ABSTRACT

Farm output projections show increases for all farm products, with large increases needed in feed grains. This instructional unit was developed to promote the effective ability of producers to plan and develop a system of storing and handling home grown grain crops for maximum profits. The unit is structured in eight lessons which can be adapted to fit a particular teaching situation. It was designed for use as a guide by teachers in planning and conducting young adult and adult farmer classes. Transparency and handout masters are found at the end of each lesson in the unit. In addition, several suggestions for supplementary enrichment activities are listed for each lesson. Teaching forms and a course evaluation questionnaire are appended. (Author/VA)
CROP STORAGE AND HANDLING

An Instructional Unit
for
Adult Vocational Education in Agriculture

Developed by
James L. Hammer
Teacher of Vocational Agriculture
Franklin, Kentucky

Prepared by
Maynard J. Iverson
Assistant Professor and Project Director
University of Kentucky
Lexington, Kentucky

1972
FOREWORD

Mr. James L. Hammer is an experienced teacher of vocational agriculture in Simpson County, Kentucky — an area noted for its grain and corn production. He has taught for 24 years in the Franklin-Simpson schools, 20 years of which included young farmer work plus four years of teaching adult farmers. He is a graduate of Western Kentucky University and has 45 semester hours of graduate credit at the University of Kentucky. Mr. Hammer is active in numerous local and state educational and civic activities; he has recently served as District President of the Kentucky Vocational Association, and District and State President of the Kentucky Vocational Agriculture Teachers Association.

This adult-farmer unit is a result of the following sequence of actions:

1) The State Advisory Committee, made up of agriculture teachers, State staff, and teacher educators from throughout Kentucky was organized to determine needs and program direction for adult work in agriculture for the State. A major outcome of the first meeting in September, 1971, was a recommendation that more instructional materials that are specifically designed for teaching adults in agriculture be developed and distributed to teachers.

2) Subsequently, a proposal to involve experienced teachers of adults in material development was written by Dr. Maynard Iverson of the University of Kentucky and submitted for State funding. In January, 1972, a two-year, $15,000 grant was made through the Supporting Services Division, Bureau of Vocational Education, State Department of Education.

3) Six teachers were selected to produce units in the diverse areas of need during the spring and summer of 1972. Mr. Hammer's unit, "Crop Storage and Handling," is a product of that project.

This publication, along with future materials developed specifically for the teaching of adults employed in agriculture in Kentucky, should improve the teaching of adult classes in agriculture and stimulate the initiation of additional classes.

Robert L. Kelley, Director
Agribusiness Education
Bureau of Vocational Education
State Department of Education
Frankfort, Kentucky

Harold R. Binkley
Professor and Chairman
Department of Vocational Education
University of Kentucky
Lexington, Kentucky
ACKNOWLEDGEMENT

We are grateful to the following for their assistance in development of the unit: Messrs. Tom Maddox and Cecil Goode, agricultural engineers with Tennessee Valley Authority; Mr. Doug Downey, President of Central Steel, Franklin, Kentucky; Mr. Howell Patton, Chairman of the Board, and Mr. Dan Tinnon, marketing advisor, Farmers Elevator, Franklin; Mr. Bob Wade, farmer, Rt. 3, Franklin; Mr. Ray Gilmore, artist, Curriculum Development Center, University of Kentucky; Mrs. Anne Mills, Mrs. Mitzi Iverson and Mrs. J. L. Hammer, typists; and especially Mr. Charles Shults, Farm Electrical Advisor, Warren RECC, for the sections on electrical controls, and Dr. Harvey E. Hamilton, Extension Agricultural Engineer, University of Kentucky, for his work in checking and clarifying technical content of the unit.
CONTENTS

<table>
<thead>
<tr>
<th>SUGGESTIONS FOR USING THE UNIT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Objectives</td>
<td>vi</td>
</tr>
<tr>
<td>Unit References</td>
<td>vii</td>
</tr>
<tr>
<td>LESSONS</td>
<td></td>
</tr>
<tr>
<td>1 Advantages of Grain Crop Storage on the Farm</td>
<td>1</td>
</tr>
<tr>
<td>2 Principles of Feed Flow</td>
<td>9</td>
</tr>
<tr>
<td>3 Planning an Expandable Grain-Handling System</td>
<td>19</td>
</tr>
<tr>
<td>4 Electrical Equipment, Wiring and Controls</td>
<td>28</td>
</tr>
<tr>
<td>5 Unloading and Elevating Harvested Grain</td>
<td>43</td>
</tr>
<tr>
<td>6 Grain-Drying Methods</td>
<td>77</td>
</tr>
<tr>
<td>7 Storage Facilities Necessary for Maximum Profits</td>
<td>120</td>
</tr>
<tr>
<td>8 Processing and Dispensing Feed Materials</td>
<td>127</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>Class Planning Forms:</td>
<td></td>
</tr>
<tr>
<td>Teaching Plan for the Course</td>
<td>146</td>
</tr>
<tr>
<td>Topic Planning Form</td>
<td>147</td>
</tr>
<tr>
<td>Resource Material List</td>
<td>148</td>
</tr>
<tr>
<td>Unit Evaluation Questionnaire</td>
<td>149</td>
</tr>
<tr>
<td>Supplemental Reference --- MWPS-13</td>
<td></td>
</tr>
</tbody>
</table>
SUGGESTIONS FOR USING THE UNIT

This unit was developed for use as a guide by teachers in planning and conducting young and adult farmer classes. The material contained herein was aimed at a statewide audience — teachers and farmers with a wide range in age, experience and expertise — hence a teacher should select those portions of the material which are suited to his particular situation. It is advisable to involve class members in determining what lessons to cover. The entire unit was designed to be taught in 8-10 sessions.

The format used was designed to assist teachers in utilizing problem-solving and the discussion method. A teaching procedure that has been used successfully is as follows: Step 1: The teacher lists the topic (problem and analysis) on the chalkboard. Step 2: He then sets the stage for discussion with introductory facts, ideas, or comments, using items from the section on "developing the situation." Step 3: The teacher calls on the class to give their experiences, ideas, and knowledge concerning the subject. The discussion is supplemented with handouts, transparencies, models, or other inputs gathered by the teacher beforehand to help solve the problem under consideration. Resource people or films may also be used here as sources of information. (Transparency and handout masters are found at the end of each lesson in the unit). Step 4: When the facts have been brought out and a good discussion has taken place, the teacher leads the group to appropriate conclusions. These summary statements are written on the chalkboard and, in some cases, are typed up and distributed as handouts at the next meeting. Some instructors will utilize panels, exhibits and tours to reinforce the conclusions reached. (Several suggestions for supplementary enrichment are listed in each lesson of this unit.)

The unit was built around the Midwest Planning Service booklet, Planning Grain-Feed Handling, (copy attached) and much data from the Agricultural Engineering Handbook. Teachers may wish to secure and provide copies of these publications for class members. (Cost can be covered through a small enrollment fee.) A number of people knowledgeable in this field are available locally and through State agencies; suggestions for specific personnel may be found in the VoAg Directory of Resource People in Kentucky.

Planning forms and a unit evaluation questionnaire are found in the appendix. Each teacher using the unit is asked to complete and return the questionnaire so that improvements can be made.

Our sincere best wishes for an outstanding adult program.

James L. Hammer
Development Consultant

Maynard J. Iverson
Project Director
UNIT OBJECTIVES

Major Teaching Objective:

To develop the effective ability of producers to plan and develop a system of storing and handling home grown grain crops for maximum profits.

Specific Objectives:

1. To develop farmers' understanding of the advantages in storing grain crops for home use in order to sell on the most favorable markets.

2. To develop the effective ability of farmers to utilize the principles involved in the flow of feed grains from field to feed lot.

3. To develop the effective ability of farmers to plan a grain handling system layout which may be developed over a period of time.

4. To develop the effective ability of farmers to decide on electrical wiring and controls necessary to handle harvested grain.

5. To develop the effective ability of farmers to determine methods of unloading and elevating harvested grain crops.

6. To develop the effective ability of farmers to select desirable grain drying methods.

7. To develop the effective ability of farmers to determine storage facilities necessary for maximum profits.

8. To develop the effective ability of farmers to secure adequate systems for processing and dispensing feed materials.
UNIT REFERENCES

Books

Guide for Adequate Farmstead Wiring. Available through RECC.

Magazines

Farm Electricity, pp. 205-250.

Farm Journal.

Farmer's Digest, (Farmer's Digest, Inc., P.O. Box 363, Brookfield, Wisconsin, $4.00 per year), July-August, 1972.

"Master Manual for Molds and Mycotoxins" in Farm Technology and Agriculture Fieldman magazine, Fall, 1972.

Other Publications

"Alternatives for on-the-farm Grain Storage" by H. E. Hamilton, (Agricultural Extension Services, University of Kentucky, Lexington) 3 pp. mimeo.

Doane's Farm Management Guide, (Doane Agricultural Service, Inc., 8900 Manchester, St. Louis, Missouri), 1968. ($5.95)

Individual Study Guide for Drying Corn on the Farm, by Wiley Lewis, (Agricultural Education Service, The Ohio State University, Columbus, Ohio) 1970.

Planning Grain-Feed Handling by Bruce McKenzie and others, (Midwest Plan Service, Ames, Iowa) 1968. ($1.00).

Selecting a Grain Drying Method by Bruce McKenzie, AE 67 (Cooperative Extension Service, Purdue University, Lafayette, Indiana) 1966.

The Ultra Life Book, (Ultra Life Laboratories, East St. Louis, Illinois.)

Slides

"Suffocation Hazards in Flowing Grain" by Bruce McKenzie, (Audio-Visual Center, Purdue University, Lafayette, Indiana) 61 slides with cassette and script.
-also available for one day from TVA in Nashville, Tennessee, or through your local RECC.

"Feed Processing and Handling," also available through TVA or your local RECC.
Lesson 1

ADVANTAGES OF GRAIN CROP STORAGE ON THE FARM

Objective -- To develop farmer understanding of the advantages in storing grain crops for home use or to sell on the most favorable markets.

Problem and Analysis -- What are the advantages to the farmer in developing grain storage facilities on the farm?

- Future outlook
- Needs of the farmer
- Convenience of home storage
- Demands of the consumer

Content -- Subject matter for teacher preparation.

I. Future Outlook

A. Farm output projections to 1975 and 1985 show increases for all farm products, with large increases needed in feed grains.

B. Major indicators are:
 1. Prices farmers receive for livestock will be favorable in relation to crops.
 2. Net income per U.S. farm will increase about 3-5 percent per year.
 3. Farms will continue to increase in size.
 4. Capital requirements will increase 6-8 percent per year.

II. Needs of the Farmer

A. Storage facilities used by the past generation of farmers will not meet the needs of the farmer of the near future.

B. Greater future needs can be predicted due to the following:
 1. The harvest of grain at a moisture content of between 24-28 percent is advantageous to the producer.
 2. Crops can be stored much sooner when harvested at 24-28 percent moisture.
3. Field losses are reduced by harvesting early.
4. Double cropping is encouraged.

C. Economic facts of county elevator storage (at Farmers Elevator in Franklin, Kentucky):
1. Farmers are allowed 30 days free storage to determine destiny of the grain. A charge of 5 cents in and 5 cents out is charged. If a farmer decides to leave his grain for storage at the elevator, 1\(\frac{1}{2}\) cents per month is charged (18 cents annually).
2. Inspection of grain is made each ten day period. Fumigation for insects costs 1 cent per bushel. At terminal markets, X-rays are made of grain to be used for milling; dead weevils not having exit holes are tolerated (up to four dead weevils per 1,000 kernels) in grain to be used for flour for human consumption. Condemned flour goes into dog food. Also, grain is observed closely for alfatoxin, a fungus caused by drying grain too slow. Grain with this fungus is completely condemned in food market channels.

3. Drying charges are as follows:

<table>
<thead>
<tr>
<th>Grain</th>
<th>Cost per (\frac{1}{2})% Moisture</th>
<th>Percentages of moisture at which price discount starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>corn</td>
<td>1(\frac{1}{2})c</td>
<td>15.5%</td>
</tr>
<tr>
<td>wheat</td>
<td>2c</td>
<td>14.0%</td>
</tr>
<tr>
<td>soybeans</td>
<td>2(\frac{1}{2})c</td>
<td>13.0%</td>
</tr>
<tr>
<td>barley</td>
<td>1c</td>
<td>14.0%</td>
</tr>
<tr>
<td>oats</td>
<td>1c</td>
<td>13.0%</td>
</tr>
</tbody>
</table>

D. Benefits to farmers from Commodity Credit Corporation (CCC):
1. Farmers who are eligible can get ready cash right after harvest at 3\(\frac{1}{2}\) percent interest. You can borrow up to 90 percent of your 1972 production of eligible grain multiplied by the support rate in your county.
2. Livestock producers are eligible for a 3\(\frac{1}{2}\) percent loan on feed inventories, to be paid back as they feed it out.
3. ASCS is also trying to help farmers lock in good prices with forward contracts. Forward contracts have become an important marketing tool for farmers. ASCS has lifted the ban they had last year.
4. Reseal payments for storing sealed grain on the farm during periods of heavy supply. CCC has guaranteed reseal on 1971 corn at least through May, 1973. The farmer gets 14.6 cents a bushel per year for storage. You still pay 3\(\frac{1}{2}\) percent interest on your commodity loan.
5. Loans may be used for farm storage and drying equipment at the rate of 5\(\frac{1}{2}\) percent.
III. Convenience of Home Storage

A. The practice of harvesting high-moisture corn has grown to a point far beyond the capabilities of off-farm commercial drying and storage facilities in the state.

B. Installation of drying and storage facilities on the home farm has become necessary for rapid harvest.

C. The inconvenience and delay caused by long waiting lines at commercial elevators have created new demands for farm storage.

IV. Demands of the Consumer

A. Generally home-stored grain by the better farmers will command a higher price at any given time than will grain stored in a commercial elevator because home-stored grain benefits from close observation; thus quality is kept higher. Early harvested grain will be of better quality for feed purposes or for the manufacture of cereals for human consumption because of its higher nutrient value.

Suggestions for Teaching the Lesson

I. Developing the Situation

A. Things to be brought out by the teacher:
 1. The latest study of on-farm storage cost comes from a study made by P. W. Lytle and Maurice D. Kniep, University of Nebraska. Their study showed on-farm storage pays if the grain is kept longer than four months. Storage for less than four months would be cheaper in a commercial elevator.
 2. The cost of drying and storing corn on your farm includes both fixed and variable expenditures.
 3. Annual fixed costs which you will incur whether or not on-farm drying and storage facilities are used include depreciation, interest, taxes and insurance.
 4. Annual variable costs which you will incur from operating on-farm facilities include: dryer operating cost, interest and insurance on the inventory, grain handling cost related to drying and storing, and repairs and maintenance.
 5. Three 10,000 bushel bins -- a 30,000 bushel system (bin life 25 years) -- will cost about 33 cents per bushel; annual cost is about 2.6 cents per bushel. Batch-in-bin drying (150 bu. per hr., 10 point moisture removal) will increase the initial cost to 47 cents, with annual cost at 4.2 cents per bushel. Adding a continuous-flow dryer will increase the cost to 51 cents per bushel -- an annual fixed cost about 5 cents per bushel.
B. Things to get from class members:
 1. Their outlook regarding future grain production
 2. Needs for storage on individual farms
 3. Problems due to inadequate storage
 4. Experiences in utilizing present storage and estimating future needs

II. Conclusions

A. For periods longer than four months storage, there is a definite advantage in storing grain on the home farm; this allows later sale or feeding of the grain. In storing grain on the home farm, we will always have the quality of grain which we produce. At commercial elevators we probably would not receive the feed grain we produced.

B. Over the long-term, we can store grain more economically at home than at any other point.

C. Properly managed, we can have better quality grain to feed our livestock. In many cases, especially with flooded markets at harvest time, grain bins have been paid for in less than one year by not having to sell on a depressed market.

D. The convenience of having available storage facilities at home has a value not expressed in dollars. Also, there is much time saved by not having to deliver grain several miles from the home farm and wait in long lines to unload.

E. Many loan benefits are available through your local ASCS office. Check your local committee for benefits in your county.

III. Enrichment Activities

A. Check cost of home storage in your county and the advantages of home storage.

B. Check county elevator in your community for storage charge. Check for advantages and disadvantages of elevator storage.

IV. Suggested Teaching Materials

A. References

1. Farmer's Digest, August-September, 1972.
B. Audio-Visuals

1. Masters*
 - 1 Added Gross Returns to Drying Corn
 - 2 Economics of Drying Corn
 - 3 Cost of Heat Obtained from Various Fuels

*Masters are keyed to units and lessons, and are numbered consecutively. The code number appears in the lower right hand corner. Master "Adult 104-1-1A" indicates: adult unit number 104, lesson 1, item 1, part A.
ADDED GROSS RETURNS TO DRYING CORN

SOURCE: Data taken from the forthcoming University of Kentucky Cooperative Extension bulletin, "Economics of Drying Corn" by Dr. Harvey Hamilton.
Economics of Drying

