exercise.

4.7 Describe pursed lip breathing.

4.8 Review home cleaning of respiratory therapy equipment.

4.9 Review the contributions made by each of the members of the health care team in carrying out a rehabilitation program.

RECOMMENDED STRATEGY
APPENDIX A

CORE PREREQUISITES
INTRODUCTION TO RESPIRATORY THERAPY

A. INTRODUCTION

The following information is provided as a suggested outline for introducing the prospective student to the field of respiratory therapy.

B. HISTORY OF RESPIRATORY THERAPY

1. Development of medical gas therapy
2. Development of breathing valves
3. Development of ventilators and respiratory assist devices
4. Development of the AART and the respiratory therapist
5. Role of the respiratory therapy department
6. Role of the hospital to the community
7. The forensic responsibilities of a respiratory therapist

C. INTRODUCTION TO GAS THERAPY

1. Basics of graphical analysis
2. Basics of the behavior of gases
3. Gas power in the assistance and control of breathing
4. Application of respiratory needs to assembly of breathing appliances
5. Aerosols and humidification systems

D. COMPRESSED GAS SAFETY

1. Introduction to organizations in gas safety and control
2. Color coding of gas cylinders
3. The Diss and Pin index system
4. Introduction to gas manufacture and storage
5. Introduction to gas distribution in hospitals

E. INTRODUCTION TO VENTILATORS

1. Definition of rescuscitators and ventilators
2. Definition of assistors and controllers
F. INTRODUCTION TO EXTERNAL RESPIRATORS
 1. The basics of ambient air
 2. The structures of the head and chest
 3. The basis for ventilation
 4. The response of the system to stress of environmental influences

G. INTRODUCTION TO CHEST REHABILITATION
 1. The basics of pulmonary drainage
 2. The basics of pursed lip and abdominal breathing
 3. General considerations when dealing with a hospital population on an in and out patient basis
 4. General considerations for improving the work of breathing

H. INTRODUCTION TO THE HEART AND LUNG
 1. General structures of the heart and lung
 2. The role of the heart in external respiration
 3. The role of the blood in external respiration
 4. Common diseases that effect the external respirations

I. SUMMARY AND DISCUSSIONS
 1. Description of the hospital's ability to accommodate respiratory therapy
 2. Description of the physician and the respiratory therapist
 3. Description of the job level of a respiratory therapy personnel
 4. Description of the Respiratory Therapy Department
A. INTRODUCTION

The following information is designed to present background knowledge a student needs prior to undertaking work detailed in Modules A through J.

B. BASIC CHEMISTRY TERMINOLOGY AND ATOMIC STRUCTURE

1. Structure and definition of the atom
2. Interactions of atoms
3. Isotopes
4. Ions and electrolytes
5. Solutions
6. Properties of water
7. Acids, bases, salts and buffers
8. Concept of pH
9. Cellular metabolism
10. Organic compounds
11. Cellular anatomy and physiology

C. INTRODUCTION TO PHYSICS

1. Molecular theory
2. Gases
 a. weight of gases
 b. pressure
 c. gas laws
 d. mixing v.l.i.s.
 e. pressure regulators
 f. measurement of gas flow
3. Mechanics
 a. terminology, units and measurement
 b. force and matter
 c. work, power, friction, efficiency
4. Liquids
 a. Pascal's principle
 b. Bar
 c. Reynolds number
d. Laplace's law
e. Fick principle
f. Charles' law
g. Gay Lunac's law

5. Temperature
 a. terminology, units of measurement
 b. heat transfer
 c. thermometry
 d. radiation
 e. vapor pressure, vapor
 f. humidity
 g. changing status of matter
 h. sterilization

