This document furnishes a complete copy of the Test Subject's Instructions and the Test Administrator's Handbook for a battery of criterion referenced Job Task Performance Tests (JTPT) for electronic maintenance. General information is provided on soldering, Radar Set AN/ARN-147(v), Radar Set Special Equipment, Radar Set Bench Test Set-Up, and Computer Set-Checkout. Test Subject and Test Administrator instructions are provided on Peripheral Equipment Tests, General Equipment Tests, Operational Check-Out Tests, Special Test Equipment Tests, Remove and Replacement Tests, Adjustment Tests, Alignment Tests, and Troubleshooting Tests. (Author/BJG)
EVALUATING MAINTENANCE PERFORMANCE:
TEST ADMINISTRATOR'S MANUAL AND TEST SUBJECT'S
INSTRUCTIONS FOR CRITERION REFERENCED JOB
TASK-PERFORMANCE TESTS
FOR ELECTRONIC MAINTENANCE

SCOPE OF INTEREST NOTICE
The ERIC Facility has assigned this document for processing to:

By
Edgar L. Shriver
John F. Hayes
William R. Hufnord
URS/Matrix Research Company
Falls Church, Virginia 22042

ADVANCED SYSTEMS DIVISION
Wright-Patterson Air Force Base, Ohio 45433

January 1975
Final Report for Period 1 January 1974 — 16 July 1974

Approved for public release; distribution unlimited.
NOTICE

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or if in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This final report was submitted by URS/Matrix Research Company, Falls Church, Virginia 22042, under contracts F33615-69-C-1232 and F33615-70-C-1695, project 1710, with Advanced Systems Division, Air Force Human Resources Laboratory (AFSC), Wright-Patterson Air Force Base, Ohio 45433. Dr. John P. Foley and Mr. John K. Klesch, Advanced Systems Division, shared the contract monitorship.

This report may be reproduced to satisfy the needs of U.S. Government Agencies.

This report has been reviewed and cleared for open publication and/or public release by the appropriate Office of Information (OI) in accordance with AFR 190.17 and DoDD 5230.9. There is no objection to unlimited distribution of this report to the public at large, or by DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.

GORDON A. ECKSTRAND, Director
Advanced Systems Division

Approved for publication.

HAROLD E. FISCHER, Colonel, USAF
Commander
Title: Evaluating Maintenance Performance: Test Administrator's Manual and Test Subject's Instructions for Criterion Referenced Job Task Performance Tests for Electronic Maintenance

Authors: Edgar L. Shriver, John F. Hayes, William R. Hufhand

Contract or Grant Numbers:
- F33615-69-C-1232
- F33615-70-C-1695

Performing Organization:
- URS/Matrix Research Company
- Falls Church, Virginia 22042

Performing Organization Name and Address:
- URS/Matrix Research Company
- 7245 Arlington Boulevard
- Falls Church, Virginia 22042

Controlling Office Name and Address:
- Hq Air Force Human Resources Laboratory (AFSC)
- Brooks Air Force Base, Texas 78235

Program Element, Project, Task Area & Work Unit Numbers:
- 62703F
- 171001003
- 17100416
- 171001006

Number of Pages: 690

Abstract:

The purpose of this document is to furnish a complete copy of the Test Subject's Instructions and the Test Administrator's Handbook for a battery of criterion referenced Job Task Performance Tests (JTPT) for electronic maintenance. Part I of Volume II of this series of documents, AFHRL-TR-74-57, reports and describes the development and tryout of this battery of tests.
PREFACE

This document represents a portion of the Exploratory Development program of the Advanced Systems Division of the Air Force Human Resources Laboratory. It contains materials submitted by URS/Matrix Research Company, Falls Church, Virginia 22042 under contracts F33615-69C-1232 and F33615-70C-1695. Dr Edgar L. Shriver was the Principal Investigator.

This document is Part II of the second volume (AFHRL-TR-74-57(II) of a four volume report to be published concerning the evaluation of maintenance performance. The other documents are entitled:

The preparation of all these documents has been documented under task area and work unit 171010, Evaluating the Performance of Air Force Operators and Technicians of Project 1710, Training for Advanced Air Force Systems. Identification of this document by work units included work units 1710-10-03, 1710-04-16, and 1710-10-06. Dr John P. Foley was Task Scientist. Dr John P. Foley and Mr John K. Klesch of the Advanced Systems Division shared the contract monitorship. Dr Ross L. Morgan was the Project Scientist.
TABLE OF CONTENTS

Test Administrator Instructions - General ... I

1. Introduction ... I

2. Test Administration Support Criteria .. I

3. Safety ... I

4. Recommended Technician-Test Administrator Ratio I

5. Test Security .. II

6. Organization of Test Administration Materials II

7. Evaluation Procedures ... III

8. Test Administration ... III

9. Test Recovery Guides .. V

Section A General Information .. 1

Part I -- Soldering .. 2

Part II -- Radar Set AN/APN-147(V) .. 4

Part III -- Radar Set Special Test Equipment .. 10

Part IV -- Radar Set Bench Test Set-up ... 16

Part V -- Radar Set Checkout ... 36

Part VI -- Computer Set AN/ASN-35 .. 48

Part VII -- Computer Bench Test Set-up .. 58

Part VIII -- Computer Set Checkout .. 72

Section B Test Administrator Instructions .. 79

Peripheral Equipment Tests (PT) (Soldering) Two Tests 80

General Test Equipment Tests (GE) or (SE) Four Tests 95

Operational Checkout Tests (CO) Two Tests .. 166

Special Test Equipment Tests (SE) Three Tests 176

Remove and Replacement Tests (RR) Ten Tests 196
Adjustment Tests (AD) Six Tests ... 256
Alignment Tests (AL) Ten Tests ... 318
Troubleshooting Tests (TS) Eleven Tests .. 418

Section C Test Subject Instructions .. 505
Peripheral Equipment Tests (PT) (Soldering) Two Tests 507
General Test Equipment Tests (GE) or (SE) Four Tests 520
Operational Checkout Tests (CO) Two Tests .. 574
General and Special Test Equipment Tests (SE) Seven Tests 578
Removal and Replacement Tests (RR) Ten Tests .. 584
Adjustment Test (AD) Six Tests .. 604
Alignment Tests (AL) Ten Tests .. 618
Troubleshooting (TS) Eleven Tests ... 636
TEST ADMINISTRATOR INSTRUCTIONS

A. GENERAL INSTRUCTIONS

1. Introduction

The AN/APN-147-AN/ASN-35 test package contains a comprehensive series of tests developed to measure job performance of the electronic technician. These tests encompass all phases of day-to-day preventive and corrective maintenance that technicians are responsible for in their respective repair activities.

2. Test Administration Support Criteria

For effective test administration, it is important that ordinary support materials, such as hand tools, test equipment, etc., are readily available for the technician. Adequacy in number and serviceability is of prime importance. Sufficient time should be allotted by the Test Administrator prior to the test schedule to check prime equipment, test equipment and other required support items for reliability.

Test Administration locations will be at job sites at various installations. Each installation will vary in number of personnel to be tested; types of maintenance available; and in facilities available. All of these factors have to be considered before testing can be organized.

Test Administrators should allow sufficient time at each new Administrative Center for familiarization and test support preparation.

3. Safety

Test Administrators must observe the technician to insure that safe maintenance practices are adhered to at all times. GROUND SAFETY considerations take precedence over all others.

4. Recommended Technician - Test Administrator Ratio

The number of technicians that can be tested at once will depend on three conditions:

a. amount of test support equipment available
b. number of technicians available
c. experience of the Test Administrator
Items a and b are self-explanatory. Item c means that as the Test Administrator gains some experience giving the test, he will see ways of giving several technicians the same test at once and also ways of administering several different tests simultaneously.

5. **Test Security**

A number of features have been "built-in" to these tests to reduce the possibility of test compromise. For example, different forms of the same test are provided that may appear the same, but require a different answer. However, enforcement of test security is the responsibility of the Test Administrator and common precautions should be exercised:

a. Prohibit collaboration between technicians during testing.
b. Provide sufficient space between test stations for uninhibited individual work.
c. Do not permit technicians not actually engaged in testing in the test station area.
d. Insure that test instructions and all support items are accounted for at the conclusion of each test.
e. Do not leave Test Administrator's Manual unattended.

6. **Organization of Test Administration Materials**

Section A of this Manual provides general information on the AN/APN-147 radar and AN/ASN-35 computer. It describes the equipment, the bench set-up for checking it out, and the procedures for conducting operational checks.

The detailed instructions for administering each individual test are contained in Section B. This includes: test equipment required; test set-up procedures; technician evaluation standards; answer keys; and ways to recover from likely test situations.

Bound separately in the accompanying manual are the Technicians' Test Instructions. This contains the supply of forms, instructions, and answer sheets that the technician will receive. It is important, however, that the technician never be given this whole set of instructions. The Test Administrator is to maintain control of these instructions as well as his own. Such materials as the technician being tested needs are to be removed and provided to him individually.
The Technician's Test Instruction Manual contains:

a. a general background description of the tests
b. a background data sheet for the technician to complete
c. individual test instructions
d. alternate forms of tests
e. evaluation forms for each test

The Test Administrator must select all the relevant materials from the manual, give them to the technician and insure that he gets all the materials back at the conclusion of each test.

Figure 1 gives an overview of the events that are to occur in test administration. (Note: Each technician tested will complete a background data sheet only once.)

7. Evaluation Procedures

Test results are obtained in two ways in these tests -- the Test Administrator evaluates the technician's performance, and/or the technician records his findings. Answer Sheets are provided when the technician must record his findings. Performance Evaluation Sheets are provided when the Test Administrator is to evaluate performance. Supplies of both these forms, as required by each test, are provided in the Technician's Test Instruction Manual.

8. Test Administration

The PT series of tests (Peripheral Tests) can be set up in a separate area from the actual work location where the other tests will be administered. This area, however, should be relatively close and easily reached. The tests in the PT series can then be set up in a "country fair" fashion and technicians rotated through them as they come from or go to the other test area (actual work location).

All of the other test series will be administered to technicians at their normal work stations. This is to insure that the technician has available his normal supply of equipment, tools, references, etc. Under good conditions, where each technician has a set of prime equipment, he should be given the test series in the following order: GE, CO, SE, RR, AD, AL, TS, with the PT series taken as convenient. When there is a shortage of equipment, it will be necessary to utilize the available equipment as availability dictates. For example, if there was only one available prime equipment test set, then only one series could be run at a time and test scheduling would have to be set up accordingly. In this case, test security has to be carefully attended to, since there is a greater possibility of exchange of information among technicians. Greater use of the alternate test forms would be required than under conditions of simultaneous testing.
TA selects Test to be given

TA reviews Test Administration Instructions

TA performs required Pre-Test set-up

Technician arrives and completes Information Sheet

TA collects Information Sheet and issues Test Instructions

Technician begins Test

TA checks Technician's equipment hook-up

TA monitors Technician's performance

TA collects Technician's Answer Sheet

TA evaluates Technician's performance

TA files Answer Sheet and/or Evaluation Sheet with Information Sheet

TA prepares for next Test Administration

FIGURE 1. TYPICAL SEQUENCE OF EVENTS IN TEST ADMINISTRATION
9. **Test Recovery Guides**

It is probable that situations will arise where technicians will unintentionally grossly misalign the prime equipment. A variety of guides are included to serve as short-cuts for the Test Administrator to return the equipment to an operational status. While it is important to get the equipment functioning at the best level possible, it was not feasible to gear the creation of these guides towards absolute peak performance. Such items as the trimpot settings and the template for coils, as they appear in the guides, are relative to the different equipment systems being used. Thus, it is anticipated that although the guides will not enable the Test Administrator to "perfectly" align the equipment, they will enable him to render the equipment "operational."
PART 1 - SOLDERING.

1. Lugs and wires must be clean and free of wax, frayed insulation, and other foreign substances before they are soldered.

2. Use only enough solder to thoroughly wet the connection; it is not necessary to fill the entire hole in a terminal with solder.

3. Keep the soldering iron tip clean by wiping it from time to time with a damp sponge or cloth.
1. Attach the end of the wire to the terminal. If the connection is to be soldered right after the wire is in place, it is not necessary to loop the wire end.

2. Place a flat side of the soldering iron tip against the connection; the tip should touch both the wire and the terminal.

3. Place the solder against the soldering iron tip, and then the connection; the solder will melt and flow into the connection.

4. Remove the solder and then the iron from the connection. Do not move the wire until the connection has hardened. Check the connection; a good solder joint should appear smooth and bright.

A poor, or cold solder, connection will usually look shiny and have a grainy texture, or the solder will stand up in a blob and not be adhered to the connection.
PART II - RADAR SET AN/APN-147(V)

A. EQUIPMENT DESCRIPTION

The basic components of the Radar Set AN/APN-147(V) are:

(1) Antenna AS-1168A/APN-147(V)
(2) Receiver-Transmitter RT-625A(P)/APN-147(V)
(3) Tracker; Frequency; CV-1181A/APN-147(V)
(4) Control; Radar Set; C-3747/APN-147(V)
(5) Indicator; Drift Angle - Groundspeed; ID-938A/APN-147(V)
B. RADAR SET CONTROL

1. POWER (S7501) 3-position toggle switch (1)
 OFF: Turns equipment completely off.
 SLEW: Turns on all power except high voltage; used to supply equipment warmup and carrying out pre-flight slewing operations.
 ON: Places equipment into full operation.

2. G/C (S7502) 3-position spring return (2)
 INCR: Manually slews groundspeed circuitry and indicator to higher values.
 DECR: Manually slews groundspeed circuitry and indicator to lower values. Control Position: Off

3. DR. (S7503) 3-position spring return (3)
 LEFT: Manually slews drift angle left.
 RIGHT: Manually slews drift angle right.
 Central Position: Off

4. Terrain (S7504) 3-position toggle switch (4)
 LAND: Land mode of operation
 LO SEA: Selects water bias for continuous 4-beam Janus operation over water.
 HI SEA: Permits smooth sea operation when LO-SEA 4-beam Janus operation will not provide sufficient return.

5. Memory warning light (E7502) Lamp (5)
 When lit, indicates equipment is operating in memory mode.
 PRESS TO TEST: Pushbutton
 When depressed, checks operation of memory light.
C. DRIFT ANGLE INDICATOR

1. PUSH PRE TAKE OFF (S7801) Pushbutton (1)
 When momentarily depressed, provides preset selection
 of drift angle and groundspeed.

2. Memory flag Printed card (2)
 No Indication: Equipment is operating in Janus mode.
 OFF: Equipment operating in memory mode.
 Alternately OFF and No Indication: Equipment is operating
 in smooth sea mode.

3. DRIFT ANGLE Pointer (3)
 Indicated drift angle.

4. GROUNDSPEED Counter (4)
 Indicated groundspeed in knots.

5. Memory warning light (DS7801) Lamp (5)
 When lit, indicates equipment is operating in memory mode.
 PRESS-TO-TEST Pushbutton
 When depressed, checks operation of memory light.
PART III - RADAR SET SPECIAL TEST EQUIPMENT

A. DOPPLER SIMULATOR CMA-544A/T(H)

1. The Doppler Simulator is a portable test set used to check the radar set overall performance.

2. The test set consists of:
 a. the r-f coupling unit, which contains the antenna and microwave modulator;
 b. the oscillator control unit, which generates the Doppler spectra and is fitted with the drift and groundspeed switches.

3. It measures:
 a. overall sensitivity
 b. groundspeed acquisition
 c. groundspeed calibration
 d. response to drift error.
DOPPLER SIMULATOR CMA-544A/T(H)
B. DOPPLER TEST HARNESS_CMA-543/T(H)

1. The Doppler Test Harness provides all the interconnections necessary to couple the various components of the radar set together.

2. The switching facilities of the test harness provide for the selection of various test conditions and signals.

3. All the radar circuit functions are brought out to test points.
C. DOPPLER GENERATOR CMA-546A/T(H)

The Doppler Generator (1) is a signal generator that produces Doppler spectra in the audio range. The output of the test set is used to check the performance of the Frequency Tracker.

D. DOPPLER SPECTRUM ANALYZER CMA-545/T(H)

The Spectrum Analyzer (2) is used to calibrate the Doppler Generator.
DOPPLER GENERATOR CMA-5468/T(H)

DOPPLER SPECTRUM ANALYZER CMA-545/T(H)
PART IV - RADAR SET BENCH TEST SET-UP

Step 1.
Install r-f coupling unit (1) of Doppler Simulator CMA-547A/T(H) and Antenna (2) in Doppler Antenna Support CMA-547/T(H) (3).
Step 2.
Connect 115 volts 400 Hz and 28 volts dc to J103 (1) of Doppler Test Harness.

Step 3.
- a. Turn 28 VDC power source switch to ON.
- b. Turn meter switch (2) to + 28 VDC.
- c. If polarity is correct, meter needle (3) will swing clockwise.
- d. Turn the 28 VDC power source switch to OFF.

Step 4.
Connect antenna cable (4) of Doppler Test Harness to P7611 (5) of Antenna.
Step 5.
Mount the Radar Set Control (1) in Doppler Test Harness.

Step 6.
Remove dust cover of Receiver-Transmitter (2). Unsnap six dzus fasteners (3). (Three on each side.) Lift cover.
Step 7.

With two I-F coaxial cable assemblies, connect:

J-7612 (1) on Antenna to J-6618 (2) on Receiver

J-7613 (3) on Antenna to J-6609 (4) on Receiver
Step 8.
Disable interlock switch S6601 (1)

Step 9.
By means of r-f cable assembly and r-f adapter, (2) connect MT7601 (3) of antenna to waveguide (4) at rear of Receiver-Transmitter.
Step 10.

Connect Receiver-Transmitter cable (1) of Doppler Test Harness to P6601 (2) of Receiver-Transmitter.
Step 11.

Remove dust cover (1) of Frequency Tracker. Unsnap two dzus fasteners (2). Slide cover off.

Step 12.

Disable interlock switch S-7301. (3)
REMOVE FOR ACCESS TO TEST PANEL AND FUSES
Step 13.

Connect top frequency tracker cable (1) of Doppler Test Harness to P-7309 (2) of Frequency Tracker - bottom frequency tracker cable (3) of Doppler Test Harness to P-7310 (4) of Frequency Tracker.
Step 14.

Connect indicator cable (1) of Doppler Test Harness to P7801 (2) of Indicator.
Step 15.

With the electronic-to-aircraft cable assembly, connect the Doppler Simulator jack (1) to Doppler Test Harness (2).

Step 16.

With the electronics-to-antenna cable assembly, connect the Doppler Simulator r-f coupling unit jack (3) to the Doppler Simulator jack (4). If necessary, use extension cable between r-f coupling and Doppler Simulator.
PART V - RADAR SET CHECKOUT

Step 1.

On the Radar Set Control (located in the Doppler Test Harness):

a. Set POWER switch (1) to OFF.

b. Set the terrain switch (2) to LAND.
NOTE

Unless otherwise indicated maintain the drift angle at zero degrees by operating the DR switch when required throughout these tests.
Step 2:

On the Test Harness:

a. Set 115V CPS switch (1) to ON.
b. Set 28 VDC switch (2) to ON.
c. Set SMOOTH SEA switch (3) to OFF.
d. Set SYNCHRO SELECTOR (4) to OFF.
e. Set SIGNAL SELECTOR (5) to OFF.
f. Set TEST switch (6) to OFF.
Step 3

On the Radar Set Control:

a. Set the POWER switch (2) to SLEW.
b. Operate the G/S switch (2) until the Indicator reads 200 knots (3).
c. Operate the DR switch (4) until the Indicator reads zero degrees (5).
d. Set the POWER switch (1) to ON.
e. Memory light goes on.
Step 4.

On the Doppler Simulator;

a. Set oscillator control unit POWER switch (1) to ON.

b. Set the GROUNDSPEED SELECTOR (2) to 200 knots.

c. Press tuning control (3) on r-f coupling unit and tune unit for maximum deflection on meter (4).

d. The radar set should lock on within 10 seconds after the r-f coupling unit is peaked. This is indicated by the memory warning light (5) (located on the indicator) going out.
Step 5.

On Radar Set Control, set POWER switch (1) to SLEW.

Step 6.

Operate G/S switch (2) on Radar Set Control to display groundspeed value on Indicator of within 10% of 240 knots.

Step 7.

Advance GROUNDSPEED SELECTOR (3) on Doppler Simulator to 240 knots and allow radar to lock on. Time required for system "lock on" after advancing groundspeed from 200 to 240 knots must not exceed 20 seconds.

Step 8.

Repeat for each value of simulated groundspeed on Doppler Simulator.
Step 9:

After the memory warning light goes out operate the simulator DRIFT switch (1) to the RIGHT. Time required for the antenna to swing through a 10 degree drift interval (2) must not exceed 20 seconds.

Step 10:

Repeat this test with the DRIFT switch set to the LEFT.
PART VI - COMPUTER SET AN/ASN-35

A. EQUIPMENT DESCRIPTION

The basic components of the Computer Set AN/ASN-35 are:

1. Computer CP-622/AN/ASN-35
2. Control-Indicator C-3748A/AN/ASN-35
3. Air Navigation Multiple Indicator ID-939A/AN/ASN-35
B. CONTROLS AND INDICATORS

1. DESIRED TRACK ANGLE (STAGE I and STAGE II)
 - 4-digit manually operated counter. (1) Provided a digital readout of desired track angle in degrees and tenths of a degree.

2. DESIRED TRACK ANGLE (STAGE I and STAGE II)
 - Manually preset control. (2) Used to set desired track angle.

3. DISTANCE TO GO (STAGE I and STAGE II)
 - 3-digit electromagnet-operated counter. (3)
 Provides a digital readout of distance to go in nautical miles.

4. DISTANCE TO GO (STAGE I and STAGE II)
 - Manually preset control. (4) Used to set distance to go.

5. DISTANCE CROSS TRACK
 - Electromagnet-operated counter with two banks of three digits and a directional flag. (5)
 Provides a digital readout of distance cross track in nautical miles.

6. DISTANCE CROSS TRACK
 - Manually preset control. (6) Used to set distance cross track.

7. AUTO-MAN-OFF (SW5401)
 - Three-position switch. (7)
 OFF: Power-off position
 MAN: Provides for manual stage switching in conjunction with ACTIVE-OFF switch.
 AUTO: Provides automatic stage switching when DISTANCE TO GO indicator reads zero miles.

8. ACTIVE-OFF (SW5402)
 - Two position switch. (8) Selects and indicates active stage.

9. OFF indicator (DS5401)
 - Lamp. (9) Warning light; when lit, indicates equipment failure.
B. CONTROLS AND INDICATORS (Con't)

1. MODE (SW4401) Single-pole 3-position switch. (1)
 AUXILIARY OFF: The unit is inactive.
 AUXILIARY STAGE I: The unit counts distance to right or left of the desired track when STAGE I of the control-indicator is active. However, the cross track counter of the control-indicator does not count. When STAGE II of the control-indicator is active, the auxiliary cross track control indicator is not active.
 AUXILIARY ACTIVE: The unit is active regardless of which stage of the control-indicator is active.

2. DISTANCE CROSS TRACK. Electromagnet operated counter with two banks of 3 digits and a directional flag. (2)
 Provides a digital readout of cross track distance up to 99.9 nautical miles.