Discount 3.0
Price $1.40

Economics of Drying and Buying 1/2 Lbs (Dry) from Various Moisture Levels in 1954 when the Discount Rate is 3.0 Cents per Point (1.5 Cents per Half-Point) above 15.2% and the Price is $1.40 per Bushel

| Moisture % | Dry at 15.5% | Value Sold Dry $/Bu | Bushels Sold | Dry $/Bu | Total $/Bu | Added Gross Returns for Drying
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.20</td>
<td>0.0</td>
<td>1359.99</td>
<td>995.99</td>
<td>1392.99</td>
<td>-7.00</td>
<td>-0.70</td>
</tr>
<tr>
<td>16.00</td>
<td>1.0</td>
<td>1384.99</td>
<td>939.00</td>
<td>1384.71</td>
<td>-0.20</td>
<td>-0.03</td>
</tr>
<tr>
<td>16.50</td>
<td>2.0</td>
<td>1369.99</td>
<td>937.99</td>
<td>1368.14</td>
<td>13.15</td>
<td>1.31</td>
</tr>
<tr>
<td>17.00</td>
<td>3.0</td>
<td>1354.99</td>
<td>977.25</td>
<td>1399.85</td>
<td>19.86</td>
<td>1.99</td>
</tr>
<tr>
<td>17.50</td>
<td>4.0</td>
<td>1339.99</td>
<td>969.54</td>
<td>1351.37</td>
<td>26.58</td>
<td>2.66</td>
</tr>
<tr>
<td>18.00</td>
<td>5.0</td>
<td>1324.99</td>
<td>959.30</td>
<td>1363.29</td>
<td>33.30</td>
<td>3.33</td>
</tr>
<tr>
<td>18.50</td>
<td>6.0</td>
<td>1309.99</td>
<td>936.41</td>
<td>1335.00</td>
<td>40.41</td>
<td>4.00</td>
</tr>
<tr>
<td>19.00</td>
<td>7.0</td>
<td>1294.99</td>
<td>915.58</td>
<td>1301.67</td>
<td>48.73</td>
<td>4.67</td>
</tr>
<tr>
<td>19.50</td>
<td>8.0</td>
<td>1279.99</td>
<td>897.59</td>
<td>1266.72</td>
<td>53.44</td>
<td>5.34</td>
</tr>
<tr>
<td>20.00</td>
<td>9.0</td>
<td>1264.99</td>
<td>884.41</td>
<td>1239.58</td>
<td>60.16</td>
<td>6.02</td>
</tr>
<tr>
<td>20.50</td>
<td>10.0</td>
<td>1249.99</td>
<td>862.67</td>
<td>1215.30</td>
<td>66.88</td>
<td>6.69</td>
</tr>
<tr>
<td>21.00</td>
<td>11.0</td>
<td>1234.99</td>
<td>842.99</td>
<td>1191.07</td>
<td>73.59</td>
<td>7.36</td>
</tr>
<tr>
<td>21.50</td>
<td>12.0</td>
<td>1219.99</td>
<td>825.99</td>
<td>1168.73</td>
<td>80.31</td>
<td>8.03</td>
</tr>
<tr>
<td>22.00</td>
<td>13.0</td>
<td>1204.99</td>
<td>809.83</td>
<td>1147.30</td>
<td>88.02</td>
<td>8.70</td>
</tr>
<tr>
<td>22.50</td>
<td>14.0</td>
<td>1189.99</td>
<td>794.62</td>
<td>1127.04</td>
<td>95.74</td>
<td>9.37</td>
</tr>
<tr>
<td>23.00</td>
<td>15.0</td>
<td>1174.99</td>
<td>781.67</td>
<td>1108.73</td>
<td>103.46</td>
<td>10.05</td>
</tr>
<tr>
<td>23.50</td>
<td>16.0</td>
<td>1159.99</td>
<td>769.41</td>
<td>1092.16</td>
<td>111.71</td>
<td>10.72</td>
</tr>
<tr>
<td>24.00</td>
<td>17.0</td>
<td>1144.99</td>
<td>758.14</td>
<td>1077.16</td>
<td>119.90</td>
<td>11.40</td>
</tr>
<tr>
<td>24.50</td>
<td>18.0</td>
<td>1129.99</td>
<td>747.66</td>
<td>1064.28</td>
<td>128.22</td>
<td>12.10</td>
</tr>
<tr>
<td>25.00</td>
<td>19.0</td>
<td>1114.99</td>
<td>738.08</td>
<td>1052.71</td>
<td>136.39</td>
<td>12.82</td>
</tr>
<tr>
<td>25.50</td>
<td>20.0</td>
<td>1099.99</td>
<td>728.40</td>
<td>1042.59</td>
<td>144.47</td>
<td>13.53</td>
</tr>
<tr>
<td>26.00</td>
<td>21.0</td>
<td>1084.99</td>
<td>719.57</td>
<td>1033.03</td>
<td>152.56</td>
<td>14.24</td>
</tr>
<tr>
<td>26.50</td>
<td>22.0</td>
<td>1069.99</td>
<td>711.62</td>
<td>1024.74</td>
<td>160.61</td>
<td>15.00</td>
</tr>
<tr>
<td>27.00</td>
<td>23.0</td>
<td>1054.99</td>
<td>704.52</td>
<td>1017.44</td>
<td>168.52</td>
<td>15.77</td>
</tr>
<tr>
<td>27.50</td>
<td>24.0</td>
<td>1039.99</td>
<td>698.14</td>
<td>1010.72</td>
<td>176.30</td>
<td>16.53</td>
</tr>
<tr>
<td>28.00</td>
<td>25.0</td>
<td>1024.99</td>
<td>692.49</td>
<td>1004.65</td>
<td>184.01</td>
<td>17.32</td>
</tr>
<tr>
<td>28.50</td>
<td>26.0</td>
<td>1009.99</td>
<td>687.08</td>
<td>998.94</td>
<td>191.64</td>
<td>18.12</td>
</tr>
<tr>
<td>29.00</td>
<td>27.0</td>
<td>994.99</td>
<td>682.34</td>
<td>993.24</td>
<td>199.14</td>
<td>18.93</td>
</tr>
<tr>
<td>29.50</td>
<td>28.0</td>
<td>979.99</td>
<td>677.32</td>
<td>987.64</td>
<td>206.50</td>
<td>19.73</td>
</tr>
<tr>
<td>30.00</td>
<td>29.0</td>
<td>964.99</td>
<td>672.40</td>
<td>982.07</td>
<td>213.76</td>
<td>20.53</td>
</tr>
<tr>
<td>30.50</td>
<td>30.0</td>
<td>949.99</td>
<td>667.67</td>
<td>976.55</td>
<td>220.92</td>
<td>21.33</td>
</tr>
<tr>
<td>31.00</td>
<td>31.0</td>
<td>934.99</td>
<td>663.07</td>
<td>971.07</td>
<td>228.01</td>
<td>22.13</td>
</tr>
<tr>
<td>31.50</td>
<td>32.0</td>
<td>919.99</td>
<td>658.57</td>
<td>965.67</td>
<td>235.04</td>
<td>22.93</td>
</tr>
<tr>
<td>32.00</td>
<td>33.0</td>
<td>904.99</td>
<td>654.14</td>
<td>960.37</td>
<td>242.01</td>
<td>23.73</td>
</tr>
<tr>
<td>32.50</td>
<td>34.0</td>
<td>889.99</td>
<td>649.73</td>
<td>955.14</td>
<td>249.03</td>
<td>24.53</td>
</tr>
<tr>
<td>33.00</td>
<td>35.0</td>
<td>874.99</td>
<td>645.32</td>
<td>949.99</td>
<td>256.04</td>
<td>25.33</td>
</tr>
<tr>
<td>33.50</td>
<td>36.0</td>
<td>859.99</td>
<td>641.99</td>
<td>944.99</td>
<td>263.05</td>
<td>26.13</td>
</tr>
<tr>
<td>34.00</td>
<td>37.0</td>
<td>844.99</td>
<td>638.67</td>
<td>939.99</td>
<td>270.06</td>
<td>26.93</td>
</tr>
<tr>
<td>34.50</td>
<td>38.0</td>
<td>829.99</td>
<td>635.32</td>
<td>935.01</td>
<td>277.06</td>
<td>27.73</td>
</tr>
<tr>
<td>35.00</td>
<td>39.0</td>
<td>814.99</td>
<td>632.00</td>
<td>930.14</td>
<td>284.07</td>
<td>28.53</td>
</tr>
</tbody>
</table>

* Wet bushels is wet wt. divided by lbs per bu. (Normally 56 lb/bu).
** Weight loss includes 1/2% invisible shrink.
*** Dry bushels is based on 15.5% moisture content.
**** Increase in value above the value sold wet.

Source: Data taken from the forthcoming University of Kentucky Cooperative Extension bulletin, "Economics of Drying Corn" by Dr. Harvey Hamilton.
Cost ($/Hr) for 100,000 BTU/Hr of Heat Output*

*Fuel Heat Values and Combustion Efficiencies are as Follows:

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Estimated Efficiency Percent</th>
<th>Heat Value (BTU Per Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas (Direct Fired)</td>
<td>95</td>
<td>1,000 BTU/cu. ft.</td>
</tr>
<tr>
<td>Propane (LP) (Direct Fired)</td>
<td>95</td>
<td>92,000 BTU/gal.</td>
</tr>
<tr>
<td>Electricity</td>
<td>100</td>
<td>3,413 BTU/kw. hr.</td>
</tr>
</tbody>
</table>

SOURCE: Data taken from the forthcoming University of Kentucky Cooperative Extension bulletin, "Economics of Drying Corn" by Dr. Harvey Hamilton.
Lesson 2

PRINCIPLES OF FEED FLOW

Objective -- To develop the effective ability of farmers to utilize the principles involved in the flow of feed from field to feed lot.

Problem and Analysis -- What important principles of feed flow should farmers utilize?

- Convenience of the operator
- Installation of proper equipment
- Principles of materials flow
- Materials flow process

Content

I. Convenience of the Operator

A. The convenience of any operator is of major importance in any materials handling system.

B. Principles affecting convenience:
 1. Flowing materials will increase convenience in any materials handling system.
 2. Flowing materials can be moved from one point to another, in any direction, without interruption or stoppage.
 3. Any stoppage of material flow in a system will spoil the intent of the whole system.

II. Installation of Proper Equipment

A. Material flow involves piecemeal installations which act together as parts of an overall plan.

B. The farm operator should utilize the principles of materials flow to develop an effective and workable materials handling system. Steps are:
 1. Determine system requirements.
 2. Select equipment to fit the system.
 3. Secure competent services to assemble and install the system.
III. Principles of Materials Flow

A. Process material to reduce volume and facilitate handling.
 1. Consider the type of material involved.
 2. The order of convenience of handling (but not necessarily in economical order) are: liquids, free flowing material and non-free flowing material.
 3. By changing the physical form, a non-free flowing material may be made relatively free flowing. For example, using a picker-sheller to harvest corn.

B. Store as close to the point of use as possible to eliminate further transport.
 1. Storage units should be placed where materials can be handled at least cost.
 2. Consider the amount of material to be handled, distance to location of usage, and method of handling.
 3. Locate the grain center 150-200 feet from the feeding operation so that processed feed may be economically moved by horizontal auger.

C. Employ high-flow and processing rates to reduce time involved in these activities.
 1. Time saved may enable operators to produce more pounds of meat or bushels of grain at lower operating costs.
 2. An increase may be possible in the amount of livestock or grain an operator can take care of with same amount of labor and time.
 3. An operator may be able to operate his farm without hired help.

D. Use facilities that will mechanically, through manual or automatic controls, move feed from one point to another.
 1. Grain and feed handling systems should be constructed of continuous-flow units -- units designed primarily to set materials into uninterrupted motion and direct the flow. Examples: augers and elevators.
 2. Equipment selected will be affected not only by the type of livestock and feeding practices, but also by the condition of the material.
 3. Increasing the moisture content of corn in 6 inch augers from 14% to 25% requires 4 times the horsepower per bushel.
 4. If automatic operation of equipment is planned, electric motors should be interconnected so the entire system will stop in case of accidental stoppage from foreign material, or in the event of equipment failure.

E. Degree of mechanization depends on flow requirements and frequency of use.
 1. As the process becomes more automatic and continuous, the flow rate may be reduced.
2. A process may run continuously without supervision and therefore, for more hours.

3. In a continuous flow system consider the total material handled per season, not just nominal system capacity.

4. It is estimated that for every 10,000 bu. of grain sold or fed, approximately 30,000 bu. must be handled.

5. As the mechanization level increases, the need for elevated storage facilities decreases.

F. Use gravity flow when justified.
1. Frequently the most convenient method of flow is by gravity, but it may be the highest in cost.
2. Gravity should be applied only when its special characteristics are essential to the flow pattern.
3. All bins and spouts must have a slope so material will flow freely.
4. As a rule do not use slopes under 37° for dry grain, 45° for wet grain, and 60° for ground feed.

G. All components of the flow system must be matched in capacity or provisions must be made to buffer dissimilar flow rates.
1. In a continuous flow process, the smallest capacity unit controls the flow rate of the total system.
2. Surge bins act as buffers between two different flow rates.

H. Combine as many operations as possible.
1. Use facilities for more than one material.
2. Use facilities for grain storage and feed processing.
3. Use a "closed-loop" system if possible.

I. Management is an important factor of the system.
1. Individual units of equipment that make up a system are only tools.
2. This principle requires operators to examine roadblocks and bottlenecks that keep returns to farms comparatively low.
3. The system may be designed so that it will operate in spite of the operator.

IV. Materials Flow Process

A. The material flow process can be divided into its functions to identify some of the critical points and equipment alternatives.
1. Harvesting:
 a. Picker.
 b. Picker-sheller.
 c. Combine.
2. Storage:
 a. Metal bins.
 b. Wood buildings.
 c. Silos.
3. Transport -- conveyor:
 a. Augers.
 b. Chains.
 c. Belts.
 d. Air.
4. Vehicle: truck or wagon.
5. Processing:
 a. Pelletier.
 b. Sheller.
 c. Grinder.
 d. Roller.
 e. Crusher.

Suggestions for Teaching the Lesson

I. Developing the Situation

A. Things to be brought out by the teacher:
 1. To be successful a farmer must understand the materials to be handled.
 2. Knowledge of principles of flow can greatly cut the cost of moving materials and cut labor costs.
 3. The convenience of the operator should be considered first.
 4. The cost of equipment should be figured and compared to the annual cost of moving feed using conventional methods.
 5. Major consideration should be given to processes for converting feed materials to an easy-flow status.
 6. For each dairy cow we have to handle 7½ tons of feed per year if handled only once. Add to this total the milk, water and manure, and we have a grand total of 19 tons of material per cow per year!

B. Things to be brought out by the class members:
 1. The most common methods which class members are using to move materials.
 2. Inconvenient methods being used in the locality.

II. Conclusions

A. Materials which will flow will increase the convenience of handling more than any other factor. Therefore, there has been a vast effort in this direction (shelled corn). Some new problems have been encountered, but the convenience and labor saving far outweigh the minor problems created.
B. Generally, farmers are still behind in the use of completely automatic equipment which is now available. A thorough investigation of the proper equipment should be made before the system is selected. A farmer should buy what he needs and not be sold equipment he does not need.

C. The type of materials to be moved should be determined before equipment is installed. Changing a non-free flowing material to a relatively free flowing material is recommended.

D. Plan to move materials the least possible number of times and the shortest possible distance to reduce time and costs.

III. Enrichment Activities

A. Invite a farm adviser from the local RECC to give a presentation on principles of flow.

B. Show films of some poor methods which waste time.

C. Calculate the amount of feed to be moved for different farm animals each year.

IV. Suggested Teaching Materials

A. References
 1. Planning Grain-Feed Handling, pp. 5-15.

B. Audio Visuals
 1. Masters
 -1 Feed System with Automatic Transport
 -2 Motor Controls for Conveyors in Sequence
 -3 Material Flow Process Functions
 -4 Functional Sequence in Grain Harvesting/Handing/Drying
 -5 Flow Chart for Handling Grain
Automated Electric Controls

1. Bin switches on work bin to start and stop conveyor from storage bin.
2. Mill switch to turn off mill if no grain is flowing from work bin.
3. Bin switches on storage bin in feed area to start and stop mill automatically as feed flows from storage bin into feeders.
4. Switch at end of conveyor in feed area to stop conveyor when all feeders are full.
Material flow 3-2-1
Motor starting sequence 1-2-3

Motor starters may be installed so the motor may be started 1) automatically by pressing one start button, or 2) individually. This provision may be expanded so that motor cannot be started in any other sequence than 1-2-3. If motor number 2 is stopped due to overload, motors 1 and 3 will stop at same time. This type of automated control is possible with magnetic motor starters.
MATERIAL FLOW PROCESS FUNCTIONS

HARVEST

Ear Corn
Small Grain

Combine

Wagon
Truck

Drying

Wood
Building

Picker

Sheller

STORAGE

Transport - Conveyor
auger
chain
belt
daired

Stationary
or
Portable

Pelleter
Sheller
Grinder
Roller
Crusher

To Feedouts

PROCESSING

To Market

Adult 104-2-3
FUNCTIONAL SEQUENCE IN GRAIN HARVESTING/HANDLING/DRYING

Harvest → Transport → Unload → Receive → Elevate → Dry → Unload → Elevate → Transport → Market → Process → Convey

Equipment Alternatives for Each Flow Function.

SOURCE: Planning Grain-Feed Handling, p. 3.
EQUIPMENT ALTERNATIVES FOR FLOW FUNCTIONS

HARVEST → TRANSPORT → UNLOAD → RECEIVE → ELEVATE → DRY

Picker
- mounted
- pull type
Picker Sheller
- mounted
- pull type
- self propelled
Combine
- pull type
- self propelled
Broadcast
- vs row
- 1 to 8 row
- 20"-40" spacing

Wagon
- flat bed
- gravity bed
- feed wagon

Hydraulic
- Drive-Over Dump
- gravity
- auger
- chain
- single
- double

Gravity
- auger
- oscillatory

Hoist, Wheel
- Drag
- hinged
- portable

Drive-Over Dump
- Gravity
- auger
- chain
- single
- double

Hoist, Wheel
- Oscillatory
- auger
- Portable or Stationary
- batch

Truck
- straight
- pick up
- semi

Wagon
- all types

Hoist, Wheel
- Inclined
- gravity
- auger
- chain
- single
- double

Hoist, Wheel
- Vertical
- bucket
- belt
- chain
- non-recirc.
- auger
- continuous flow
- horizontal
- tower

In-Bin
- layer
- batch

Inclined
- Drag
- hinged
- portable

Vertical
- bucket
- belt
- chain
- non-recirc.
- auger
- continuous flow
- horizontal
- tower

Hydraulic Gravity Hoist, Wheel
- Drive-Over Dump
- gravity
- auger
- chain
- single
- double

Hoist, Wheel
- Oscillatory
- auger
- Portable or Stationary
- batch

Truck
- straight
- pick up
- semi

Wagon
- all types

Hoist, Wheel
- Inclined
- gravity
- auger
- chain
- single
- double

Hoist, Wheel
- Vertical
- bucket
- belt
- chain
- non-recirc.
- auger
- continuous flow
- horizontal
- tower

In-Bin
- layer
- batch

Inclined
- Drag
- hinged
- portable

Vertical
- bucket
- belt
- chain
- non-recirc.
- auger
- continuous flow
- horizontal
- tower

Hydraulic Gravity Hoist, Wheel
- Drive-Over Dump
- gravity
- auger
- chain
- single
- double

Hoist, Wheel
- Oscillatory
- auger
- Portable or Stationary
- batch

Truck
- straight
- pick up
- semi

Wagon
- all types

Hoist, Wheel
- Inclined
- gravity
- auger
- chain
- single
- double

Hoist, Wheel
- Vertical
- bucket
- belt
- chain
- non-recirc.
- auger
- continuous flow
- horizontal
- tower

In-Bin
- layer
- batch

Inclined
- Drag
- hinged
- portable

Vertical
- bucket
- belt
- chain
- non-recirc.
- auger
- continuous flow
- horizontal
- tower

Hydraulic Gravity Hoist, Wheel
- Drive-Over Dump
- gravity
- auger
- chain
- single
- double

Hoist, Wheel
- Oscillatory
- auger
- Portable or Stationary
- batch

Truck
- straight
- pick up
- semi

Wagon
- all types

Hoist, Wheel
- Inclined
- gravity
- auger
- chain
- single
- double

Hoist, Wheel
- Vertical
- bucket
- belt
- chain
- non-recirc.
- auger
- continuous flow
- horizontal
- tower

In-Bin
- layer
- batch

Inclined
- Drag
- hinged
- portable

Vertical
- bucket
- belt
- chain
- non-recirc.
- auger
- continuous flow
- horizontal
- tower
Lesson 3

PLANNING AN EXPANDABLE GRAIN-HANDLING SYSTEM

Objective -- To develop the effective ability of farmers to plan a handling system layout which may be developed over a period of time.

Problem and Analysis -- How important is good planning in the development of feed storage systems on the farm?

- Basic concepts in planning
- Sequence in development
- Value of good planning

Content

I. Basic Concepts in Planning

A. Space should be provided to develop storage facilities which exceed present estimates of future needs.
 1. Before the first storage bin is constructed, a well-drained site should be selected.
 2. Selection should consider field access and relationship to farmstead buildings.
 3. Electrical power needs may have slight influence on location.
 4. The grain area should be near a surfaced road, but in an area of the farmer's normal travel, allowing for frequent checks.

B. All construction should be of a permanent nature which can be added to as the farm business advances.
 1. Storage bins are useful for twenty to twenty-five years.
 2. The best automatic controls for sensing heat, moisture and volume should be installed to cut down on time and labor. Many farmers are not taking advantage of controls which are available at reasonable cost to cut down labor and manager's time.
 3. According to the Farm Journal (July, 1972) Merle Fairchild of Illinois developed a one-man harvest of corn by automating a drying and storing system so that he can "dump and run" while harvesting 50,000 bushels of corn. In one day he processed 5,000 bushels.
4. Mechanical failure presents problems in a completely automated system. Alarms and sirens tied in to alert the operator when equipment needs attention can be very beneficial.

