On-the-job training literature from both civilian and military sources was reviewed. Selected references from the study are organized under the following headings: literature reviews and bibliographies, handbooks and manuals, cost effectiveness literature, technique comparison studies, systems analysis of training, approaches to program evaluation, and military documents. Many of the items are annotated, some rather extensively. In addition, a number of references were selected that were thought to contain innovative ideas that should be considered for improving on-the-job training programs. The list of possible innovations is organized under the following topics: administration, audiovisual presentation, computer-assisted techniques, evaluation, incentives/motivation, instructional techniques, periodic surveys, and program design. The various ways in which these innovations might address current problems in the Air Force on-the-job training program are described and commented on. Estimates are also made of the resource requirements involved if possible modifications in existing procedures were to be implemented. (Author/PR)
AN ACTION ORIENTED REVIEW OF THE
ON-THE-JOB TRAINING LITERATURE

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF
EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT. POINTS OF VIEW OR OPINIONS
STATED ARE NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

American Institutes for Research
3301 New Mexico Avenue
Washington, DC 20016

TECHNICAL TRAINING DIVISION
Lowry Air Force Base, Colorado 80230

December 1974

Interim Report for Period June 1972 – January 1975

Approved for public release; distribution unlimited.

JUN 27 1975

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235
NOTICE

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This interim report was submitted by American Institutes for Research, 3301 New Mexico Avenue, Washington, DC 20016, under contract F41609-72-C-0036, project 1121, with Technical Training Division, Air Force Human Resources Laboratory (AFSC), Lowry Air Force Base, Colorado 80230. Dr. James R. Burkett, Instructional Technology Branch, was the contract monitor. The effort was partially supported by program element 61101F, In-House Laboratory Independent Research Funds.

This report has been reviewed and cleared for open publication and/or public release by the appropriate Office of Information (OI) in accordance with AFR 190-17 and DoDD 5230.9. There is no objection to unlimited distribution of this report to the public at large, or by DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.

MARTY R. ROCKWAY, Technical Director
Technical Training Division

Approved for publication.

HAROLD E. FISCHER, Colonel, USAF
Commander
The on-the-job training (OJT) literature was reviewed, and selected references were organized in terms of the following categories: literature reviews and bibliographies; handbooks and manuals; cost effectiveness; technique comparison studies; systems analysis of training; approaches to program evaluation; and military documents. In addition, a number of references were selected that are thought to contain innovative ideas that should be considered by people with responsibility for managing and evaluating OJT.
Block 20 - Cont'd.

programs. The various ways in which these "innovations" might address current interests or problems in the Air Force OJT program are described. Specific comments are made about the possible advantages associated with each idea. Estimates are also made of the resource requirements involved if modifications to existing procedures or programs were to be implemented.
SUMMARY

The On-The-Job Training (OJT) literature was reviewed, and selected references were organized in terms of the following categories: literature reviews and bibliographies; handbooks and manuals; cost effectiveness; technique comparison studies; systems analysis of training; approaches to program evaluation; and military documents. In addition, a number of references were selected that are thought to contain innovative ideas that should be considered by people with responsibility for improving OJT programs. The various ways in which these "innovations" might address current problems in the Air Force OJT program are described. Specific comments were made about the possible advantages associated with each idea. Estimates were also made of the resource requirements involved if possible modifications in existing procedures were to be implemented.
PREFACE

This handbook is a research product of the exploratory development program of the Technical Training Division, Air Force Human Resources Laboratory. This effort is documented under project No. 1121, Technical Training Development, Task 112105, Application of Systems Analysis to Air Force Technical Training. The services of the American Institutes for Research (AIR) were obtained through contract No. F41609-C-0036.

Dr. Robert W. Stephenson was principal investigator of the technical work that resulted in the conduct of the literature review. Mr. Clifford P. Hahn was coinvestigator. Dr. James R. Burkett, Technical Training Division, was the Air Force contract monitor.

The authors gratefully acknowledge the many contributions of Mrs. Halaine Gary, who collected all the works reviewed, and Mrs. BevAnne Ross, who organized the bibliographic citations and edited the report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>7</td>
</tr>
<tr>
<td>III</td>
<td>11</td>
</tr>
<tr>
<td>IV</td>
<td>26</td>
</tr>
<tr>
<td>V</td>
<td>38</td>
</tr>
<tr>
<td>VI</td>
<td>64</td>
</tr>
<tr>
<td>VII</td>
<td>77</td>
</tr>
<tr>
<td>VIII</td>
<td>82</td>
</tr>
<tr>
<td>IX</td>
<td>98</td>
</tr>
<tr>
<td>X</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>160</td>
</tr>
</tbody>
</table>

AUTHOR INDEX
SECTION I
INTRODUCTION

This is one of several reports describing the work conducted during a two-year study. One of these reports (Stephenson and Burkett, 1973) describes a systems analysis of the Air Force OJT program. One additional report (in two volumes), a "Program Evaluation Guide" for evaluating on-the-job training programs, is planned.

The Air Force on-the-job training (OJT) system is vast and complex, both from a training and a management standpoint. The present OJT system encompasses a wide diversity of technical specialties and command missions, and the system must provide training to a broad mix of trainees having varying aptitudes and levels of Air Force experience. A myriad of training materials, directives, and instructional approaches are used. Because of its diversity and complexity, the OJT process is expensive and difficult to manage. It is also understandably difficult to evaluate in terms of training adequacy and cost effectiveness.

There is a need for better and more easily applied methods of monitoring and evaluating the Air Force OJT program in terms of costs, quality and effectiveness of training provided, determination of optimal OJT-resident school mix, and timeliness in incorporating innovative OJT instructional techniques as they become available. While it is recognized that actual job performance is the ultimate criterion of training success, performance test development and administration are often too costly to be practical in so vast a training system as Air Force OJT. There is, therefore, a need for exploration of new techniques that could improve OJT effectiveness.

Additionally, there is a need to compile the available information about OJT into a single useful source document with recommendations for areas where the Air Force OJT system can be most easily and rapidly improved.

OBJECTIVES OF THE PROJECT

Because of these needs, an Air Force research requirement was formulated and modified as a result of extensive consultations with a variety of interested headquarters locations. The objectives of the investigation were finally stated as follows:

(1) Describe the operation, capabilities, and functional requirements of OJT as presently conducted throughout the Air Force through appropriate application of systems-analysis and cost-analysis techniques.

(2) Identify and document problems being experienced by OJT managers, trainers, and trainees in the field in accomplishing representative OJT programs.

(3) Devise and demonstrate new methods and alternatives for measuring the effectiveness of OJT programs, and recommend ways to apply these methods to improve OJT throughout the Air Force (Statement of Work, Contract No. F41609-72-C-0036, p.1).

PROJECT PHASES

The decision was made to conduct the work in two phases. The first phase would be concerned with problem definition, the second phase with the evaluation of several innovative approaches.

Specific objectives of Phase 1 were:

(1) Review of civilian and military technical literature on OJT as well as all current Air Force regulations, manuals, and other documents governing or describing the OJT system.

(2) Conduct of a systems analysis of the Air Force OJT program to describe what the system is supposed to be, what its programmed functions are, how it is supposed to operate under current directives, and how it relates to other systems and personnel programs.

(3) Determine, through interviews and questionnaire responses, what problems are being experienced in the field in conducting representative OJT programs.
Determine and document the extent of correspondence and interaction between OJT and formal resident training programs.

Make recommendations on how to improve the present Air Force OJT system based upon the results of the overall systems analysis accomplished in objectives (1) through (4), above (Statement of Work, Contract No. F41609-72-C-0036, ¶ 1).

The present report describes the results of the literature review task (Objective 1).
SECTION II

SCOPE OF LITERATURE REVIEW

The requirements for the Literature Review, to be conducted as part of this project, were stated as follows:

"During Phase I, the contractor shall conduct and document a thorough, comprehensive review of the literature pertaining to on-the-job training methods, materials, and media. Topics reviewed shall include, but not be limited to, on-the-job training, correspondence technical training, apprenticeship training, field training, and operational training. The contractor shall also be responsible for reviewing and synthesizing all applicable Air Force directives, regulations, and manuals on the Air Force on-the-job training program as well as any parallel or pertinent Army, Navy, or other DOD OJT directives and policy documents" (Statement of Work, Contract No. F1609-72-C-0036, pp. 1-2).

References were selected in accordance with this requirement, and were briefly reviewed by the senior author. Many of the references were literature reviews and bibliographies assembled by other organizations, so the total number of citations that were considered for inclusion numbered in the thousands. In addition, approximately 50 government documents and manuals were obtained by the contract monitor and forwarded to the principal investigator for possible inclusion in the study.

SOURCES

Relevant references were gleaned from many sources. The literature review covered a period from 1957 through 1973 and was brief in scope, but thousands of references were considered. Computer searches were made of relevant abstracts that are contained in the Educational Resources Information Center (ERIC) and the Defense Documentation Center (DDC) data bases. Special computer lists of unpublished work currently in progress (funded by the Department of Defense) were also obtained and searched. These computer runs produced abstracts of approximately 2,000 relevant reports, documents, and current projects.

Other important sources of references were the existing bibliographies and literature reviews and abstracting services in the area of vocational education. These have been produced on a recurring basis...
for many years by the Ohio State University Center for Vocational and Technical Education. The focus of most of these references is upon problems of civilian education rather than military education, but many useful citations were found to be applicable to this research. Other bibliographies were reviewed as useful sources of information (e.g., bibliographies of reports produced by organizations that specialize in training research, such as the Human Resources Research Organization (HumRRO), the Naval Personnel and Training Research Laboratory, the Air Force Human Resources Laboratory, etc.).

In addition to these computer searches and secondary sources of literature reviews, special independent reviews were conducted of recent journals that were likely to have information about training innovations and research. The Training and Development Journal of the American Society for Training and Development, for example, was a "gold mine" source of information. It contained abstracts of articles that were selected because they were considered useful for people in the training field. Other relevant sources included such publications as the Journal of Applied Psychology, and Personnel Psychology.

The training literature is not very inspiring. Campbell (1971) conducted a review of the personnel training and development literature in 1971 and summarized his views as follows:

"By and large, the training and development literature is voluminous, nonempirical, nontheoretical, poorly written, and dull... it is faddish to the extreme. The fads center around the introduction of new techniques and follow a characteristic pattern. A new technique appears on the horizon and develops a large stable of advocates who first describe its 'successful' use in a number of situations. A second wave of advocates busy themselves trying out numerous modifications of the basic technique. A few empirical studies may be carried out to demonstrate that the technique 'works.' Then the inevitable backlash sets in, and a few vocal opponents begin to

2Center for Vocational and Technical Education. Abstracts of Research and Related Materials in Vocational and Technical Education (ARM), a quarterly publication of the ERIC Clearinghouse on Vocational and Technical Education.

criticize the usefulness of the technique, most often in the absence of data. Such criticism typically has very little effect. What does have an effect is the appearance of another new technique and a repetition of the cycle.

"Another recurring phenomenon is the cyclical article. That is, there are several prototype papers that appear in the literature at regular intervals. For example, there is the article admonishing people to evaluate their training efforts. There is another which argues that training should be well-planned and systematic. Yet another reminds us that training and development efforts must have the support of top management or they will fail. There are 5-10 of these basic types, which say the same things over and over again in almost the same language." (Campbell, 1971)

We found the literature on OJT to be essentially as Campbell describes it. Most references were quickly rejected on the grounds that they contained nothing new or that they were concerned with formal classroom training rather than OJT. We were not, however, only concerned with experiments that proved something. Our own literature review was much more tolerant than Campbell's, since we also sought manuals and procedural guidelines that could be used by non-experts to evaluate training programs. We were also interested in new ideas, whether they had been proved valid or not.

4Reprinted, with permission, from "Personnel Training and Development," Annual Review of Psychology, Volume 22, pages 565-566, Copyright, 1971 by Annual Reviews, Inc. All rights reserved. Permission to quote is also given by the author, John P. Campbell.
CONDUCT OF THE LITERATURE REVIEW

The work started by gathering bibliographies and literature reviews. These were reviewed, and those citations and abstracts that were deemed interesting or pertinent were collected. During a period of several months, the selected references were obtained. The senior author reviewed the mass of references and chose those works that were to be included for bibliographic citation. Each reference was identified and placed into one or more of the following categories:

- Literature Reviews and Bibliographies
- Handbooks and Manuals
- Training Cost-Effectiveness Literature
- Technique Comparison Studies
- Systems Analysis of Training
- Approaches to Program Evaluation
- Military Documents
- Innovations

The report is organized accordingly. A selected bibliography accompanies each of the following sections of this report. Wherever abstracts were available, they have been included. An author index is also provided.
SECTION III
LITERATURE REVIEWS AND BIBLIOGRAPHIES

The training literature is frequently reviewed, and bibliographies (annotated and otherwise) exist in great numbers. Some indication of the mass of the literature can be gleaned from the large number of citations (449 in one reference and 213 in another) cited in very selective literature reviews of the work performed during recent years (Smith, 1967; Campbell, 1971). The Ohio State Center for Vocational and Technical Education is a regular source of references in this area, since they publish literature reviews regularly under contract with the U.S. Department of Health, Education, and Welfare, Office of Education. In addition to these general sources, a number of specialized literature reviews and bibliographies concerned with specific subject-matter areas were searched.

The literature and state-of-the-art reviews and bibliographies that seemed most relevant for OJT are presented in this section.

BIBLIOGRAPHY

A review of educational literature considered most pertinent to the selection and use of appropriate audiovisual media for achieving given learning requirements is presented. Three types of research are reported: comparative effectiveness studies (comparison of a new medium to conventional methods or to other new media); utilization studies (comparing methods of using a given medium); and basic studies (highly analytical studies that seek to explore media and learner variables that may be related to achievement). Included are studies conducted in educational institutions from elementary school through the university. Excluded are production studies, military research, attitudinal and motivational research, and media-preference research. Research literature of the three types is reported for each of the following: television; motion pictures; programmed instruction (primarily linear, paper and pencil programs); filmstrips, slides, transparencies, and other pictorial presentations; radio and recordings; three-dimensional models; and field trips. Limitations of current educational research and a suggested strategy for future research on media conclude the chapter.—Auth.
a notable improvement in research studies. The next five years may bring increased recognition of the importance of research to correspondence education.--Auth.

Embracing 750 items on adult education research and investigation (mostly dated 1969 or 1970), this annotated bibliography covers adult learning characteristics, program planning and administration, learning environments, instructional methods, curriculum materials and instructional devices, personnel and staffing; education of specific clientele groups, special program areas, professional and technical continuing education, management and supervisory development, occupational training, labor education, institutional sponsors, and international perspectives in adult education.--Auth.

Foley, J.P., Jr. Job Performance Aide Research, Summary and Recommendations, Air Force Human Resources Laboratory, Wright-Patterson AFB, Ohio, April 1969. (AD 697 034)
The purpose of this paper is to identify and organize the major topics in the area of behavioral objectives and to present a sampling of the literature in that area. (Note: Where a reference is made to the same source in two different sections, the reference is repeated in each bibliography for the convenience of the reader.)

No attempt has been made to produce a comprehensive bibliography. This Herculean task fortunately has been carried out by others. The Canadian Teachers' Federation (1971) has recently made available a large and comprehensive bibliography of books, articles, and papers totaling more than 350 items. Pouliotte and Peters (1971) have produced an even larger bibliography. It is not annotated, but it is divided into several sections for easier searching and is an invaluable source to the student.

A number of books contain articles or chapters discussing behavioral objectives. The most comprehensive collection is a recent book by Kapfer (1971), which includes about 40 separate articles on such topics as: "Behavioral objectives and the teaching of values," "Behavioral objectives and the educational technologist," and "Classifying objectives to improve instruction."--Auth.

One of the essential obligations of a society at peace is the education of its members. It is also true that an essential mission of a military establishment during peacetime is the training of its personnel. Both education and training have a common basis in the findings of psychological research. This book examines training research accomplished by experimental psychologists, and considers the implications of the research for education in general.
A good portion of the work performed by the individuals involved in this effort has been devoted to research and development in problems of training and the underlying phenomena of learning that are involved. The results of this endeavor are obviously relevant not only to specialized military problems, but to civilian education and to the science of learning. A unique aspect of this work is the fact that an increasing number of persons trained in experimental psychology have been turning their attention to the problems of training and education. In the light of the expressed concern of the United States with education, this meeting of science and education is of great interest. The purpose of this volume is to present a representative account of the training research that has been performed and to examine its implications for psychological research and for training and education.

This is an annotated bibliography including 578 items of research or investigation in adult education, mostly dated 1970 or 1971. They cover adult learning characteristics, program planning and administration, learning environments, instructional methods, curriculum materials and instructional devices, personnel and staffing, education of particular groups, program areas, professional and technical continuing education, management and supervisory development, labor education, occupational training, institutional sponsors, and international perspectives in adult education.--Auth.

This report provides a broad survey of the current state of television training technology in civilian and military situations including detailed information concerning a variety of specific applications at local Naval training facilities in the San Diego area. The relative effectiveness of the existing conventional and unique uses of television is studied and recommendations are made regarding the feasibility of applying existing systems to other Navy contexts or to developing modified or innovative systems.

15
The research information presented includes data pertaining to specific equipments, personnel requirements, cost, and training factors associated with typical television systems.

The effectiveness of television, as a potent and diversified training tool, is confirmed in a wide variety of research findings and demonstrated in a broad range of operational training situations. The most prevalent training use of television is simply as a device to present filmed instructions in a classroom. The more effective utilizations of television, however, appear to be those applications that capitalize on the unique capabilities of the medium, such as in providing immediate performance feedback or in supplying visually programmed task direction.--Auth.

In the reporting of individualized instruction research and development activities, priority was placed upon investigations that dealt with instructional problems within the general parameters of vocational and technical education. Other studies were discussed outside those parameters when it was perceived to be necessary for a more adequate coverage of the topic under discussion. Individualized instruction efforts in areas highly related to vocational and technical education (military training, industrial training, and other areas of education) were thus included. No attempt was made, however, to prepare a thorough review of research in those related areas.

The materials used in this review and synthesis were gathered from several places. A number of useful reports were identified through the computer search conducted by the ERIC Clearinghouse at Ohio State University. As a result of contacting state Research Coordination Unit directors, several other meaningful items were obtained. Dissertation Abstracts served as a prime source for relevant doctoral theses. Contacts with key personnel in military training research resulted in the inclusion of many meaningful research efforts from this sector.--Auth.

Critical and synthesizing essays on four areas of educational research: learning and instruction; school organization, effectiveness, and change; research methodology--multivariate analysis; and history of education.--H.G.

A behavioral objective has been defined by R. F. Mager as a statement telling the conditions under which a specified behavior will occur (external conditions), the type of behavior that is to occur as a result of planned instruction (terminal behavior), and the performance level that will be accepted (acceptable performance). The term *behavioral objective* has accumulated the following synonyms that appear frequently in educational literature: goals, instructional objectives, educational objectives, performance objectives, and training objectives.

This paper, which accepts Mager's definition, begins by reviewing the literature dealing with behavioral objectives. The literature is divided into four categories: 1) educational significance of behavioral objectives, 2) evaluation of student learning and of the instructional program through behavioral objectives, 3) student awareness of and participation in behavioral objectives, and 4) teacher training in the development and use of behavioral objectives.

The section that follows is a synthesis of the strengths and weaknesses of the research reviewed. The final section proposes recommendations for future research, including a thinking process proposed by the author for use by the classroom teacher when planning and evaluating the instructional program.--Auth.
References believed to be of value to persons desiring information relating to the planning of curricula for new occupations in the construction industries were identified through a search of both ERIC publications and non-ERIC publications. ERIC publications included:

- Manpower Research: Inventory for Fiscal Year 1968.
- Research in Education (RIE) Volumes I-IV; Volume V, Numbers 1-7.

The three non-ERIC sources of information that were searched were:

An additional search was made of the Research in Education indexes by computer in an attempt to identify material related to curricula development in the construction industries.

Lewis, Wiley B. Review and Analysis of Curricula for Occupations in Food Processing and Distribution, Information Series No. 32, ERIC Clearinghouse on Vocational and Technical Education, The Center for Vocational and Technical Education, The Ohio State University, Columbus, Ohio, December 1970. (ED 045 820)

Lewis, Wiley B. Review and Analysis of Curricula for Occupations in Public Services, Informational Series No. 29, ERIC Clearinghouse on Vocational and Technical Education, The Center for Vocational and Technical Education, The Ohio State University, Columbus, Ohio, November 1970. (ED 045 813)

Beginning with a historical review of private correspondence schools, supervised high school level programs, military programs (notable the United States Armed Forces Institute), and activities by such university extension luminaries as William Rainey Harper and W.
H. Lighty, this literature review covers accreditation and licensing problems, general characteristics of students, educational methods and course design, and patterns of student methodology. Limitations affecting the effective use of correspondence study are assessed, along with the instructor role, steps in planning course content and materials, and the structuring of assignments and instructor response (feedback). Expected trends in the use of programmed instruction, broadcast media, films and other audio-visual resources, small groups, special degree programs, and arrangements for course credits and degrees through examinations, are also suggested. Annotated chapter bibliographies contain 164 references.—L.Y.

Mathieson, Moira B. *A Bibliography of Bibliographies on Career and Vocational Education*, Part II of the ERIC Clearinghouse on Teacher Education Project on Career Education, (SP 005 880), Washington, D.C., October 1972. (ED 067 387)

The training function in organizations has grown in magnitude and status since its inception as a part of the formal structure in the early 1940. This bibliography is designed to cover the relevant and pertinent literature that has been concurrent with the growth and changed status of the training function. The major purpose of this volume is to serve the practitioner and student as a ready reference to the practices and theories on which concepts about learning at the workplace have emerged and developed. The references cited are drawn from the sparse literature, which appeared early in the century, to the abundant and varied current writings in books and periodicals.

The volume was assembled and organized so that the practitioner can find ready sources to help him cope with immediate day-to-day training problems. These problems may deal with the application of learning concepts and theories at the adult level across the wide work-force spectrum. Included are references to the handling of new employees in the process of initial orientation and job instruction as well as references to the retraining of older workers who are promoted to new jobs or who are, for one reason or another, transferred to jobs requiring new knowledges and skills. Covered also are situations dealing with technician training and the handling of engineering skill obsolescence. The training specialist can also find references to a variety of methods and techniques for supervisor and manager development in his organization.—Auth.

The review was, in general, limited to work completed during the period 1966-1968. In order to identify research completed during that period, the reviewers searched the usual library sources. Another phase of the search was a mail survey of representatives of the National Association for Business Teacher Education, state supervisors, and teacher educators.

Because of the need to include only those studies relating to the topics covered in the review, efforts were made to screen the report by: 1) title, 2) abstract, and 3) primary source. As a result of this screening, some pertinent reports may have been overlooked.

Research studies included are primarily those that are relevant to business and office preparation at senior high schools and two-year post-secondary schools. Also included are reports pertaining to business teacher education.--Auth.

This report represents the initial phase of research in the design and development of techniques to reduce loss of technical skills, caused by sustained non-practice of the skills. The greatest incidence of skill loss in the Navy is presently considered to occur when personnel are assigned to non-rating related billets ashore.

This report is primarily a bibliographic survey of research previously or currently conducted by the Navy and other military services. Conclusions drawn from this survey are: 1) most of this
research concerns operating rather than maintenance skills and has to do with perfecting initial training methods that will prolong job-skill retention, 2) specific research in progress is mainly oriented toward the long-term memory of motor skills or complex, interacting team skills on integrated systems, and 3) there is a conspicuous lack of research related to the loss of skills caused by non-practice to those skills.