3. DISTANCE CROSS TRACK. Manual preset control. (3)
 Used to set cross track distance.

4. DISTANCE SCALE (SW4402). Single-pole 2-position switch. (4)
 NAV: Cross track reading displayed in miles and tenths.
 DROP: Cross track reading in miles, tenths and hundredths.
B. CONTROLS AND INDICATORS (Con't)

1. Track error angle pointer. Pointer driven by a synchro. (1)
 a. Indicates track error angle against a scale calibrated
 in degrees.
 b. Indicates aircraft track relative to desired track,
 by position of model aircraft relative to vertical
 bar. (2)

2. Desired track and distance cross track indicator.
 Vertical bar driven by meter movement. (2)
 Indicates cross track distance (left or right) from
 center, measured against horizontal row of dots.

3. DISTANCE TO GO: 3-digit counter driven by motor. (3)
 Indicates distance to go in nautical miles up to a
 maximum of 999 miles, or 99.9 miles if the auxiliary
 cross track control-indicator is in the DROP position.

4. ON-OFF Flag. Relay activated shutter. (4)
 Indicates power failure when in the OFF position.

5. Alert Lamp (DSO1) Lamp (5)
 Lamp lights when distance to go reaches 10 miles. Lamp
 incorporates press-to-test and dimming facilities.
C. SPECIAL TEST EQUIPMENT - COMPUTER TEST HARNESS CMA-549/T(H)

The Computer Test Harness provides facilities for bench testing of the computer set. The Computer Test Harness duplicates the aircraft wiring for interconnection of all components of the computer set. It consists of:

(1) Carrying Case
(2) Computer Test Harness
(3) Extension Cable (37-pin)
(4) Extension Cable (50-pin)
(5) Resolver Balancing Jig
(6) Terminal Board Patch Cable
(7) Heading Track Simulator
(8) Printed-Circuit Board Extension
(9) Tool Assembly
PART VII- COMPUTER BENCH TEST SET-UP

Step 1.

There are nine cables connected to the bottom of the panel of the test harness. These cables are identified on the rear panel, from left to right, as follows:

(1) Doppler
(2) Indicator
(3) Controller: Top
(4) Controller Bottom
(5) Computer Bottom
(6) Computer Top
(7) Auxiliary Cross Track
(8) Power Patch
(9) Power
Step 2.

Remove dust cover (1) from Computer. Unsnap two dzus fasteners (2). Slide cover off.
Step 3.

The first (DOPPLER) and eighth (POWER PATCH) cables are not used in the bench test setup. The remaining seven cables are used:

Connect INDICATOR cable (1) of Computer Test Harness to plug P5501 (2) of air navigation multiple indicator.

Connect CONTROLLER TOP cable (3) to plug P5402 (4) of control-indicator.

Connect CONTROLLER BOTTOM cable (5) to plug P5401 (6) of control-indicator.

Connect Double connector of COMPUTER BOTTOM and COMPUTER TOP cables to plugs P101 and P102 of computer.

Connect AUXILIARY CROSS TRACK cable (11) to plug P4401 of auxiliary cross track control-indicator (12).

Connect POWER cable (13) to power panel providing 115 volts ac, 400 cps, 95 volt amperes, and 28 volts dc, 60 watts to the test harness and computer set. Connect green and white wires to 115 VAC and red and black wires to 28 VDC source. (Black wire connected to ground).
Step 3.

On the Computer Test Harness panel are six rows (marked A, B, C, D, E, and F) of 19 terminals per row (marked 1 to 19) which are used as test points. For the incoming power to be distributed as required, short the following test terminals, using the five patch cables provided.

D-15 to E-7
D-16 to E-6
B-5 to B-15
E-11 to E-16
B-4 to E-10
Step 4.

Turn 115 VAC power switch (1) to ON. Pilot light (2) indicates presence of power. Turn 28 VDC power switch (3) to ON. Pilot light (4) indicates presence of power.
Step 5.
Set the HEADING TRACK SIMULATOR switch (1) to INT.

Step 6.
Position the DRIFT ANGLE switch (2) to OUT.

Step 7.
Position the 26 VAC, EXC switch (3) to INT.

Step 8.
Position the terrain switch (4) to the LAND, SEA, or SS position as required.

Step 9.
Connect the Audio Oscillator output (5) to test points A-13 (6), A-14 (7) on the test harness.

Step 10.
Set the Audio Oscillator to 10 kHz with an output of 5 volts rms as illustrated.
 a. RANGE to X100
 b. FREQUENCY DIAL to 100
 c. ATTENUATOR to 1
 d. METER set to read 5 by adjusting VOLTS X ATTENUATOR OUTPUT LEVEL control.
Step 11.

Connect the Frequency Meter Signal Input (1) to the Audio Oscillator output (2) and to test point 20 (3) on the Computer.
PART VIII - COMPUTER SFT CHECKOUT

Step 1.

Set Heading Track Simulator to 000.0 degrees. Ensure that Audio Oscillator is off. On the Auxiliary Cross Track Control-Indicator, set controls as follows:

a. DISTANCE CROSS-TRACK to 00.0 miles.
b. DISTANCE SCALE switch to NAV.
c. MODE switch to AUXILIARY OFF.

On the Control-Indicator, set controls as follows:

a. DESIRED TRACK ANGLE 000.0 degrees.
b. DISTANCE CROSS TRACK to 100.0 miles.
c. AUTO-MAN-OFF to MAN.

Observe warning light in control-indicator. Warning light should be on.
Step 2.
Set Audio Oscillator to 10 kHz at 7 volts. Observe DISTANCE TO GO counter in control indicator. Warning light goes out and DISTANCE TO GO count increases.

Step 3.
Set DESIRED TRACK ANGLE to 180.0 degrees. Observe DISTANCE TO GO counter in control indicator. DISTANCE TO GO count increases.

Step 4.
Observe DISTANCE TO GO counter on air navigation multiple indicator. DISTANCE TO GO count decreases.

Step 5.
Check that track error angle on air navigation multiple indicator reads zero degrees.

Step 6.
Set DESIRED TRACK ANGLE to 315.0 degrees. Check that DISTANCE CROSS TRACK counter of control-indicator counter increases to the right.

Step 7.
Place MODE switch of auxiliary cross track control-indicator to AUXILIARY ACTIVE position. Observe that DISTANCE CROSS TRACK counter on auxiliary cross track control-indicator counts to right.
Step 8.

Observe that desired track vertical bar on Air Navigation Multiple Indicator moves to left.

Step 9.

Set controls as follows:

a. AUTO-MAN-OFF switch to AUTO
b. DISTANCE TO GO (STAGE I) counter to 10 miles
c. DISTANCE TO GO (STAGE II) counter to 10 miles

Observe control indicator. Check that when DISTANCE TO GO (STAGE I) counter reaches 0 miles STAGE II counter begins to operate.
SECTION B

TEST ADMINISTRATOR INSTRUCTIONS
TEST ADMINISTRATOR INSTRUCTIONS

TEST

PT-1, Circuit Board Soldering

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Plug-in assembly board, (1), 3318-482
b. Forty watt (±5) soldering iron (2)
c. 60/40 rosin-core solder (3)
d. Heat sinks (4)
e. Diagonal pliers (5)
f. Needle-nose pliers (6)
g. Solid color resistors (7)
h. Roll of thin gauge stranded wire (8)
i. Grease pencil or felt pen (9)
PRE-TEST SET-UP

a. Set up each test station with a plug-in assembly board and two solid color resistors.

b. On each assembly board, mark two resistors for replacement. Use a grease pencil or felt pen. See opposite page.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions for Test PT-1 and enter his test identification number on his Performance Evaluation Sheet.

b. Note the time and instruct the technician to begin the test.

PERFORMANCE EVALUATION PROCEDURES

a. When the technician has completed the replacement, inspect his work.
b. Compare the technician's soldering with the standard shown on the opposite page.

c. Both leads of a given resistor must be properly soldered for the resistor to be acceptable.

Evaluate the soldering on each resistor and enter the results on the technician's Performance Evaluation Sheet.

Make sure that the technician's identification number is on the Performance Evaluation Sheet.
PREFERRED SOLDER

Acceptable Maximum Solder

Unacceptable Excessive Solder

Unacceptable Insufficient Solder

Acceptable Minimum Solder
TEST ADMINISTRATOR INSTRUCTIONS

TEST

PT-2, Electronic Piece/Part Removal and Replacement

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Test soldering box (1) (Tutransitron Circuit)
b. 40 watt (+ 5) soldering iron (2)
c. Heat sinks (3)
d. Diagonal pliers (4)
e. Needle-nose pliers (5)
f. 60/40 rosin-core solder (6)
g. Replacement parts kit
h. Circuit schematic diagram
i. Transistor configuration chart
j. Heat-sensitive dressing (7)
PRE-TEST SET-UP

a. There are four different versions of this test. You have a supply of the Instructions for each version.

b. Each technician is to take a different version of the test than the person immediately before him.

c. When a technician has properly completed one version of the test, the circuit is in the proper configuration for the succeeding version to be administered.

d. On the opposite page is a picture of the circuit in its starting configuration for Form 1 of the test.

e. Before each administration, check the circuit to insure that the parts called out for removal by the instructions are in the circuit.
PT-2 FORM 1

TUTRANSITRON, SCHEMATIC DIAGRAM

C1: 1μF, 200VWDC

R1: 36KΩ, 1W

R2: 120KΩ, 1W

R3: 47KΩ, 1W

R4: 47KΩ, 1W

R5: 1.8KΩ, 1/2W

R6: 270Ω, 1W

R7: 350KΩ, 1/2W

C2: 47μF, 1000VWDC

C3: 0.001μF, 200VWDC

Q1: 2N404
f. Apply the heat-sensitive dressing to any leads that do not have it on them. See picture on opposite page.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions for Test PT-2 and enter test identification number on Performance Evaluation Sheet.

b. Hand out the Transistor Circuit, the specific modification instructions and schematic, and the replacement parts kit.

c. Note the time and instruct the technician to begin the test.
PERFORMANCE EVALUATION PROCEDURES

a. When the technician has completed the circuit modifications, examine his work.

b. Compare his work to his instructions and then complete his Performance Evaluation Sheet as follows:

1. Was the proper part installed?

 If so, place a checkmark in the box labeled "Proper Component".

2. Was the component installed in the proper location?

 If so, place a checkmark in the box labeled "Proper Position".

3. Was the part installed with the poles in the proper position?

4. Did the heat-sensitive dressing on the leads liquify due to too much heat?

 If not, place a checkmark in the box labeled "H" (for heat).
5. Was the proper quantity of solder applied?

If so, place a checkmark in the box labeled "Solder".

POST-TEST RECOVERY

a. If the technician has installed any improper components, or installed any in the wrong position, have him correct his error so that the circuit is in the proper configuration for the next administration of the test.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

GE-1, 1890M Transistor Tester

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. 1890M Transistor Tester (1)

b. Instruction Manual for 1890M

c. Transistor Reference Chart

d. Circuit Board Assembly (2) 3318-482
 (forms 1, 2, & 3)
GE-1

PRE-TEST SET-UP

a. Check the circuit boards for coding to insure that you know which Form of the test you are administering. The boards are coded on the edge with red and black strips as follows:

Form 1 - red/black/red
Form 2 - black/red/black
Form 3 - red/red/black
(See opposite page)

b. Review your copy of the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions for Test GE-1.

b. Hand out the Circuit Board, making a note of which technicians get which boards.

c. Note the time and instruct the technician to begin the test.

d. Monitor technicians performance to insure that they use only the 1890M.
PERFORMANCE EVALUATION PROCEDURES

a. When the technician has marked the bad transistors, collect the circuit board.

b. Compare the transistors the technician has marked as bad with those indicated as bad on the Answer Key for that form of the test on the opposite page.

c. Insure that the technician's identification number is on the Performance Evaluation Sheet and record the test results.

d. Technician must correctly identify both bad transistors to be scored satisfactory.

POST-TEST RECOVERY

a. Clean the marks off of the transistors on the circuit board using a small amount of solvent on a clean rag.
<table>
<thead>
<tr>
<th>TRANSISTOR NUMBER</th>
<th>CONDITION FORM 1</th>
<th>FORM 2</th>
<th>FORM 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N541</td>
<td>BAD</td>
<td>GOOD</td>
<td>GOOD</td>
</tr>
<tr>
<td>2N43A</td>
<td>GOOD</td>
<td>BAD</td>
<td>GOOD</td>
</tr>
<tr>
<td>2N404</td>
<td>GOOD</td>
<td>GOOD</td>
<td>BAD</td>
</tr>
</tbody>
</table>
TEST ADMINISTRATOR INSTRUCTIONS

TEST

GE-2, Model TV-2 Electron Tube Test Set

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Model TV-2 Electron Tube Test Set (1) and operating instructions

b. Electron tubes 6AK6, 6BQ7 and 6AH6, two each (one good and one bad)
GE-2

PRE-TEST SET-UP

a. The electron tube cartons will have the indication on them as to whether they contain good or bad versions of the tubes.

b. Set up the test station with either the Form 1, Form 2 or Form 3 tube sets. See the Answer Key on the opposite page for the tubes required by each form.

c. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions for Test GE-2.

b. Note the time and instruct the technician to begin the test.

c. Observe the technician while he is taking the test to insure that he used only the TV-2.

d. When the technician has completed checking the tubes or when time has elapsed, collect his Answer Sheet and the tubes used in the test.

e. Insure that the technician's identification number is listed on the Answer Sheet.
<table>
<thead>
<tr>
<th>TUBE TYPE</th>
<th>FORM 1</th>
<th>FORM 2</th>
<th>FORM 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6AK6</td>
<td>BAD</td>
<td>GOOD</td>
<td>GOOD</td>
</tr>
<tr>
<td>6BQ7</td>
<td>GOOD</td>
<td>BAD</td>
<td>GOOD</td>
</tr>
<tr>
<td>6AE6</td>
<td>GOOD</td>
<td>GOOD</td>
<td>BAD</td>
</tr>
</tbody>
</table>
PERFORMANCE EVALUATION PROCEDURES

a. Compare the technician's answers listed in the column headed "TUBE CONDITION" with the Answer Key for that form of the test.

b. Mark any wrong answers with an "X".

c. File the technician's Answer Sheet with the others.

POST TEST RECOVERY

a. Place the tubes back into their correct cartons, being careful to put them into the correct ones (good and bad).
TEST ADMINISTRATOR INSTRUCTIONS

TEST

GE-3, Model 410B Electronic Voltmeter

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Model 410B Electronic Voltmeter (1) or equivalent
b. Voltage/Resistance Console (2) (special test box)

PRE-TEST SET-UP

a. Insure that the above listed support materials are present at each of the testing stations.

b. Review the technician's Test Instructions to familiarize yourself with them.

c. Select one form of the test (Answer Sheet) from the Technician's Instructions to be administered. Do not give both forms of the test to the same technician.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions for Test GE-3.

b. Note the time and instruct the technician to begin the test.

c. Observe the technician during the test to insure that he follows instructions.

d. Collect the technician’s Answer Sheet when time has elapsed or when he has completed the test.

e. Insure that the technician’s identification number is on the Answer Sheet.

PERFORMANCE EVALUATION PROCEDURES

a. Check the technician’s Answer Sheet to determine which form of the test he took.

b. Compare the technician’s answers with those on the appropriate Answer Key on pages 109 or 111.

c. Place an "X" beside those answers that are incorrect.
Section I

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Assigned Value</th>
<th>In Tolerance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.5 vdc</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>17.5 vac</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>43 vac</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>40 vdc</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>24 vdc</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>0 vdc</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>3 vdc</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>6 vac</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>8 vac</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>30 vdc</td>
<td>X</td>
</tr>
</tbody>
</table>

Section II

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Assigned Value</th>
<th>In Tolerance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 ohms</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>38 ohms</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>100 ohms</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>11 k</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>6 k</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>16 k</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>260 k</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>400 k</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>7.5 Meg</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>4.5 Meg</td>
<td>X</td>
</tr>
</tbody>
</table>
Section I - Voltage

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Assigned Value</th>
<th>In Tolerance?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>6 vac</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.5 vdc</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>64 vac</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>12 vac</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10 vac</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 vdc</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>3 vdc</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10 vac</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20 vac</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30 vdc</td>
<td></td>
</tr>
</tbody>
</table>

Section II - Resistance

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Assigned Value</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>100 ohms</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>1000 ohms</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>1 k</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9 k</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>30 k</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>5.6 k</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>260 k</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>180 k</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>1.7 Meg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>00</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
TEST ADMINISTRATOR INSTRUCTIONS

TEST

GE-4, Tektronic 545B Oscilloscope

TIME ALLOCATED

60 minutes

SUPPORT MATERIALS REQUIRED

a. Tektronic 545B Oscilloscope with CA plug-in (1)
b. Two 10:1 Probes (2)
c. Instruction manuals for oscilloscope and plug-in
d. Waveform Generator Console (3) (special test box)

PRE-TEST SET-UP.

a. Insure that the above listed materials are available at each of the testing stations to be used.

b. There are three versions of this test - Forms 1, 2, & 3. Each contains eight problems.
c. If several technicians are being tested at once, give different forms of the test to adjacent technicians.

d. If technicians are being tested one after the other, give different forms each administration.

e. Decalibrate the test probe by loosening the collar (see opposite page) and turning the sleeve 1/2 turn counter-clockwise. Retighten the collar.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions for test GE-4.

b. Note the time and instruct the technician to begin the test.

PERFORMANCE EVALUATION PROCEDURES

a. Problem 1.

1. This problem consists of calibrating the test probe. It is the same on all forms of the test.
2. When the technician has calibrated the probe, collect his Instruction Sheet for Problem 1.

3. Compare the indication that the technician has obtained on the oscilloscope with that shown on the Answer Key (see opposite page).

4. If the probe has been properly calibrated:
 - Check "YES" on the Performance Evaluation portion of the Instruction Sheet
 - Instruct the technician to continue the test.

5. If the probe has not been properly calibrated:
 - Check "NO" on the Performance Evaluation portion of the Instruction Sheet
 - Assist the technician to properly calibrate the probe
 - Instruct the technician to continue the test.
TYPE 5458 OSCILLOSCOPE

HORIZONTAL DISPLAY
- TIME BASE
 - STABILITY
 - TRIGGERING MODE
 - TRIGGER SLOPE
 - LP REACTIVITY
 - TIME BASE
 - VARIABLE TIME/CH
 - TIME BASE
 - TRIGGERING LEVEL
 - VARIABLE TIME/CH
 - TIME/CH OR DELAY TIME
 - DELAY TIME MULTIPLIER
 - AMPLITUDE CALIBRATOR
 - TIME/CH CALIBRATION
 - HORIZONTAL CALIBRATION
 - VERTICAL POSITION
 - POWER ON
 - VERT IN
 - CAL IN

INTENSITY
FOCUS
SPACE DIVISION
SCALE ILLUMINATION

CHANNEL A
- DC ONLY
- VERTICAL POSITION
- NORMAL INK
- CALIBRATED

CHANNEL B
- DC ONLY
- VERTICAL POSITION
- NORMAL INK
- CALIBRATED

TYPE CA PLUG-IN UNIT
- ALTERNATINGLY
- HIGH RESOLUTION
- CALIBRATED
b. Problems 2 through 8

1. When the technician has completed the problems, collect his Instructions and Answer Sheets and insure that his identification number is on them.

2. Compare his answers to the Answer Key for that form (see pages 119 to 165).

3. Each problem has two parts:
 (a) Is the signal within tolerance?
 (b) What control settings were used?

4. Part (a) is to be answered at the bottom of the Instruction Sheet. If it is answered incorrectly, mark it with an "X".

5. Part (b) is answered on a second sheet. Check the settings used to see that they are the same as those on the Answer Key.

6. Where the Answer Key indicates "N/A", disregard the technicians settings. These are irrelevant settings.

7. Mark any other answers that are wrong with an "X".
TEST ADMINISTRATOR ANSWER KEY

GE-4, PROBLEM 1, FORM 1

PROCEDURES:

a. Calibrate the 2 oscilloscope test probes at your test position.

b. Notify your Test Administrator as soon as you complete the test probe calibration.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Under</td>
<td></td>
</tr>
<tr>
<td>Compensated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correctly</td>
</tr>
<tr>
<td></td>
<td>Compensated</td>
</tr>
<tr>
<td></td>
<td>Over</td>
</tr>
<tr>
<td></td>
<td>Compensated</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6702 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance X

Freq. = 12.5 KC
TEST ADMINISTRATOR ANSWER KEY 2

GE-4, PROBLEM 2, FORM 1

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT/CM (Channel A)</td>
<td>N/A</td>
</tr>
<tr>
<td>AMPLITUDE CALIBRATOR</td>
<td>N/A</td>
</tr>
<tr>
<td>TIME/CM (TIME BASE A)</td>
<td>N/A</td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (TIME BASE A)</td>
<td>CALIBRATED</td>
</tr>
<tr>
<td>VARIABLE, VOLTS/CM (Channel A)</td>
<td>CALIBRATED</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground your oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set the sweep to display approximately two cycles of the waveforms present at Test Points 6708 and 6712 on the Waveform Generator Console.

d. Set Channel "A" and Channel "B" Volts/CM controls at 1 and the Volts/CM Variable control at the Calibrated position.

e. Use the available features of the oscilloscope to eliminate unwanted portions of a composite signal.

f. Compare the resultant waveform on the oscilloscope with the one shown below to determine if it is within tolerance of 0%.

g. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

h. When you have marked your answer, record your selected scope settings on the Oscilloscope Control Setting Answer Sheet.

i. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance []

Out of Tolerance []

[Graph of waveform]
GE-4, PROBLEM 3, FORM 1

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTS/CM (Channel A)</td>
<td>1</td>
</tr>
<tr>
<td>VOLTS/CM (Channel B)</td>
<td>1</td>
</tr>
<tr>
<td>PREAMP MODE</td>
<td>Added Algebraically</td>
</tr>
</tbody>
</table>

123
GE-4, PROBLEM 4, FORM 1

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveforms present at Test Points 6702, 6706 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveforms on the oscilloscope with the ones shown below to determine if they are within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveforms are in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Diagram:

Time Base A
Freq. = 6.25 KC

Time Base B
Freq. = 12.5 KC

- 80μsec
- 160μsec
- 425μsec

Within Tolerance

Answer Key:

134
TEST ADMINISTRATOR ANSWER-KEY 2

GE-4, PROBLEM 4, FORM 1

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTS/CM (Channel A)</td>
<td>N/A</td>
</tr>
<tr>
<td>VOLTS/CM (Channel B)</td>
<td>Alternate</td>
</tr>
<tr>
<td>MODE/Dual Trace Preamp</td>
<td>Calibrated</td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (Time Base A)</td>
<td>Calibrated</td>
</tr>
<tr>
<td>VARIABLE, VOLTS/CM (Channel A)</td>
<td>Calibrated</td>
</tr>
</tbody>
</table>
TEST ADMINISTRATOR ANSWER KEY 1

GE-4, PROBLEM 5, FORM 1

PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep to display seven pulses of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Utilize the delayed pulse feature to display the center pulse (4th positive going pulse from the left) in the center of the graticule.

e. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within tolerance of ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance X

Out of Tolerance _____

126
GE-4, PROBLEM 5, FORM 1

OSCILLOSCOPE CONTROL SETTING

CONTROL

Trigger Mode (Time Base A)
Horizontal Display
DELAY Multiplier (Read-out)
Stability (Time Base A)
Time/CM (Time Base A)
Time/CM (Time Base B)

SETTING

Any setting except Auto
"A" Dly'd by "B"
Approximately 4:60
Fully Clockwise
10 usec
.1 msec
PROCEDURES

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep for 20 usec per CM to display approximately one cycle of the waveform present at Test Point 6706 on the Waveform Generator Console.

d. Use the delayed trigger to determine the width of one cycle.

e. Compare the resultant values of the waveform on the scope with the one shown below to determine if it is within tolerance ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance

TEST ADMINISTRATOR ANSWER KEY 2

GE 40 PROBLEM 6, FORM 1

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Display</td>
<td>B</td>
</tr>
<tr>
<td>Time/CM (Time Base B)</td>
<td>20 usec</td>
</tr>
<tr>
<td>Delay-Time Multiplier</td>
<td>8</td>
</tr>
<tr>
<td>Preamp Mode</td>
<td>Alternate</td>
</tr>
</tbody>
</table>
Test Administrator Answer Key 1

Ge-4, Problem 7, Form 1

Procedures:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set both Channel "A" and "B" Volts/CM to 1 and Variable to Calibrate position.

d. Display the Waveform Generator Console waveforms present at Test Points 6701 and 5712 on the oscilloscope.

e. Compare the phase relationship of the waveforms on the oscilloscope with the phase relationship of the waveforms shown below.

f. How does the set of waveforms displayed on the oscilloscope compare in phase relationship with the set shown below?