C. Plans should first consider the individual needs of a farmer.
 1. All farms have different and individual needs; however, each farmer can readily place his operation in the plan of development (below) that is suggested for beginners (young farmers). This plan goes from a basic setup to a final system of grain handling. (See masters at the end of the lesson.)
 2. Size of the drying bin depends on harvest capacity, while size of storage bins depends on total storage required. It is desirable to store all the grain in the bins located adjacent to the center bin, but this is not a must.

II. Sequence in Developing a System (keyed to transparency masters at end of lesson):

A. Step No. 1. Construct the first bin twenty-one feet in diameter (minimum size), seven rings high (32" per ring). A dryer should be installed in this first bin for batch drying. In batch drying, grain should not exceed four feet in depth at a given time.
 1. Example of needs -- A two-row picker will pick approximately 1,500 bushels in one day's time. In 24 hours drying time, moisture can be reduced from 25 percent to 11 percent on 1,500 bushels.
 2. A portable auger is necessary for Step No. 1.

B. Step No. 2. Construct the second bin 24 feet to 26 feet from the first bin. This distance is to permit future development of the drive-through and processing area. Also, a portable auger can be easily moved for use in bin one or two.

C. Step No. 3. Construction of bin number three should be approximately two to six feet from bin number two, allowing 24 to 26 feet for a drive and processing area to be developed. The original portable auger can be used for bin number three.

D. Step No. 4. Construct bin number four on the side of the drive near bin number one. (Also allow for the development of the drive-through lane, dump pit, wet-grain bin, fast drying unit, and bucket elevator to a height necessary for gravity flow to all bins.)
1. Some farmers may elect to construct an entire complex at one given time if the needs and financial ability warrant such a move.

2. For the most economical system, small bins should not be included in the plans. The equipment necessary to move grain to and from small bins is practically as expensive as it is for large bins.

Suggestions for Teaching the Lesson

I. Developing the Situation

A. Things to be brought out by the teacher:
 1. Many times quick decisions have to be made when an oversupply of feeds is produced.
 2. Reduced prices at harvest time in many cases force a farmer to accept lower prices for his products.
 3. During harvest time many commercial elevators are filled and will not accept any grain for storage.
 4. Prior planning on the part of the wise farmer will prevent these unfortunate "bad luck" situations from happening. "Good luck" is wise planning, well executed.
 5. Plans should be made to begin a system which can be added on to annually as the grain program expands. Develop the system by steps, as other successful farmers have, for greater profits.

B. Things to be brought out by the class members:
 1. Problems experienced in installing storage facilities; how they could have been prevented.
 2. Information on successful systems; have class members point out good features of their systems.
 3. Compare a good class situation to the plan outlined in the unit.

II. Conclusions

A. Planning a profitable and useable feed storage system is of utmost importance to the farmer. It is important to the extent that farmers should consult advisers for assistance in the overall planning.

B. The permanency of bin construction and capital funds needed for this system of storage and handling require wise and correct decisions.

C. The selection of best locations for storage areas, size of bins to meet our individual needs, and type of accessory equipment needed for various stages of development is of prime importance.
D. An overall plan to follow as the young farmer expands his grain and feeding program is vital to his success.

E. The plan should consider feeding areas. If the terrain permits, livestock feeding should be in reasonable proximity to the storage complex.

F. The advice of a good, reliable dealer in storage and dispensing equipment should not be overlooked.

III. Enrichment Activities

A. The local teacher may make some slides of class members and their storage facilities and point out some desirable features of each. Use slides of the most desirable operators in the district.

B. Invite to the session an older farmer who has been successful in grain storage.

C. Visit farms where good situations have been developed. Let the operator point out good and bad points of the storage and feeding equipment.

IV. Suggested Teaching Materials

A. References
1. Planning Grain-Feed Handling, Purdue University, pp. 1-14.

B. Audio-Visuals
1. Masters
 -1 Pattern Layout for Inclined Elevator
 -2 (Screen sheet for overlay of transparency 3.)
 -3 Dimension in Placement of the Grain Handling Facilities
 -4 Portable Auger in Use Through Step No. 3
 -5 A Complete Grain Storage, Drying and Handling System
PATTERN LAYOUT FOR INCLINED ELEVATOR

SOURCE: Planning Grain-Feed Handling, p. 11.
Step No. 1
Single bin with dryer

Step No. 2
2nd bin
24' from 1st bin

Step No. 3
3rd bin

Step No. 4
4th bin -
Dump
Elevator leg
Wet grain bin
Fast drying unit

CUT ALONG DOTTED LINES
DIMENSION IN PLACEMENT OF THE GRAIN HANDLING FACILITIES

SOURCE: Planning Grain-Feed Handling, p. 11.
PORTABLE AUGER IN USE THROUGH STEP NO. 3

SOURCE: Planning Grain-Feed Handling, p. 11.

Adult 104-3-4
A COMPLETE GRAIN STORAGE, DRYING AND HANDLING SYSTEM

SOURCE:
Ky. Plan II. 732-16
Department of Agricultural Engineering,
University of Kentucky

Adult 104-3-5
Lesson 4

ELECTRICAL EQUIPMENT, WIRING AND CONTROLS

Objective -- To develop the effective ability of farmers to decide on electrical wiring and controls necessary to handle harvested grain.

Problem and Analysis -- What electrical equipment, wiring, and controls are necessary for an automated feed storage and handling system?

- Electrical and wiring for Step No. 1 in Problem No. 3 (Planning a System).
- Wiring and equipment for additional bins
- Electrical wiring and equipment for building, dump pit, bucket elevator and feed processing equipment.
- Electrical wiring and equipment for wet grain holding bin, unloading auger and continuous flow drying unit

Content

I. Electrical Equipment and Wiring for Bin No. 1 (Figure 1)

A. 21 foot or larger bin with perforated floor for drying
B. Drying fan, usually 7½ to 10 H.P. motor with controls
C. Drying burner with temperature and humidity controls, usually 500,000 to 1,000,000 b.t.u., L.P. gas or oil fired
D. Unloading auger, capacity of 1,000-1,300 bu. per hour, usually 30-35 feet long, 3-5 H.P. motor
E. Portable Filling Auger, capacity of 1,000-1,300 Bu. per hour - usually 30-35 feet long - 3-5 H.P. motor

F. Small sweep auger for emptying bin

G. Electrical Service (Figure 2.)
 1. 240 volt outlet for Blower Motor
 2. 120 volt outlet for burner solenoid and controls
 3. 120 volt outlet for sweep auger and distributor
 4. 240 volt outlet for portable auger motor
 5. 240 volt outlet for unloading auger

NOTE: See Table 1 for size of circuit conductors, conduit and motor starters, also transparency master 10 at end of lesson for configurations of receptacles if equipment is to be plugged in rather than connected permanently.

#4/0 Direct Burial Wire, 200 Amps.
If distance is over 250 feet to meter installation, a new metered service should be considered at bin location.
Electrical Equipment and Wiring - Additional Bins

G₁-2-3 Additional bins of required capacity - solid floor with air ducts for aeration
H₁-2-3 Aeration Fans - usually 3/4 to 1 1/2 H.P. motor
D₂-3-4 Unloading Augers - same as D. Figure 1 - May use same motor and drive for all unloading augers.

4a. 240 volt outlet on opposite side of drive for portable auger motor.
5. Same 240 volt outlet as used for unloading auger D.
6. 240 volt outlet on opposite side of drive for unloading auger motors D₂ and D₃
7-8-11. 240 volt outlets for aeration fans at bins G₁-G₂ and G₃
9-10-12. 120 volt outlets for sweep auger at bins G₁-G₂ and G₃.

NOTE: See Table 1.
Electrical Equipment and Wiring for Building, Dump Pit, Bucket Elevator and Feed Processing Equipment.

I. Dump pit equipped with auger for feeding bucket elevator. Normally 1 1/2-2 H.P. motor.

J. Bucket Elevator - capacity 1,200-1,500 Bu. per hour. Header at top with 6 outlets controlled from the ground. Usually 3-5 H.P. motor.

K. Mills with proportioning augers, equipped with over-head storage or a system of small ground level storage tanks with automatic augers to supply grain and supplement as required by mill. Mill usually 3 to 5 H.P.

L. Auger(s) to move feed mill to storage bin. Usually 1/2 H.P.

M. Storage bin for ground feed.

N. Unloading auger(s) for ground feed bin. Usually 1/2 H.P.

O. Lighting and receptacle outlets for building. Usually one lighting outlet for each 200 sq. ft. and a receptacle for every 20 ft. of usable wall.

P. Add additional 100 amp panel to service entrance. The building should be constructed to enclose the original service or this new panel should be located inside the building. Also all switches and controls for conveyor motors should be relocated in the area of the dump pit.

4. 240 volt outlet for dump pit auger

4a. 240 volt outlet for bucket elevator. Outlets that originally supplied portable auger may be relocated.

15. 120/240 volt outlet for mill and connecting supply augers.

16. 240 volt outlet for mill unloading auger(s) - controlled by mill.

17. 240 volt outlet for ground feed bin unloading auger(s).

18. One or more 120 volt circuits to supply convenience outlets

19. One or more 120 volt circuits to supply lighting.
Electrical equipment and wiring for wet grain holding bin, unloading auger, automatic batch or continuous flow drying unit.

Q. Wet grain tin to hold one or more days harvest. To be filled by bucket elevator.

R. Wet bin unloading auger. To be controlled by dryer, usually 1/2-1 H.P.

S. Automatic drying unit, usually a batch dryer up to 15,000-20,000 bushel per year production. Above this a continuous flow dryer may be an advantage. Usually a 5-15 H.P. motor will power the batch dryer. 25 H.P. or more will be on the continuous flow dryer. It will require three phase power and a new three phase service entrance.

T. Dryer unloading auger controlled by dryer. Usually 1/2-1 H.P. Bucket elevator will deliver the dry grain to the bins. It too will be controlled by dryer.

20. 240 volt outlet for wet bin unloading auger. To be controlled by dryer.

21. 120/240 outlet for dryer. This includes power for gas burner and controls.

22. 240 volt dryer unloading auger. To be controlled by dryer.

NOTE: See Table 1.
Complete Grain Handling, Drying, Storing and Processing System

Solid line indicates filling equipment

Wavy line indicates unloading equipment

NOTE: If an automated system is planned, all motors should be equipped with magnetic motor starters at the time of original installation. Control devices can easily be added later. For advice or assistance with planning your wiring, contact your power supplier.
TABLE NO. 1 - WIRING AND CONTROL INFORMATION FOR ELECTRIC MOTORS

<table>
<thead>
<tr>
<th>Motor Size</th>
<th>Normal Amp. Rating at 230 V.</th>
<th>Wire Size (Copper) 50' 2% Drop</th>
<th>Normal Switch</th>
<th>Wire Size</th>
<th>Circuit Protection</th>
<th>Amps</th>
<th>Motor Protection Amps (Heater Strip)</th>
<th>Motor Controller NEMA Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>4.9</td>
<td>12</td>
<td>30</td>
<td>1/2"</td>
<td>15</td>
<td>5/6.5</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>3/4</td>
<td>6.9</td>
<td>12</td>
<td>30</td>
<td>1/2"</td>
<td>15</td>
<td>7-9</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>12</td>
<td>30</td>
<td>1/2"</td>
<td>15</td>
<td>8-10</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1-1/2</td>
<td>10</td>
<td>12</td>
<td>30</td>
<td>1/2"</td>
<td>20</td>
<td>10-12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>10</td>
<td>30</td>
<td>3/4"</td>
<td>25</td>
<td>12-15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>8</td>
<td>60</td>
<td>3/4"</td>
<td>35</td>
<td>17-20</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>6</td>
<td>60</td>
<td>1"</td>
<td>60</td>
<td>30-35</td>
<td>1½-2</td>
<td>2</td>
</tr>
<tr>
<td>7-1/2</td>
<td>40</td>
<td>6</td>
<td>60</td>
<td>1-1/4"</td>
<td>60-70</td>
<td>50-70</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>4</td>
<td>100</td>
<td>1-1/4"</td>
<td>60-70</td>
<td>50-70</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three Phase Motors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1-1/2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7-1/2</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Source: "Guide for Adequate Farmstead Wiring" available at your RECC power supplier.
Suggestions for Teaching the Lesson

I. Developing the Situation

A. Things to be brought out by the teacher:
 1. Point out the cost of wiring by a licensed electrician.
 2. Note the saving in cost of labor if the farmer has some training in electrical wiring and can do his own wiring with the aid of an RECC adviser.
 3. Stress the importance of building panels to which additions can be made as the system progresses.

B. Things to be brought out by the class members:
 1. The electrical knowledge of members desiring to expand their program.
 2. Skill levels of class members in performing simple electrical exercises.

II. Conclusions

A. The electrical equipment, wiring and controls for storage and handling are very exacting and must meet national code standards.

B. The farmer will not be satisfied with, and cannot afford to accept any job of wiring and controls of lower quality than is necessary to do the job satisfactorily.

C. Plan a system to meet requirements of the individual farmer.

D. Use as many automatic controls as possible to cut down on labor.

E. For advice, contact the local power supplier.

III. Enrichment Activities

A. Invite a local electrician or RECC farm adviser to a class session on wiring and controls.

B. Arrange a field trip to a farm with equipment and wiring for one or two bins.

C. Arrange a field trip to a farm with equipment and wiring for building, dump pit and feed processing equipment.
IV. Suggested Teaching Materials

A. References
3. Farm Electricity, pp. 205-250.

B. Audio-Visuals
1. Masters
 -1 Electrical Equipment and Wiring for Bin No. 1
 -2 Electrical Equipment and Wiring - Additional Bins
 -3 Electrical Equipment and Wiring for Building, Dump Pit, Bucket Elevator and Feed Processing Equipment
 -4 Electrical Equipment and Wiring for Wet Grain Holding Bin, Unloading Auger, Automatic Batch or Continuous Flow Drying Unit
 -5 Complete Grain Handling, Drying, Storing and Processing System
 -6 Configurations for Portable Motor Plugs and Receptacles
ELECTRICAL WIRING FOR ENCLOSED SYSTEM
ELECTRICAL WIRING FOR WET GRAIN BIN AND DRYING UNIT
COMPLETE GRAIN SYSTEM
CONFIGURATIONS FOR PORTABLE MOTOR PLUGS & RECEPTACLES

<table>
<thead>
<tr>
<th>15 AMPERES</th>
<th>20 AMPERES</th>
<th>30 AMPERES</th>
<th>50 AMPERES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECEPT. PLUG</td>
<td>RECEPT. PLUG</td>
<td>RECEPT. PLUG</td>
<td>RECEPT. PLUG</td>
</tr>
</tbody>
</table>

120 VOLTS

120/240 VOLTS

240 VOLTS

ALL CIRCUITS TO CARRY GROUNDING CONDUCTOR
Lesson 5

UNLOADING AND ELEVATING HARVESTED GRAIN

Objective -- To develop the effective ability of farmers to determine methods of unloading and elevating harvested grain.

Problem and Analysis -- What are the best methods of dumping and elevating grain to the desired levels?

- Dump hoppers
- Dump pits
- Augers
- Bucket elevators

Content

I. Dump Hoppers

A. Many simple dump arrangements may be designed by the individual farmer using present above-ground containers which hold a small supply of grain to be picked up by an auger (as was shown in Step 1 of Problem 3).

B. Above-ground pits may be constructed of wood using an eight by eight foot floor and 12" sides, or from an old tractor tire with a canvas covering, or using baled straw arranged to form a pit with canvas.

II. Dump Pits

A. When the system has grown to the last stage of development as pointed out in Lesson 3, a permanent dump pit is to be included between the two rows of bins and adjacent to the bucket elevator. The pit is to be covered and enclosed by a permanent structure with bins on each side.

B. Recessed dumps can be shallow, covered by a grate of 2" block pipe spaced 4" apart or constructed of hardwood 2" x 4" materials, one inch apart or of 2" angle iron. This grate should be hinged. The holding capacity of the dump pit will vary depending on the capacity of the elevator or on the means of disposing of the grain. (See handouts at end of lesson.)
III. Augers

A. An auger is a very desirable means of moving feed and grain, but does a relatively poor job of elevating grain when the angle is over 45°. Gravity loss accounts for the poor performance when an angle over 45° is used.

B. The auger speed, size of auger, and the horsepower of the motor will determine the bushels per hour which can be moved.

C. See charts at end of this lesson for correct speed to be used at various angles of elevation.

IV. Bucket Elevators

A. Bucket elevators are the most efficient method of lifting grain to a higher level. There is less friction and less wear; consequently, bucket elevators will perform over a much longer time period and bushel span with the least repair. Although the initial installation cost is high compared to other conveyors, bucket elevators are the most desired among the large operators. See attachments for data on size and sketches of vertical elevators.

Suggestions for Teaching the Lesson

I. Developing the Situation

A. Things to be brought out by the teacher:
 1. Technical information should be secured by the farmer relative to the performance of various types of equipment; all equipment must be properly installed.
 2. A close look at the technical data (enclosed charts) will supply adequate data upon which to make proper decisions regarding equipment needed to move feed and grain materials.

B. Things to be brought out by the class members:
 1. Have class members relate their experiences in unloading their grain.
 2. Secure from the class ideas for other home-made grain dumps which have worked successfully.
 3. Get information from a class member who probably has the best unloading and elevating situation.

II. Conclusions

A. Avoid costly delays during harvest and/or planting by developing facilities prior to the time they are needed. Time is of utmost importance to the farmer at planting and harvest time.
Many times a farmer with good harvesting equipment finds a bottleneck when he dumps and elevates his crops. Delay at this point can be very costly in machinery and time.

B. Augers may be used to elevate grain from a temporary dump pit.

C. The most desirable method of unloading is to build a permanent dump pit with permanent-type bucket elevators.

III. Enrichment Activities

A. Show films of a good unloading and elevating situation in your county.

B. Visit a farm which is properly equipped to elevate feed.

IV. Suggested Teaching Materials

A. References
1. Planning Grain-Feed Handling for Livestock and Cash Grain Farms.

B. Audio-Visuals
1. Masters
 - 1 Dump Hoppers
 - 2 Dump Pits - Screw Conveyor in Shallow Recess
 - 3 Cover Grates for Dump Pits and Hoppers
 - 4A Dump Pit, High Capacity, Inclined Mechanical Conveyor, Plan View
 - 4B Dump Pit, High Capacity, Inclined Mechanical Conveyor, Elevator View
 - 5A Dump Pit, High Capacity Mechanical Level Discharge, Elevation View
 - 5B Dump Pit, High Capacity Mechanical Level Discharge, Cross-Section
 - 6 Recommended Sizes of Bucket Elevators
 - 7 Vertical Elevator with Distributor
 - 8 Types of Accessories for Vertical Elevators
 - 9 Gravity Spouting
 - 10 Conveyors, Types
 - 11 Feed Wagons, Grain, Transport and Mixing Types, Silage
 - 12 Grain Handling Capacity and HP Requirements for 4" Auger Conveyor Handling Dry Shelled Corn
 - 13 Grain Handling Capacity and HP Requirements for 4" Auger Conveyor Handling Dry Soybeans
 - 14A Grain Handling Capacity and HP Requirements for 6" Auger Conveyor Handling Dry Shelled Corn
 - 14B Grain Handling Capacity and HP Requirements for 6" Auger Conveyor Handling Wet Shelled Corn
-15 Grain Handling Capacity and HP Requirements for 6" Auger Conveyor Handling Dry Soybeans
-16 Grain Handling Capacity and HP Requirements for 8" U-Trough Auger Conveyor Handling Dry Shelled Corn
-17A Grain Handling Capacity and HP Requirements for an 8" U-Trough Auger Conveyor Handling Dry Shelled Corn
-17B Grain Handling Capacity and HP Requirements for an 8" U-Trough Auger Conveyor Handling Wet Shelled Corn
-18 Grain Handling Capacity and HP Requirements for an 8" Tube-Auger Conveyor Handling Wet Shelled Corn
-19 Estimated Horsepower and Capacity for Belt-Type Bucket Elevators and Inclined Chain Conveyors
-20 Guide for Belt Conveyor Capacity and Pulleys
-21 Nomograph for Auger Pulley Size and Speed Using 1725 RPM Electric Motors
-22 Length of Conveyor (Spout or Auger) and Height of Elevator for Various Distances to Bin Center
-23 Conveyors
-24 Approximate Spout Angles and Floor Slopes for Gravity Flow
-25 Length, Distance and Discharge Height Chart
-26 Examples Using Tables on Masters No. 22 and 24
DUMP HOPPERS
INCLINED SCREW CONVEYORS

BALED FORAGE + CANVAS

TRACTOR TIRE (or truck tire) plus canvas

SOURCE: Planning Grazing and Handling, p. 33.
DUMP PITS
SCREW CONVEYOR IN SHALLOW RECESS

Recessed dumps can be shallow (below floor surface) and present little ground-water problem. Hopper width can be very narrow, as little as 6" - 8" and still involve little clean-up. Hopper widths over 3' are usually unnecessary. High leg capacity reduces need for pit storage. Inclining pit conveyor can reduce depth of leg boot.