The report recommends that subsequent research be directed toward: 1) identifying ratings and skills levels of ratings in which loss presently occurs, 2) determining the extent of skill loss encountered, and 3) determining in each instance specific courses of action designed to enhance rating skill retention.--Auth.

Includes abstracts of 48 technical reports issued by Personnel Research Division from January 1969 through December 1971.--H.G.

Annotated Bibliography of technical reports and other publications (memo reports, journal articles) on research conducted by the Training Research Division covering period July 1950 through July 1960.—H.G.

(AD 673 371)

(ED 045 821)

This Review and Synthesis of Research on Cooperative Vocational Education is one of a series of "State-of-the-art" papers in vocational and technical education and related fields. It should assist in identifying substantive problems and methodological approaches for researchers and curriculum development specialists, as well as providing practitioners with a summary of research findings that have application to educational programs. In the field of vocational and technical education, the pace of research and development activities has increased considerably during the period under review.

As one of a series of information analysis papers released by the ERIC Clearinghouse on Vocational and Technical Education, this review is intended to provide researchers, curriculum development specialists, and practitioners with an authoritative analysis of the literature in the field. Those who wish to examine primary sources of information should utilize the bibliography. Where ERIC Document numbers and ERIC Document Reproduction Service prices are cited, the documents are available in microfiche and hard copy forms.—Auth.

The readings presented are an analysis of selected factors underlying the process of individualized learning. The book is organized topically and moves from theoretical considerations toward an analysis of important educational components. The readings come from a cross section of experts representing the areas of learning theory, individual differences, measurements and evaluation, educational objectives, teacher roles, learning activities, facilities technology, and computer systems. Each chapter is prefaced with an introduction by the editor. Chapter topics include: underlying assumptions concerning the need for individualized learning, mental abilities as a possible basis for individualization, the impact of individual differences on reading, the measurement and accommodation of individual differences.
differences, educational objectives, evaluation, the changing role of the teacher, individualized and interactive learning activities, the instructional environment, and computer-assisted instruction.

—Auth.

This annotated bibliography presents 389 citations of periodical articles, monographs, and books, and represents a survey of the literature as related to the theory and application of cost-benefit analysis. Listings are arranged alphabetically in these eight sections: (1) Human Capital, (2) Theory and Application of Cost-Benefit Analysis, (3) Theoretical Problems in Measuring Benefits and Costs, (4) Investment Criteria and the Social Discount Rate, (5) Schooling, (6) Training, Retraining and Mobility, (7) Health, and (8) Poverty and Social Welfare. Individual entries include author, title, source information, "headings" of the various sections of the document which provide a brief indication of content, and an annotation. This bibliography has been designed to serve as an analytical reference for both the academic scholar and the policy-maker in this area.—Auth.
SECTION IV

HANDBOOKS AND MANUALS

Generalized "how-to-do-it" handbooks and manuals have been developed for OJT programs in many different organizations. There are also specialized manuals concerned with specific techniques.

The citations in this section are of interest to those who have responsibility for designing new manuals for specific organizations as well as to those who are looking for guidance regarding how to approach specific problems in OJT.

BIBLIOGRAPHY

This report explains a teaching system designed to stimulate polysensory learning by use of multimedia instructional materials, which use as many of the physical senses as practical to augment traditional instruction. They include motion pictures, filmstrips, audio tapes, models, mock-ups, etc., according to school facilities and course needs. Care should be used in buying such expensive media as 8mm sound films, since technical instruction needs constant updating; tapes and filmstrips are low in cost and easy to produce. The system is planned for use by each student at a study booth providing privacy and protection from distraction. The student may use the material at his own pace, before or after a shop, laboratory, or small-group discussion. This system is expected to stimulate motor skills, cognitive learning, and the concomitant attitudes of appreciation, responsibility, etc., appropriate to the student's maturity. This individualized instruction and traditional teaching are compared in detail by objective, technique, work method, evaluation, and the role of advisory committees, supervisors, or administrators. Ideally the multimedia method is so organized and used that the program is systematically evaluated and revised to meet realistic student performance goals efficiently. Details of the system, examples of its use, methods of preparing the materials, evaluation of its results, and its future possibilities are presented.--H.H.

This book may be used with the related six filmstrip series, "ON-THE-JOB TRAINING" and leader's guide, also available from Addison-Wesley--Auth.

All teachers are evaluated. Regardless of how formal the system for evaluation is, what evidence is collected or analyzed, how often formal reports are written--teachers are evaluated and they are evaluated rather often. Students, parents, other teachers, administrators supervisors, and even the public evaluate teachers. The question facing both administrators and teachers, then, is not whether teachers should be evaluated, since this cannot be avoided; rather the question is how systematic the evaluation should be in order to be most effective.

Effectiveness must be in terms of certain purposes desired for the school district; and the design of the evaluation system should include ways of collecting and processing information, communicating with the people concerned, making decisions, and assessing how well the evaluation system works.--Auth.

Here's an easy-to-understand approach to on-the-job training for the individual supervisor. The book is a suitable handbook for trainers on how to do OJT.

Using a systematic, but nontechnical approach, chapters cover Why Train; How People Learn: OJT or Classroom Training?; Analyzing the Job; Determining Objectives; Preparing to Train; How to do OJT; and Pre- and Post-training Evaluation. The book will help the supervisor to analyze the job, prepare himself and the employee, proceed through the steps, and provide follow-up.
These guidelines represent a textbook for instruction in three phases of Training Situation Analysis (TSA), a standardized procedure, developed by NTDC, for systematically gathering and interpreting the information that is relevant to the planning of training and training devices.

Three-phases of TSA are described in detail: System Familiarization, Task Analysis Method (TAM) and Training Analysis Procedure (TAP).

System Familiarization provides an orientation to the training problem, the system structure and flow, and the equipment. Task Analysis Method produces a set of task descriptions containing the information necessary for making training device decisions. Training Analysis Procedure produces a ranking of tasks based upon the potential benefit to system performance as a result of training and the cost of that training. Recommendations for the conduct of these three phases and suggested working forms are presented.---Auth.

This report supplies a model for specifications for the preparation of Fully Proceduralized Job Performance Aids for the operational maintenance of Air Force man-machine system. The model reflects the research findings of AFHRL and other DOD agencies concerning maintenance data. It has the unique feature of requiring that certain subproducts necessary for the development of this type of data be prepared in a standard format and submitted for review by the procuring agency. These subproducts include items such as a task identification matrix, task inventory, a task description index and management matrix, and task step data details. The aids to be developed from these specifications are for the organizational maintenance of any man-machine system and
support the performance of the following maintenance functions: Check-out, alignment, repair, adjustment, calibration, malfunction isolation, and the removal and replacement of malfunctioning equipment items. It calls for the preparation of the aids in several options of job guide format.--Auth.

This report provides guidance for the development of fully proceduralized job performance aids for the organizational maintenance of Air Force man-machine systems. It contains detailed instructions for preparing fully proceduralized job performance aids in accordance with the requirements of the draft specification contained in AFHRL-TR-71-53(I). It includes instructions for performing the behavioral task analysis and for converting the results of the analysis into effective performance aids. In addition, it presents a strategy and guidance for developing supervised practice exercises designed to produce the skills required to prepare fully proceduralized job performance aids.--Auth.

A 96-hour course on the management of training was developed and evaluated for presentation to advanced officer classes. The general procedures followed in developing the course were construction based on job task statements, a systems-engineering approach to training, and state-of-the-art technology; repeated presentation of course materials, and modification by training research personnel on the basis of student and instructor appraisals. The course was then presented and evaluated by a military instructor. Critiques by military students and staff indicated that the course had considerable value, but required some additional revision before adoption by the Army. Suggested revisions were: (a) reducing course length, (b) integrating the course and CONARC Regulation 350-100-1, (c) coordinating supporting literature and course objectives, and (d) implementing the revised course as a common subject in officer training programs. These revisions would not require further research and development and could be accomplished by military operational training personnel with technical advice by research personnel.

Navy training manuals require continuing revision in order to remain current. Considerable time and man-effort are required to accomplish the revision of such manuals. The use of a computer assisted document preparation system in the update of these manuals offers potential for significant reductions in both the elapsed time and the man-effort required to complete a revision cycle. This report relates the results of a pilot project initiated to test the feasibility of using such a computer-based text-editing system to update Navy training manuals. The Computerized Specification Management System (CSMS), a text-editing system developed by Naval Electronics Laboratory Center (NELC), San Diego, California, was used to prepare revised editions of two Navy training manuals and their associated correspondence courses. Modification and enhancement of the original system was required to provide additional font and character capabilities. Significant reductions in elapsed time and man-effort required to update a manual were achieved. Additional texts will be assigned for update via the CSMS system and efforts to refine and improve the system will continue.

This report provides guidance for the Air Force data managers charged with the responsibility for the procurement of fully proceduralized JPAs. It provides guidelines, suggested procedures, and checklists for use by data managers in the review and assessment of the subproducts, intermediate products and JPAs produced in accordance with the draft specification contained in AFHRL-TR-71-53(I).

Developing Vocational Instruction describes the steps involved in preparing instruction that can be demonstrated to facilitate learning. In so doing, the concern is not with what would be the easiest thing to do, but what will be the most professional. Probably better than anyone else, vocational and technical instructors realize that there can be just as big a difference between practicing a skill and teaching it as there is between teaching and telling. The goal of this book is to
describe the steps that must be carried out if one is to become as expert in the skill of systematic course development as he is in the practice of his own vocation or technical specialty.

The procedure of systematic course development outlined in this book is not specific to subject matter or vocation, and it applies to many academic as well as vocational and technical areas.—Auth.

This Handbook is intended to aid in preparing recommendations on the design and use of training equipment. As such, it permits cross referencing to a companion report, WADC Technical Report 53-138, Human Engineering Design Schedule for Training Equipment. The contents of the Handbook include learning and transfer theory, principles applicable to problems of training, and bibliographic references. One principal theme that is developed is that different kinds of tasks, and different degrees of learning have different implications for transfer of training and the best form of presenting knowledge of results. Stages of learning are analyzed in detail, as are the variables in "knowledge of results." The principal sections are titled: I. Human Learning as An Overview; II. The Role of the Instructor in Training; III. The Trainer as a Demonstrator of Principles; IV. The Use of Knowledge of Results; V. The Problem of Simulation; VI. The Problem of Motivation; VII. Preparing the Specifications for a Training Device. The many problems indicated as requiring further research in the field of human learning and training suggest the importance of "programmatic" studies. These materials, in conjunction with WADC TR 53-137, A Method for Man-Machine Task Analysis, and WADS TR 53-135, A Method for Determining Human Engineering Design Requirements for Training Equipment, are designed for use by trained personnel.—Auth.

Here is a book that places training in perspective as a management tool for achieving organizational goals in business and industry. Instead of merely surveying available training techniques, it critically examines them on the basis of recent research and actual business and industrial experience. The aim of the book is to develop a sound rationale for analyzing and solving the training problems encountered in practice.
All four basic elements involved in the development of a training program are considered in detail: determining training needs; utilizing data drawn from the psychology of learning; selecting appropriate techniques; and assessing training results. Careful consideration is also given to the allocation of responsibility for training in industry. Emphasis throughout is placed on harmonizing training programs with clearly defined goals and on using learning theory and research as bases for choosing training procedures. Particular attention is given to such important recent developments as teaching machines, business games, and sensitivity training. An extensive bibliography is included.—Auth.

Training is a costly business. Some have estimated its cost to industry alone as $30 billion annually. But all too often it is wasted...ill-conceived, and poorly managed.

The past few years have witnessed a sharp increase in industry's use of programed instruction to correct this inefficiency. Its effectiveness as a training technique has been proved in factories and offices across the nation...its value as a management tool has fast become an accepted fact. This book analyzes the emergence of programed instruction, explains the benefits of a programed-instruction-based training system, and discusses its applications to many industrial training problems.

This report contains case histories that show how this new training technique is being used in General Electric Company, International Business Machines Corporation, Trans World Airways, American Telephone and Telegraph Company, Burroughs Corporation, Liberty Mutual Insurance Company, Pfizer Laboratories, and numerous other industries, associations, and educational institutions. These examples clearly demonstrate the potential of programed instruction and point the way to new and greater training achievements.—Auth.

Parker, J. F., Jr. and Downs, J. E. *Selection of Training Media*, Technical Report ASD-TR-61-473, Behavioral Sciences Laboratory, Aerospace Medical Laboratory, Aeronautical Systems Division, Wright-Patterson AFB, Ohio, September 1961. (AD 271-483)

The selection of training media in support of military training programs represents an important area of concern. Training equipment exercises considerable influence on the way in which training programs are conducted, upon their effectiveness in accomplishing objectives, and upon the total cost of the program.
This report is designed to assist a training analyst faced with the problem of selecting specific training aids and devices to be used in support of the development of the personnel subsystem of a military system. The translation of statements of desired personnel performance and capabilities, as presented in Qualitative and Quantitative Personnel Requirements Information and task analysis documents, into training objectives is discussed. The effectiveness of various training media in meeting specific training objectives is indicated and justified in terms of available objective evidence. An example is presented illustrating the manner in which training media are selected in support of a typical Air Force operator position.--Auth.

This book consists of a collection of five self-instruction programs designed to be completed individually by the reader. The programs deal with various aspects of instruction and are intended to provide a set of tangible competencies that can be employed by a teacher in making instructional decisions. The focus of the programs in this volume is on the topic of instructional goals: how to select them, how to state them, and how to establish pupil performance standards for such goals. After completing the five programs, you will be skilled in dealing with questions related to educational objectives. The competencies provided by the programs should be of considerable value to individuals who are preparing for a teaching career at any level of instruction, kindergarten through college. Experienced teachers will also find that the topics treated in the programs bear upon many practical decisions that they must make regarding their instruction. In essence, then, both preservice and inservice teachers should profit from completing the programs contained herein.--Auth.

In general, training courses are not designed to be so effective and efficient as they could be. Previously an integrated procedure for the design and improvement of school training courses was developed. When the procedure is applied under professional guidance, marked gains in training occur. Certain of the steps, notably the task analysis, have been found very difficult for typical Navy instructors to apply. It is one of the purposes of this work unit to discuss ways of simplifying the application of such steps. Two additional purposes are to: (1) determine whether the procedure can be extended to more complex duty assignments and to shipboard training; and (2) validate further selected course design and training concepts basic to the application of the procedure.--Auth.

The second edition of the course design manual is a thorough revision of earlier editions. The manual is designed to assist instructors in developing and improving job-related training courses. Major changes from earlier editions include more careful definitions of training and training related terms; a general clarification of concepts and procedures, especially those concerned with job and skill analysis for training purposes; more emphasis on principles of developing training exercises; a more thorough consideration of the importance and means of adapting individual differences; and more emphasis on the significance of the course mission for course design. Examples from a wide variety of duty assignments are included.—Auth.

The need for a quality control system in a military training program and methods of establishing such a unit are described and evaluated in this report, which is part of a research project in the technology for developing training. It is stated that the purpose of quality control is to ensure a satisfactory standard of competence among the students who graduate, to maintain this quality by a continuous monitoring process, and to improve training where it is found to be deficient. In order to function successfully, a quality control system should constitute a separate unit, independent of, but cooperating with, the instructional departments. Attention is given to proficiency testing as the chief means of measuring the success of the training program, with emphasis upon the importance of a uniform standard and consistent method in the preparation, administration, and scoring of tests.—Auth.

This report, based on an extensive survey of current literature, describes a system approach to designing training and considers factors bearing on training effectiveness. An efficient instructional system is conceived as one in which the components form an integrated whole, achieving maximum effectiveness at the least possible cost. Components considered in this report include presentation media, student management, techniques for practicing knowledge and performance, knowledge of results, directing student activities toward the goals of the training program, and testing and evaluating the system in terms of efficiency and cost.—Auth.

This bulletin describes modern concepts and techniques used in determining training objectives. A training objective is a precise clear statement of one of the performances expected of a student upon completion of a course, a complete list of such objectives constituting the mission of a course. The concepts and techniques described are based on research performed by both military and civilian researchers in the field of training.

The development of job-related, detailed statements of objectives is a matter of the first importance in designing effective training programs. These objectives permit every element of a training program—lessons, texts, practical exercises, and examinations—to fall into line in a consistent manner. Training objectives that are job relevant will provide for a course that will also be responsive to the needs of the unit to which the soldier will go after training, and that includes little irrelevant content.

The techniques described have been selected as being practical for Army training personnel. Those who wish to learn more of the theory and techniques of determining objectives will find a selected bibliography listed by chapter at the end of the bulletin. The rationales for the various aspects of developing objectives will be presented, and appropriate choices of techniques indicated.—*Auth.*

In writing this book on the engineering of education and training systems, I have tried to explain the implications of systems ideas for education and training and to provide sufficient descriptions of suitable methods and techniques, so that either with this book alone, or in a few cases, by reference to cited works of others, the reader could design and implement effective systems.

I have resisted the temptation to be highly critical of modern practices in education and training. Where critical comment is made, it has been inserted primarily to clarify an example. Following the same theme, the final chapter presents a series of positive suggestions for dealing with what is obviously a current educational crisis of major dimensions.—*Auth.*

The requirements for and uses of task information in developing requirements for training equipment are discussed in a series of seven papers by the human factors subcontractors involved in the development of three complex electronic reconnaissance systems. The papers deal with the purposes, content, sources, and recording of task information. They cover the uses of task analysis information in establishing training requirements, selecting training equipment, and developing proficiency measures. A final paper describes in detail the approach taken on these issues with the AN/ULD-1 system.--Auth.

This handbook for upgrading low-skill workers attempts to synthesize the experience and findings of more than four years of research and demonstration work in upgrading under-employed workers in the plant environment. It contains procedural and methodological guidelines for individuals and organizations that are undertaking in-plant programs to upgrade low-skill workers to higher levels of work and productivity. The guidelines are not intended to be job or program specific, but rather apply to a wide range of industry conditions and problems for which in-plant upgrading programs provide at least a partial solution. --Auth.

SECTION V

TRAINING COST-EFFECTIVENESS LITERATURE

From a classical, economical point of view (e.g., Mincer, 1962; Becker, 1962; and Canby, 1972), vocational training is an investment by the person as well as the organization. A number of mathematical formulas and several strategies for optimizing one's return on such investments have been developed (e.g., Bateman, 1966). Most of these formulas, complicated as they may be, are woefully inadequate for two reasons. They are almost never based upon data; and they do not consider all the factors that need to be considered.

There is general agreement, for example, that the following factors should be considered in cost-effectiveness algorithms about OJT: (a) the possibility of selectively recruiting people in certain fields as an alternative to training inexperienced civilians (Hanushek, 1971; Kim, Lieser, Scheirer, and Minckler, 1968); (b) the differential relationship of OJT and resident school training to unit readiness (O'Flaherty and O'Rorke, 1967); (c) the impact of the value of military training in civilian careers upon leaving the service (McCall and Wallace, 1967); (d) the impact of the military organization's reputation for training upon the enlistment rate (Lochman, Stoloff, and Allbritton, 1972; and Katz, 1971); and (e) the cost of training failures (Sands, 1971). These factors (which are not all listed, but indicative of the problem) are not considered in any one mathematical model reviewed. In fact, it is difficult to find a mathematical model that considers any two of them.

Even if such factors could be adequately considered in a quantitative formula of some kind, it is extremely difficult to quantify all the costs associated with operating an OJT program. The Army, Navy, and Air Force have made some laudable efforts to do this (Arzigian, 1967; Clary, 1970; Gay, 1973; Kollin, 1966; and Strope, 1967), but no military analyst has really been satisfied that he has accomplished what he set out to do.

Cost-effectiveness studies of OJT are complicated by the fact that the OJT costs, per se, do not really provide enough information to make decisions. It is the relative costs of various options (e.g., Plan A versus Plan B) that need to be determined before people can make the types of decisions that need to be made.

One of the most important relative cost decisions is that about the mix of OJT and resident school training. Because the problem is such an important one (millions of dollars are involved), and because the information is urgently needed (military training loads have fluctuated widely in recent years), the most sophisticated work on cost-effectiveness of OJT has been done in this area (Bateman, 1966;
Black and Bottenberg, 1970; Gay, 1973; Lecznar, 1972; Weiher and Horowitz, 1971A, 1971B; Weinberg, 1967; Dunham, 1972; and Walker, 1965). The results, however, are somewhat contradictory. One recent Navy study suggests that OJT is more expensive than resident school training because of all the supervisory time spent with OJT trainees (Weiher and Horowitz, 1971B).

An equally recent Air Force study finds that the resident school training in Category B specialties is about twice as expensive as OJT, while the difference between graduates is negligible (Dunham, 1972). Neither of these studies claims to have considered all the factors that should be considered in a cost-effectiveness study—a situation that is typical of work in this area—so the inconsistency can be explained in a variety of ways.

One of the reasons that training cost-effectiveness studies tend to be oversimplified is that the people performing the studies are not training experts. A more complete list of variables is provided by Walker (1965), who asked 20 training and human engineering personnel to develop their own criteria. The list of effectiveness variables that they mentioned is sizeable and much more numerous than the mathematically oriented cost-effectiveness studies reviewed in this report (Table V-1).
TABLE V-1

Selection Criteria for Training

<table>
<thead>
<tr>
<th>Selection Criteria</th>
<th>Percentage of Technical Training Personnel Who Mentioned These Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Time to produce</td>
<td>100</td>
</tr>
<tr>
<td>2. No. of students taught</td>
<td>83</td>
</tr>
<tr>
<td>3. Effectiveness of teaching motor skills</td>
<td>75</td>
</tr>
<tr>
<td>4. Effectiveness of teaching theory</td>
<td>75</td>
</tr>
<tr>
<td>5. Amount of data needed to prepare</td>
<td>75</td>
</tr>
<tr>
<td>6. Cost to teach</td>
<td>75</td>
</tr>
<tr>
<td>7. Cost to develop</td>
<td>75</td>
</tr>
<tr>
<td>8. Facilities needed to present</td>
<td>67</td>
</tr>
<tr>
<td>9. Specific objectives</td>
<td>67</td>
</tr>
<tr>
<td>10. Level of student intelligence</td>
<td>58</td>
</tr>
<tr>
<td>11. Student knowledge</td>
<td>58</td>
</tr>
<tr>
<td>12. Student Motivation</td>
<td>33</td>
</tr>
<tr>
<td>13. Quality of specialists to develop material</td>
<td>33</td>
</tr>
<tr>
<td>14. Ease of evaluating students</td>
<td>25</td>
</tr>
<tr>
<td>15. Facilities needed to prepare</td>
<td>25</td>
</tr>
<tr>
<td>16. Ease of administration</td>
<td>17</td>
</tr>
<tr>
<td>17. Complexity of the training material</td>
<td>17</td>
</tr>
<tr>
<td>18. Flexibility</td>
<td>17</td>
</tr>
<tr>
<td>19. No. of instructors to instruct</td>
<td>17</td>
</tr>
<tr>
<td>20. No. of instructors to develop</td>
<td>17</td>
</tr>
<tr>
<td>21. Student Reinforcement</td>
<td>17</td>
</tr>
<tr>
<td>22. Student Participation</td>
<td>17</td>
</tr>
<tr>
<td>23. Realism</td>
<td>8</td>
</tr>
<tr>
<td>24. Transfer of Training</td>
<td>8</td>
</tr>
<tr>
<td>25. Maneuverability</td>
<td>8</td>
</tr>
<tr>
<td>26. Variety of psychological/learning processes</td>
<td>8</td>
</tr>
<tr>
<td>27. Student feedback</td>
<td>0</td>
</tr>
<tr>
<td>28. Retention</td>
<td>0</td>
</tr>
<tr>
<td>29. Student paced</td>
<td>0</td>
</tr>
<tr>
<td>30. No. of senses stimulated</td>
<td>0</td>
</tr>
<tr>
<td>31. Length of course</td>
<td>0</td>
</tr>
<tr>
<td>32. Stimulation of the operational environment</td>
<td>0</td>
</tr>
<tr>
<td>33. Ease of presentation</td>
<td>0</td>
</tr>
<tr>
<td>34. Competition</td>
<td>0</td>
</tr>
</tbody>
</table>

b Items in italics are management-centered items; others are student-centered items.

c Equally student- and management-centered items.
REFERENCES

The references that are listed here have been cited in this section; when author abstracts were available, they are given.

