This text is one of the sequence of textbooks produced for low achievers in the seventh and eighth grades by the School Mathematics Study Group (SMSG). There are eight texts in the sequence, of which this is the last. This set of volumes differs from the regular editions of SMSG junior high school texts in that very little reading is required. Concepts and processes are illustrated pictorially, and many exercises are included. This volume continues the study of equations begun in chapter 8, and develops methods for solving linear inequalities and quadratic equations. In the last chapter the slope-intercept form of a linear equation is discussed, and the method of solution of simultaneous linear equations is detailed. Equations of parallel and perpendicular pairs of lines are examined. The concepts of absolute value and distance are introduced, and the method of computing the distance between two points in a plane is described. (SD)
Financial support for the School Mathematics Study Group has been provided by the National Science Foundation.

Permission to make verbatim use of material in this book must be secured from the Director of SMSG. Such permission will be granted except in unusual circumstances. Publications incorporating SMSG materials must include both an acknowledgment of the SMSG copyright (Yale University or Stanford University, as the case may be) and a disclaimer of SMSG endorsement. Exclusive license will not be granted save in exceptional circumstances, and then only by specific action of the Advisory Board of SMSG.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter 17 - Solving Equations and Inequalities</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Equivalent Equations</td>
<td>2</td>
</tr>
<tr>
<td>3. Equations with a Variable in the Denominator of a Fraction</td>
<td>9</td>
</tr>
<tr>
<td>4. Solving Equations with Functions</td>
<td>15</td>
</tr>
<tr>
<td>5. Equations Which Have the Variable on Both Sides</td>
<td>21</td>
</tr>
<tr>
<td>6. Inequalities</td>
<td>28</td>
</tr>
<tr>
<td>7. Solving Inequalities with Graphs</td>
<td>35</td>
</tr>
<tr>
<td>8. Equivalent Inequalities</td>
<td>39</td>
</tr>
<tr>
<td>9. Solving Quadratic Equations</td>
<td>48</td>
</tr>
<tr>
<td>Pre-Test Exercises</td>
<td>54</td>
</tr>
<tr>
<td>Test</td>
<td>62</td>
</tr>
<tr>
<td>Check Your Memory: Self-Test</td>
<td>68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 18 - Coordinate Geometry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Slope of a Line</td>
<td>75</td>
</tr>
<tr>
<td>2. Lines with Negative Slope</td>
<td>76</td>
</tr>
<tr>
<td>3. The Y-Intercept of a Line</td>
<td>84</td>
</tr>
<tr>
<td>4. The Equation of a Line</td>
<td>88</td>
</tr>
<tr>
<td>5. Solution of Two Linear Equations</td>
<td>99</td>
</tr>
<tr>
<td>6. Perpendicular Lines</td>
<td>106</td>
</tr>
<tr>
<td>7. Parallel Lines</td>
<td>111</td>
</tr>
<tr>
<td>8. Absolute Value and Distance</td>
<td>118</td>
</tr>
<tr>
<td>9. The Coordinate of the Midpoint of a Segment</td>
<td>120</td>
</tr>
<tr>
<td>10. Distance Between Two Points in a Plane, Part I</td>
<td>125</td>
</tr>
<tr>
<td>11. Distance Between Two Points in a Plane, Part II</td>
<td>129</td>
</tr>
<tr>
<td>Pre-Test Exercises</td>
<td>134</td>
</tr>
<tr>
<td>Test</td>
<td>141</td>
</tr>
<tr>
<td>Check Your Memory: Self-Test</td>
<td>148</td>
</tr>
</tbody>
</table>
Chapter 17

SOLVING EQUATIONS AND INEQUALITIES
In English it is possible to write statements that are not true as well as statements that are true. When you say, "This cat is an animal with four legs," the statement is true if the thing you are pointing to is a normal cat. On the other hand, it is not true if you say, "An airplane is an animal with four legs."

In your arithmetic work in the lower grades, you probably gave "wrong" answers to some problems once in a while. When this happened, you had written a mathematical statement that was not true.

Many tests have sentences with blanks where you are supposed to write a word or two to complete the sentence. If you write the correct word, the sentence is a true statement. If you write the wrong word, the statement is false. For instance, in the following:

"________ was the first President of the United States."

"Washington" makes the statement true. "Lincoln" makes it false.

In mathematics, just as in English, there are different kinds of sentences. When you say $\overline{AB} \parallel \overline{CD}$, or $\triangle ABC \cong \triangle XYZ$, you are making statements which may or may not be true, but they are different kinds of statements from

\[3 + 2 = 5. \]

The last statement says that the number named on the left side of the equal sign is the same number as the number named on the right side. That is, "The sum, three plus two, is five."

Suppose we replace the 3 in the statement above with a variable, x:

\[x + 2 = 5. \]
This equation is a sentence that claims there is a number with which we can replace the variable, \(x \), to make a true statement. The solution of the equation is the number used to make it true. In \(x + 2 = 5 \), the solution is 3. No other number makes the sentence true. (Of course you know that there are many names for 3: \(\frac{6}{2} \), 3 \(\times 1 \), 3 + 0, \(-1 \), etc., but it is easiest to recognize the ordinary name, 3, and that is the one you would expect to see in the solution.) For some equations there is no solution. For instance, there is no real number to replace \(x \) in the equation \(x = \sqrt{-4} \) and make the sentence true.

An equation can be so simple that its solution is perfectly obvious. In \(x = 2 \), for instance, you see at once that replacing the variable with 2 makes the sentence true: \(2 = 2 \).

Some equations, however, are not so easy to solve. In this chapter you will learn ways to solve equations like these: \(3x + 4 = 2x + 1 \), and \(x^2 + 4x + 4 = 1 \).

You will see that in some equations more than one number is a solution. You will also find out how to solve inequalities like \(x + 3 < 5 \).

Class Discussion

In order to solve equations it is helpful to look first at mathematical statements without variables.

Take a true statement like

\[3 + 4 = 7. \]

Suppose you multiply the number \((3 + 4) \) on the left side of the equal sign by \(2 \). (We will call this multiplying "the left side" by \(2 \).)

\[2 \cdot (3 + 4) = 7. \] This \(\checkmark \) ______ a true statement. You can (is, is not) leave the left side as it is and make a true statement again by the number on the right side by ______.

\[2 \cdot (3 + 4) = \underline{\underline{\text{______}}} \cdot 7 \]

\[3 \]
If you multiply both sides of a true statement by the same number, you still have a true statement.

Suppose you add 5 to the left side of the statement $3 + 4 = 7$. You get $(3 + 4) + 5 = 7$. This is a true statement.

You can leave the left side as it is and make a true statement again by _______ ______ to the right side.

$(3 + 4) + 5 = 7 + _______ ______$

If you add the same number to both sides of a true statement, you still have a true statement.

1. Show what you do to the second statement of each pair below to make each statement true.

 (a) $5 + 9 = 14$

 $3 \cdot (5 + 9) = _______ 14$

 (b) $4 + 6 = 10$

 $(4 + 6) + 3 = 10 ______$

 (c) $26 + 8 = 34$

 $9 \cdot (26 + 8) = _______ 34$

 (d) $15 + 45 = 60$

 $3 \cdot (15 + 45) + 8 = _______ 60 + ______$

Some things that you do in everyday life you can "undo". To undo putting on your coat, you ____________________. To undo picking up a book, you ____________________. To undo opening the door, you ____________________.

In working with numbers, you also can "undo" what you do to a number.

To undo adding 5, you add the _______ of 5.
If you start with 3 and add 5, you get 8.

$$3 + 5 = 8$$

To get back to 3 again, you add _____ to both sides of the equation.

$$3 + 5 + 5 = 8 + 5$$

You have a true statement: $$3 + 0 = 3$$

or simply: $$3 = 3$$

Suppose you use a variable in place of the 3 in the equation you started with. If you write $$x + 5 = 8$$ then to find out what $$x$$ is you add the opposite of 5 to both sides of the equation.

$$x + 5 + (-5) = 8 + (-5)$$

On the left side, adding the numbers, you have $$x + 0$$, and on the right side you have $$x = 3$$.

2. In the equation $$x + 16 = 24$$, to undo adding 16, you must add _____ to both sides of the equation.

$$x + 16 + 16 = 24 + _____$$

so

$$x = _____$$

3. In the equation $$x + 59 = 65$$, to find out what $$x$$ is you add _____ to both sides of the equation.

$$x + 59 = 65$$

$$x + 59 + _____ = 65 + _____$$

$$x + 0 = _____$$

$$x = _____$$

To undo multiplying by 5, you multiply by the reciprocal of 5.

If you start with 4 and multiply by 5, you get 20. To get back to 4 again, you multiply both sides of the equation by _____.
17-1d

\[
5 \cdot 4 = 20 \\
\frac{1}{5} \cdot 5 \cdot 4 = \underline{\quad} \cdot 20 \\
1 \cdot 4 = \underline{\quad} \\
\text{so} \\
4 = \underline{\quad}
\]

Suppose you have a variable in place of the 4 in the first equation.

\[
5 \cdot x = 20 \\
\]

You multiply both sides of the equation by \(\frac{1}{5} \).

\[
\frac{1}{5} \cdot 5 \cdot x = \frac{1}{5} \cdot 20 \\
\text{so} \\
1 \cdot x = 4 \\
\text{and} \\
x = 4
\]

4. In the equation 10x = 90, to find out what x is you multiply both sides of the equation by \(\underline{\quad} \). (Remember that 10x means 10 \cdot x.)

\[
10x = 90 \\
\frac{1}{10} \cdot 10x = \underline{\quad} \cdot 90 \\
1 \cdot x = \underline{\quad} \\
\text{so} \\
x = \underline{\quad}
\]

5. In the equation \(\frac{1}{4} x = 12 \), you multiply both sides of the equation by \(\underline{\quad} \).

\[
\frac{1}{4} x = 12 \\
\text{so} \\
x = \underline{\quad}
\]
What we want to do in solving equations is to add the same number to both sides of the equation or multiply both sides by the same number in order to get just the variable on one side and the solution on the other. As we do this, we write a chain of equivalent equations, all of which have the same solution.

In the equation \(x + 9 = 3 \), we want to get \(x + 0 = ? \), so we add ______ to both sides, and learn that \(x = _____ \).

In the equation \(\frac{1}{5} x = 3 \), we would like to have \(1 \cdot x = ? \), so we multiply both sides by ______ and learn that \(x = _____ \).

Exercises

For each of the following, show what you do to both sides of the equation to find the solution. Then solve the equation. The first one is done for you.

<table>
<thead>
<tr>
<th>Equation</th>
<th>On both sides, you</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (x + 6 = 13)</td>
<td>(x =) 7 add 6</td>
</tr>
<tr>
<td>2. (x + \frac{7}{5} = 3)</td>
<td>(x =) add _____</td>
</tr>
<tr>
<td>3. (5x = 18)</td>
<td>(x =) multiply by _____</td>
</tr>
</tbody>
</table>
| 4. \(\frac{1}{4} x = 7 \) | \(x = \) (Hint. Remember what you know about reciprocals.)
5. \(\frac{x}{4} = 3 \)
 \[x = 12 \]

6. \(x + 19 = -13 \)
 \[x = -32 \]

7. \(29x = 58 \)
 \[x = 2 \]
 (Simplify your answer)

8. \(\frac{3}{4} x = 12 \)
 \[x = 16 \]

9. \(x + 4 = -3 \)
 \[x = -7 \]

10. \(5x = 50 \)
 \[x = 10 \]

11. \(x + -9 = 18 \)
 \[x = 27 \]

12. \(5x = 15 \)
 \[x = 3 \]

13. \(\frac{9}{8} x = 18 \)
 \[x = 16 \]

14. \(x + -50 = 0 \)
 \[x = 50 \]

15. \(2x = 0 \)
 \[x = 0 \]
Equivalent Equations

In an equation like $2x + 3 = 11$, ask yourself, "How can I get just x on the left side and a number on the right, that is: $x = ?$"

The first thing to do is to decide what was done to x to get $2x + 3$. You see that x was multiplied by 2 and then 3 was added. The result was $2x + 3$. But the same thing must have been done to the right side of the equation that stated x was a certain number ($x = ?$).

Class Discussion

To find the solution to $2x + 3 = 11$, you will reverse the steps that were taken to go from the equation $x = ?$ to the equation $2x + 3 = 11$. Since x was first multiplied by 2 and then 3 was added, to reverse you will first add and then multiply and you do the same thing on both sides of the equation.

Because 3 was added to both sides, add the opposite of 3 to both sides.

<table>
<thead>
<tr>
<th>Left side</th>
<th>Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2x + 3 + ___$</td>
<td>$11 + ___$</td>
</tr>
</tbody>
</table>

You have $2x + 0 = 8$, so you know you can write $2x = 8$. Because both sides were multiplied by 2, multiply both sides by the reciprocal of 2.

<table>
<thead>
<tr>
<th>Left side</th>
<th>Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cdot 2x$</td>
<td>$\cdot 8$</td>
</tr>
</tbody>
</table>

This gives you $1 \cdot x = 4$, so you know the last equation can be written $x = 4$. You have the solution.

Sometimes, however, people make mistakes when they compute. To check, you should always go back to the first equation and replace the variable with the solution to see whether the statement is true. When you do this, you get:
\[(2 \cdot 4) + 3 = 11 \]
\[8 + 3 = 11 \]
\[11 = 11 \]

This is a true statement, and you know your solution is right.

You wrote a chain of equivalent equations. They are equivalent because they have the same solution.

\[2x + 3 = 11 \]

(and, after adding \(-3 \) to both sides)

\[2x = 8' \] (Check your solution here.)

(and, after multiplying both sides by \(\frac{1}{2} \))

\[x = 4 \]

In the equation, \(7x + 4 = 46 \), think: "First both sides were multiplied by \(\) and then \(\) was added. To reverse the process, I will first add the opposite of \(\) to both sides and then multiply both sides by the reciprocal of \(\)."