Elevator Leg

Left and right hand screw on one shaft will gather grain from both sides and carry it to the leg. One motor is used. Screw is normally a bearing supported at ends and over discharge point at elevator intake.

OPEN U-TUBE DUMP CONVEYOR. In-flow to U-tube must be controlled to hold power down. See multi-hopper design below.

SLOTTED ROUND-TUBE DUMP CONVEYOR. Slots are cut above tangent point of tube with hopper. Triangular or square wood block can be inserted to block or regulate flow.

HOPPER SIDE PANEL for 6" screw and 4" hopper. Hopper will extend 8'1" above top of dump conveyor.

SOURCE: Planning Grain-Feed Handling, p. 28
COVER GRATES FOR DUMP PITS AND HOPPERS
WALK-OVER AND DRIVE-OVER DESIGNS

6" Concrete Floor

2" Heavy Black Pipe (dump grate)
Spaced 4" o.c.

3" x 21" 1-Be
t(6.5 °/Ft.)
4'-0"
Long

8" Block Wall
Backfill With Pea Gravel

4" Tile Drain

2 - #3 Reinforcing Bars, Full Length

Drive-Over Pipe Grate

2'-6" 5'-0" 2'-6"

3½" x 3½" x ¾" Angle

3" I. D. Pipe
1" Spacing Welded To Angle Each End

Large Drive-Over Grate

10" x 53¾" (21 °/Ft)
Or 8" x 6½" (24 °/Ft)
11'-4" Long Over All
For Pit Shown On P. 31

Cover Grate - Wood or Steel

2x4

Steel Hopper

Recessed Hopper - Vertical Screw
Hopper flange is lagged to 2x4 plate on blocks.

1"x4" Spacers, 2' o.c.

2x4

Wood Walk-Over GRATE For Up To 10' Spans

Angle Iron Grate
Walk-Over

1"x1" x ½" Angle
For Spans Up To 10'

Spacers - 2' o.c.

2x4

Slotted Member
Can Be Wood Or Steel

2" Plank Cover - Hinge

2 Plank Cover - Hinge

Forming

Installed

Drive-Over Wood Hinged Cover

6.5°/Ft.

SOURCE: Planning Grain-Feed Handling, p. 27.
DUMP PIT
High Capacity, Inclined Mechanical Conveyor

COVER OPENING
W/ SOLID PLANK
OR GRATED DECK

2" PIPE OR
4x4 SUPPORT
FOR FLOORING

2x4 FORM EDGE OF DUMP PIT.

BLOCK WALL OUTLINE.

FOUNDATION OUTLINE.

2" HEAVY DUTY BLACK PIPE.
2.375" O.D. WELD 4" OC.

3" x 2 3/8" I-BEAM. (6.5#/FT WGT)
4'-0" LENGTH. 9 REQD.

PLAN VIEW

SOURCE: Planning Grain-Feed Handling, p. 29.
ENCLOSE SIDES AND END OF HOPPER AS REQ'D.

RETURN CONVEYOR MODIFIED FROM CROSS CONVEYOR W/ HOPPERS.

45° X 32 - 3/4" AC GRADE EX. PLYWOOD.

CROSS CONVEYOR W/ HOPPERS.

APPROX. 15°

8x8 POLE.

2" MATL FLOORING.

4" FLOOR DRAIN.

4" TILE DRAIN.

PLACE PIER FOOTINGS SEPARATELY AND WATERPROOF.

4" CONCRETE SLAB SLOPED 2" TO DRAIN ALL DIRECTIONS.

FOOTING.

PIER.

4" TAIL DRAIN.

APPRX. 4" CONCRETE SLAB.

GRADE EXT. PLYWOOD.

4" FLOOR SLAB.

4" TAIL DRAIN.

SOURCE: Planning Grain-Feed Handling, p. 29.

CONTRACTOR:

PLANNING

CONTRACTOR:

ELEVATION VIEW

68/69
DUMP PIT

HIGH CAPACITY MECHANICAL LEVEL DISCHARGE

Grade Line 18" Below Top Of Dump Pit

Vertical Elevator

Ladder: #4 Re-rods Bent and Set In Concrete

ELEVATION VIEW

SOURCE: Planning Grain-Feed Handling, p. 30
1-Beam extends 8" beyond floor of dump pit. Use concrete pad at ends of 1-Beams.

Pit for Vertical Elevator Boot needs to be about 3'-0" deeper than dump. Use depth specified for your elevator boot if available.

SOURCE: Planning Grain-Feed Handling, p. 30.
RECOMMENDED SIZES OF BUCKET ELEVATORS

<table>
<thead>
<tr>
<th>CAPACITY Bu/hr</th>
<th>COMMENTS</th>
<th>APPLICATIONS</th>
</tr>
</thead>
</table>
| 500-700 | Well suited to wet and dry grain handling on continuous flow dryer | 1 - Small farm needs
2 - Feed making only, with separate elevators for receiving wet grain
3 - As wet and dry grain elevator on continuous flow dryer. |
| 1000-1200 | Well matched to 6" augers. Gravity spouts: 6" | 1 - Small and medium farms, feed and/or cash grain.
2 - Small batch dryers, and layer or batch-in-bin drying methods on small to medium farms. |
| 1500-2000 | Well matched to load-unload rates on many mechanized batch dryers
Maximum size for 6" gravity spouts.
Maximum size for 8" horizontal augers in 25% corn. | 1 - Medium to large farms, feed and cash grain.
2 - Load-unload on batch and batch-in-bin drying systems.
3 - Primary leg in a continuous flow or batch drying setup. |
| 2500-3000 | Matched to 8" overhead augers in dry grain.
Gravity spouts: 8" | 1 - Large farms, feed and cash grain.
2 - As load-unload on large batch and batch-in-bin dryers.
3 - As primary leg in two-leg installations on continuous flow dryers. |

SOURCE: Planning Grain-Feed Handling, p. 8.
VERTICAL ELEVATOR WITH DISTRIBUTOR

Total Height

Hopper Height
Up Leg Feeding

Normally Quoted Effective Elevating Height

Head Loss Due To
Distributor Or Valves

Effective Elev. Height
with Distributor

Head Clearance

Hopper Height
Down Leg Feed

SOURCE: Planning Grain-Feed Handling, p. 35
TYPES OF ACCESSORIES FOR VERTICAL ELEVATORS

Flexible Spout Section

2 Way Valve

3 Way Valve

Square To Round Transition

4 Way from 3+2 Way

Grain Distributor

SOURCE: Planning Grain-Feed Handling, p. 35.
GRAVITY SPOUTING

DEADBOX OUTLET
Capped spout piece where grain impacts hold small grain quantity for falling grain to strike. Grain retained continually moves and is replaced, and spout wear is eliminated. Grain impacting on spout may wear through in 1-3 years of farm use.

For spout-support details, see spout or leg manufacturer. Consider spout diameter, gauge, span, and grain and wind load.

Support frame on spout is desirable to ease installation and disconnection of spout from bin. Spout may need to be disconnected from bin to eliminate condensation during drying or extended storage.

SOURCE: Planning Grain-reek Handling, p. 35.
<table>
<thead>
<tr>
<th>Type of Conveyor</th>
<th>Type of Material</th>
<th>Capacity</th>
<th>Horsepower Requirement</th>
<th>Cost</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCREW (Auger)</td>
<td>ground granular or chopped</td>
<td>medium</td>
<td>low to medium</td>
<td>medium</td>
<td>1-can be used as mixer or for uniform flow feeder, 2-good for unloading bulk storage, 3-wide range available</td>
<td>1-size of material limited, 2-single sections limited in length, 3-medium to heavy wear factor</td>
</tr>
<tr>
<td>CHAIN</td>
<td>most feeds grains & farm products</td>
<td>medium</td>
<td>medium</td>
<td>low to medium</td>
<td>medium</td>
<td>1-inexpensive, 2-multiple use, 3-wide range available</td>
</tr>
<tr>
<td>BUCKET</td>
<td>ground granular or lumpy</td>
<td>medium</td>
<td>low</td>
<td>medium</td>
<td>to high</td>
<td>1-efficient, 2-minimum, 3-high capacity for vertical lift</td>
</tr>
<tr>
<td>BELT</td>
<td>Grain, packaged units</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>1-can be used for long distances, 2-low power requirement</td>
<td>1-limited in angle of elevation, 2-expensive</td>
</tr>
<tr>
<td>PNEUMATIC</td>
<td>grain ground feed, chopped forage</td>
<td>variable</td>
<td>high</td>
<td>low to medium</td>
<td>1-low first cost, 2-low maintenance, 3-flexibility of installation, 4-easily cleaned</td>
<td>1-high power requirement, 2-creates dust, usually requires separation equipment, 3-conditions of operation vary with type of material</td>
</tr>
<tr>
<td>VIBRATOR</td>
<td>grain ground feed</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>1-can be used as meter, 2-reliable, 3-easy control</td>
<td>1-limited capacity, 2-cost</td>
</tr>
<tr>
<td>OSCILLATOR</td>
<td>grain, feed roughage</td>
<td>high</td>
<td>low</td>
<td>medium to high</td>
<td>1-efficient, 2-can handle large volumes, 3-can handle several materials</td>
<td>1-cost, 2-must be solidly mounted, 3-limited to lengths of about 100 ft</td>
</tr>
<tr>
<td>PUMP & PIPE</td>
<td>liquids, slurries</td>
<td>high</td>
<td>low</td>
<td>medium</td>
<td>to high</td>
<td>1-efficient, 2-easy control, 3-low maintenance</td>
</tr>
</tbody>
</table>

SOURCE: Planning Grain-Feed Handling, p. 48.
FEED WAGONS
GRAIN, TRANSPORT AND MIXING TYPES, SILAGE

Conventional Feed Wagon with blender box for small quantity metering. Feed rate of blender is adjustable.

Two-Chamfer Feed Wagon For Mixing By Recirculation

Hydraulic Cylinder to Lift Boom Screw

Chain Drive To Rotate Head

Hydraulic Pump

Horizontal Mixer Feed Wagon—silage & grain. Ribbon flights and mixing vanes stir material. Unit is designed to handle silage and grain mixtures.

SOURCE: Planning Grain-Feed Handling, p. 47.

Adult 104-5-11
GRAIN HANDLING CAPACITY AND HORSEPOWER REQUIREMENTS FOR A 4" AUGER CONVEYOR HANDLING DRY SHELLED CORN*

<table>
<thead>
<tr>
<th>Auger Speed RPM</th>
<th>Intake Exposure Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bu/Hr</td>
</tr>
<tr>
<td>0°</td>
<td>45°</td>
</tr>
<tr>
<td>200</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>150 .12</td>
</tr>
<tr>
<td>18</td>
<td>150 .13</td>
</tr>
<tr>
<td>24</td>
<td>150 .14</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>290 .29</td>
</tr>
<tr>
<td>18</td>
<td>290 .33</td>
</tr>
<tr>
<td>24</td>
<td>300 .38</td>
</tr>
<tr>
<td>700</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>470 .43</td>
</tr>
<tr>
<td>18</td>
<td>480 .51</td>
</tr>
<tr>
<td>24</td>
<td>480 .60</td>
</tr>
<tr>
<td>1,180</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>650 .63</td>
</tr>
<tr>
<td>18</td>
<td>740 .85</td>
</tr>
<tr>
<td>24</td>
<td>770 1.08</td>
</tr>
</tbody>
</table>

*Bushel weight, 54 to 56 lbs.; moisture content 13.2% to 14.2% wet basis.

**Note: For total power required, increase horsepower by 10% to compensate for loss in the drive train.

SOURCE: Planning Grain-Feed Handling, p. 49.
GRAIN HANDLING CAPACITY AND HORSEPOWER REQUIREMENTS FOR A
4" AUGER CONVEYOR HANDLING DRY SOYBEANS*

<table>
<thead>
<tr>
<th>Auger Speed RPM</th>
<th>Intake Exposure Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1,100</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

**Bushel weight, 54.5 to 56.0 lbs.; moisture content 11% to 11.2% wet basis.

**Note: For total power required increase HP by 10% to compensate for loss in the power train.

SOURCE: Planning Grain-Feed Handling, p. 49.
Grain Handling Capacity and Horsepower Requirements for a 6" Auger Conveyor Handling Dry Shelled Corn

<table>
<thead>
<tr>
<th>Auger Speed RPM</th>
<th>Intake Exposure Inches</th>
<th>Angle of Elevation 0°</th>
<th>Angle of Elevation 22.5°</th>
<th>Angle of Elevation 45°</th>
<th>Angle of Elevation 67.5°</th>
<th>Angle of Elevation 90°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bu/HR</td>
<td>Hp/10'***</td>
<td>Bu/HR</td>
<td>Hp/10'***</td>
<td>Bu/HR</td>
<td>Hp/10'***</td>
</tr>
<tr>
<td>200</td>
<td>6</td>
<td>590</td>
<td>.20</td>
<td>520</td>
<td>.30</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>590</td>
<td>.28</td>
<td>550</td>
<td>.41</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>620</td>
<td>.32</td>
<td>570</td>
<td>.43</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>630</td>
<td>.44</td>
<td>590</td>
<td>.50</td>
<td>550</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
<td>970</td>
<td>.35</td>
<td>850</td>
<td>.52</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1090</td>
<td>.56</td>
<td>1010</td>
<td>.82</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1170</td>
<td>.74</td>
<td>1070</td>
<td>.92</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1190</td>
<td>.97</td>
<td>1110</td>
<td>1.13</td>
<td>1010</td>
</tr>
<tr>
<td>600</td>
<td>6</td>
<td>1210</td>
<td>.49</td>
<td>1050</td>
<td>.72</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1510</td>
<td>.84</td>
<td>1400</td>
<td>1.22</td>
<td>1160</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1650</td>
<td>1.17</td>
<td>1500</td>
<td>1.42</td>
<td>1270</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1700</td>
<td>1.47</td>
<td>1570</td>
<td>1.74</td>
<td>1440</td>
</tr>
<tr>
<td>800</td>
<td>6</td>
<td>1320</td>
<td>.58</td>
<td>1100</td>
<td>.86</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1760</td>
<td>1.07</td>
<td>1660</td>
<td>1.54</td>
<td>1370</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1990</td>
<td>1.57</td>
<td>1790</td>
<td>1.96</td>
<td>1510</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2140</td>
<td>1.95</td>
<td>1910</td>
<td>2.32</td>
<td>1740</td>
</tr>
</tbody>
</table>

*Bushel weight, 54 to 56 lbs; moisture content 14.5% wet basis.

Note: For total power required, increase horsepower by 10% to compensate for loss in the drive train.

Source: Planning Grain-Feed Handling, p. 50.
Grain Handling Capacity and Horsepower Requirements for a 6" Auger Conveyor Handling Wet Shelled Corn*

<table>
<thead>
<tr>
<th>Auger Speed RPM</th>
<th>Corn Moisture Percent</th>
<th>Angle of Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bu/Hr</td>
<td>Hp/10'**</td>
</tr>
<tr>
<td>200</td>
<td>14</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>370</td>
</tr>
<tr>
<td>400</td>
<td>14</td>
<td>1090</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>700</td>
</tr>
<tr>
<td>600</td>
<td>14</td>
<td>1510</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>950</td>
</tr>
<tr>
<td>800</td>
<td>14</td>
<td>1760</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1100</td>
</tr>
</tbody>
</table>

*Moisture content 14% and 25% wet basis; 12 inch exposed helix at screw inlet.

Note: For total power required, increase horsepower by 10% to compensate for loss in the drive train.

Source: Planning Grain-Feed Handling, p. 50.
Grain Handling Capacity and Horsepower Requirements for a 6" Auger Conveyor Handling Dry Soybeans*

<table>
<thead>
<tr>
<th>Auger Speed RPM</th>
<th>Intake Exposure</th>
<th>0°</th>
<th>22.5°</th>
<th>45°</th>
<th>67.5°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inches</td>
<td>Bu/HR</td>
<td>Hp/10'**</td>
<td>Bu/HR</td>
<td>Hp/10'**</td>
<td>Bu/HR</td>
</tr>
<tr>
<td>200</td>
<td>6</td>
<td>490</td>
<td>.30</td>
<td>410</td>
<td>.41</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>500</td>
<td>.40</td>
<td>430</td>
<td>.53</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>520</td>
<td>.50</td>
<td>500</td>
<td>.60</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>540</td>
<td>.60</td>
<td>520</td>
<td>.67</td>
<td>470</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
<td>880</td>
<td>.52</td>
<td>710</td>
<td>.71</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>990</td>
<td>.84</td>
<td>830</td>
<td>1.14</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1110</td>
<td>.98</td>
<td>1030</td>
<td>1.18</td>
<td>880</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1180</td>
<td>1.36</td>
<td>1040</td>
<td>1.62</td>
<td>900</td>
</tr>
<tr>
<td>600</td>
<td>6</td>
<td>1080</td>
<td>.68</td>
<td>890</td>
<td>.96</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1350</td>
<td>1.20</td>
<td>1130</td>
<td>1.61</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1620</td>
<td>1.45</td>
<td>1510</td>
<td>1.74</td>
<td>1280</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1690</td>
<td>2.13</td>
<td>1520</td>
<td>2.52</td>
<td>1320</td>
</tr>
<tr>
<td>800</td>
<td>6</td>
<td>1180</td>
<td>.78</td>
<td>960</td>
<td>1.12</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1610</td>
<td>1.51</td>
<td>1310</td>
<td>1.98</td>
<td>1080</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1980</td>
<td>1.93</td>
<td>1840</td>
<td>2.29</td>
<td>1530</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2020</td>
<td>2.93</td>
<td>1850</td>
<td>3.43</td>
<td>1640</td>
</tr>
</tbody>
</table>

*Bushel weight, 54 to 56 lbs.; moisture content 11% to 12% wet basis.