This study presents the results of a preliminary investigation of the feasibility of computing on-the-job training costs. For purpose of this study, on-the-job training is that which involves learning or improving job performance under actual working conditions. At present, there is no system within the Navy to "cost out" on-the-job training. Training-cost reporting is limited to formal, or school training. The addition of an on-the-job training cost to the school cost (if any) would provide a more "complete" training cost. Training costs play a major part in many personnel management decisions; therefore, a training cost that reflects all the training that is provided an individual would prove valuable.--Auth.

A model is constructed to determine the best proportion of formal and on-the-job training in military occupations. Special consideration is given to the unique situation of enlisted personnel's fixed length of service, the small percentage of reenlistment, and the necessity of training all enlistees for assigned occupations. The model formula represents training requirements, semiskilled and skilled levels, amount of time spent at each skill level (determined by formal, or on-the-job training), and cost reduction possible without reduction of the level of effectiveness. Analysis is applied to ten Air Force occupations including cook, automotive repairman, electrician, and personnel and administrative specialists. Results are shown in six tables. Costs are generally lower for on-the-job training, but enlistees remain at the semiskilled level longer than formally trained enlistees.--Auth.

In the Air Force, basic technical skills classified as Category B skills are those in which a portion of the total personnel requirement is formally trained in a technical training course and the remainder is trained on the job (OJT). Determination of the relative numbers of airmen to be trained in formal courses and in on-the-job training is based, in part, upon the time required to qualify a specialist at the five-skill, or fully qualified level. This report provides information on rates of progression to the five-skill level in Category B skills by comparing samples of technical school and on-the-job training personnel. Development of the methodology used to measure the rates of progression to the five-skill level was described, along with an explanation of the achievement ratio defined in this study. Achievement rates from basic military training (BMT) graduation to award of the five-skill level were investigated. In the majority of the Category B specialties, there was inconclusive evidence of any advantage for technical training over OJT. In the specialties in which there were substantial differences between the two groups, the differences in most cases favored technical training. There were two specialties in which neither training group was superior to the other. The achievement rates after award of the three-skill level (i.e., apprentice level) to award of the five-skill level were not entirely consistent with achievement rates from BMT graduation to the five-skill level. In many cases, it was found that OJT personnel progressed more rapidly than technical school personnel from the three-skill to the five-skill level.--Auth.

Since 1965, when large numbers of American troops began to arrive in Vietnam, the draft has become a major public policy issue that has generated considerable literature. Most of these publications are: (1) analyses of the operation of the Selective Service System, (2) cost estimates of a proposed volunteer military force, or (3) polemics for a particular recruitment system.

This study attempts to take an impartial and comprehensive look at the entire military recruitment issue. It asks: What are the attributes desired in a military recruitment system for the United States? It lists 17 criteria for assessing the relative merits of alternative recruitment systems.--Auth.

Reports FY 69 data on enlisted training time and costs to be used as inputs to the Career Premium Computer Program for determining Pro Pay eligibility. Specifically, it presents the training time and funds invested in enlisted personnel from initial procurement through appropriate basic training for 80 general and service ratings and advanced and specialized training for 1,067 Navy Enlisted Classifications (NECs) by source ratings.--Auth.

Decisions concerned with the use of alternative Air Force training methods require several types of data. Among these are capacity to train, cost of the training, and quality of the trained airmen. The two methods of formal training in the Air Force are on-the-job training (OJT) and technical school training. The data currently being provided to decision makers for selecting the proper mix of these two training methods can be substantially improved.--Auth.

This Report is part of Rand's DOD Manpower and Training Management Program, sponsored by the Human Resources Research Office of the Defense Advanced Research Projects Agency (ARPA). The purpose of this research program is to bring new methodologies to bear on present and future military manpower problems. The purpose of this report is to provide a way of estimating the costs and determinants of on-the-job training in military occupations. As such, this study is only a pilot effort, meant to find a feasible technique for estimating these implicit--but none the less real-costs faced by the Department of Defense. The results from this pilot effort suggest that on-the-job training costs are more than twice as much as technical schooling costs for the occupation examined, aircraft maintenance in the Air Force. Thus, further study of these costs across occupations and services is warranted. In addition, this study is the first to estimate the relationship between individual characteristics and individual on-the-job training costs. Such information, if validated by further study, may prove valuable to the military services with respect to selection, assignment, and pay policies.--Auth.

This paper applies models for rational investing in human capital to Air Force decisions on training and particularly decisions about graduate education for officers. Two separate questions are addressed in depth. First, among the possible types of officers (rated-nonrated, reserve-regular, by length of service) who could be sent to school, are there any economic advantages to a specific group? In terms of the possibilities for the investment paying off (i.e., recouping the costs of training) the decision rules are unambiguous: nonrated are a better investment than rated, and the more junior officer is a better investment than the more senior. Further, there is some reason to favor reserve officers rather than regular officers, since their retention is lower and lower retention in this case is desirable in terms of the total costs per year of educated service. Second, what is the trade-off between educating Air Force officers and hiring people who have purchased their own education? Here it appears much more expensive to educate Air Force officers; the long-run total cost differential between no internal education and all internal education is on the order of $100 million per year. While there are some compelling reasons to do some educating, serious consideration should be given to the question of how much educating the Air Force should sponsor.--Auth.

As part of a longitudinal study of the reactions of enlisted men to personnel incentives, Naval conditions and experiences, information on backgrounds, expectations, attitudes, values, and motivations were obtained at entry into the Navy from 6,795 recruits in Categories I, II, and III on AFQT.

New recruits see the Navy more frequently as an environment in which they can satisfy some short term goal. Some of the most important reasons for joining the Navy were: to get technical training, needing time to find out what they wanted to do with their lives, and not wanting to wait until they were drafted.

On the basis of a comparison of: (1) their educational achievement to date with that of their parents, and (2) their occupational goals with the current occupations of their fathers, it appears that many recruits are interested in upward social mobility.--Auth.

The need for a study of training costs has often been expressed by Army personnel. Such a study would be of help to managers of planning and programming of training especially when significant changes occur in the size and composition of force requirements and weapon systems.

The two major areas of formal school training are the service schools and the training centers. Other large training areas are nonschool, such as on-the-job training and basic combat training.

This study examines several service schools with respect to their training-cost recording practices, the degree of uniformity from school to school, and the cost elements that are considered. In addition to determining what is occurring at the service schools, an attempt is made to indicate other cost factors related to training, but not now included by the schools.

As a research strategy, courses for three hard-core military operational specialties (MOSs) were chosen so that through the study of these individual courses the above objectives could be achieved more easily.

To lend realism to the study, dollar costs for training these three skills have been included, but only to point up the complexities involved in a future attempt to arrive at complete, accurate training costs and a training-cost information system.--Auth.

This study explored the question of differences between airmen who were assigned to jobs following graduation from formal resident training schools and those who entered a field as on-the-job trainees. Eight career fields with a substantial number of airman input of low-ability personnel under Project 100,000 were studied. Evaluations of technical school graduates and directed duty assignees were made in terms of six criteria: a job difficulty index, average task difficulty, number of tasks performed, job interest, self-report of utilization of talent and training, and overall performance rating.
with type of membership categories (i.e., resident technical course or direct assignment) and with aptitude held constant, tests of the significance in difference between regression lines were made. In nearly every instance, the results indicated that the intercepts and slopes of the lines for the two groups were the same. That is, technical school graduates and directed duty assignees were not different on any of the six criterion comparisons. This is not to suggest, however, that formal school training can be wholly displaced by on-the-job training.--Auth.

Motivational factors in accession and retention behavior of Navy men were identified in a reanalysis of past surveys. Economic, psychological, and personal history variables were found to be of joint importance in predicting enlistment and reenlistment behavior. Better measurement of these kinds of variables should result in improved predictions and policy control mechanisms.--Auth.

This memorandum examines several aspects of the training and retention of Air Force electronic specialists. The major goal of the study is to investigate the responsiveness of the reenlistment rate to changes in Air Force remuneration. An attempt is also made to measure the degree to which Air Force training is transferable to the civilian economy.

This report sets forth a methodology for ascertaining the direct variable costs incurred (parts and fuel consumption) through the usage of equipment in combat-unit training activities. Such costs are under current financial systems not readily available. Were such costs more readily available, through the adoption by the Army of a methodology such as described in the report, it is very possible that improvements could be effected in the usage of equipment, and
the broad objective to which such usage is directed—combat-training readiness—could, in some degree, be enhanced. The report is presented in two parts: Volume I. General Systems Description; and Volume II. Derivation of Parts Cost Factors. The first volume describes the purpose of the investigation, the problems encountered, and the methodology developed—the latter in general terms. Specific recommendations are presented on continuing the development of the system described in order to achieve an operational system within the Army.

The second volume treats in detail the development of parts cost factors for 16 major items. The actual results are presented and analyzed and the computer programs are described. Problem areas are discussed and additional computer programs needed for improved accuracy and for theater, region, and unit factors (in addition to worldwide) are outlined.—Auth.

The CAPER Model appears to be a promising personnel system management tool. The output, numbers of men and dollar costs, is readily understood by everyone, unlike various statistical indexes popular among psychologists (e.g., validity coefficients). By requiring an explicit estimate of various types of costs, the model decreases the likelihood that policy decisions will be based upon implicit, unrecognized, and unwarranted assumptions. Finally, the model enables the personnel manager to readily adapt his recruiting-selection strategy to changes in quotas, costs, and/or alterations in the recruiting environment. The flexibility that the CAPER Model provides to the personnel manager is enhanced by the computer program.—Auth.

The purpose of this paper is to present some results of Research Analysis Corporation research on Army individual training costs in order to discuss implications for future research and for Army action necessary to improve estimates of Army training costs. As is generally known, there is currently inadequate knowledge to determine the resource implications of training to establish various personnel skills.

It is important to know the context in which training costs will be used. The way costs are developed depends upon the type of problem
for which the costs are used. Different problems require different levels of accuracy and different degrees of input detail. Training costs are used in each of the types of problems shown in Chart 1, but the amount of training cost detail varies with the type of problem.--Auth.

Sixteen training techniques were rated by experienced training personnel each with respect to 34 training selection criteria. Training personnel tend to narrow their selection criteria to those elements that are administratively and contractually imposed. Educational/psychological principles tend to be overlooked. Selection of training techniques in practice should be on a broader and more systematic basis if the selection is to be properly justified.--Auth.

The basic objective of the study was the development of a cost-estimating technique that can be used to estimate the cost of formal school training for military personnel. These estimates of formal school costs were generated for both individual MOSs and aggregated groups of manpower. The individual MOSs are those that involved formal school training in FY66.

The nine Department of Defense occupational areas were used as the framework for the aggregated model. Within each MOS and occupational area, three skill levels were utilized--junior, intermediate, and senior. These levels correspond to a defined mix of length of service, pay grade and MOS skill level.

Cost totals were derived for each Army budget appropriation and they represent the total dollars generated by formal school training during FY66. An allocation scheme was developed to obtain a per-man course cost. In addition, turnover rates for both the MOSs and occupational areas were formulated, enabling a cost analyst to determine a replacement training course cost.
A comparison was drawn between the MOS costs, occupational area costs and a per capita cost to show that, depending upon the level of aggregation used in any study, training costs may affect alternatives under consideration.--Auth.
BIBLIOGRAPHY

Selected cost-effectiveness documents, other than those cited in the text are given here.

Recent years have seen an increasing emphasis upon the need for statements of instructional objectives that are derived from job performance and that are in a sufficiently operational language so as to generate test situations, whereby instruction can be evaluated (e.g., Wallis, 1966). However, it is one thing to advocate training based upon task analysis, but quite another to indicate a general method of analyzing tasks for this purpose—as the extent of the literature on task analysis testifies. If there is a weak link in the technology of training it is surely here.---Auth.

Benveniste, Guy. The Economics of the New Educational Media, International Institute for Educational Planning, Paris, February 1965. (This is a working document, it is circulated for comment only.)

When we speak of the "new media" we usually mean two kinds of teaching devices—the mass media such as film, radio, and television used for instruction; and the new self-teaching devices such as programmed instruction and language laboratories.

This report explores the economics of instructional television, school radio broadcasting, films, and programmed instruction. Our objective is to provide a basis for determining the economic feasibility of using these new media in developing countries.

We have emphasized the economics of those educational media that can be used to provide a substantial portion of a given curriculum. The report does not cover the economics of audio-visual aids in general.

This research has recently been initiated at the Institute and is still underway. The purpose of this first or interim report is to bring up to date various individuals and institutions cooperating in this undertaking, and to obtain comments on the assumptions and methodology adopted and on the conclusions reached.
This memorandum provides in some detail the procedures and concepts of the enlisted personnel cost analysis system developed by the Personnel Research Laboratory. Sources of information and problem areas encountered during the course of research have also been indicated.--Auth.

AFM 66-1 Maintenance Management, provides a man-hour reporting system to aid maintenance managers in efficiently utilizing their manpower resources. However, this system became unpopular, and was made optional in 1965. An evaluation of its history indicated that it was a good system, but was misused and not fully understood by most maintenance managers. An analysis of labor force productivity since 1965 showed: (1) that actual productivity has not reached management's expectations, and (2) that the use of the Man-Hour Reporting System could improve labor force use. The study recommended that this system be made mandatory and that the past problems identified be avoided.--Auth.
This memorandum reports Fiscal Year 1967 data on enlisted training time and costs to be used as inputs to the Career Premium Computer Program for determining Pro Pay eligibility. Specifically, it presents the training time and funds invested in enlisted personnel from initial procurement through appropriate basic Class "A" training for 79 general and/or service ratings, and advanced and/or specialized training for 707 Navy Enlisted Classification Codes.--Auth.

Reports FY 68 data on enlisted training time and costs to be used as inputs to the Career Premium Computer Program for determining Pro Pay eligibility. Specifically, it presents the training time and funds invested in enlisted personnel from initial procurement through appropriate basic training for 80 general and/or service ratings and advanced and/or specialized training for 888 Navy Enlisted Classifications (NECs).--Auth.

Reports FY 66 data on enlisted training time and costs to be used as inputs to the Career Premium Computer Program for determining Pro Pay eligibility. Specifically, it presents the training time and funds invested in enlisted personnel from initial procurement through appropriate basic training for 28 ratings and advancement and/or specialized training for 171 Navy Enlisted Classification Codes.--Auth.

This report describes the results of a survey that was conducted to obtain information on the motivating influences affecting the decision to enlist or reenlist in the Navy.

Survey questionnaires were mailed to U. S. Navy recruiting stations throughout the country with the instruction that the recruiter in charge administer them during the week of 17-22 July 1967 to the first five enlistees or reenlistees (no females) immediately following their enlistment or reenlistment. Questions on this survey concerned specific motivations for enlisting or reenlisting in the Navy. A space was also provided for a write-in response if the main reason(s) for one's enlisting were not mentioned in the survey.
Findings reveal that "Opportunity to get technical training," "Desire to travel," "Desire to fulfill military obligation at own time of choice," and "Desire for a Navy career" were the most important personal reasons of the enlistees or reenlistees to enter the Navy. The influence of "Friends in service" and "Parents" were also important motivating forces.

The results provide the most important reasons and motivations for entering the Navy at the present time.--Auth.

This report describes a comparison of a medium that allows motion (video-tape) and one that doesn't (slide-tape) in the teaching of complex motor skills (lockwiring). Because of the differences in cost and in convenience of administration, it was deemed desirable to see if the video-tape produced significantly better results.

The results showed no significant differences in achievement, length of time to perform the tasks, clarity of presentation, or pacing of instruction. It was concluded that complex motor skills can be adequately taught by a slide-tape presentation that requires the student to perform the motor skills as the proper procedures are presented.

This report presents an outline of a proposed enlisted personnel cost model. The need to develop such a computerized cost model has become evident with the increasing number of requests for cost data from a wide variety of Navy and Department of Defense offices.

The approach has involved an analysis of the present enlisted personnel cost system in terms of input, processing, and output. Revised outputs have been designed to provide concise reports of information frequently required. Modifications to the training cost reports are recommended as necessary to provide the revised outputs.--Auth.

This thesis attempts to deal with difficult methodological problems of progress evaluation; the particular programs considered are two types of manpower training programs, institutional or "classroom" training and government-subsidized on-the-job training, as they operated in New Haven from 1964 to 1966.

Serious deficiencies of cost-benefit analysis are investigated, and the method is found to be inadequate for use in analyzing manpower programs. In particular, its tendency to ignore the existence of learning processes, which allows it to judge the potential of mature, experienced, efficient programs by studying new and inexperienced programs, is a critical weakness.

Since estimating "capacity for learning" or improvement is crucial for evaluating the potential of a program, methods of evaluation must be found which allow at least some of this capacity to be discovered. One way to do this is to study the way in which a particular process, such as a training program, turns inputs into outputs. Instead of ignoring the production process itself, as benefit-cost analysis tends to do, we must explore it.

Studying the production process leads to a shift in the types of results the research produces. Rather than trying to discover whether classroom training or on-the-job training as it was run in New Haven was a "worthwhile" investment (a question which we show that cost-benefit analysis actually fails to answer), we produce information that can contribute to the designing of better programs. Thus, the study itself becomes a part of the learning and maturing process that produces better programs.

Two data sources are used to study the production process. First, a group of trainees who underwent each type of training were interviewed. Second, employers who participated in the OJT program were interviewed, as were a group of the largest employers in the New Haven area.--Auth.

Impact evaluations of manpower programs have had many shortcomings, especially in finding control groups for comparison. Methodological bias and inconsistency between evaluators, along with disinterest by program administrators, have prevented evaluation from reaching its potential in program planning. The use of longitudinal studies to solve control group problems, with standardized criteria for benefit-cost analysis, could eliminate much of the inconsistency in evaluation, with improved information systems at the local project level, the evaluator and policymaker together could plan projects on the basis of accurate comparisons.--B.H.
To examine the effects of varying fidelity of training devices on acquisition, retention, and reinstatement of a procedural task, soldiers were trained individually to operate the Section Control Indicator (SCI) console of the Nike Hercules guided missile system during preparation and firing status. Subjects with no previous experience on the equipment were trained on one of three panels differing in appearance, functional fidelity, or both, and tested immediately after training. Approximately four and six weeks later, they were retested and retrained to the original level of proficiency. Results indicated that there was no difference in training time, initial performance level, amount remembered after four and six weeks, or retraining time, between individuals trained on high- and low-fidelity devices for procedural tasks.--Auth.

Low (AFQT Mental Category IV) aptitude subjects with no previous experience on the equipment were trained individually to operate a guided missile control panel. Three panels differing in appearance and/or functional fidelity were used. Subjects were tested immediately after training, four and six weeks later, and then retrained to the original level of proficiency. The results indicated that the higher aptitude subjects (from data presented in earlier STRANGER reports) required significantly less training time than the low-aptitude subjects. For all treatment groups there were no practical differences in training time, initial performance level, amount remembered after four and six weeks, or retraining time between groups trained on high- and low-fidelity devices for this procedural task. Thus, training device selection should be based on a careful review of the tasks to be taught in order to use inexpensive devices where possible.--Auth.

This is the second, and final report of a study in which: (1) a practical means for calculating and displaying cost implications associated with changing Navy reenlistment rates was developed, and (2) the developed methodology was used to calculate reenlistment cost implications associated with 1% changes in FY 72 first and second term reenlistment rates for each Navy enlisted rating.—Auth.

When data based on experience are not available, it is often possible to obtain estimates of the relative time required to crosstrain personnel qualified in one specialty to equal proficiency in a second specialty. This paper reports the first study on devising efficient methods for collecting and analyzing such estimates. A procedure was developed for collecting data to form a matrix describing the relative crosstraining-time demands for movements among a group of specialties.

Rank order estimates of the crosstraining-time requirements for the 9506 movements possible among the 98 5-level specialties were obtained from 477 Command and Staff College student officers. A computer program for hierarchical grouping was applied to these data to cluster specialties into groups such that crosstraining-time between specialties within groups is minimized. Mean crosstraining-time estimates were computed at each stage of the clustering procedure as a criterion for evaluating the cost of reducing the number of clusters. For illustrative purposes, the hierarchical structure of the 40-cluster stage is compared with the 40 career-field designations of the 98 specialties.—Auth.

Navy training manuals require continuing revision in order to remain current. Considerable time and man-effort are required to accomplish the revision of such manuals. The use of a computer assisted document preparation system in the updating of these manuals offers potential for significant reductions in both the elapsed time and the man-effort required to complete a revision cycle. This report relates the results of a pilot project initiated to test the feasibility of using such a computer-based text-editing system to update Navy training manuals. The Computerized Specification Management System (CSMS), a text-editing system developed by Naval Electronics Laboratory Center (NELC), San Diego, California, was used to prepare revised editions of two Navy training manuals and their associated correspondence courses. Modification and enhancement of the original system was required to provide
additional font and character capabilities. Significant reductions in elapsed time and man-effort required to update a manual were achieved. Additional texts will be assigned for update via the CSMS system and efforts to refine and improve the system will continue.—Auth.

Curriculum development procedures in use as of 1966 for first-enlistment technical training in the Army, Navy, and Air Force are analyzed. A model process for training curriculum development was defined from training research findings and practices: (a) analyze the system, (b) develop task inventories, (c) develop a job model, (d) analyze its tasks, (e) derive training objectives, (f) develop the training program, and (g) monitor the trained product and modify the curriculum. A comparison between this model and the training development procedures in use in the service indicated a need for: (a) better procedures for determining the adequacy of training content and the means for improvement; (b) detailed guidance for developing or conducting the first four steps of the model process, criteria for allocating training content to formal instruction or on-the-job learning, performance specifications for graduates, and feedback from training programs; and (c) more opportunities for career fields in training.—Auth.

An attempt is made to assay the economics of computer-administered instruction (CAI) versus traditionally administered instruction (TAI) in controlling the structure of the learner's stimulus environment in teaching and training situations. There is a discussion of the need for a sound, objective economic appraisal of the value to society as a whole of increments in the breadth and depth of education in the population, and of the influence of varying rates with which these increments are brought about. The necessity for reliable, objective information concerning cost data is emphasized. Projected cost/effectiveness comparisons based on the assumption of equal effectiveness for CAI and TAI are discussed for both civilian and military instruction.—Auth.