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

![Waveform Diagram]

Note: Time Base "B" lags Time Base "A" by 60 degrees.

How do the two sets of waveforms compare?
The phase relationship is the same in both sets.
The phase relationship is different between the two sets.
OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Display</td>
<td>N/A</td>
</tr>
<tr>
<td>Time/CM</td>
<td>N/A</td>
</tr>
<tr>
<td>Delay Time Multiplier</td>
<td>N/A</td>
</tr>
<tr>
<td>Preamp Mode</td>
<td>Chopped</td>
</tr>
</tbody>
</table>
TEST ADMINISTRATOR ANSWER KEY I

GE-4, PROBLEM 8, FORM I

PROCEDURES:

a. Channel "A" will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if they are within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance ___

Out of Tolerance X

Freq. = 6.25

Within Tolerance ___

Out of Tolerance X
<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/CM (Channel A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Amplitude Calibrator</td>
<td>N/A</td>
</tr>
<tr>
<td>Variable, Time/CM (Time Base A)</td>
<td>Calibrated</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Calibrate the 2 oscilloscope test probes at your test position.

b. Notify your Test Administrator as soon as you complete the test probe calibration.
GE-4, PROBLEM 2, FORM 2

PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6702 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within Tolerance of ±10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance

Freq. = 25KC

320 μ sec

50 μ sec

6V

136
GE-4, PROBLEM 2, FORM 2

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT/CM (Channel A)</td>
<td>N/A</td>
</tr>
<tr>
<td>AMPLITUDE CALIBRATOR</td>
<td>N/A</td>
</tr>
<tr>
<td>TIME/CM (TIME BASE A)</td>
<td>N/A</td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (TIME BASE A)</td>
<td>CALIBRATED</td>
</tr>
<tr>
<td>VARIABLE, VOLTS/CM (Channel A)</td>
<td>CALIBRATED</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground your oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set the sweep to display approximately two cycles of the waveforms present at Test Points 6708 and 6712 on the Waveform Generator Console.

d. Set Channel "A" and Channel "B" Volts/CM controls at 1 and the Volts/CM Variable control at the Calibrated position.

e. Use the available features of the oscilloscope to eliminate unwanted portions of a composite signal.

f. Compare the resultant waveform on the oscilloscope with the one shown below to determine if it is within tolerance of 0%.

g. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

h. When you have marked your answer, record your selected scope settings on the Oscilloscope Control Setting Answer Sheet.

i. Return your answer sheet to the Test Administrator and go to the next problem.
GE-4 PROBLEM 3, FORM 2

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
<th>Volts/CM (Channel A)</th>
<th>Volts/CM (Channel B)</th>
<th>Preamp Mode</th>
<th>Added Algebraically</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Added Algebraically</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveforms present at Test Points 6702 and 6706 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveforms on the oscilloscope with the ones shown below to determine if they are within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveforms are in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Time Base

- **"A"**
 - Freq.: 50 Hz
 - 160μ sec

- **"B"**
 - Freq.: 25 kHz
 - 50μ sec

Within Tolerance

- 320μ sec
- 6V

Out of Tolerance

- 160μ sec
- 50μ sec
- 6V

140
TEST ADMINISTRATOR ANSWER KEY 2

GE-4, PROBLEM 4, FORM 2

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTS/CM (Channel A)</td>
<td>N/A</td>
</tr>
<tr>
<td>VOLTS/CM (Channel B)</td>
<td>N/A</td>
</tr>
<tr>
<td>MODE/Dual Trace Preamp</td>
<td>Alternate</td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (Time Base A)</td>
<td>Calibrated</td>
</tr>
<tr>
<td>Variable, VOLTS/CM (Channel A)</td>
<td>Calibrated</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep to display seven pulses of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Utilize the delayed pulse feature to display the center pulse (4th positive-going pulse from the left) in the center of the graticule:

e. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within tolerance of ±10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance _____
Out of Tolerance X
OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode (Time Base A)</td>
<td>Any setting except Auto</td>
</tr>
<tr>
<td>Horizontal Display</td>
<td>"A", Dly'd by "B"</td>
</tr>
<tr>
<td>Delay Multiplier (Read-Out)</td>
<td>Approximately 4:60</td>
</tr>
<tr>
<td>Stability (Time Base A)</td>
<td>Fully Clockwise</td>
</tr>
<tr>
<td>Time/CM (Time Base A)</td>
<td>10 usec</td>
</tr>
<tr>
<td>Time/CM (Time Base B)</td>
<td>1 msec</td>
</tr>
</tbody>
</table>

GE-4, Problem 5, Form 2
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep for 20 usec per CM to display approximately one cycle of the waveform present at Test Point 6706 on the Waveform Generator Console.

d. Use the delayed trigger to determine the width of one cycle.

e. Compare the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within tolerance of ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance
GE-4, PROBLEM 6, FORM 2:

OSCLLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZONTAL DISPLAY</td>
<td>B</td>
</tr>
<tr>
<td>TIME/CM (TIME BASE B)</td>
<td>20 usec</td>
</tr>
<tr>
<td>DELAY-TIME MULTIPLIER</td>
<td>8</td>
</tr>
<tr>
<td>PREAMP MODE</td>
<td>Alternate</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set both Channel "A" and "B" Volts/CM to 1 and Variable to Calibrate position.

d. Display the Waveform Generator Console waveforms present at Test Points 6701 and 6712 on the oscilloscope.

e. Compare the phase relationship of the waveforms on the oscilloscope with the phase relationship of the waveforms shown below.

f. How does the set of waveforms displayed on the oscilloscope compare in phase relationship with the set shown below?

g. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

How do the two sets of waveforms compare?

The phase relationship is the same in both sets

The phase relationship is different between the two sets.

Note: Time Base "B" lags Time Base "A" by 180 degrees.
TEST ADMINISTRATION ANSWER KEY 2

GE-4, PROBLEM 7, FORM 2

<table>
<thead>
<tr>
<th>OSCILLOSCOPE CONTROL SETTING</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td></td>
</tr>
<tr>
<td>HORIZONTAL DISPLAY</td>
<td>N/A</td>
</tr>
<tr>
<td>TIME/CM</td>
<td>N/A</td>
</tr>
<tr>
<td>DELAY TIME MULTIPLIER</td>
<td>N/A</td>
</tr>
<tr>
<td>PREAMP MODE</td>
<td>Chopped</td>
</tr>
</tbody>
</table>

147

156
PROCEDURES:

a. Channel "A" will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance X
Out of Tolerance

Freq. = 6.25 KC

Within Tolerance
Out of Tolerance
GE-4, PROBLEM 8, FORM 2

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/CM (Channel A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Amplitude Calibrator</td>
<td>N/A</td>
</tr>
<tr>
<td>Variable, Time/CM (Time Base A)</td>
<td>Calibrated</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Calibrate the 2 oscilloscope test probes at your position.

b. Notify your Test Administrator as soon as you complete the test probe calibration.
GE-4, PROBLEM 2, FORM 3

PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6702 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within the tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance

Within Tolerance

Out of Tolerance

Freq. = 6.25 KC
CE-4, PROBLEM 2, FORM 3

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT/CM (Channel A)</td>
<td>N/A</td>
</tr>
<tr>
<td>AMPLITUDE CALIBRATER</td>
<td>N/A</td>
</tr>
<tr>
<td>TIME/CM (TIME BASE A)</td>
<td>N/A</td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (TIME BASE A)</td>
<td>CALIBRATED</td>
</tr>
<tr>
<td>VARIABLE, VOLTS/CM (Channel A)</td>
<td>CALIBRATED</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground your oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set the sweep to display approximately two cycles of the waveforms present at Test Point 6708 and 6712 on the Waveform Generator Console.

d. Set Channel "A" and Channel "B", Volts/CM controls at 1 and the Volts/CM Variable control at the Calibrated position.

e. Use the available features of the oscilloscope to eliminate unwanted portions of a composite signal.

f. Compare the resultant waveform on the oscilloscope with the one shown below to determine if it is within tolerance of 0%.

g. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

h. When you have marked your answer, record your selected scope settings on the Oscilloscope Control Setting Answer Sheet.

i. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance X
GE-4, PROBLEM 3, FORM 3

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/CM (Channel A)</td>
<td>1</td>
</tr>
<tr>
<td>Volts/CM (Channel B)</td>
<td>1</td>
</tr>
<tr>
<td>Preamp Mode</td>
<td></td>
</tr>
</tbody>
</table>

Added Algebraically
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveforms present at Test Point 6702 and 6706 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveforms on the oscilloscope with the ones shown below to determine if they are within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveforms are in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Time Base

"A"
Freq. = 27 KC

Time Base

"B"
Freq. = 13.5 KC

Within Tolerance

Out of Tolerance X

156
TEST ADMINISTRATOR ANSWER KEY 2

GE-4, PROBLEM 4, FORM 3

OSCilloscope CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTS/CM (Channel A)</td>
<td>N/A</td>
</tr>
<tr>
<td>VOLTS/CM (Channel B)</td>
<td>N/A</td>
</tr>
<tr>
<td>MODE/Dual Trace Preamp</td>
<td>Alternate</td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (Time Base A)</td>
<td>Calibrated</td>
</tr>
<tr>
<td>VARIABLE, VOLTS/CM (Channel A)</td>
<td>Calibrated</td>
</tr>
</tbody>
</table>
TEST ADMINISTRATOR ANSWER KEY 1

GE-4, PROBLEM 5, FORM 3

PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep to display seven pulses of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Utilize the delayed pulse feature to display the center pulse (4th positive going pulse from the left) in the center of the graticule.

e. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within tolerance of ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance

160μ sec

158

166
TEST ADMINISTRATOR ANSWER KEY 2

GE-4, PROBLEM 5, FORM 3

OSCILLOSCOPE CONTROL SETTING

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode (Time Base A)</td>
<td>Any settings except Auto</td>
</tr>
<tr>
<td>Horizontal Display</td>
<td>"A" Dly'd by "B"</td>
</tr>
<tr>
<td>DELAY Multiplier (Read-out)</td>
<td>Approximately 4:60</td>
</tr>
<tr>
<td>Stability (Time Base A)</td>
<td>Fully Clockwise</td>
</tr>
<tr>
<td>Time/CM (Time Base A)</td>
<td>10 usec</td>
</tr>
<tr>
<td>Time/CM (Time Base B)</td>
<td>.1 msec</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep for 20 usec per CM to display approximately one cycle of the waveform present at Test Point 6706 on the Waveform Generator Console.

d. Use the delayed trigger to determine the width of one cycle.

e. Compare the resultant values of the waveform on the scope with the one shown below to determine if it is within tolerance of ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance X.
Test Administrator Answer Key 2

GE-4, Problem 6, Form 3

Oscilloscope Control Setting

<table>
<thead>
<tr>
<th>Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Display</td>
<td>B</td>
</tr>
<tr>
<td>Time/CM (Time Base B)</td>
<td>20 usec</td>
</tr>
<tr>
<td>Delay-Time Multiplier</td>
<td>8</td>
</tr>
<tr>
<td>Preamp Mode</td>
<td>Alternate</td>
</tr>
</tbody>
</table>

169
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set both Channel "A" and "B" Volts/CM to 1 and variable to calibrate position.

d. Display the Waveform Generator Console waveforms present at Test Point 6701 and 6712 on the oscilloscope.

e. Compare the phase relationship of the waveforms on the oscilloscope with the phase relationship of the waveforms shown below.

f. How does the set of waveforms displayed on the oscilloscope compare in phase relationship with the set shown below?

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

\[\text{Time Base "A" (in phase with "B")}\]

Note: Time Base "A" and Time Base "B" are in phase.

How do the two sets of waveform compare?
The phase relationship is the same in both sets? []
The phase relationship is different between the two sets? [X]
<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Display</td>
<td>N/A</td>
</tr>
<tr>
<td>Time/CM</td>
<td>N/A</td>
</tr>
<tr>
<td>Delay Time Multiplier</td>
<td>N/A</td>
</tr>
<tr>
<td>Preamp Mode</td>
<td>Chopped</td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channel "A" will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform with the one shown below to determine if it is within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.
Oscilloscope Control Setting

<table>
<thead>
<tr>
<th>Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/CM (Channel A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Amplitude Calibrator</td>
<td>N/A</td>
</tr>
<tr>
<td>Variable, Time/CM (Time Base A)</td>
<td>Calibrated</td>
</tr>
</tbody>
</table>
TEST ADMINISTRATOR INSTRUCTIONS

TEST

CO-1, Radar Set AN/APN-147 Operational Check

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench Test set-up as described in Section A, Part IV
b. Blade-type screw driver
c. Stop watch
d. T.O. 12P5-2APN147-2 or other applicable technical reference

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to ensure that it is functioning properly. Use the procedures outlined in Section A, Part V.

b. After you have found the Radar set to be operating properly, disconnect all the equipment involved in the bench set-up.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician has completed his bench set-up check it for correctness. Use the diagram on the opposite page for reference. If more detailed information is needed, see Section A, Part IV.

d. If technician has properly completed his bench set-up have him demonstrate that he can perform the Operational Check. Use Section A, Part V, for reference.

PERFORMANCE EVALUATION PROCEDURES

a. As the technician demonstrates his bench set-up and performs the Operational Check, answer Questions A and B on his Performance Evaluation Sheet.

POST-TEST RECOVERY

a. Have the technician disconnect the equipment that he set up and replace it in its original location.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

CO-2, Navigational Computer AN/ASN-35 Operational Check

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part VII
b. Audio Oscillator (1)
c. Frequency Meter (2) AN/USM-26 or equivalent
d. Coaxial cables and adaptors
e. T.O. 5N1-3-8-2 or other, applicable technical reference
PRE-TEST SET-UP

a. Perform an operational check of the Navigational Computer to insure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.

b. After you have found the Computer to be operating properly, disconnect all the equipment involved in the bench set-up.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician has completed his bench set-up, check it for correctness. Use the diagram on the opposite page for reference. If more detailed information is needed, see Section A, Part VIII, for reference.

d. If the technician can properly complete the bench set-up, have him demonstrate the Operational Check. Use Section A, Part VIII, for reference.

PERFORMANCE EVALUATION PROCEDURES

a. As the technician demonstrates his bench set-up and performs the Operational Check, answer Questions A and B on his Performance Evaluation Sheet.
POST-TEST RECOVERY

a. Have the technician disconnect the equipment that he set-up and replace it in its original location.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

SE-1, Signal Generator, AN/URM-25D Usage

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. T.O. 12P5-2APN147-2 or Applicable Technical Data
c. Coaxial cables and adaptors
d. Insulated alligator and banana plug shorting leads
e. Signal Generator (1), AN/URM-25D
f. Oscilloscope (2), Model 545B
g. Electronic Voltmeter (3)
h. Dual dummy mixer (4)
i. Insulated screwdriver

PRE-TEST SET-UP

a. Make an operational checkout of the Radar set as outlined in Section A, Part V.

b. When you have completed the checkout and are sure that the Radar is operating properly, leave the Doppler Test Harness connected to the set.

c. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions.

b. Note the time and have the technician begin the test.

c. When the technician has completed his equipment hook-up, check it for ground safety hazards before permitting him to apply power (see opposite page).
To TP-6704 on frequency mixer stage/SCOPE connector on test harness

To J-7608 on antenna

To TP-6704/TP-6705 on frequency mixer stage

To J-7603 on antenna

To J-6402 on IF-Amplifier

To "Input A Mixer Stage Frequency" on test harness
PERFORMANCE EVALUATION PROCEDURES

a. When the technician announces that he has found the AGC circuit within tolerance limits, check his work as follows:

1. Check the Signal Generator to determine that it has been connected properly. See opposite page for reference.

2. Check the control settings on the Signal Generator to determine that they are set properly. See opposite page for reference.

b. Complete the technician's Performance Evaluation Sheet.

POST TEST RECOVERY

a. Have the technician disconnect the equipment that he set up and replace it in its original location.
R.F. SIGNAL GENERATOR

- R.F. OUTPUT
- OPEN CIRCUIT
- XTAL CAL OUT
- MOD. XTAL CAL METER
- MOD. METER READS
- R.F. MULTIPLIER
- SELECTOR
- IFAmplifier
- J-6402 on
- POWER
- IAMP
- GROUND
- 0.0w. MOD. 0.0w. COR.01..

SET CARRIER TO D
- MOD. MODULATORS CONTROL
- FAST CLOCK
- SELECTOR

10-30KC
30-950KC
9.9-300KC
3.0-9.9KC
90-300KC
MEGA CYCLES

CARRIER METER ZERO

SOU %
- 14- XI 1K

5G-68/URW-250
R.F. SIGNAL GENERATOR
TEST ADMINISTRATOR INSTRUCTIONS

TEST

SE-2, Doppler Generator, CMA-546 Usage

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV
b. T. O. 12P5-2APN147-2 or Applicable Technical Data
c. Coaxial cables and adaptors
d. Electronic Voltmeter (1)
e. Stop watch (3)
f. Insulated Screw Driver
g. Doppler Generator (2), CMA-546
PRE-TEST SET-UP

a. Make an operational checkout of the radar set as outlined in Section A, Part V.

b. When you have completed the checkout and are sure that the radar is operating properly, leave the Doppler Test Harness connected to the set.

c. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions.

b. Note the time and have the technician begin the test.

c. When the technician has completed his equipment hook-up, check it for ground safety hazards before permitting him to apply power (see opposite page).
To J-7101 on test panel of frequency tracker
PERFORMANCE EVALUATION PROCEDURES

a. When the technician announces that he has found the Lock Check Operation to be within tolerance limits, check his work as follows:

1. Check to see that he has correctly connected the Doppler Generator. See page 185 for reference.

2. Have the technician demonstrate the use of the Doppler Generator. Observe his performance and compare it with the procedures listed on opposite page.

b. Complete the technician's Performance Evaluation Sheet.

POST-TEST RECOVERY

a. Have the technician disconnect the equipment that he set up and replace it in its original location.
LOCK-CHECK OPERATION TEST PROCEDURES

a. With the test harness POWER switch on, set the GROUND SPEED SELECTOR at 200 knots and the GROUND SPEED CAPS INDICATOR at 215 knots.

b. Check indicators for following results:

1. the ground speed should decrease to 200 knots;

2. the memory warning light should go out;

3. the "OFF" flag should disappear.
TEST ADMINISTRATION INSTRUCTIONS

TEST SE-3
Audio Oscillator, TS-382 Usage

TIME ALLOTTED
30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV
b. T.O. 12P5-2APN147-2 or Applicable Technical Data
c. Coaxial Cables and Adaptors
d. Insulated Alligator and Banana Plug Shorting Leads
e. Audio Oscillator (1), TS-382
f. Electronic Voltmeter (2), ME-26 or equivalent
g. Tektronics Oscilloscope (3), Model 545B
h. Extension Cables
i. Insulated Screwdriver
PRE-TEST SET-UP

a. Make an operational checkout of the radar set as outlined in Section A, Part V.

b. When you have completed the checkout and are sure that the radar is operating properly, leave the Doppler Test Harness connected to the set.

c. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions.

b. Note the time and have the technician begin the test.

c. When the technician has completed his equipment hook-up, check it for ground safety hazards before permitting him to apply power (see opposite page).
To Input "B" on Test Harness

Alternately to Pins 1 & 5 of T-6702 (R-6709 adjust)
PERFORMANCE EVALUATION PROCEDURES

a. When the technician announces that he has found the Second Balanced Modulator V-6709 Cathode Balance Adjustment to be within tolerance limits, check his work as follows:

1. Check to see that he has correctly connected the Audio Oscillator. See opposite page for reference.

2. Have the technician demonstrate the use of the Audio Oscillator. Observe his performance and compare it with the procedures listed on page 194.

b. Complete the technician's Performance Evaluation Sheet.

POST-TEST RECOVERY

a. Have the technician disconnect the equipment that he set up and replace it in its original location.
To Input "B" on Test Harness

Alternately to Pins 1 & 5 of T-6702 (R-6709 adjust)
SECOND BALANCED MODULATOR ADJUSTMENT TEST PROCEDURES

a. R-6747 adjusted to null (voltage reading should be less than 0.05).

b. R-6709 adjusted to equal voltage reading on scope.
Lowest Reading

Pin 1 of T-6702

Pin 5 of T-6702

Input "B" on Test Harness

TYPE 5411 OSCILLOSCOPE

Pin 1 of T-6702

Pin 5 of T-6702
TEST ADMINISTRATOR INSTRUCTIONS

TEST

RR-1, Crystal, W6701, Removal and Replacement

TIME ALLOCATED

10 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Assorted hand tools, to include various size screw drivers.
c. Technical Reference, such as T.O. 12P5-2APN147-2, or equivalent.

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Review the technician's test instruction to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURE:

a. Have the technician read his test instructions and answer any questions he has about how to take the test.
b. Have the technician enter his test identification number on his Performance Evaluation Sheet, and then collect it.
c. Note the time and instruct the technician to begin the test.
d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.
e. Have the technician replace the component he removed.
f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the Radar set.
Frequency Mixer Stage, CV-1186/APN-147 With Crystal, Y-6701 Installed (Circled)

Crystal, Y-6701

Frequency Mixer Stage, CV-1186/APN-147 With Crystal, Y-6701 Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

a. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST TEST RECOVERY

a. If the Radar set did not function properly after completion of the test, remove and re-install the same component the technician did.

b. If the set is still inoperative, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

RR-2, RF Oscillator, V-6201, Removal and Replacement

TIME ALLOTTED

20 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Assorted hand tools, to include various size screw drivers.
c. Technical Reference, such as T.O. 12E5-2APN147-2, or equivalent.

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Review the technician's test instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions and answer any questions he has about how to take the test.

b. Have the technician enter his test identification number on his Performance Evaluation sheet, and then collect it.

c. Note the time and instruct the technician to begin the test.

d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.

e. Have the technician replace the component he removed.

f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the Radar set.
Radar Set, With R-F Oscillator, V-6201 Installed, (Circled)

R-F Oscillator, V-6201.