<table>
<thead>
<tr>
<th>Left side</th>
<th>Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7x + 4)</td>
<td>(= 46)</td>
</tr>
<tr>
<td>(7x)</td>
<td>(= 42)</td>
</tr>
<tr>
<td>(\text{Multiply by } \frac{1}{7})</td>
<td>(x = 6)</td>
</tr>
</tbody>
</table>

Check the solution by replacing the variable, \(x \), with \(6 \), in the first equation.

\[(7 \cdot 6) + 4 = 46 \]

You can replace the variable with \(6 \) in each one of the equivalent equations you wrote:

Check

\[7x + 4 = 46 \]

\[7 \cdot 6 = 42 \]

\[x = 6 \]
In the Exercises in Section 17-1, you had the problem \(\frac{x}{4} = 3 \), and you saw that this was the same as \(\frac{1}{4} x = 3 \). In the problem \(\frac{3}{4} x = 12 \), you knew that you must multiply both sides by the reciprocal of \(\frac{3}{4} \). The equation \(\frac{3x}{4} = 12 \) has exactly the same solution as \(\frac{3}{4} x = 12 \), because

\[
\frac{3x}{4} = \frac{3 \cdot x}{4} = \frac{3}{4} \cdot x.
\]

Remembering this helps to solve equations like \(\frac{5x}{4} + 5 = 15 \). Think of \(\frac{5x}{4} \) as \(\frac{5}{4} x \). First both sides of the equation were multiplied by ______ and then ______ was added to both sides. To reverse this process, write three equivalent equations:

<table>
<thead>
<tr>
<th>Left side</th>
<th>Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{5}{4} x + 5)</td>
<td>15</td>
</tr>
<tr>
<td>(Add ____.)</td>
<td></td>
</tr>
<tr>
<td>(\frac{5}{4} x)</td>
<td>______</td>
</tr>
<tr>
<td>(Multiply by ____.)</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>______</td>
</tr>
</tbody>
</table>

Check your solution,

\(\left(\frac{5}{4} \right) \cdot 14 + 5 = 15 \)

\(10 + 5 = 15 \)

\(15 = 15 \)
Some equations are written in the form of subtraction.

\[3x - 2 = 10 \]

Before doing anything else, change it to addition.

\[3x + (-2) = 10 \]

If the variable was first multiplied by 3 and then -2 was added, you reverse the process by adding _____ to both sides and then multiplying both sides by _____.

<table>
<thead>
<tr>
<th>Left side</th>
<th>Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3x + (-2)]</td>
<td>[10]</td>
</tr>
</tbody>
</table>

(Add _____.)

\[3x = \]

(Multiply by _____.)

\[x = \]

Check your solution.

\[(3 \cdot 4) + (-2) = 10 \]

\[12 + (-2) = 10 \]

\[10 = 10 \]

By now you can use the reverse process just by planning ahead and writing only the equivalent equations. With \[5x + 2 = 22 \], you plan first to add _____ to both sides and then to multiply both sides by _____.

\[5x + 2 = 22 \]

\[5x = \]

\[x = \]

Be sure to check your solution to see if it can be used to replace \(x \) in the first equation, \(5x + 2 = 22 \).

\[(5 \cdot ___) + 2 = 22 \]

\[___ + 2 = 22 \]

\[___ = 22 \]

\[12 \]
Exercises

1. For each equation below, show your "plan" in the middle column and then write equivalent equations to find the solution. Replace the variable with your solution and check to see if the statement is true. The first one is done for you.

<table>
<thead>
<tr>
<th>Equations</th>
<th>Plans On both sides:</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $4x - 5 = 39$</td>
<td>$4x + (-5) = 39$</td>
<td>$(4 \cdot 11) - 5 = 39$</td>
</tr>
<tr>
<td></td>
<td>Rewrite as addition.</td>
<td>Add 5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$44 - 5 = 39$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiply by $\frac{1}{4}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$39 = 39$</td>
</tr>
<tr>
<td></td>
<td>$x = 11$</td>
<td></td>
</tr>
<tr>
<td>(b) $2x + 1 = 41$</td>
<td>Add ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiply by ___</td>
<td></td>
</tr>
<tr>
<td>(c) $-5x + 2 = 10$</td>
<td>Add ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiply by ___</td>
<td></td>
</tr>
<tr>
<td>(d) $\frac{x}{6} - \frac{7}{2} = \frac{-1}{3}$</td>
<td>Rewrite as addition.</td>
<td>Add ___</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiply by ___</td>
</tr>
<tr>
<td>(e) $\frac{5x}{4} + 10 = 0$</td>
<td>Add ___</td>
<td>Multiply by ___</td>
</tr>
</tbody>
</table>

13\%
2. You are probably ready to do the planning without writing it down. For the following problems, think what you will have to do to both sides of the equation; then write equivalent equations. At the right, show that your solution is correct. The first one is done for you.

<table>
<thead>
<tr>
<th>Equations</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (4x - 1 = 7)</td>
<td>((4 \cdot 2) + -1 = 7)</td>
</tr>
<tr>
<td>(4x + -1 = 7)</td>
<td>(8 + -1 = 7)</td>
</tr>
<tr>
<td>(4x = 8)</td>
<td>(7 = 7)</td>
</tr>
<tr>
<td>(x = 2)</td>
<td></td>
</tr>
<tr>
<td>(b) (2x + 10 = 50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) (4x - 15 = 7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) (2x + 5 = 5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) (\frac{2x}{5} + \frac{2}{5} = 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) (-3x + 10 = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equations with a Variable in the Denominator of a Fraction

Equations sometimes have a variable in the denominator of a fraction, as in \(\frac{3}{x} + 2 = \frac{7}{2} \). This looks hard, but it is solved in much the same way as the others you have done, except for some extra steps.

You know one thing about the solution of the equation before you start: \(x \) is not 0, because \(\frac{3}{0} \) has no meaning.

Class Discussion

First, rewrite \(\frac{3}{x} \) as \(3 \cdot \frac{1}{x} \).

The equation is now:

\[
3 \cdot \frac{1}{x} + 2 = \frac{7}{2}
\]

When you find out what the number \(\frac{1}{x} \) is, you will know what \(x \) is, because the reciprocal of \(\frac{1}{x} \) is \(x \).

In the equation above, the number \(\frac{1}{x} \) was first multiplied by 3 and then 2 was added. To solve the equation you first add \(\) to both sides:

\[
3 \cdot \frac{1}{x} + 2 + 2 = \frac{7}{2} + \]

so

\[
3 \cdot \frac{1}{x} = \frac{3}{2}
\]

Next you multiply both sides by \(\) .

\[
\frac{1}{3} \cdot 3 \cdot \frac{1}{x} = \frac{3}{2} \]

so

\[
\frac{1}{x} = \frac{1}{2}
\]

and

\(x = 2 \)

(If you are not sure about the last step, use the comparison property. You know that \(\frac{a}{b} = \frac{c}{d} \) if \(a \cdot d = b \cdot c \).)
When you multiply \(1 \cdot 2\) and \(1 \cdot x\) you find that \(2 = x\).

Check the solution in the equation.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{2} + 2 = \frac{7}{2})</td>
<td>(\frac{3}{2} + 2 = \frac{7}{2})</td>
</tr>
<tr>
<td></td>
<td>(\frac{3}{2} + \frac{1}{2} = \frac{7}{2})</td>
</tr>
<tr>
<td></td>
<td>(\frac{3}{2} = \frac{7}{2})</td>
</tr>
</tbody>
</table>

The next problem is just a little harder.

\[
\frac{8}{x + 1} + 3 = 7
\]

In this equation, you know that \(x\) cannot be \(\boxed{}\) because \(\boxed{} + 1 = 0\). Rewrite \(\frac{8}{x + 1}\) as \(8 \cdot \frac{1}{x + 1}\) and your equation is

\[
8 \cdot \frac{1}{x + 1} + 3 = 7.
\]

First add the opposite of 3:

\[
8 \cdot \frac{1}{x + 1} = 4
\]

and then multiply by the reciprocal of 8:

\[
\frac{1}{x + 1} = \frac{1}{2}.
\]

Write \(x + 1 = 2\) as the next step, and finally add the opposite of \(\boxed{}\) to both sides and find the solution, \(x = 1\). Now check the solution in the equation \(\frac{8}{x + 1} + 3 = 7\).
Check
\[
\frac{8}{1+1} + 3 = 7 \\
\frac{8}{2} + 3 = 7 \\
4 + 3 = 7 \\
7 = 7
\]

The equation \(\frac{18}{x+7} - 3 = 5 \) gives you a chance to use many things you learned in earlier chapters. (Notice that \(x \neq 7 \).)

First, rewrite the equation as addition.

\[
\frac{18}{x+7} + \quad = 5
\]

Write the equation again to show \(\frac{18}{x+7} \) as \(18 \) times a number.

\[
18 \cdot \quad + \quad = 5
\]

Add the opposite of \(\quad \) to both sides.

\[
\]

Multiply both sides by the reciprocal of \(\quad \).

\[
\]

(Simplify the fraction on the right side.)

Because \(\frac{1}{x+7} = \frac{1}{9} \), you can write:

\[
\]

Add the opposite of \(\quad \) to both sides.

\[
\]
Check your solution by substituting it for x in the equation you started with.

\[
\frac{18}{18} + 7 - 3 = 5
\]

\[
\frac{18}{18} + 3 = 5
\]

\[
2 + 3 = 5
\]

\[
5 = 5
\]

Exercises

1. For each equation below, write a chain of equivalent equations to find the solution. On the right, check your solution.

(a) \(\frac{3}{x} - 2 = \frac{-13}{8} \), and \(x \neq 0 \)

Check

\[
\left(\text{Addition problem} \right)
\]

\[
\left(\frac{3}{x} = 3 \cdot _ _ _ _ __ _ \right)
\]

\[
\left(\text{Add ___ to both sides.} \right)
\]

\[
\left(\text{Multiply both sides by ___} \right)
\]
2. In some of the problems below you will have to write only one equivalent equation. In others you will need to write two or more. Check each solution.

(a) \(\frac{7}{11} x = 1 \)

(b) \(-5x = -3\)

(c) \(x + 29 = 6\)
(d) \(0.4x + 8 = 10\)

(e) \(\frac{3}{2}x - 4 = -1\)

(f) \(\frac{x}{3} + \frac{1}{4} = \frac{17}{4}\)

(g) \(\frac{3}{x} + 6 = 7\), and \(x \neq 0\)
Solving Equations with Functions

In Chapter 8 you found that for an equation like \(2x + 3 = -1\) you could write two functions, graph both of them on a coordinate plane, and find the solution of the equation.

Class Discussion

To review, let's look at the equation \(2x + 3 = -1\). You can write a function using the left side: \(f : x \to 2x + 3\). On the right side, you can write a constant function: \(g : x \to -1\).

Very carefully graph each of these functions on the coordinate plane below. Use inputs as shown.

<table>
<thead>
<tr>
<th>(f : x \to 2x + 3)</th>
<th>(g : x \to -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>
The graph of the function \(g : x \to 1 \) is a horizontal line, parallel to the x-axis because no matter what input you have, the output is always \(-1 \). For what input does the graph of \(f : x \to 2x + 3 \) intersect the graph of \(g : x \to -1 \)? \(\square \) When you replace \(x \) with \(2 \) in the equation \(2x + 3 = -1 \), you have \(2 \cdot 2 + 3 = -1 \). This is a true statement, so \(2 \) is the solution to the equation.

You could also have written a chain of equivalent equations like this:

\[
\begin{align*}
2x + 3 &= -1 \\
2x &= -4 \\
x &= -2.
\end{align*}
\]

You can see why, in solving equations this way, it is necessary to draw the graphs very carefully and to check your solution. If you are careless, your graphs may not show the intersection correctly, and the input that gives that intersection may not be the solution of the equation.

Try the equation \(4x + 6 = 2 \). The function for the left side of the equation is \(f : x \to \square \). The function for the right side of the equation is \(g : x \to \square \). Use the inputs \(0, -2, \) and \(-3 \), and graph both functions on the next page.
What input gives the same output for both functions?

Find the solution of the equation $4x + 6 = 2$ by writing equivalent equations.

$4x + 6 = 2$

Did the graphs of the two functions give you this solution?

If not, you should try to find where you made a mistake. Check the solution in the equation, and then go back over your work.
Often the solution of an equation is not an integer, and then it is sometimes hard to see, from a graph, exactly what it is.

The equation \(6x + 3 = 0\) is an example. The function for the left side is \(f: x \rightarrow \ldots\). The function for the right side is \(g: x \rightarrow \ldots\). This is a constant function. Use the inputs 0, -1, and -2 for each function and draw the graph of each.

You see that for the equation \(6x + 3 = 0\), the input that gives the same output for both functions is some number between 0 and 1. You might guess that it is \(\frac{1}{3}\) or \(\frac{1}{2}\) or \(\frac{1}{5}\) or many other rational numbers. Choose one of these numbers and check it as the solution to the equation. If it is not the solution, try another of the numbers, and so on, until you find the one that solves the equation. The solution of the equation \(6x + 3 = 0\) is ________.
The function method of solving equations does not always make it easy to see the solution of an equation exactly, and of course if you are not careful you may not find the correct one, but you should get a solution that is fairly close to the correct one. Another drawback to the function method is that the graph you use sometimes needs to be very large. In the last problem, for instance, in order to graph an input of 2, the y-axis had to be at least 15 units long. How long would it have had to be to show the output for an input of 5?

Until now, you have not been asked to solve an equation like \(x + 2 = 6x + 8 \), in which you see \(x \) on both sides of the equation. In this kind of equation, the \(x \) on the left side of the equation must stand for the same number as the \(x \) on the right side. To solve this equation by the function method, write a function for the left side as usual: \(f : x \rightarrow x + 2 \). You can't write a constant function for the right side, but instead you can write \(g : x \rightarrow 6x + 8 \). Use the inputs 0, 1, and 2 and graph these functions at the right.

What input gives the same output for both functions? _____

Check to see whether this number is the solution for the equation \(x + 2 = 6x + 8 \). (If you were careful, it should be.)

_____ + 2 = (6 \cdot _____) + 8

_____ = _____ + 8

_____ = _____
Exercises

Write two functions for each equation. Choose inputs that allow you to graph each of the functions on the coordinate plane given. (Most of the time you have used inputs between -3 and 3.) Answer the questions for each equation.

1. \(3x + -4\)
 (a) \(f : x \rightarrow \) __________
 (b) \(g : x \rightarrow \) __________
 (c) What input gives the same output for both functions?

 (d) Show that this is the solution to the equation \(3x + -4\).
 \((3 \cdot \underline{\text{____}}) + -4 = -4\)
 \(\underline{\text{____}} + -4 = -4\)
 \(-4 = -4\)

2. \(3x + 2 = 6x + -4\)
 (a) \(f : x \rightarrow \) __________
 (b) \(g : x \rightarrow \) __________
 (c) What input gives the same output for both functions?

 (d) Show that this is the solution to the equation \(3x + 2 = 6x + -4\).
 \((3 \cdot \underline{\text{____}}) + 2 = (6 \cdot \underline{\text{____}}) + -4\)
 \(\underline{\text{____}} + 2 = \underline{\text{____}} + -4\)
 \(\underline{\text{____}} = -2\)
3. \(2x + 1 = x + 4\)

(a) \(f : x \rightarrow \) \\
(b) \(g : x \rightarrow \) \\
(c) What input gives the same output for both functions?

(d) Show that this is the solution to the equation \(2x + 1 = x + 4\).

\[2 \cdot \underline{} + 1 = \underline{} + 4\]

\[\underline{} + 1 = \underline{}\]

\[\underline{} = \underline{}\]

4. \(2x + 1 = 1 + 2x\)

(a) \(f : x \rightarrow \) \\
(b) \(g : x \rightarrow \) \\
(c) What input gives the same output for both functions?