It was felt that a significant determinant of the high rate of personnel turnover among a population of female sewing machine operators was inadequate initial training. Two hundred and eight new trainees received either 1, 2, or 3 days' vestibule training. The longer the training, the lower the turnover rate, but the lower the productivity as well. Both effects were statistically significant, but the effects on productivity were deemed of less practical significance. A fourth training group received 3 days integrated vestibule and on-the-job training and achieved the best balance of productivity and employee retention. The more difficult the operation on which a trainee was placed the more likely she was to terminate her employ. Another significant determinant of resignations was employees' encountering a job that was contradictory to their expectations.—Auth.

A compilation of papers on a variety of technical subjects relating to training device technology. The conference theme, "Cost Effectiveness of Training Devices," provided a common ground for the exchange of new ideas and discussion of mutual problems. This fourth annual conference is part of a continuing program to encourage and develop better liaison between the Naval Training Device Center and the trainer industry.—Auth.

Nowrasteh, Daryush M. Planning and Management Systems for State Programs of Vocational and Technical Education: An Application of Research, ERIC Clearinghouse on Vocational and Technical Education, Information Series No. 48 (VT 015 638), the Ohio State University, Columbus, Ohio, November 1971.

The evaluation of the Learner Centered Instruction (LCI) approach to training was conducted by comparing the LCI F-111A Weapons Control Systems Mechanic/Technician course with the conventional Air Force course (ABR 32231R) for the same Air Force Specialty Code (AFSC) 32231R on the following dimensions: (1) job performance of course graduates, (2) man-hour and collar costs of the two courses, and
(3) student acceptability and instructor problems for the LCI course. Measures of job performance included a job performance test, an Air Force practical test, the supervisors' ratings, and a substitute job knowledge test. The graduates were measured both at end of course (EOC) and again after five months in the field at field follow-up (FF). The high aptitude LCI trainees' job performance was superior to the high aptitude conventional course trainees at both EOC and FF, and job performance of the medium aptitude LCI trainees was about the same as that for the high aptitude conventional course trainees. Cost in terms of man-hours and dollars for the LCI course were substantially lower than those for the conventional course. The LCI course was about equally acceptable to the high and medium aptitude trainees, but some of the instructors had misgivings about the LCI approach. This report includes implications of integrating LCI courses into the Air Force training environment.--Auth.

This report contains introductory material on cost-benefit analysis, reviews of cost benefit studies by Andrew J. Corazzini and by Jacob J. Kaufman and others, a discussion of the basic concepts of cost-benefit analysis, and a discussion of two possible approaches to cost-benefit analysis of vocational education: (1) vocational versus academic education, and (2) vocational versus vocational education, which includes on-the-job training costs for graduates of the various curriculums. The report concludes: (1) the typical study thus far has been limited in scope; an implicit problem has been that of comparing different means as alternate means to the same ends, (2) the vocational versus vocational education approach would render unlike curriculums comparable, and (3) cost-benefit analysis is a useful decisional tool for allocating funds, but it assesses only the economic efficiency of a program. A plan for a possible cost-benefit analysis study of vocational education is presented in the appendix.--J.K.

In order to examine the possibilities for an advanced multimedia instructional system, this study begins with a comprehensive review and assessment of current instructional media in terms of: (1) a functional description, (2) instructional flexibility, (3) support requirements, and (4) costs. Following this, a model of an individual instructional system is developed as a basis for further analysis. Final comparisons 59
and "trade-offs" among the media are then made to arrive at a recommended media configuration that could serve as a multimedia base for an individualized instructional system. At this point, requirements and features of an automated management information and control subsystem to provide necessary operational control of the total instructional system are outlined and discussed. Finally, the main features of a generalized plan for the development of such a system are described.--Auth.

This edited version of a critique of cost-benefit analysis illuminates the difficulties encountered in measuring the returns from on-the-job training accruing to the individual, society, and government. Its hypothesis, that findings from studies on the Manpower Development and Training Act (MDTA) projects do not transfer to the War on Poverty, supports a request for funding a cost-benefit analysis on training the poor under the Manpower Improvement Through Community Effort project in North Carolina. It criticizes generalizations that have been based upon three published analyses of training schemes conducted under the MDTA Act of 1962, the Area Redevelopment Act of 1961, and earlier State equivalents. It pointed up such difficulties as: (1) treating populations of the poor and unemployed as the same, (2) considering that improvement in income or employment are not the only benefits, and (3) trying to calculate the value of complementary demands for labor created by using the newly trained.--Auth.

The positive findings of the study indicate that there would be some increase in training effectiveness and efficiency if programs were used in Navy correspondence courses. Therefore, developmental and administrative costs of programmed and conventional courses were estimated, and comparative cost curves were prepared showing total training costs for different student populations. Program development costs are much higher than the present development costs of conventional courses. However, administrative costs associated with scoring assignments and answering student questions are estimated to be lower for programs. Although these administrative costs are small for one student and one assignment, they represent a major cost factor because of the large number of students enrolled in Navy correspondence courses. There are certain student populations for which the higher initial developmental costs of programs can be partially offset by the reduction in continuing administrative costs.--Auth.

This report presents the final results of research concerned with the development of procedures for determining the number and indicating the quality of instructors for Navy enlisted schools. The results are presented in the form of an instrument designed to be administered by schools to establish their instructor requirements.

The instrument contains procedures for establishing the man-hour workload of instructors as derived from their instructional, preparation, related, and military duties; and then calculation of the number of instructors required to perform the established man-hour workload.

The instrument appears to provide a valid, practical, and operationally feasible basis for determining instructor requirements for Navy enlisted schools. The instrument has been recommended for promulgation.--Auth.

This report describes the origin and rationale of the concept of an AFROTC Management Control System, and the development of a data base upon which such a system must depend. A detailed list and descriptions of all variables in the data base are included. Some example distributions are included to illustrate the type and magnitude of differences existing between the various AFROTC detachments. It is concluded that substantial improvements in the cost-effectiveness of the AFROTC program are possible through the use of the AFROTC Management Control System, but that the interrelationships between the various factors entering into such a system are so complex that the use of an electronic computer in the data analyses is a necessity.--Auth.

This report describes the background and rationale of an AFROTC Management Control System and the expansion and updating through 1969 of the data base upon which a system must depend. A detailed list and description of 40 detachment effectiveness criteria is presented, with distribution data for 25 criterion variables. Effectiveness criterion scores for selected detachments are described, as are quality control tables developed to indicate the relative effectiveness of each detachment on each criterion. Also described is an effectiveness criterion prediction which makes available predicted scores for more than 800 colleges not presently in the AFROTC program. Examples are shown to demonstrate the usefulness of the system in the pre-evaluation of management decisions.--Auth.

This is a research study that developed a methodology for costing capital resources utilization (real property) by Navy training schools. The methodology was applied in several examples demonstrating the capability of the utilization cost methodology to provide Navy training school managers at all levels with a more realistic and representative total training cost.

62

(For abstract see Section III.)
SECTION VI

TECHNIQUE COMPARISON STUDIES

Technique-comparison studies abound in the training literature. Among the more interesting are those concerned with computer-assisted instruction (e.g., Kopstein and Seidel, 1969); learner-centered instruction (e.g., Pieper, Swezy, and Valverde, 1970); the fidelity of training devices (e.g., Grimsley, 1969a, 1969b, 1969c); programmed instruction (e.g., Short and McCombs, 1966); and multimedia techniques (e.g., Rhode, Esseff, Pusin, Quirk, and Shulik, 1969). General advice on how to conduct such specific comparison studies has been provided by Carpenter (1970).

Unlike the mathematical models of OJT costs, the technique-comparison studies are of great interest to trainers, and are reviewed on a selective basis in the abstract series published in the Journal of the American Society of Training and Development. It must be granted, however, that many people do not take this type of study very seriously. If the experimenter's conclusions disagree with the conclusions wanted by the training expert, the experimenter's conclusions can usually be explained away with little effort. For one thing, the studies are almost always conducted by those who have a vested interest in an answer that supports the use of the new technique. The experimental comparisons are almost never adequately controlled; and the number of cost-effective variables dealt with is invariably small. Many studies, for example, use "training time" as an index of cost effectiveness, without measuring the relative performance of personnel in the experimental and control group. Many other studies evaluate trainee performance in a final course examination, but provide no information about performance on the job.

The number of variables that should be considered when two techniques are compared is sizeable. A good illustration of what training experts are interested in is once again provided by Walker (1965), who obtained expert ratings of 16 commonly used training techniques using criteria proposed by training experts (Table VI-1).

REFERENCES

Selection Criteria Matrix: Mean Evaluation Ratings

<table>
<thead>
<tr>
<th>Selection Criteria</th>
<th>Lecture</th>
<th>Job Experience Training</th>
<th>On-the-Job Training</th>
<th>Evaluation Stations</th>
<th>Closed-Circuit TV</th>
<th>Programmed Instruction</th>
<th>Audio/Visual Instruction</th>
<th>Field Training</th>
<th>Shop Teaching</th>
<th>Laboratory</th>
<th>Simulators</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost to develop</td>
<td>3.8</td>
<td>3.7</td>
<td>4.5</td>
<td>4.4</td>
<td>1.3</td>
<td>2.0</td>
<td>2.3</td>
<td>2.2</td>
<td>2.6</td>
<td>2.8</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Cost to teach</td>
<td>3.5</td>
<td>2.9</td>
<td>3.6</td>
<td>4.4</td>
<td>2.4</td>
<td>4.3</td>
<td>4.2</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
<td>4.3</td>
<td>4.2</td>
</tr>
<tr>
<td>Effectiveness of teaching motor skills</td>
<td>1.3</td>
<td>1.4</td>
<td>1.7</td>
<td>1.7</td>
<td>3.2</td>
<td>1.7</td>
<td>1.7</td>
<td>2.2</td>
<td>1.9</td>
<td>1.9</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Student competition</td>
<td>2.0</td>
<td>2.4</td>
<td>4.9</td>
<td>3.2</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Time to produce</td>
<td>2.2</td>
<td>2.1</td>
<td>3.9</td>
<td>3.2</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>2.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Specific objectives needed</td>
<td>4.3</td>
<td>3.8</td>
<td>3.6</td>
<td>3.9</td>
<td>1.6</td>
<td>2.2</td>
<td>2.1</td>
<td>2.2</td>
<td>1.9</td>
<td>1.9</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td>No. of instructors to develop</td>
<td>2.3</td>
<td>2.4</td>
<td>4.7</td>
<td>3.5</td>
<td>4.2</td>
<td>3.4</td>
<td>4.1</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Transfer of training</td>
<td>2.2</td>
<td>2.4</td>
<td>4.4</td>
<td>2.7</td>
<td>2.8</td>
<td>2.6</td>
<td>2.6</td>
<td>2.1</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>No. of instructors to instruct</td>
<td>3.4</td>
<td>3.4</td>
<td>3.0</td>
<td>3.7</td>
<td>4.5</td>
<td>4.3</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Manoeuvrability</td>
<td>4.3</td>
<td>2.1</td>
<td>4.8</td>
<td>3.7</td>
<td>1.7</td>
<td>4.7</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Student motivation</td>
<td>2.5</td>
<td>4.5</td>
<td>4.7</td>
<td>3.5</td>
<td>4.5</td>
<td>3.6</td>
<td>4.1</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Retention</td>
<td>2.3</td>
<td>4.2</td>
<td>4.7</td>
<td>3.5</td>
<td>2.9</td>
<td>3.7</td>
<td>1.6</td>
<td>2.2</td>
<td>2.8</td>
<td>2.8</td>
<td>3.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Flexibility (adaptable)</td>
<td>4.9</td>
<td>3.8</td>
<td>4.1</td>
<td>4.6</td>
<td>2.0</td>
<td>1.6</td>
<td>1.7</td>
<td>3.0</td>
<td>2.4</td>
<td>2.4</td>
<td>1.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Student knowledge level</td>
<td>3.9</td>
<td>2.6</td>
<td>3.0</td>
<td>3.4</td>
<td>3.3</td>
<td>4.2</td>
<td>2.9</td>
<td>3.1</td>
<td>3.0</td>
<td>3.0</td>
<td>3.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Student-paced</td>
<td>1.6</td>
<td>3.3</td>
<td>3.8</td>
<td>2.8</td>
<td>1.2</td>
<td>4.7</td>
<td>1.6</td>
<td>1.9</td>
<td>2.1</td>
<td>1.8</td>
<td>3.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Quality of specialists to develop material</td>
<td>3.1</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
<td>1.5</td>
<td>1.9</td>
<td>2.6</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>1.7</td>
<td>2.8</td>
</tr>
<tr>
<td>No. of students taught</td>
<td>4.4</td>
<td>2.0</td>
<td>1.5</td>
<td>2.6</td>
<td>4.4</td>
<td>4.9</td>
<td>3.5</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>4.1</td>
<td>4.3</td>
</tr>
<tr>
<td>Facilities needed for preparation</td>
<td>4.7</td>
<td>3.3</td>
<td>3.9</td>
<td>4.5</td>
<td>1.2</td>
<td>3.5</td>
<td>2.5</td>
<td>2.4</td>
<td>2.6</td>
<td>2.6</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Facilities needed to present</td>
<td>4.5</td>
<td>2.4</td>
<td>3.0</td>
<td>4.3</td>
<td>1.5</td>
<td>4.7</td>
<td>2.7</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Complexity of the training material</td>
<td>2.4</td>
<td>4.2</td>
<td>4.3</td>
<td>2.8</td>
<td>3.0</td>
<td>3.5</td>
<td>1.7</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Specific objectives needed</td>
<td>1.8</td>
<td>4.0</td>
<td>3.6</td>
<td>2.7</td>
<td>3.3</td>
<td>4.1</td>
<td>2.9</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.2</td>
<td>3.7</td>
</tr>
<tr>
<td>No. of senses stimulated</td>
<td>2.3</td>
<td>3.8</td>
<td>4.2</td>
<td>2.4</td>
<td>2.9</td>
<td>2.5</td>
<td>2.0</td>
<td>2.3</td>
<td>2.1</td>
<td>2.3</td>
<td>2.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Length of course</td>
<td>4.4</td>
<td>1.7</td>
<td>3.0</td>
<td>4.3</td>
<td>2.3</td>
<td>3.9</td>
<td>3.8</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Amount of data needed to prepare</td>
<td>3.8</td>
<td>2.9</td>
<td>3.4</td>
<td>3.8</td>
<td>2.5</td>
<td>2.0</td>
<td>2.7</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Variety of psychological learning processes</td>
<td>1.6</td>
<td>4.3</td>
<td>4.8</td>
<td>2.7</td>
<td>2.1</td>
<td>3.3</td>
<td>1.5</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>3.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Simulation of operational environment</td>
<td>1.4</td>
<td>4.3</td>
<td>5.0</td>
<td>1.9</td>
<td>3.1</td>
<td>1.9</td>
<td>1.7</td>
<td>2.9</td>
<td>2.8</td>
<td>2.8</td>
<td>1.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Ease of presentation</td>
<td>3.4</td>
<td>2.4</td>
<td>2.7</td>
<td>3.6</td>
<td>2.4</td>
<td>4.8</td>
<td>3.7</td>
<td>2.4</td>
<td>2.7</td>
<td>2.7</td>
<td>3.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Ease of administration</td>
<td>3.5</td>
<td>2.7</td>
<td>2.8</td>
<td>3.5</td>
<td>3.3</td>
<td>3.4</td>
<td>3.3</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Time to produce</td>
<td>3.9</td>
<td>3.4</td>
<td>3.9</td>
<td>3.9</td>
<td>1.7</td>
<td>1.8</td>
<td>2.7</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Ease of evaluating students</td>
<td>2.0</td>
<td>3.3</td>
<td>4.1</td>
<td>2.6</td>
<td>1.7</td>
<td>4.0</td>
<td>1.8</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>2.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Student competition</td>
<td>1.9</td>
<td>3.2</td>
<td>3.6</td>
<td>4.0</td>
<td>1.5</td>
<td>2.7</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Level of student intelligence</td>
<td>2.1</td>
<td>4.2</td>
<td>4.7</td>
<td>2.3</td>
<td>2.7</td>
<td>3.7</td>
<td>2.3</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>3.4</td>
<td>3.7</td>
</tr>
<tr>
<td>Effectiveness of teaching motor skills</td>
<td>1.3</td>
<td>4.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.5</td>
<td>1.8</td>
<td>1.5</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>1.5</td>
<td>2.7</td>
</tr>
<tr>
<td>Total</td>
<td>101</td>
<td>118</td>
<td>129</td>
<td>113</td>
<td>81</td>
<td>116</td>
<td>85</td>
<td>93</td>
<td>91</td>
<td>91</td>
<td>90</td>
<td>110</td>
</tr>
</tbody>
</table>

From Walker, Ralph W. (1965).

65

(For abstract, see Section V, Bibliography.)

(For abstract, see Section V, Bibliography.)

(For abstract, see Section V, Bibliography.)

(For abstract, see Section V, References.)

There are, of course, thousands of technique comparison studies in the training literature. Those that seemed to have special relevance for Air Force OJT programs are given here.

BIBLIOGRAPHY

This study determined that field-experienced instructors teaching technical courses in Air Training Command produced no better students than did instructors lacking field experience. However, the field experienced instructors were rated higher by their supervisors and were considered more favorably by the students they taught. ATC has circulated this information to all of its training centers.--Auth.

Measurement of training outcomes is a requirement for evaluating new training techniques, but is one that is difficult to meet.
Managers of education and training may have different concepts of what they want, as favorable outcomes, than do the investigators doing the research. Classical statistical and experimental designs assume laboratory rigor of control over variables that is seldom possible in the real world of a school or classroom. Yet in the broader perspective of educational institutions, the effectiveness of these institutions is a current issue of fundamental concern in our society. In this report, possibilities for measuring outcomes of training are surveyed, considering training as a form of planned social change. Approaches that are discussed include the classic Solomon four-group design, iterative adaptation to the peculiarities of individual student progress, response surface designs, adaptive control models, decision theory models, and simulation models. Illustrations from the CAI literature of recent attempts to measure training outcomes are given. The principal conclusions presented are that the classical four-way design is impracticable for most evaluation studies in training environments; that a policy of "adaptive research for big effects" is apt to be scientifically and administratively desirable; and that current attempts at measurement of training outcomes still use fairly simple methods.--Auth.

A preliminary investigation into applying the NPTRL course design procedure to a ship's repair party training program is reported. A training system was developed for repair party training which was workable and produced readily detectable improvements. The procedure proved adaptable to shipboard conditions. Most problems of shipboard training reduce to management problems, rather than the actual conduct of training. There is tentative evidence that smaller repair parties, with personnel cross-trained in two or more discreet jobs, would be more efficient. Further research in the shipboard training area is suggested.--Auth.

Procedures were developed to enable training personnel to systematically and objectively determine the potential utility of training devices for teaching how to perform missions in operational equipment. The procedures allow comparison of operational task
stimulus and response elements with corresponding elements in synthetic training equipment. On the basis of such information, training programs consistent with the psychological principles underlying transfer of training may be developed. The procedures may be applied to the potential use of training equipment in a training situation other than that for which it was designed, or in determining the applicability of "off-the-shelf" training devices to specific training requirements. The procedures, termed Task Commonality Analysis, were developed in connection with an Army rotary wing instrument flight training program. In an application of the procedures in that program, transfer of training predictions were generally consistent with empirical evidence collected earlier.--Auth.

Supervised correspondence study has made a major contribution to education in this country. It is equally clear that the full potential of the procedure is far from being realized.--Auth.

Among the many problems facing occupational education today, one of the most pressing is that which relates to the analysis and classification of jobs. In attempting to improve the quality of vocational education, it is necessary to know the characteristics of the product that is needed, as well as the process by which it is produced. Research into the area of job-clustering has great potential for helping us to understand the nature of the desired end-product of vocational education. The potential for curriculum development is apparent, but that is not the only possible contribution. A better understanding of job-analysis, a necessary foundation for clustering research, should give greater feedback capabilities in occupational programs with a concomitant improvement in the ability to modify and redirect occupational programs to provide the best articulation with the world of work. The papers collected in this monograph represent the contributions of a number of scholars who are presently active in research on the problems of job-clustering.--Auth.

As part of a larger program to determine which Navy skills can be learned by lower aptitude personnel and to ascertain what methods are most effective for accomplishing such training, an experimental course in printed-circuit-board soldering was administered to 186 Mental Group IV students in 13 classes. Two different training approaches—one stressing instructor guidance and the other featuring reliance on film viewers—were evaluated. Research data were obtained by means of questionnaires and paper-and-pencil and performance tests. The soldering proficiency of the Group IVs was compared with that of experienced Navy technicians, and tests designed to measure transfer of the skills learned in the course also were constructed and administered to selected classes. The major research findings were: (1) that Group IVs can learn the rather exacting skills required for a task such as printed-circuit-board soldering, but they require a considerably longer training period than other Navy personnel; and (2) that the filmviewer method of training is an effective alternative to conventional methods of teaching soldering and was preferred by the Group IV personnel. Recommendations for implementing the research findings into Navy technical training are presented, and other current and planned research projects are briefly discussed.--Auth.

Navy training manuals require continuing revision in order to remain current. Considerable time and man-effort are required to accomplish the revision of such manuals. The use of a computer-assisted document preparation system in the updating of these manuals offers potential for significant reductions in both the elapsed time and the man-effort required to complete a revision cycle. This report relates the results of a pilot project initiated to test the feasibility of using such a Computerized Specification Management System (CSMS). This text editing system developed by Naval Electronics Laboratory Center (NELC), San Diego, California, was used to prepare revised editions of two Navy training manuals and their associated correspondence courses. Modification and enhancement of the original system was required to provide additional font and character capabilities. Significant reductions in elapsed time and man-effort required to update a manual were achieved. Additional texts will be assigned for update by the CSMS system and efforts to refine and improve the system will continue.--Auth.

This report summarizes the results of research at the Team Training Laboratory from December 1960 until August 1967. During this time, seven technical reports were issued by the laboratory. This summary report briefly describes each of these seven studies and reviews their purpose and major results.

Report 1 described the approach being examined in the Team Training Laboratory, one which considered the team and its output or product rather than the performance of its individual members as the focus of investigation.

Report 2 reported on the acquisition and extinction of a team response, a demonstration that basic principles of individual learning could be applied to the team considered as a single entity.
Report 3 presented an experiment on the inclusion of parallel or "redundant" members in a team which confirmed an hypothesis derived from the underlying approach that redundancy could result in eventual decrements in team performance.

Report 4 further analyzed the effects of internal team structure on the development and maintenance of a team response based upon the degree of correspondence between individual performance and feedback supplied to the team.

Report 5 identified the relationships among team member characteristics, the conditions of team training and the speed and thoroughness with which teams developed proficiency that could be demonstrated empirically.

Report 6 explained the value of more gradually introducing the low ratios of reinforcement typical of early team performance providing supplemental, supervisory-furnished feedback to team members.

Report 7 presented three studies on the simulation of team environment, which considered the degree to which the approach facilitated the replication of team learning phenomenon based upon the performance of a single individual.

The final section of this report identifies some practical implications of this research and relates the underlying concepts to the broader context of social behavior.--Auth.

Two experiments were carried out: one to test a hypothesis about the operation of the learned hierarchy of concepts and the other to examine the function of attribute-coding responses. The main variable in Exp. 1 was the number of lower-level concepts to be learned. The main variable in Exp. 2 was the amount of pretraining on attribute-coding responses.

