AUTHOR
TITLE
INSTITUTION
pOB DATE
NOTE
AVAILABLE FROM

EDRS PRICE
DESERIPTORS

Smith, Seaton E., Jr.; Backman, Carl A., Ed. Games and Puzzles for Elementary and Middle School Mathematics. Readings from the ARITHMETIC TEACHER. National Council of Teachers of Mathematics. Inc., Washington, D.C.
75

287p.

National Council of Teachers of Mathematics, Inc., 1906 Association Drive. Reston, Virginia 22091
MF-\$0.76 PLUS POSTAGE. HC Not Available from EDRS. Activity Learning; Educational Gamesं; Elefentary Education; *Elementary School Mathematics; *games; *Instruction; Laboratory Procedures; *Learning " Activities; *Mathematics Education; Middle Schools; Student Developed Materials; Teacher Developed Materials

ABSTRACT

.
值is bodk contains 105 articles dealing with games for use in the elementary or middle school mathematics classroome. all the articles originally appeared in the "Arithmetic Teacher" between 1956 and 19\%4. In this volume the papers are arranged in nine categories. (1) using games and puzzles, (2) whole, numbers, (3) numeration, (4) integers, (5) rational numbers, (6) number theory and patterns, (7) geometry and measurement, (8) reasoning and logic, and (9) , multipurpose games and puzzles. While some of the games are aimed at review or practice on basic skills others were designed with multiple objectives in mind. There is a great yariety in the forms of the games; board games, crossword-type puzzles, paper and pencil games, manipulative puzzles, for individual solution, and many others are included. Some of the games were developed by students; many others were designed by teachers. (SD)

*

Documents acquired by ERIC include many informal unpublished *

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. nevertheless, items of marginal
* reproducibility ure of ten encountereand this affects the quality
* of the microfiche and hardcopy reproductions ERTC makes available
* via the ERIC Document Feproduction Service (EDRS). EDRS is not *
* responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original. * ***

Games \& Puzzles for Elementary and

 OMiddle School

 OMiddle School gMathematics

 gMathematics}

US OEPARTMENT OF HEALTH, EOUCAYION \& WELFARE NATIONAL INSTIYUTE OF EOUCATION
HIS OOCUMENT HAS BEEN REPRO OUCEO EXACTLY AS RECEIVEO FROM THE PERSON OR ORGANIZATION ORIGIN ATING IT POINTS OF VIEW OR OPINIONS STATEO OO NOT NECESSARILY REPRE SENTOFFICIAL NATIONAL. INSTITUTE OF EOUCATION POSITION OR POIICY

PFRMISSION : 0 REPROOUCE THIS COPVRIGHIEO MATERIAL BY MICRO FICHE ONLY WAS BEEN GRANTEO BY
N. $C \cdot \vec{T}$

O ERIC ANO ORGANIZATIONS OPERAT ING UNDER AGREEMENTS WITH THE NA TIONAL INSTITUYE OF EOUCATİON FURTHER REPRODUCIION OUTSIDE THE ERIC SYSTEM REQUIRES PERMIS SION GF THE COPYRIGHT OWNER.

Games and Puzzles for Elementary and Middle School Mathematics

Readings from the Arithmetic Teacher

calited by
SEATON E. SMITH, JR.
CARL A. BACTKMAN
Faculty of Elementary Education
The University of West Florida
Pensacola. Florida

National Council of Teachers of Mathematics

Copyright © 1975 by

THE National colwcil of teachers of matilematics, INC.
1:nek Association Drive. Rcston, Viryinua 22091
All rights reserved

Library of Congress Catalogmg in Publication Data:

Main entry under title:
Games and puzzles for elementary and middle school mathematics.