Radar Set With R-F Oscillator, V-6201 Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

a. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST TEST RECOVERY

a. If the Radar set did not function properly after completion of the test, remove and re-install the same component the technician did.

b. If the set is still inoperative, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

RR-3, Frequency Mixer, CV-1186/APN-147, Removal and Replacement

TIME ALLOCATED

10 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.

b. Assorted hand tools, to include various size screw drivers.

c. Technical Reference, such as T.O. 12P5-2APN147-2, or equivalent.

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Review the technician's test instruction to familiarize yourself with them:

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions and answer any questions he has about how to take the test.
b. Have the technician enter his test identification number on his Performance Evaluation Sheet, and then collect it.
c. Note the time and instruct the technician to begin the test.
d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.
e. Have the technician replace the component he removed.
f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the Radar set.
Radar Set With Frequency Mixer,
CV-1186/APN-147 Installed (Circled)

Frequency Mixer
CV-1186/APN-147

Radar Set With Frequency Mixer,
CV-1186/APN-147 Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

a. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST TEST RECOVERY

a. If the Radar set did not function properly after completion of the test, remove and re-install the same component the technician did.

b. If the set is still inoperative, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

RR-4, Signal Comparator, CMA-213/APN-147, Removal and Replacement

TIME ALLOTTED

10 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.

b. Assorted hand tools, to include various size screw drivers.

c. Technical Reference, such as T.O. 12P5-2APN147-2, or equivalent.

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
a. Have the technician read his test instructions and answer any questions he has about how to take the test.
b. Have the technician enter his test identification number on his Performance Evaluation Sheet, and then collect it.
c. Note the time and instruct the technician to begin the test.
d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.
e. Have the technician replace the component he removed.
f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the Radar set.
Radar Set With Signal Comparator, CM-213/APN-147 Installed (Circled)

Signal Comparator, CM-213/APN-147

Radar Set With Signal Comparator, CM-213/APN-147 Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

a. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST-TEST RECOVERY

a. If the Radar set did not function properly after completion of the test, remove and re-install the same component the technician did.

b. If the set is still inoperative, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

RR-5, Sequential Timer, TD-505A/APN-147, Removal and Replacement

TIME ALLOTTED
10 minutes

SUPPORT MATERIALS REQUIRED
a. Bench test set-up as described in Section A, Part IV.
b. Assorted hand tools, to include various size screwdrivers.
c. Technical Reference, such as T.O. 12P5-2APN147-2, or equivalent.

PRE-TEST SET-UP
a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Review the technician's test instruction to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions and answer any questions he has about how to take the test.

b. Have the technician enter his test identification number on his Performance Evaluation Sheet, and then collect it.

c. Note the time and instruct the technician to begin the test.

d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.

e. Have the technician replace the component he removed.

f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the Radar set.
Radar Set With Sequential Timer, TD-505A/APN-147 Installed (Circled)

Sequential Timer, TD-505A/APN-147

Radar Set With Sequential Timer, TD-505A/APN-147 Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

1.1. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST TEST RECOVERY

a. If the Radar set did not function properly after completion of the test, remove and re-install the same component the technician did.

b. If the set is still inoperable, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST
RR-6, Crystal Mixer, CR-7602 (Side A), Removal and Replacement

TIME ALLOTTED
10 minutes

SUPPORT MATERIALS REQUIRED
a. Bench test set-up as described in Section A, Part IV.
b. Assorted hand tools, to include various size screw drivers.
c. Technical Reference, such as T.O. 12P5-2AFNI47-2, or equivalent.

PRE-TEST SET-UP
a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Review the technician's test instruction to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions and answer any questions he has about how to take the test.
b. Have the technician enter his test identification number on his Performance Evaluation Sheet, and then collect it.
c. Note the time and instruct the technician to begin the test.
d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.
e. Have the technician replace the component he removed.
f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the Radar set.
Radar Set With Crystal Mixer, CR-7602 (Side A) Installed (Circled)

Crystal Mixer, CR-7602

Radar Set With Crystal Mixer, CR-7602 (Side A) Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

a. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST TEST RECOVERY

a. If the Radar set did not function properly after completion of the test, remove and re-install the same component the technician did.

b. If the set is still inoperative, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

RR-7, Blower Motor Assembly, B-501 Removal and Replacement

TIME ALLOTTED

15 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Assorted hand tools, to include various size screw drivers.
c. Technical Reference, such as T.O. 12P5-2APN147-2, or equivalent.

PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Review the technician's test instruction to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions and answer any questions he has about how to take the test.
b. Have the technician enter his test identification number on his Performance Evaluation Sheet, and then collect it.
c. Note the time and instruct the technician to begin the test.
d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.
e. Have the technician replace the component he removed.
f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the computer set.
Computer Set With Blower Motor Assembly, B-501 Installed (Circled)

Blower Motor Assembly, B-501

Computer Set With Blower Motor Assembly, B-501 Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

a. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST TEST RECOVERY

a. If the computer set did not function properly after completion of the test, remove and re-install the same component the technician did.
b. If the set is still inoperative, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

RR-8, Track Resolver Drive Assembly, Removal and Replacement

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Assorted hand tools, to include various size screw drivers.
c. Technical Reference, such as T.O. 12P5-2APN147-2, or equivalent.

PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Review the technician's test instruction to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions and answer any questions he has about how to take the test.

b. Have the technician enter his test identification number on his Performance Evaluation Sheet, and then collect it.

c. Note the time and instruct the technician to begin the test.

d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.

e. Have the technician replace the component he removed.

f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the Radar set.
Computer Set With Track Resolver Drive Assembly Installed (Circled)

Track Resolver Drive Assembly

Computer Set With Track Resolver Drive Assembly Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

a. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST TEST RECOVERY

a. If the Computer set did not function properly after completion of the test, remove and re-install the same component the technician did.

b. If the set is still inoperative, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

RR-9, Translator Drive Assembly: Removal and Replacement

TIME ALLOTTED

15 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Assorted hand tools, to include various size screwdrivers.
c. Technical Reference, such as T.O. 12P5-2APN147-2, or equivalent.

PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Review the technician's test instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions and answer any questions he has about how to take the test.

b. Have the technician enter his test identification number on his Performance Evaluation Sheet, and then collect it.

c. Note the time and instruct the technician to begin the test.

d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.

e. Have the technician replace the component he removed.

f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the Computer set.
Computer Set With Translator Drive Assembly Installed (Circled)

Translator Drive Assembly

Computer Set With Translator Drive Assembly Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

a. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST TEST, RECOVERY

a. If the Computer set did not function properly after completion of the test, remove and re-install the same component the technician did.
b. If the set is still inoperative, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST
RR-1Q, Relay, K-410, Removal and Replacement

TIME ALLOTTED
20 minutes

SUPPORT MATERIALS REQUIRED
a. Bench test set-up as described in Section A, Part IV.
b. Assorted hand tools, to include various size screw drivers.
c. Technical Reference, such as T.O. 12P5-2APN147-2, or equivalent.

PRE-TEST SET-UP
a. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
Review the technician's test instruction to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his test instructions and answer any questions he has about how to take the test.

b. Have the technician enter his test identification number on his Performance Evaluation Sheet, and then collect it.

c. Note the time and instruct the technician to begin the test.

d. When the technician has completed the removal, examine the part to determine that it is the correct one. See Answer Key on opposite page.

e. Have the technician replace the component he removed.

f. When the technician has completed the replacement, inspect the area for any obvious physical damage and then perform an operational checkout of the Computer set.
Relay Chassis Assembly, Computer Set
With Relay, K-410 Installed (Circled)

Relay, K410

Relay Chassis Assembly, Computer Set
With Relay, K-410 Removed (Circled)
PERFORMANCE EVALUATION PROCEDURES

a. When the test is completed, answer the questions on the Performance Evaluation Sheet.

POST TEST RECOVERY

a. If the Computer set did not function properly after completion of the test, remove and re-install the same component the technician did.
b. If the set is still inoperative, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AD-1, Transmitter Output Power Adjustment

TIME ALLOTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench Test Set-up as described in Section A, Part IV
b. T. O. 12P5-2APN147-2 or Applicable Technical Data
c. Coaxial Cables and Adaptors
d. Radar Test Set (2), AN/UPM-10 or equivalent
e. Digital Voltmeter (1) or equivalent
f. Insulated Screw driver
I. PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate R-6604. It is located on the Receiver/Transmitter as shown on opposite page. Note its position.

e. Rotate R-6604 ten 360 degree turns counter-clockwise (CCW).

f. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the adjustment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this adjustment.)

e. Have the technician correct any un-safe conditions before applying power. DO NOT, however, correct errors that are not un-safe. (For example, wrong test equipment.)
OHMS ADJ.
ZERO ADJ.
SELECTOR RANGE
REM 40;0.,30V
ezo%
OHMS AC
\%
No VACUUM TUBE
DCCOMMON
410$
VOLTMETER

To TP-7201 & TP-7205 on frequency tracker

To J-7701 on receiver/transmitter
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the adjustment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Transmitter Output Power Adjustment is within tolerance limits.

b. This is done as follows:

- UPM-10 DBM reading will be between 25.4 and 28.1 DBM with meter at BALANCE position. (DBM reading is power meter plus cable attenuation.) (See opposite page.)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
needle position 25.4 to 28.1 DBM
POST-TEST RECOVERY

a. If technician successfully accomplished the adjustment, recovery is completed.

b. If technician was unable to perform the adjustment, return R-6604 to its original position.

c. Perform operational checkout to determine if set is still functioning properly.

d. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AD-2, Modulator Adjustment

TIME ALLOCATED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench Test set-up as described in Section A, Part IV
b. T. O. 12P5-2APN147-2 or Applicable Technical Data
c. Coaxial Cables and Adaptors
d. Frequency Meter (1), AN/USM-26 or equivalent
e. Radar Test Set (2), AN/UPM-33 or equivalent
f. Insulated Screw driver
g. Insulated Alligator and Banana Plug Shorting Leads
a. Perform an operational checkout of the Radar set to determine that it is functioning properly. Use the procedures outlined in Section A, Part V.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate R-8109. It is located on the Receiver/Transmitter as shown on opposite page. Note its position.

e. Rotate R-8109 eight 360 degree turns counter-clockwise (CCW).

f. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the adjustment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this adjustment.)

e. Have the technician correct any un-safe conditions before applying power. DO NOT, however, correct errors that are not un-safe. (For example, wrong test equipment.)
To P-7701 on receiver/transmitter

To J-8101 on receiver/transmitter
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the adjustment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Modulator adjustment is within tolerance limits.

b. This is done as follows:

- Technician will show a Modulation Index of 3.8 and 2.4 on UPM-33 as shown on opposite page.

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
Modulation Index 3.8

Modulation Index 2.4
POST-TEST RECOVERY

a. If technician successfully accomplished the adjustment, recovery is completed.

b. If technician was unable to perform the adjustment, return R-8109 to its original position. Also R-8110 if mal-adjusted.

c. Perform operational checkout to determine if set is still functioning properly.

d. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AD-3, Crystal Oscillator V-6701A Adjustment

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench Test set-up as described in Section A, Part IV
b. T.O. 12P5-2APN147-2 or Applicable Technical Data
c. Electronic Voltmeter (1), Model 410B or equivalent
d. Extension Cables
e. Insulated Alligator and Banana Plug Shorting Leads
f. Alignment Tool (Screw Driver Type)
g. Blade type Screw Driver
PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate L-6701. It is located on the Frequency Tracker as shown on opposite page. Note its position.

e. Loosen the lock-nut (1) that holds the slug of L-6701 in position.

f. Rotate L-6701 slug (2) six 360 degree turns counter-clockwise (CCW).

g. Tighten the lock-nut (1).

h. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the adjustment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. Ungrounded test or prime equipment
 2. Uninsulated wires or connections
 3. Improper connections. (See opposite page for correct bench set-up for this adjustment.)

e. Have the technician correct any unsafe conditions before applying power. DO NOT, however, correct errors that are not unsafe. (For example, wrong test equipment.)
VACUUM TUBE VOLTMETER

MODEL 410 B

OHMS ADJ. ZERO ADJ. RANGE

SELECTOR AC

OFF AC OHMS

RXI 3V RXIO 10V RXIK 30V RXI0 100V RXIO 1000V RXIK 300V RXI0 1000V

OHMS AC DC COMMON

TO TP-6701 on frequency tracker
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the adjustment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Crystal Oscillator V-6701A adjustment is within tolerance limits.

b. This is done as follows:

- With VTVM leads connected to TP-6701 and ground, meter will read between 6.5 and 10 VAC for 3 different groundspeeds.

- Technician will select 300 knots, then 500, and finally 800 knots. All VTVM readings will be in the range of 6.5 to 10 VAC (See opposite page.)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
TO TP-6701 on frequency tracker
POST TEST RECOVERY

a. Have the technician secure the set screws holding L-6701.

b. If technician successfully accomplished the adjustment, recovery is completed.

c. If technician was unable to perform the adjustment, return L-6701 to its original position using L-6701 template. (As shown on opposite page)

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AD-4, Lock-Check Resistor R-6806 Adjustment

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench Test set-up as described in Section A, Part IV
b. T.O. 12P5-2APN147-2 or Applicable Technical Data
c. Coaxial Cables and Adaptors
d. Insulated Alligator and Banana Plug Shorting Leads
e. Electronic Voltmeter, Model 410B or equivalent (1)
f. Extension Cables
g. Insulated Screw driver
PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate R-6806. It is located on the Signal Comparator, as shown on opposite page. Note its position.

e. Rotate R-6806 ten 360 degree turns counter-clockwise (CCW).

f. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the adjustment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:

 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this adjustment.)

e. Have the technician correct any unsafe conditions before applying power. DO NOT, however, correct errors that are not unsafe. (For example, wrong test equipment.)
Vacuum Tube Voltmeter

Model: 608

- Ohms
- AC
- OFF

Ranges:
- RX1K
- RX10
- RX100
- RX1000
- RX10K
- RX100K
- RX1M
- RX10M

Zero Adj.

Connections:
- To TP-6801
- To TP-6608
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the adjustment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Lock-Check Resistor adjustment is within tolerance limits.

b. This is done as follows:

\[\text{VVM reading will be between 1.4 and 2.2 V.D.C.} \]
(See opposite page.)
I +4 ti
MODE1...
4108 VACUUM TUBE VOLTAMETER
OHMS ADJ. ZERO ADJ.
SELECTOR AC RANGE
OFF AC RXI RXIO RXIOK RX100 RX1000 RX10000
OHMS AC DC COMMON
MODEL 4108 VACUUM TUBE VOLTAMETER
POST-TEST RECOVERY

a. If technician successfully accomplished the adjustment, recovery is completed.

b. If technician was unable to perform the adjustment, return R-6806 to its original position. (Thirteen 360 degree turns CW from fully CCW position will adjust to acceptable standard. Click denotes fully CCW – can be heard and felt.)

c. Perform operational checkout to determine if set is still functioning properly.

d. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AD-5, Power Supply Adjustments

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench Test set-up as described in Section A, Part IV
b. T.O. 12P5-2APN147-2 or Applicable Technical Data
c. Electronic Voltmeter (1), Model 410B or equivalent
d. Insulated Screw Driver
PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to ensure that it is functioning properly. Use the procedures outlined in Section A, Part V.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate R-7220 (1), R-7233 (2) and R-7248 (3). It is located on the Frequency Tracker, as shown on opposite page. Note their position.

e. Rotate R-7220, R-7233 and R-7248 eight 360 degree turns counterclockwise (CCW).

f. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the adjustment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this adjustment.)

e. Have the technician correct any unsafe conditions before applying power. DO NOT, however, correct errors that are not unsafe. (For example, wrong test equipment.)
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the adjustment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Power Supply adjustments are within tolerance limits.

b. This is done as follows:

The technician will show voltage readings at:

TP-7201 = 500 VDC ± 1%
TP-7202 = +280 VDC ± 1%
TP-7203 = +108 to 132 VDC
TP-7204 = -135 to -165 VDC
TP-7205 = -425 VDC ± 1%

See opposite page.
PERFORMANCE EVALUATION PROCEDURES (Con't)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheet and complete question II.
POST-TEST RECOVERY

a. If technician successfully accomplished the adjustment, recovery is completed.

b. If technician was unable to perform the adjustment, return R-7220, R-7233 and R-7248 to their original position.

c. Perform operational checkout to determine if set is still functioning properly.

d. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AD-6, Sine-Cosine Potentiometer R-301 Adjustment

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Computer Bench Test set-up as described in Section A, Part VII
b. T.O. 5NI-3-8-2 or Applicable Technical Data
c. Electronic Voltmeter (1), ME-26 or equivalent
d. J-301 Test-dig (2)
e. Blade type Screw Driver
f. Insulated Screw Driver
PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to ensure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate R-301. It is located on the computer, as shown on opposite page. Note its position.

e. Loosen the three set screws (1) that hold R-301 in position.

f. Rotate R-301 ten degrees (45°) counter-clockwise (CCW).

g. Tighten the three set screws (1).

h. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the adjustment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this adjustment.)

e. Have the technician correct any un-safe conditions before applying power. DO NOT, however, correct errors that are not un-safe. (For example, wrong test equipment.)
To terminals 12 & 14 of jig J-301
AD-6.

POST-TEST RECOVERY

a. Have the technician secure the set screws holding R-301.

b. If technician successfully accomplished the adjustment, recovery is completed.

c. If technician was unable to perform the adjustment, return R-301 to its original position.

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the adjustment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Sine-Cosine Potentiometer R-301 adjustment is within tolerance limits.

b. This is done as follows:

- With VTVM leads connected pins 12 & 14 of J-301 test jig and main cam at zero, technician rotates R-301 slightly CW and then CCW.

- VTVM needle will rise when R-301 is turned in either direction, if it has been properly adjusted. About 0.05 to 0.25 VAC. (See opposite page.)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheet and complete question II.
TEST ADMINISTRATOR - INSTRUCTIONS

TEST

AL-1, Antenna Synchro Alignment

TIME ALLOCATED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench Test set-up as described in Section A, Part IV
b. T.O 12P5-2APN147-2 or Applicable Technical Data
c. Electronic Voltmeter (1) ME-26 or equivalent
d. Doppler Antenna Alignment Jig (2) CMA-548
e. Blade-type Screw Driver
PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate TX-7601. It is located on the antenna, as shown on the opposite page. Note its position.

e. Loosen the two set screws (1) that hold TX-7601 in position.

f. Rotate TX-7601 forty-five degrees (45°) counter-clockwise (CCW).

g. Tighten the two set screws (1).

h. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any unsafe conditions before applying power. DO NOT, however, correct errors that are not unsafe. (For example, wrong test equipment.)
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

da. Have the technician demonstrate that the Antenna Synchro alignment is within tolerance limits.

b. This is done as follows:

 - With VTVM leads connected, technician rotates TX-7601 slightly CW and then CCW.
 - VTVM needle will rise when TX-7601 is turned in either direction, if it has been properly aligned. See opposite page.

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
POST-TEST RECOVERY

a. Have the technician secure the set screws holding TX-7601.

b. If technician successfully accomplished the alignment, recovery is completed.

c. If technician was unable to perform the alignment, return TX-7601 to its original position.

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AL-2, 200-KC Bandpass Filter Alignment

TIME ALLOTTED

45 minutes

SUPPORT MATERIALS REQUIRED

a. Bench Test Setup as described in Section A, Part IV.
b. T.O. 12P5-2APN147-2 or Applicable Technical Data.
c. Insulated Alligator and Banana Plug Shorting Leads.
d. Electronic Voltmeter (1), ME-26 or equivalent.
e. Extension Cables (2).
f. Alignment Tool (Screwdriver Type).
a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.

b. If the set is not functioning properly, request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate L-6703 and L-6705 located on the frequency mixer stage as shown on the opposite page. Note its position.

e. Loosen the lock-nuts (1) that hold the slugs (2) of L-6703 and L-6705 in position.

f. Rotate L-6703 and L-6705 slugs (2) six 360° turns counterclockwise (CCW).

g. Tighten the two lock-nuts (1).

h. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any un-safe conditions before applying power. DO NOT, however, correct errors that are not un-safe. (For example, wrong test equipment.)
To either terminal 3 or 4 of L-6705

To either terminal 3' or 4' of L-6705
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the 200-KC Bandpass Filter alignment is within tolerance limits.

b. This is done as follows:
 - With VTVM leads connected, across terminals 3 and 4 of L-6705, technician selects groundspeeds of 300, 500 and 800 knots.
 - VTVM will read between 3.0 and 5.5 VAC for a groundspeed of 300 and 800 knots - between 4.5 and 7.0 VAC for a groundspeed of 500 knots. (See opposite page.)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
VAC reading for groundspeeds of 300 & 800 knots

VAC reading for groundspeed of 500 knots
POST-TEST RECOVERY

a. Have the technician secure the lock-nuts holding the slugs of L-6703 and L-6705 of VUVM if readings were correct.

b. If technician successfully accomplished the alignment recovery is completed.

c. If technician was unable to perform the alignment, return L-6703 and L-6705 to original position. Use L-6703 and L-6705 template to adjust set as shown on opposite page.

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST
AL-3, Groundspeed and Drift Circuits Alignment

TIME ALLOCATED
30 minutes

SUPPORT REQUIRED
a. Bench Test set-up as described in Section A, Part IV
b. T.O. 12P5-2APN147-2 or Applicable Technical Data
c. Coaxial cables and adaptors
d. Insulated screw driver
e. Electronic Voltmeter (1), Model 410B or equivalent
PRE-TEST SET-UP

a. Perform an operational checkout of the radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate R-7932 located on the Electronic Control Amplifier as shown on opposite page. Note its position.

e. Rotate R-7932 ten 360 degree turns counter-clockwise (CCW).

f. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any un-safe conditions before applying power. DO NOT, however, correct errors that are not un-safe. (For example, wrong test equipment.)
NOTE: Technician will connect VTVM to various test points to complete this alignment. Do not check for set-up. Page 345 indicates proper test results.
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Groundspeed and Drift Circuit alignment is within tolerance limits.

b. This is done as follows:

1. No rotation of manual drift knob. (See opposite page)

c. Have technician complete Question I on the Performance Evaluation Sheet.

d. Collect sheets and mark question II.
POST-TEST RECOVERY

a. If technician successfully accomplished the adjustment, recovery is completed.

b. If technician was unable to perform the adjustment, return R-7932 to its original position.

c. Perform operational checkout to determine if set is still functioning properly.

d. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AL-4, Computer Binary Division Ratio Alignment

TIME ALLOTTED

45 minutes

SUPPORT MATERIALS REQUIRED

a. Computer Bench Test set-up as described in Section A, Part VII
b. T.O. 5N1-3-8-2 or Applicable Technical Data
c. Audio Oscillator (3), TS-382
d. Tektronics Oscilloscope, (1), Model 545B
e. Frequency Meter (4), AN/USM-26 or equivalent
f. Coaxial Cables and Adaptors
g. Insulated Screw Driver
h. Insulated Alligator and Banana Plug Shorting Leads
i. 100 K-ohm - 1000 uf Test Probe (2)
PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate R-1207. It is located on the computer as shown on opposite page. Note its position.

e. Rotate R-1207 five 360 degree turns counter-clockwise (CCW).

f. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any unsafe conditions before applying power. DO NOT, however, correct errors that are not unsafe. (For example, wrong test equipment.)
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Computer Binary Division Ratio alignment is within tolerance limits.

b. This is done as follows:

 - With Frequency Meter lead connected to TP-20 counter will read between 73,400 and 73,800 over a 10 Period Average. (See opposite page.)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
POST-TEST RECOVERY

a. If technician successfully accomplished the alignment, recovery is completed.

b. If technician was unable to perform the alignment, return R-1207 to its original position.

c. Perform operational checkout to determine if set is still functioning properly.

d. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AL-5, Computer Resolver Bridge Balancing

TIME ALLOTTED

30 minutes

SUPPORT MATERIAL REQUIRED:

a. Computer Bench Test Set-up as described in Section A, Part VII
b. Tektronics Oscilloscope (1) Model 545B
c. Resolver Balancing Jig (2)
d. Insulated Screw driver
PRE-TEST SET-UP

a. Perform an operational checkout of Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate R-1209. It is located on the computer, as shown on opposite page. Note its position.

e. Rotate R-1209 ten 360 degree turns counter-clockwise (CCW).

f. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any unsafe conditions before applying power. DO NOT, however, correct errors that are not unsafe. (For example, wrong test equipment.)
To oscilloscope terminals on resolver balancing jig.