6. Vibration and sound
 a. sound
 b. ultrasound
 c. wave motion and sound patterns
 d. application of sound

7. Light
 a. spectrum
 b. refraction, reflection
 c. use in medical instruments

8. Electrical Current

9. Magnetism
 a. Faraday's law
 b. effect on gases
 c. use and action of solenoids

10. Biomedical instruments
 a. electrocardiographs
 b. cathoray oscilloscopes
 c. X-Y multichannel recorders

C. ANATOMY AND PHYSIOLOGY

1. Basic technology

2. Skeletal system
 a. function
 b. cell types
 c. anatomy of a bone
 d. articulations

3. Muscular system
 a. functions
 b. cell types
c. detail of striated muscle cell

d. anatomy of a skeletal muscle

e. muscle contraction

4. Nervous system

a. function
b. cell types
c. physiology of nerve impulse
d. divisions of nervous system
e. anatomy of nerves
f. types of nerves
g. cerebro-spinal fluid
h. autonomic nervous system
i. neuron
j. meninges
k. spinal cord
l. brain
m. cranial nerves
n. spinal nerves

D. DIGESTIVE SYSTEM

1. Functions of digestive system
2. Anatomy and function of the mouth
3. Absorption of materials
4. Liver
5. Pancreas
6. Salivary glands
7. Digestive acid-base and alkalosis

E. CIRCULATION

1. Body fluid
2. Major divisions of blood
3. Mechanism of blood clotting
4. Formation and circulation of interstitial fluids
5. Physiology of heart contraction
6. Mechanical cycle of heart
7. EKGs
8. Basic heart rhythms
9. Venous return
10. Arteries, veins and capillaries
11. Regulation of blood flow and distribution
12. Blood typing
13. Immune reaction
14. The lymph system

F. RESPIRATORY SYSTEM
1. Functions of the respiratory system
2. Major structures
3. Anatomy of the lung
4. Mechanics of breathing
5. Volume and capacity
6. Partial pressure
7. Oxygen transport
8. Carbon dioxide transport
9. Blood buffers
10. Ventilatory rules

G. URINARY SYSTEM
1. Functions and structure
2. Other aspects
3. Physiology of excretion
A. INTRODUCTION

The information contained in this section represents suggested content necessary to provide a background in ethics and medical law to a prospective graduate in respiratory therapy education. No attempt has been made to provide objectives or strategy.

A level of study based on the content detailed here would provide the background knowledge necessary for a student to be competent.

B. INTRODUCTION TO MEDICAL LAW

1. Sources of general law
2. Organization of the court system
3. Medicine and law relationships

C. THE LEGAL PROCESS

1. The lawsuit process
2. Admissibility of evidence
3. Medical records
4. Courtroom testimony and discourse
5. Jury trials

D. RELATIONSHIP BETWEEN LAW AND ETHICS

1. Meaning of law
2. Ethical and legal responsibility of persons
3. The problem of guilt and crime
4. Role of punishment
5. Moral principles and laws

E. SOURCES OF NEGLIGENCE

1. The patient-physician relationship
2. The problem of consent
3. The standard of care
4. Negligence and malpractice

F. HAZARDS OF PRACTICE
1. Work relationships
2. Licensure - certification
3. Supervisory negligence
4. Drug
5. Charting

G. DAMAGES, REFENSES AND PROTECTION
1. Types of damages
2. Defenses
3. Malpractice and professional liability

H. HUMAN RIGHTS AND EXPERIMENTATION
1. Informed consent
2. Experimentation of patients
3. Ethical codes and declaration
RESOURCES BIBLIOGRAPHY COMPODENIUM

REFERENCES

HRC Committee on Bronchitis, College of General Practitioners, "Chronic Bronchitis in Great Britain (A national survey carried out by respiratory diseases study group of the college of general practitioners)" British Medical Journal, 2 (1961) 973.

Ziment, I., "Why are they saying bad things about IPPB?" Respiratory Care, 18 (November-December 1973) 677-89.
I. OVERVIEW

This appendix is intended to provide users of the Guide with information necessary to develop behaviorally stated performance objectives based on the INSTRUCTIONAL CONTENT and INSTRUCTIONAL OBJECTIVES contained herein. These objectives result from the identification of knowledge, skills and experience required for the education of a student to attain a given level of competency.