1. Mathematics--Study and teaching (Elemen-tary)--Addresses, essays, lectures. 2. Mathe-matics--Study and teaching (Secondary)-Addresses, essays, lectures. 3. Mathematical recreations--Addresses, essays, lectures. I. Smith, Seaton E. II. Backman, Carl A. III. The Arithmetic teacher. QA135.5.G26 510'.7'8 75-16349

1

Printed in the Linted States of Amerien

Contents

Introduction 1

1. Using Games and Puzzles in Mathematics Instruction 3
Commercial Games for the Arithnectic Class March 1958
Donovan A Johnson 5
The Role of Games, Purfles, and Riddes inElementary MathematicsNovember 1963
Fostering Enthusiasm through Child-createdGamesFebruary 1970
Mathematics Games in the ClassroomMarch 1974
Sparking Interest in the Mathematics
ClassroomMarch 1970

- Payoff in Increased Instructional Time and Enrichment ActivitiesDecember 1972

2. Whole Numbers
Games for the Early Grades Edwina Deans 31
Creative Drill with Pietures Richard Crouse and Elizabeth Rinehart 33April 1973
Secret Number Sentence Willam L. Swart 36
Fehruary 1969
Making Drill More Interesting W. II Patterson:Jr. 38
February 1974.
Go Shopping! Problem-solving Activities forthe Primary Grades with Provisions forIndividualizationNovember 1970
They All Add Up M. Jane Ilechman 43
Mastering the Baste Facts with Dice Howard Y Goiman 46
May 1973
L.et's Play Computer Elaine V. Bartel 48March 1974
Multu-be:
December 1973
Arithmetic GamesSylva Orans41
Arthur K. Mihs 50
Clyde A. Dilley and Waher E. Rucker 52
Dora Dohler 7 7
Sarah R. Gölden 10 10
Donald R. Kerr. Jr. 15
Donald L. Bradfield 19
Dinald Brad
Robert E: Rea and James French 2329

The-Witch's Best Game
December 1966
\wedge^{\wedge} Game for Reviewing Basic Facts of Arithmetic

November 1972
"Contig": A Game to Practice and Sharpen Skills and Facts in the Four Fundamental Operations : May 1972

Cardematics J-Using Playing Cards as Reinforcers and Motivators in Basic Operations

- May 1974
Green Chimneys Poker

May 1974

Diffy

October 1971

Magic Triangles-Practice in Skills and Thinking

October 1974
Easy Construction of Magic Squares for Classroom Use

February 1965

3. Numeration

C. Winston Smith. Jr.

- Edward E. Arnsdorf 56
Frank W. Broadbent 58
Seymour Metzner and Richard M. Sharp 61
T. Ristorcelli 64
Herbert Wills 65
Donald L. Zalewski 69
John Cappon. Sr. 73
A Place-Value Game for First Graders-aTeacher-made Device
\qquad -
November 1957
Placo-a Number-Place Game
May 1968
The Game of Five
May 1963
Harold J. Shurlow, 84 84
From Second Base to Third Base
November 1973
A Game Introduction to the BinaryNumeration SystemJohn Niman89
December 1971
Tantalizing TernaryErnest R. Ranucci91
December 1968

4. Integers
Robert C. Calvo 82
Irene R. MacRae 8079
Michael Alfonso. Richard Balzer. and Paul Hartung 86
Integer "Football" Virginia C. Demchik 98
October 1973
Subtraction of Integers-Discovered 'through a Game
February 1969
Grisly Grids
Climb the Ladder
May 1969
Play Shufflebbard with Negative Numbers May 1969
Disguised Practice for Múluplication andAddition of Directed NumbersMay 1969
A Student-constructed Game for Drill with IntegersNovember 1972May 1969
Editorial FeedbackDecember 1970
5. Rational Numbers 119
A Game of Fractions
October !966
Charlotte W. Junge 121
Crazy Fractions: An Equivalence Game April 1973
Earnest Carlisle 122
Fracto
April 1974
The Conversion Game Beth Ellen Lazẹrick 124
January 1971
"Fradécent"-a game Using EquivalentFractions, Decimals, and PercentsMarch 1972
An Adventure in Division
May 1968
Lois Stephens 128
Introduction to Ratio and ProportionFebfuary 1969
Make a Whole-a Game Using SimpleFractionsFebruary 1971
A Game with Fraction NumbersJanuary 1970
6. Number Theory and Patterns 137
Fun Can Be Mathematics Audrey Kopp and Robert Hamada 139
November 1969
Bang, Buzz, Buzz-Bang, and PrimeErnest E. Allen141
Albert H. Mauthe
Albert H. Mauthe 102 102
Char!otle Frank
Char!otle Frank 105 105
Esther Milne 108
Merle Mae Cantlon, Doris Homan. and Barbara Stone 110
William G. Mehl and David W. Mehl 113
Mary Helen Bean 116
Maric Molinoski 123
Charles Armstrong 126Roland L. Brousseau. Thomas A. Brown,and Peter J. Johnson131
Joann Rode 133Richard Thomas Zyikowski135October 1969