Pretraining on all three of the lower-level concepts facilitated the acquisition of a presumed higher-level, biconditional concept significantly more than other conditions. Pretraining on the attribute-coding responses prior to rule-learning proper also facilitated the acquisition of the transfer concept significantly more than did no training in coding. Thus, the second experiment yielded empirical support for an interpretation of the transfer effects apparent in the learned hierarchy of concepts in terms of two processes: (a) implicit or explicit attribute-coding, and (b) rule formulation proper.--Auth.
Main, Ray E. The Effectiveness of Flash Cards in a Mathematics Self-Study Course for Group IV Personnel, SRM 70-20, Naval Personnel and Training Research Laboratory, San Diego, Calif., June 1970. (AD 707 718)

The Naval Personnel and Training Research Laboratory is conducting research aimed at identifying optimal methods for training Navy personnel who have achieved marginal scores on military selection tests. In the present study, flash card instruction methods were adapted for application to a comprehensive range of basic mathematical operations involved in a previously developed course in fundamental mathematics. Supplementing the standard course work with flash-card instruction did not result in significantly higher performance gains. It was concluded that applying flash methods to the relatively wide range of content complexity involved in this study was not effective. It is pointed out that this investigation should not be interpreted as challenging the usefulness of flash cards as typically employed.--Auth.

This study reflects the initial research effort to improve the training technology in the nondestructive testing (NDT) training course. A strategy was developed to retrieve information from the Welding Standard (NAVSHIPS 250-1500-1), one of the primary military/Navy standards (documents) that is used to evaluate welds and metals by NDT methods. This strategy, an index and retrieval exercise, was then experimentally evaluated by comparing groups using it with those groups not using it. Improvements were demonstrated in the capability of finding inspection topics, the interpretation of inspection topics, and in the length of time required. Recommendations are made for the implementation of the index and the retrieval exercises, and for developing similar index documents and retrieval exercises for all standards involved in the NDT of welds and metals.--Auth.

This document reports on two institutes designed to communicate new concepts and procedures in vocational-technical education curriculum development to potential change agents in the various states.
Formal presentations by 12 consultants and task force activities concerned innovation identification and prognoses for change, planning strategies for curriculum innovation, climates for innovation and change, implementing and expanding innovation, and cost-benefits and evaluation criteria. Institute evaluation is discussed in detail. Institute participants represented 31 states. Complete texts of formal presentations are appended--C.H.

This research evaluated the feasibility of a microfilm system for providing information about Navy ratings to recruits and evaluated the adequacy of Navy job information presently being given to recruits. Additionally, it provided information about: (a) what job information is considered most important, (b) the effectiveness of different ways of learning about Navy occupations, and (c) the recruits' expressed satisfaction regarding job assignments. The microfilm system that was investigated was considered too costly for implementation in current recruit training. A recommendation for tryout and evaluation of a simplified microfilm method was made.--Auth.

Two parallel self-instructional packages were developed for teaching soldering rework on printed circuit boards. One package consisted of 12 five-minute sound films. The other consisted of a 168-page spiral bound book. The effectiveness of the self-instructional packages was compared to that of a parallel instructor-taught course. Subjects for the comparison experiment consisted of 60 students in Basic Electricity and Electronics.

Both self-instructional packages--film and book--were found to be effective media for learning soldering skills. No significant difference was found in the soldering skill gains of film-, book-, and instructor-taught students. The soldering book, though, has the advantage of being simpler and less expensive to reproduce and to administer.--Auth.

Design of a proposed occupational clustering system for the Comprehensive Career Education Model (CCEM) was to meet three general criteria: encompass most existing jobs, translate into an entire K-12 curriculum, and show clear advantages over other systems. Researchers examined existing clustering systems for relevance and possible adaptation; no one system met all the criteria; so, a new clustering system was devised by synthesizing useful features of existing systems. The proposed system has two crucial dimensions—one stressing functions and contents of occupations, the other emphasizing status or levels of occupations. The proposed clustering system was planned to fulfill three instructional functions: inform students about the world of work, assist students in choosing a suitable career, and provide models to shape instructional objectives and learning experiences.

Wedemeyer, Charles A. (ed.). The Brandenburg Memorial Essays on Correspondence Instruction--I, University Extension Division, Correspondence Instruction Program, Madison, Wis.; 1963, 77 pp.

In August 1961, the Brandenburg Foundation made its first memorial grant to The University of Wisconsin Extension Division for the purpose of assisting the university in carrying on seminars in correspondence instruction and publishing every other year a volume of original papers on correspondence instruction, of which this is the first. There is a very brief review of the literature of the field in the foreword. Titles, authors, and author locations of the collected papers are: "Liberal Education for Adults by Mail," by Leonard S. Stein, St. Louis University; "The Demands of the Decade," by John L. Davies, State University of Iowa; "Supervised Correspondence Instruction," by Gayle B. Childs, University of Nebraska; "Tutoring Through the Mail," by Katherine W. McMullen, University of Wisconsin; "Problems in Learning by Correspondence," by Charles A. Wedemeyer, University of Wisconsin; "W.H. Lighty--Fountain of Idealism," by Roger W. Axford, University of Wisconsin; and "Some Aspects of Teaching by Correspondence in Australia," by Renee Erdos, New South Wales Department of Technical Education, Australia.

Various aspects of correspondence education are explored in 13 essays by various authors, including the editor. In respective essays, current worldwide trends in correspondence education are summarized, its development in several countries is discussed, its purposes are explored, its weaknesses and advantages are analyzed, methods of evaluating it are proposed, and predictions about its future are offered. The contents are: "World Trends in Correspondence Education," by Charles A. Wedemeyer; "Correspondence Education

Certain problems of the correspondence learner might possibly be special hazards of the correspondence method. These problems do not result from deficiencies in the method (for the problems appear in other methods, too), but ignoring these problems or failing to work imaginatively to overcome them may offer greater hazards for the correspondence student than for students of other methods.--Auth.
SECTION VII

SYSTEMS ANALYSIS OF TRAINING

The training program design literature is very useful and interesting to training experts. This literature is especially important because of recent technical breakthroughs in the design of training programs that would tend to integrate program evaluation and training program design as part of a "systems analysis" or "systems engineering" approach to training.

Systems analysis of training refers to a set of procedures for designing or redesigning programs of instruction. One might think of it as a feedback-oriented approach to the design of instructional programs since, in essence, it consists of an analysis of the tasks the student is expected to perform following training; identification of the terminal behaviors that jointly make up the tasks; measurement of these terminal behaviors; and revision of the program of instruction until performance specifications are met. In other words, the objectives of the program are defined at the outset, and the training program is revised repeatedly until it meets those objectives. A "systems analysis" emphasis shows up in several ways. Job analyses are conducted from a systems point of view, and systems diagrams are used extensively in making decisions about training-program design.

The Air Force version of systems analysis of training is called Instructional System Development (ISD) and is presented in Figure VII-1. The Air Force approach has proved to be very effective, as indicated by the many complimentary comments in a recent OSD-sponsored analysis of curriculum development policies and procedures used by Army, Navy, and Air Force (Hunter, et al.). Moreover, the Air Force has improved its approach since the survey was conducted.

The origins of systems analysis of training are difficult to trace, since so many different organizations seemed to have been working on the problem at the same time. The Army and the Air Force were key organizations in developing the operational plans for systems engineering of training. The military experts who did the work based

INSTRUCTIONAL SYSTEM DEVELOPMENT MODEL

Legend:

- Curriculun Loop
- Feedback and Interaction Loop

Figure VII-1. Instructional System Development Model.
(Source: AFM 50-2.)
It upon training research conducted by large behavioral science organizations, such as the Human Resources Research Organization (HumRRO) and the American Institutes for Research (AIR)—but the act of putting all the pieces together at one time into one systematic approach seems to have been conducted by committees and boards of military training experts who prepared systems engineering manuals for Army and Air Force use. The Navy has recently developed a similar manual for use by its schools and training centers.

Systems analysis of training is expensive, and it has been applied almost exclusively to the design of lengthy resident school training programs. Similar procedures are talked about in the design of OJT programs, but the responsibility for the design of these programs is basically supervisory. One can tell a busy supervisor that he is supposed to conduct task analyses and think in terms of terminal and enabling performance objectives—but, generally, the supervisor simply does not have the time or the skill required to do a professional job of this sort. So as a result, the application of systems-oriented techniques to OJT is more of a long-range objective than it is a current reality.

Many systems analysis manuals have been developed. The following Bibliography presents documents that qualify as important systems engineering training manuals from diverse sources.

BIBLIOGRAPHY

The second edition of the course design manual is a thorough revision of earlier editions. The manual is designed to assist instructors in developing and improving job-related training courses. Major changes from earlier editions include more careful definitions of training and training-related terms; a general clarification of concepts and procedures, especially those concerned with job and skill analysis for training purposes; more emphasis on principles of developing training exercises; a more thorough consideration of the importance and means of adapting individual differences; and more emphasis on the significance of the course mission for course design. Examples from a wide variety of duty assignments are included.--Auth.

Tuckman, B.W. *A Study of Curriculums for Occupational Preparation and Education (Scope Program: Phase 1)*, Rutgers University, New Brunswick, New Jersey, 1970.

SECTION VIII

APPROACHES TO PROGRAM EVALUATION

The Air Force has been concerned with ways of evaluating training programs for some time, and recently sponsored a literature review on this subject. The report (Bergman and Siegel, 197?) reviews the literature on training evaluation and student achievement measurement (316 references). This literature review was then used as the basis for the design of a "how-to-do-it" manual that was made available to training experts as well as to researchers in the Air Force (Siegel, Bergman, Federman, and Sellman, 1972). These two documents, however, are oriented primarily toward resident school courses rather than OJT.

The most important point to be made here is that there are many different approaches to the evaluation of OJT programs; Siegel et al. (1972), Rafacz and Foley (1973), and other experimental-oriented experts stress the use of performance checklists and rating scales. Programs can also be evaluated in terms of their cost-effectiveness from an approach of planning programming and budgeting systems (PPBS) (Nowrasteh, 1971; Hennessy, 1969); the statistical characteristics of the overall program (Iacobelli, 1971); the actual behavior of the program graduates (Hahn, 1970, 1973); and so on.

The decision as to which program evaluation technique should be used under what circumstances is not an easy one. Rose (1968) maintains that eight different portions of the training cycle should be evaluated with one or more of 13 different techniques. The eight elements requiring evaluation are job-task analysis, training requirements, plan for training, administration of program, formal training process, OJT process, end-of-course outcomes, and performance on the job. The 13 recommended methods for evaluating these various training program elements are cited here. This list is a useful one, but probably contains no surprises for those in the training business.

(1) Comparison with the findings of educational research and the psychology of the learning process.

(2) Comparison with performance requirements on the job.

(3) Observation of instruction.

(4) Written achievement tests.

(5) Questionnaire to trainees.
(6) Questionnaire to supervisors.
(7) Trainee interview.
(8) Supervisor interview.
(9) Observation of performance on the job.
(10) Study of records and reports.
(11) Performance tests.
(12) Analysis of problems and accidents.
(13) Research with matched groups.

One of the problems with the typical approach to training evaluation is that it does not give adequate consideration to the viewpoint of the trainees. The objectives of the trainees differ from the objectives of the organization for which they work, and any evaluation process based solely upon organizational objectives is not complete.

It is not, of course, always clear what the trainee objectives are. One study, a factor analysis of variables of interest to young trainees, produced the following factors:

(1) Community adjustment.
(2) Striving for personal improvement.
(3) Realistic aspirations.
(4) Job motivation and planning.

These factors seem to have obvious implications for "motivational" problems of trainees--but they tend to be neglected when training programs are evaluated.

Putting more emphasis on ratings by trainees is one way in which attention can be focused upon trainee objectives as well as organizational objectives. This approach is especially useful when graduates of vocational training programs (e.g., U.S. Department of Labor, 1970) evaluate the training that they have received since the graduates are in a better position to evaluate their training than they were as trainees. Graduates are also much less concerned about adverse reactions from their trainers when they make critical comments. A bibliography of program evaluation references, other than those
cited in the text, that seemed useful to those concerned with Air Force OJT programs is also given.

REFERENCES

This report describes the activities undertaken in the accomplishment of Phase I of a planned three-phase project designed to create and evaluate a methodology for the development of task-level job-performance criteria. The primary objectives of the project were the initial development and the later evaluation through field trials of instruments and procedures that could provide the armed services with an acceptable measure of job-task performance. The resulting criterion instruments and procedures were to be designed for use in personnel management, systems development, planning, and evaluation rather than as a basis for immediate actions that affect the personal careers or compensation of individual servicemen. Project activities were to be addressed to a limited number of Air Force specialty career ladders. The basic intent of the project, however, was the development of illustrative methodology that could be readily translated across many Air Force specialties, as well as to related occupational specialties across all military services.

The scope of Phase I, which is covered in this report, included the selection of the occupational specialties to be studied, and the development and preliminary evaluation of survey instruments and procedures preparatory to a field administration to be accomplished in Phase II.--Auth.

Nowrasteh, Daryush M. *Planning and Management Systems for State Programs of Vocational and Technical Education: An Application of Research*, ERIC Clearinghouse on Vocational and Technical Education, Information Series No. 48 (VT 013 638), The Ohio State University, Columbus, Ohio, November 1971.

BIBLIOGRAPHY

In planning this seminar, it was originally intended as a meeting of AIR staff only; those interested and experienced in evaluation. Because AIR's work in the field, both in this country and overseas is increasing, we sought to have staff within and between offices meet to discuss the timely topic of evaluative research.

The AIR Board of Directors felt there were other groups and individuals who would be interested in the topic and who could provide additional slants and insights. It was agreed to invite a selected group of participants. The response was most rewarding; more than 200 accepted the invitation to meet on 8 and 9 January 1970 in Washington, D.C., to discuss Evaluative Research: Strategies and Methods.
The objectives of the seminar were to provide opportunities for both staff and colleagues to gain 1) new insight or perspective on the broad problems of evaluation, and 2) additional knowledge about methods for dealing with these problems.

This report includes the eight papers presented during the two-day meeting together with supplementary comments. The success of the seminar rested largely on the high quality of these presentations. Dr. Arthur A. Lumsdaine, Chairman, Department of Psychology, University of Washington, commented on the first four papers. On the second day, the commentator was Dr. Irving Spergel, Chairman, Community Work Sequence, School of Social Service Administration, University of Chicago. The speakers and participants appreciated the added perspective these commentators provided.--Auth.

This paper applies mathematical modeling techniques to the pre-design evaluation of the performance of an automotive mechanics training system. First, the method of deriving the model will be demonstrated in three stages:

1. derive the flowchart model of the system as it should operate,
2. convert flowchart functions into mathematical form;
3. derive the equations describing the system performance.

Second, the mathematical model will be applied in predicting the system performance. This application demonstrates the economic advantages of using the mathematical modeling approach.--Auth.

The purpose of the study was to collect and analyze the major technical training problems of commercial organizations offering electronics technician training programs.

Information was collected from 50 leading electronics systems manufacturers in the United States.

The ten leading problems revealed by the respondents were:

1. The students often lack a good foundation in mathematics and basic sciences.
2. There was not enough time to train instructors in both theoretical and practical aspects of the equipment they taught.
3. Technical manuals were inadequate for training.
4. It was difficult to obtain enough laboratory equipment.
5. There was a shortage of instructors.
6. There was not enough time to train instructors in teaching techniques.
7. Better tests of the students' ability to maintain equipment were needed.
8. Training supervisors were not close enough to training problems, and could not keep up to date on new equipment being taught.
9. Some students took their work too lightly.
10. Some instructors needed more field experience on the equipment they taught.

"The ultimate test of training is whether it attains its objectives. But it is also important to know whether those objectives and the efforts to achieve them are worthwhile in terms of cost and in relation to the goals and objectives of the government. Because training entails costs and because it substantially affects the performance of the public service, any serious effort to improve the public service through training will make provision for measuring and evaluating training effectiveness... This discussion [by the
author] dispels the belief that the impact of training is too complex to measure and that the variables involved defy evaluation."

Contents: Establish performance standards; gauge for achievement needed; pitfalls in measuring results; selecting measurement criteria; keep tab on program's value; criteria defining values; avoid noting unstated objectives; and conclusions.--Auth.

It is generally conceded that performance examinations are superior to written examinations for the measurement of job behaviors required of Air Force specialists and technicians. However, performance examinations, both in school and on the job, are time consuming in their development and in their administration. Written examinations have, therefore, been substituted in many cases for performance examinations. This memorandum presents the difficulties involved in developing and administering performance examinations, the dangers of depending upon written examinations as substitutes for performance examinations, and the fact that there is a lack of research information on the valid substitution of written for performance examinations. It proposes developmental research with a view of simplifying performance examination procedures and establishing valid guidelines as to the scope of written examinations in measuring job behaviors. It, also, makes some recommendations concerning immediate action that can be taken to improve the validity of current technical training examination procedures.--Auth.

Rationally defined outcome variables, for use in evaluating youth-work training programs, were incorporated in questionnaires administered to present and former Neighborhood Youth Corps enrollees and analyzed to determine their suitability as criterion measures. Using a factor analytic technique, empirically defined clusters were obtained for immediately available (end-of-program) outcomes and

88
longer term (post-program) outcomes. The most logical groups of criteria were found for those former enrollees who had full-time employment experience. Relatively clear patterns of job-oriented capability and success were dominant as were two separate factors bearing on personal adjustment to the job and to the community.

Some descriptive highlights concerning the vocational behaviors of former trainees are presented and future research needs for better definition and understanding of program objectives are discussed. --Auth.

This Technical Report summarizes briefly the findings of exploratory studies, conducted under Task No. 37303, designed to better the measurement of the performance of maintenance personnel by improving testing procedures and use of information derived from records of job performance. Four separate research efforts were devoted to developing improved performance-testing techniques: (1) preparation of a guidebook on maintenance-performance evaluation; (2) statistical re-analyses of proficiency test data to relate troubleshooting performance to specific kinds of aptitudes and basic knowledge, and to determine the relations among types of errors committed in performing complex alignments and adjustments; (3) development of two microfilm projection devices for use in training troubleshooters and in assessing troubleshooting performance; and (4) a study of the effects of variations in performance-testing procedures. Two studies of maintenance performance records are also reported. --Auth.
The aims were to identify, select, analyze, and describe vocational programs at the secondary level that had been successful in increasing the total placement rate (employment, further education) when compared with other courses of instruction. Through a literature search, mail and telephone inquiries, personal contacts, and other means, 445 programs were identified for study with emphasis on program evaluation, particularly follow-up of graduates. Some 30 programs were site-visited.

None of the 445 programs could be shown to have met the study's criteria for success; 43% lacked comprehensive follow-up data on graduates; 33% had nearly complete data, but no trends could be detected, nor were suitable comparison groups of nonvocational graduates available.

Even if comparable, contemporaneous groups had existed, and even if complete follow-up of both groups of graduates had been possible, it was concluded that the original criteria needed to be supplemented by criteria that took into account qualitative placement factors, such as initial job earnings, on-the-job competency, job retention, progress within the job, and mobility within a range of jobs related to the training provided by the vocational program.

Recommendations for program design and evaluation that would permit the assessment of such factors conclude the report.--Auth.

Jacobs, Paul I., Maier, Milton H., and Stolurow, Lawrence M.

The purpose of the handbooks is to serve as a technical guide in establishing work sample programs. The publication is a "how-to" manual for developing appropriate work samples, establishing the vocational evaluation unit, and training vocational evaluators. The objective of the handbook is to aid intended users in assessing the vocational potential of the disadvantaged.--Auth.

Short-term training institutes represent one of a variety of methods being used to improve the status of vocational education evaluation. In addition to developing leadership competencies needed in evaluation, another purpose of these institutes has been to draw upon the talents of the consultants and participants in order to help develop improved strategies and procedures of evaluation.

In keeping with these purposes, a major part of this guide is concerned with presenting viewpoints on which there was general consensus among the participants attending the National Institute on Improving Vocational Education Evaluation, which was held August 4-8, 1969, at the University of Arkansas. Attention is also given to points and issues on which there seemed to be little agreement among either the consultants or the participants. Finally, some suggestions on how evaluation can be improved are offered.--Auth.

The purpose of this research effort is to validate the utility and effectiveness of a unique human performance measurement technique developed under ONR contract (N0001467C0107). Performance data on eight Navy ratings were collected from ships of LANTFLT and PACFLT. This report is the first in a series of technical reports on the statistical analysis of that data. In particular, a statistical analysis is provided on performance-related data for electronic maintenance personnel sampled from 11 ships of CRUDESFLOT NINE, San Diego, California. Four different performance estimators, as functions of critical incidents, are evaluated with respect to a performance criteria. A detailed explanation of the distributional properties of the performance estimators is presented and an explanation of the factors that lead to the adoption of a curvilinear regression analysis for analysis of the data is discussed.

The results of the statistical analysis indicated that a certain combination of the performance data possessed moderate validity for measuring the absolute level of technician performance. Detailed analysis of the performance data also identified the areas of difficulty that have to be avoided in order to improve upon the validity of each of the performance estimators. These and other preliminary results indicate that the technique possesses merit for further development and research. The Naval Personnel Research and Development Laboratory is continuing research on this technique with respect to the totality of data collected.—Auth.

An 11-point rating scale and minimum acceptable performance criteria were developed for each training phase of F-4 combat crew training to measure training progress and compare the performance of two groups of student aircraft commanders. Instructor pilots rated the performance of student aircraft commanders who were either
upgrading second-seat crew members or recent undergraduate pilot training (UPT) graduates. The objectives were to determine the effects on performance in combat crew training school of experiences as F-4 second-seat crew members, and to determine whether recent UPT graduates with no experience as second-seat crew members could meet the minimum performance standards of combat crew training in the amount of time currently allotted. The students were rated against the criteria of minimum acceptable performance using standardized rating procedures. Several conclusions were reached on the basis of this study: (a) Proficiency ratings made against criteria of minimum acceptable performance can be used to measure training progress and compare rates of gain in proficiency between two or more groups; (b) experience as F-4 second-seat crew members resulted in higher proficiency ratings at the beginning of most training phases for the upgrading second-seat crew members; (c) recent UPT graduates improved their rated performance to achieve levels of proficiency similar to the upgrading second-seat crew members by the end of most training phases; and (d) students from the top 10% of their UPT classes should be able to successfully complete F-4 combat crew training as aircraft commanders in the amount of time currently allotted without previous exposure to the F-4 as second-seat crew members.--Auth.

For several years, Applied Psychological Services has been carrying out research in the development and application of criteria for assessing the proficiency of Naval technicians in various technical specialties. Before undertaking additional work, it seemed wise to evaluate the current state-of-the-art with respect to methods for the measurement of individual differences in on-the-job performance. This report considered recent progress in the area and attempted to point up a number of important issues that require investigation and clarification.

Job performance appraisal techniques that have been used were discussed. These included production records, interviews and questionnaires, work sample and situation tests, appraisal of executive performance, and rating scales. Criterion analysis was reviewed in terms of intercorrelation and factor analysis, scaling, and reliability, including job performance changes over time.

93
Important current issues in the field of job performance measurement discussed were problems associated with the dimensionality of performance criteria, their selection and evaluation, their predictability, their ultimacy, and the influence of environmental factors.

It was concluded that there is need for an integrating conceptual framework to order and organize the field of measuring individual differences in on-the-job performance and to provide a more satisfactory basis for evaluating on-the-job performance.--Auth.