\(\underline{}\) (Try to judge as well as you can.) Test your answer in the equation \(2x + 1 = 1 + 2x\). If it is not correct, try another. Then show that you have the correct solution below.

\[2 \cdot \underline{} + 1 = 1 + (2 \cdot \underline{})\]

\[\underline{} + 1 = 1 + \underline{}\]

\[\underline{} = \underline{}\]
Equations Which Have the Variable on Both Sides

Problem 4 in the last lesson is an example of an equation where the solution is not an integer and graphing does not show clearly what it is. You may also have noticed that for some equations you would need a very large piece of graph paper to find the solution by the function method. It takes only two steps more than you have used before to solve an equation like \(3x + 2 = -4 + 6x\) using equivalent equations. We will take those two steps very slowly.

Class Discussion

In solving equations you try to get, as your last equation, \(x = \) some number. Up to now, the right side of the equation has not had a variable in any of the equivalent equations you wrote, so you always knew what the number on the right was.

In \(3x + 2 = -4 + 6x\), you know that \(-4 + 6x\) is the same number as \(3x + 2\), but you don’t know what number \(3x + 2\) is. If you could only get rid of the “6x” on the right, you could use the usual method to solve the equation. When you look back at equations like \(2x + 3 = 7\), you remember that you got rid of the 3 on the left side by adding ______ to both sides. To get rid of any number that has been added you add its opposite.

On the right side of \(3x + 2 = -4 + 6x\), the number 6x has been added to -4. If you add the opposite of ______, the right side is just -4. But in order to add the opposite of 6x, you must know what the opposite is. By making a table you will see what happens to 6x and its opposite when we replace the variable with different values. Complete this table, using the values of x that are given.
You see that in each case the opposite of $6x$ is the same as $-6x$. If you add $6x$ and $-6x$, the sum is \text{ sum}. Now you know that the way to get rid of the $6x$ on the right side of the equation is to add __. But whatever you do to the right side, you must do to the left side, so you add $-6x$ to the left side also. Start with $3x + 2 = -4 + 6x$, and add $-6x$ to both sides:

$$3x + 2 + -6x = -4 + 6x + -6x,$$

so

$$3x + 2 + -6x = -4.$$

and if you add -2 to both sides, you have

$$3x + -6x = -6.$$

How do you find the sum of 3 times a number and -6 times the same number? You can substitute a few values for x to see what happens. Perhaps $3x + -6x$ is the same as $(3 + -6)x$, or $-3x$.

<table>
<thead>
<tr>
<th>Value of x</th>
<th>Value of $6x$</th>
<th>Opposite of $6x$</th>
<th>$-6x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>30</td>
<td>-30</td>
<td>-30</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You see that $3x + -6x$ is the same as $(3 + -6) \cdot x$, or $-3x$. As an equivalent equation for $3x + -6x = -6$, therefore, you can write $-3x = -6$, multiply both sides by ______ and find the solution, $x = ______$. To check the chain of equations:

<table>
<thead>
<tr>
<th>Value of x</th>
<th>$3x + -6x$</th>
<th>$(3 + -6) \cdot x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9 + -18 = -9</td>
<td>-3 \cdot 3 = -9</td>
</tr>
<tr>
<td>2</td>
<td>6 + -12 = -6</td>
<td>-3 \cdot 2 = -6</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>-3 \cdot ____ = ____</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equation:

(Add $-6x$. \hspace{1cm} 3x + 2 + -6x = -4

(Add -2. \hspace{1cm} 3x + -6x = -6

(3x + -6x = -3x) \hspace{1cm} -3x = -6

(Multiply by $\frac{1}{3}$. \hspace{1cm} x = 2)

Check, substituting 2 for x

(3 \cdot 2) + 2 = -4 + (6 \cdot 2)

6 + 2 = -4 + 12

8 = 8

x = 2
Exercises

1. Write the opposite of:

(a) $3x$ __________

(b) $-2x$ __________

(c) $\frac{1}{2}x$ __________

(d) $-\frac{4}{3}x$ __________

(e) $-10x$ __________

(f) $15x$ __________

2. Add. The first one is done for you.

(a) $4x + 3x = (4 + 3)x$

$= 7x$

(g) $3x + -0.5x = __________$

$= __________$

(b) $2x + -5x = (___ + ___)x$

$= ___x$

(h) $1.1x + -0.3x = __________$

$= __________$

(c) $\frac{1}{2}x + \frac{1}{2}x = __________$

$= __________$

(d) $.5x + .7x = __________$

$= __________$

(e) $99x + -97x = __________$

$= __________$

(f) $\frac{3}{2}x + -1x = __________$

$= __________$
3. Find the solution for each equation by writing equivalent equations. At the right, check the solution in the equation. The first one is done for you.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Check, substituting the solution for (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3x + 5 = 2x + 4)</td>
<td>((3 \cdot -\frac{1}{3}) + 5 = (2 \cdot -\frac{1}{3}) + 4)</td>
</tr>
<tr>
<td>((3x + 2x) = -1)</td>
<td>((-1) + 5 = 2 + 4)</td>
</tr>
<tr>
<td>(x = -1)</td>
<td>(2 = 2)</td>
</tr>
</tbody>
</table>

(b) \(5x + 6 = 3x + -6 \)

(Add \(-3x \))	\(5x + -3x = 3x + -6 + -3x\)
(Add \(-6 \))	\(3x + -6 = 3x + -6\)
\(5x + -3x = \)	\(3x + -6 = 3x + -6\)
(Multiply by \(\frac{1}{2} \))	\(\frac{3}{2}x = \frac{3}{2}x\)

(c) \(-x = 5x + -3 \)

(Add \(-5x \))	\(-x + -5x = 5x + -3 + -5x\)
\(-x + -5x = \)	\(-6x = -3\)
(Multiply by \(\frac{1}{6} \))	\(x = \frac{-3}{6} = \frac{-1}{2}\)
Find the solution for each equation by writing equivalent equations. At the right, check the solution by substituting it for x in the equation.

Check

(a) \[4x = 3x + 105\]
(b) \[4x + 20 = 3x + 36 \]

Check

Note. Sometimes it is easier to solve an equation if you simply exchange the two sides. Problem (d) shows how this works. Compare it with problem (c).

(c) \[2x + 1 = 3x + 2 \]

Check

(d) \[3x + 2 = 2x + 1 \]

Check

(e) \[2x + 4 = 4 + x \]
Inequalities

An equation is a mathematical sentence that says the number on one side of the equals sign is the same as the number on the other side. It is also possible to use symbols to say that the number on the left side of the symbol is not the same as the number on the right side. One sign that can be used (like the verb in an English sentence) is \(\neq \). In \(3 + 4 \neq 8 \), you read "3 plus 4 does not equal 8" or "3 plus 4 is not equal to 8".

Such a statement, however, does not help you compare the two numbers named, and comparing numbers is often necessary. (Which statement tells you more: "Jim is not the same age as Bill" or "Jim is younger than Bill"?)

You have used these two symbols (\(<\) and \(>\)) for comparing two numbers. For instance, \(1 + 1 < 3 \) (2 is less than 3) and \(3 > 1 + 1 \) (3 is greater than 2). You have, perhaps, also used these symbols: \(\leq \) (is less than or equal to) and \(\geq \) (is greater than or equal to). The symbols \(<\), \(>\), \(\leq\), and \(\geq\) are used to express inequalities.

A statement like \(4 + 5 \leq 9 \) is true because \(4 + 5 = 9 \). If \(4 + 5 \) is either equal to or less than 9, the statement \(4 + 5 \leq 9 \) is true. Likewise, \(6 + 3 \geq 8 \) is true because the "is greater than" part of the symbol makes it true.
Class Discussion

1. Read each of the following sentences and tell whether it is true or false.

 (a) $4 + 5 = 9$
 (b) $4 + 5 > 9$
 (c) $4 + 5 \geq 9$
 (d) $6 - 2 > 0$
 (e) $6 - 2 \geq 0$
 (f) $4 + 8 < 0$
 (g) $4 + 4 \leq 0$
 (h) $4 + 8 \leq 0$
 (i) $6 + 3 > 8$
 (j) $13 - 3 \geq 10$

You can use a variable in inequalities, too. First, let's think of replacing the variable only with whole numbers.

If $x < 1$, what number can be used to replace x?
If $x > 0$, you can replace x with _________. If $x + 1 < 5$, what numbers can be used to replace x? ________, ________, ________, and ________. If you replace x with 4 then $4 + 1 < 5$ is not true. The numbers that can be used to replace the variable and make the sentence true are called the solution set for the sentence. (We have talked about "the solution" for equations because you have not been able to use more than one number as the solution for the equations you have had so far.)

In $x + 1 < 5$, the solution set contains the whole numbers ________, ________, ________, and ________.
2. Give the solution set (whole numbers) for each of the following statements.

(a) \(x + 5 = 6 \)
(b) \(x - 8 = 1 \)
(c) \(3 + x \leq 10 \)
(d) \(x - 4 \leq 7 \)
(e) \(2 \cdot x = 18 \)
(f) \(2 \cdot x < 18 \)
(g) \(2 \cdot x \leq 18 \)

Notice that for \(2 \cdot x = 18 \), you have only one number in the solution set. In \(2 \cdot x < 18 \), all the numbers less than 9 are in the solution set, and in \(2 \cdot x \leq 18 \), the number 9 and all of the numbers less than 9 are in the solution set.

The sentence \(x + 6 > 6 \) has more numbers in the solution set than anyone can possibly write down. Every whole number except 0 is included in the set, because \(1 + 6 > 6 \), \(2 + 6 > 6 \), and so on. For sentences like this, we just give the three smallest numbers that can be used, and then write three dots to mean "and so on". For \(x + 6 > 6 \), we write \(1, 2, 3, \ldots \). This shows that \(\) is not in the set but the rest of the whole numbers are.

Sometimes there is no number you can use to replace the variable and make a true statement. For instance, if we use only the whole numbers, there is no number that makes \(x + 6 < 6 \) true. In this case, we say that the solution set is empty. In the equation \(2x + 3 = 2x + 5 \), there is no replacement for \(x \) that makes the statement true. If we add \(-2x \) to both sides, we have \(3 = 5 \), which certainly is not true. So the solution for the equation \(2x + 3 = 2x + 5 \) is the empty set. The symbol for the empty set is \(\emptyset \).
Exercises

Using only whole numbers for \(x \), give the solution set for each of the following.

1. \(x < 3 \)

2. \(x + 2 < 3 \)

3. \(4 + x > 13 \)

4. \(5 + 2 < x \)

5. \(7 + x \geq 29 \)

6. \(x + 1 < x \)

7. \(2x < 25 \)

8. \(2x + 1 < 25 \)

9. \(2x < 4 \)

10. \(5x > 10 \)

11. \(4x < 12 \)

12. \(\frac{x}{2} < 8 \)

13. \(\frac{x}{3} > 5 \)

14. \(3x \leq 15 \)

15. \(3x + 1 \leq 15 \)

16. \(3x + 2 \leq 15 \)

17. \(3x + 3 \leq 15 \)

18. \(3x + 3 < 15 \)

19. \(15x > 15 \)

20. \(2x + 1 < 1 \)
Solving Inequalities with Graphs

In the last section, you solved inequalities using whole numbers. One way to solve an inequality is just to guess a solution, try it, and then guess some others until you find which numbers fit. This works with the kinds of problems you just had, where the answers are all whole numbers, although you can imagine that just guessing would not be a very efficient way to solve some inequalities. Furthermore, if we include the integers, rational numbers, or real numbers as possible numbers in the solution set, it would be impossible to write solution sets in the form you just used.

First, let's find a way to show the solution set on the number line.

Class Discussion

What is the solution of the equation \(2x + 3 = 11\)? \(x = \)_____

To show this on the number line, you just make a large dot at the point that corresponds to \(4\).

\[\begin{array}{ccccccccccccc}
-10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}\]

In the inequality, \(2x + 3 \geq 11\), any number greater than \(4\) will also make the statement true.

If you want to show \(2x + 3 \geq 11\) on the number line, you draw a ray with its endpoint at \(4\) and pointing to the right.

\[\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\]

Or you can write the solution set using symbols, like this:

\[x \geq 4\]

This means that you can replace \(x\) in \(2x + 3 \geq 11\) with \(4\) or any number greater than \(4\) (for instance, with \(7\), or \(\frac{17}{4}\), or \(\sqrt{27}\)) and have a true statement.
If the inequality is $2x + 3 > 11$, you must make it clear that 4 is not in the solution set, but that all numbers greater than 4 are. On the number line, the fact that 4 is not in the set is shown by the small circle at that point.

Using symbols, you can write:

$$x > 4.$$

To show $2x + 3 < 11$, you show that 4 is not in the set but all numbers less than 4 are.

Using symbols, you can write: $x \underline{______}$.

The number line below shows the solution set for an inequality. Write the symbol that goes in the blank.

$$x + 1 \underline{________} 0$$

Write the solution set using symbols.

$$x \underline{________}$$

Write the symbol that goes in the blank of this inequality. The solution set is shown on the number line below.

$$x + 1 \underline{________} 0$$

Write the solution set. $x \underline{________}$
You will sometimes see statements like this:

\[3 < x + 4 < 10 \]

This means that 3 is less than \(x + 4 \) and \(x + 4 \) is less than 10. An easier way to say it is that \(x + 4 \) is between 3 and 10, but in symbols, it is written as it is above. To find the solution set, we can think: "If \(x = 1 \), then \(x + 4 = 3 \), so 1 is not in the set, and if \(x \) is 6, then \(x + 4 = 10 \), so 6 is not in the set." All the numbers between 1 and 6 are in the solution set. To show this on the number line we draw a segment with the endpoints, 1 and 6, circled.

To show every number between 1 and 6, the solution set is written: \(-1 < x < 6\).

One way to solve inequalities is to graph them. Let's start with \(3 \leq x + 4 \). First, knowing that 3 may equal \(x + 4 \), write two functions for the equation \(3 = x + 4 \).

\[
\begin{align*}
f : x & \rightarrow \underline{\quad} \\
g : x & \rightarrow \underline{\quad}
\end{align*}
\]

Graph these two functions on the coordinate plane at the right.
The input that gives the same output for both functions is _____. So, if \(3 = x + 4 \), the solution is \(-1 \). But suppose \(3 < x + 4 \). You know the solution set contains more than one number, and you can use just a few tests to find out what they are. Pick a number that is less than \(-1 \) and try it in the inequality: \(3 < __ + 4 \). Is the statement true or false? _____. Try a number that is greater than \(-1 \). \(3 < __ + 4 \). Is this true or false? _____. Now you are ready to show the solution set on the number line. Since \(-1 \) is in the set, mark the point \(-1 \) with a large dot. Any number greater than \(-1 \) is in the set, so the ray will go to the ________. Show the solution set of \(3 \leq x + 4 \) on the number line below.