To 6.3 VAC 400 cps power source.
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.
g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Computer Resolver Bridge Balancing alignment is within tolerance limits.
b. This is done as follows:
 - With Oscilloscope leads connected to the Resolver Balancing Jig (Oscilloscope and Ground shown on the jig) scope will read a null-less that 6 millivolts RMS. (See opposite page.)
c. Have technician complete question I on Performance Evaluation Sheet.
d. Collect sheets and mark question II.
Null - lowest amplitude
POST-TEST RECOVERY

a. If technician successfully accomplished the alignment, recovery is completed.

b. If technician was unable to perform the alignment, return R-1209 to its original position.

c. Perform operational checkout to determine if set is still functioning properly.

d. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AL-6, Zeroing Transmitter Synchros TX-501, TX-502, TX-503

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Computer Bench Test set-up as described in Section A, Part VII
b. T.O. 511-3-8-2 or Applicable Technical data
c. Electronic Voltmeter (1), ME-26 or equivalent
d. J-501 Test Jig (2)
e. Blade-type Screw driver
f. Insulated Alligator and Banana Plug Shorting Leads
PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate TX-501. It is located on the computer, as shown on the opposite page. Note its position.

e. Loosen the two set screws (1) that hold TX-501 in position.

f. Rotate TX-501 forty-five degrees (45°) counter-clockwise (CCW).

g. Tighten the two set screws (1).

h. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any un-safe conditions before applying power. DO NOT, however, correct errors that are not un-safe. (For example, wrong test equipment.)
To terminals on Jig J-501
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Transmitter Synchros TX-501, TX-502 and TX-503 alignment is within tolerance limits.

b. This is done as follows:

- With VTVM leads connected, to pins C & B of J-501 test jig, rotates TX-501 slightly CW and then CCW.

 VTVM needle will rise when TX-501 is turned in either direction, if it has been properly aligned. (See opposite page.)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheet and complete question II.
To pins C & B of Jig J-501
POST-TEST RECOVERY

a. Have the technician secure the set screws holding TX-501, TX-502, TX-503.

b. If technician successfully accomplished the alignment, recovery is completed.

c. If technician was unable to perform the alignment, return TX-501 to its original position. Also TX-502 and TX-503 if misaligned.

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AL-7, Zeroing Control Transformer CT-501

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Computer Bench Test Set-up as described in Section A, Part VII
b. T.O. 5N1-3-8-2 or Applicable Technical Data
c. Electronic Voltmeter (1), ME-26 of equivalent
d. J-501 Test Jig (2)
e. Blade-Type Screw Driver
f. Insulated Alligator and Banana Plug Shorting Leads
PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to ensure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate CT-501. It is located on the computer as shown on the opposite page. Note its position.

e. Loosen the two set screws (1) that hold CT-501 in position.

f. Rotate CT-501 forty-five degrees (45°) counter-clockwise (CCW).

g. Tighten the two set screws (1).

h. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:

1. ungrounded test or prime equipment
2. uninsulated wires or connections
3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any un-safe conditions before applying power. DO NOT, however, correct errors that are not un-safe. (For example, wrong test equipment.)
To terminals L & J of Jig J-501
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Control Transformer CT-501 alignment is within tolerance limits.

b. This is done as follows:

- With VTVM leads connected to pins L & J of 501 test jig, and gear train on zero, rotates CT-501 slightly CW and then CCW.

- VTVM needle will rise when CT-501 is turned in either direction, if it has been properly aligned. (See opposite page.)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
To terminals L & J of Jig J-501
POST-TEST RECOVERY

a. Have the technician secure the set screws holding CT-501.

b. If technician successfully accomplished the alignment, recovery is completed.

c. If technician was unable to perform the alignment, return CT-501 to its original position.

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AL-8, Zeroing Control Transformer CT-301

TIME ALLOCATED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Computer Bench Test Set-up as described in Section A, Part VII
b. T.O. 5N1–3–8–2 or Applicable Technical Data
c. Electronic Voltmeter (1), ME-26 or equivalent
d. J-301 Test Jig (2)
e. Insulated Alligator and Banana Plug Shorting Leads
f. Blade-type Screw driver
PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate CT-301. It is located on the computer as shown on the opposite page. Note its position.

e. Loosen the two set screws (1) that hold CT-301 in position.

f. Rotate CT-301 forty-five degrees (45°) counter-clockwise (CCW).

g. Tighten the two set screws (1).

h. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:
 1. ungrounded test or prime equipment
 2. uninsulated wires or connections
 3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any un-safe conditions before applying power. DO NOT, however, correct errors that are not un-safe. (For example, wrong test equipment.)
To terminals 10 & 11 of Jig J-301.
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Control Transformer CT-301 alignment is within tolerance limits.

b. This is done as follows:

- With VTVM leads connected to pins 10 and 11 of J-301 test jig and cam on zero, technician rotates CT-301 slightly CW and then CCW.

- VTVM needle will rise when CT-301 is turned in either direction, if it has been properly aligned. (See opposite page.)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
To terminals 10 & 11 of Jig J-301
POST-TEST RECOVERY

a. Have the technician secure the set screws holding CT-301.

b. If technician successfully accomplished the alignment, recovery is completed.

c. If technician was unable to perform the alignment, return CT-301 to its original position.

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AL-9, Zeroing Transmitter Synchro TX-302

TIME ALLOTTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Computer Bench Test Set-up as described in Section A, Part VII
b. T.O. 5N1-3-8-2 or Applicable Technical Data
c. Electronic Voltmeter (1), ME-26 or equivalent
d. J-301 Test Jig (2)
e. Insulated Alligator and Banana Plug Shorting Leads
f. Blade-type Screw driver
AL-9

PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate TX-302. It is located on the computer as shown on opposite page. Note its position.

e. Loosen the two set screws (1) that hold TX-302 in position.

f. Rotate TX-302 forty-five degrees (45°) counter-clockwise (CCW).

g. Tighten the two set screws (1).

h. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:

1. ungrounded test or prime equipment
2. uninsulated wires or connections
3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any un-safe conditions before applying power. DO NOT, however, correct errors that are not un-safe. (For example, wrong test equipment.)
To terminals 3 & 4 of Jig J-301
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Transmitter Syncro TX-302 alignment is within tolerance limits.

b. This is done as follows:

- With VTVM leads connected to pins 3 & 4 of J-301 test jig and main cam on zero, technician rotates TX-302 slightly CW and then CCW.
- VTVM needle will rise when TX-302 is turned in either direction, if it has been properly aligned. (See opposite page.)

c. Have technician complete question 7 on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
To terminals 3 & 4 of Jig J-301
POST-TEST RECOVERY

a. Have the technician secure the set screws holding TX-302.

b. If technician successfully accomplished the alignment, recovery is completed.

c. If technician was unable to perform the alignment, return TX-302 to its original position.

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

AL-10, Zeroing Transmitter Synchro TX-301

TIME ALLOTED

30 minutes

SUPPORT MATERIALS REQUIRED

a. Computer Bench Test set-up as described in Section A, Part VII
b. T. O. 5N1-3-8-2 or Applicable Technical Data
c. Electronic Voltmeter (1), ME-26 or equivalent
d. J-301 Test Jig (2)
e. Blade type Screw driver
f. Insulated Alligator and Banana Plug Shorting Leads
PRE-TEST SET-UP

a. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.

b. If the set is not functioning properly, request one that is, or request assistance from local support to correct the problem.

c. If the set is functioning properly, proceed with the Pre-test set-up.

d. Locate TX-301. It is located on the computer as shown on the opposite page. Note its position.

e. Loosen the two set screws (1) that hold TX-301 in position.

f. Rotate TX-301 forty-five degrees (45°) counter-clockwise (CCW).

g. Tighten the two set screws (1).

h. Review the technician's Test Instructions to familiarize yourself with them.
TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on the Performance Evaluation Sheet.

b. Note the time and have the technician begin the test.

c. When the technician completes his bench set-up for performing the alignment, he will ask you to check it.

d. Check the technician's bench set-up for safety hazards such as:

1. ungrounded test or prime equipment
2. uninsulated wires or connections
3. improper connections. (See opposite page for correct bench set-up for this alignment.)

e. Have the technician correct any unsafe conditions before applying power. DO NOT, however, correct errors that are not unsafe. (For example, wrong test equipment.)
To terminals 6 & 7 of Jig J-302
f. When you are satisfied that the bench set-up is safe, have the technician continue the test.

g. Stop the test when time has elapsed or the technician indicates that he has completed the alignment.

PERFORMANCE EVALUATION PROCEDURES

a. Have the technician demonstrate that the Transmitter Synchro TX-301 alignment is within tolerance limits.

b. This is done as follows:

- With VTVM leads connected to pins 6 & 7 of J-301 test jig and main cam on zero, technician rotates TX-301 slightly CW and then CCW.

- VTVM needle will rise when TX-301 is turned in either direction, if it has been properly aligned. (See opposite page.)

c. Have technician complete question I on Performance Evaluation Sheet.

d. Collect sheets and mark question II.
POST-TEST RECOVERY

a. Have the technician secure the set screws holding TX-301.

b. If technician successfully accomplished the alignment, recovery is completed.

c. If technician was unable to perform the alignment, return TX-301 to its original position.

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
POST-TEST RECOVERY

a. Have the technician secure the set screws holding TX-301.

b. If technician successfully accomplished the alignment, recovery is completed.

c. If technician was unable to perform the alignment, return TX-301 to its original position.

d. Perform operational checkout to determine if set is still functioning properly.

e. If set is still not functioning properly, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-1, Frequency Tracker Power Supply Troubleshooting

TIME ALLOTTED

60 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Test Equipment, to be available upon request. (See opposite page.)
c. Hand Tools
d. Defective 6080WA Tube

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Remove operative V-7207 (tube 6080WA) from Frequency Tracker Power Supply (see opposite page).

c. Install the defective 6080WA tube in V-7207.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

Once you are satisfied with the request, you either:

1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part; OR

2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

Return the module or part to the technician and inform him that the part he requested is now good.
Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the radar set, correct the fault by re-installing the good tube (see page 421).

c. Perform an operational checkout.

d. If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-2, Modulator Troubleshooting

TIME ALLOTTED

60 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Test Equipment, to be available upon request. (See opposite page)
c. Hand Tools
d. Defective L-8101 on Spare Modulator Module

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to

 insure that it is functioning properly. Use the pro-

cedures outlined in Section A, Part V.
b. Remove Operative Modulator Module from the Receiver-Transmitter (opposite page).

c. Install the defective Modulator in the Receiver-Transmitter.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
f. If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

g. Once you are satisfied with the request, you either:

1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part;

OR

2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

h. Return the module or part to the technician and inform him that the part he requested is now good.
TS-2

i. Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

j. When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the radar set, correct the fault by re-installing the good module (see page 429).

c. Perform an operational-checkout.

d. If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-3, IF-Amplifier Troubleshooting

TIME ALLOCATED

60 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.

b. Test Equipment, to be available upon request. (See opposite page.)

c. Hand Tools

d. Defective 5670 Tube

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
Radar Set AN/AP-147

ME-6 or equivalent

UPM-10 or equivalent

Doppler Generator CMA-546

5458 Oscilloscope

URM-25D

Doppler Test Harness CMA-543

1890M

4108 VTM or equivalent

404
b. Remove operative V-6401A (tube 5670) from the IF-Amplifier (opposite page).

c. Install the defective 5670 tube in V-6401A.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
TS-3

e. When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

f. If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

g. Once you are satisfied with the request, you either:
 1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part;
 OR
 2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

h. Return the module or part to the technician and inform him that the part he requested is now good.
i. Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

j. When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the radar set, correct the fault by re-installing the good tube (see page 437).

c. Perform an operational checkout.

d. If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-4, IF-Amplifier Troubleshooting

TIME ALLOWED
60 minutes

SUPPORT MATERIALS REQUIRED
a. Bench test set-up as described in Section A, Part IV.
b. Test Equipment, to be available upon request. (See opposite page.)
c. Hand Tools
d. Defective Diode CR-6401 (IN277) on sparq IF Amplifier Module

PRE-TEST SET-UP
a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
Radar Set AN/APN-14

Doppler Simulator, CMA-544

545B Oscilloscope

1890M

410B VTMH or equivalent

Doppler Test Harness CHA-543

1800M

Doppler Generator CMA-546

Doppler Simulator, CMA-544

USM-26 or equivalent

UTM-25D

UPM-10 or equivalent

Doppler Test Harness CHA-543

TS-148 or equivalent

TS-382
b. Remove operative IF-Amplifier module from the Receiver-Transmitter (see opposite page).

c. Install the defective IF-Amplifier module in the Receiver-Transmitter.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

Once you are satisfied with the request, you either:

1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part; OR
2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

Return the module or part to the technician and inform him that the part he requested is now good.
1. Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

j. When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the radar set, correct the fault by re-installing the good module (see page 445).

c. Perform an operational checkout.

d. If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-5, Electronic Control Amplifier Troubleshooting Frequency Tracker Power Supply

TIME ALLOTED

60 minutes'

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Test Equipment, to be available upon request. (See opposite page.)
c. Hand Tools
d. Defective 5670 Tube

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Remove operative V-7901 (tube 5670) from the Electronic Control Amplifier (see opposite page).

c. Install the defective 5670 tube in V-7901.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
e. When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

f. If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

g. Once you are satisfied with the request, you either:
 1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part;
 OR
 2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

h. Return the module or part to the technician and inform him that the part he requested is now good.
i. Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

j. When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the radar set, correct the fault by re-installing the good tube (see page 453).

c. Perform an operational checkout.

d. If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-6, Electronic Control Amplifier Troubleshooting

TIME ALLOTTED

60 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Test Equipment, to be available upon request. (See opposite page.)
c. Hand Tools
d. Defective Diode CR-7901 (IN756) on spare Electronic Control Amplifier

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Remove operative Electronic Control Amplifier module from the Frequency Tracker (see opposite page).

c. Install the defective Electronic Control Amplifier module in the Frequency Tracker.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
a. When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

f. If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

g. Once you are satisfied with the request, you either:

1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part;

OR

2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

h. Return the module or part to the technician and inform him that the part he requested is now good.
i. Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

j. When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the radar set, correct the fault by re-installing the good module (see page 461).

c. Perform an operational checkout.

d. If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-7, Signal Comparator Troubleshooting

TIME ALLOCATED

60 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.
b. Test Equipment, to be available upon request. (See opposite page.)
c. Hand Tools
d. Defective Capacitor C-6814 on spare Signal Comparator module

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
Radar Set AN/APN-147

Doppler Generator CMA-546

Doppler Test Harness CHA-543

1890H

410B VTVM or equivalent
b. Remove operative Signal Comparator module from Frequency Tracker (see opposite page).

c. Install the Signal Comparator with the defective capacitor C-6814 in the Frequency Tracker.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
e. When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

f. If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

g. Once you are satisfied with the request, you either:

1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part;

OR

2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

h. Return the module or part to the technician and inform him that the part he requested is now good.
i. Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

j. When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the radio set, correct the fault by re-installing the good module (see page 469).

c. Perform an operational checkout.

d. If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-8, Signal Comparator Troubleshooting

TIME ALLOTTED

60 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.

b. Test Equipment, to be available upon request. (See opposite page.)

c. Hand Tools

d. Defective resistor R-6821 on spare Signal Comparator module

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Remove operative Signal Comparator module from Frequency Tracker (see opposite page).

c. Install the Signal Comparator with the defective resistor R-6821 in the Frequency Tracker.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
e. When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

f. If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

g. Once you are satisfied with the request, you either:
 1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part;
 OR
 2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

h. Return the module or part to the technician and inform him that the part he requested is now good.
i. Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

j. When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
If the technician was unable to repair the radar set, correct the fault by re-installing the good module (see page 477).

Perform an operational checkout.

If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-9, Frequency Mixer Stage Troubleshooting

TIME ALLOTTED

60 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.

b. Test Equipment, to be available upon request. (See opposite page.)

c. Hand Tools

d. Defective 5670 Tube

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
Radar Set AN/APN-147

ME-6 or equivalent

Doppler Simulator CHA-544

USM-26 or equivalent

545B Oscilloscope

URH-25D

4108 VTVM or equivalent

Doppler Test Harness CHA-543

1890M

4108 VTVM or equivalent

Doppler Generator CHA-546

UPH-10 or equivalent

TS-382

546 0 0 0 0 0 4

TS-148 or equivalent

Doppler Simulator CHA-544

Doppler Generator CHA-546

Doppler Test Harness CHA-543

545B Oscilloscope
b. Remove V-6701 (tube 5670) from the Frequency Mixer Stage (see opposite page).

c. Install the defective 5670 tube in V-6701.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
c. When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

f. If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

g. Once you are satisfied with the request, you either:
 1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part;
 OR
 2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

h. Return the module or part to the technician and inform him that the part he requested is now good.
Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, ensuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the radar set, correct the fault by re-installing the good tube (see page 485).

c. Perform an operational checkout.

d. If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-10, Sequential Timer Sub-Assembly Troubleshooting

TIME ALLOCATED

60 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part IV.

b. Test Equipment, to be available upon request. (See opposite page.)

c. Hand Tools

d. Defective Relay K-8001 on spare Sequential Timer module

PRE-TEST SET-UP

a. Perform an operational checkout of the Radar set to insure that it is functioning properly. Use the procedures outlined in Section A, Part V.
b. Remove operative Sequential Timer module from Frequency Tracker (see opposite page).

c. Install the defective Sequential Timer module in the Frequency Tracker.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
TS-10

e. When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

f. If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

g. Once you are satisfied with the request, you either:
1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part;
OR
2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

h. Return the module or part to the technician and inform him that the part he requested is now good.
i. Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

j. When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the radar set, correct the fault by re-installing the good module (see page 493).

c. Perform an operational checkout.

d. If equipment is still malfunctioning, request assistance from local support.
TEST ADMINISTRATOR INSTRUCTIONS

TEST

TS-11, Plug-in Board and Module Troubleshooting.

TIME ALLOCATED

1 hour 30 minutes

SUPPORT MATERIALS REQUIRED

a. Bench test set-up as described in Section A, Part VII
b. Test Equipment, to be available upon request. (See opposite page.)
c. Hand Tools
d. Defective Diode CR-424 (IN2070) on spare Relay Chassis Assembly Module, 3158-150
e. Defective Transistor Q-1404 (2N502A) on spare PNP Multivar and Flip-Flop Board Assembly, 3318-472.

PRE-TEST SET-UP

1. Perform an operational checkout of the Computer set to insure that it is functioning properly. Use the procedures outlined in Section A, Part VIII.
b. Remove operative Relay Chassis Assembly and PNP Multiar and Flip-Flop Board Assembly modules from the Computer. (See opposite page)

c. Install the defective Relay Chassis Assembly and PNP Multiar and Flip-Flop Board Assembly modules in the computer.

d. Review the technician's Test Instructions to familiarize yourself with them.

TEST ADMINISTRATION PROCEDURES

a. Have the technician read his instructions and put his identification number on his Answer Sheet and Performance Evaluation Sheet.

b. Collect the technician's Performance Evaluation Sheet.

c. Note the time and have the technician begin the test.

d. When the technician wants to replace a suspected faulty part or module, he must remove it from the set (WITHOUT UNSOLDERING ANY COMPONENTS) and bring it to you.
e. When the technician requests a replacement component, he must specify the exact piece/part that he wants replaced.

f. If the technician has not properly specified the part he wants replaced on the module he has turned in, make him re-specify.

Once you are satisfied with the request, you either:

1. Go to a remote area and exchange the module or part turned in for the good one, if the technician has identified the faulty part;
 OR

2. Go to a remote area and simulate the exchanging of one module or part for another, if the technician has not identified the faulty component.

h. Return the module or part to the technician and inform him that the part he requested is now good.
i. Mark the part requested in sequence (1, 2, 3, etc.) on the technician's Performance Evaluation Sheet.

j. When the technician has completed the test or time has elapsed, collect his Answer Sheet.

PERFORMANCE EVALUATION PROCEDURE

a. When the technician turns in his answer sheet, compare his answer with the correct one.

b. Mark the technician's answer with an "X" if it is wrong.

c. Fasten the technician's Answer Sheet and Performance Evaluation Sheet together, insuring that his identification number is on both.

POST-TEST RECOVERY

a. If the technician has found and corrected the malfunction inserted into the equipment, perform an operational check-out to insure proper equipment functioning.
b. If the technician was unable to repair the Computer set, correct the fault by re-installing the good board and module (see page 501).

c. Perform an operational checkout.

d. If equipment is still malfunctioning, request assistance from local support.
SECTION C

TEST SUBJECT INSTRUCTIONS
INFORMATION SHEET

This is a series of tests on your ability to perform the maintenance tasks required by the AN/APN-147 Doppler Radar System and the associated AN/ASN-35 Computer.

This package contains all of the instructions for each test. You will be told when to use each set of instructions.

Before taking any of the tests, READ THE INSTRUCTIONS COMPLETELY AND CAREFULLY. If you have any questions, ask the Test Administrator.

During the testing, direct all requests for technical data, equipment, or other support to the Test Administrator.

Complete the Identification Sheet that you will be given. Jot down the LD number printed on it. You will have to use it for each test.
Identification No. ____________________

IDENTIFICATION SHEET

1. RANK __________________________

2. ORGANIZATION __________________________

3. PRIMARY AFSC __________________ TIME HELD __________________________

4. DUTY AFSC __________________________

5. LENGTH OF EXPERIENCE ON AN/APN-147, AN/ASN-35: ____ YRS ____ MOS

6. DOES YOUR PRESENT JOB INCLUDE MAINTENANCE OF THE AN/APN-147-AN/ASN-35 SYSTEM? ____ YES ____ NO

7. WHAT USAF SCHOOL COURSES IN ELECTRONICS HAVE YOU HAD?
 COURSE __________________ DATE __________________ LOCATION __________________

TEST INSTRUCTIONS

1. TEST PT1

Circuit Board Soldering Test

2. TIME ALLOTTED

30 minutes

3. INSTRUCTIONS

a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.

b. The Test Administrator will give you a printed circuit board and two resistors.

c. Two resistors on the circuit board will be marked with grease pencil.

d. Replace the marked resistors with the ones given to you.

e. When you have finished, show the Test Administrator your work.
A. Compare the technician's work with your Checklist and complete the following evaluation.