Program management techniques were adopted from business and industry in order to provide an efficient and effective program of occupational training. The techniques include: (1) loss of tools or damage reports, (2) check-in system for instructors, (3) trainee attendance control (4) use of facilities, (5) organizational structure, (6) instructor evaluation, (7) production requests, (8) curricular standards, (9) cost effectiveness, (10) advisory committees, and (11) accreditation.--C.H.

This report demonstrates the use of "suitability" for the job as a basis for training evaluation by: (1) describing a specific scheme for quantitatively summarizing suitability, and (2) illustrating the application of the scheme through data collected in previous Applied Psychological Services' studies of four naval ratings. "Suitability" for the job is defined as the training graduates' ability to do the tasks involved in the job.

Matrix solutions are described that yield three indices, each reflecting a different aspect of the comparison between the skills of the trained man and the job's requirements. The method avoids the necessity for the determination of the functional relationship between training emphasis and job proficiency. Listing of the tasks as they are classified in the cells of a matrix and as they thereby contribute to the various training indices provides a further basis for consideration of specific changes in emphasis in various parts of the training program. The characteristics and limitations of the method are discussed and the results of its application to four naval ratings presented.--Auth.

Edward A. Suchman, one of the world's foremost experts in measuring social behavior, presents the most comprehensive study of evaluation available to date. In this report he describes the techniques used to determine empirically the extent to which social goals are actually being achieved, to locate the barriers to the achievement of these goals, and to discover the unanticipated consequences of social actions.

This book will have many uses. It will aid the evaluative research person in striking a balance between rigorous method and the situation in which he must function. For the operating practitioner, the book will explain what competent evaluation involves. Administrators will find the volume an invaluable aid. --Auth.

This practical workbook will help every training manager evaluate and improve his company's instructional program to achieve maximum returns on investments in time, effort, and money. This book provides more than two hundred detailed analysis sheets that show the training director how to examine, evaluate, and revise each aspect of his program. Applicable for every type of training program--from nonexempt through supervisory to managerial--these checklists enable him to plan and organize training activities geared to the needs of his company.

Here are specific evaluation criteria and detailed suggestions for using them. This helpful guide shows how to:

- identify strengths and critical weaknesses in existing programs
- devise procedures to improve the system
- determine the resources required for training
initiate appropriate control devices

evaluate the instructor--his appearance and speech, his techniques, his ability to evoke student participation

Informed, cost-conscious training directors will welcome this book as an invaluable aid in setting up and improving training programs that will produce more profitable results.--Auth.

This publication is one of a new series of education and training manuals to be published by the Bureau of Naval Personnel. When completed, the series (NAVPERS 93510) will encompass all elements of instructional technology, course design, and school management and administration appropriate to Navy education and training. The first of the series to be distributed to Navy training activities and schools is the *Handbook for Writing Learning Objectives,* NAVPERS 93510-2, which should be studied by school administrators and instructors as an adjunct to this publication.

The "instructional systems engineering approach" (or "systems approach") to course planning and design is emphasized in this publication along with its application to the development of curriculum documentation for use in Navy schools.

Other publications planned for this integrated series will include revised manuals on testing and evaluation, school administration, instructor training, in-service training, and new manuals on subjects such as utilization of instructional television and programmed instruction.

In order to formulate policy decisions regarding post-secondary vocational education more adequately, the U.S. Office of Education contracted with AIR to perform a survey of proprietary and non-proprietary vocational training programs in four selected occupational areas (office, health, computer, technical) and four metropolitan areas of the U.S. (Atlanta, Chicago, Rochester, San Francisco). The survey was oriented around three broad questions: 1) What are proprietary schools like, and how do they compare with non-proprietary schools offering similar training programs? 2) What are the students like who go to proprietary schools, and how do they compare to students who attend non-proprietary vocational schools? 3) What do students gain as a result of attending proprietary schools, and how do their gains compare to the gains recorded by students who attend non-proprietary schools?

As part of the study, a brief review of the literature was prepared. Structured interviews and questionnaires were developed to survey the institutions, their students, and their alumni. All instruments were pilot-tested and revised as a result. Student questionnaires were administered by school staff members. Alumni questionnaires were mailed, with follow-up reminders. A telephone study of 500 non-responding alumni (77% of whom were reached) revealed no marked differences from earlier respondents. All questionnaires were scored by National Computer Systems.--Auth.

SECTION IX

MILITARY DOCUMENTS

Each branch of the service has its own set of regulations governing OJT—but the review of military documents was not restricted to regulations. Many closely related documents and manuals must be considered in order to understand how OJT is actually conducted and how it interfaces with other personnel subsystems. In the Army, for example, it is not possible to understand the OJT system without saying something about the relationship to resident schools programs, unit training programs, proficiency testing programs, and so forth.

A brief description of the OJT program for each branch of the service in the United States is contained in another report in this series (Stephenson and Burkett, 1975). This section lists the most important references for the Department of Defense and each of the services (listed alphabetically).

BIBLIOGRAPHY

U.S. DEPARTMENT OF DEFENSE

DOD Directive 1215.9, 7 November 1969, subj: "Initial Active Duty for Training in Reserve Components." ASD(M&RA)

8See page 4 of this report.

DOD Instruction 1100.14, 2 October 1968, subj: "Food Service Education and Training Program." ASD(I&L)

DOD Instruction 1145.2, 3 June 1965, subj: "Armed Forces Examining and Entrance Stations Program Policy." ASD(M)

DOD Instruction 1300.10, 23 October 1969, subj: "Enlisted Career Development and Grade Management Information Program." ASD(MG&RA)

DOD Instruction 1322.2, 30 March 1971, subj: "United States Armed Forces Institute." ASD(MG&RA)

DOD Instruction 1332.6, 3 July 1969, subj: "Career Counseling of Military Personnel." ASD(MG&RA)

DOD Instruction 1332.24, 19 July 1968, subj: "Project TRANSITION Certificate of Training." ASD(MG&RA)

DOD Instruction 7730.31, 30 September 1965, subj: "Report on Officer and Enlisted Training Output." ASD(M)

U.S. DEPARTMENT OF THE AIR FORCE

Air Force Manuals

Air Force Regulations

National Guard Bureau

U.S. DEPARTMENT OF THE ARMY

Army Field Manuals

Army Pamphlets

Army Regulations

U.S. Army Training & Doctrine Command

U. S. DEPARTMENT OF THE NAVY

Chief of Naval Education & Training. List of Training Manuals and Correspondence Courses, NAVEDTRA 10061AH, Washington, D.C., March 1974.

U.S. MARINE CORPS

As the senior author reviewed the literature, some references attracted his attention in the sense that they suggested possible changes in Air Force policies and procedures. The idea, whatever it was, was written immediately and attached to the reference. Approximately 80 of these "innovation" citations, based upon 40 ideas, were identified.

A list of innovations was prepared and many of them were discussed during the headquarters and field-activity visits (described in Stephenson and Burkett, 1975). Some of the ideas did not survive criticism. Others were found worthy of further review.

Since the literature review was frankly action and decision-oriented, it was not considered adequate to simply list various references next to the ideas with which they were associated. Instead, one-page action-oriented summaries of what was involved in each idea were prepared for each possible innovation. A problem was briefly defined, the proposed solution was described, advantages were listed, and resource requirements were estimated. The literature review thus took on decision-oriented aspects that went far beyond the references themselves.

The list of possible innovations was organized into nine subject-matter categories:

- Administrative
- Audiovisual Presentations
- Computer-Assisted Techniques
- Evaluation
- Incentives-Motivation of Trainees
- Instructional Techniques
- Periodic Surveys
- Program Design
- Other

Each innovation is described and presented here. Additional ideas (inspired by field-activity visits and the analysis of survey data) are contained in Stephenson and Burkett (1975).

9See page 4, this report.
Redefine Objectives for Remedial Programs and Reading Improvement Training

Most remedial reading programs are now administered at field-activity locations. Trainee progress is delayed, because time must be spent away from the job to participate in the reading program. Upgrade training and work performance suffer as a result of these trainees who cannot read the materials required to perform their jobs. Present reading improvement programs are not standardized across commands, and the training is often contracted out to local school districts. Objectives of these programs are not always realistic, in that they attempt to improve general rather than job-related reading skills.

Redefine objectives for remedial reading programs by adopting a functional literacy approach designed to develop required minimum job reading skills. These job reading programs should be built around clusters of related specialties having a high incidence of problem readers.

More effectiveness in improving needed job-specific reading skills; remedial objectives which are more realistic and attainable; cost-effectiveness associated with a standardized program geared to job and OJT requirements.

It is estimated that 10% of the trainees need such training, and that the average training time required is four to twelve weeks. Program development costs are estimated to be about 3 man-years for the minimal clusters required.

It is necessary to define Air Force objectives for reading programs very carefully. One should not expect to solve, in a short time, those individual general literacy problems that community school programs have been unable to solve in years of education. The more limited objective of improving job-related reading skills appears to be more realistic and cost-effective.

This paper summarizes literacy research and development performed by HumRRO for the Army since 1968. Literacy needs for several basic Army Military Occupational Specialties (MOSs) were identified and methodology was developed to evaluate reading requirements for Army jobs. Under the current effort, an experimental training program is being designed to produce a level of functional literacy appropriate to minimal MOS requirements.—Auth.

(For abstract see p. 124.)
INNOVATION

Rotation Plans for Selected Specialties When the Variety of Training at One Work Center Is Inadequate

PROBLEM

Circumstances such as the variety of training available at a given location and unusual production pressures often restrict the training that is available to trainees. These restrictions are acceptable in the dual-training concept, since it is possible to be upgraded based upon learning a single task in a specialty. If this requirement is changed (as suggested in another innovation in this list), some kind of rotation plan must be formally implemented.

SOLUTION

Require rotation plans, when the variety of training that is available at a given work center is not adequate to meet minimum needs; these plans should be flexible (e.g., three tasks out of a list of ten must be learned) for selected specialties.

ADVANTAGES

Personnel in a specialty would be qualified to perform a reasonable variety of tasks before being upgraded. Morale problems because of an inadequate variety of training tasks would be less likely to occur.

RESOURCE REQUIREMENTS

Once the flexible, minimum standards have been determined and the Specialty Training Standard (STS) has been modified, the time required to establish a rotation plan is relatively trivial—a committee of NCOs might have to meet once every six months for a few hours.

SELECTED REFERENCES

Periodic Comparisons of Technical School and OJT Graduates in Order to Facilitate Decisions About Cost Effective Combination of Technical School and OJT for Category B Specialties

Category B (semiskilled) specialties in the Air Force can be taught either in school or on the job (OJT). Cost factors determine the number who only receive OJT. The decisions are difficult to make, since some of the costs are difficult to quantify, and no one model has been found acceptable by everyone. The situation is further complicated, because studies of the relative costs of OJT and formal schools training have produced inconsistent results; and the policies are somewhat controversial within the Air Force.

Studies comparing OJT graduates and technical school graduates with respect to the time required after basic training before the 5-level is awarded can be conducted on a regular basis. If the advantage is in favor of the OJT graduates, more use of OJT can be recommended; if it favors the technical school graduates, less use of OJT can be recommended.

Cost savings associated with improved decisions about the combination of OJT and resident school training (e.g., shorter training time for upgrade trainees).

Reports of this type could be periodically provided for all Category B specialties. Approximately one man-year of effort would be required.

Time to complete upgrade training is not so reliable an index as one would hope. The basic problem is that almost everyone finishes upgrade training in the minimum amount of time. The problem is complicated by the procedures by which personnel are selected for OJT and how they vary from specialty to specialty. Nevertheless, the information should be considered, when decisions are being made about an optimum combination of OJT and resident school training.

Black, D. and Bottenberg, R. A. Comparison of Technical School and On-The-Job Training as Methods of
Skill Upgrading, AFHRL-TR-70-48, Personnel Division, Air Force Human Resources Laboratory, Lackland AFB, Texas, December 1970. (AD 724530)

(For abstract, see Section V, References.)
ADMINISTRATIVE

INNOVATION
Decision Tables to Facilitate Decisions About When Someone Should be Decertified in a Previously Learned Skill Because of Degradation of Performance

PROBLEM
The decision as to whether someone should be decertified in a certain STS category is difficult to make. If people are decertified unnecessarily, there is much wasted time, while such persons retrace their steps to learn the task. If people who should be decertified are not decertified, there is a real danger of accidents that could damage personnel or equipment.

SOLUTION
Design decision tables that will facilitate decisions as regards when someone should be decertified in a previously learned skill.

ADVANTAGES
Additional guidance to those who must make decisions as regards people being qualified or not; improved job performance and safety.

RESOURCE
Research is needed to design and evaluate ways of predicting degradation of performance, and to develop a decision table that would have proven utility. More research would then be needed to field test the effectiveness of the decision tables before they could be incorporated into Air Force manuals.

SELECTED REFERENCES

Manual flight control and emergency procedure task skill degradation was evaluated after time intervals of from one to six months. The tasks were associated with a simulated launch through orbit insertion flight phase of a space vehicle. The results showed that acceptable flight-control performance was retained for two months, rapidly deteriorating thereafter by a factor of 1.7 to 3.1 depending on the performance measure used. Procedural task performance showed unacceptable degradation after only one month, and exceeded an order of magnitude after four months. The effectiveness of static rehearsal (checklists and briefings) and dynamic warm-up
(simulator practice) retraining methods were compared for the two tasks. In general, static rehearsal effectively countered procedural skill degradation while some combination of dynamic warm-up appeared necessary for flight-control skill retention. Further, it was apparent that these differences between methods were not solely a function of task type or retraining method, but were a function of the performance measures used for each task.—Auth.
AUDIOVISUAL PRESENTATIONS

INNOVATION
Conversion of Selected CDCs Into Self-Paced Slide-Tape or Cassette-Film Presentations

PROBLEM
Marginal readers in some career fields have considerable difficulty completing conventional CDCs.

SOLUTION
Slide-tape cassettes are available and can be operated by inserting a single cartridge into an automatic slide-tape playing console about the size of a small TV set. When removed, the cartridge rewinds itself and is ready for the next user. Many programs of this type have been found to be effective with marginal readers because they use audio visual techniques to reduce reading demands.

ADVANTAGES
Greater interest on the part of trainees; more effective use of training time; improved visualization of equipment and procedures.

RESOURCE REQUIREMENTS
Cassette film tapes cost approximately $80 apiece. The viewing and playback apparatus cost approximately $400 apiece.

COMMENT
The expense of using this type of equipment could be justified only under circumstances where equipment, personnel, or procedures require extensive visualization.

SELECTED REFERENCES

Crowder, Gene A. "Visual Slides and Assembly Models Compared With Conventional Methods in Teaching Industrial Arts" (Doctoral thesis), Texas A&M University, College Station, Texas, 1968.

This report summarily describes a study to evaluate the utilization of inflight audio-video recording (AVR) and ground playback equipment in the United States Air Force.
T-37 Pilot Instructor Training (PIT) Program. It includes a description of the preparation for, and conduct of, a demonstration designed to permit comparisons between Instructor Pilot (IP) trainees who used the AVR system during their training (TV group) and those who did not (non-TV group). The design included the development and use of (a) special grading sheets for recording evaluations of IP trainee pilot and instructional performance on six maneuvers; (b) a special check-ride to provide additional information on the capability of a graduating trainee to analyze pilot performance errors and apply the principles of instruction in presenting corrective measures to Undergraduate Pilot Training (UPT) students; and (c) a questionnaire designed to solicit effective and ineffective instructional situations encountered by new and experienced UPT IPs. Operational considerations limited the conduct of the study as originally designed, resulting in a less than ideal number of subjects receiving the TV treatment. The results are described in terms of (a) the differences in performance levels between the TV and non-TV group of trainees (no difference), (b) an analysis of the attitudinal comments made by the IPs and IP trainees who used the AVR system regarding its application as a training aid (favorable and enthusiastic), (c) suggested changes to the hardware design of the system, and (d) recommendations for system procurement and implementation into the PIT program and other pilot training programs (conditionally recommended).

--Auth.

Two Automated Apprenticeship Training (AAT) courses were developed, administered, and evaluated for Air Force Security Police Law Enforcement and Security specialists. AAT is a systemized audio-visual approach to self-paced job training which employs an easily operated, portable and reliable teaching device. AAT courses were developed to be job specific and were based on a behavioral task analysis of the two Security Police specialty areas. AAT graduates were compared with graduates of comparable Airman Basic Resident (ABR) course and Career Development Course (CDC) for the same jobs in a Training Regime by Aptitude Group design. Evaluation criteria included a job specific performance test, an apprentice knowledge test and supervisor's ratings. Results indicated superior scores for the AAT graduates on the job performance test, and no differences among Training Regimes on the other criteria. A significant Aptitude effect was also obtained on the job performance test. The AAT Course was considered superior to other Training Regimes in terms of man-hours expended. Training supervisors also expressed a preference for the AAT technique. --Auth.

Learning by Listening

Some Air Force personnel are functionally illiterate, but they can understand the spoken word relatively well. Tape recordings of lessons seem to work better for such people than do CDC volumes.

Tape-record CDCs and make them available to personnel in selected specialties who prefer or need such a mode of instruction.

Air Force personnel who have difficulty reading can still make progress in their CDCs; Air Force personnel who prefer to listen rather than read can do so.

The least expensive method is to simply tape-record the text, and send the text along with the cassette to those who prefer to read and listen.

Control of tape recorders is likely to be a problem.

A series of studies was performed to explore the possibility of substituting listening for reading requirements, with special reference to marginally literate Category IV personnel. Time-compressed speech was evaluated as a means of producing listening rates comparable
to silent reading rates. The results indicated that for both average and low aptitude men, listening was as effective as reading for obtaining factual information from test passages varying in difficulty level. Both high and low aptitude men performed more efficiently with moderate (36%) amounts of time compression than with no compression of the listening selections. Additional evaluations of time-compressed speech were made, and education and training implications of the research were discussed.—Auth.

A series of experiments explored the feasibility of substituting listening for reading requirements in Army training and jobs, with special reference to marginally literate, AFQT Mental Category IV men. Results of these experiments and related earlier research are summarized. Major findings indicate that high and low aptitude men may learn certain materials as well by listening as by reading; some poorer readers prefer to learn by listening rather than by reading. Characteristics of the recorded message that were found to affect listening comprehension include difficulty level of message, linguistic features of speech, and rate of speech. Extensive studies of the use of time-compressed and expanded recordings are described.—Auth.
AUDICVISUAL PRESENTATIONS

INNOVATION

Decision Flow Charts for Selecting Communications Media

PROBLEM

There are so many different media, and so many fads in training program design, that it is difficult to decide which media would be best under which circumstances.

SOLUTION

Decision flow charts for selecting communications media for each part of the training process and for different kinds of training programs.

ADVANTAGES

Expert decisions about communications media can be made quickly by personnel who are not well-read in the field.

RESOURCE

Some decision tables have already been designed, but they have not been widely dispersed to training designers. The use of these decision tables needs to be evaluated, and revised decision tables need to be designed.

SELECTED REFERENCES

This report presents a description and discussion of the uses of communication media of all classes in instruction. Communication media are systems that transmit messages for larger user systems which serve such purposes as instruction, information, entertainment, or propaganda dissemination. The function of a communication medium is simply to communicate, and this function is the focus of this Report. No attempt is made to consider the values of communication, its results, or its effectiveness, as any such evaluation must be done in the specific context of the system being served by the communication medium.

Eleven uses for communication in instruction are described, each of which has distinct requirements in terms of communication media, equipment configurations, and program content:
(1) Providing the learner with knowledge of his learning objectives;
(2) Motivating the learner;
(3) Presenting information;
(4) Stimulating discussion;
(5) Directing learner activities;
(6) Conducting drill and practice;
(7) Reinforcing learning;
(8) Providing a learner/simulator interface;
(9) Evaluating learner progress and program effectiveness;
(10) Assisting in the administration of instructional systems; and
(11) Assisting in research and development.

The selection of the appropriate media for each of these uses is discussed, and criteria are given for determining the need for various system capabilities in illustrative instructional situations.--Auth.
Computer Assisted Text Handling Systems for Rapid Revisions of CDC Volumes

A complaint about CDCs is that some of them are out of date. One reason is that relatively minor revisions and changes could require retyping, editing, and proofreading of whole volumes.

Put CDC volumes on tapes, and let one of the recently developed text-handling subsystems make corrections and produce master printouts suitable for printing.

More rapid updating of CDC volumes.

It takes much longer and is more expensive to get text on the computer initially; but the costs of rewriting and editing are much less after the initial investment.

Project IMPACT is a comprehensive advanced development project designed to produce an effective and economical computer-administered instruction (CAI) system for the Army. This report describes the concepts, approach, and implementation of the Project IMPACT text-handling subsystem. The computer-based facilities for preparing, storing, and retrieving the content of CAI courses of instruction are described, as are CAI courses. Computer software tools are described in terms of their use by course authors. --Auth.
A series of studies were conducted to determine how Army personnel in Mental Category IV and in other mental categories compare in their job performance and in their overall suitability for military service. Information is provided concerning the demands for reading, arithmetic, and listening skills in four major military occupational specialties. The performance of approximately 1800 men with Army experience ranging up to 20 years was measured by intensive job sample tests, job knowledge tests, and supervisor ratings. Information about background, personal characteristics, and military experiences was obtained through biographical questionnaires, a battery of published and experimental tests, and Army records. The major findings and conclusions are given in this summary report, which will be followed by several detailed reports on various research phases.--Auth.
COMPUTER ASSISTED TECHNIQUES

INNOVATION
Screen End-of-Course Examinations and Specialty Knowledge Tests (SKTs) for Reading Level by Using Computerized Reading-Level Evaluation Procedures

PROBLEM
The language in which a test is written can make it unnecessarily difficult to pass for someone who is a member of an underprivileged minority. Long words, or words that one is not likely to encounter unless one is part of the American middle class, sometimes get into EOCs and SKTs. As a result, some training examinations seem to resemble vocabulary tests more than they resemble tests of job knowledge.

SOLUTION
Procedures are being designed by which a computer can quickly indicate the reading level of sample test items. The items are keypunched on cards, and submitted to the computer for analysis. The computer determines word and sentence length, checks the word frequency in the population at large, and provides a set of reading-level scores. Cutting scores would prohibit the items from being used, if the scores fell below certain points.

ADVANTAGES
Fairness in tests; and improved equity in decisions based upon the test performance.

RESOURCE REQUIREMENTS
Special procedures would be needed for dealing with technical jargon before any automated reading-level index could be used. The development of these procedures requires further research. Once the procedures have been designed, however, resource requirements (keypunching, computer time) would be minimal.

SELECTED REFERENCES

INNOVATION

Computer-Assisted Item Writing and Test Assembly Procedures

PROBLEM

CDC end-of-course tests must be available in several different versions, and must be revised periodically. Otherwise, the test content would become generally known, and personnel who have already taken a test could be in a position to help others to be prepared for it.

SOLUTION

Computer-assisted item writing, techniques based upon text scanning procedures, and test assembly procedures based upon a common pool of items that are categorized by subject matter area for rapid updating and revision.

ADVANTAGES

Test development should be more economical once a satisfactory set of procedures has been developed. There would be more tests available at less cost.

RESOURCE

It is relatively easy to set up a computer-assisted test assembly technique, but a generally useful set of item-writing techniques has not yet been developed. The initial resource requirements for computerized test assembly techniques are estimated at one man-month per test, but savings in test development costs should more than compensate for this expense. Research and development costs for a satisfactory item-writing technique are estimated at five man-years.