Write the solution set using symbols: \(x __ \)

You can use the same method to solve inequalities using just \(< \) or \(> \) symbols.

To solve \(x + 6 < 1 \), first write an equation: \(x + 6 = 1 \). Write two functions for the equation, and graph the solution.

\[
\begin{align*}
f : x & \rightarrow __ \\
g : x & \rightarrow __
\end{align*}
\]
The solution of the equation \(x + 6 = 1 \) is \(\text{ } \). Show this on the number line as a circle at that point, because \(-5 \) is not in the solution set of \(x + 6 < 1 \).

Now try a number to the right of \(-5 \) in the inequality. Are numbers to the right of \(-5 \) in the solution set? \(\text{ } \) Try a number to the left of \(-5 \). Is it in the solution set? \(\text{ } \) The ray that begins at the circle should point to the \(\text{ } \).

Write the solution set using symbols. \(x \)

Some inequalities have variables on both sides of the inequality symbol. To solve \(3x + 4 < -2x + 14 \), do just what you did before. First, replace the \(< \) with \(= \). This gives you \(3x + 4 = -2x + 14 \), an equation. You know how to solve this by graphing two functions.
(Use inputs \(-1, 0, \) and \(1 \).)

\[f : x \rightarrow 3x + 4 \]

\[g : x \rightarrow -2x + 14 \]
Write the solution of the equation \(3x + 4 = -2x + 14\).

\(x = \) _____.

Try a number greater than the solution of the equation as a replacement for \(x\) in \(3x + 4 < -2x + 14\). Does it make the statement true? _____

Try a number less than the solution of the equation. Does it make the statement true? _____

Show the solution set on the number line below.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Write the solution set using symbols. \(x\) _____
Exercises

Solve these inequalities by writing an equation and graphing two functions. Find the solution set and show it on the number line.

1. \(13 - 2x \geq 5\)

(Equation)

\(f : x \rightarrow \) ________

\(g : x \rightarrow \) ________

Solution of equation:

\(x = \) ________

Solution set of \(13 - 2x \geq 5\) : ________
2. \(3x + 2 < -x + 10 \)

(Equation)

\[f : x \rightarrow \]
\[g : x \rightarrow \]

Solution of equation:
\[x = \]

Solution set of \(3x + 2 < -x + 10 \):

46
3. \(5x + -2 < 2x + 1\)

(Equation)

\[f : x \rightarrow \quad \]

\[g : x \rightarrow \quad \]

Solution of equation:
\[x = \quad \]

Solution set of \(5x + -2 < 2x + 1\):

\[\quad \]
Equivalent Inequalities

Just as you can solve an equation by writing a chain of equivalent equations, you can solve inequalities by writing a chain of equivalent inequalities. There is, however, one slight difference, which you will see if you work with some inequalities without variables.

Class Discussion

Put < or > in the blank to make each a true statement.

1. 3 ___ 5
 3 + 4 ___ 5 + 4
 13 + 8 ___ 7 + 8

2. -9 ___ 5
 -9 + 3 ___ 5 + 3
 4 + 6 ___ 1 + 6

If you add the same number to both sides of an inequality, the inequality symbol does not change.

Put the correct symbol in the blank to make each a true statement. Notice how the problems on the left are different from those on the right.

3. 2 ___ 7
 3 ⋅ 2 ___ 3 ⋅ 7

4. -3 ___ 2
 4 ⋅ -3 ___ 4 ⋅ 2

5. 8 ___ -1
 2 ⋅ 8 ___ 2 ⋅ -1

6. -5 ___ -6
 1 ⋅ -5 ___ 1 ⋅ -6

7. 8 ___ -1
 2 ⋅ 8 ___ 2 ⋅ -1

8. -5 ___ -6
 1 ⋅ -5 ___ 1 ⋅ -6
When you multiplied both sides of the inequality by a positive number, the sign did not change. When you multiplied both sides by a negative number, the sign had to be reversed. This fact is important in solving inequalities in which you must multiply by a negative number.

You can solve many inequalities by adding the same number to both sides. To solve \(x + 3 < 5 \), you add \(\) to both sides to get \(x + 0 < \) or simply \(x < \). \(x + 3 < 5 \) and \(x < 2 \) are equivalent inequalities because they have the same solution set.

To solve \(x + 5 > 8 \) you add \(\) to both sides in order to get \(x + 0 > \) or \(x > \).

13. Solve each of these inequalities by adding the same number to both sides.

(a) \(x + 9 < 3 \)

\[x < \]

(b) \(x - 8 < 21 \)

\[x < \] (Rewrite as addition:)

(c) \(x - 10 > 6 \)

\[x > \]

(d) \(x - 2 < 14 \)

\[x < \]

(e) \(x + 7 \leq 18 \)

\[x \leq \]

(f) \(x + 9 \geq 15 \)

\[x \geq \]
Sometimes you must multiply both sides of an inequality by the same number to find the solution set. In \(4x < 12 \), you multiply both sides by the reciprocal of \(\frac{1}{4} \). The solution is \(x < 3 \).

In \(\frac{1}{2} x > 20 \), you multiply both sides by \(\frac{2}{1} \). \(x > 40 \).

Look at this one: \(\frac{1}{4}x < 12 \). If you just multiply both sides by the reciprocal of \(\frac{1}{4} \), which is \(4 \), you get \(x < 48 \). One number in the solution set of \(x < 48 \) is 16. Check to see whether it is also in the solution set of \(\frac{1}{4}x < 12 \).

\[\frac{1}{4} \cdot 16 = 16 \]

and 16 is not less than 12.

Remember that if you multiply both sides of an inequality by a negative number, you must reverse the inequality symbol.

If you multiply \(\frac{1}{4} \cdot 4x \) and \(\frac{1}{4} \cdot 12 \), you must write, as the solution set, \(x > 3 \). Try a number greater than 3 in the inequality \(\frac{1}{4}x < 12 \). If you try 2, you find that \(\frac{1}{4} \cdot 2 \) is 8, and that is less than 12. In order to keep from making mistakes, always check your answer by trying a number in the solution set to see whether it fits in the inequality you tried to solve.

14. Solve each of these inequalities by multiplying both sides by the same number. Be careful when you multiply by a negative number!

(a) \(6x \geq 1 \)

\(x \geq \frac{1}{6} \)

(c) \(\frac{4}{3} x \leq 12 \)

\(x \leq \frac{36}{4} \)

(b) \(\frac{1}{3} x < 7 \)

\(x < 21 \)

(d) \(3x > 15 \)

\(x > 5 \)

(What sign must you have?)
Last, you can use equivalent inequalities to solve problems which have the variable on both sides, just as you solved equations.

To solve $5x + -2 < 2x + 1$, you first add $2x$ to both sides:

$$5x + -2 + 2x < 1$$

and then add 2 to both sides:

$$5x + -2x < 3$$

Finally, you write $5x + -2x$ as $3x$:

$$3x < 3$$

and multiply both sides by $\frac{1}{3}$:

$$x < 1$$

To check, use a number that is in the solution set of $x < 1$ to see whether it is also in the solution set of the inequality you started with. Zero is in the solution set, and if you use 0, you see:

$$5 \cdot 0 + -2 < 2 \cdot 0 + 1$$

$$-2 < 1$$

This is true, and the solution set checks.
Exercises

Solve these inequalities by writing equivalent inequalities. At the right, use a number from the solution set to show that the solution set is correct.

1. \(6x + 3 > 7 + 5x\)

 \[\text{(Add } -5x\text{.)}\]

 \[\text{(Add } -3\text{.)}\]

 \[\text{(6x + } -5x = ?)\]

2. \(5x + 11 < 3x + 3\)

3. \(100x + -14 < 99x + -10\)

Check
4. \(3x - 2 < 2x + 10\)

\[
\begin{align*}
\end{align*}
\]

5. \(-2x + 15 < x + 12\)

\[
\begin{align*}
\end{align*}
\]
Solving Quadratic Equations

You have used the word "squared" when you raised a number to the second power. \(10^2\) may be read "10 to the second power" or "10 squared". The same idea can be used in writing \(x \cdot x\) as \(x^2\). This is read "x to the second power" or "x-squared". Equations like \(x^2 - 2x - 3 = 0\) are called quadratic equations. The word "quadratic" comes from a Latin word meaning to make something square. In this section, you will learn one way to solve quadratic equations.

Class Discussion

If you have a very simple equation, like \(x^2 = 4\), it is easy to see the solution set. What numbers can you substitute for \(x\)? _______ and _______. We often call the numbers 2 and -2 the roots of the equation \(x^2 = 4\).

Of course, not all equations have rational roots. The equation \(x^2 = 3\), for instance, has two real numbers in the solution set, \(\sqrt{3}\) and \(-\sqrt{3}\), but it has no rational roots. In this section you will solve only equations whose solution sets are rational numbers.

The equation \(x^2 + 4 = 5\) can be solved by using what you learned about getting the variable by itself on one side of the equal sign and everything else on the other side. If you want to get rid of 4 on the left side, you add _______ to both sides of the equation.

\[
\begin{align*}
x^2 + 4 + & \quad = 5 + \\
& \quad = \\
& \quad = \\
\text{so} & \quad = \\
\text{and} & \quad = \text{ or } = \\
\end{align*}
\]

To solve \(2x^2 = 2\), you multiply both sides by _______.

\[
\begin{align*}
& \quad \cdot 2x^2 = \quad \cdot 2 \\
& \quad = \\
\text{so} & \quad = \\
\text{and} & \quad = \text{ or } = \\
\end{align*}
\]
Solve the following equations. Check both of your solutions in the equation. The first one is done for you.

1. \(\frac{2}{3} x^2 = 6 \)
 \[\frac{2}{3} \cdot \frac{9}{3} = 6 \]
 \[x = \frac{3}{3} \text{ or } x = -\frac{3}{3} \]

2. \(\frac{x^2}{2} = 8 \) (Remember this is the same as \(\frac{1}{2} x^2 = 8 \).)
 \[\frac{x^2}{2} = \]
 \[x = \] or \(x = \)

3. \(4x^2 + 3 = 97 \)
 \[4x^2 = \]
 \[x^2 = \]
 \[x = \] or \(x = \)

4. \(x^2 + 17 = 32 \)
 \[x^2 = \]
 \[x = \] or \(x = \)

5. \(3x^2 + 6 = 18 \)
 \[3x^2 = \]
 \[x^2 = \]
 \[x = \] or \(x = \)
You may be able to guess the solution set of this equation: $x^2 = 2x$, but we can use it to show one way to solve harder ones.

Again, we will write two functions. From the left side of the equation, we write $f : x \rightarrow x^2$. From the right side, we write $g : x \rightarrow 2x$. Fill in the table of inputs and outputs for $f : x \rightarrow x^2$.

<table>
<thead>
<tr>
<th>Input x</th>
<th>Output x^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>9</td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

The graph of the function $f : x \rightarrow x^2$ is shown below. This is called the basic quadratic function, and, as you see, it is not a line but a curve. Notice that the bottom point of the curve is at 0. For the function $f : x \rightarrow x^2$, is there any input that would give a negative output? When you multiply either a positive or a negative number by itself, the product is always (positive or negative).

Using the graph in the figure at the right, draw the graph of the function $g : x \rightarrow 2x$, which is a line.
In how many points does the graph of \(g : x \to 2x \) intersect the curve of \(f : x \to x^2 \)? What inputs give the same outputs for both functions? The solution set of the equation \(x^2 = 2x \) is: \(x = \) or \(x = \). Check these solutions in the equation \(x^2 = 2x \).

\[
\begin{align*}
(_ \cdot _) &= (2 \cdot _)
\end{align*}
\]

\[
\begin{align*}
(_ \cdot _) &= (2 \cdot _)
\end{align*}
\]

To solve the equation \(x^2 = 2x + 3 \), graph two functions: \(f : x \to \) and \(g : x \to \).

The graph of \(f : x \to x^2 \) is drawn for you in the figure below. Draw the graph of the function \(g \) and find what inputs give the same outputs for both functions. \(x = \) or \(x = \).
When you draw the graph of the function \(g : x \rightarrow 2x + 3 \) very carefully, you find that it intersects the graph of the function \(f : x \rightarrow x^2 \) at the points for the input 3 and the input -1.

To check these inputs as solutions for the equation \(x^2 = 2x + 3 \):

\[
(3 \cdot 3) = (2 \cdot 3) + 3 \quad \text{and} \quad (-1 \cdot -1) = (2 \cdot 1) + 3
\]

\[
9 = 6 + 3 \quad \quad \quad \quad \quad \quad 1 = 2 + 3
\]

\[
9 = 9 \quad \quad \quad \quad \quad \quad 1 = 1
\]

Going back to the equation at the beginning of this section, \(x^2 - 2x - 3 = 0 \), you can now find a way to solve it. You know how to solve an equation if you have only \(x^2 \) on the left side, so the problem is to get rid of the rest of what's on the left side. First, rewrite the subtraction expressions \(-2x\) and \(-3\) as addition:

\(+2x\) and \(+3\). The equation now is \(x^2 + 2x + 3 = 0 \). To get rid of \(-2x\), you \underline{________________} its opposite to both sides, and to get rid of \(-3\) you also add \underline{________________} to both sides. You don't even need two steps for this. You find that \(x^2 = 2x + 3 \). This is the same equation you solved before! So the solution for the equation \(x^2 - 2x - 3 = 0 \) is \(x = \underline{____} \) or \(x = \underline{____} \). Check these solutions in the equation.

Look at the equation \(x^2 + 3x + 2 = 0 \). First you want to get rid of the \(3x \) and the \(2 \) that were added to \(x^2 \). Add \underline{________} and \underline{________} to both sides of the equation to get an equivalent equation:

\[
x^2 = \underline{________}
\]
The function \(f : x \rightarrow x^2 \) is graphed below. Graph the function \(g : x \rightarrow \) _________ that goes with the right side of the equation.

You may find it hard to read your graph for this equation, but you can see that the two integer inputs which give the same output for both functions are _____ and ______. Check these as solutions of the equation \(x^2 + 3x + 2 = 0 \).

\[
\begin{align*}
(_ \cdot __) + (3 \cdot _) + 2 &= 0 \\
_ + _ + 2 &= 0
\end{align*}
\]

\[
\begin{align*}
(_ \cdot __) + (3 \cdot _) + 2 &= 0 \\
_ + _ + 2 &= 0
\end{align*}
\]

\[
\begin{align*}
_ &= 0 \\
_ &= 0
\end{align*}
\]
Exercises

Solve the following equations as you did the ones above. Then check each solution in the equation.