**Note: For total power required, increase horsepower by 10% to compensate for loss in the power train.

SOURCE: Planning Grain-Feed Handling, p. 50.
GRAIN HANDLING CAPACITY AND HORSEPOWER REQUIREMENTS FOR AN 8" U-TROUGH AUGER CONVEYOR HANDLING DRY SHELLED CORN*

<table>
<thead>
<tr>
<th>Auger Speed RPM</th>
<th>Intake Exposure</th>
<th>Angle of Elevation 0°</th>
<th>15°</th>
<th>25°</th>
<th>35°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inches</td>
<td>Bu/Hr</td>
<td>Hp/10'**</td>
<td>Bu/Hr</td>
<td>Hp/10'**</td>
</tr>
<tr>
<td>100</td>
<td>14.0</td>
<td>980</td>
<td>0.61</td>
<td>875</td>
<td>0.78</td>
</tr>
<tr>
<td>200</td>
<td>14.0</td>
<td>1880</td>
<td>1.65</td>
<td>1730</td>
<td>1.60</td>
</tr>
<tr>
<td>300</td>
<td>14.0</td>
<td>2800</td>
<td>2.01</td>
<td>2550</td>
<td>2.15</td>
</tr>
<tr>
<td>400</td>
<td>14.0</td>
<td>3525</td>
<td>2.53</td>
<td>3250</td>
<td>2.56</td>
</tr>
</tbody>
</table>

*Bushel weight, 55 lbs.; moisture content, 14% wet basis; 14 inch intake opening.

**Note: For total power required, increase horsepower by 10% to compensate for loss in the power train.

SOURCE: Agriculture Engineering Handbook
GRAIN HANDLING CAPACITY AND HORSEPOWER REQUIREMENTS FOR AN 8" U-TROUGH AUGER CONVEYOR HANDLING DRY SHELLED CORN*

<table>
<thead>
<tr>
<th>Auger Speed RPM</th>
<th>Intake Exposure</th>
<th>0° Angle of Elevation</th>
<th>15° Angle of Elevation</th>
<th>25° Angle of Elevation</th>
<th>35° Angle of Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inches</td>
<td>Bu/Hr</td>
<td>Hp/10¹ **</td>
<td>Bu/Hr</td>
<td>Hp/10¹ **</td>
</tr>
<tr>
<td>100</td>
<td>7.5</td>
<td>702</td>
<td>1.15</td>
<td>664</td>
<td>0.99</td>
</tr>
<tr>
<td>15.0</td>
<td>712</td>
<td>1.17</td>
<td>682</td>
<td>1.19</td>
<td>668</td>
</tr>
<tr>
<td>22.5</td>
<td>722</td>
<td>1.12</td>
<td>685</td>
<td>1.15</td>
<td>672</td>
</tr>
<tr>
<td>200</td>
<td>7.5</td>
<td>1515</td>
<td>1.96</td>
<td>1318</td>
<td>2.00</td>
</tr>
<tr>
<td>15.0</td>
<td>1450</td>
<td>2.27</td>
<td>1432</td>
<td>2.65</td>
<td>1342</td>
</tr>
<tr>
<td>22.5</td>
<td>1515</td>
<td>2.38</td>
<td>1438</td>
<td>2.70</td>
<td>1360</td>
</tr>
</tbody>
</table>

*Bushel weight, 53 lbs.; moisture content, 27.5% to 28.5% wet basis.

**Note: For total power required, increase horsepower by 10% to compensate for loss in the power train.

GRAIN HANDLING CAPACITY AND HORSEPOWER REQUIREMENTS FOR AN 8" U-TROUGH AUGER CONVEYOR HANDLING DRY SHELLED CORN*

<table>
<thead>
<tr>
<th>Auger Speed RPM</th>
<th>Intake Exposure Inches</th>
<th>Angle of Elevation</th>
<th>0° Bu/HR</th>
<th>0° Hp/10'***</th>
<th>15° Bu/HR</th>
<th>15° Hp/10'***</th>
<th>25° Bu/HR</th>
<th>25° Hp/10'***</th>
<th>35° Bu/HR</th>
<th>35° Hp/10'***</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7.5</td>
<td></td>
<td>774</td>
<td>1.52</td>
<td>760</td>
<td>1.45</td>
<td>745</td>
<td>1.45</td>
<td>533</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td></td>
<td>769</td>
<td>1.57</td>
<td>758</td>
<td>1.66</td>
<td>705</td>
<td>1.61</td>
<td>663</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>22.5</td>
<td></td>
<td>775</td>
<td>1.52</td>
<td>783</td>
<td>1.53</td>
<td>734</td>
<td>1.67</td>
<td>706</td>
<td>1.46</td>
</tr>
<tr>
<td>200</td>
<td>7.5</td>
<td></td>
<td>1574</td>
<td>2.22</td>
<td>1312</td>
<td>1.98</td>
<td>1130</td>
<td>1.95</td>
<td>950</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td></td>
<td>1540</td>
<td>2.54</td>
<td>1456</td>
<td>2.56</td>
<td>1418</td>
<td>2.72</td>
<td>1278</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td>22.5</td>
<td></td>
<td>1608</td>
<td>2.61</td>
<td>1520</td>
<td>2.85</td>
<td>1424</td>
<td>2.82</td>
<td>1406</td>
<td>2.72</td>
</tr>
</tbody>
</table>

*Bushel weight, 52.5 lb.; moisture content, 25% to 26.5% wet basis.

Note: For total power required, increase horsepower by 10% to compensate for loss in the power train.

Adult 104-5-17B
GRAIN HANDLING CAPACITY AND HORSEPOWER REQUIREMENTS FOR AN 8" DIAMETER TUBE-AUGER CONVEYOR HANDLING WET SHELLED CORN

<table>
<thead>
<tr>
<th>Auger Speed RPM</th>
<th>Intake Exposure Inches</th>
<th>Angle of Elevation 0° Bu/Hr</th>
<th>Angle of Elevation 15° Bu/Hr</th>
<th>Angle of Elevation 25° Bu/Hr</th>
<th>Angle of Elevation 35° Bu/Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7.5</td>
<td>690</td>
<td>660</td>
<td>610</td>
<td>575</td>
</tr>
<tr>
<td>15.0</td>
<td></td>
<td>715</td>
<td>700</td>
<td>685</td>
<td>650</td>
</tr>
<tr>
<td>200</td>
<td>7.5</td>
<td>1200</td>
<td>980</td>
<td>930</td>
<td>856</td>
</tr>
<tr>
<td>15.0</td>
<td></td>
<td>1200</td>
<td>1170</td>
<td>1130</td>
<td>1070</td>
</tr>
<tr>
<td>300</td>
<td>7.5</td>
<td>1590</td>
<td>1240</td>
<td>1200</td>
<td>1070</td>
</tr>
<tr>
<td>15.0</td>
<td></td>
<td>1760</td>
<td>1650</td>
<td>1570</td>
<td>1440</td>
</tr>
<tr>
<td>400</td>
<td>7.5</td>
<td>1710</td>
<td>1380</td>
<td>1285</td>
<td>1100</td>
</tr>
<tr>
<td>15.0</td>
<td></td>
<td>--</td>
<td>2000</td>
<td>1800</td>
<td>1640</td>
</tr>
</tbody>
</table>

* Bushel weight, 51 to 55 lbs.; moisture content, 23.5% to 26.5% wet basis.

Note: For total power required, increase horsepower by 10% to compensate for loss in the drive train.

SOURCE: Agricultural Engineering Handbook.
Estimated Horsepower and Capacity for Selected Shelled Grain Belt-Type Bucket Elevators

<table>
<thead>
<tr>
<th>Bucket Size</th>
<th>Bucket Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inches</td>
</tr>
<tr>
<td>3 x 2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4 x 3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6 x 4</td>
<td>4 1/4</td>
</tr>
<tr>
<td></td>
<td>270</td>
</tr>
<tr>
<td>7 x 5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>9 x 5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>9 x 6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belt Speed</th>
<th>Capacity Bu/HR</th>
<th>Horsepower Per 10 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft/Min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>500-550</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>0.625</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

Estimated Horsepower and Capacity for Selected Inclined Chain Conveyors

<table>
<thead>
<tr>
<th>Flight Width (In.)</th>
<th>Hp required for various lengths (ft.)</th>
<th>Flight Speed fpm</th>
<th>Approximate Capacities Bu/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1/4-1/3 1/2 3/4 3/4 - - - 290-450 300-400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6*</td>
<td>1/4-1/2 1/2-3/4 3/4-1 1 - - - 290-450 500-600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8*</td>
<td>1/2-3/4 1/2-1 1/2-1 3/4-1 3/4-1 3/4-1 - 150-365 400-600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3/4 3/4 1 1 1 1/2 1 1/2-2 2 150-225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1/2-1 3/4-1 1-1 1/2 1-2 1 1/2 1 1/2-3 2-5 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3/4-1 1-2 1/2 1 1/2-3 2-5 150 1200-1400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Double these hp's for high-capacity bulk feed handling.

SOURCE: Planning Grain-Feed Handling, p. 51.
Belt Conveyor Capacity Guide.*

<table>
<thead>
<tr>
<th>Belt Width</th>
<th>Troughed Belts</th>
<th>Flat Belt</th>
<th>Maximum Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35 lb/cu ft Material</td>
<td>50 lb/cu ft Material</td>
<td>50 lb/cu ft Material</td>
</tr>
<tr>
<td>Inches</td>
<td>Ton/HR</td>
<td>Ton/HR</td>
<td>Ton/HR</td>
</tr>
<tr>
<td>12</td>
<td>8.1</td>
<td>11.5</td>
<td>5.7</td>
</tr>
<tr>
<td>14</td>
<td>11.8</td>
<td>15.8</td>
<td>7.1</td>
</tr>
<tr>
<td>16</td>
<td>14.7</td>
<td>21.0</td>
<td>9.5</td>
</tr>
<tr>
<td>18</td>
<td>18.1</td>
<td>25.9</td>
<td>11.6</td>
</tr>
<tr>
<td>20</td>
<td>23.4</td>
<td>33.4</td>
<td>15.0</td>
</tr>
<tr>
<td>24</td>
<td>34.3</td>
<td>49.0</td>
<td>22.0</td>
</tr>
</tbody>
</table>

* Uniform Loading -- 100 fpm (feet per minute).
SOURCE: University of California, Agricultural Circular 517.

Minimum Size Pulleys for 1,725 RPM Motors.

<table>
<thead>
<tr>
<th>Motor H.P.</th>
<th>1/4</th>
<th>1/3</th>
<th>1/2</th>
<th>3/4</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>3.0</th>
<th>5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Pulley Diameter, Inches</td>
<td>2 1/4</td>
<td>2 1/2</td>
<td>2 3/4</td>
<td>3.0</td>
<td>3 1/2</td>
<td>4.0</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Nomograph For Auger Pulley Size and Speed Using 1725 RPM Electric Motors

SOURCE: Agricultural Engineering Handbook, p. 1.10
Length of Conveyor (Spout or Auger) and Height of Elevator for Various Distances to Bin Center

<table>
<thead>
<tr>
<th>Distance to Bin Center R, Ft.</th>
<th>Length 1 and Height 2, Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Grain 3</td>
</tr>
<tr>
<td></td>
<td>30° L</td>
</tr>
<tr>
<td>10</td>
<td>11.6</td>
</tr>
<tr>
<td>12</td>
<td>13.9</td>
</tr>
<tr>
<td>14</td>
<td>16.2</td>
</tr>
<tr>
<td>16</td>
<td>18.5</td>
</tr>
<tr>
<td>18</td>
<td>21.8</td>
</tr>
<tr>
<td>20</td>
<td>23.1</td>
</tr>
<tr>
<td>22</td>
<td>25.4</td>
</tr>
<tr>
<td>24</td>
<td>27.8</td>
</tr>
<tr>
<td>26</td>
<td>30.1</td>
</tr>
<tr>
<td>28</td>
<td>32.4</td>
</tr>
<tr>
<td>30</td>
<td>34.7</td>
</tr>
<tr>
<td>32</td>
<td>37.0</td>
</tr>
<tr>
<td>34</td>
<td>39.3</td>
</tr>
<tr>
<td>36</td>
<td>41.6</td>
</tr>
<tr>
<td>38</td>
<td>43.9</td>
</tr>
<tr>
<td>40</td>
<td>46.2</td>
</tr>
<tr>
<td>42</td>
<td>48.5</td>
</tr>
<tr>
<td>44</td>
<td>50.8</td>
</tr>
<tr>
<td>46</td>
<td>53.2</td>
</tr>
<tr>
<td>48</td>
<td>55.5</td>
</tr>
<tr>
<td>50</td>
<td>57.8</td>
</tr>
</tbody>
</table>

1 Rounded up to next one-tenth foot
2 Rounded down to next one-tenth foot
3 Angles of 25° to 40° normally used for inclined augers. Use 37° for planning purposes.

SOURCE: *Agricultural Engineering Handbook*, p. 1.11
CONVEYORS
LENGTHS, DISTANCES, AND DISCHARGE HEIGHTS

Approximate Spout Angles and Floor Slopes for Gravity Flow

<table>
<thead>
<tr>
<th>Material</th>
<th>Angle</th>
<th>Slope Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains, dry</td>
<td>37°</td>
<td>$\frac{3}{4}$</td>
</tr>
<tr>
<td>Grains, wet</td>
<td>45° minimum</td>
<td>1</td>
</tr>
<tr>
<td>Pellets</td>
<td>45°</td>
<td>$1^{3/4}$</td>
</tr>
<tr>
<td>Meal and ground feed</td>
<td>60°</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Agricultural Engineering Handbook, p. 1.12.
LENGTH, DISTANCE AND DISCHARGE HEIGHT CHART

Example A: The horizontal distance from the bucket elevator distributor to the center of a soybean tank is 20 feet. An angle of 60° must be used. The distributor discharge must be 34.6 feet above the top of the bin and the spout must be 40 feet long.

Example B: The height of a bin is 25 feet. An auger 42.6 feet long on a 37° angle would be required. If a 30° angle is desired, a 50.8 foot auger is required.

Example C: An auger is being selected for a 27 foot diameter bin with a 16 foot eave. Using an angle of 37° (grain bin roof slopes are normally about 30°), the hopper of the convey must be 22 feet from the bin wall to clear the eave (16') by a half foot. Adding this distance to the radius of the bin, the total distance from the hopper to the center of the bin is \((22 + 13 \frac{1}{2}) = 35 \frac{1}{2}\) feet. Interpolating 35 1/2 feet in column R of Master 22, the conveyor length is estimated to be 44 feet.

Example D: The lines marked "incline" represent the conveyor which receives at lower left and discharges along incline line at the point marked. At 37° slope, to discharge at 27' elevation, a conveyor 45' long is needed and the horizontal distance is 36'.

Example E: The line marked "incline" represents the gravity spout which receives at the point marked along incline line and discharges at lower left. At 60° slope, a distributor discharge must be 34 1/2' above and 20' away from spout discharge; spout is 40' long.

Lesson 6

GRAIN DRYING METHODS

Objective -- To develop the effective ability of farmers to select desirable grain drying methods.

Problem and Analysis -- What are the most desirable grain drying methods available for farmer use?

- Layer drying in the bin
- Batch drying in the bin
- Batch drying in mechanized dryers
- Continuous flow drying in mechanized dryers
- Control of drying equipment

Content

I. Layer Drying in the Bin

A. As the name suggests, layer drying in the bin means that the grain is dried in layers in the storage structure. Each layer is partially dried before the next layer is added. The rate at which the structure can be filled depends on the moisture content of the grain, the drying unit capacity and the operating procedure. The entire depth of the grain is ultimately dried in place. It is recommended that a heater be installed on all layer dryer bins for use in unfavorable weather conditions. The temperature of the air should be increased no more than about 20°F. Increasing the temperature by 20°F will double the drying capacity of the air and speed the rate that grains can be harvested. Since this is a slow method, it is not suggested for more than 4,000 bushels.

B. The following should be observed when using this system:
 1. Make moisture tests as the grain is loaded into the bin in order to follow the correct loading schedule.
 2. Distribute the grain evenly as the bin is being loaded to prevent accumulations of cracked grain and fine material which can restrict air flow and cause uneven drying.
 3. Start the fan and heater as soon as the drying floor is covered with a foot of grain.
4. Follow recommended loading schedules to take into consideration the different grains, moisture levels, relative humidity settings, and combinations of fan and bin sizes.

5. Inspect the grain at least once per day by walking over the surface to develop the "feel" of the grain's condition and progress of drying. As the grain starts to dry, one's feet will begin to sink into the grain.

6. If the inspection reveals crusty or lack of drying due to accumulation of fine materials, the crusted areas should be broken up and spread over the surface, or removed from the bin and cleaned.

7. One should also ensure that the perforated floor has at least a 7% open area.

8. Mechanical devices are available for stirring or rotating the grain during drying. These devices will normally increase the rate of drying; however, the cost may be as much as or more than equipment required for more rapid drying methods described below.

II. Batch Drying in the Bin

A. There are two forms of batch dryers; these are generally identified as the batch-in-bin dryer and the column-batch dryer.

B. When the batch-in-bin system is used, grain is spread over a perforated floor and dried in a shallow layer, usually 2-4 feet deep. Each day's harvest is dried, cooled and then moved to a storage structure. The batch-in-bin system is suitable for use with a production of 7,500 bushels or more. The drying air temperature is increased to about 140° F. in this system.

III. Batch Drying in Mechanized Dryers

A. This generally is accomplished in a column-batch dryer. The grain stands in a vertical column usually 12 to 24 inches thick. The grain is dried, cooled, and moved to a separate storage structure. This system is suitable for use where 7,500 or more bushels of grain are to be dried annually. Drying air temperature is about 180 to 220° F. under this system.

B. Portable systems can now be considered at lower annual acreages due to smaller units being manufactured and the lower cost of installing a bin drying unit — especially when the farmer pays for the installation. Each case should be considered independently.
IV. Continuous-flow Drying

A. The grain in a continuous-flow dryer moves through the dryer at a rate selected to dry the grain to the desired moisture content by the time it emerges from the discharge end of the dryer. This system can handle corn with moisture content of 18 to 30 percent.

B. Most dryers have a heated (drying) section and a cooling section so that wet grain can be placed into the unit while dry, cool grain is discharged.

V. Controlling Drying Equipment

A. Regardless of the system used, the amount of heat to which the grain is exposed must be carefully controlled. The maximum allowable temperature for heated air drying as determined by the use to be made of the grain being dried is:

<table>
<thead>
<tr>
<th>Use</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td>180° - 200°F</td>
</tr>
<tr>
<td>Malting</td>
<td>140°F</td>
</tr>
<tr>
<td>Seed</td>
<td>110°F</td>
</tr>
</tbody>
</table>

B. The temperature in a continuous-flow dryer is often higher than that listed above. However, the movement of the grain and the moisture content tend to prevent the kernel temperature from exceeding the above limits.

Suggestions for Teaching the Lesson

I. Developing the Situation

A. Things to be brought out by the teacher:
 1. Drying systems are expensive, and the right system should be selected to get the job done.
 2. Drying systems may be a combination of two or more of the suggested systems listed in the content.