Soldering is:

<table>
<thead>
<tr>
<th>Resistor 1</th>
<th>Resistor 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not acceptable - excess solder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not acceptable - insufficient solder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not acceptable - other (specify)</td>
</tr>
</tbody>
</table>
TEST INSTRUCTIONS

1. TEST PT2
 Electronic Piece/Part Removal and Replacement

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. Using the tools and electronic parts kit at your position, modify the Transistor Circuit as directed by the instructions that will be given you by the Test Administrator.
 c. Your work on this test will be graded on the basis of:
 1. quality of soldering
 2. correct piece/part selection and replacement
 3. correct installation of piece/part
 d. When you have completed the modifications, have the Test Administrator grade your work.
TEST PT-2

PERFORMANCE EVALUATION SHEET

<table>
<thead>
<tr>
<th>Proper Piece/Part</th>
<th>Proper Position</th>
<th>P1</th>
<th>H</th>
<th>Solder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEST INSTRUCTIONS

TEST PT2 (FORM 1)

Modifications to be made: (See attached schematic)

1. Remove R5, 270 ohms, 1/2-watt resistor and replace with 27K ohm, 1/2-watt resistor.
2. Remove C3, .001 uf, 200 WVDC capacitor and replace with .1 uf, 200 WVDC capacitor.
3. Remove Q1, 2N404 transistor and replace with 2N338 transistor.
TUTRANSITRON, SCHEMATIC DIAGRAM

PT2-4S

474
TEST INSTRUCTIONS

TEST PT2 (FORM 2)

Modifications to be made: (See attached schematic)

1. Remove R_5, 27K ohm, 1/2-watt resistor and replace with 270 ohm, 1/2-watt resistor.
2. Remove C_3, .1 uf, 200 WVDC capacitor and replace with .001 uf, 200 WVDC capacitor.
3. Remove Q_1, 2N338 transistor and replace with 2N404 transistor.
TUTRANITRON, SCHEMATIC DIAGRAM

PT2-6S
TEST INSTRUCTIONS

TEST PT2-7S (FORM 3)

Modifications to be made: (See attached schematic)

1. Remove R3, 47K ohm, 1-watt resistor and replace with 330K ohm, 1-watt resistor.

2. Remove C1, .1uf, 200 WVDC capacitor and replace with .01 uf, 200 WVDC capacitor.

3. Remove R6, 1.8K ohm, 1/2-watt resistor and replace with 47K ohm, 1-watt resistor.
TUTRANSITRON: SCHEMATIC DIAGRAM
TEST INSTRUCTIONS

TEST PT2 (FORM 4)

Modifications to be made: (See attached schematic)

1. Remove R₃, 330K ohm, 1-watt resistor and replace with 47K ohm, 1-watt resistor.

2. Remove C₁, .01 uf, 200 WVDC capacitor and replace with .1 uf, 200 WVDC capacitor.

3. Remove R₆, 47K ohm, 1-watt resistor and replace with 1.8K ohm 1/2-watt resistor.
TUTRANSITRON, SCHEMATIC DIAGRAM
TEST INSTRUCTIONS

1. TEST GE
 1890M Transistor Tester

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS:
 a. You will be provided with a circuit board and a grease pencil.
 b. Use the 1890M Transistor Tester to determine whether any of
 the transistors on the barrel are bad.
 c. If you find a bad transistor, mark it with the grease pencil.
 d. Enter your assigned identification number on the Performance
 Evaluation Sheet.
 e. Give the Performance Evaluation Sheet, circuit board, and
 Test Instructions to the Test Administrator.
TEST GE-1

PERFORMANCE EVALUATION SHEET

Did the technician correctly identify the bad transistors?

YES

NO
TEST INSTRUCTIONS

1. TEST USE
 Model TV-2 Electron Tube Test Set

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS:
 a. For each tube provided, conduct the following tests using the TV-2 and record your answers on the Answer Sheet:
 - short test
 - interelement leakage test
 - filament continuity test
 - mutual conductance test
 - gas test
 - emission test
 b. Conduct all tests for each tube. Indicate on the answer sheet whether the tube tests good or bad on each test. In addition, for the "mutual conductance" and "emission" tests, record the actual values obtained in conducting these tests.
 c. Enter your assigned identification number on the Answer Sheet.
 d. Return all materials, instructions, and your Answer Sheet to the Test Administrator.
ANSWER SHEET

TEST - GE2

<table>
<thead>
<tr>
<th>TUBE TYPE</th>
<th>SHORT TEST</th>
<th>INTERELEMENT LEAKAGE TEST</th>
<th>FILAMENT CONTINUITY TEST</th>
<th>MUTUAL CONDUCTANCE TEST</th>
<th>GAS TEST</th>
<th>EMISSION TEST</th>
<th>TUBE CONDITION</th>
<th>SCORING (ADMIN. USE ONLY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6AK6</td>
<td>Good</td>
<td>Bad</td>
<td>Good</td>
<td>Good</td>
<td>Bad Value</td>
<td>Good</td>
<td>Bad</td>
<td>Good</td>
</tr>
<tr>
<td>6BQ7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6AH6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEST INSTRUCTIONS

1. TEST GE3
 Model 410B Electronic Voltmeter

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 Section I:
 a. Set VOLT/OHMS switch on Voltage/Resistance console to VOLTS position.
 b. Set selector switch to position "1".
 c. Connect VOM common lead to common post on Voltage/Resistance Console.
 d. Measure voltage at output terminals on Voltage/Resistance Console using probes as specified on Answer Sheet.
 e. Compare voltage reading with assigned value for switch position "1" given in Section I of your answer sheet.
 f. Indicate on attached answer sheet whether voltage reading obtained is within ± 10% of value listed.
 g. Repeat the voltage measurement for selector positions 2 through 10 and record your answers. Complete Section I and record all answers before going to Section II.

 Section II:
 a. Set VOLT/OHM switch to OHM position
 b. Set selector switch to position "1".
c. Measure resistance across output terminals on Voltage/Resistance Console.

d. Compare obtained resistance reading with assigned value for switch position "1" given in Section II of your answer sheet.

e. Indicate on the answer sheet whether resistance reading obtained is within ±10% of value listed.

f. Repeat resistance measurement for selector positions 2 through 10 and record your answers.

g. Enter your assigned identification number on the Answer Sheet.

h. Give your Answer Sheet and Instructions to the Test Administrator.
Section I

<table>
<thead>
<tr>
<th>Switch</th>
<th>Assigned Position</th>
<th>Value</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>4.5 vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>17.5 vac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>43 vac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>40 vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>24 vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0 vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>3 vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>6 vac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>8 vac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>30 vdc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section II

<table>
<thead>
<tr>
<th>Switch</th>
<th>Assigned Position</th>
<th>Value</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-100 ohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>38 ohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>100 ohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>16 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>260 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>400 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>7.5 Meg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>4.5 Meg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section I - Voltage

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Assigned Value</th>
<th>In Tolerance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 vac</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.5 vdc</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>64 vac</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12 vac</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10 vac</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 vdc</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3 vdc</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10 vac</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20 vac</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30 vdc</td>
<td></td>
</tr>
</tbody>
</table>

Section II - Resistance

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Assigned Value</th>
<th>In Tolerance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 ohms</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100 ohms</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 k</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9 k</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30 k</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.6 k</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>260 k</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>180 k</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.7 Meg</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>
TEST INSTRUCTIONS

1. **TEST GE4**
 Tektronic 545B Oscilloscope

2. **TIME ALLOTTED**
 60 minutes

3. **INSTRUCTIONS**
 a. This test contains eight problems that deal with the use of the oscilloscope.
 b. Each problem gives individual instructions. All the required equipment and components are available at the test bench.
 c. Problem 1 has one part and is evaluated by the Test Administrator.
 d. Problems 2-8 have two parts each. You must complete the Answer Sheets to:
 (1) indicate if an obtained waveform is in or out of tolerance.
 (2) record specific control settings used to obtain your answer.
 e. Enter your assigned identification number on each of the instruction/answer sheets and turn them in to the Test Administrator when completed.
PROBLEM 1, FORM 1

PROCEDURES:

a. Calibrate the two oscilloscope test probes at your test position.

b. Notify your Test Administrator as soon as you complete the test probe calibration.

PERFORMANCE EVALUATION

(To be Completed by Test Administrator)

Calibrated?

[] YES
[] NO
PROBLEM 2, FORM 1

PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6702 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within the tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance

Freq. = 12.5 KC

1V

80μsec

25μs
PROBLEM 2, FORM 1

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

CONTROL

VOLT/CM (Channel A)

AMPLITUDE CALIBRATOR

TIME/CM (TIME BASE A)

VARIABLE, TIME/CM (TIME BASE A)

VARIABLE, VOLTS/CM (Channel A)
Problem 3, Form 1

Procedures:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground your oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set the sweep to display approximately two cycles of the waveforms present at Test Point 6708 and 6712 on the Waveform Generator Console.

d. Set Channel "A" and Channel "B", Volts/CM controls at 1 and the Volts/CM Variable control at the Calibrated position.

e. Use the available features of the oscilloscope to eliminate unwanted portions of a composite signal.

f. Compare the resultant waveform on the oscilloscope with the one shown below to determine if it is within tolerance of 0%.

g. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

h. When you have marked your answer, record your selected scope settings on the Oscilloscope Control Setting Answer Sheet.

i. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance
PROBLEM 3, FORM 1

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

CONTROL

VOLTS/CM (Channel A)

VOLTS/CM (Channel B)

PREAMP MODE

SETTING

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveforms present at Test Point 6702 and 6706 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveforms on the oscilloscope with the ones shown below to determine if they are within tolerance of ±10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveforms are in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.
<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTS/CM (Channel A)</td>
<td></td>
</tr>
<tr>
<td>VOLTS/CM (Channel B)</td>
<td></td>
</tr>
<tr>
<td>MODE/Dual Trace Preamp</td>
<td></td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>VARIABLE, VOLTS/CM (Channel A)</td>
<td></td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep to display seven pulse of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Utilize the delayed pulse feature to display the center pulse (4th positive going pulse from the left) in the center of the graticule.

e. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within tolerance of ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator to go to the next problem.

Within Tolerance

Out of Tolerance
Problem 5, Form 1

Oscilloscope Control Setting Answer Sheet

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Horizontal Display</td>
<td></td>
</tr>
<tr>
<td>DELAY Multiplier (Read-Out)</td>
<td></td>
</tr>
<tr>
<td>Stability (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base B)</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 6, FORM 1

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep for 20 usec per CM to display approximately one cycle of the waveform present at Test Point 6706 on the Waveform Generator Console.

d. Use the delayed trigger to determine the width of one cycle.

e. Compare the resultant values of the waveform on the scope with the one shown below to determine if it is within tolerance of ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test administrator and go to the next problem.

Frequent = 6.25 KC

---80 µsec---

---40 µsec---

Within Tolerance

Out of Tolerance
Oscilloscope Control Setting Answer Sheet

Problem 6, Form 1

<table>
<thead>
<tr>
<th>Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Display</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base B)</td>
<td></td>
</tr>
<tr>
<td>Delay-Time Multiplier</td>
<td></td>
</tr>
<tr>
<td>Preamp Mode</td>
<td></td>
</tr>
</tbody>
</table>
PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set both Channel "A" and "B" Volts/CM to 1 and variable to calibrate position.

d. Display the Waveform Generator Console waveforms present at Test Point 6701 and 6712 on the oscilloscope.

e. Compare the phase relationship of the waveforms on the oscilloscope with the phase relationship of the waveforms shown below.

f. How does the set of waveforms displayed on the oscilloscope compare in phase relationship with the set shown below?

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

Time Base "A"

Time Base "B"

Note: Time Base "B" lags Time Base "A" by 60 degrees.

How do the two sets of waveforms compare?

___ The phase relationship is the same in both sets?

___ The phase relationship is different between the two sets?

504-138

540
PROBLEM 7

PROBLEM 7, FORM 1

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

CONTROL

Horizontal Display
Time/CM (Time Base A)
Delay Time Multiplier
Preamp Mode

SETTING
PROBLEM 8, FORM 1

PROCEDURES:

a. Channel "A" will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform with the one shown below to determine if it is within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your Answer Sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance

Freq. = 6.25 KC

80 µ sec

40 µ sec

3 V

GE4-15S

503
Problem 8, Form 1

Oscilloscope Control Setting Answer Sheet

<table>
<thead>
<tr>
<th>Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/CM (Channel A)</td>
<td></td>
</tr>
<tr>
<td>Amplitude Calibrator Variable, Time/CM (Time Base A)</td>
<td></td>
</tr>
</tbody>
</table>
TEST GE4

INSTRUCTIONS

PROBLEM 1, FORM 2

PROCEDURES:

a. Calibrate the two oscilloscope test probes at your test position.

b. Notify your Test Administrator as soon as you complete the test probe calibration.

PERFORMANCE EVALUATION

(To be completed by Test Administrator)

Calibrated?

___ YES

___ NO
PROBLEM 2, FORM 2

PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6702 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within the tolerance of \(\pm 10\% \).

e. Mark the appropriate answer box below to indicate whether the Test Point Waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance \(\checkmark \)

Out of Tolerance
PROBLEM 2, FORM 2

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT/CM (Channel A)</td>
<td></td>
</tr>
<tr>
<td>AMPLITUDE CALIBRATOR</td>
<td></td>
</tr>
<tr>
<td>TIME/CM (TIME BASE A)</td>
<td></td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (TIME BASE A)</td>
<td></td>
</tr>
<tr>
<td>VARIABLE, VOLTS/CM (Channel A)</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 3, FORM 2

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground your oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set the sweep to display approximately two cycles of the waveforms present at Test Point 6708 and 6712 on the Waveform Generator Console.

d. Set Channel "A" and Channel "B", Volts/CM controls at 1 and the Volts/CM Variable control at the Calibrated position.

e. Use the available features of the oscilloscope to eliminate unwanted portions of a composite signal.

f. Compare the resultant waveform on the oscilloscope with the one shown below to determine if it is within tolerance of 0%.

g. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

h. When you have marked your answer, record your selected scope settings on the Oscilloscope Control Setting Answer Sheet.

i. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance
OSCLLOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/CM (Channel A)</td>
<td></td>
</tr>
<tr>
<td>Volts/CM (Channel B)</td>
<td></td>
</tr>
<tr>
<td>Preamp Mode</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 4, FORM 2

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveforms present at Test Point 6702 and 6706 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveforms on the oscilloscope with the ones shown below to determine if they are within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveforms are in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

TIME BASE

"A"
Freq. = 50KC

"B"
Freq. = 25KC

WITHIN TOLERANCE

OUT OF TOLERANCE
PROBLEM 4, FORM 2

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTS/CM (Channel A)</td>
<td></td>
</tr>
<tr>
<td>VOLTS/CM (Channel B)</td>
<td></td>
</tr>
<tr>
<td>MODE/Dual Trace Preamp</td>
<td></td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>VARIABLE, VOLTS/CM (Channel A)</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 5, FORM 2

PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep to display seven pulse of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Utilize the delayed pulse feature to display the center pulse (4th positive going pulse from the left) in the center of the graticule.

e. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within tolerance of ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

<table>
<thead>
<tr>
<th></th>
<th>Within Tolerance</th>
<th>Out of Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GE4-24S</td>
<td>512</td>
</tr>
<tr>
<td>3</td>
<td>551</td>
<td></td>
</tr>
</tbody>
</table>
OSCILOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Horizontal Display</td>
<td></td>
</tr>
<tr>
<td>Delay Multiplier (Read-out)</td>
<td></td>
</tr>
<tr>
<td>Stability (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base B)</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 6, FORM 2

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep for 20 usec per CM to display approximately one cycle of the waveform present at Test Point 67'6 on the Waveform Generator Console.

d. Use the delayed trigger to determine the width of one cycle.

e. Compare the resultant values of the waveform on the scope with the one shown below to determine if it is within tolerance of ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

gh. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance

Freq. = 6.25KC

| 160μ sec |
| 80μs |

PROBLEM 6, FORM 2

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Display</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base B)</td>
<td></td>
</tr>
<tr>
<td>Delay-Time Multiplier</td>
<td></td>
</tr>
<tr>
<td>Preamp Mode</td>
<td></td>
</tr>
</tbody>
</table>

GE4-27S

515 554
PROBLEM 7, FORM 2

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set both Channel "A" and "B" Volts/CN to 1 and variable to calibrate position.

d. Display the Waveform Generator Console waveforms present at Test Point 6701 and 6712 on the oscilloscope.

e. Compare the phase relationship of the waveforms on the oscilloscope with the phase relationship of the waveforms shown below.

f. How does the set of waveforms displayed on the oscilloscope compare in phase relationship with the set shown below?

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

![Diagram of waveforms](image)

Note: Time Base "B" lags Time Base "A" by 180 degrees. How do the two sets of waveform compare?

___ The phase relationship is the same in both sets?

___ The phase relationship is different between the two sets?
TEST GE4

PROBLEM 7, FORM 2

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Display</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base, A)</td>
<td></td>
</tr>
<tr>
<td>Delay Time Multiplier</td>
<td></td>
</tr>
<tr>
<td>Preamp Mode</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 8, FORM 2

PROCEDURES:

a. Channel "A" will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform with the one shown below to determine if it is within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point Waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

(Freq.=6.25KC)

Within Tolerance

Out of Tolerance

PROBLEM 8, FORM 2

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/CM (Channel A)</td>
<td></td>
</tr>
<tr>
<td>Amplitude Calibrator</td>
<td></td>
</tr>
<tr>
<td>Variable, Time/CM (Time Base A)</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 1, FORM 3

PROCEDURES:

a. Calibrate the two oscilloscope test probes at your test position.

b. Notify your Test Administrator as soon as you complete the test probe calibration.

PERFORMANCE EVALUATION

(To be completed by Test Administrator)

Calibrated?

___ YES

___ NO
PROBLEM 2, FORM 3

PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point 6702 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within the tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance

Freq. = 6.25KC

40μ sec

12.5μs

2V
PROBLEM 2, FORM 3

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

CONTROL

VOLT/CM (Channel A)

AMPLITUDE CALIBRATOR

TIME/CM (TIME BASE A)

VARIABLE, TIME/CM (TIME BASE A)

VARIABLE, VOLTS/CM (Channel A)
PROBLEM 3, FORM 3

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground your oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set the sweep to display approximately two cycles of the waveforms present at Test Point 6708 and 6712 on the Waveform Generator Console.

d. Set Channel "A" and Channel "B", Volts/CM controls at 1 and the Volts/CM Variable control at the Calibrated position.

e. Use the available features of the oscilloscope to eliminate unwanted portions of a composite signal.

f. Compare the resultant waveform on the oscilloscope with the one shown below to determine if it is within tolerance of 0%.

g. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

h. When you have marked your answer, record your selected scope settings on the Oscilloscope Control Setting Answer Sheet.

i. Return your answer sheet to the Test Administrator and go to the next problem.

Within Tolerance

Out of Tolerance

GE4-35S

523 562
PROBLEM 3, FORM 3

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/CM (Channel A)</td>
<td></td>
</tr>
<tr>
<td>Volts/CM (Channel B)</td>
<td></td>
</tr>
<tr>
<td>Preamp Mode</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 4, FORM 3

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveforms present at Test Point 6702 and 6706 on the Waveform Generator Console.

d. Compare all of the resultant values of the waveforms on the oscilloscope with the ones shown below to determine if they are within tolerance of ± 10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveforms are in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

Waveforms

- **Time Base**
 - **"A"**
 - Freq. = 27KC
 - **"B"**
 - Freq. = 13.5KC

Answer Sheet

```
Within Tolerance

Out of Tolerance
```

GE4-37S

52564
Oscilloscope Control Setting Answer Sheet

<table>
<thead>
<tr>
<th>Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTS/CM (Channel A)</td>
<td></td>
</tr>
<tr>
<td>VOLTS/CM (Channel B)</td>
<td></td>
</tr>
<tr>
<td>MODE/Dual Trace Preamp</td>
<td></td>
</tr>
<tr>
<td>VARIABLE, TIME/CM (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>VARIABLE, VOLTS/CM (Channel A)</td>
<td></td>
</tr>
</tbody>
</table>

ID No.

Ge4-38S 526
PROBLEM 5, FORM 3:

PROCEDURES:

a. Channel "A" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep to display seven pulse of the waveform present at Test Point 6710 on the Waveform Generator Console.

d. Utilize the delayed pulse feature to display the center pulse (4th positive going pulse from the left) in the center of the grid.

Compare all of the resultant values of the waveform on the oscilloscope with the one shown below to determine if it is within tolerance of \(\pm 10\% \).

f. Mark the appropriate answer box below to indicate whether the Test Point Waveform is in or out of tolerance.

g. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

\[
\text{Within Tolerance} \\
\text{Out of Tolerance}
\]

Within Tolerance

Out of Tolerance

Within Tolerance

Out of Tolerance

160\(\mu \) scc
PROBLEM 5, FORM 3

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Horizontal Display</td>
<td></td>
</tr>
<tr>
<td>DELAY Multiplier (Read-out)</td>
<td></td>
</tr>
<tr>
<td>Stability (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base B)</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 6, FORM 3

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Set the sweep for 20 usec per CM to display approximately one cycle of the waveform present at Test Point 6706 on the Waveform Generator Console.

d. Use the delayed trigger to determine the width of one cycle.

e. Compare the resultant values of the waveform on the scope with the one shown below to determine if it is within tolerance of ± 10%.

f. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

![Waveform Diagram]

Within Tolerance

Out of Tolerance
PROBLEM 6, FORM 3

OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

CONTROL

Horizontal Display
Time/cm (Time Base B)
Delay-Time Multiplier
Preamp Mode

SETTING

PROBLEM 7, FORM 3

PROCEDURES:

a. Channels "A" and "B" on the oscilloscope will be used for this problem.

b. Ground the oscilloscope to the "Neutral" connection indicated on the Waveform Generator Console.

c. Set both Channel "A" and "B" Volts/CM to 1 and variable to calibrate position.

d. Display the Waveform Generator Console waveforms present at Test Point 6701 and 6712 on the oscilloscope.

e. Compare the phase relationship of the waveforms on the oscilloscope with the phase relationship of the waveforms shown below.

f. How does the set of waveforms displayed on the oscilloscope compare in phase relationship with the set shown below?

g. When you have marked your answer, record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

h. Return your answer sheet to the Test Administrator and go to the next problem.

Note: Time Base "A" and Time Base "B" are in phase. The phase relationship is the same in both sets? The phase relationship is different between the two sets?
OSCILLOSCOPE CONTROL SETTING ANSWER SHEET

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Display</td>
<td></td>
</tr>
<tr>
<td>Time/CM (Time Base A)</td>
<td></td>
</tr>
<tr>
<td>Delay Time Multiplier</td>
<td></td>
</tr>
<tr>
<td>Preamp Mode</td>
<td></td>
</tr>
</tbody>
</table>
TEST GE4

PROBLEM 8, FORM 3

PROCEDURES:

a. Channel "A" will be used for this problem.

b. Ground the oscilloscope to the "Ground" connection indicated on the Waveform Generator Console.

c. Determine the values of the waveform present at Test Point on the Waveform Generator Console.

d. Compare all of the resultant values of the waveform with the one shown below to determine if it is within tolerance of +10%.

e. Mark the appropriate answer box below to indicate whether the Test Point waveform is in or out of tolerance.

f. Record your selected scope control settings on the Oscilloscope Control Setting Answer Sheet.

g. Return your answer sheet to the Test Administrator and go to the next problem.