SELECTED REFERENCES

Use of Trainee Confidence Ratings as a Diagnostic Aid for Evaluating Progress in Training

Very little guidance is provided to OJT supervisor/trainers regarding how they should go about evaluating the hands-on performance of OJT trainees in order to decide whether they are really qualified to perform a task. As a result, some trainees are undertrained and others are overtrained.

Have the trainee rate his confidence in his ability to perform each task on his JPG before the supervisor/trainer certifies that his training is completed. Permit the trainee to indicate whether he considers himself to be undertrained or overtrained in each category of training. File this information in his training record until a new JPG is prepared.

More informed and more accurate evaluations of progress in training.

Some new forms would have to be designed. A field test is needed before the procedures could be adopted.

Personality factors (self-confidence) complicate the confidence ratings, as well as the overtraining and undertraining ratings. One can also argue, however, that the trainee who lacks confidence should be given more training than one who does not.

The development of confidence testing as a form of objective testing was traced from Hevner's initial format to that developed in recent years. Confidence testing has been used in varying forms over the past forty years as a method for increasing the amount of information available from objective test items. This paper traces the development of the procedure from Hevner's beginning method up to the various methods in use today. The term confidence testing is applied to both probabilistic testing and confidence weighting procedures. Various procedures are presented, and their relationship with personality factors is discussed.--Auth.

This handbook is intended to supply both testing specialists and general users of tests with a set of instructions for implementing a program of confidence testing in technical training situations, provide information concerning such factors as the identification of promising areas of application, the relative value and ease of alternative scoring methods, techniques for evaluating confidence information, and administrative considerations. It contains a discussion of Pick-One and Distribute 100 Points confidence formats, other confidence procedures, and the relative merits of each method, selection and confidence test scale scores, uses of confidence testing, and instructions for those administering confidence tests where either hand or machine scoring is used.--Auth.

This report describes a study to determine the feasibility and the cost-effectiveness of using confidence testing as a diagnostic aid in technical training programs. Two types of confidence testing, Pick-One and Distribute 100 Points, were developed for comparison to conventional multiple-choice testing. The study was carried out in two technical training courses, Aerospace Ground Equipment Repairman (AGE) and Jet Engine Mechanic (JEM), currently being taught at Chanute Air Force Base, Illinois. The criteria for feasibility included end of block examination grades, number of student remediation sessions, and both student and instructor attitudes. In addition, the relationship of various personality variables to confidence test scores was examined for both types of confidence testing. The major finding was that while scoring was somewhat more time consuming, end of block examination grades improved slightly and the number of remediations required declined slightly when either confidence testing method was employed. Other areas of investigation produced essentially null results.--Auth.
Keseman, Charles E. "A Comparison of the Effect of Three Evaluation Approaches Upon Student Achievement in College Level Drafting" (Doctoral thesis), University of Missouri, Columbia, Miss., 1967.
EVALUATION

INNOVATION
An Algorithm for the Design of Performance Criteria

PROBLEM
The present systems analysis of training manual does not provide much guidance as regards the strategies used in selecting appropriate work performance measurement strategies. Many of the program designers will be first-line supervisor/trainers, who are job-qualified, but who are not training experts. Procedures are needed to help them select the best strategy.

SOLUTION
A simple algorithm (to be incorporated into the Air Force Instructional System Development manual) that would help those responsible for the design of training programs to select appropriate performance-measurement strategies.

ADVANTAGES
Decision making by those responsible for the systems analysis of Air Force training programs would be easier.

RESOURCE REQUIREMENTS
The previously developed algorithm should be expanded in scope and incorporated into a new chapter of the manual when it is routinely revised.

SELECTED REFERENCES

This paper records the four presentations on the "Use of Job and Task Analysis in Training" made by members of the HumRRO staff at a briefing sponsored by the Office of the Deputy Chief of Staff for Individual Training at
Headquarters, U.S. Continental Army Command in October 1968. The presentations specifically describe job and task analysis and its role in curriculum engineering. The briefing was designated the first of a series of briefings on training research and development programs of the U.S. Army Behavioral Science Research Laboratory, the Center for Research in Social Systems, and HumRRO. -

Auth.

Evaluation

Innovation

Management by Objectives Programs for E6s and Above

Problem

Most E6s and above really need management training rather than technical training. Yet, the current training regulations require that records be maintained on jobs, or Specialty Training Standards. The requirement is often ignored, since such records are not relevant to the real training needs of the trainees. Meanwhile, important training objectives that should be considered are not discussed.

Solution

Drop the requirement for keeping records in terms of STS categories for E6s and above; replace it with a management-by-objectives program patterned after those that are so successful in industry. These programs operate by establishing expected performance objectives (with clear-cut standards of performance) during joint planning conferences attended by a supervisor and his subordinate. The progress of the subordinate during a specified period of time is then reviewed in terms of the agreed upon standards of performance, and new objectives are established for the next reporting period.

Advantages

More meaningful training plans and training records for E6s and above, with consequent increases in the quality of training.

Resource Requirements

Research is needed to design and field test a management-by-objectives approach for noncommissioned officers. Time requirements during planning conferences should average approximately one-half hour each. This is more time than is taken today, because many people do not take the present requirements seriously.

Selected References

EVALUATION

INNOVATION

Results-Oriented Procedures for Headquarters Evaluations of Training Programs

PROBLEM

Inspector General and MAJCOM inspection teams tend to put too much emphasis on record-keeping procedures when they evaluate OJT programs. This has a number of unintended consequences (e.g., falsification of records), and generates resentment on the part of supervisors who have outstanding training programs but who have not had time to maintain their records properly. Some of the record-keeping practices, moreover, are rather trivial in nature (e.g., a supervisor could be written up for making an entry in pencil rather than in ink, or vice versa).

SOLUTION

Design new results-oriented procedures for evaluating OJT programs of the type that have a demonstrable relationship to organizational unit objectives.

ADVANTAGES

The present overemphasis upon the details of record-keeping procedures would decrease; attitudes towards the OJT program would improve; and the real quality (rather than the paper-work appearance) of OJT programs would be evaluated by inspection teams, resulting in improvements in program quality as opposed to improvements in paper work.

RESOURCE REQUIREMENTS

A fairly large-scale research study would be needed to identify new inspection procedures that could be used by Air Force inspection teams. A minimum of 20 squadrons would be needed for a definitive study, and much preliminary work would be needed first. Manpower requirements are projected at three man-years.

SELECTED REFERENCES

EVALUATION

INNOVATION
More Use of Criterion-Referenced Measurement in the Design of End-of-Course Examinations and Specialty Knowledge Tests

PROBLEM
End-of-course examinations and Specialty Knowledge Tests tend to be norm-referenced rather than criterion-referenced; i.e., Air Force personnel often pass examinations because they get higher scores than other personnel, rather than because they can meet the requirements of the position. This is especially true of SKTs, in which those with the highest scores tend to get promoted as part of the ZAPS program. The difficulty with norm-referenced testing is that it tends to put too much emphasis on verbal skills and memory--these, moreover, are more likely to be valued by and characteristic of middle-class Americans than they are of lower-class Americans. Thus, it can be argued that the tests are discriminatory. Recent Supreme Court rulings have held that many tests of this type are discriminatory, which gives the whole matter some priority.

SOLUTION
Conduct research to identify criteria for deciding when verbal memory tests should be permitted and when they should not. Identify which tests are inadequate by these criteria, then design criterion-referenced tests for those cases in which the verbal memory tests are considered inadequate or unfair.

ADVANTAGES
Improved fairness and demonstrable job relevance of tests.

RESOURCE REQUIREMENTS
Approximately 200 man-years of effort would be required to design performance standards for all Air Force specialties and convert them into criterion-referenced tests. Assuming that only 25 percent really need it, the total costs are estimated at 50 man-years.

COMMENT
The Air Force is embarked upon a large-scale effort called "systems analysis of training" that could conceivably result in a large number of criterion-referenced tests. But, if Air Force budgets are cut in accordance with present plans, it will probably be decided, in most cases, that criterion-referenced tests are too expensive.
SELECTED REFERENCES

INCENTIVES-MOTIVATION

INNOVATION Written Training Contracts Between Instructors and Trainees

PROBLEM Trainees have little control over their training, consequently they do not have as personal a commitment to achieve training objectives as they might have if they were more involved in the goal-setting process.

SOLUTION Written training contracts between instructors and trainees, in which the trainee requests training in certain tasks (or CDC volumes), and commits himself to a certain time span for learning those tasks (or CDC volumes).

ADVANTAGES Improved motivation on the part of trainees; more involvement of trainees in the training process; improved selection of tasks to meet the needs of trainees.

RESOURCE REQUIREMENTS This idea needs to be elaborated upon and field-tested before it is implemented. Resource requirements for the development and evaluation work are estimated at two man-years. Implementation costs are estimated at one-half hour per trainee.

Teel, Dean A. "A Comparison of Methods Utilizing the Contract Approach in Teaching Beginning Electricity-Electronics Fundamentals to College Students" (Doctoral thesis), Texas A&M University, College Station, Texas, 1967.
INSTRUCTIONAL TECHNIQUES

INNOVATION Performance-Based Instruction Techniques

PROBLEM The Air Force currently handles subject matter training separately from proficiency training, as a basic concept of the dual-channel OJT concept. In fact, there are many advantages in integrating the two types of training so that the trainee can acquire information in job-relevant situations. The situation is complicated by supervisors being expected to design proficiency tests of their own. Consequently, there is no consistent standard, except for the STS requirements. There is considerable duplication of effort by supervisors at different locations.

SOLUTION Design performance tests with specified behavioral performance standards and use these tests for proficiency training at the outset rather than waiting for some preliminary period of instruction.

ADVANTAGES Students learn in a job-related situation; each student is required to reach a standard of performance in each skill; emphasis is on active skill performance, not passive absorption of information; student motivation is consequently better than usual.

RESOURCE REQUIREMENTS Behavioral objectives are expected to result from the Air Force systems analysis of training movement that is currently in progress. The conversion of these behavioral objectives to performance-based instruction techniques would require about $10,000 per specialty. This cost and that of printing and disseminating the information would be less expensive. There is reason to believe that there is a considerable duplication of effort in the present approach.

This report describes the planning and implementing of the Experimental Volunteer Army Training Program (EVATP) at Fort Ord early in 1971. This was the Army's first effort to effect major training innovations in the conversion toward an all-volunteer Army. By the fall of 1971, this program was being used as a model for implementing the EVATP at other Army Training Centers. In developing the EVATP system, six established learning principles were applied to Basic Combat Training and Advanced Individual Training to modify the conventional training system. Course objectives and performance tests used were developed jointly by Fort Ord and HumRRO. In a comparison with a conventionally trained group, independently conducted by the Infantry School at Fort Benning, EVATP graduates performed significantly better on five out of seven BCT subjects, and seven out of nine AIT subjects. In general, these gains were shown by men at all levels of aptitude.--Auth.

The notion of modularizing training can also be employed to make objectives more job-relevant and performance-oriented. The Army's "duty module" concept is an example of what can be done with this approach.

ADDITIONAL REFERENCES

INSTRUCTIONAL TECHNIQUES

INNOVATION Peer Instruction

PROBLEM Individualized rates of instruction are preferable, because slow learners can work at a comfortable pace, and fast learners are not forced to wait for the slower ones, thereby wasting their time. It is not practical to have a separate instructor for each aptitude level of personnel; but lower-aptitude personnel seem to need more help and assistance than higher-aptitude personnel.

SOLUTION Use fellow trainees as instructors (peer instructors) when performance criteria are well defined. Unusually bright students can be used in most cases, but it seems to be desirable to use a low-aptitude trainee who has completed a block of instruction, especially when the problem seems to be the attitude of another low-aptitude trainee who has not completed training.

ADVANTAGES Individualized instruction is made practical under many circumstances that would not permit it otherwise; lower-aptitude personnel get more help.

RESOURCE REQUIREMENTS The effectiveness of this approach depends upon circumstances, so each experiment with it is just that—an experiment. Initial development costs could be high (perhaps two man-years), but the potential for increased OJT capacity and individualization is worth evaluating.

COMMENT This approach should only be used when performance criteria are well defined. The peer instructors cannot be permitted to certify completion of training, and those who do certify completion must have some opportunity to observe the trainee.

This paper describes a training model featuring peer instruction in a functional job-simulated context, as well as the objectives and practical constraints that led to its development.--Auth.

INSTRUCTIONAL TECHNIQUES

INNOVATION
Utilization of Talent Ratings to Identify Problem Specialties

PROBLEM
The Airman's interest in his job and the felt utilization of talent varies markedly from specialty to specialty, even though each specialty has similar promotion prospects, and the various specialties are relatively the same. Trainees who are assigned to the lower interest specialties (which must be assigned to someone) tend to get bitter and leave the Air Force after their first enlistment. If they do not leave, they will request reassignment and retraining into another specialty as soon as they have met their minimum time requirements. Either action is expensive for the Air Force.

SOLUTION
Scales measuring job interest and utilization of talent have been placed in all Air Force Occupational Surveys administered since 1966. These data can be analyzed and used to identify problem specialties that require remedial action of some kind.

RESOURCE REQUIREMENTS
Periodic statistical analyses of job interest and felt utilization of talent ratings by various groups of trainees must be followed up by special studies that would identify the exact problem. Some studies may be a matter of a few man-weeks by a committee, but others could conceivably involve large-scale field surveys with a representative sample of airmen in the specialty.

ADVANTAGES
Improved retention and job satisfaction of Air Force personnel in the specialties affected.

COMMENT
There is often a separation of personnel research and personnel operations groups that acts as a hindrance to the implementation of research findings. This should be considered when study teams are established.

SELECTED REFERENCES

This study reports data analyses for first-term airmen in 11 career ladders to determine whether there are differences in work assignments and job attitudes of Blacks and Non-Blacks. The general approach involved
application of the multiple linear regression model to determine the relationships between race and selected criteria, holding constant such variables as aptitude, time in military service, technical school graduation status, and time on the job. No racial differences were observed in the number of tasks being performed or in the average difficulty of tasks performed per unit time. However, when these two factors were weighted into an overall job difficulty composite, it was found that the Blacks were performing slightly less difficult jobs in two of the career ladders: 605X0 Air Passenger/Air Cargo and 702X0 Administrative. Significant differences in job interest and felt utilization were found in two ladders, 291X0 Communications Center and 702X0 Administrative; in each instance, these differences were in the direction of Blacks finding their jobs more interesting and feeling a greater utilization of their talents and training than Non-Blacks. Only a small proportion of the job assignment variance could be accounted for by all variables in the system. The unique contribution of race was significant in two ladders, but in each instance this contribution was less than one percent. There appear to be no practical differences in the types of assignments given to Blacks and Non-Blacks in the 11 ladders investigated. Blacks in the 291X0 and 702X0 areas reported higher job interests and a higher feeling of utilization. Again, these differences were significant, but were relatively small.—Auth.

The purpose of this study was to investigate the extent of differences in reported job satisfaction of over 100,000 airmen in 97 career ladders. The differences between career ladders and between individuals within career ladders were evaluated. Two seven-point scales measuring incumbents' job interest and feelings of how well their jobs make use of their talents and training have been included in inventories administered under the USAF Occupational Survey Program. Analyses of the responses indicated that while most airmen found their jobs interesting and felt well utilized, there were some extreme differences between career ladders and among individuals within ladders. Extensive ladder by ladder studies are warranted to identify factors relating to differences in job satisfaction.—Auth.
PERIODIC SURVEYS

INNOVATION
Periodic Surveys of Trainees

PROBLEM
Trainees have a great deal of information about the quality of training when they are undergoing OJT, but the information is not collected in a systematic manner or used to make decisions. Part of the problem is that the official communication channels are too formal and too serious for a trainee to feel comfortable using them.

SOLUTION
Conduct periodic surveys and anonymous interviews with trainees in which they are asked to rate the quality of their training while in OJT; identify problem areas; suggest improvements.

ADVANTAGES
Anonymous interviews will permit trainees to "blow off steam," as well as communicate information to people who are in a position to solve problems. Anonymous questionnaires have a similar effect. Both types of survey are also proof that the Air Force is concerned about the welfare and job satisfaction of its trainees. More importantly, however, information would be collected that would permit improvements in the Air Force OJT program.

RESOURCE
Only a small sample of trainees need be interviewed. If the interviews are conducted by CBPO OJT personnel, it is estimated that 100 interviews per year would be sufficient at each large base. The CBPO OJT staff, in turn, could be asked to prepare an anonymous report, once every six months, in which potential problem areas would be identified and recommendations would be made for modifying the base OJT effort. The surveys should be conducted on an Air Force-wide basis, and should involve a sample of at least 100 trainees in every MAJCOM.

SELECTED REFERENCES

It appears quite clear that student ratings of instruction and class performance on national normative examinations are positively related: the higher the student ratings of the instruction they receive, the higher the class score relative to a nationwide norm. On the other hand, no significant relationship exists between student
ratings and class performance on institutional examinations. This suggests that both student ratings and class performance on national normative examinations are valid measures of teaching effectiveness. -- Auth.
PROGRAM DESIGN

<table>
<thead>
<tr>
<th>INNOVATION</th>
<th>Use of More Illustrations and More Simple Language in Technical Manuals and CDCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBLEM</td>
<td>Many technical manuals have relatively few illustrations and are written at higher reading levels than most Airmen in a specialty can readily comprehend.</td>
</tr>
<tr>
<td>SOLUTION</td>
<td>Use more illustrations and more simple language in technical orders, and other job-related publications.</td>
</tr>
<tr>
<td>ADVANTAGES</td>
<td>Improved understanding and retention on the part of trainees, especially those with low aptitude.</td>
</tr>
<tr>
<td>RESOURCE REQUIREMENTS</td>
<td>Editing materials for readability and more simple language could cost approximately $5,000 per text. Additional illustration costs would vary from publication to publication.</td>
</tr>
<tr>
<td>COMMENT</td>
<td>Revising CDCs will not help if there is no allowance for the technical manuals to be written at a lower reading level. It seems logical to begin with the technical manuals required for job performance. If they cannot be improved, the Air Force should increase the ability standards for the men assigned.</td>
</tr>
</tbody>
</table>

The study was designed to determine if modifying Career Development Course (CDC) format through the simplification of the written materials, the inclusion of more illustrations, and the addition of audio supplementation could improve the CDC as a training device designed to teach basic job information, especially to airmen possessing minimum verbal skills. High-, middle-, and low-aptitude personnel studied three versions of the CDC for the 57130, fire protection, career ladder. In brief, the versions included a conventional CDC, a less verbal CDC with more pictorial materials, and a less verbal CDC with more pictorial materials accompanied by a tape recording of information complementary to that contained in the written text of the CDC. Data were collected on learning performance, reading speeds, and attitudes toward the CDC. The analyses revealed that the modified CDC with the audio supplementation produced significantly increased learning scores. High- and middle-aptitude groups consistently outperformed the low-aptitude groups across all CDCs.—Auth.
Consider the Use of Job Performance Aids as an Integral Part of the Process by Which Training Programs Are Designed.

Training programs and job-performance aids tend to be designed by different people and with relatively little coordination. As a result, some training design problems that could be solved through the use of job performance aids are either otherwise resolved or not resolved at all.

Require that those responsible for the design of training programs be trained in the design of job-performance aids, and be kept informed regarding the plans of other Air Force agencies for job-performance aids so that they might be able to use them effectively.

Simplification of training requirements where job-training aids can help, thus resulting in a savings in training time and possible increases in efficiency.

An additional three days would be needed in the training programs currently taken by technical writers/instructors. Some TDY would also be needed for conferences between job-performance experts and training-program designers.

This report supplies a model for specification for the preparation of fully proceduralized job aids for organizational and intermediate maintenance of electronic subsystems, and offers guidance in the preparation of such aids. The aids to be developed from these specifications
are for flight-line or field-shop maintenance of any electronic subsystem, and support the performance of the following maintenance functions as needed: check-out, alignment, repair, adjustment, calibration, malfunction localization, malfunction isolation, and the removal and replacement of malfunctioning equipment items.--Auth.

Foley, John P., Jr. Job Performance Aids Research, Summary, and Recommendations, Air Force Human Resources Laboratory, Wright-Patterson AFB, Ohio, April 1969. (AD 697 034)

This study was designed to develop and evaluate methods for producing a combination of training and job aids (manuals) for maintenance of electronic communication equipment that would require less training time than the standard course and manuals.--Auth.

PROGRAM DESIGN

INNOVATION
Provide Task Difficulty Ratings to Those Responsible for OJT

PROBLEM
Every supervisor in the Air Force is expected to act as a trainer for his subordinates, even when he has not had previous experience in the tasks for which he is providing training. As a result, some trainees are assigned tasks that are too difficult or too easy for their state of progress.

SOLUTION
A procedure for collecting task difficulty ratings has been designed by the Air Force Personnel Laboratory. These procedures could be applied to STS categories when STSs are reviewed and revised on a routine basis. The information could then be systematically incorporated into the STSs, and used to guide inexperienced supervisor/trainers.

RESOURCE REQUIREMENTS
Approximately two man-days of committee time for each specialty would be required when the STSs are routinely reviewed by a panel of NCOs. No printing costs would be involved if the changes were restricted to new or revised STSs.

ADVANTAGES
More appropriate assignments for trainees at various levels of skill and aptitude.

COMMENT
This sort of information is not needed by experienced trainers. There may also be restrictive conditions that make some tasks more difficult than the panel of experts would normally have expected them to be.

SELECTED REFERENCES

The numbers and ability levels of persons who might enlist in the Air Force can be projected only within gross boundaries. It is necessary, however, to make optimal use of whatever manpower is available in the enlisted force. An important tool for this purpose is accurate information about the difficulty of tasks that make up Air Force jobs and the abilities of airmen assigned to perform those tasks. This study explores two methods of obtaining estimates of task difficulty and evaluates the comparative merits of the methods.
Using the Medical Materiel Career Ladder (915X0) job inventory as the vehicle for the study, senior noncommissioned officers judged each of the task statements on a relative scale of difficulty. A second group of NCOs rank ordered the tasks according to their estimates of difficulty. The tasks were then arranged according to the average grade level of airmen who stated they performed each task. A mathematical estimate was made of the agreement on task difficulty within the group of raters, within the group of rankers, and between the difficulty orders established by ratings, rankings, and grade. Considerable agreement was found among both the raters and the rankers as to the difficulty of tasks. The relationship between rated difficulty and ranked difficulty was substantial and was higher than either of these with the order of tasks based on average grade level. The study did not, however, treat the question of the accuracy of any of the judgments. A number of studies in Air Force occupational research depend upon judgments of workers in various career ladders. It seems clear that the method of rating a large number of items on a relative scale will provide data from pooled judgments which can be used with confidence and which can be obtained with less time expenditure than that required for rank ordering. Because of the lower relationships obtained, use of average grade as an index of task difficulty does not appear warranted for general application to evaluation of task attributes.--Auth.