vi CONTENTS

 Prime: A Drill at the Recogntion of Prime

 and Composite Numbers
 Gregory Holdan 142
February 1969
The Factor Game J. B. Harhin and D. S. Martin 145
November 1973
Five "Nontrivial" Number Games Terrel Trouter. Jr. 148
November 1972
Magic Squares: Extensions into Mathematics Daiyo Sawada 151
March 1974
"Interest Getters" Karl G. Zahn 157
April l968
Just for Fun .J. D Cäldurell160May 1968
7. Geometry and Measurement 161
Don't Miss the TrainFcbruary 1473
Procedures for Designng Your Own Metric
Games for Pupil Involvement May 1974
Geo-Gin Janis A. Berman 172
April 1974
Cecil R. Trueblood and Michael S:abo 167
Paper Folding and Cutting a Set of TangramPiecesApril 1971
A Game with Shapes
April 1969
Daisy Gogan' 177
An Example of Informal Geometry: Mirror Cards
Corinna Porlier 163
Steven S. Dickoff 174
Maron Walter 179October 1966
Popsicle Sticks and Flying Polygons
Octuber 1970
The Try-Angle Puzale George Janicki 185
November 1956
A Pythagorean Puzzale Gary D. Hall 186
January 1912
Tic-Tac-Toe a Mathematical Game for Grades 4 through 9 Robert A. Timmons 189
Q, rober 1967
Hide-a-Region $N \geq 2$ Can Play
Octuber 1969
Car:esian Coordinates and Battleship William R. Bell 194
May 1974
Holiday Plot-DotsGary A. Deatsman195February 1974
Stick Puzle Anonymous 197
October 1959
A Game of Squares George Janicki 198
November 1956
Cross-Figure Puzzle-- Measures George Jantcki 198
February 1956
8. Reasoning and Logic 199
Rainy-Day Games
April 1972
Roberl C. Gessel. Carolyn Johnson, Marty Boren. and Charles Smith 201
Nu-Tic-Tac-Toe Harry D. Ruderman 203November 1965Computers Teach MathJudy: Ackerman205
May 1968
KALAH-an Ancient Game of Mathematical Skill John B. Haggerty 267
May 1964
A Project for the Low-Budget Mathematics Laboratory: The Game of Kalah Randall L. Brill 212
December 1974
Drill Some Fun into Your Mathematics Class Marie Massè 215 May 1974Jupiter Horse RaceElinorJ. W'riu217January 1973A Coin TrickAnonymous219
March 1956
Paper, Pencil, and Book Henry Lulli 219December 1973
9. Multipurpose Games and Puzzles 221Active Games: An Approach to TeachingMathematical Skills to the EducableMentally Retarded
December 1974
George R. Taylor and Susin T. Watkins 222
More Games for the Early Grades Edwina Deans 226
March 1966
A Deck of Cards, a Bunch of Kids, and Thou Peter K. Gurau 229
February 1969
Arithmetic Card Games Martin H. Hunt 231
December 1968
A rithmetic Football Earl A. Karau 234
November 1956
Television Games Adapted for Use in Junior High Mathematics ClassesDoris Homan236March 1973

Introduction

During the past decade, the use of games and puczles in the teaching of mathematics has increased dramatically. This current interest in games and puzzess is evidenced by the growing number of presentations on the súbject at NCTM regional and national meetings in recent years. It is also highly visible in the new products offered by commercial producers of books and materials related to the teaching of mathematics.

Although most teachers are well aware of the importance of good planning in all instruction, it seems worthy to note that games and puczles should be used primarily within the framework of a weli-planned sequence of instruction. When selecting a game or puzzle for classroom use, the teacher should make his or her selection because the game or puczle can serve a particular purpose related to the mathematical content to be studied.