<table>
<thead>
<tr>
<th>Within Tolerance</th>
<th>Out of Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Freq. = 50KC

GE4-45S

533 572
Problem 8, Form 3

Oscilloscope Control Setting Answer Sheet

<table>
<thead>
<tr>
<th>Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/cm (Channel A)</td>
<td></td>
</tr>
<tr>
<td>Volts/cm (Channel B)</td>
<td></td>
</tr>
<tr>
<td>Preamp Mode</td>
<td></td>
</tr>
</tbody>
</table>
TEST INSTRUCTIONS

1. TEST CO-1
 Radar Set, AN/APN-147 Operational Check

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS:
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the Radar Set Operational Check.
 c. Make your bench setup and have the Test Administrator check it before you apply any power.
 d. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 e. Demonstrate to the Test Administrator that you can perform the Radar Set Operational Check.
TEST 001
PERFORMANCE EVALUATION SHEET

A. Did the technician set up equipment properly to perform the Radar Set Operational Check?
 YES NO

B. Was the technician able to satisfactorily perform the Radar Set Operational Check?
 YES NO
TEST INSTRUCTIONS

1. **TEST CO-2**

 Operational Check-Out Navigational Computer Set, AN/ASN-35

2. **TIME ALLOTTED**

 30 minutes

3. **INSTRUCTIONS**

 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.

 b. Set up the Computer Set, AN/ASN-35, with the appropriate test equipment to make the Computer Set Operational Check-Out.

 c. Make your bench setup and have the Test Administrator check it before you apply any power.

 d. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.

 e. Demonstrate to the Test Administrator that you can perform the Computer Set Operational Check-Out.
TEST CO2

PERFORMANCE EVALUATION SHEET

A. Did the technician set up equipment properly to perform the Computer Set Operational Check-Out?

YES ___ NO ___

B. Was the technician able to satisfactorily perform the Computer Set Operational Check-Out?

YES ___ NO ___
TEST INSTRUCTIONS

1. TEST SE-1

 Signal Generator, AN/URM-25D Usage Test

2. TIME ALLOTTED

 30 minutes.

3. INSTRUCTIONS

 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the AGC Circuit Adjustments.

 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.

 c. Check the AGC Circuit and make any necessary adjustments.

 You may use any procedures and equipment available with one exception: Signal Generator, AN/URM-25D must be used for this test.

 d. Notify the Test Administrator when you are satisfied that the AGC Circuit is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your results.

 e. Enter your assigned identification number on the Performance Evaluation Sheet. Give it to the Test Administrator along with these instructions.
TEST SE-1

PERFORMANCE EVALUATION SHEET

Did the technician properly connect and set the Signal Generator, AN/URM-25D for the AGC Circuit adjustment?

____ YES ______ NO
TEST INSTRUCTIONS

1. TEST SE-2
 Doppler Generator, CMA-546 Usage Test

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the Lock-Check Operation Test.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Perform the Lock-Check Operation Test. You may use any procedure and equipment available with one exception: Doppler Generator CMA-546 must be used for this test.
 d. Notify the Test Administrator when you are satisfied that the Lock-Check Operation is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your results.
 e. Enter your assigned identification number on the Performance Evaluation Sheet. Give it to the Test Administrator along with these instructions.
TEST SE-2

PERFORMANCE EVALUATION SHEET

Did the technician properly connect and set up the Doppler Generator to perform the Lock-Check Operation test?

____YES ____NO
TEST INSTRUCTIONS

1. **TEST SE-3**
 Audio Oscillator, TS-382 Usage Test

2. **TIME ALLOTTED**
 30 minutes

3. **INSTRUCTIONS**
 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the Second Balanced Modulator V-6709 Cathode Balance Adjustment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Perform the Cathode Balance Adjustment. You may use any procedure and equipment available with one exception: Audio Oscillator, TS-382 must be used for this test.
 d. Notify the Test Administrator when you are satisfied that the Second Balanced Modulator V-6709 is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your results.
 e. Enter your assigned identification number on the Performance Evaluation Sheet. Give it to the Test Administrator along with these instructions.
Did the technician properly connect and set the Audio Oscillator to perform the Second Balanced Modulator V-6709 Cathode Balance Adjustment?

_____ YES _____ NO
TEST INSTRUCTIONS

1. **TEST RR-1**
 Crystal, Y-6701, Removal and Replacement

2. **TIME ALLOTTED**
 10 minutes

3. **INSTRUCTIONS**
 a. Remove Crystal, Y-6701, from its chassis. Notify the Test Administrator as soon as you complete the removal.
 b. After the Test Administrator has checked your work, replace Crystal, Y-6701.
 c. Enter your assigned identification number on the Performance Evaluation Sheet.
 d. Notify the Test Administrator when you have completed the replacement, and give him the Test Instructions and Performance Evaluation Sheet.
TEST RR-1

PERFORMANCE EVALUATION SHEET

A. Did the technician remove and replace the correct part?
 ___ YES ___ NO

B. Did the radar set operate properly after the part was reinstalled?
 ___ YES ___ NO
TEST INSTRUCTIONS

1. TEST RR-2
 RF Oscillator, V-6201, Removal and Replacement

2. TIME ALLOCATED
 20 minutes

INSTRUCTIONS
a. Remove RF Oscillator, V-6201, from its chassis. Notify the Test Administrator as soon as you complete the removal.
b. After the Test Administrator has checked your work, replace RF Oscillator, V-6201.
c. Enter your assigned identification number on the Performance Evaluation Sheet.
d. Notify the Test Administrator when you have completed the replacement and give him the Test Instructions and Performance Evaluation Sheet.
TEST RR-2

PERFORMANCE EVALUATION SHEET

A. Did the technician remove and replace the correct part?
 YES NO

B. Did the radar set operate properly after the part was reinstalled?
 YES NO
TEST INSTRUCTIONS

1. **TEST RR-3**
 Frequency Mixer, CV-1186/APN-147: Removal and Replacement

2. **TIME ALLOTTED**
 10 minutes

3. **INSTRUCTIONS**
 a. Remove Frequency Mixer, CV-1186/APN-147, from its chassis.
 Notify the Test Administrator as soon as you complete the removal.
 b. After the Test Administrator has checked your work, replace Frequency Mixer, CV-1186/APN-147.
 c. Enter your assigned identification number on the Performance Evaluation Sheet.
 d. Notify the Test Administrator when you have completed the replacement, and give him the Test Instructions and Performance Evaluation Sheet.
A. Did the technician remove and replace the correct part?

YES NO

B. Did the radar set operate properly after the part was reinstalled?

YES NO
TEST INSTRUCTIONS

1. TEST RR-4
 Signal Comparator, CM-213/APN-147, Removal and Replacement

2. TIME ALLOTTED
 10 minutes

3. INSTRUCTIONS
 a. Remove Signal Comparator, CM-213/APN-147, from its chassis.
 Notify the Test Administrator as soon as you complete the removal.
 b. After the Test Administrator has checked your work, replace
 Signal Comparator, CM-213/APN-147.
 c. Enter your assigned identification number on the Performance Evaluation Sheet.
 d. Notify the Test Administrator when you have completed the replacement and give him the Test Instructions and Performance Evaluation Sheet.
A. Did the technician remove and replace the correct part?

 YES NO

B. Did the radar set operate properly after the part was reinstalled?

 YES NO
TEST INSTRUCTIONS

1. TEST RR-5
 Sequential Timer, TD-505A/APN-147, Removal and Replacement

2. TIME ALLOTTED
 10 minutes

3. INSTRUCTIONS
 a. Remove Sequential Timer, TD-505A/APN-147, from its chassis.
 Notify the Test Administrator as soon as you complete the removal.
 b. After the Test Administrator has checked your work, replace
 Sequential Timer, TD-505A/APN-147.
 c. Enter your assigned identification number on the Performance Evaluation Sheet.
 d. Notify the Test Administrator when you have completed the replacement and give him the Test Instructions and Performance Evaluation Sheet.
A. Did the technician remove and replace the correct part?
 _ YES _ NO

B. Did the radar set operate properly after the part was reinstalled?
 _ YES _ NO
TEST INSTRUCTIONS

1. TEST RR-6

Crystal Mixer, CR-7602 (side A) Removal and Replacement

2. TIME ALLOTTED

10 minutes

3. INSTRUCTIONS

a. Remove Crystal Mixer, CR-7602 (side A) from its holder. Notify the Test Administrator as soon as you complete the removal.

b. After the Test Administrator has checked your work, replace Crystal Mixer, CR-7602.

c. Enter your assigned identification number on the Performance Evaluation Sheet.

d. Notify the Test Administrator when you have completed the replacement and give him the Test Instructions and Performance Evaluation Sheet.
A. Did the technician remove and replace the correct part?
___ YES ____ NO

B. Did the radar set operate properly after the part was reinstalled?
___ YES ____ NO
TEST INSTRUCTIONS

1. TEST RR-7.
 Blower Motor Assembly, B-501, Removal and Replacement

2. TIME ALLOTTED
 15 minutes

3. INSTRUCTIONS
 a. Remove Blower Motor Assembly, B-501, from its chassis.
 Notify the Test Administrator as soon as you complete the removal.
 b. After the Test Administrator has checked your work, replace the Blower Motor Assembly in its chassis.
 c. Enter your assigned identification number on the Performance Evaluation Sheet.
 d. Notify the Test Administrator when you have completed the replacement and give him the Test Instructions and Performance Evaluation Sheet.
TEST RR-7

PERFORMANCE EVALUATION SHEET

A. Did the technician remove and replace the correct part?

___ YES ___ NO

B. Did the radar set operate properly after the part was reinstalled?

___ YES ___ NO
TEST INSTRUCTIONS

1. TEST RR-8

Track Resolver Drive Assembly Removal and Replacement

2. TIME ALLOTED

30 minutes

3. INSTRUCTIONS

a. Remove the Track Resolver Drive Assembly from its chassis.
 Notify the Test Administrator as soon as you complete the removal.

b. After the Test Administrator has checked your work, replace the Track Resolver Drive Assembly.

c. Enter your assigned identification number on the Performance Evaluation Sheet.

d. Notify the Test Administrator when you have completed the replacement and give him the Test Instructions and Performance Evaluation Sheet.
TEST RR-8

PERFORMANCE EVALUATION SHEET

A. Did the technician remove and replace the correct part?
 YES ___ NO ___

B. Did the computer operate properly after the part was reinstalled?
 YES ___ NO ___
TEST INSTRUCTIONS

1. **TEST RR-9**
 Translator Drive Assembly, Removal and Replacement

2. **TIME ALLOTED**
 15 minutes

3. **INSTRUCTIONS**
 a. Remove the Translator Drive Assembly from its chassis.
 Notify the Test Administrator as soon as you complete the removal.
 b. After the Test Administrator has checked your work, replace the Translator Drive Assembly.
 c. Enter your assigned identification number on the Performance Evaluation Sheet.
 d. Notify the Test Administrator when you have completed the replacement and give him the Test Instructions and Performance Evaluation Sheet.
ID No.

TEST RR-9

PERFORMANCE EVALUATION SHEET

A. Did the technician remove and replace the correct part?
 ____ YES ____ NO

B. Did the computer operate properly after the part was reinstalled?
 ____ YES ____ NO
TEST INSTRUCTIONS

1. TEST RR-10
 Relay, K-410, Removal and Replacement

2. TIME ALLOTTED
 20 minutes

3. INSTRUCTIONS
 a. Remove the Relay, K-410, from its chassis. Notify the Test Administrator as soon as you complete the removal.
 b. After the Test Administrator has checked your work, replace the Relay, K-410.
 c. Enter your assigned identification number on the Performance Evaluation Sheet.
 d. Notify the Test Administrator when you have completed the replacement and give him the Test Instructions and Performance Evaluation Sheet.
A. Did the technician remove and replace the correct part?
 YES NO

B. Did the computer operate properly after the part was reinstalled?
 YES NO
TEST INSTRUCTIONS

1. TEST AD-1
 Transmitter Output Power Adjustment

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the Transmitter Output Power Adjustment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Transmitter Output Power and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Transmitter Output Power is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Transistor Tester
- Audio Oscillator
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Tube Tester
- Semiconductor Diode Tester

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly complete the Transmitter Output Power Adjustment?

- YES
- NO
TEST INSTRUCTIONS

1. TEST AD-2
 Modulator Adjustment

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the Modulator Adjustment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Modulator and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Modulator is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- Frequency Meter
- VOM
- Power Meter
- VTVM
- Spectrum Analyzer
- Signal Generator
- Distortion Indicator
- Sweep Generator
- Tube Tester
- Transistor Tester
- Semiconductor Diode Tester
- Audio Oscillator

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly complete the Modulator Adjustment?

- YES
- NO
TEST INSTRUCTIONS

1. TEST AD-3
 Crystal Oscillator V-6701A Adjustment

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the Crystal Oscillator, V-6701A Adjustment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Crystal Oscillator, V-6701A and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Crystal Oscillator, V-6701A is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- VQM
- VTVM
- Signal Generator
- Sweep Generator
- Transistor Tester
- Audio Oscillator
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Tube Tester
- Semiconductor Diode Tester

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly complete the Crystal Oscillator V-670?

Adjustment?

AD3-2S

609 570
TEST INSTRUCTIONS

1. TEST AD-4

 Lock-Check Resistor R-6806 Adjustment

2. TIME ALLOTTED

 30 minutes

3. INSTRUCTIONS

 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the Lock-Check Resistor R-6806 Adjustment.

 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.

 c. Check the Lock-Check Resistor and make any necessary adjustment. You may use any procedures and equipment available.

 d. Notify the Test Administrator when you are satisfied that the Lock-Check Resistor R-6806 is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.

 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.

 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- Frequency Meter
- VOM
- Power Meter
- VTVM
- Spectrum Analyzer
- Signal Generator
- Distortion Indicator
- Sweep Generator
- Tube Tester
- Transistor Tester
- Semiconductor Diode Tester
- Audio Oscillator

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly complete the Lock-Check Resistor R-6806 Adjustment?

- YES
- NO
TEST INSTRUCTIONS

1. TEST AD-5
 Power Supply Adjustments

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the Power Supply Adjustments.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Power Supply and make any necessary adjustments. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Power Supply is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST AD-5

PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Transistor Tester
- Audio Oscillator
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Tube Tester
- Semiconductor Diode Tester

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly complete the Power Supply Adjustment?

- YES
- NO
TEST INSTRUCTIONS

1. **TEST AD-6**
 Sine-Cosine Potentiometer R-301 Adjustment

2. **TIME ALLOTTED**
 30 minutes

3. **INSTRUCTIONS.**
 a. Set up the Navigational Computer Set, AN/ASN-35, with the appropriate test equipment to make the Sine-Cosine Potentiometer R-301 Adjustment.

 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.

 c. Check the Sine-Cosine Potentiometer R-301 Adjustment and make any necessary adjustment. You may use any procedures and equipment available.

 d. Notify the Test Administrator when you are satisfied that the Sine-Cosine Potentiometer, R-301, is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.

 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.

 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test:

- Oscilloscope
- VOM
- VTVM
- Power Meter
- VOM
- Signal Generator
- Spectrum Analyzer
- Sweep Generator
- Distortion Indicator
- Transistor Tester
- Tube Tester
- Audio Oscillator
- Semiconductor Diode Tester

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly complete the Sine-Cosine Potentiometer R-301 Adjustment?

_____ YES _____ NO
TEST INSTRUCTIONS

1. TEST GE

 1890M Transistor Tester

2. TIME ALLOTTED

 30 minutes

3. INSTRUCTIONS

 a. You will be provided with a circuit board and a grease pencil.
 b. Use the 1890M Transistor Tester to determine whether any of
 the transistors on the barrel are bad.
 c. If you find a bad transistor, mark it with the grease pencil.
 d. Enter your assigned identification number on the Performance
 Evaluation Sheet.
 e. Give the Performance Evaluation Sheet, circuit board, and
 Test Instructions to the Test Administrator.
TEST INSTRUCTIONS

1. TEST AL-1
 Antenna Synchro Alignment

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the Antenna Synchro Alignment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Antenna Synchro Alignment and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Antenna Synchro is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST AL-1

PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- Frequency Meter
- VOM
- Power Meter
- VTVM
- Spectrum Analyzer
- Signal Generator
- Distortion Indicator
- Sweep Generator
- Tube Tester
- Transistor Tester
- Semiconductor Diode Tester
- Audio Oscillator

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the Antenna Synchro?

---YES---

---NO---
TEST INSTRUCTIONS

1. TEST AL-2
 200-KC Bandpass Filter Alignment

2. TIME ALLOTTED
 45 minutes

3. INSTRUCTIONS
 a. Set up the Radar Set, AN/APN-147, with the appropriate test equipment to make the 200-KC Bandpass Filter Alignment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the 200-KC Bandpass Filter Alignment and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the 200-KC Bandpass Filter is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST AL-2

PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope - Frequency Meter
- VOM - Power Meter
- VTVM - Spectrum Analyzer
- Signal Generator - Distortion Indicator
- Sweep Generator - Tube Tester
- Transistor Tester - Semiconductor Diode Tester
- Audio Oscillator

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the 200-KC Bandpass Filter?

- YES
- NO
TEST INSTRUCTIONS

1. TEST AL-3
 Groundspeed and Drift Circuits Alignment

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Radar Set, AL-APN-147, with the appropriate test equipment to make the Groundspeed and Drift Circuits Alignment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Groundspeed and Drift Circuits Alignment and make necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Groundspeed and Drift Circuits are within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.

AL3-1S
I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- [] Oscilloscope
- [] VOM
- [] VTVM
- [] Signal Generator
- [] Sweep Generator
- [] Transistor Tester
- [] Audio Oscillator
- [] Frequency Meter
- [] Power Meter
- [] Spectrum Analyzer
- [] Distortion Indicator
- [] Tube Tester
- [] Semiconductor Diode Tester

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the Groundspeed and Drift Circuit.

- [] YES
- [] NO
1. **TEST AL-4**
 Computer Binary Division Alignment

2. **TIME ALLOCATED**
 45 minutes

3. **INSTRUCTIONS**

 a. Set up the Computer Set, AN/ASN-35, with the appropriate test equipment to make the Computer Binary Division Ratio Alignment.

 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.

 c. Check the Computer Binary Division Ratio Alignment and make any necessary adjustment. You may use any procedures and equipment available.

 d. Notify the Test Administrator when you are satisfied that the Computer Binary Division Ratio is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.

 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.

 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST AL-4

PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- Frequency Meter
- VOM
- Power Meter
- VTVM
- Spectrum Analyzer
- Signal Generator
- Distortion Indicator
- Sweep Generator
- Tube Tester
- Transistor Tester
- Semiconductor Diode Tester
- Audio Oscillator

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the Computer Binary Ratio?

- YES
- NO
TEST INSTRUCTIONS

1. TEST AL-5
 Computer Resolver Bridge Balancing Alignment

2. TIME ALLOTED
 30 minutes

3. INSTRUCTIONS:
 a. Set up the Computer Set, AN/ASN-35, with the appropriate test equipment to make the Computer Resolver Bridge Balancing Alignment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Computer Resolver Balancing Alignment and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Computer Resolver Bridge Balancing is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST AL-5

PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- Frequency Meter
- VOM
- Power Meter
- VTVM
- Spectrum Analyzer
- Signal Generator
- Distortion Indicator
- Sweep Generator
- Tube Tester
- Transistor Tester
- Semiconductor Diode Tester
- Audio Oscillator

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the Computer Resolver Bridge?

- YES
- NO
TEST INSTRUCTIONS

1. TEST AL-6
 Transmitter Synchros TX-501, TX-502 and TX-503 Alignment

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Computer Set, ASN-35, with the appropriate test equipment to make the Transmitter Synchros TX-501, TX-502, and TX-503 Alignment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Transmitter Synchros TX-501, TX-502, and TX-503 Alignment and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Transmitter Synchros TX-501, TX-502, and TX-503 is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST: 71-6

PERFORMANCE EVALUATION SHEET

TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Transistor Tester
- Audio Oscillator
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Tube Tester
- Semiconductor Diode Tester

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the Transmitter Synchros TX-501, TX-502, and TX-503?

- YES
- NO
TEST INSTRUCTIONS

1. TEST AL-7
 Control Transformer CT-501 Alignment

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Computer Set, AN/ASN-35, with the appropriate test equipment to make the Control Transformer CT-501 Alignment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Control Transformer CT-501 Alignment and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Control Transformer CT-501 is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST AL-7

PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

- Oscilloscope
- Frequency Meter
- VOM
- Power Meter
- VTVM
- Spectrum Analyzer
- Signal Generator
- Distortion Indicator
- Sweep Generator
- Tube Tester
- Transistor Tester
- Semiconductor Diode Tester
- Audio Oscillator

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the Control Transformer CT-501?

- YES
- NO
TEST INSTRUCTIONS

1. TEST AL-8
 Control Transformer CT-301 Alignment

2. TIME ALLOTTED
 30 minutes

3. INSTRUCTIONS
 a. Set up the Computer Set AN/ASN-35, with the appropriate test equipment to make the Control Transformer CT-301 Alignment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Control Transformer CT-301 Alignment and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Control Transformer CT-301 is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST AL-8

PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test:

- Oscilloscope
- Frequency Meter
- VOM
- Power Meter
- VTVM
- Spectrum Analyzer
- Signal Generator
- Distortion Indicator
- Sweep Generator
- Tube Tester
- Transistor Tester
- Semiconductor Diode Tester
- Audio Oscillator

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the Control Transformer CT-301?

- YES
- NO
TEST INSTRUCTIONS

1. TEST AL-9

 Transmitter Synchro TX-302 Alignment

2. TIME ALLOTTED

 30 minutes

3. INSTRUCTIONS

 a. Set up the Computer Set, AN/ASN-35, with the appropriate test equipment to make the Transmitter Synchro TX-302 Alignment.
 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.
 c. Check the Transmitter Synchro TX-302 Alignment and make any necessary adjustment. You may use any procedures and equipment available.
 d. Notify the Test Administrator when you are satisfied that the Transmitter Synchro TX-302 is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.
 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.
 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST AL-9

PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

__ Oscilloscope __ Frequency Meter
__ VOM __ Power Meter
__ VTVM __ Spectrum Analyzer
__ Signal Generator __ Distortion Indicator
__ Sweep Generator __ Tube Tester
__ Transistor Tester __ Semiconductor Diode Tester
__ Audio Oscillator

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the Transmitter Synchro TX-302?