There has been no tool available by which Air Force personnel managers could evaluate jobs in terms of their ordering on specified dimensions for use in various policy and decision making situations. The problem attacked in this study was to determine whether supervisors' judgments of job difficulty (as one specific dimension) could be predicted with sufficient accuracy from certain information readily accessible. With the Medical Career Ladder as the area for study, senior noncommissioned officers were asked to rank order actual jobs performed by airmen in the ladder; other NCOs were asked to provide ratings of difficulty on a relative scale for each of the tasks listed in the job inventory previously developed for the ladder. Through application of statistical techniques, the
rankings, ratings, and other closely related data were treated to yield a prediction system. The stability of the system was then tested. From 21 variables and 17 multiple regression problems, an optimally weighted equation was derived which apparently captured the policy used by the judges in rank ordering the jobs on estimated difficulty. The equation contained three predictors: Number of Tasks Performed, Average Task Difficulty per Unit Time Spent, and Number of Tasks Performed, Squared; an R of .95 and an R^2 of .90 were obtained between the predicted job difficulty values and the judged job difficulty ranks. Cross-application of the equation to test for stability yielded an R of .94 in both samples. Further analysis of the predicted values showed that 90 percent were within \pm 2.75 points of the ranked values (on a scale of 1 through 25). The study indicates that the job difficulty equation derived from information easily collected by means of job inventories will predict ranked job difficulty with a high degree of accuracy, at least in the Medical Materiel Career Ladder. If further research in other career ladders verified the same constituent elements with similar weights, it will be possible to have an index of difficulty for each job in all airman career fields. The implication is that the Air Force personnel system would be given material assistance toward establishing grade requirements, in considering job aptitude minimums, for comparing work assigned to various categories of personnel, and other related personnel actions.--Auth.

In a prior study an equation was developed which accurately predicted supervisors' judgments of the difficulty of airman jobs in the Medical Materiel Career Ladder. The utility and effectiveness of this tool for Air Force personnel managers would be considerably enhanced if the equation could be generalized to all Air Force specialties. The present study was directed to the question of whether an equation developed on a second specialty, Vehicle Maintenance, had the same or similar characteristics as the earlier one. Rank orderings of a random set of job descriptions, based on job analysis of the Vehicle Maintenance Career Ladder, and difficulty ratings on a 7-point relative scale of each task in the Vehicle Maintenance job inventory were
requested of separate groups of noncommissioned officers working in the specialty. By application of a policy-capturing technique, an equation was derived to predict the job difficulty ranks. The Vehicle Maintenance job difficulty equation predicted with a high degree of accuracy ($R = .93$) supervisors' judgments of job difficulty. The primary factors reflected in the supervisory judgment of job description, difficulty level of tasks performed, and time spent performing the tasks. The three basic variables which combined to capture the job difficulty evaluation policy were the same as those in the prior study. On cross-application, the equation showed no appreciable loss in effectiveness. Major findings replicated those in the Medical Materiel study. Apparently common factors exist across career ladders which enter into supervisors' judgments of job difficulty; within each ladder the supervisors' evaluation policy was captured in quantified form. There remains the unresolved question of whether an effective composite standard weight equation can be developed for evaluating jobs in all airman career ladders.--Auth.

Availability of a device which would provide valid measures of some specified important factor in Air Force jobs could be used to improve such features of the Air Force personnel system as assignment-reassignment, career planning, and force development. An initial study developed such a technique for evaluating the factor of job difficulty; a following study verified the procedure in a second career field by replicating the results of the initial research. The present effort, in addition to checking the generalizability of the procedure to a third airman specialty, focused on derivation and test of a "universal" equation that could be given to personnel managers as a simple-to-use effective quantitative indicator of job difficulty. Senior noncommissioned officers in the Accounting and Finance Career Ladder provided their judgments on the rank order difficulty of 250 jobs which were described in terms of actual tasks performed by incumbents. A second group of senior NCOs each rated all the tasks listed in the job inventory for this ladder on a relative scale of difficulty. Statistical techniques were applied to these data to simulate the judges' policy in
evaluating job difficulty, to test the efficacy of the derived prediction equation, and then to develop and test a set of standard weights to be assigned to each of the elements in the equation.

The correlation of .95 between supervisors' ranking of job difficulty and predicted values based on the derived equation is highly satisfactory and replicates values obtained in the two prior studies of different career fields. This study also confirms that the same three predictors found in the prior efforts combined to capture the evaluation policies of supervisors. On the main point of the study, a composite set of standard score weights derived from data in three ladders was demonstrated to provide highly acceptable validity (\(R = .9479\) for Medical Materiel, \(R = .9247\) for Vehicle Maintenance, and \(R = .9460\) for Accounting and Finance). Differences between these values and validities yielded by optimal equations developed within the three ladders (.9486, .9269, and .9511, respectively) were nonsignificant. The indications are that the "universal" equation can be used to obtain difficulty values for jobs across the total airman classification structure as quickly as occupational surveys are constructed and administered; only task difficulty values would have to be provided, and that aspect could be built into current job specialty surveys. The system is relatively free of external influences. Its most outstanding feature is the quantitative format which lends itself to existing automated data processing. The implications are significant when one considers possible application of the system to use in reassignment systems, in establishment of aptitude requirements, in comparison of work assigned to various categories of input (such as directed duty assignees, by-pass specialists, or technical school graduates), in investigation of interaction between job difficulty, job satisfaction, and career intent, and in guidance of policy on force composition.

PROGRAM DESIGN

INNOVATION
Decision Tables That Suggest Different Training Procedures for Different Kinds of Tasks

PROBLEM
Many options exist, and it is difficult to decide which training procedures should be used under which circumstances.

SOLUTION
Decision tables are to be based upon the following five categories of information:

1. The extent to which each of five defined "ongoing activities" is involved in the task;
2. The temporal, sequential, and casual relationships among these activities;
3. Characteristics of the detailed behavior that constitute the activities;
4. Contingencies that might affect task performance;
5. Disruptive conditions under which the task might have to be performed.

The five ongoing activities include (a) Procedure Following, (b) Continuous Perceptual Motor Activity, (c) Monitoring, (d) Communicating, (e) Decision Making and Problem Solving.

ADVANTAGES
Expert decisions can be made by personnel who are not well read in the field.

RESOURCE REQUIREMENTS
Existing procedures can be incorporated into training manuals; new procedures could also be designed, but would require research.

SELECTED REFERENCES

PROGRAM DESIGN

<table>
<thead>
<tr>
<th>INNOVATION</th>
<th>Revise STSs So That Certain Tasks Are Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBLEM</td>
<td>Under the Air Force dual-channel system of OJT, the supervisor can, if he chooses, assign a single task to a trainee, and still get the trainee upgraded to the 5-skill level. The situation is complicated by the fact that some isolated Air Force locations do not have the equipment or the available supervisor/trainer time in order to provide training in a reasonable variety of tasks. As a result, some of those upgraded to the 5-skill level are really not qualified, and they may not have received training in important safety procedures.</td>
</tr>
<tr>
<td>SOLUTION</td>
<td>Establish flexible minimum training goals for selected specialties and skill levels. This may take the form of listing a set of important tasks on the first page of the STS, and then requiring that some certain number (e.g., 3 out of 10) must be learned by any trainee upgraded to the 5-skill level.</td>
</tr>
<tr>
<td>ADVANTAGES</td>
<td>Trainees who transfer from one location to another will be more able to perform at their officially recognized skill level.</td>
</tr>
<tr>
<td>RESOURCE REQUIREMENTS</td>
<td>Changes could be implemented when STSs are revised or reviewed on a routine basis.</td>
</tr>
<tr>
<td>COMMENT</td>
<td>Locations that are not able to provide the type of training that is needed would be assigned personnel who are already qualified.</td>
</tr>
<tr>
<td>SELECTED REFERENCES</td>
<td>Elkin, Albert (U.S. Army Infantry Human Research Unit, Fort Benning, Ga.). The Development of a List of Minimal Training Goals for Basic Combat Training, HumRRO Technical Report 67, The George Washington University, Human Resources Research Office, December 1960. The Basic Combat Training Program (ATP 21-114, Nov 58) was analyzed in relation to each of 17 supporting Army Subject Schedules. Discrepancies between the ATP and its referenced subject schedules were noted and revisions suggested. On the basis of this analysis, a list of minimum training goals was devised for each subject presented in the report. These suggested training goals cover the minimum knowledge and skills needed by the individual basic combat trainee.--Auth.</td>
</tr>
</tbody>
</table>
PROGRAM DESIGN

INNOVATION

Procedures for Deciding Which Training Techniques Should Be Used for Personnel at Different Aptitude Levels

PROBLEM

The best strategy to use in training someone seems to depend upon his aptitude level. High-aptitude personnel learn faster, need less guidance and repetition of instruction—but the differences vary from one type of task to another. Research conducted as a result of Project 100,000 has identified many specific conditions under which additional guidance and repetition is needed, but decision tables based upon the characteristics of the task have not been designed.

SOLUTION

Design decision tables for deciding which training techniques should be used for personnel at different aptitude levels, and incorporate them into training manuals for supervisor/trainers.

ADVANTAGES

More consideration for the special training needs of high- and low-aptitude personnel when hands-on training programs are designed.

RESOURCE REQUIREMENTS

Research is needed to design and field test the use of the decision tables.

SELECTED REFERENCES

The Army has the problem of training men of widely differing aptitude levels in a variety of military jobs. Recent Department of Defense decisions to lower mental standards for induction and enlistment to the statutory minimum AFQT score is resulting in a greater concentration of lower aptitude trainees in the Army training program. Increasing the number of low-aptitude trainees will not only make the training job more difficult but may also result in marked loss in performance by the more apt as they become even more bored and restless than evidenced in the past.
Current technology of training provides little information useful to the Armed Forces for designing training programs to accommodate the entire spectrum of aptitude. Although research directed toward engineering of training for those in lower mental Category IV has been started, results are not yet structured or specific enough to tell how to conduct training. With the Army's training population now spread so widely across the spectrum of aptitude, research is needed on the relationship of training performance to aptitude in order to determine what, if any, differential training is required for the efficient production of relatively standard MOS-qualified soldiers.

The relationship between aptitude level and training performance must be clarified before recommendations for increasing training efficiency can be made. This report presents research aimed at providing this information. Specifically, this report deals with the relationship between aptitude level and the acquisition of military skills and knowledges in a variety of training tasks which differ in complexity.—Auth.

Individualization of training is discussed from the aspects of (a) systems engineering, (b) training strategies, and (c) individual training factors. Emphasis is on the latter two, recognizing that the systems engineering approach is a prerequisite for any training system. Four possible training strategies are discussed, including the implications of each for handling individual differences. Training factors to be simultaneously considered in developing a training program that will handle individual differences are described. An attempt is made to interrelate ability level to factors of type of complexity of content, organization and sequencing, material, method and media of instruction, motivation, and management.—Auth.
PROGRAM DESIGN

INNOVATION

More Common Core Courses in Selected Subject Matter Areas

PROBLEM

Electronics is basic to many different Air Force specialties, and a number of slightly different courses have been designed. Because of their similarity, there is some duplication of effort in the design of these courses.

SOLUTION

Modify the Army's Common Core Courses for Basic Electronics courses (COBET) for Air Force use.

ADVANTAGES

Less duplication of effort in the design of electronics courses; improved quality of electronics training.

RESOURCE REQUIREMENTS

The Army's course could be adapted for Air Force use with approximately one man-year of effort.

SELECTED REFERENCES

INNOVATION Adaptation of Air Force Training Materials for Distribution by State Boards of Vocational and Technical Education

PROBLEM The Air Force invests a great deal of time and effort in keeping its technical training materials up to date—much more so than any State could possibly afford. Yet, the civilian training programs have just as much need to remain up to date as the military.

SOLUTION It would seem to be in the best interests of the country to at least make Air Force technical training materials available to State Boards of Vocational and Technical Education. Ideally, some federal agency (e.g., HEW) would go beyond this point and fund work on the civilianization of selected Air Force training materials for use by State Boards of Vocational and Technical Education.

ADVANTAGES Less duplication of effort in the economy; improved training in civilian occupations that relate closely to Air Force needs and interests; increased transferability of civilian skills.

RESOURCE REQUIREMENTS The cost of civilianizing CDC volumes is estimated from $10-$20 thousand each. A similar program has been tried by the Aerospace Education Fund with promising results.

COMMENT The selection of courses for civilianization should be made by an organization concerned with national training needs in the civilian sector.

AUTHOR INDEX

Abrams, Macy L., 73
Aerospace Education Foundation, 159
Air Force Human Resources Laboratory, 141
Air National Guard (see U.S. Department of the Air Force)
Allbritton, A., Slagle, 46
Allen, D., 26
Allred, Brent, 141
American Institutes for Research, 85
Anastasio, E.J., 126
Angell, David, 130
Annett, J., 50
Arzigian, Simon, 41
Askren, William B., 67

Baker, E.L., 33
Baker, G.E., 116
Baker, Robert A., 29
Baldwin, Thomas S., 86
Ball, J.R., 80
Barber, J.W., 27
Barlow, Esther, 11
Bateman, C.W., 41
Bauer, Roger M., 13
Beach, Kenneth M., Jr., 30
Becker, Gary S., 41
Begle, Elsie P., 11
Behan, R.A., 69
Belasco, James A., 86
Benveniste, Guy, 50

Berge, W.A., 114
Bergman, Brian A., 11, 84, 85
Berliner, David C., 130
Bershtein, J.L., 51
Bialek, Hilton, 137
Biel, W.C., 67
Bilodeau, E.A., 12
Bittel, Lester R., 28, 88
Black, Doris, 42, 112
Blomgren, Glen H., 59
Boguslaw, R., 67
Boldt, Robert F., 128
Bolton, Dale L., 27
Bond, Nicholas A., Jr., 67
Bottenberg, Robert A., 42, 112
Brennan, Mark F., 138, 141
Brezt, Rudy, 121
Briggs, G.E., 21
Briggs, Leslie J., 12, 27, 68, 79
Broadwell, Martin M., 27
Brock, John F., 68, 119
Brooks, Carl N., 86
Brydle, John Robert, 86
Buck, J.E., 22
Bumbak, A., 62
Burkett, James R., 4, 98, 107
Burnap, E.G., 116
Butler, F.C, Jr., 79
Butler, R.L., 22

Caldwell, Lynton K., 87
Campbell, Donald T., 97
Campbell, H.P., 25, 63
Campbell, John P., 8, 9, 11
Campbell, Vincent N., 97
Campeau, Peggy L., 12, 27, 90
Canby, Steven L., 42
Caro, Paul W., 68
Carpenter, M.B., 51, 64
Carver, Ronald P., 126
Catrow, E.J., 118
Caylor, John S., 109, 123, 124, 125, 156
Cenci, Louis, 28
Center for Vocational and Technical Education, 8
Chalupsky, Albert B., 12, 147
Champion, Joel T., 51
Chenzoff, Andrew P., 28, 147
Childs, Gayle B., 12, 69
Chiorini, John R., 92
Christal, Raymond E., 13, 110, 142, 152
Clark, Donald L.
Clary, James N., 43, 51, 52
Coster, John K., 88
Cox, Richard C., 135
Craig, Robert L., 28, 88
Crowder, Gene A., 116
Cunningham, J.W., 13, 69
Curran, Charles R., 92
Curran, Thomas E., 119
Davis, Frederick B., 135
Davis, R.H., 69
DeCecco, J.O., 79
DeCrow, Roger, 13
DeJ., R.W., 52
Department of Employment and Productivity, 28
Deterline, W.A., 79
Dieterly, D.L., 61
Downs, J.E., 32
Drumheller, S.J., 79
Ducharme, Richard E., 51
Duncan, K.D., 50
Duncan, Ross, 108
Dunham, Alan D., 43
Dunn, James A., 11
Dupuy, H.J., 52
Ebel, Robert L., 13
Echternacht, Gary J., 127, 128
Educational Computer Corp., 158
Ehrenreich, Julia W., 18
Elkin, Albert, 155
Elliott, Thomas K., 30
Eschenbrenner, J., 158
Esseff, Peter J., 59, 66
Extension Course Institute, Air University (see U.S. Department of the Air Force)
Federman, Philip, 85, 94, 131
Finch, Curtis R., 16, 130
Finch, G., 13
Finucane, J.L., 126
Flug, Eugene R.F., 116
Foley, John P., Jr., 13, 14, 88, 148
Foley, Paul P., 85, 92
Folley, John D., Jr., 28, 29, 30, 154
Ford, J. Patrick, 123, 125
Fors, Robert A., 90
Fortuna, A.L., 61
Fortune, Jim C., 53
Fox, Lynn, 123, 125, 156
Freeberg, Norman E., 88
Friedman, Herbert L., 70
Gagne, R.M., 27
Galanter, E.H., 14
Garbutt, D., 53
Garvin, Alfred D., 135
Gay, Robert, 43
Gebhard, Richard M., 148
Geis, G.L., 14
Gessner, Peter K., 144
Gettings, R., 53
Gilbert, T.F., 79
Glaser, Robert, 14, 19, 70, 71, 89, 135
Glennan, Thomas K., Jr., 54
Goldfarb, Robert S., 53
Goodman, Edith H., 15
Gould, R. Bruce, 143
Grabowski, Stanley M., 13, 15
Grimsley, Douglas L., 55, 66
Gropper, G.L., 29, 80
Custafson, Herbert W., 89
Haggard, Donald F., 29, 154
Haggart, Sue A., 51
Hahn, B.J., 26
Hahn, Clifford P., 84
Hamrens, D.G., 80
Hansing, Ruth A., 15
Hanushek, Eric A., 44
Harding, Larry G., 53
Harrigan, R.J., 74
Hawkridge, David G., 90
Hennessy, David E., 55, 84
Henry, G.L., 55
Herrnstadt, Irwin L., 70
Hickey, A.E., 16
Hitchcock, C.D., 136
Hoehn, Arthur J., 148
Hook, Marion E., 56
Hooprich, E.A., 70
Hopkins, C.R., 21
Horner, Walter R., 117
Horowitz, Morris A., 70
Horowitz, Stanley A., 48
Householder, D.L., 16
Hughes, John L., 70
Human Resources Research Organization, 140
Hummel, Lester F., 30, 56, 71
Hungerland, Jacklyn, 141
Hunter, Harold G., 57, 77
Husek, T.R., 135
Iacobelli, J.L., 85, 90
Ihnen, Loren A., 88
The IMPACT Staff, 123
Impellitteri, Joseph T., 16, 130
McCall, John, 46
MacCaslin, Eugene F., 57, 77
McCombs, Jerry L., 60, 67
McCord, Mary F., 19
MacDonald, I.D., 148
McFann, Howard H., 157
McGehee, W., 51
McKnight, A. James, 130
McNeil, Michael, 137

National Guard Bureau, 102
National University Extension Association, 32
Naval Training Device Center, 58
Naylor, J.G., 21
Nelson, William L., 73
Nelson, R.S., 26
Newmaster, Ronald D., 30, 56, 71
Nitko, A.J., 89
Noll, Victor H., 15
North, Stafford, 117
Norton, Robert L., 91
Novak, J., 80
Nowrasteh, Daryush M., 58, 85

Odiorne, George S., 132
Ofiesh, G.D., 32
O'Flaherty, John, 46
O'Neill, Dave M., 58
O'Rorke, Richard J., Jr., 46
Osborn, William C., 29

Pajer, Robert G., 132
Parker, J.F., Jr., 52
Pautler, Albert J., 21
Peterson, Richard O., 37
Petry, John R., 53
Pieper, William J., 58, 66, 118
Pipe, Peter, 91
Popham, W. James, 33, 92, 135
Porter, E.H., 67
Postlethwait, S.N., 80
Price, R.G., 21
Pusin, Carol J., 59, 66
Quirk, Frank B., 59, 66
Rafacz, Bernard A., 85, 92
Ratliff, Forrest R., 92
Reilly, Richard R., 88
Reinhart, Bruce, 59
Rhode, William E., 59, 66
Richards, James M., 97
Rigney, Joseph W., 67
Rolloff, John A., 91
Rose, A.J., 21
Rose, Homer C., 85, 93
Rundquist, Edward A., 33, 34, 80
St. Michel, K.A., 74
Sands, William A., 47
Schaefer, Carl J., 21
Scharf, George P., 118, 119
Scheirer, William K., 45
Scriber, Peter E., 131
Schultz, Douglas G., 22, 93, 94, 131
Schwartz, Richard D., 97
Schwartz, Shepard, 29
Agren, P.W., 94
Sechrest, Lee, 97
Seidel, Robert J., 57, 66
Sellman, Wayne S., 85, 128, 146
Serendipity, Inc., 148
Sewell, David O., 60
Shearer, James W., 130
Shettel, Harris H., 117
Shirley-Smith, K., 159
Shore, C. Wayne, 92
Short, Jerry G., 60, 67, 80
Shriver, E.L., 136
Shulik, Rubin, 59, 66
Siegel, Arthur I., 11, 22, 84, 85, 93, 94, 131
Singer, E.J., 148
Sitterley, Thomas E., 114
Sivatko, John R., 22
Smith, E.A., 118
Smith, Mary C., 17
Smith, Robert G., Jr., 11, 22, 34, 35, 57, 61, 77, 80
Snyder, T.R., 22
Standlee, L.S., 74
Steel, Laurie, 11
Stephenson, Robert W., 4, 98, 107, 139
Sticht, Thomas G., 109, 119, 120, 123, 124, 125
Stokes, P.M., 35
Stoloff, Peter H., 46
Stolunow, Lawrence M., 30
Stromsdorfer, Ernst W., 91
Strope, Donald H., 47
Stufflebeam, Daniel L., 95
Suchman, Edward A., 95
Suess, A.R., 16
Sullivan, Howard J., 95
Swann, J.H., 61
Swanson, C.L., 74
Swezey, Robert W., 58, 66, 118
Taylor, Elaine, 109, 124, 125
Taylor, John E., 74, 138, 156
Teel, Dean A., 137
Tennyson, Robert D., 22
Thayer, P.W., 31
Thomas, Donald !., 28, 29
Thompson, Lorna J., 158
Tilley, K.W., 61
Tosti, D.T., 80
Tracey, William R., 95
Training Psychology Branch, Behavioral Sciences Laboratory, Aerospace Medical Laboratory, 36
Trice, Harrison M., 86
Tuckman, B.W., 80
Tupes, E.C., 61, 62
Turner, T.B., 21
Tuttle, T.C., 110
Twelker, P.A., 22, 80
Ugelow, Alvin, 23
Ullery, J. William, 96
Underwood, B.J., 136
U.S. Civil Service Commission, Bureau of Training, 36
U.S. Department of the Air Force, 23, 80, 99, 100, 101, 102
U.S. Department of the Army, 23, 81, 103, 104
U.S. Department of Defense (Various Directives and Instructions), 98, 99
U.S. Department of Labor, 23, 36, 37, 85, 111
U.S. Department of the Navy, 23, 37, 81, 96, 104, 105
U.S. Marine Corps (see U.S. Department of the Navy), 105, 106
Urback, F.D., 22

Valentine, Robert I., 67
Valverde, Horace H., 23, 24, 58, 66
Van Doren, R., 125
Vineberg, Robert, 109, 124, 125

Wagner, Harold, 57, 77
Walker, Ralph W., 40, 48, 65, 67

Wallace, Neil, 46
Warmbrod, Catharine P., 24
Warmbrod, J. Robert, 37, 62
Warren, M.W., 37, 62, 96, 133
Webb, Eugene J., 97
Wedemeyer, Charles A., 75, 76
Weih, Rodney, 48
Weinberg, Gary, 48
Weingarten, Kenneth, 140, 141
Weinrich, Ralph C., 25
Weisgerber, Robert A., 24, 37, 90
Wethy, R.B., 62
Wheaton, George R., 62
Wheeler, E.A., 97
Willard, Norman, Jr., 29
Willis, M. Paul, 37
Wolff, H.H., 63
Wolman, Jean M., 97
Wood, W.D., 25, 63

Young, Joseph D., 128
Youngquist, Louise V., 90
Youngs, Eleanor J., 23