It is also important to note that mathematical games and puzeles per se are noi the ultimate solution for all our attempts to individualize instruction, to provide enrichment, or to provide experiences in a mathematics laboratory. It is true, however, that games and puczles may be used effectively as one of many components in each of these areas.
One of the general purposes for using mathematical games and puzzles is Io stimulate interest and develop favorable attitudes toward mathematics. In faddition, most games and puzzles can be keyed to one or more of the following instructional purposes:
I. To develop concepts
2. To provide drill and reinforcement experiences
3. To develop perceptual abilities
4. To provide opportunities for logical thinking or problem soiving

A most important consideration in the effective use of games and puzales in mathematics education is preparing the students to play the ganes properly. Instruction in the use of games and puzzles should be given the same careful attention that is given to any other aspects of a lesson. Children should be conscious of the fact that a particưlar game or puzzle has been selected because it will help them iearn something relative to mathematies and because it
is hoped that they will fyve fun while they are learning. They should also realize that if the game loses its mathematical focus and becomes simply a reereational activity. they can expect it either to be brought back into focus or terminated.

Through the years since its conception in 1954, the Arithmetic Teacher has served as a forum for sharing ideas about teaching mathematies in the elementary and middle schools. Many excellent articles on games and puzzles have been published during this time. For this book of readings more than one hundred of these artieles have been selected and organized on the basis of the following major strands of elementary and middle school mathematies: whole numbers. numeration, integers, rational numbers, number theory and patterns. geometry and measurement, reasoning, and logic. As yot read these articles. try and envision multiple adaptations and improvements for the many games and puczles so that they may be used more effectively for your own purposes.

We hope that you will find this publication a meaningful and useful resource and that you will be stimulated to share some of your ideas for mathematical games and puacies with your fellow teachers in the future, perhaps through the Arithmetic Teacher.

Using Games and Puzzlés in Mathematics

 \section*{

 \section*{$\square \square$}

$\square \square$}} Instruction

Mathèmatical games and puzzles can serve many functions in the elementary school classroom. In the opening article, Donovan Johnson provides an excellent discussion of some of these functions as well as a set of guidelines for using mathematical games "at the right time, for the right purpose, in the right way." Additional support for the idea of using mathematical games, puzzles, and riddles is offered by Dohler. who illustrates her ideas with sample activities.

Colden suggests that child-made games can foster enthusiasm in the classroom and contribute to !earning in a number of ways. She supports her point of view with a discussion of many interesting games that were created by first-and second-grade students. Kérr provides a refreshing discussion about the involvement of a group of students with a mathematical game that resulted in some excellent analytical thinking and ultimately in a much im proved version of the original game.

Bradfield proposes to enliven the mathematics classroom by providing more comedy, mystery, and drama. He then'classifies and analyzes a number of enrichment problems accordingly and suggests that a "teacher is limited only by his own ingenuity and creativity."
. In the concluding article of this chapter, Rea and French provide some evidence from a small-scale research study to support the ided that mental computation, number puzzles, and enrichment activities can produce an increase in mathematics achievement as measured by standardized tests. They are also careful to note some of the limitations of their study, and they describe and illustrate some of the mental computation and enrichment activities that were employed with sixth-grade students.

Commercial Games for the Arithmetic Class

Donovan A. Johnson
University of Minnesgata, Minneapolis

Amusement and pleasure ought to be combined with instruction in order to make the subject more interesting. There hould be games of various kinds such as a game played with different kinds of coins mixed together. There should also be probtems connected with boxing and wrestling matches. These things make a pupil useful 10 himself and more wide awake." -Plato

Even as Plato proclaimed, some learning of arithmetic can be accomplished through gimes. Games are usually considered a trereational activity. They are a means for releasing boredom or tension. Games break down barriers between strangers and quickly wablish a friendly group spirit. At the same liue games măy be a way to learn to follow miles, to be cooperative, to be observant, or to practice diligently. Games also give parlicipants a chance to develop restraint, to contribute as a leader and follower, to acrept responsibility for individual as well as uroup action. However, learning arithmetic in not all a game. Other types of individual and independent group activities are obviously essential. But the variety and activity of a game may break tip the monotony so frequently present in practice or drill lessons.