1. \(x^2 - x - 6 = 0 \)

 \[x^2 = \quad \text{(Rewrite as addition.)} \]

 \[x = \quad \text{and} \quad x = \quad \]

 Check:

 \[\quad \text{and} \quad \]

2. \(x^2 - 3x - 4 = 0 \)

 \[x^2 = \quad \text{(Rewrite as addition.)} \]

 \[x = \quad \text{and} \quad x = \quad \]

 Check:

 \[\quad \text{and} \quad \]
3. (a) You have solved equations in which you had just x^2 on the left side of the equals sign. For the equation below, you want to get $2x^2$ on the left side.

$$2x^2 - 5x + 2 = 0$$

(Rewrite as addition.)

$$2x^2 = \text{_______}$$

(Add ____ and ____.)

(b) The function for the left side of the equation you now have is $f : x \rightarrow \text{_______}$.

(c) The function for the right side of the equation is $g : x \rightarrow \text{_______}$.

The graph of the function $f : x \rightarrow 2x^2$ is drawn for you.

Graph the function g.

(d) One input that gives the same output for both functions is the integer _____. Check this integer solution in the equation.

$$2 \cdot (_ \cdot _) - (5 \cdot _) + 2 = 0$$

(e) The other input that gives the same output is not an integer but a rational number between _____ and ______. Make a guess as to what the number is and try your solution in the equation. If you don't guess the right one the first time, try another rational number. In the equation

$$2x^2 - 5x + 2 = 0$$

$x = \text{____} \text{ or } x = \text{____}$.

61
Pre-Test Exercises

These exercises are like the problems you will have on the chapter test. If you don't know how to do them, read the section again. If you still don't understand, ask your teacher.

1. (Section 17-1.)
For each equation, write what to do to both sides of the equation in order to get \(x \) by itself on the left side of the equal sign.

 (a) \(x + 4 = 9 \)

 (b) \(x + 3 = 17 \)

 (c) \(4x = 16 \)

 (d) \(\frac{1}{2}x = 7 \)

 (e) \(\frac{x}{3} = 79 \)

2. (Section 17-2.)
For each equation, write what to do to both sides in order to get \(x \) by itself on the left side.

 (a) \(3x + 9 = -21 \) First

 and then

 (b) \(\frac{1}{4}x + 15 = 60 \) First

 and then

 (c) \(\frac{5x}{16} + 49 = 752 \) First

 and then

 (d) \(2x - 3 = 10 \) First

 and then
3. (Section 17-3.)

Fill the blanks.

(a) In the equation \(\frac{3}{x} + 4 = 2 \) you know that \(x \) cannot be _____.

(b) \(\frac{4}{x} \) is the same as \(4 \cdot _____ \).

(c) If \(\frac{1}{x + 3} = \frac{1}{4} \), then \(x + 3 = _____ \).

(d) If \(\frac{2}{3x} = \frac{1}{6} \), then \(3x = _____ \). (Remember the comparison property.)

4. (Section 17-4.)

Solve the equation \(2x + 1 = x + 3 \) by writing two functions, graphing them and finding the solution. Check your solution in the equation.

\[f : x \rightarrow \] _____________

\[g : x \rightarrow \] _____________

\[x = \] _____________

Check: __________________
5. (Section 17-5.)
Write a chain of equivalent equations to solve these equations:

(a) $-4x + 3 = 2x + 21$
Check:

\[
\begin{align*}
\text{Step 1:} & \quad -4x + 3 = 2x + 21 \\
\text{Step 2:} & \quad -4x - 2x = 21 - 3 \\
\text{Step 3:} & \quad -6x = 18 \\
\text{Step 4:} & \quad x = \frac{18}{-6} = -3 \\
\end{align*}
\]

te.

(b) $7x - 4 = 2x + 21$
Check:

\[
\begin{align*}
\text{Step 1:} & \quad 7x - 4 = 2x + 21 \\
\text{Step 2:} & \quad 7x - 2x = 21 + 4 \\
\text{Step 3:} & \quad 5x = 25 \\
\text{Step 4:} & \quad x = \frac{25}{5} = 5 \\
\end{align*}
\]

6. (Section 17-6.)
Give the solution set of each inequality:

(a) $2x + 5 < 17$

(b) $7x + 3 < 2$

(c) $\frac{x}{5} \leq 7$

(d) $4x + 1 > 22$
7. (Section 17-7.)
Solve each inequality by graphing two functions. Show the solution set on the number line below the graphs.

(a) \(\frac{5}{3}x + 2 < 12 \)

\[
\begin{align*}
\text{Equation} & : \frac{5}{3}x + 2 < 12 \\
f : x \rightarrow & \\
g : x \rightarrow & \\
\text{Solution of equation:} & \\
x = & \\
\text{Write the solution set of the inequality using symbols.} & \\
x & \\
\end{align*}
\]

(b) \(2x + 3 \geq 1 \)

\[
\begin{align*}
\text{Equation} & : 2x + 3 \geq 1 \\
f : x \rightarrow & \\
g : x \rightarrow & \\
\text{Solution of equation:} & \\
x = & \\
\text{Write the solution set of the inequality using symbols.} & \\
x & \\
\end{align*}
\]
(c) \(3x + 2 < 2x + 1\)

\[
\begin{array}{l}
\text{(Equation)} \\
f : x \rightarrow \quad \quad \\
g : x \rightarrow \quad \quad \\
\end{array}
\]

Solution of equation:

\[x = \quad \quad \]

Solution set of

\[
3x + 2 < 2x + 1:
\]

\[
\begin{array}{l}
x = \quad \quad \\
\end{array}
\]

8. (Section 17-8.)

Write equivalent inequalities to solve these. Check using a number from your solution set.

(a) \(4x + 3 < x + 6\)

Check:

\[
\begin{array}{l}
\quad \\
\quad \\
\quad \\
\quad \\
x \quad \\
\end{array}
\]

(b) \(3x + 8 < 5x - 2\)

Check:

\[
\begin{array}{l}
\quad \\
\quad \\
\quad \\
\quad \\
x \quad \\
\end{array}
\]
9. Solve this equation. The graph of \(f : x \rightarrow 2x^2 \) is drawn for you.

\[2x^2 - x - 3 = 0 \]

\[\underline{\text{Addition equation}} \]

\[2x^2 = \]

\[f : x \rightarrow \underline{\ldots} \]

\[g : x \rightarrow \underline{\ldots} \]

\[x = \underline{\ldots} \text{ or } x = \underline{\ldots} \]

(One solution is not an integer.)

Check: \underline{\ldots}

and: \underline{\ldots}
Test

1. For each equation, write what to do to both sides of the equation to get \(x \) by itself on the left side of the equal sign.
 (a) \(x + 16 = 25 \)
 (b) \(3x = 17 \)
 (c) \(\frac{x}{4} = 21 \)
 (d) \(x + 3 = 4 \)
 (e) \(\frac{1}{2}x = \frac{3}{2} \)

2. Solve these equations by writing equivalent equations. Check the solution in the equation.
 (a) \(13x + 4 = 30 \)
 (b) \(\frac{5}{3}x - 6 = 19 \)
 (c) \(\frac{3}{2}x \frac{1}{8} = \frac{83}{10} \)
3. Solve these equations by graphing two functions. Check your solution in the equation.

(a) $4x + 1 = 7$

$f : x \rightarrow $

$g : x \rightarrow $

$x = $

Check:

(b) $-3x - 2 = 2x + 5$

$f : x \rightarrow $

$g : x \rightarrow $

$x = $

Check:
4. Solve this equation by writing equivalent equations. Check your solution in the equation.

Check:

\[3x - 2 = -\frac{1}{2}x + 10 \]

\[x = \]}

5. Solve this inequality by graphing two functions. Show the solution set on the number line.

\[x + 3 > 3x + 1 \] (Equation)

\[f : x \rightarrow \]}

\[g : x \rightarrow \]}

\[f : x \rightarrow \]}

\[g : x \rightarrow \]}
6. Solve this inequality by writing equivalent inequalities. Check a number of your solution set in the inequality.

\[x + 2 \geq x + 3 \]

Check: ______________________

7. Solve the equation \(x^2 - 2x - 3 = 0 \). The function \(x \to x^2 \) is shown.

\[x^2 - 2x - 3 = 0 \]

Check: ______________________

\[f : x \to \quad \]
\[g : x \to \quad \]

\(x = \quad \) or \(x = \quad \)

Check: ______________________

and: ______________________

\[f : x \to x^2 \]
Check Your Memory: Self-Test

1. (Section 13-6.)
Add. (You may use your flow chart if you need it.)

(a) \(\frac{3}{4} + \frac{1}{2} = \)
(b) \(\frac{9}{8} + \frac{1}{4} = \)
(c) \(\frac{4}{5} + \frac{2}{3} = \)
(d) \(\frac{5}{6} + \frac{3}{4} = \)
(e) \(\frac{2}{5} + \frac{1}{4} = \)

2. (Section 13-8.)
Use exponents to rewrite each problem. Give the answer with an exponent.

(a) \(1000 \times .0001 = \)
(b) \(\frac{100000}{1 \over 100} = \)
(c) \(.00001 \times .001 = \)
3. (Section 13-10.)
Write each number using scientific notation. (Use your flow chart if you need it.)

(a) \(346795 = \) __________
(b) \(228.167 = \) __________
(c) \(.00041 = \) __________
(d) \(455000 = \) __________
(e) \(.0036872 = \) __________

4. (Section 15-13.)
Find the area of these figures.

(a) \(\text{AREA} \) __________
(b) \(\text{AREA} \) __________

5. (Sections 15-7 and 15-8.)

(a) How many inches are in \(2 \frac{1}{2}\) feet? __________
(b) How many yards are in \(2\) feet? __________
(c) How many inches are in \(3 \frac{1}{4}\) yards? __________

6. (Sections 16-7 and 16-8.)

(a) Find the circumference of a circle with a radius of \(10\) feet.
 (Use \(\pi \approx 3.14\)) __________
(b) Find the area of the circle in (a), above. __________

Now check your answers on the next page. If you do not have them all right, go back and read the section again.
Answers to Check Your Memory: Self-Test

1. (a) \(\frac{5}{4} \)
 (b) \(\frac{7}{8} \)
 (c) \(\frac{22}{15} \)
 (d) \(\frac{19}{12} \)
 (e) \(\frac{3}{20} \)

2. (a) \(10^3 \times 10^{-4} = 10^{-1} \)
 (b) \(\frac{10^5}{10^2} = 10^7 \)
 (c) \(10^{-5} \times 10^{-3} = 10^{-8} \)

3. (a) \(3.46795 \times 10^5 \)
 (b) \(2.28167 \times 10^2 \)
 (c) \(4.1 \times 10^{-4} \)
 (d) \(4.55 \times 10^5 \)
 (e) \(3.6872 \times 10^{-3} \)

4. (a) 72 sq. ft.
 (b) 406 sq. in.

5. (a) 30 inches
 (b) \(\frac{2}{3} \) yd.
 (c) 117 inches

6. (a) 62.8 feet
 (b) 31\(\frac{1}{4} \) sq. ft.
Chapter 18

COORDINATE GEOMETRY
Chapter 18

COORDINATE GEOMETRY

Slope of a Line

You have seen the graphs of the functions
\[k : x \rightarrow \frac{1}{2} x \]
\[i : x \rightarrow 1x \]
\[f : x \rightarrow 2x \]
\[g : x \rightarrow 3x \]
\[h : x \rightarrow 4x \]
and so on

many times before. You know that the graphs of these functions

(1) are lines,

and (2) pass through the origin.

On the coordinate plane on the next page are the graphs of the functions:

\[k : x \rightarrow \frac{1}{2} x \]
\[i : x \rightarrow 1x \]
\[f : x \rightarrow 2x \]
\[g : x \rightarrow 3x \]
\[h : x \rightarrow 4x \]

Class Discussion

Imagine that an ant starts at the origin and crawls "up" the line of one of the functions.

Look at all five of the lines. Which line is steepest for the ant to crawl up? Which line is least steep?
For these kinds of functions, as the number that multiplies x
gets larger the line gets **(steeper, less steep)**.

Which line is steeper?

1. $g : x \rightarrow 3x$ or $i : x \rightarrow 1x$?

2. $f : x \rightarrow 2x$ or $k : x \rightarrow \frac{1}{5}x$?

3. $j : x \rightarrow 10x$ or $p : x \rightarrow 1\frac{1}{4}x$?

4. $q : x \rightarrow \frac{1}{4}x$ or $r : x \rightarrow \frac{3}{4}x$?

5. $t : x \rightarrow \frac{2}{3}x$ or $s : x \rightarrow \frac{3}{2}x$?

The measure of the steepness of a line is what we call the **slope**
of a line. The number that multiplies x is the slope of the line.

Notice in all the examples so far the number that multiplied x
was **positive**. Also notice that as you move "up" on the graph the line
goes farther to the right. The slope is **positive** for these lines.

Here is the graph of $f : x \rightarrow 2x$.
The slope of \(f : x \rightarrow 2x \) is 2.

Is the origin \((0,0)\) on the line \(f : x \rightarrow 2x \)?

Starting at the origin, count up 2 units on the Y-axis and then count over to the right 1 unit. Is this point on the line?

When we start on a line and move up and then over to the line again, we call the distance "up" the rise and the distance over to the line the run. If we count over to the right to get back to the line the run is positive. If we count over to the left to get back to the line the run is negative.

Starting at the point \((1,2)\), count up 2 units. How many units do you count over to the right to come back to a point on the line? \(\underline{\quad}\) What is the rise? \(\underline{\quad}\) What is the run?

Starting at the point \((\frac{1}{4},8)\), count up 2 units. How many units do you count over to the right to come back to a point on the line? \(\underline{\quad}\) What is the rise? \(\underline{\quad}\)

If you start at any point on the line, count up 2 units and then count over to the right one unit, do you come back to the line? \(\underline{\quad}\) (Try this and see.)

For the line \(f : x \rightarrow 2x \), in each case the rise is 2 and the run is 1.

Suppose we divide the rise by the run. \(\frac{\text{rise}}{\text{run}} = \frac{2}{1} = 2\) This is the slope of the line.

Look at the graph of \(f : x \rightarrow 2x \) again. Start at the origin and count up 4 units. How many units do you count over to the right to come back to the line? \(\underline{\quad}\) The rise is \(\underline{\quad}\) and the run is \(\underline{\quad}\). Now divide the rise by the run.

\(\frac{\text{rise}}{\text{run}} = \underline{\quad} = \underline{\quad}\) Is this answer the slope? \(\underline{\quad}\)

So far the rise divided by the run has given us the slope of the line. Let's see if this works on another line.
Here is the graph of $g : x \to 3x$.

What is the slope of the line $g : x \to 3x$?

It will help you find the rise and run if you think of different segments of this line as being the diagonals of different rectangles.

On the graph label the origin O and label the point $P(1,3)$. OP is the diagonal of a rectangle.

By looking at the rectangle it is easy to see that the rise is 3 and the run is 1, and $\frac{\text{rise}}{\text{run}} = \frac{3}{1}$. Does this give you the slope?
Here is the line \(g : x \to 3x \) with some more rectangles drawn in.