B. Things to be brought out by class members:
 1. Get from the class problems which have developed from drying too slowly.
 2. Get examples of cost of various units owned by class members.
 3. Find out from the group the most economical fuel to use for drying.
-9 Apparent and Actual Prices and Discounts in Marketing High-Moisture Corn
-10 Self-loading batch dryer
-11 Gravity-fill dryer
-12 Self-loading batch dryer
-13 Conveyor-fed dryer
-14 Continuous-flow dryer
-15 Continuous-flow, single leg
-16 Pattern layout for dryeration
-17 Dryeration pattern layout for one or two hopper-bottom cooling bins
-18A Mechanized Double Crib with Round Metal Storage
-18B Fill and Unload Mechanization Options, Cross-Section Elevation View
-18C Unload Mechanization Options
-18D Fill Mechanization Options
-18E Batch-Dryer Installation, Self-Loading Dryer
-18F Batch or Continuous-Flow Installation, Non-Self-Loading Dryer
-18G Batch-Dryer Installation, Self-Loading Dryer
-18H Continuous-Flow Dryer Installation, Single Leg
-18I Batch or Continuous-Flow Installation, Dryer Gravity Filled
-19 Chart for Estimating Weight Loss When Drying Grain or Seed
-20 Approximate Amount of Water in Ear Corn When Harvested, at Different Percentages of Moisture Content of the Kernels
-21 Pounds of Water Per Bushel of Grain at Different Moisture-Content Percentages
-22 Approximate Storage Capacity of Round Steel Bulk Feed Tanks
-23 Storage Capacity for Common Round Bins
-24 Approximate Capacity of Ear Corn Cribs
-25 Figuring Grain Storage Capacity
-26 Batch-In-Bin Drying
Volume Ranges for Alternative Drying Methods

<table>
<thead>
<tr>
<th>Drying Methods</th>
<th>Volume-Bushels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,000</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>25,000</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td>35,000</td>
</tr>
</tbody>
</table>

Layer Drying in Bin
- **1 Unit -- 5 hp**
 - 300 bu/day
- **2 Units -- 5 hp**
 - 600 bu/day
- **3 Units -- 5 hp**
 - 900 bu/day

Batch-in-bin
- **5 hp -- 1 Unit**
 - 800 bu/day
- **2 Units -- 5 hp**
 - 1,600 bu/day
- **7.5 hp -- 1 Unit**
 - 1,000-1,200 bu/day
- **10 hp -- 1 Unit**
 - 1,200-1,600 bu/day

Portable or Stationary Column-type Batch
- **72 Bu--2 hp**
 - 600-700 bu/16 hours
- **250 Bu--10-15 hp**
 - 1,000 bu/16 hours
- **500-750 Bu--20-30 hp**
 - 1,200-1,600 bu/16 hours

Continuous Flow
- **125 Bu/hour--20-30 hp**
 - 2,000 bu/16 hours
- **200 Bu/hour--40-50 hp**
 - 3,200 bu/16 hours

Source:
Drying Methods

- Batch-in-bin
- Layer Drying in bin
- Continuous flow
- Portable or stationary column-type batch
TYPICAL COLUMN BATCH DRYER
Cross Sectional View of A Continuous-Flow Dryer
Grain Shrinkage Chart

Percentage Shrinkage When a Unit of Grain is Dried to Selected Percentages of Moisture

<table>
<thead>
<tr>
<th>Percentage of Moisture in Grain</th>
<th>Percentage of Shrinkage When Grain is Dried to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col. 1 13.0%</td>
<td>13.5% 14.0% 14.5% 15.0% 15.5%</td>
</tr>
<tr>
<td>13.0 0</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>13.5 1.07</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>14.0 1.65</td>
<td>1.08 0 0 0 0</td>
</tr>
<tr>
<td>14.5 2.22</td>
<td>1.66 1.08 0 0 0</td>
</tr>
<tr>
<td>15.0 2.80</td>
<td>2.23 1.66 1.09 0 0</td>
</tr>
<tr>
<td>15.5 3.37</td>
<td>2.81 2.24 1.67 1.09 0</td>
</tr>
<tr>
<td>16.0 3.95</td>
<td>3.39 2.83 2.25 1.68 1.09</td>
</tr>
<tr>
<td>16.5 4.52</td>
<td>3.97 3.41 2.84 2.26 1.68</td>
</tr>
<tr>
<td>17.0 5.10</td>
<td>4.55 3.99 3.42 2.85 2.28</td>
</tr>
<tr>
<td>17.5 5.67</td>
<td>5.12 4.57 4.01 3.44 2.87</td>
</tr>
<tr>
<td>18.0 6.25</td>
<td>5.70 5.15 4.59 4.08 3.46</td>
</tr>
<tr>
<td>18.5 6.82</td>
<td>6.28 5.73 5.18 4.62 4.05</td>
</tr>
<tr>
<td>19.0 7.40</td>
<td>6.86 6.31 5.76 5.21 4.64</td>
</tr>
<tr>
<td>19.5 7.97</td>
<td>7.44 6.90 6.35 5.79 5.23</td>
</tr>
<tr>
<td>20.0 8.55</td>
<td>8.01 7.48 6.93 6.38 5.83</td>
</tr>
<tr>
<td>20.5 9.12</td>
<td>8.59 8.06 7.52 6.97 6.42</td>
</tr>
<tr>
<td>21.0 9.70</td>
<td>9.17 8.64 8.10 7.56 7.01</td>
</tr>
<tr>
<td>21.5 10.27</td>
<td>9.75 9.22 8.69 8.15 7.60</td>
</tr>
<tr>
<td>22.0 10.84</td>
<td>10.33 9.80 9.27 8.74 8.19</td>
</tr>
<tr>
<td>22.5 11.42</td>
<td>10.90 10.18 9.86 9.32 8.78</td>
</tr>
<tr>
<td>23.0 11.99</td>
<td>11.68 10.97 10.44 9.91 9.38</td>
</tr>
<tr>
<td>23.5 12.57</td>
<td>12.06 11.55 11.03 10.50 9.97</td>
</tr>
<tr>
<td>24.0 13.14</td>
<td>12.64 12.13 11.61 11.09 10.56</td>
</tr>
<tr>
<td>24.5 13.72</td>
<td>13.22 12.71 12.20 11.68 11.15</td>
</tr>
<tr>
<td>25.0 14.29</td>
<td>13.79 13.29 12.78 12.26 11.74</td>
</tr>
<tr>
<td>26.0 15.44</td>
<td>14.95 14.45 13.95 13.44 12.93</td>
</tr>
<tr>
<td>26.5 16.02</td>
<td>15.53 15.03 14.54 14.03 13.52</td>
</tr>
<tr>
<td>27.0 16.59</td>
<td>16.11 15.62 15.12 14.62 14.11</td>
</tr>
<tr>
<td>27.5 17.17</td>
<td>16.68 16.20 15.70 15.21 14.70</td>
</tr>
<tr>
<td>28.0 17.74</td>
<td>17.26 16.78 16.20 15.79 15.29</td>
</tr>
<tr>
<td>28.5 18.32</td>
<td>17.84 17.36 16.87 16.38 15.88</td>
</tr>
<tr>
<td>29.0 18.89</td>
<td>18.42 17.94 17.46 16.97 16.48</td>
</tr>
<tr>
<td>29.5 19.47</td>
<td>19.00 18.52 18.04 17.51 17.17</td>
</tr>
<tr>
<td>30.0 20.04</td>
<td>19.58 19.10 18.63 18.15 17.66</td>
</tr>
<tr>
<td>30.5 20.61</td>
<td>20.15 19.69 19.21 18.74 18.25</td>
</tr>
</tbody>
</table>

1All of the above percentages of shrinkage figures include actual moisture loss plus one-half percent for dry matter loss.

The percentage of shrinkage may be applied to pounds, bushels, tons and all other units of quantity.

SHRINKAGE SCHEDULE AND DRYING CHARGES FOR SHELLED CORN

<table>
<thead>
<tr>
<th>Moisture</th>
<th>Shrinkage</th>
<th>Drying Charge Per Wet Bu.</th>
<th>Moisture</th>
<th>Shrinkage</th>
<th>Drying Charge Per Wet Bu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.6 to 16.0</td>
<td>1.0%</td>
<td>0</td>
<td>23.1 to 23.5</td>
<td>10.4%</td>
<td>5 3/4</td>
</tr>
<tr>
<td>16.1 to 16.5</td>
<td>1.6</td>
<td>1/2</td>
<td>23.6 to 24.0</td>
<td>11.0</td>
<td>6</td>
</tr>
<tr>
<td>16.6 to 17.1</td>
<td>2.2</td>
<td>1</td>
<td>24.1 to 24.5</td>
<td>11.7</td>
<td>6 1/4</td>
</tr>
<tr>
<td>17.1 to 17.5</td>
<td>2.8</td>
<td>1 1/2</td>
<td>24.6 to 25.0</td>
<td>12.3</td>
<td>6 1/2</td>
</tr>
<tr>
<td>17.6 to 18.0</td>
<td>3.4</td>
<td>2</td>
<td>25.1 to 25.5</td>
<td>13.0</td>
<td>6 3/4</td>
</tr>
<tr>
<td>18.1 to 18.5</td>
<td>4.0</td>
<td>2 1/2</td>
<td>25.6 to 26.0</td>
<td>13.7</td>
<td>7</td>
</tr>
<tr>
<td>18.6 to 19.0</td>
<td>4.6</td>
<td>3</td>
<td>26.1 to 26.5</td>
<td>14.4</td>
<td>7 1/4</td>
</tr>
<tr>
<td>19.1 to 19.5</td>
<td>5.2</td>
<td>3 1/2</td>
<td>26.6 to 27.0</td>
<td>15.1</td>
<td>7 1/2</td>
</tr>
<tr>
<td>19.6 to 20.0</td>
<td>5.8</td>
<td>4</td>
<td>27.1 to 27.5</td>
<td>15.8</td>
<td>7 3/4</td>
</tr>
<tr>
<td>20.1 to 20.5</td>
<td>6.5</td>
<td>4 1/4</td>
<td>27.6 to 28.0</td>
<td>16.6</td>
<td>8</td>
</tr>
<tr>
<td>20.6 to 21.0</td>
<td>7.1</td>
<td>4 1/2</td>
<td>28.1 to 28.5</td>
<td>17.3</td>
<td>8</td>
</tr>
<tr>
<td>21.1 to 21.5</td>
<td>7.8</td>
<td>4 3/4</td>
<td>28.6 to 29.0</td>
<td>18.1</td>
<td>8</td>
</tr>
<tr>
<td>21.6 to 22.0</td>
<td>8.4</td>
<td>5</td>
<td>29.1 to 29.5</td>
<td>18.8</td>
<td>8</td>
</tr>
<tr>
<td>22.1 to 22.5</td>
<td>9.1</td>
<td>5 1/4</td>
<td>29.6 to 30.0</td>
<td>19.6</td>
<td>8</td>
</tr>
<tr>
<td>22.6 to 23.0</td>
<td>9.7</td>
<td>5 1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAXIMUM TIME FOR STORAGE OF SHELLED CORN AT VARIOUS CORN MOISTURE CONTENTS AND AIR TEMPERATURES

<table>
<thead>
<tr>
<th>Storage air temperature (fahrenheit)</th>
<th>Corn moisture content</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15%</td>
</tr>
<tr>
<td>75°</td>
<td>Days</td>
</tr>
<tr>
<td>70°</td>
<td>155</td>
</tr>
<tr>
<td>65°</td>
<td>207</td>
</tr>
<tr>
<td>60°</td>
<td>259</td>
</tr>
<tr>
<td>55°</td>
<td>337</td>
</tr>
<tr>
<td>50°</td>
<td>466</td>
</tr>
<tr>
<td>45°</td>
<td>725</td>
</tr>
<tr>
<td>40°</td>
<td>906</td>
</tr>
<tr>
<td>35°</td>
<td>1,140</td>
</tr>
</tbody>
</table>

1The times given are those above which mold growth will cause enough loss in corn quality to bring about a lowering of grade.

Fan Requirements for Drying Shelled Corn with Unheated Air from Different Percentages of Moisture Content and at Various Practical Depths

<table>
<thead>
<tr>
<th>Moisture content (percent)</th>
<th>Recommended minimum airflow rate per bushel (^1)</th>
<th>Practical depths (^2)</th>
<th>Static pressure (^3)</th>
<th>Maximum quantity that can be dried per fan horsepower (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cubic feet per minute</td>
<td>Feet</td>
<td>Inches, Water gage</td>
<td>Bushels</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>4</td>
<td>0.7</td>
<td>860</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.6</td>
<td>380</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>6</td>
<td>.9</td>
<td>1,120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.5</td>
<td>670</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>6</td>
<td>.6</td>
<td>2,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>.9</td>
<td>1,670</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>2.2</td>
<td>680</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>8</td>
<td>.5</td>
<td>6,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.0</td>
<td>3,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.6</td>
<td>1,880</td>
</tr>
</tbody>
</table>

1 Increase 20 percent in southeastern United States.

2 Layer drying is a method by which these recommended corn depths may be increased.

3 Static pressure includes 0.25-inch allowance for loss from duct friction.

4 Airflow of cubic feet per minute (c. f. m.) per horsepower based on 3,000 c. f. m. of air at 1-inch static pressure.

Recommended Moisture Content for Safe Storage of Grains in Farm-Type Bins

<table>
<thead>
<tr>
<th>Grain</th>
<th>Moisture Content Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelled Corn</td>
<td>13</td>
</tr>
<tr>
<td>Soybeans</td>
<td>11</td>
</tr>
<tr>
<td>Wheat</td>
<td>13*</td>
</tr>
<tr>
<td>Sorghum</td>
<td>12</td>
</tr>
<tr>
<td>Barley</td>
<td>13</td>
</tr>
<tr>
<td>Oats</td>
<td>13*</td>
</tr>
<tr>
<td>Rye</td>
<td>13</td>
</tr>
</tbody>
</table>

*12% if stored for seed
EQUILIBRIUM MOISTURE CONTENT OF SHELLED CORN FOR VARIOUS AIR TEMPERATURES AND RELATIVE HUMIDITIES

<table>
<thead>
<tr>
<th>Relative Temperature</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>10.8</td>
<td>11.3</td>
<td>12.2</td>
<td>13.1</td>
<td>13.5</td>
<td>14.6</td>
<td>15.5</td>
<td>16.4</td>
<td>17.4</td>
<td>18.7</td>
<td>20.2</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>10.5</td>
<td>11.0</td>
<td>11.7</td>
<td>12.5</td>
<td>13.3</td>
<td>14.0</td>
<td>14.8</td>
<td>15.5</td>
<td>16.6</td>
<td>17.8</td>
<td>19.4</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td>10.1</td>
<td>10.6</td>
<td>11.3</td>
<td>12.0</td>
<td>12.7</td>
<td>13.3</td>
<td>14.1</td>
<td>14.8</td>
<td>15.8</td>
<td>16.9</td>
<td>18.6</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>9.7</td>
<td>10.2</td>
<td>10.9</td>
<td>11.6</td>
<td>12.1</td>
<td>12.7</td>
<td>13.4</td>
<td>14.2</td>
<td>15.0</td>
<td>16.0</td>
<td>17.8</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>9.0</td>
<td>9.7</td>
<td>10.4</td>
<td>11.1</td>
<td>11.5</td>
<td>12.0</td>
<td>12.8</td>
<td>13.5</td>
<td>14.5</td>
<td>15.4</td>
<td>16.8</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>8.3</td>
<td>9.1</td>
<td>9.8</td>
<td>10.5</td>
<td>10.8</td>
<td>11.2</td>
<td>12.1</td>
<td>13.0</td>
<td>13.9</td>
<td>14.8</td>
<td>15.8</td>
<td>17.4</td>
<td></td>
</tr>
</tbody>
</table>

Can be overdried

Correct for long-time storage

Will not dry to safe moisture content under these conditions. Heat is needed

Adult 104-6-8
<table>
<thead>
<tr>
<th>Moisture Percent</th>
<th>Apparent Discount Per Bushel Cents</th>
<th>Apparent Price Per Bushel Cents</th>
<th>Actual Price Per Bushel Cents</th>
<th>Actual Discount for Marketing High-moisture Corn Cents</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5</td>
<td>0</td>
<td>100</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16.0</td>
<td>1</td>
<td>99</td>
<td>99.4</td>
<td>0.4</td>
</tr>
<tr>
<td>16.5</td>
<td>2</td>
<td>98</td>
<td>98.8</td>
<td>0.8</td>
</tr>
<tr>
<td>17.0</td>
<td>3</td>
<td>97</td>
<td>98.2</td>
<td>1.2</td>
</tr>
<tr>
<td>17.5</td>
<td>4</td>
<td>96</td>
<td>97.6</td>
<td>1.6</td>
</tr>
<tr>
<td>18.0</td>
<td>5</td>
<td>95</td>
<td>97.0</td>
<td>2.0</td>
</tr>
<tr>
<td>18.5</td>
<td>6</td>
<td>94</td>
<td>96.4</td>
<td>2.4</td>
</tr>
<tr>
<td>19.0</td>
<td>7</td>
<td>93</td>
<td>95.9</td>
<td>2.9</td>
</tr>
<tr>
<td>19.5</td>
<td>8</td>
<td>92</td>
<td>95.3</td>
<td>3.3</td>
</tr>
<tr>
<td>20.0</td>
<td>9</td>
<td>91</td>
<td>94.7</td>
<td>3.7</td>
</tr>
<tr>
<td>20.5</td>
<td>10</td>
<td>90</td>
<td>94.1</td>
<td>4.1</td>
</tr>
<tr>
<td>21.0</td>
<td>11</td>
<td>89</td>
<td>93.5</td>
<td>4.5</td>
</tr>
<tr>
<td>21.5</td>
<td>12</td>
<td>88</td>
<td>92.9</td>
<td>4.9</td>
</tr>
<tr>
<td>22.0</td>
<td>13</td>
<td>87</td>
<td>92.3</td>
<td>5.3</td>
</tr>
<tr>
<td>22.5</td>
<td>14</td>
<td>86</td>
<td>91.7</td>
<td>5.7</td>
</tr>
<tr>
<td>23.0</td>
<td>15</td>
<td>85</td>
<td>91.1</td>
<td>6.1</td>
</tr>
<tr>
<td>23.5</td>
<td>16</td>
<td>84</td>
<td>90.5</td>
<td>6.5</td>
</tr>
<tr>
<td>24.0</td>
<td>17</td>
<td>83</td>
<td>89.9</td>
<td>6.9</td>
</tr>
<tr>
<td>24.5</td>
<td>18</td>
<td>82</td>
<td>89.3</td>
<td>7.3</td>
</tr>
<tr>
<td>25.0</td>
<td>19</td>
<td>81</td>
<td>88.8</td>
<td>7.8</td>
</tr>
</tbody>
</table>

1When corn sells for $1 per bushel, moisture discount rate is 1 cent per each 1/2 Percent over 15.5.

2Price adjusted for extra weight due to moisture above 15.5 percent.
Self-loading batch dryer, single leg, ground-level wet holding bin. Dryer fills from dryer dump, wet grain bin, or direct from leg.

SOURCE: Planning Grain-Feed Handling, p. 18.
Gravity-fill dryer, single leg, overhead wet holding batch or continuous flow.

SOURCE: Planning Grain-Feed Handling, p. 18.
Self-loading batch dryer, single leg, ground-level wet holding over dryer self-loading dump.

SOURCE: Planning Grain-Feed Handling, p. 18.
Conveyor-fed dryer, single leg, ground-level wet holding. Manual or automatic control batch, or continuous flow.

SOURCE: Planning Grain-Feed Handling, p. 18.
Continuous-flow dryer, 2 legs, ground-level wet holding. NOTE: (Primary leg is used for wet receiving and transfer to both wet holding and the dryer, and for dry grain loadout.)

SOURCE: Planning Grain-Feed Handling, p. 19.
Continuous flow, single leg, ground-level wet grain, with dry-grain accumulator bin. NOTE: (System uses a surge bin on both the input and output sides of the dryer: wet corn holding bin on receiving side, accumulator on discharge side. Dry-grain transfer from accumulator is usually done manually.)