The statements within this Guide concerning student objectives are general rather than specific; thus providing the user with direction upon which a curriculum may be built. This Guide addresses information necessary for the selection, production and justification to formulate an instructional program in respiratory therapy. The objectives are, therefore, amendable to meet the specific needs of the user.

II. DEVELOPMENT OF BEHAVIORAL (PERFORMANCE) OBJECTIVES

A. INTRODUCTION

A properly stated behavioral objective will specify the behavior expected of the student, describe the instructional activity or strategy to carry out that instruction and give a criterion to evaluate whether or not learning has occurred. Behavioral objectives may be cognitive (dealing with facts), affective (dealing with feeling), or psychomotor (involving performance).

For example, a cognitive instructional objective may read:

Given one hour of lecture the student will list three methods for providing a mechanical airway.

Or

Given a manikin, the student will demonstrate three methods for providing a mechanical airway.

Stated affectively, the first example will read:

Having performed CPR on a manikin and viewed resuscitation efforts in a clinical setting, the student will demonstrate a feeling of empathy for the patient and any bystanders by discussing with the class the fears associated with death and dying.

Stated as a psychomotor activity the objective will read:

Given one hour of instruction the student will demonstrate
on a manikin two out of three methods for providing a mechanical airway.

One method for stating an objective is to answer the following questions:

1. What is to be taught?
2. How will it be presented?
3. How will it be evaluated?

A good source for further information on writing behavioral objectives is Robert Mager's book, Preparing Instructional Objectives, Fearon Publishers, Belmont, California, or similar books by Benjamin Bloom or Robert Gagne.

B. EXAMPLES OF VERBS COMMONLY USED IN WRITING BEHAVIORAL OBJECTIVES

This section lists words that are examples of verbs used for stating performance outcomes.

The following words are examples of verbs used in the cognitive domain. In addition, those words identified by an asterisk (*) can be used to describe psychomotor activities.

<table>
<thead>
<tr>
<th>KNOWLEDGE</th>
<th>ANALYSIS</th>
<th>SYNTHESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>define</td>
<td>distinguish</td>
<td>compose</td>
</tr>
<tr>
<td>memorize</td>
<td>analyze</td>
<td>plan</td>
</tr>
<tr>
<td>repeat</td>
<td>differentiate</td>
<td>propose</td>
</tr>
<tr>
<td>record</td>
<td>appraise</td>
<td>design</td>
</tr>
<tr>
<td>list</td>
<td>calculate</td>
<td>formulate</td>
</tr>
<tr>
<td>recall</td>
<td>experiment</td>
<td>arrange</td>
</tr>
<tr>
<td>name</td>
<td>test</td>
<td>assemble</td>
</tr>
<tr>
<td>relate</td>
<td>compare</td>
<td>collect</td>
</tr>
<tr>
<td>underline</td>
<td>contract</td>
<td>construct</td>
</tr>
<tr>
<td></td>
<td>criticize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diagnose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interpret</td>
<td></td>
</tr>
<tr>
<td></td>
<td>decide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inv. solve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>question</td>
<td></td>
</tr>
<tr>
<td></td>
<td>relate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>solve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>examine</td>
<td></td>
</tr>
</tbody>
</table>
The following is a list of action verbs with particular value for the affective domain:

<table>
<thead>
<tr>
<th>Selects</th>
<th>Object</th>
<th>Proposes</th>
<th>Suggests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chooses</td>
<td>Adopts</td>
<td>Rejects</td>
<td>Supports</td>
</tr>
<tr>
<td>Participates</td>
<td>Submits</td>
<td>Accepts</td>
<td>Recommends</td>
</tr>
<tr>
<td>Challenges</td>
<td>Persuades</td>
<td>Consults</td>
<td>Shares</td>
</tr>
<tr>
<td>Attempts</td>
<td>Praises</td>
<td>Questions</td>
<td>Disputes</td>
</tr>
<tr>
<td>Seeks</td>
<td>Defines</td>
<td>Queries</td>
<td>Promotes</td>
</tr>
<tr>
<td>Persists</td>
<td>Obey</td>
<td>Unethical</td>
<td>Subsidies</td>
</tr>
<tr>
<td>Asks</td>
<td>Keeps</td>
<td>Critical</td>
<td>Aponias</td>
</tr>
<tr>
<td>Denies</td>
<td>Investigates</td>
<td>Evaluates</td>
<td>Adjectives</td>
</tr>
<tr>
<td>Gathers</td>
<td>Attempts</td>
<td>Tests</td>
<td>Advocates</td>
</tr>
<tr>
<td>Organizes</td>
<td>Try</td>
<td>Delays</td>
<td>Volunteers</td>
</tr>
<tr>
<td>Visits</td>
<td>Specifics</td>
<td>Qualifies</td>
<td>Seeps</td>
</tr>
<tr>
<td>Argues</td>
<td>Preserves</td>
<td>Designs</td>
<td>Yeas</td>
</tr>
<tr>
<td>Evaluates</td>
<td>Judges</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In using these word lists, it should be remembered that the response desired from the student will be determined by the verb of action. For example, if knowledge is the desired behavioral outcome, all verbs listed under this terminal objective will be appropriate. This list is available in the Guide. Try to avoid words such as know and learn which alone cannot be evaluated.

When using the word lists, remember that the level of behavioral activity desired (knowledge, analysis, application, etc.) generally describes the desired student behavior, although verbs listed under each will assist you in writing the objective.

In addition to the three terminal objectives described previously, the following format is suggested in preparing performance objectives from the Guide.
1. Arrange all instructional content according to the sequence best suited to the student's needs. Generally the existing order will be best.

2. Determine the general background knowledge which you feel the student needs prior to beginning the module. THE DELINEATION OF ROLES AND FUNCTIONS OF RESPIRATORY THERAPY PERSONNEL found in Appendix C will be useful for this.

3. Determine the amount of time required to instruct each unit.

4. Determine teaching strategies for each unit.

5. Select instructional aids for each unit.

6. Prepare a bibliography for each unit.

It is suggested that the objectives be stated as clearly as possible using generally acceptable terms. Of course, accuracy of the content is of primary concern.
APPENDIX D

DELINEATION OF ROLES AND FUNCTIONS OF RESPIRATORY THERAPY PERSONNEL
STAFF

William W. Johnson
NIH Project Director
American Association for Respiratory Therapy
Dallas, Texas

Thomas A. Barnes, ARIT
Director, Respiratory Therapy Program
State University of New York
Syracuse, New York

David H. Lubans, ARIT
Division of Allied Health Studies
Miami-Dade Community College
Miami, Florida

CONSULTANTS TO STAFF

Winton H. Burns, M.D.
Cardiopulmonary Pediatrics
All Children’s Hospital
St. Petersburg, Florida

Steve H. Gomberg, CRTT
Director, Respiratory Care
Eisenhower Medical Center
Palm Desert, California

Richard M. Deatherage, Ph.D.
Director of Testing and Measurement
Orange County Child Guidance Center
Fullerton, California

Robert A. Senelly, CRTT
Technical Director, Cardiopulmonary Lab
San Bernardino Community Hospital
San Bernardino, California

Judith A. Feuerriegel, Director
Respiratory Out-Patient Care Program
Velda Rose Medical Center
Mesa, Arizona

Advisory Committee Members who served as Consultants:
Dr. Donald L. Japan
Mr. Michael J. Jewett
Dr. Edward C. Shutt

PROJECT OFFICER

Mrs. Maryland Y. Pennell, Chief
Office of Special Studies
Division of Allied Health Manpower
Bureau of Health Professions Education
National Health Manpower Administration