__ YES __ NO
TEST INSTRUCTIONS

1. TEST AL-10

 Transmitter Synchro TX-301 Alignment

2. TIME ALLOTTED

 30 minutes

3. INSTRUCTIONS

 a. Set up the Computer Set, AN/ASN-35, with the appropriate test equipment to make the Transmitter Synchro TX-301 Alignment.

 b. Make your bench setup and have the Test Administrator check it before you apply any power. When the Test Administrator has checked your setup, he will instruct you to proceed with the test.

 c. Check the Transmitter Synchro TX-301 Alignment and make any necessary adjustment. You may use any procedures and equipment available.

 d. Notify the Test Administrator when you are satisfied that the Transmitter Synchro TX-301 is within tolerance limits. Be prepared to demonstrate to the Test Administrator how you obtained your answers.

 e. Enter your assigned identification number on the Performance Evaluation Sheet and complete your portion of it.

 f. Return the Test Instructions and Performance Evaluation Sheet to the Test Administrator.
TEST AL-10

PERFORMANCE EVALUATION SHEET

I. TO BE COMPLETED BY TECHNICIAN:

Place a check beside the equipment that you used in this test.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscilloscope</td>
<td>[]</td>
</tr>
<tr>
<td>Frequency Meter</td>
<td>[]</td>
</tr>
<tr>
<td>VOM</td>
<td>[]</td>
</tr>
<tr>
<td>Power Meter</td>
<td>[]</td>
</tr>
<tr>
<td>VTVM</td>
<td>[]</td>
</tr>
<tr>
<td>Spectrum Analyzer</td>
<td>[]</td>
</tr>
<tr>
<td>Signal Generator</td>
<td>[]</td>
</tr>
<tr>
<td>Distortion Indicator</td>
<td>[]</td>
</tr>
<tr>
<td>Sweep Generator</td>
<td>[]</td>
</tr>
<tr>
<td>Tube Tester</td>
<td>[]</td>
</tr>
<tr>
<td>Transistor Tester</td>
<td>[]</td>
</tr>
<tr>
<td>Semiconductor Diode Tester</td>
<td>[]</td>
</tr>
<tr>
<td>Audio Oscillator</td>
<td>[]</td>
</tr>
</tbody>
</table>

II. TO BE COMPLETED BY TEST ADMINISTRATOR:

Did the technician properly align the Transmitter, Synchro TX-301?

- [] YES
- [] NO
TEST INSTRUCTIONS

1. TEST

TS-1

2. TIME ALLOTTED

60 minutes

3. INSTRUCTIONS

a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.

b. A problem in the Radar Set, AN/APN-147, makes the system inoperable.

c. The malfunction is NOT due to a faulty alignment or adjustment.

d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.

e. DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.

f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.

g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.

h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.
1. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

2. Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

MODULE

<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td></td>
</tr>
<tr>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>Audio Amplifier</td>
<td></td>
</tr>
<tr>
<td>Coil</td>
<td></td>
</tr>
<tr>
<td>I-F Amplifier</td>
<td></td>
</tr>
<tr>
<td>Crystal</td>
<td></td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td></td>
</tr>
<tr>
<td>Diode</td>
<td></td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td></td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td></td>
</tr>
<tr>
<td>Gear Assembly</td>
<td></td>
</tr>
<tr>
<td>Sequential Timer</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td></td>
</tr>
<tr>
<td>Analog Converter</td>
<td></td>
</tr>
<tr>
<td>Plug-in Card</td>
<td></td>
</tr>
<tr>
<td>Signal Comparator</td>
<td></td>
</tr>
<tr>
<td>Potentiometer</td>
<td></td>
</tr>
<tr>
<td>F/T Power Supply</td>
<td></td>
</tr>
<tr>
<td>Relay</td>
<td></td>
</tr>
<tr>
<td>Resistor</td>
<td></td>
</tr>
<tr>
<td>Synchro</td>
<td></td>
</tr>
<tr>
<td>Switch</td>
<td></td>
</tr>
<tr>
<td>Tube</td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
</tr>
<tr>
<td>Transistor</td>
<td></td>
</tr>
<tr>
<td>Wiring or Printing</td>
<td></td>
</tr>
<tr>
<td>Circuit Repair</td>
<td></td>
</tr>
</tbody>
</table>

ID No.

TEST TS-1

599

TS1-3S 638-
A. What defective part did you find? Name part and Schematic designation.

B. Check Test Equipment you used for troubleshooting.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Tube Tester
- Transistor Checker
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Semiconductor Diode Tester
- Audio Oscillator
TEST INSTRUCTIONS

1. TEST
 TS-2

2. TIME ALLOTTED
 60 minutes

3. INSTRUCTIONS
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. A problem in the Radar Set, AN/APN-147, makes the system inoperative.
 c. The malfunction is NOT due to a faulty alignment or adjustment.
 d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.
 e. DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.
 f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.
 g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.
 h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.
i. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

j. Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

MODULE

<table>
<thead>
<tr>
<th>Module</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td>Capacitor</td>
</tr>
<tr>
<td>Audio Amplifier</td>
<td>Coil</td>
</tr>
<tr>
<td>I-F Amplifier</td>
<td>Crystal</td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td>Diode</td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td>Fuse</td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td>Gear Assembly</td>
</tr>
<tr>
<td>Sequential Timer</td>
<td>Motor</td>
</tr>
<tr>
<td>Analog Converter</td>
<td>Plug-in Card</td>
</tr>
<tr>
<td>Signal Comparator</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td>Relay</td>
</tr>
<tr>
<td></td>
<td>Resistor</td>
</tr>
<tr>
<td></td>
<td>Synchro</td>
</tr>
<tr>
<td></td>
<td>Switch</td>
</tr>
<tr>
<td></td>
<td>Tube</td>
</tr>
<tr>
<td></td>
<td>Transformer</td>
</tr>
<tr>
<td></td>
<td>Transistor</td>
</tr>
<tr>
<td></td>
<td>Wiring or Printing</td>
</tr>
<tr>
<td></td>
<td>Circuit Repair</td>
</tr>
</tbody>
</table>

TS2-38
603 642
A. What defective part did you find? Name part and Schematic designation:

B. Check Test Equipment you used for troubleshooting:

- [] Oscilloscope
- [] VOM
- [] VTVM
- [] Signal Generator
- [] Sweep Generator
- [] Tube Tester
- [] Transistor Checker
- [] Frequency Meter
- [] Power Meter
- [] Spectrum Analyzer
- [] Distortion Indicator
- [] Semiconductor Diode Tester
- [] Audio Oscillator
TEST INSTRUCTIONS

1. TEST
 TS-3

2. TIME ALLOCATED
 60 minutes

3. INSTRUCTIONS:
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. A problem in the Radar Set, AN/APN-147, makes the system inoperative.
 c. The malfunction is NOT due to a faulty alignment or adjustment.
 d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.
 e. DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.
 f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.
 g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.
 h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.

TS3-15
1. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

2. Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
ID No.

TEST TS- 3

PERFORMANCE EVALUATION SHEET

<table>
<thead>
<tr>
<th>MODULE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td>Capacitor</td>
</tr>
<tr>
<td>Audio Amplifier</td>
<td>Coil</td>
</tr>
<tr>
<td>I-F Amplifier</td>
<td>Crystal</td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td>Diode</td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td>Fuse</td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td>Gear Assembly</td>
</tr>
<tr>
<td>Sequential Timer</td>
<td>Motor</td>
</tr>
<tr>
<td>Analog Converter</td>
<td>Plug-in Card</td>
</tr>
<tr>
<td>Signal Comparator</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>F/T Power Supply</td>
<td>Relay</td>
</tr>
<tr>
<td></td>
<td>Resistor</td>
</tr>
<tr>
<td></td>
<td>Synchro</td>
</tr>
<tr>
<td></td>
<td>Switch</td>
</tr>
<tr>
<td></td>
<td>Tube</td>
</tr>
<tr>
<td></td>
<td>Transformer</td>
</tr>
<tr>
<td></td>
<td>Transistor</td>
</tr>
<tr>
<td></td>
<td>Wiring or Printing</td>
</tr>
<tr>
<td></td>
<td>Circuit Repair</td>
</tr>
</tbody>
</table>
TEST TS-3

ANSWER SHEET

A. What defective part did you find? Name part and Schematic designation.

B. Check Test Equipment you used for troubleshooting.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Tube Tester
- Transistor Checker
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Semiconductor Diode Tester
- Audio Oscillator

TS3-4S
647
608
TEST INSTRUCTIONS

1. TEST
 TS74

2. TIME ALLOTTED
 60 minutes

3. INSTRUCTIONS
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. A problem in the Radar Set, AN/APN-147, makes the system inoperative.
 c. The malfunction is NOT due to a faulty alignment or adjustment.
 d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.
 e. DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.
 f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.
 g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.
 h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.
1. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

2. Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

MODULE

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td></td>
</tr>
<tr>
<td>Audio Amplifier</td>
<td></td>
</tr>
<tr>
<td>I-F Amplifier</td>
<td></td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td></td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td></td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td></td>
</tr>
<tr>
<td>Sequential Timer</td>
<td></td>
</tr>
<tr>
<td>Analog Converter</td>
<td></td>
</tr>
<tr>
<td>Signal Comparator</td>
<td></td>
</tr>
<tr>
<td>F/T Power Supply</td>
<td></td>
</tr>
<tr>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>Coil</td>
<td></td>
</tr>
<tr>
<td>Crystal</td>
<td></td>
</tr>
<tr>
<td>Diode</td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td></td>
</tr>
<tr>
<td>Gear Assembly</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td></td>
</tr>
<tr>
<td>Plug-in Card</td>
<td></td>
</tr>
<tr>
<td>Potentiometer</td>
<td></td>
</tr>
<tr>
<td>Relay</td>
<td></td>
</tr>
<tr>
<td>Resistor</td>
<td></td>
</tr>
<tr>
<td>Synchro</td>
<td></td>
</tr>
<tr>
<td>Switch</td>
<td></td>
</tr>
<tr>
<td>Tube</td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
</tr>
<tr>
<td>Transistor</td>
<td></td>
</tr>
<tr>
<td>Wiring or Printing</td>
<td></td>
</tr>
<tr>
<td>Circuit Repair</td>
<td></td>
</tr>
</tbody>
</table>

ID No. ____________________

TEST TS-4
A. What defective part did you find? Name part and schematic designation.

B. Check Test Equipment you used for troubleshooting.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Tube Tester
- Transistor Checker
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Semiconductor, Diode Tester
- Audio Oscillator
TEST INSTRUCTIONS

1. **TEST**
 TS-5

2. **TIME ALLOTTED**
 60 minutes

3. **INSTRUCTIONS**
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. A problem in the Radar Set, AN/APN-147, makes the system inoperative.
 c. The malfunction is NOT due to a faulty alignment or adjustment.
 d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.
 e. **DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON**
 f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.
 g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.
 h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.
i. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

j. Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

<table>
<thead>
<tr>
<th>MODULE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td></td>
<td>Capacitor</td>
</tr>
<tr>
<td>Audio Amplifier</td>
<td></td>
<td>Coil</td>
</tr>
<tr>
<td>I-F Amplifier</td>
<td></td>
<td>Crystal</td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td></td>
<td>Diode</td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td></td>
<td>Fuse</td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td></td>
<td>Gear Assembly</td>
</tr>
<tr>
<td>Sequential Timer</td>
<td></td>
<td>Motor</td>
</tr>
<tr>
<td>Analog Converter</td>
<td></td>
<td>Plug-in Card</td>
</tr>
<tr>
<td>Signal Comparator</td>
<td></td>
<td>Potentiometer</td>
</tr>
<tr>
<td>F/T Power Supply</td>
<td></td>
<td>Relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synchro</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tube</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transformer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transistor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiring or Printing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Circuit Repair</td>
</tr>
</tbody>
</table>
A. What defective part did you find? Name part and Schematic designation.

B. Check Test Equipment you used for troubleshooting.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- "Tube Tester"
- Transistor Checker
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Semiconductor Diode Tester
- Audio Oscillator
TEST INSTRUCTIONS

1. TEST
 TS-6

2. TIME ALLOTTED
 60 minutes

3. INSTRUCTIONS
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. A problem in the Radar Set, AN/APN-147, makes the system inoperative.
 c. The malfunction is NOT due to a faulty alignment or adjustment.
 d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.
 e. DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.
 f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.
 g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.
 h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.
i. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

j. Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

MODULE

<table>
<thead>
<tr>
<th>Module</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td>Capacitor</td>
</tr>
<tr>
<td>Audio Amplifier</td>
<td>Coil</td>
</tr>
<tr>
<td>F-F Amplifier</td>
<td>Crystal</td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td>Diode</td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td>Fuse</td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td>Gear Assembly</td>
</tr>
<tr>
<td>Sequential Timer</td>
<td>Motor</td>
</tr>
<tr>
<td>Analog Converter</td>
<td>Plug-in Card</td>
</tr>
<tr>
<td>Signal Comparator</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>F/T Power Supply</td>
<td>Relay</td>
</tr>
<tr>
<td></td>
<td>Resistor</td>
</tr>
<tr>
<td></td>
<td>Synchro</td>
</tr>
<tr>
<td></td>
<td>Switch</td>
</tr>
<tr>
<td></td>
<td>Tube</td>
</tr>
<tr>
<td></td>
<td>Transformer</td>
</tr>
<tr>
<td></td>
<td>Transistor</td>
</tr>
<tr>
<td></td>
<td>Wiring or Printing</td>
</tr>
<tr>
<td></td>
<td>Circuit Repair</td>
</tr>
</tbody>
</table>

ID No. ___________________
A. What defective part did you find? Name part and Schematic designation.

B. Check Test Equipment you used for troubleshooting:

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Tube Tester
- Transistor Checker
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Semiconductor Diode Tester
- Audio Oscillator
1. **TEST**
TS-7

2. **TIME ALLOTTED**
60 minutes

3. **INSTRUCTIONS**

a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.

b. A problem in the Radar Set, AN/APN-147, makes the system inoperative.

c. The malfunction is **NOT** due to a faulty alignment or adjustment.

d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.

e. **DO NOT** UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.

f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.

g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.

h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.
i. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

j. Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

MODULE

<table>
<thead>
<tr>
<th>Component</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td></td>
</tr>
<tr>
<td>Audio Amplifier</td>
<td></td>
</tr>
<tr>
<td>1-F Amplifier</td>
<td></td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td></td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td></td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td></td>
</tr>
<tr>
<td>Sequential Timer</td>
<td></td>
</tr>
<tr>
<td>Analog Converter</td>
<td></td>
</tr>
<tr>
<td>Signal Comparator</td>
<td></td>
</tr>
<tr>
<td>F/T Power Supply</td>
<td></td>
</tr>
<tr>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>Coil</td>
<td></td>
</tr>
<tr>
<td>Crystal</td>
<td></td>
</tr>
<tr>
<td>Diode</td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td></td>
</tr>
<tr>
<td>Gear Assembly</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td></td>
</tr>
<tr>
<td>Plug-in Card</td>
<td></td>
</tr>
<tr>
<td>Potentiometer</td>
<td></td>
</tr>
<tr>
<td>Relay</td>
<td></td>
</tr>
<tr>
<td>Resistor</td>
<td></td>
</tr>
<tr>
<td>Synchro</td>
<td></td>
</tr>
<tr>
<td>Switch</td>
<td></td>
</tr>
<tr>
<td>Tube</td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
</tr>
<tr>
<td>Transistor</td>
<td></td>
</tr>
<tr>
<td>Wiring or Printing Circuit Repair</td>
<td></td>
</tr>
</tbody>
</table>

ID No. [195x619] TEST TS-7
PERFORMANCE EVALUATION SHEET

623 [509x619] 662
A. What defective part did you find? Name part and Schematic designation.

B. Check Test Equipment you used for troubleshooting.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Tube Tester
- Transistor Tester

- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Semiconductor Diode Tester
- Audio Oscillator
TEST INSTRUCTIONS

1. TEST
 TS-8

2. TIME ALLOTTED
 60 minutes

3. INSTRUCTIONS
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. A problem in the Radar Set, AN/APN-147, makes the system inoperative.
 c. The malfunction is NOT due to a faulty alignment or adjustment.
 d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.
 e. DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.
 f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.
 g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.
 h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.
1. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

MODULE

<table>
<thead>
<tr>
<th>Modulator</th>
<th>Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Amplifier</td>
<td>Coil</td>
</tr>
<tr>
<td>I-F Amplifier</td>
<td>Crystal</td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td>Diode</td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td>Fuse</td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td>Gear Assembly</td>
</tr>
<tr>
<td>Sequential Timer</td>
<td>Motor</td>
</tr>
<tr>
<td>Analog Converter</td>
<td>Plug-in Card</td>
</tr>
<tr>
<td>Signal Comparator</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>F/T Power Supply</td>
<td>Relay</td>
</tr>
<tr>
<td></td>
<td>Resistor</td>
</tr>
<tr>
<td></td>
<td>Synchro</td>
</tr>
<tr>
<td></td>
<td>Switch</td>
</tr>
<tr>
<td></td>
<td>Tube</td>
</tr>
<tr>
<td></td>
<td>Transformer</td>
</tr>
<tr>
<td></td>
<td>Transistor</td>
</tr>
<tr>
<td></td>
<td>Wiring or Printing</td>
</tr>
<tr>
<td></td>
<td>Circuit Repair</td>
</tr>
</tbody>
</table>
A. What defective part did you find? Name part and Schematic designation.

B. Check Test Equipment you used for troubleshooting.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Tube Tester
- Transistor Checker
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Semiconductor Diode Tester
- Audio Oscillator
TEST INSTRUCTIONS

1. TEST
 TS-9

2. TIME ALLOTTED
 60 minutes

3. INSTRUCTIONS
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. A problem in the Radar Set, AN/APN-147, makes the system inoperative.
 c. The malfunction is NOT due to a faulty alignment or adjustment.
 d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.
 e. DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.
 f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.
 g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.
 h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.
1. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

j. Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

<table>
<thead>
<tr>
<th>MODULE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Amplifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-F Amplifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequential Timer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Converter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Comparator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F/T Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gear Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plug-in Card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentiometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transistor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring or Printing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit Repair</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ID No. ___________________________
TEST TS-9

ANSWER SHEET

A. What defective part did you find? Name part and Schematic designation.

B. Check Test Equipment you used for troubleshooting.

 - Oscilloscope
 - VOM
 - VTVM
 - Signal Generator
 - Sweep Generator
 - Tube Tester
 - Transistor Checker
 - Frequency Meter
 - Power Meter
 - Spectrum Analyzer
 - Distortion Indicator
 - Semiconductor Diode Tester
 - Audio Oscillator
TEST INSTRUCTIONS

1. TEST
 TS-10

2. TIME ALLOTTED
 60 minutes.

3. INSTRUCTIONS
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. A problem in the Radar Set, AN/APN-147, makes the system inoperable.
 c. The malfunction is NOT due to a faulty alignment or adjustment.
 d. Troubleshoot and isolate the malfunction to the defective part. Use whatever techniques and equipment that are available to localize the problem.
 e. DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.
 f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test them on appropriate test equipment.
 g. If you suspect that a certain resistor, capacitor, transistor, or other non-plug-in item is defective, remove the module containing that part from its chassis. Ask the Test Administrator for a replacement module in which that part is good.
 h. If you decide a tube or other plug-in is defective, ask the Test Administrator for a good replacement.
1. After you receive a serviceable part or module from the Test Administrator, replace the item and recheck the system.

j. Enter your assigned identification number on your Answer Sheet, enter your answer, and give the Answer Sheet to the Test Administrator.
PERFORMANCE EVALUATION SHEET

<table>
<thead>
<tr>
<th>MODULE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td>Capacitor</td>
</tr>
<tr>
<td>Audio Amplifier</td>
<td>Coil</td>
</tr>
<tr>
<td>I-F Amplifier</td>
<td>Crystal</td>
</tr>
<tr>
<td>R/T Power Supply</td>
<td>Diode</td>
</tr>
<tr>
<td>Frequency Mixer Stage</td>
<td>Fuse</td>
</tr>
<tr>
<td>Electronic Control Amplifier</td>
<td>Gear Assembly</td>
</tr>
<tr>
<td>Sequential Timer</td>
<td>Motor</td>
</tr>
<tr>
<td>Analog Converter</td>
<td>Plug-in Card</td>
</tr>
<tr>
<td>Signal Comparator</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>F/T Power Supply</td>
<td>Relay</td>
</tr>
<tr>
<td></td>
<td>Resistor</td>
</tr>
<tr>
<td></td>
<td>Synchro</td>
</tr>
<tr>
<td></td>
<td>Switch</td>
</tr>
<tr>
<td></td>
<td>Tube</td>
</tr>
<tr>
<td></td>
<td>Transformer</td>
</tr>
<tr>
<td></td>
<td>Transistor</td>
</tr>
<tr>
<td></td>
<td>Wiring or Printing</td>
</tr>
<tr>
<td></td>
<td>Circuit Repair</td>
</tr>
</tbody>
</table>

ID No. ____________________________
A. What defective part did you find? Name part and schematic designation.

B. Check Test Equipment you used for troubleshooting.

- Oscilloscope
- VOM
- VTVM
- Signal Generator
- Sweep Generator
- Tube Tester
- Transistor Checker
- Frequency Meter
- Power Meter
- Spectrum Analyzer
- Distortion Indicator
- Semiconductor Diode Tester
- Audio Oscillator
TEST INSTRUCTIONS

1. TEST
 TS-11

2. TIME ALLOTTED
 1 hour 30 minutes

3. INSTRUCTIONS
 a. Enter your assigned identification number on the attached Performance Evaluation Sheet and give it to the Test Administrator.
 b. A problem in the Navigational Computer Set, ASN-35, makes the system inoperative.
 c. The malfunction is NOT due to a alignment or adjustment.
 d. Troubleshoot and isolate the malfunction to the defective module or plug-in only. Use whatever techniques and equipment that are available to localize the problem.
 e. **DO NOT UNSOLDER ANY PART FROM THE CIRCUIT FOR ANY REASON.**
 f. You can remove "plug-in" type parts such as tubes, crystals, relays, etc., and test on appropriate test equipment.
 g. If you suspect that a certain resistor, capacitor, or transistor on a module or plug-in item is defective, remove the module or plug-in containing that part from its chassis. Ask the Test Administrator for a replacement module or plug-in in which that part is good.
h. After you receive a serviceable module or plug-in from the Test Administrator, replace the item and recheck the system.

i. Enter your assigned identification number on your Answer Sheet, complete your answer, and give the Answer Sheet to the Test Administrator.
A. What defective module did you find? Name module and give schematic designation.

B. Check Test Equipment You Used For Troubleshooting

- Oscilloscope
- Frequency Meter
- Tube Tester
- VOM
- Power Meter
- Transistor Checker
- VTVM
- Spectrum Analyzer
- Semiconductor Diode Tester
- Signal Generator
- Distortion Indicator
- Audio Oscillator
- Sweep Generator

List any Specialized Test Equipment You Used For Troubleshooting.
PERFORMANCE EVALUATION SHEET

MODULE/PLUG-IN

<table>
<thead>
<tr>
<th>Assembly</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Assembly</td>
<td></td>
</tr>
<tr>
<td>Track Resolver Assembly</td>
<td></td>
</tr>
<tr>
<td>Relay Chassis Assembly</td>
<td></td>
</tr>
<tr>
<td>Translator Driver Assembly</td>
<td></td>
</tr>
<tr>
<td>Regular Assembly</td>
<td></td>
</tr>
<tr>
<td>NPN Multiar Assembly</td>
<td></td>
</tr>
<tr>
<td>High Voltage Switch Assembly</td>
<td></td>
</tr>
<tr>
<td>PNP Multiar and Flip-Flop Assembly</td>
<td></td>
</tr>
<tr>
<td>Schmitt Trigger and Gates Assembly</td>
<td></td>
</tr>
<tr>
<td>Triple Binary Assembly</td>
<td></td>
</tr>
<tr>
<td>Actuator Assembly</td>
<td></td>
</tr>
<tr>
<td>Servo Amplifier Assembly</td>
<td></td>
</tr>
<tr>
<td>Control-Indicator Assembly</td>
<td></td>
</tr>
</tbody>
</table>