Look at the rectangle with diagonal \(\overline{OA} \). What is the rise?
What is the run? \(\frac{\text{rise}}{\text{run}} = \) \(= \) \(\) Does this give you the slope?

Look at the rectangle with diagonal \(\overline{PA} \). \(\frac{\text{rise}}{\text{run}} = \) \(= \) \(\)

Look at the rectangle with diagonal \(\overline{OB} \). \(\frac{\text{rise}}{\text{run}} = \) \(= \) \(\)

Look at the rectangle with diagonal \(\overline{BO} \). \(\frac{\text{rise}}{\text{run}} = \) \(= \) \(\)

Look at the rectangle with diagonal \(\overline{EB} \). \(\frac{\text{rise}}{\text{run}} = \) \(= \) \(\)
In each of these cases \(\frac{\text{rise}}{\text{run}} = 3 \) which is the slope.

Does it now seem more likely that \(\frac{\text{rise}}{\text{run}} \) always gives the slope of the line?

Try this for the line \(k : x \rightarrow \frac{1}{2} x \).

You can pick any two points on the line for endpoints of the diagonal but it is easier to find the rise and run if you pick points that have integer coordinates.

Pick two points on the line that have integer coordinates. Use the segment between your points as the diagonal of a rectangle. Draw this rectangle on the graph of \(k : x \rightarrow \frac{1}{2} x \). What is the rise?

\[\text{What is the run?} \quad \frac{\text{rise}}{\text{run}} = \]

Do you get \(\frac{1}{2} \)?

Is \(\frac{1}{2} \) the slope of this line?
Exercises

1.

(a) What is the rise of the line?

(b) What is the run of the line?

(c) What is the slope of the line?

2.

(a) What is the rise of the line?

(b) What is the run of the line?

(c) What is the slope of the line?

18-1g
Lines with Negative Slope

In the last lesson all the lines leaned to your right, and they all had positive slope.

Lines that lean to your left have negative slope. For these lines you count up to find the rise of the line, but you must count over to the left to find its run.

When you count to the right the run is positive.
When you count to the left the run is negative.

Class Discussion

1. (a) Does l_1 lean to your right or your left? _______
(b) Is the slope of l_1 positive or negative? _______
(c) For l_1 \[\frac{\text{rise}}{\text{run}} = \ldots = \ldots\]
(d) The slope of l_2 = _______.
Exercises

Write the slope of each line by finding its \(\frac{\text{rise}}{\text{run}} \).

1.

\[
\begin{array}{c|c|c|c|c|c}
Y & 6 & 5 & 4 & 3 & 2 \\
X & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

Slope:

2.

\[
\begin{array}{c|c|c|c|c|c}
Y & 6 & 5 & 4 & 3 & 2 \\
X & -2 & -3 & -4 & -5 & -6 \\
\end{array}
\]

Slope:

7. \[\text{Slope: } _________ \]
The Y-Intercept of a Line

The slope of a line that does not pass through the origin is found in the same way as the slope of lines that do pass through the origin.

Here are the graphs of l_1 and l_2. l_1 is the line $f : x \rightarrow 3x$.

It has a slope of 3.

What is the rise for l_2?

What is the run for l_2?

What is the slope of l_2?

Even though both l_1 and l_2 have the same slope they are different lines.

One thing that is different about them is the point where they cross the Y-axis.

What are the coordinates of the point where l_2 crosses the y-axis? $(_, _)$ What is the y-coordinate of that point?

The y-coordinate of the point where a line crosses the Y-axis is called the y-intercept.

What is the y-intercept of l_1?

88
Here are the graphs of l_1, l_2, l_3, l_4, and l_5. They all have a slope of 3.
Class Discussion

1. What is the y-intercept of \(l_1 \) ?
2. What is the y-intercept of \(l_2 \) ?
3. What is the y-intercept of \(l_3 \) ?
4. What is the y-intercept of \(l_4 \) ?
5. What is the y-intercept of \(l_5 \) ?
6. Look at the graph of this line "m".

(a) What is its y-intercept?
(b) What is its slope?
(c) Can you draw other lines that have a y-intercept of 3?
(d) Will any of these other lines also have a slope of 2?
(e) Can you draw other lines that have a slope of 2?
(f) Will any of these other lines also have a y-intercept of 3?
(g) Is line "m", the only line that has a slope of 2 and a y-intercept of 3?
(h) Make a table of three inputs and three outputs for
f : \(x \rightarrow 2x + 3 \) and plot the 3 points on the graph of line "m".

(i) Is line "m" the graph of \(f : x \rightarrow 2x + 3 \)?

In \(f : x \rightarrow 2x + 3 \) the 2 is the slope and the 3 is the \(y \)-intercept.

\[
f : x \rightarrow 2x + 3
\]

Slope \hspace{1cm} \(y \)-intercept

7. (a) Make a table of 3 inputs and 3 outputs for
g : \(x \rightarrow 4x + 2 \), and graph the function here.

(b) Look at the graph of \(g : x \rightarrow 4x + 2 \). What is the slope?

\[
\hspace{1cm}
\]

What is the \(y \)-intercept?

Again you can see from the graph you drew that

\[
g : x \rightarrow 4x + 2
\]

Slope \hspace{1cm} \(y \)-intercept
Now you can look at the graph of a line, find the slope and the y-intercept, and easily write its function like this:

\[f : x \rightarrow (\text{slope}) \ x + (\text{y-intercept}) \]

8. Write the function for this line.
9. Write the function for this line.

It is easy to look at a function written in arrow form and see what numbers are the slope and y-intercept of the function. Once you know the slope and y-intercept you can draw the graph of the function without making a table of inputs and outputs.

You can plot one point on the line when you know the y-intercept.

You can start at this point and use the slope \(\frac{\text{rise}}{\text{run}} \) to find other points on the line.
See if you can draw the graphs of these functions without making a table of inputs and outputs.

10. \(f : x \rightarrow \frac{2}{3} x - 1 \) (Hint. Rewrite as addition.)

11. \(f : x \rightarrow 2x + 3 \)
12. \(f: x \rightarrow 4x - 2 \)

Exercises

1. Write the slope, the \(y \)-intercept and the function for each of these lines.

 (a)

 \[
 \text{slope} = \quad \quad \text{\(y \)-intercept is} \quad \quad \text{\(f: x \rightarrow} \quad \quad
 \]

 [Graph]

 [Graph]
2. Draw the graph of each of these lines without making a table of inputs and outputs.

(a) \(f : x \to 5x - 3 \)
(b) \(g: x \rightarrow \frac{1}{4} x + 5 \)

(c) \(h: x \rightarrow -\frac{3}{4} x + 1 \)
(d) \(k : x \rightarrow -2x - 3 \)
The Equation of a Line

The graph of this function is a line.

\[f : x \to 3x + 2 \]

Class Discussion

1. What is the input of the function? ______
2. What is the output of the function? ______
3. Which is the output axis in the coordinate plane? (X or Y)
4. When you write the coordinates of a point, like \((2,8)\), or \((1,5)\), or \((x,y)\), which coordinate of the pair is the output? (x or y)

You see that:

\((x,y)\)

\[f : x \to 3x + 2 \]

output of the pair
output of the function

Since \(3x + 2\) is the output and \(y\) is also the output they are equal. So,

\[y = 3x + 2 \]

Here is another example:

\((x,y)\)

\[g : x \to \frac{3}{4} x - 5 \]

output of the pair
output of the function

So:

\[y = \frac{3}{4} x - 5 \]
Here is a third example:

\[(x, y) \quad \quad \quad \quad k : x \to \frac{1}{2} x + 3\]

So:

\[x = \frac{1}{2} x + 3\]

Equations like these whose graphs are lines are called linear equations.
Exercises

1.
(a) What is the slope of this line?
(b) What is the y-intercept of this line?
(c) Write the function for this line.
\[f : x \rightarrow \]
(d) Write the equation of this line.
\[y = \]

2.
(a) What is the slope of this line?
(b) What is the y-intercept of this line?
(c) Write the function for this line.
\[f : x \rightarrow \]
(d) Write the equation of the line.

\[y = \]
3. Write the equation of each of these lines.

(a) \[y = \ldots \]

(b) \[y = \ldots \]

(c) \[y = \ldots \]

(d) \[y = \ldots \]
4. The equation of a line is

\[y = \frac{3}{2} x + 2. \]

(a) What is the slope of the line?
(b) What is the y-intercept of the line?
(c) Draw the graph of the line without making a table of inputs and outputs.
5. Draw the graph of each of these lines without making a table of inputs and outputs.

(a) \(y = \frac{5}{4} x - 3 \) (Hint: Write this as addition.)

(b) \(y = \frac{-5}{8} x + 1 \)
(e) \(y = \frac{5}{7} x - 5 \)
Solution of Two Linear Equations

Here are some linear equations like the ones you graphed in the last lesson.

\[y = 3x + 4 \]
\[y = \frac{3}{8}x + 7 \]
\[y = 12x - 3 \]

Notice that these are different kinds of equations from the ones you studied in Chapter 17. They have two variables, \(x \) and \(y \). These equations do not have a single solution. Instead they have many solutions.

The solutions of these equations are pairs of numbers. The pair of coordinates of every point on the line is a solution of the equation of that line.

You know that:

(1) if two lines are parallel they do not intersect

or (2) if they are not parallel they intersect in exactly one point.

If we have the equations of two lines that intersect then the pair of coordinates of the point of intersection is the only solution of the pair of equations.

Class Discussion

1. Draw the graphs of these linear equations.

\[y = \frac{4}{3}x - 2 \]

and

\[y = \frac{1}{3}x + 3 \]
(a) What are the coordinates of the point of intersection of the pair of lines? (,) This is the solution of the pair of equations.

(b) What is the x-coordinate of the point of intersection?

(c) What is the y-coordinate of the point of intersection?

(d) Use these values of \(x \) and \(y \) to replace the variables in the first equation and do the arithmetic.

\[
y = \frac{4}{3} x - 2
\]

(e) Is \((3,2)\) a solution of \(y = \frac{4}{3} x - 2 \)?

(f) Use these same \(x \) and \(y \) values to replace the variables in the second equation and do the arithmetic.

\[
y = -\frac{1}{3} x + 3
\]

(g) Is \((3,2)\) a solution of \(y = -\frac{1}{3} x + 3 \)?

(h) Is \((3,2)\) the only solution of this pair of equations?

\[
y = \frac{4}{3} x - 2
\]

and

\[
y = -\frac{1}{3} x + 3
\]
2. Draw the graphs of these linear equations.

\[y = -3x + 0 \]

and

\[y = x + 4 \]

(a) What are the coordinates of the point of intersection of the pair of lines? \((-1, 3) \) This is the solution of the pair of equations.

(b) Use the coordinates of the point of intersection to replace the variables in each equation and do the arithmetic.

\[y = -3x + 0 \]

\[y = x + 4 \]

\[
\begin{align*}
-3 & \cdot -1 + 0 \\
1 & + 4
\end{align*}
\]

(c) Is \((-1, 3)\) the only solution of the pair of equations \(y = -3x + 0 \) and \(y = x + 4 \)?
Exercises

1. (a) Find the solution of these two equations by graphing them and writing the coordinates of their intersection.

\[y = 3x - 7 \]

and

\[y = \frac{1}{2}x + 0 \]

Solution \((,)\)

(b) Check your solution by replacing the variables in each equation with the coordinates of the point of intersection.

\[y = 3x - 7 \quad y = \frac{1}{2}x + 0 \]

\[\text{_____} = 3 \cdot \text{_____} - 7 \quad \text{_____} = \frac{1}{2} \cdot \text{_____} + 0 \]

\[\text{_____} = \text{_____} - 7 \quad \text{_____} = \text{_____} \]

\[\text{_____} = \text{_____} \]
2. (a) Find the solution of these two equations by graphing them and writing the coordinates of their intersection.

\[y = \frac{3}{2} x - 3 \]

and

\[y = -2x + 4 \]

Solution \((,)\)

(b) Check your solution by replacing the variables in each equation with the coordinates of the point of intersection.

\[y = \frac{3}{2} x - 3 \]

\[y = -2x + 4 \]

\[\frac{3}{2} \cdot \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = -3 \]

\[-2 \cdot \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 4 \]

\[\underline{\hspace{1cm}} = \underline{\hspace{1cm}} - 3 \]

\[\underline{\hspace{1cm}} = \underline{\hspace{1cm}} + 4 \]
Perpendicular Lines

You know that the axes of the coordinate plane are perpendicular to each other.

We have marked points $A(4,1); B(3,1); C(2,1); D(1,1)$; on this graph.

Class Discussion

1. Place a piece of thin paper over the graph. Use a straight-edge and trace the coordinate axes. Label your tracing of the X-axis l_1 and your tracing of the Y-axis l_2.

2. Stick the needle point of your compass through the intersection of l_1 and l_2 and into the origin of the graph.
3. Turn your tracing about the origin so that \(l_1 \) passes through point \(A(4,1) \).

(a) Is \(l_1 \) still perpendicular to \(l_2 \) ?

(b) What is the slope of \(l_1 \)?

(c) What is the slope of \(l_2 \)?

(d) Multiply the slope of \(l_1 \) by the slope of \(l_2 \).

\[_ \times _ = _ \]

4. Now turn your tracing so that \(l_1 \) passes through point \(B(3,1) \).

(a) Is \(l_1 \perp l_2 \)?

(b) What is the slope of \(l_1 \)?

(c) What is the slope of \(l_2 \)?

(d) Multiply the slope of \(l_1 \) by the slope of \(l_2 \).

\[_ \times _ = _ \]

(e) Is the product of the slopes still the same as in problem 3?

5. Turn your tracing so that \(l_1 \) passes through point \(C(2,1) \).

(a) Is \(l_1 \perp l_2 \)?

(b) What is the slope of \(l_1 \)?

(c) What is the slope of \(l_2 \)?

(d) Multiply the slope of \(l_1 \) by the slope of \(l_2 \).

\[_ \times _ = _ \]

(e) Is the product of the slopes still the same?
6. Turn your tracing once more so that \(l_1 \) passes through point D(1,1).

 (a) What is the slope of \(l_1 \)?

 (b) What is the slope of \(l_2 \)?

 (c) Multiply the slope of \(l_1 \) times the slope of \(l_2 \).

 ___ \(\times \) ___ = ___

 (d) Is the product of the slopes still the same? ___

 These two ideas go together:

 (1) If two lines are perpendicular then the product of their slopes is \(-1\).

 (2) If the product of the slopes of two lines is \(-1\) then the lines are perpendicular.

7. Draw the graph of the line \(y = 3x + 0 \). Label the line \(l_1 \).
Suppose we want to write the equation of line l_2 that has a y-intercept of 2 and that is perpendicular to l_1.

(a) What is the slope of l_1?

(b) What is the reciprocal of the slope of l_1?