SOURCE: Planning Grain-Feed Handling, p. 19.
Pattern layout for Dryeration using two flat-bottom bins. NOTE: (The two Dryeration bins can be filled directly from the dryer by either inclined conveyors or by a hot- or dry-grain leg between the Dryeration bins, next to the dryer. The latter works especially well with a continuous flow dryer, since the hot- or dry-grain handling rate needed is relatively low. For a batch-drying process requiring high handling rates, hot or dry corn may be returned to the main leg inside the center building and hence to the Dryeration bins. The wet-grain holding bin shown is a hopper-bottom unit over the dryer for gravity outflow. Grade-level units may be used and the grain re-elevated to load the dryer. The center building may be offset.)

SOURCE: Planning Grain-Feed Handling, p. 19.
Dryeration pattern layout for one or two hopper-bottom cooling bins. NOTE: (Any combination of the bins to the left of the center building can be used for Dryeration. The dryer position can also be on the layout center line in place of the second Dryeration cooling tank. For large volumes both dryer positions, or two units side by side, may be desirable.)

SOURCE: Planning Grain-Feed Handling, p. 19.
MECHANIZED DOUBLE CRIB WITH ROUND METAL STORAGE

SOURCE: Planning Grain-Feed Handling, p. 20.
FILL AND UNLOAD MECHANIZATION OPTIONS,
CROSS-SECTION ELEVATION VIEW

SOURCE: Planning Grain-Feed Handling, p. 20.
UNLOAD MECHANIZATION OPTIONS

1. Conveyor "A" is a U-tube screw, belt, or chain conveyor. Unit is portable and fits at A, B, C, and D.

2. Underfloor conveyors on bins 1 and 2 extend from bin to vertical elevator. High crib floors will require bin floors to be high, unless crib floors can be cut, and channels formed for recessed conveyors. Conveyors must be demountable in sections for removal for service or changeover. Demountable drive-head units can reduce cost without tedious complete withdrawal.

3. Unload method shown in bins 3 and 4 uses 2 conveyors in tandem. Underbin units can be withdrawn between building and bin and inserted in alternate bin. Conveyor may be set in channel in crib floor. The same unit can fit other side and be used to return grain from portable dryer.

SOURCE: Planning Grain-Feed Handling, p. 20.
NOTE: Either horizontal overhead or underroof conveyors, or full or part gravity fill may be used. Using small conveyor to transfer grain from accumulator bin 5 to storage bin 3 permits higher vertical elevator capacity with low cost transfer conveyor. Transfer conveyor may be 2 1/2" - 4" diameter boot driven unit for dry grain, or 5" - 6" units operated at low RPM.

Short underroof conveyors may transfer grain from crib section to storage bin, as to bin 4 in the plan.

SOURCE: Planning Grain-Feed Handling, p. 20.
Batch-Dryer Installation, Self-Loading Dryer

Self-loading dryer dump maintained clear for receiving grain. Dryer may be filled direct, or from wet-grain storage.

SOURCE: Planning Grain-Feed Handling, p. 21.
Batch Or Continuous-Flow Installation, Non-Self-Loading Dryer.
Dryer loaded via leg to wet-grain storage to inclined conveyor.

SOURCE: Planning Grain-Feed Handling, p. 21.
Batch-Dryer Installation, Self-Loading Dryer

Self-loading dump extended under wet-grain bin. Dryer loading via leg through wet-corn bin only.

SOURCE: Planning Grain-Feed Handling, p. 21.
Continuous-Flow Dryer Installation, Single Leg

Leg must run continuously to take away dry corn unless dry-corn accumulator bin (=1) is used. Bin is normally unloaded manually but automatic unloading or dryer stop is possible. Two separate legs, one each for wet and dry corn, can be used and run continuously.

SOURCE: Planning Grain-Feed Handling, p. 21.
Batch Or Continuous-Flow Installation, Dryer Gravity Filled.
Dryer loaded via leg to wet-corn conveyor over gravity bins.

SOURCE: Planning Grain-Feed Handling, P. 21.
Chart For Estimating Weight Loss When Drying Grain or Seed.

Source: University of Georgia College of Agriculture Bulletin N.S. 33
Approximate amount of water in ear corn when harvested, at different percentages of moisture content of the kernels.

<table>
<thead>
<tr>
<th>Kernel Moisture Content (percent)</th>
<th>Amount of Water in a Bushel of Ear Corn[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In Kernels</td>
</tr>
<tr>
<td></td>
<td>Pounds</td>
</tr>
<tr>
<td>35</td>
<td>25.4</td>
</tr>
<tr>
<td>30</td>
<td>20.2</td>
</tr>
<tr>
<td>28</td>
<td>18.4</td>
</tr>
<tr>
<td>26</td>
<td>16.6</td>
</tr>
<tr>
<td>24</td>
<td>14.9</td>
</tr>
<tr>
<td>22</td>
<td>13.3</td>
</tr>
<tr>
<td>20</td>
<td>11.8</td>
</tr>
<tr>
<td>18</td>
<td>10.4</td>
</tr>
<tr>
<td>16</td>
<td>9.0</td>
</tr>
<tr>
<td>14</td>
<td>7.7</td>
</tr>
<tr>
<td>12</td>
<td>6.5</td>
</tr>
<tr>
<td>10</td>
<td>5.3</td>
</tr>
</tbody>
</table>

[^1]: A bushel of ear corn is defined here as the quantity that will yield 56 pounds of shelled corn at 15.5 percent moisture.
Pounds of water per bushel of grain at different moisture-content percentages.

<table>
<thead>
<tr>
<th>Grain Moisture content (percent)</th>
<th>Shelled corn and grain sorghum (Pounds of dry matter per bushel = 47.32)</th>
<th>Wheat and soybeans (Pounds of dry matter per bushel = 51.6)</th>
<th>Oats (Pounds of dry matter per bushel = 27.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>25.4</td>
<td>27.8</td>
<td>14.6</td>
</tr>
<tr>
<td>30</td>
<td>20.2</td>
<td>22.1</td>
<td>11.7</td>
</tr>
<tr>
<td>28</td>
<td>18.4</td>
<td>20.1</td>
<td>10.6</td>
</tr>
<tr>
<td>26</td>
<td>16.6</td>
<td>18.2</td>
<td>9.6</td>
</tr>
<tr>
<td>24</td>
<td>14.9</td>
<td>16.4</td>
<td>8.6</td>
</tr>
<tr>
<td>22</td>
<td>13.3</td>
<td>14.6</td>
<td>7.7</td>
</tr>
<tr>
<td>20</td>
<td>11.8</td>
<td>12.9</td>
<td>6.8</td>
</tr>
<tr>
<td>18</td>
<td>10.4</td>
<td>11.4</td>
<td>6.0</td>
</tr>
<tr>
<td>16</td>
<td>9.0</td>
<td>9.8</td>
<td>5.2</td>
</tr>
<tr>
<td>14</td>
<td>7.7</td>
<td>8.4</td>
<td>4.4</td>
</tr>
<tr>
<td>12</td>
<td>6.5</td>
<td>7.0</td>
<td>3.7</td>
</tr>
<tr>
<td>10</td>
<td>5.3</td>
<td>5.8</td>
<td>3.0</td>
</tr>
<tr>
<td>8</td>
<td>4.1</td>
<td>4.5</td>
<td>2.3</td>
</tr>
</tbody>
</table>

1 A bushel is defined here as the amount of grain required to yield 56 pounds of shelled corn or grain sorghum at 15.5 percent moisture, 60 pounds of wheat or soybeans at 14 percent, and 32 pounds of oats at 14.5 percent.

2 To determine the number of pounds of grain required to make a bushel at a given moisture percentage, add the pounds of water to the pounds of dry matter (shown at head of column). For example: To obtain the weight of corn, at 28-percent moisture content, to make a bushel, add the pounds of water (13.2) to the pounds of dry matter per bushel (47.32). This totals 65.7 pounds. It requires 65.7 pounds of corn at 28-percent moisture content to make a bushel (56 pounds) of 15.5 percent corn.

SOURCE: USDA F82214
Approximate storage capacity of round steel bulk feed tanks.

<table>
<thead>
<tr>
<th>Description</th>
<th>Approximate Overall Height - Feet</th>
<th>Tonnage Capacities</th>
<th>Approximate Total Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30#/cu ft</td>
<td>40#/cu ft</td>
</tr>
<tr>
<td>6' diameter-center draw off, 60° hopper, 20-24" slide valve clearance</td>
<td>10 - 10½</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>6' diameter-side draw-off, 60° hopper, 24" slide valve</td>
<td>10½ - 13</td>
<td>3.1</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>15½ - 16</td>
<td>4.2</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>18 - 18½</td>
<td>5.4</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>20 - 20½</td>
<td>6.2</td>
<td>8.6</td>
</tr>
<tr>
<td>6' diameter-side draw-off, 60° hopper, 24" slide valve</td>
<td>14½ - 15</td>
<td>2.8</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>17 - 17½</td>
<td>3.9</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>19½ - 20</td>
<td>5.0</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>22½ - 23</td>
<td>6.1</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>25 - 25½</td>
<td>7.3</td>
<td>9.7</td>
</tr>
<tr>
<td>9' diameter-center draw off, 60° hopper, 24" slide valve clearance</td>
<td>16½ - 17</td>
<td>8.4</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>19½ - 20</td>
<td>11.0</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>22 - 22½</td>
<td>13.5</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>24½ - 25</td>
<td>16.0</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>27½ - 28</td>
<td>18.6</td>
<td>24.7</td>
</tr>
<tr>
<td>12' diameter-center draw off, 60° hopper, 24" slide valve clearance</td>
<td>20 - 20½</td>
<td>16.3</td>
<td>21.7</td>
</tr>
<tr>
<td></td>
<td>22½ - 23</td>
<td>20.7</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>25½ - 26</td>
<td>25.2</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>28 - 28½</td>
<td>29.7</td>
<td>39.6</td>
</tr>
<tr>
<td></td>
<td>30 - 30½</td>
<td>34.2</td>
<td>45.6</td>
</tr>
<tr>
<td></td>
<td>33 - 33½</td>
<td>38.7</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>36 - 36½</td>
<td>43.1</td>
<td>57.5</td>
</tr>
<tr>
<td></td>
<td>38½ - 39</td>
<td>47.6</td>
<td>63.5</td>
</tr>
<tr>
<td></td>
<td>41½ - 42</td>
<td>52.0</td>
<td>69.4</td>
</tr>
</tbody>
</table>

SOURCE: *Planning Grain-Feed Handling*, p. 56.
Storage capacity for common round bins.

<table>
<thead>
<tr>
<th>Diameter in feet</th>
<th>Bu per foot of height</th>
<th>Capacities for Selected Depths in ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>125</td>
<td>1375</td>
</tr>
<tr>
<td>18</td>
<td>203</td>
<td>2200</td>
</tr>
<tr>
<td>21</td>
<td>277</td>
<td>3050</td>
</tr>
<tr>
<td>24</td>
<td>362</td>
<td>4000</td>
</tr>
<tr>
<td>27</td>
<td>458</td>
<td>5050</td>
</tr>
<tr>
<td>30</td>
<td>565</td>
<td>6215</td>
</tr>
<tr>
<td>36</td>
<td>814</td>
<td>8950</td>
</tr>
<tr>
<td>40</td>
<td>1005</td>
<td>11050</td>
</tr>
</tbody>
</table>

* Does not include space above eave line. Based on 15.5 MC corn and 1.25 cu ft per bushel.

SOURCE: Planning Grain-Feed Handling, p. 56.
Approximate capacity of ear corn cribs

<table>
<thead>
<tr>
<th>Rectangular</th>
<th>Round(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>Height</td>
</tr>
<tr>
<td>feet</td>
<td>feet</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
<tr>
<td>20</td>
<td>320</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>384</td>
</tr>
<tr>
<td>20</td>
<td>480</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>512</td>
</tr>
<tr>
<td>20</td>
<td>638</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>640</td>
</tr>
<tr>
<td>20</td>
<td>800</td>
</tr>
</tbody>
</table>

1. Based on 2\(\frac{1}{2}\) cubic feet per bushel.
2. Includes \(\frac{1}{2}\) cone space with no deduction for center tunnel. Roof slope 1:1.

SOURCE: *Planning Grain-Feed Handling*, p. 56.
Figuring Grain Storage Capacity

1 bu ear corn = 70 lbs = 2.5 cu ft (15.5% moisture)
1 bu shelled corn = 56 lbs = 1.25 cu ft (15.5% moisture)

1 cu ft = 1/2.5 = 0.4 bu of ear corn
1 cu ft = 1 x 1.25 = 0.8 bu of shelled corn; bu x 1.25 = ft³; ft³ x 0.8 = bu

Rectangular or square cribs or bins

\[
\text{cu ft} = \text{width} \times \text{height} \times \text{length} \quad (\text{W} \times \text{H} \times \text{L})
\]

Round cribs, bins or silos \((\pi = 3.1416)\)

Volume = \(\pi R^2H = \pi D^2H, 4\)

\[
\text{cu ft} = \pi \times \text{radius} \times \text{radius} \times \text{height} = \frac{(\pi \times R \times R \times H)}{4}
\]

or \(\pi \times \text{diameter} \times \text{diameter} \times \text{height} = \frac{(\pi/4) (D \times H)}{4}\)

Examples:

1. Crib - ear corn - 6' wide by 12' high by 40' long
 a. \(6 \times 12 \times 40 = 2880\) cu ft \(\times 0.4\) bu/cu ft = 1152 bu
 b. \(6 \times 12 \times 1 = 72\) cu ft \(\times 0.4 = 28.8\) bu/ft of length \(\times 40' = 1152\) bu

2. Round crib - ear corn - 14' diameter by 14' high
 a. \(.785 \times 14' \times 14' \times 14' \times 0.4 = 861\) bu
 b. \(.785 \times 14' \times 1 \times 0.4 = 61.5\) bu/ft \(\times 14 = 861\) bu

3. Round Bin or Silo - shell corn - 14' diameter by 14' high
 a. \(.785 \times 14' \times 14' \times 14' \times 0.8 = 1722\) bu
 b. \(.785 \times 14' \times 14' \times 1 \times 0.8 = 123\) bu/ft \(\times 14' = 1722\) bu

SOURCE: Planning Grain-Feed Handling, p. 56.
BATCH-IN-BIN DRYING

Air Flow Rate - 10 cfm/bu.
Temperature of heated air - 1400°F.
Estimated drying time - 16.7 Hours

Corn from 25% to 13% moisture content
Depth of corn in bin - 4 feet

<table>
<thead>
<tr>
<th>Diameter (Feet)</th>
<th>Floor Area (Sq.Ft.)</th>
<th>Bushels¹/Per Foot of Depth</th>
<th>Bushels²/Per 4' Layer</th>
<th>Total Air Flow (Cfm)</th>
<th>Cfm Per Sq.Ft</th>
<th>Static²/Pressure (Inch H₂O)</th>
<th>Adjusted³/Pressure (Inch H₂O)</th>
<th>Calculated Fan Horsepower</th>
<th>Suggested 4/Fan Horsepower</th>
<th>Heater Size 5/ (Btu/hr.) (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>201</td>
<td>162</td>
<td>648</td>
<td>6480</td>
<td>32</td>
<td>1.5</td>
<td>(\frac{2.2}{3})</td>
<td>3.2</td>
<td>5</td>
<td>.672</td>
</tr>
<tr>
<td>18</td>
<td>254</td>
<td>204</td>
<td>816</td>
<td>8160</td>
<td>32</td>
<td>1.5</td>
<td>(\frac{2.2}{3})</td>
<td>4</td>
<td>5</td>
<td>.845</td>
</tr>
<tr>
<td>21</td>
<td>346</td>
<td>278</td>
<td>1112</td>
<td>11120</td>
<td>32</td>
<td>1.5</td>
<td>(\frac{2.2}{3})</td>
<td>5.5</td>
<td>7.5</td>
<td>1.15</td>
</tr>
<tr>
<td>24</td>
<td>452</td>
<td>364</td>
<td>1456</td>
<td>14560</td>
<td>32</td>
<td>1.5</td>
<td>(\frac{2.2}{3})</td>
<td>7.2</td>
<td>9.8</td>
<td>1.51</td>
</tr>
<tr>
<td>27</td>
<td>572</td>
<td>460</td>
<td>1840</td>
<td>18400</td>
<td>32</td>
<td>1.5</td>
<td>(\frac{2.2}{3})</td>
<td>9.1</td>
<td>12.5</td>
<td>10 or 15</td>
</tr>
<tr>
<td>30</td>
<td>706</td>
<td>567</td>
<td>2268</td>
<td>22680</td>
<td>32</td>
<td>1.5</td>
<td>(\frac{2.2}{3})</td>
<td>11.7</td>
<td>15</td>
<td>2.35</td>
</tr>
<tr>
<td>33</td>
<td>855</td>
<td>687</td>
<td>2748</td>
<td>27480</td>
<td>32</td>
<td>1.5</td>
<td>(\frac{2.2}{3})</td>
<td>13.6</td>
<td>18.5</td>
<td>15 or 20</td>
</tr>
<tr>
<td>36</td>
<td>1018</td>
<td>818</td>
<td>3272</td>
<td>32720</td>
<td>32</td>
<td>1.5</td>
<td>(\frac{2.2}{3})</td>
<td>16.1</td>
<td>22</td>
<td>20 or 25</td>
</tr>
<tr>
<td>40</td>
<td>1256</td>
<td>1010</td>
<td>4040</td>
<td>40400</td>
<td>32</td>
<td>1.5</td>
<td>(\frac{2.2}{3})</td>
<td>20.0</td>
<td>27.1</td>
<td>25 or 30</td>
</tr>
</tbody>
</table>

¹/ One cubic foot equals 0.804 bushels by volume.
³/ Data from Sheed multiplied by 1.5 and 2.0.
⁴/ Be sure fan will deliver required total air flow (cfm) at the adjusted static pressure.
⁵/ Select standard size heater to deliver 100% to 150% of heat required.

Design conditions: (a) Outside air (50°F and 50% relative humidity) heated to 1400°F; (b) fan efficiency is assumed to be 70%; and (c) drying process is assumed to be 75% efficient.

SOURCE: Agricultural Engineering Handbook.
Lesson 7

STORAGE FACILITIES NECESSARY FOR MAXIMUM PROFITS

Objective -- To develop the effective ability of farmers to determine storage facilities necessary for maximum profits.

Problem and Analysis -- What storage facilities are necessary for maximum profits?

- Storage for better prices
- Storage in the feed grain program
- Storage for livestock feed
- Future market
- Maintaining quality in stored grain

Content

I. Storage for Better Prices

A. Problems in grain marketing are created when the harvest floods local markets, while the demand is practically the same each day of the year. The high-speed harvesting equipment has been of great help to farmers in many ways, but not in this respect.

B. The price swing at county elevators is often greater than at major markets.

C. Some of the price dip is justified and some is not. There is risk, shrinkage and money tied up if you store.

D. Most farmers won't hit either the high or low prices, but even a slight up-swing can make storage pay.

II. Storage in the Feed Grain Program

A. Storage in the feed-grain program for two years' crops offers greater flexibility. In a two-year program you are eligible for a reseal storage payment if you are in the feed-grain program. Example: Payments are $14.60 per 100 bushels of corn. These direct payments, not loans, represent a higher net return than some get for all the expense of raising a crop.
Lesson 7

STORAGE FACILITIES NECESSARY FOR MAXIMUM PROFITS

Objective -- To develop the effective ability of farmers to determine storage facilities necessary for maximum profits.

Problem and Analysis -- What storage facilities are necessary for maximum profits?

- Storage for better prices
- Storage in the feed grain program
- Storage for livestock feed
- Future market
- Maintaining quality in stored grain

Content

I. Storage for Better Prices

A. Problems in grain marketing are created when the harvest floods local markets, while the demand is practically the same each day of the year. The high-speed harvesting equipment has been of great help to farmers in many ways, but not in this respect.

B. The price swing at county elevators is often greater than at major markets.

C. Some of the price dip is justified and some is not. There is risk, shrinkage and money tied up if you store.

D. Most farmers won't hit either the high or low prices, but even a slight up-swing can make storage pay.

II. Storage in the Feed Grain Program

A. Storage in the feed-grain program for two years' crops offers greater flexibility. In a two-year program you are eligible for a reseal storage payment if you are in the feed-grain program. Example: Payments are $14.60 per 100 bushels of corn. These direct payments - not loans - represent a higher net return than some get for all the expense of raising a crop.
B. Use futures and two-year storage, and you have a three year span to pick a good price.

III. Storage for the Purpose of Feeding Livestock

A. Storage for the purpose of feeding livestock is undoubtedly the most profitable to farmers. In this series of problems we have thought in terms of storage in metal bins, but the use of present buildings and the remodeling of a strong structure should not be ruled out of the picture for storage of grain for livestock feeding. There may be an opportunity for use of a combination of equipment and facilities; batches of grain may be dried in limited bin facilities and moved to remodeled buildings for grain storage.

B. Used bins, which are a little more economical, also may be available. However, a farmer should figure the years of life the used bins have remaining and compare this to the cost of new ones.

IV. The Futures Market

A. Larger farmers should make a thorough study of the futures market. Farmers can use grain futures in connection with their farm business, both directly and indirectly. Directly, as a substitute for cash transactions in pricing grain, and indirectly as a source of valuable market information.

B. All pertinent information on supply, utilization, and price, coupled with a knowledge of how futures markets influence the functions of pricing, risk shifting, and rotating supply, is necessary before we can understand our grain marketing system and know how to use it properly.

V. Maintenance of Quality in Stored Grain

A. Whenever grain is stored, special efforts must be made to insure that quality is maintained. Each year, from 5-20% of the corn stored on farms is lost due to insects, rodents and spoilage. Adequate planning in designing and preparing facilities and a system of timely inspection can reduce this loss.

B. When volume of stored grain extends over 1,000 bushels, spoilage can occur due to moisture gathering in the grain, either through movement of humid air through the grain, by direct condensation of water on the surface, or through condensation of moisture on the cold inside walls of the bin.
1. Control moisture by moving air through the grain (aeration).
 a. Move outside air down through the grain at the rate of 1/5 to 1/2 cubic feet per minute per bushel.
 b. Force air up through the grain by operating fans for 3-4 hours during favorable weather.
 c. Operate the fans until grain is within 5° F. of the outside temperatures.
2. Cool grain down to 40° by mid-December; do not freeze the grain.
3. After March 15, warm the grain to prevent "sweating."
 a. Use outside air, either forced down into the grain or up through the grain.
 b. Warm the grain 3°-10° F. per month until 70° is reached.
 c. Aerate the grain every two or three weeks to maintain the 70° temperature and to reduce storage odors.

Suggestions for Teaching the Lesson

I. Developing the Situation

A. Things to be brought out by the teacher:
 1. Show a chart of harvest lows and summer high prices of grains.
 2. Point out the feed conversion into meat and milk by various types of livestock.
 3. Look at possible profits on the futures market.

B. Things to be brought out by class members:
 1. Get from class members average profits realized from storage of grain for a higher price.
 2. Secure data on profits from feeding livestock.

II. Conclusions

A. The individual must look at his total program, including size of farm, labor, and machinery available, before he decides on grain storage.

B. If labor is available, feeding well-managed livestock adapted to his farm and community will produce the most profit from stored feeds.

C. Storing grain for summer high prices will return to the farmer a profit on his on-the-farm storage investment. Benefits from the feed grain program should be considered.

D. The futures should also be studied; if the volume is great enough, profits may be gained by selling on a future market.
III. Enrichment Activities

A. Invite the local ASC chairman to visit the class and discuss benefits from the government program.

B. Invite an outstanding livestock farmer to discuss the profit potential from feeding grain to livestock.

IV. Suggested Teaching Materials

A. References
 3. Agricultural Engineering Handbook, Section P.
 4. Alternatives for On-the-farm Grain Storage, by Hamilton.

B. Audio-Visuals
 1. Masters
 -1 Price Fluctuation in Corn at Lafayette, Indiana
 -2A Suffocation Hazards in Flowing Grain
 -2B Suffocation Hazards in Flowing Grain Continued
PRICE FLUCTUATION IN CORN AT
LAFAYETTE, INDIANA

HARVEST LOW TO SUMMER HIGH
(cash price of corn, Lafayette, Ind.)

SAFETY HAZARDS AND RECOMMENDATIONS

1. Don't enter a bin of flowing grain.

2. Never enter a bin when unload equipment is running, whether or not grain is flowing.

3. Don't enter a bin that has automatic unload equipment, without locking-out the control circuit.

4. Don't enter a bin for which you do not know the nature of previous grain removal, especially if there is any crusting evident.

5. Always be cautious before walking on any surface crust.

6. Wherever possible, always have three men involved, two on the outside and one inside, when entering a questionable bin/storage circumstance. The man in the bin should be lashed to a safety rope with the 2 men outside capable of lifting him out without entering the bin. (One man outside cannot do this, nor go for help while maintaining preliminary air.)

7. Never work in obviously dusty-moldy grain without a respirator. Never work in such conditions, no matter what the protection, without a second person on safety standby. Use a respirator capable of filtering fine dust.

8. Be aware that your tolerance to a given material may be limited, and that you should not deliberately and knowingly expose yourself on the idea "that it won't hurt me." Later in life, you may have used up all of your tolerance.

9. Always be cautious when you are working with grain that has gone "out of condition." You can have molds, blocked flow, cavities, cave-offs, crusting -- it's a time to be alert.

10. Don't depend on a second person -- either on the bin roof, on the ground, or at any other remote point -- to receive shouted instructions to start or stop equipment.
 a. The equipment noise can block out commands or cries for action or assistance.
 b. The second person may fall or over-exert in the panic and haste of getting off the bin or running to the control point.

POSSIBLE CORRECTIVE MEASURES

1. Install ladders inside all bins.

2. Be aware that you can "walk a bin down" if you stay near the outside wall and keep moving.
3. If you must enter a bin with evident danger, use a rope and safety harness to support and lift you in the event of trouble.

4. A rope with knots or a chain with stirrups, suspended down the center from the top of the bin, may be a useful safety addition to grain bins. However, you should consider how you get off the suspension and out of the bin, having had to use it, and why you ever got there in the first place! Performance and use of such safety units has not been proven, and the drag on them in flowing grain may pull the roof in.

BEFORE IT IS TOO LATE

Talk to your children, your co-workers, and your neighbors the next time you work with them. THEIR LIFE, YOUR LIFE, YOUR HAPPINESS MAY DEPEND ON IT!

Source: Purdue University, Agricultural Engineering Dept., March 1, 1971.
Lesson 8
PROCESSING AND DISPENSING FEED MATERIALS

Objective -- To develop the effective ability of farmers to secure adequate systems for processing and dispensing feed materials

Problem and Analysis -- What are the best systems of processing and dispensing feed materials?
- Processing systems
- Dispensing systems

Content

I. Processing Systems

A. Any grain center being developed should have room for feed processing. Whether the center is planned for immediate use for cash-grain or for grain-livestock does not matter. Any cash-grain farm today can be a livestock farm tomorrow due to changes in economic conditions.

B. Processing alternatives include stationary or portable feed grinding and blending or mixing, and electric or tractor powered units.

C. A good layout will fit your current needs and provide for different equipment or larger volumes in the future. (See drawings of feed processing layouts at end of this lesson.)

D. Major equipment systems include: automatic blenders, grinders, stationary PTO grinders with mixers, and transport grinder-mixers.

E. A good processing system must:
 1. Store the feed ingredients.
 2. Assemble them at one point.
 4. Transport feed to a holding bin.
II. Dispensing Systems

A. Ingredients to be stored for a long period of time may be stored in a flat-bottomed bin. Storage for a short period of time should be in a surge bin. Hopper-bottom bins with center draw-off should be used for dry grains and side draw-off bins for supplements or ground ingredients. Use live-bottom rectangular bins for wet material (15% moisture-plus).

B. Assembled and proportioned ingredients may be dispensed by weight or volume. The weighing process is more accurate but more difficult. Volume is within 9% of accuracy, and should be good enough for farm dispensing.

C. Variable speed augers or belts may be used to automatically dispense the feed to livestock. Generally speaking, farmers should make an effort to automate the dispensing process with time clocks for a timed operation and pressure switches to stop the operation when the system is full. Time-delay relays may be used to sequence operations in starting as well as stopping.

Suggestions for Teaching the Lesson

I. Developing the Situation

A. Things to be brought out by the teacher:
 1. Very little has been published about good systems of dispensing feeds. To verbally picture how a good system works is almost impossible. (Visual aids should be used.)
 2. Show how a good dispensing system can save valuable farm labor.
 3. Volume feeding is necessary for profits; this will require automation in dispensing feeds.

B. Things to be brought out by class members:
 1. Find good feeding situations from some of the class members and let them evaluate their methods.
 2. Have class members point out mistakes they have made in developing a feeding system.

II. Conclusions

A. The best systems for processing and dispensing feed materials are automatic or semiautomatic. Semiautomatic systems are usually started by hand but stopped by pressure switches.

B. The best systems are those which save on-farm labor.
C. Systems may be auger or belt for dispensing feed, or a combination of the two.

D. Processing equipment may be powered by electric, automatic blender-grinders or a stationary PTO grinder with mixer.

III. Enrichment Activities

A. Take a field trip to a good farm which is well equipped to handle feeds.

B. Invite an equipment dealer to set up some equipment in the school shop for demonstration purposes.

IV. Suggested Teaching Materials

A. References
 1. Planning Grain-Feed Handling.

B. Audio-Visuals
 1. Masters
 -1A Feed-Processing Layouts, Automatic Blender-Grinders
 -1B Feed-Processing Layouts, Automatic Blender-Grinders
 -2 Feed-Processing Layouts, Automatic Blender-Grinders, Offset Building
 -3 Feed-Processing Layouts, Automatic Blender-Grinders, Equal Shedded, Ground-Level Building
 -4A Feed Processing Layouts, Transport Grinder-Mixer, Offset Building
 -4B Feed Processing Layouts, Transport Grinder-Mixer, Offset Building - end view
 -5A Feed Processing Layouts, Transport Grinder-Mixer Equal-Shedded Building
 -5B Feed Processing Layouts, Transport Grinder-Mixer Equal-Shedded Building, end view
 -6A Stationary PTO Grinder with Mixer, Equal-Shedded Building
 -6B Stationary PTO Grinder with Mixer, Equal-Shedded Building, Side View
 -6C Stationary PTO Grinder with Mixer, Equal-Shedded Building, Flow Pattern
 -7A Stationary PTO Grinder with Mixer, Offset Building
 -7B Stationary PTO Grinder with Mixer, Offset Building, Top View
 -8 Flow Diagram for a Stationary Grinder and Mixer in a Farm Feed Processing System Based on Component Function
 -9 Feed Diagram for an Automatic Blender-Grinder in a Farm Feed Processing System Based on Component Function

2. Slides
 "Suffocation Hazards in Flowing Grain."
 "Feed Processing." (Source: Ky. RECC).
NOTE: Three channels of the blender-grinder are gravity-fed grain ingredients from the overhead hopper-bottom bins. One channel is auger fed from the ground-level supplement storage bins on the left. Completed rations are stored in the ground-level bins at the right.

SOURCE: Planning Grain-Feed Handling, p. 22.
Three channels of the blender-grinder are gravity-fed grain ingredients from the overhead hopper-bottom bins. One channel is auger-fed from the ground-level supplement storage bins on the left. Completed rations are stored in the ground-level bins at the right.

NOTE:

SOURCE: Planning Grain-Feed Handling, p. 22.
FEED-PROCESSING LAYOUTS
AUTOMATIC BLENDER-GRINDERS

Offset Building

26' to 32'

Work Bins Micro Mix Rations

SOURCE: Planning Grain-Feed Handling, 22.
NOTE: All storage is ground-level. The mill is fed by conveyors controlled by the mill. One of the outdoor units is relatively small and probably contains supplement. All conveyors to the mill are controlled by flow switches in small surge hoppers over the mill.

SOURCE: Planning Grain-Feed Handling, p. 22.
FEED PROCESSING LAYOUTS
Transport Grinder-Mixer
Offset Building

SOURCE: Planning Grain-Feed Handling, p. 23.
NOTE: This layout has the same basic flow as in the equal shedded building, except that the work tower is at one end of the building as shown in some of the previous layouts.

SOURCE: Planning Grain-Feed Handling, p. 23.
FEED PROCESSING LAYOUTS
Transport Grinder-Mixer
Equal-Shedded Building

SOURCE: Planning Grain-Feed Handling, p. 23.
NOTE: Grain and feed supplies are received through the cross-drive conveyor and the vertical leg. Materials are drawn from the grain bins or work bins into the weigh buggy, then elevated to the grinding bins. These weighed amounts flow into the grinding hopper of the transport by gravity. The weigh buggy is also used to transfer supplements to the underfloor hopper of the small auger-elevator into the supplement hopper of the transport. Materials from the grinding bins and weigh buggy may also be transferred into the hopper of the main leg, and elevated into the load-out bins over the driveway.

SOURCE: *Planning Grain-Feed Handling*, p. 23.
NOTE: The layout above includes surge bins so the grinder can run continuously, filling surge bin while the mixer is processing the previously ground batch.

Cross-drive conveyor to main leg, and bins over the drive may be added to the layout.

STATIONARY PTO GRINDER WITH MIXER

Equal-Shedded Building - Side View

Grinding Bins

Surge Bins

Grinder

Mixer

Micro Mix

STATIONARY PTO GRINDER WITH MIXER

Equal-Shedded Building - Flow Pattern

NOTE: The layout above has the grinder nearer the tractor (which may be replaced with a portable dryer during harvest season), and under the overhead bins.

STATIONARY PTO GRINDER WITH MIXER

Offset Building - Top View

FLOW DIAGRAM FOR A STATIONARY GRINDER AND MIXER IN A FARM FEED PROCESSING SYSTEM
BASED ON COMPONENT FUNCTION

STORE

FORMULATE

PROCESS

TRANSPORT OR DISTRIBUTE

FEED

- Working Bin - Corn
 - Weigh
 - Working Bin - Oats
 - Weigh
 - Grinding Bin
 - Grinder
 - Surge Bin
 - Storage Finished Feed
 - Storage Bulk
 - Transport or Convey
 - Feeder

- Working Bin - Sup. or B.M.
 - Weigh
 - Supplement or Bone Meal

- Weigh
 - Micro Additives

NOTE: The flow diagram applies to both tractor and electric powered units. It also applies to a transport grinder-mixer, if the surge bin between the grinder and mixer is eliminated.

SOURCE: Ky. RECC.

Adult 104-8-8
FEED DIAGRAM FOR AN AUTOMATIC BLENDER-GRINDER IN A FARM FEED PROCESSING SYSTEM
BASED ON COMPONENT FUNCTION

NOTE: The two alternate flow paths from the grain or supplement storage to the blender meter represent a gravity fed mill (using the grinding bin) and a ground level mill (using a direct connected feeder convey or with a flow control hopper over the blender meter.)

SOURCE: Ky. RECC.
ARRANGEMENTS FOR THE COURSE

<table>
<thead>
<tr>
<th>Session No.</th>
<th>Date</th>
<th>Topic</th>
<th>Clock Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This page is for your convenience in planning and rearranging the content of this course to meet local needs and interests. Plan the course as it will be taught in the local school, showing the dates, class session number, topics, and the time in hours allocated to each topic.
TOPIC PLANNING FOR THIS COURSE

Name of Course __

Name of Topic __

Number of Class Meetings Allotted for this Topic ________________________________

Teaching Objectives: (Learnings or outcomes for those enrolled)

Major Phases of the Topic: (Problems, jobs, areas, skills, key points, understandings, etc.)

Learning Activities: (Field trips, completing summary forms, panel discussions, demonstrations, etc.)

Teaching Materials Needed: (From resource material list or file)
RESOURCE MATERIALS FOR TEACHING

<table>
<thead>
<tr>
<th>Unit</th>
<th>Lesson</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Books</th>
<th>Date Used</th>
<th>File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other References: Bulletins, Magazines, Etc.

<table>
<thead>
<tr>
<th>Audio-Visuals: Slides, Filmstrips, Motion Pictures</th>
<th>Date Used</th>
<th>File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic, Flannel, and Bulletin Boards

<table>
<thead>
<tr>
<th>Charts, Maps, Posters</th>
<th>Date Used</th>
<th>File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transparencies

<table>
<thead>
<tr>
<th>Specimens, Models, Mounts</th>
<th>Date Used</th>
<th>File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Human and Community Resources

<table>
<thead>
<tr>
<th></th>
<th>Date Used</th>
<th>File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

187
ADULT INSTRUCTIONAL UNIT EVALUATION
-- A Questionnaire for Kentucky VoAg Teachers of Adults

PART I -- GENERAL INFORMATION

How many years of teaching experience do you have? ______

How many years have you taught adults in agriculture? ______

How long has it been since you have taken your last college classwork in agriculture; in education; (undergraduate, graduate, or non-credit course)? ______

What is the highest degree you hold? __________________________

How many teachers are in your department? ______________________

What age level students do you teach? (one)
 a) ______ high school and adult b) ______ adult only

How many other units from the University of Kentucky have you used in your teaching during the past few years? ______

PART II -- UNIT INFORMATION

NAME OF UNIT EVALUATED: _______________________________________

TYPE OF CLIENTELE TAUGHT: ______ Adult Farmer ______ Young Farmer
 ______ Other Adults (please specify) __________________________

Average number attending class ______

Was the interest level ______ high? ______ moderate? ______ low?

How many lessons did you use? ______ How many class periods? ______

Indicate any lesson you added or deleted __________________________

Directions: Place a check mark (✓) in the appropriate left hand column to rate the following components of the unit based on your own observations. A ranking of 5 represents an excellent rating decreasing to a rank of 1 for poor. For the open-ended questions please write on the back if additional space is needed.

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General arrangement of parts
Appropriateness of format for teaching adults
Length of the unit
Usefulness of suggestions for using the unit
Number of lessons
Order of lessons
Specific comments: __________________________

188
PLEASE CONTINUE ON NEXT PAGE
Objectives in the Unit

5 4 3 2 1

Clearly stated
Reasonable to reach in the allotted time
Relevant to needs of the adult learner
Specific comments:

Technical Content

5 4 3 2 1

Usefulness of introductory material
Sufficiently detailed for direct use in class
Related to objectives
Divided into appropriate problem areas
Up-to-date
Accuracy
Reasonably complete
Specific comments:

Suggestions for Teaching the Lessons

5 4 3 2 1

Appropriate information for the teacher to bring out
Appropriate items to be secured from class members
Suitable conclusions
Suitability of enrichment activities
Specific comments:

Resources and Teaching Aids in the Unit

5 4 3 2 1

Up-to-date
Accessibility to the teacher
Relevance to the unit
Adaptability to the teaching plan
Specific comments:

With what parts of the unit do you feel you need additional help?

___ None of them
___ Objectives
___ Content
___ Course organization and planning
___ References
___ Resources and teaching materials
___ Teaching methods
___ Other (Specify)

PART III -- GENERAL REACTION

Please indicate any other strengths and weaknesses that you have observed in the unit and any suggestions for improvement, revision, and/or implementation (use the back of this sheet if needed).