(c) What is the opposite of the reciprocal of the slope of l_1?

(d) If l_2 has this slope will it be perpendicular to l_1?

(e) What is the equation of l_2?

The slope of l_2 is the opposite of the reciprocal of the slope of l_1.

(f) Draw the graph of l_2.

(g) Does l_2 look perpendicular to l_1?
8. (a) What is the slope of the line \(y = \frac{2}{3} x + 3 \)?

(b) What is the reciprocal of this slope?

(c) What is the opposite of the reciprocal of the slope?

(d) What is the equation of the line that has a y-intercept of -1 and is perpendicular to \(y = \frac{2}{3} x + 3 \)?

9. (a) What is the slope of \(y = x - 2 \)?

(b) What is the reciprocal of this slope? (What number multiplied by 1 equals 1?)

(c) What is the opposite of the reciprocal of the slope?

(d) What is the equation of the line that has a y-intercept of 5 and is perpendicular to \(y = x - 2 \)?

Here is the graph of \(y = 2 \). It is a horizontal line.
Start at \((0,2)\) and count over 1 unit to the right. This is a run of 1. What is the rise?

\[
\frac{\text{rise}}{\text{run}} = \frac{0}{1}
\]

The slope of a horizontal line is zero.

Here is the graph of the line \(x = 3\).

Is the line \(x = 3\) a vertical line? __________

Is it perpendicular to the line \(y = 2\)? __________

But the slope of \(y = 2\) is zero. Is there any number that you can multiply by zero and get 1? __________

There is no number we can give as the slope of a vertical line.

It is meaningless to talk about the slope of a vertical line.
Exercises

1. Matching:
If you drew the lines for the equations below, you would find that each line under B is perpendicular to a line under A. Match the equations of the perpendicular lines.

\[
\begin{align*}
A & : \\
y_1 & = 5x + 7 \\
y_2 & = \frac{-1}{4} x + 2 \\
y_3 & = \frac{2}{3} x + 0 \\
y_4 & = \frac{-5}{8} x - \frac{4}{5} \\
y_5 & = \frac{3}{7} x - \frac{1}{2} \\
B & : \\
(a) & : y = \frac{8}{5} x - \frac{1}{7} \\
(b) & : y = \frac{1}{5} x - 1 \frac{1}{4} \\
(c) & : y = \frac{7}{3} x + \frac{1}{2} \\
(d) & : y = 4x - \frac{5}{6} \\
(e) & : y = \frac{3}{2} x + \frac{2}{3}
\end{align*}
\]

2. (a) What is the slope of the line \(y = \frac{5}{3} x - \frac{2}{3} \)?

(b) What is the reciprocal of this slope?

(c) What is the opposite of the reciprocal?

(d) Write the equation of the line that has a y-intercept of 10 and is perpendicular to \(y = \frac{5}{3} x - \frac{2}{3} \).

3. Write the equation of the line that has a y-intercept of \(\frac{7}{4} \) and is perpendicular to \(y = \frac{4}{3} x + 8 \).

4. Write the equation of the line that has a y-intercept of \(\frac{7}{8} \) and is perpendicular to \(y = -\frac{3}{5} x - \frac{1}{4} \).

5. Write the equation of the line that has a y-intercept of \(\frac{14}{3} \) and is perpendicular to \(y = -5x + \frac{2}{3} \).
Parallel Lines

Class Discussion

Here is the graph of $y = -4x - 1$.

1. (a) What is the equation of the line l_1 that has a y-intercept of 1 and that is perpendicular to $y = -4x - 1$?

(b) What is the equation of the line l_2 that has a y-intercept of 2 and that is perpendicular to $y = -4x - 1$?

(c) Draw l_1 and l_2 on this graph.

(d) If two lines are perpendicular to the same line are they parallel to each other?

(e) Is $l_1 \parallel l_2$?

(f) What is the slope of l_1?

(g) What is the slope of l_2?

(h) Are these slopes equal?

If two lines are parallel they have the same slope, and

if two lines have the same slope they are parallel.
Exercises

1. If you drew the lines for the equations below, you would find that each line under B is parallel to a line under A. Match the equations of the parallel lines.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 3x - 2)</td>
<td>(a) (y = \frac{3}{4}x - 12)</td>
</tr>
<tr>
<td>(y = \frac{3}{4}x + 5)</td>
<td>(b) (y = \frac{1}{6}x + \frac{1}{2})</td>
</tr>
<tr>
<td>(y = 17x + 6)</td>
<td>(c) (y = 3x + 0)</td>
</tr>
<tr>
<td>(y = \frac{1}{8}x - 7)</td>
<td>(d) (y = -5x - \frac{3}{7})</td>
</tr>
<tr>
<td>(y = -5x + \frac{1}{6})</td>
<td>(e) (y = 17x - 20)</td>
</tr>
</tbody>
</table>

2. Write the equation of the line that has a y-intercept of 8 and that is parallel to \(y = \frac{2}{5}x + 2 \).

3. Write the equation of the line that has a y-intercept of -5 and is parallel to \(y = 7x + 23 \).

4. Write the equation of the line that has a y-intercept of \(\frac{5}{8} \) and is parallel to \(y = \frac{5}{2}x - \frac{3}{4} \).

119
Absolute Value and Distance

On the number line, you know that 3 names an integer that is three units to the right of zero,

and \(-3 \) names an integer that is three units to the left of zero.

Point \(A \) and point \(C \) are both the same distance from point \(B \). That is, \(AB \) and \(CB \) have the same length.

Since it doesn't make sense to talk about negative distances or negative lengths, we need some way to show that the distance between some number and zero on the number line is a positive number. We call this distance the absolute value of the number. So the absolute value of 3 is 3 and the absolute value of \(-3 \) is 3. This is the same thing as saying that \(AB \) and \(BC \) are both 3 units long.

Instead of writing "the absolute value of" every time we want to refer to a distance on the number line we put vertical bars on both sides of the number like this: \(| -3 | \). This is read "the absolute value of \(-3 \)". So

\[| -3 | = 3 \quad \text{and} \quad | 3 | = 3 \]
Here are a few more examples.

\[\begin{align*}
|5| &= 5 \quad \text{and} \quad |5| = 5 \\
|17| &= 17 \quad \text{and} \quad |17| = 7 \\
|39| &= 39 \quad \text{and} \quad |39| = 39
\end{align*} \]

Class Discussion

1. Here is a number line with some of the points named by letters. Find the distance from the origin, \(R \), to each of the following points. (Hint. Remember, distance is always positive.)

\[\begin{align*}
L \quad Q \quad P \quad V \quad S \quad R \quad A \quad D \quad E \quad C \quad B \quad X \\
5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6
\end{align*} \]

(a) \(D \) \quad (f) \(E \) \\
(b) \(V \) \quad (g) \(A \) \\
(c) \(B \) \quad (h) \(R \) \\
(d) \(L \) \quad (i) \(Q \) \\
(e) \(P \) \quad (j) \(C \)

2. What is the common name for each of the following?

(a) \(|\text{-}8| = \) \quad (f) \(|\text{-}6| = \) \\
(b) \(|7| = \) \quad (g) \(|\text{-}4| = \) \\
(c) \(|9| = \) \quad (h) \(|5| = \) \\
(d) \(|2| = \) \quad (i) \(|5| = \) \\
(e) \(|\text{-}2| = \)
The distance between two points on the number line is always shown by a positive number. If A and B are two points on the number line,

then the distance between A and B is the same as the distance between B and A. On this number line,

the distance between B and A is found by subtracting the coordinate of A from the coordinate of B.

\[7 - 2 = 5 \]

The distance between A and B must also be 5. If we subtract the coordinate of B from the coordinate of A the answer is a negative integer.

\[2 - 7 = -5 \]

But you know the distance must be a positive number. On this number line,

the distance between B and A is

\[5 - (-4) = 5 + 4 = 9 \]

So, the distance between A and B must also be 9. But if we write $-4 - 5$, we get

\[-4 - 5 = -4 + -5 = -9 \]
which is again a negative integer. You know it doesn't make sense to talk about a negative distance but if we use the idea of absolute value we can get away from this. Look at this example:

If the distance from A to B is $4 - 5$ we can write this using the absolute value symbols, like this

$$|4 - 5|.$$

Then we do the arithmetic inside the vertical bars first. So,

$$|4 - 5| = |4 + (-5)|$$

$$= |9|$$

$$= 9$$

By doing it this way, we always get a positive number for the distance.

Here is one more example:

Find the distance between C and D.

We can find this distance in two ways.

Like this:

$$|8 - (-5)| = |8 + 5|$$

$$= |13|$$

$$= 13$$

or like this:

$$|5 - 8| = |5 + (-8)|$$

$$= |-3|$$

$$= 3$$

You can see that as long as you do the arithmetic inside the absolute value bars, it makes no difference whether the problem is $|8 - (-5)|$ or $|5 - 8|$. The answer will always be positive.
Exercises

1. Find the value for each of the following:
 (a) \(|8| = \) ________
 (f) \(|18 - 5| = \) ________
 (b) \(|-10| = \) ________
 (g) \(|3 - 7| = \) ________
 (c) \(|23 - 2| = \) ________
 (h) \(|7 - 3| = \) ________
 (d) \(|2 - 23| = \) ________
 (i) \(|3 \frac{1}{2} - 7 \frac{1}{2}| = \) ________
 (e) \(|5 - 18| = \) ________
 (j) \(|7 \frac{1}{2} - 3 \frac{1}{2}| = \) ________

2. Find the distances between the following points marked on this number line.

 - A and C ________
 - B and C ________
 - C and D ________
 - E and C ________
 - B and E ________
 - A and F ________
 - B and D ________
 - F and E ________
 - C and B ________
 - F and A ________

3. (a) On this number line, locate the points A and B, so that the distance between A and P is 5 and the distance between B and P is 5.

 - (b) What is the distance between A and B? ________
The Coordinate of the Midpoint of a Segment

In the chapter on congruence you learned to bisect a line segment.

The point of bisection, M, is called the midpoint of \(AB \). Now you will learn how to find the coordinate of the midpoint of a segment.

Class Discussion

Points A, B, C, and D are shown on the number line below. Use this number line to answer the questions that follow.

1. (a) What is the coordinate of the point half-way between C and D? \(\frac{2 + 8}{2} = \) This is the coordinate of the midpoint of \(CD \).
 (b) What is the coordinate of C?
 (c) What is the coordinate of D?
 (d) \(\frac{2 + 8}{2} = \)
2. (a) What is the coordinate of the point half-way between A and B? ______ This is the coordinate of the midpoint of \(\overline{AB}\).

(b) What is the coordinate of A? ______

(c) What is the coordinate of B? ______

(d) \[\frac{-6 + 8}{2} = \] ______

3. (a) What is the coordinate of the midpoint of \(\overline{AD}\)? ______

(b) What is the coordinate of A? ______

(c) What is the coordinate of D? ______

(d) \[\frac{-6 + 8}{2} = \] ______

4. On this number line:

\[\begin{array}{cccccccc}
A & \bullet & \bullet & 0 & 1 & 2 & 3 & 4 & 5 & 6 & B
\end{array} \]

(a) The coordinate of A is ______.

(b) The coordinate of B is ______.

(c) The coordinate of the midpoint is \(\frac{1}{2} \) or ______.

5. Suppose \(a \) and \(b \) are the coordinates of A and B on the number line (\(a \) and \(b \) are numbers).

\[\begin{array}{cccccc}
A & a & m & \bullet & B & b
\end{array} \]

Write a formula for finding the coordinate of the midpoint \(m \).

(Hint. Look at your answers to part (d) in Problems 1, 2, and 3.)

\[m = \frac{a + b}{2} \]
Exercises

1. Find the coordinate of the midpoint of the following line segments.

Example. The coordinate of the midpoint of \overline{AC} is
\[
\frac{-8 + 2}{2} = \frac{-10}{2} = -5.
\]

(a) The coordinate of the midpoint of \overline{DF} is
\[+ = \text{or } \text{.}
\]

(b) The coordinate of the midpoint of \overline{CE} is
\[+ = \text{or } \text{.}
\]

(c) The coordinate of the midpoint of \overline{AD} is
\[+ = \text{or } \text{.}
\]

(d) The coordinate of the midpoint of \overline{BF} is
\[+ = \text{or } \text{.}
\]

(e) The coordinate of the midpoint of \overline{AF} is
\[+ = \text{or } \text{.}
\]
2. Use the midpoint formula \(\frac{a + b}{2} = m \) to find the coordinate of the midpoint of a segment whose endpoints have coordinates \(a \) and \(b \).

Example. \(a = -3, \ b = 9 \)

\[
m = \frac{a + b}{2} = \frac{-3 + 9}{2} = \frac{6}{2} = 3
\]

(a) \(a = 0, \ b = -10 \)

\[
m = \frac{0 + (-10)}{2} = \frac{-10}{2} = -5
\]

(b) \(a = -12, \ b = -4 \)

\[
m = \frac{-12 + (-4)}{2} = \frac{-16}{2} = -8
\]

(c) \(a = 12, \ b = 18 \)

\[
m = \frac{12 + 18}{2} = \frac{30}{2} = 15
\]

(d) \(a = -1, \ b = 8 \)

\[
m = \frac{-1 + 8}{2} = \frac{7}{2} = 3.5
\]

(e) \(a = -7, \ b = 16 \)

\[
m = \frac{-7 + 16}{2} = \frac{9}{2} = 4.5
\]

(f) \(a = -7, \ b = -16 \)

\[
m = \frac{-7 + (-16)}{2} = \frac{-23}{2} = -11.5
\]
Distance Between Two Points in a Plane, Part I.

You know how to find the distance between two points on the number line when you know the coordinates of the points. For example, on this number line

![Number line diagram](image)

the distance between A and B is

\[|5 - 3| = |5 + 3| \]
\[= |8| \]
\[= 8 \]

If you go the other way then the distance between B and A is

\[|3 - 5| = |3 + 5| \]
\[= |8| \]
\[= 8 \]

We can find the distance between two points in the coordinate plane when we know the coordinates of the points. First we will talk about the distance between two points that are on either horizontal or vertical lines but are not on the axes.
(a) What are the coordinates of point C? \((,)\)

(b) What are the coordinates of point D? \((,)\)

(c) What is the length of \(\overline{AB}\)?

(d) Is the y-coordinate of C the same as the y-coordinate of A?

(e) Is the y-coordinate of D the same as the y-coordinate of B?

(f) What is the length of \(\overline{CD}\)?
(a) What are the coordinates of point \(G \) ? \((- , -)\)

(b) What are the coordinates of point \(H \) ? \((- , -)\)

(c) What is the length of \(\overline{EF} \) ?

(d) Is the x-coordinate of \(E \) the same as the x-coordinate of \(G \) ?

(e) Is the x-coordinate of \(F \) the same as the x-coordinate of \(H \) ?

(f) What is the length of \(\overline{GH} \) ?

To find the distance between two points that lie on a line parallel to the X-axis:

Find the absolute value of the difference of the x-coordinates.

To find the distance between two points that lie on a line parallel to the Y-axis:

Find the absolute value of the difference of the y-coordinates.
Example 1.

Find the distance between two points A and B whose coordinates are \(A(-4,2) \) and \(B(5,2) \).

Solution.

\[
| -4 - 5 | = | -4 + 5 |
\]

\[
= | -9 |
\]

\[
= 9
\]

The length of \(AB \) is 9.

Example 2.

Find the distance between two points, C and D whose coordinates are \(C(3,3) \) and \(D(3,2) \).

Solution.

\[
| -3 - 2 | = | -3 + 2 |
\]

\[
= | -5 |
\]

\[
= 5
\]

The length of \(CD \) is 5.
Exercises

1. On this coordinate plane some points have been located. Find the length of the following line segments.

2. Find the distance between two points, A and B, whose coordinates are A(2,5) and B(2,-3).

3. Find the distance between two points, C and D, whose coordinates are C(-5,-4) and D(5,-4).
In the last lesson you learned how to find the distance between two points in the coordinate plane if the two points are on a line parallel to either the X-axis or the Y-axis. Now you are going to learn how to find the distance between any two points in the coordinate plane.

Class Discussion

On the coordinate plane below, we have located two points A and B.

1. Write the coordinates of points A and B in the blanks beside these points.

2. Use your straightedge and draw \overline{AB}.

3. Is \overline{AB} on a line parallel to either axis?
4. Use your straightedge and draw the vertical line that passes through point A.

5. Use your straightedge and draw the horizontal line that passes through point B.

6. Do the two lines you just drew intersect?

7. Label the point of intersection P. What are the coordinates of point P? (,)

8. What kind of a figure is formed by AP, PE, and AB?

If you followed the above directions correctly your figure should look like this.
You know that the vertical line through point A and the horizontal line through point B are perpendicular to each other at point P. So, the angle at P is a right angle, \(\triangle APB \) is a right triangle, and \(\overline{AB} \) is the hypotenuse of this triangle. To find the length of \(\overline{AB} \) you use the Pythagorean Property. That is, for all right triangles

\[
\begin{align*}
\text{if } a & \text{ is the length of one leg of the triangle, and } b \text{ is the length of the other leg of the triangle, then the square of the length of the hypotenuse, } c, \text{ is found by the formula} \\
& \quad c^2 = a^2 + b^2, \text{ so} \\
& \quad c = \sqrt{a^2 + b^2}.
\end{align*}
\]

9. For the right triangle \(\triangle APB \):

(a) What is the length of \(\overline{AP} \)? __________

(b) What is the length of \(\overline{AP} \), squared? __________

(c) What is the length of \(\overline{BP} \)? __________

(d) What is the length of \(\overline{BP} \), squared? __________

(e) What is the sum? (length of \(\overline{AP}^2 \) + length of \(\overline{BP}^2 \)) __________

(f) What is the square root of the number you got for an answer to part (e)? __________ This is the length of \(\overline{AB} \).
We will summarize what we just did.

(1) The length of \overline{AP} is $|7 - 3|$ or 4.

(2) The length of \overline{BP} is $|4 - 1|$ or 3.

(3) The length of \overline{AB} is $\sqrt{4^2 + 3^2}$.

\[= \sqrt{16 + 9} \]
\[= \sqrt{25} \]
\[= 5 \]
Exercises

On these coordinate planes, plot the points A and B. Draw the vertical line through A and the horizontal line through B and locate point P. Then find the length of \overline{AB}.

1. $A(-2, 2), B(1, 6)$

Length of $\overline{AB} = \sqrt{(-2 - 1)^2 + (2 - 6)^2}$

2. $A(-4, 3), B(4, -3)$

Length of $\overline{AB} = \sqrt{(-4 - 4)^2 + (3 - (-3))^2}$
3. $A(-6,7) , B(-1,-5)$

Length of $\overline{AB} =$

4. $A(3,4) , B(6,-2)$

Length of $\overline{AB} =$
5. Suppose we have a point A whose coordinates are (x_2, y_2), $(x_2$ and y_2 are numbers) and a point B whose coordinates are (x_1, y_1). $(x_1$ and y_1 are numbers different from x_2 and y_2).

Then the coordinates of point P are (x_2, y_1).

Use the absolute value symbol, what you know about finding the distance between two points on a line parallel to either the X-axis or Y-axis, and the Pythagorean Property to see if you can discover how we got this formula for finding the length of \overline{AB}.

\[
\text{Length of } \overline{AB} = \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}
\]
Pre-Test Exercises

These exercises are like the problems you will have on the chapter test. If you don't know how to do them, read the section again. If you still don't understand, ask your teacher.

1. (Section 18-1)
 For this graph:
 (a) What is the rise of the line? ________
 (b) What is the run of the line? ________
 (c) What is the slope of the line? ________

2. (Section 18-2)
 (a) Lines that have a positive slope lean to your ________.
 (b) Lines that have a negative slope lean to your ________.
3. (Section 18-2)
Here are two lines, \(l_1 \) and \(l_2 \).

(a) What is the slope of \(l_1 \)?

(b) What is the slope of \(l_2 \)?

4. (Section 18-3)
Here is the graph of \(l_1 \).

(a) What is the y-intercept of \(l_1 \)?

(b) What is the slope of \(l_1 \)?
5. (Section 18-3)
Write the slope, the y-intercept, and the function for this line.

(a) Slope is ________.
(b) y-intercept is ________.
(c) \(f: x \rightarrow \) ________

6. (Section 18-3)
Without making a table of inputs and outputs, draw the graph of \(f: x \rightarrow 3x + 2 \).
7. (Section 18-4)
Here is the graph of \(l_2 \).
(a) What is the slope of this line? _____
(b) What is the y-intercept of this line? _____
(c) Write the function for this line.
\[f : x \rightarrow \text{________} \]
(d) Write the equation of this line.
\[y = \text{________} \]

8. (Section 18-4)
Without making a table of inputs and outputs, draw the graph of \(y = \frac{3}{4}x + 7 \).
9. (Section 18-5)
Find the solution of these two equations by graphing them and writing the coordinates of their point of intersection.

\[y = 3x + 2 \]
and
\[y = 2x + 3 \]

The solution is
\[(,) \].

10. (Section 18-6)
(a) What is the slope of the line \(y = 4x + \frac{3}{4} \) ?

(b) What is the reciprocal of the slope of the line \(y = 4x + \frac{3}{4} \) ?

(c) What is the opposite of the reciprocal for part (b)?

(d) Write the equation of the line that is perpendicular to \(y = 4x + \frac{3}{4} \) and has a y-intercept of 6.

11. (Section 18-7)
Write the equation of the line that has a y-intercept of 9 and is parallel to the line whose equation is \(y = \frac{3}{4} x + 5 \).

\[y = \]
12. (Section 18-8)

Find the value for each of the following:

(a) \(|-8| = \) \[\text{_____} \]
(b) \(|10| = \) \[\text{_____} \]
(c) \(|3 - 7| = \) \[\text{_____} \]
(d) \(|-5 - 10| = \) \[\text{_____} \]

13. (Section 18-8)

What is the distance between points \(A \) and \(B \)?

14. (Section 18-9)

What is the coordinate of the midpoint of \(\overline{AB} \)?

15. (Section 18-10)

Find the length of the following line segments.

(a) \(\overline{AB} \) \[\) \[\text{_____} \]
(b) \(\overline{CD} \) \[\text{_____} \]
Find the distance between point A and point B.

The length of \overline{AB} is ______.
1. For this graph:

(a) What is the rise of the line? ___________

(b) What is the run of the line? _________

(c) What is the slope of the line? _________

2. (a) Lines that lean to your right have a __________ slope.

(b) Lines that lean to your left have a __________ slope.

3. Here are two lines, \(l_1 \) and \(l_2 \).

(a) What is the slope of \(l_1 \)? ________

(b) What is the slope of \(l_2 \)? ________
4. Here is the graph of \(\ell_1 \).

(a) What is the \(y \)-intercept of \(\ell_1 \)？

(b) What is the slope of \(\ell_1 \)？

5. Write the slope, the \(y \)-intercept, and the function for this line.

(a) Slope is __________.

(b) \(y \)-intercept is __________.

(c) \(f : x \rightarrow \) __________.
6. Without making a table of inputs and outputs, draw the graph of
\(f : x \rightarrow 2x + 3 \).

7. Here is the graph of \(l_2 \).

(a) What is the slope of this line? ________

(b) What is the \(y \)-intercept of this line? ________

(c) Write the function for this line.
\[f : x \rightarrow \] ________

(d) Write the equation of this line.
\[y = \] ________
8. Without making a table of inputs and outputs, draw the graph of \(y = \frac{4}{3} x + 5 \):

![Graph of \(y = \frac{4}{3} x + 5 \)]

9. Find the solution of these two equations by graphing them and writing the coordinates of their point of intersection.

\[y = -2x + 1 \]
\[y = 2x - 3 \]

The solution is \((__, __)\).
10. (a) What is the slope of \(y = 3x + 5 \) ?

(b) What is the reciprocal of the slope?

(c) What is the opposite of the reciprocal for part (b)?

(d) Write the equation of a line that is perpendicular to
\(y = 3x + 5 \) and has a y-intercept of 3.
\(y = \)

11. Write the equation of the line that has a y-intercept of -5
and is parallel to the line whose equation is \(y = \frac{3}{2}x + 7 \).
\(y = \)

12. Find the value for each of the following:

(a) \(|-12| = \)

(b) \(|8| = \)

(c) \(|5 - 9| = \)

(d) \(|-3 - 7| = \)

13. What is the distance between points A and B?

14. What is the coordinate of the midpoint of \(AB \)?
15. Find the length of the following line segments.

(a) Length of \overline{AB}

is ______.

(b) Length of \overline{CD}

is ______.

16. Find the distance between point A and point B.

The length of \overline{AB} is ______.
Check Your Memory: Self-Test

1. (Section 13-6)

 Fill the blanks. You may use your flow chart, page 7, if you need it. (Remember to rewrite subtraction problems as addition.)

 (a) \(\frac{3}{4} + \frac{7}{8} = \) ________

 (b) \(\frac{1}{3} + \frac{3}{4} = \) ________

 (c) \(\frac{7}{5} - \frac{1}{10} = \) ________

 (d) \(\frac{7}{8} - \frac{1}{2} = \) ________

2. (Section 13-11)

 Fill the blanks.

 (a) \(\frac{1}{4} = \) ________ %

 (b) \(.6 = \) ________ (Write a fraction.)

 (c) \(.7 = \) ________ %

 (d) \(5\% = \) ________ (Write a decimal.)

 (e) \(\frac{7}{8} = \) ________ (Write a decimal.)

 (f) \(130\% = \) ________ (Write a decimal.)

 (g) \(75\% = \) ________ (Write a fraction.)

 (h) \(\frac{3}{2} = \) ________ %
3. (Section 13-10)

Use scientific notation to write these.

(a) \(34.063 = \) ____________

(b) \(.00982 = \) ____________

(c) \(768,000 = \) ____________

(d) \(.015793 = \) ____________

(e) \(5764.31 = \) ____________

4. (Sections 14-4 and 14-5)

(a) For the circle below, O is the center and \(\overline{AB}\) is the diameter. Construct a right angle with the vertex at point C.
(b). In the figure below, line \(l \) is the perpendicular bisector of \(AB \).

\[\overline{MA} \cong \overline{MB} \text{ because } \]

\[\angle AMC \cong \angle BMC \text{ because } \]

\[\overline{CM} = \text{ because } \]

Therefore \(\triangle AMC \cong \triangle \) _____ by the _____ congruence property.

What kind of triangle is \(\triangle ABC \)? _____
5. (Section 16-4)

Find the length of the hypotenuse of each of these right triangles.

(a)

(b)

\[a^2 + b^2 = c^2 \]

\[5^2 + 6^2 = c^2 \]

\[5^2 + 10^2 = c^2 \]

\[a^2 + b^2 = c^2 \]

\[24^2 + 10^2 = c^2 \]
6. (Section 16-2)

Find the area of each square.

(a)

\[
\text{Area } =
\]

(b)

\[
\text{Area } =
\]

Find the length of the side of each square.

(c)

Area = 29

\[
S =
\]

(d)

Area = 36

\[
S =
\]

(e)

Area = 320

\[
S =
\]

7. (Section 16-10)

(a) Find the area of a circle whose radius is 10 inches.

\[
\text{(use } \pi \approx 3.14\text{)} \quad A = \text{______ sq. in.}
\]

(b) Find the area of a circle whose radius is \(\sqrt{14}\) ft.

\[
\text{(use } \pi \approx \frac{22}{7}\text{)} \quad A = \text{______ sq. ft.}
\]

Now check your answers on the next page. If you do not have them all right, go back and read the section again.
Answers to Check Your Memory: Self-Test

1. (a) $\frac{4}{13}$
 (b) $\frac{13}{12}$
 (c) $\frac{13}{10}$
 (d) $\frac{3}{8}$

2. (a) 25%
 (b) $\frac{3}{5}$
 (c) 70%
 (d) 0.05
 (e) 0.875
 (f) 1.3
 (g) $\frac{3}{4}$
 (h) 150%

3. (a) 3.4063×10^1
 (b) 9.82×10^{-3}
 (c) 7.68×10^5
 (d) 1.5793×10^{-2}
 (e) 5.976431×10^4
4. (a) The easiest way is to draw \overrightarrow{CA} and \overrightarrow{CB}.
\[\angle ACB \text{ is a right angle.} \]

(b) $MA \approx MB$ because l bisects \overline{AB}.
\[\angle AMC \approx \angle BMC \text{ because line } l \perp \overline{AB}. \]
\[CM \approx CM \text{ because it is the same segment.} \]
\[\triangle AMC \approx \triangle BMC \text{ by the SAS congruence property.} \]
\[\triangle ABC \text{ is an isosceles triangle.} \]

5.
\[5^2 + 6^2 = c^2 \]
\[25 + 36 = c^2 \]
\[61 = c^2 \]
\[\sqrt{61} = c \]

\[10^2 + 24^2 = c^2 \]
\[100 + 576 = c^2 \]
\[676 = c^2 \]
\[26 = c \]

6. (a) $A = 25$
(b) $A = 27$
(c) \[s = \sqrt{29} \]
(d) \[s = 6 \]
(e) \[s = \sqrt{320} \text{ (or } 8 \cdot \sqrt{5} \text{ because } \sqrt{320} = \sqrt{64 \cdot 5} \]
\[= \sqrt{64} \cdot \sqrt{5} \]
\[= 8 \cdot \sqrt{5} \)

7. (a) $A \approx 31\frac{1}{4}$ sq. in.
(b) $A \approx 44$ sq. ft.