Unquestionably the key to learning arithmetic is through meaningful experiences and practical applications. However, the skills of computation need to be nurtured by a tariety of systematic practice and drill. Thus the total approach to learning arithmetic wes meaning, practice, and application. The meaning of numbers, the understandme of a process, the wathematical structure im ulved precedes the practice. Practice then i. the part of the learning process which himilds accuracy, efficiency, and retention. l'urposeful practice in the right amount at the right time will help build the arithmeti-
cal competence that business, science, industry, and education are demanding. Arithmetic games are ideally suited for a systematic program of practice. However, games can serve a variety of functions in your classroom, such ás:

- Build desirable attitudes towards arithmetic
- Provide for individual differences
- Provide appropriate "hoinework" for parent-child activity
- Make practice periods pleasant and successful

Right now there are a great variety of arithmetic gantes available from commercial publishers. Most of these games are available at school supply stores or toy stores. They are usuaily attractive and duraile with complete playing instructions included. Of course you can make up a variety of games with flash cards or number cards. However, the convenience of commercial cards makes them highly desirable. Try them sometime. You will be pleasantly surprised with the vigor pupils will exhibit in learning combinations in order to win a game instead of working problems to win the teachers favor.

Using Arithmetic Games in the Classroom

The success of an arithmetic game, like any classroom material or technique, is highly dependent on how it is used. If an arithmetic game is to serve a real function it should be used at the right time, for the right purpose, in the right way.

1. Select a game according to the needs of the class. The basic criteria is that the game make a unique contribution to learn-
ing of arithmetic that cannot be attained as well or better by any other material or technique. The material of the game should be closely related to that of the regular classwork, Whatever game is selected should involve important skills and concepts. Major emphasis should be on the learning of concepts or skills rather than on the pleasure of playing the game itself.
2. U'se the game at the proper time. If games are to make the maximum contribution to the learning of arithmetic they should be used at the time when the ideas or shills are being taught or reviewed. However, many teachers prefer to we games after completing a topic, on the das 1,efore a vacation, or during the pupils free ime at noon, in study periods or homerooms. Others use them during dats of heavy absence due to stoms, concert, or earursions. Some teachers use them as rewards for work well done while others ase them for remedial worh. Usually games Thould be plated a relatively short time so that pupils do not love interest.
3. Ariange the game stluation so that ALI. pupils uill be patictipateng in every play. Even though only one peroon is working on a certain problem at a given time every team member must be responsible for its solation too. Game: must alvo aroid embarrassine the person who cannot solve a problem. Keep comments positive, commend erod work rather dian making unfavoroble comparisons. Whemerer possible pupits should compete with their peers.
and should be worhing on material according to their ability.
4. Plan and arganize the game carefully so that the informality and exctement of the setting does not defeat its purpose. Teach the plasing of games in a planned, organized way as you would present other activities. Have all the materials at band so that the game can proceed in an orderly fashion. When a new, complex game is being played, start with a few essential rules and then add other rules as they are needed during the game. Use a few practice plays to help get started. Then expect good work, as neat and accurate as regular classwork. Pupils n ay referee the competition as well as play the game. Before beginnung the game the participants should be instructed on the purpose of the game, the rules of the game, and the way to participate. Often the pupils can establish ground rules, so that eseryone (including the teacher) may enjoy the activities. "Coaching" or "hibitizing" should never be allowed. The loss of points for the breaking of rules will usually be sufficient to maintain appropriate behavior. Avoid the choosing of team members by pupil captains so that low ability pupils will not be embarrassed by being last choice.
5. Emphasize the restonsiblhty of learning samething from the game. Follow-up activities such as discussions, readings, or tests will emphatize this responsibility. As the teacher, evaluate the results by ashing your elf how succes, ful the game was in promoting devired learning.

Editoriud. Commen i. Although the article originally appeared in 1958, the message may be even more to the point today, when mathematical games are riding a crest of popularity. Donovan Johnson has noted that much value can be found in good mathematical games. He has also noted that games alone will not suffice to teach mathematics. Much depends on how a game is used.

The role of games, puzzles; and riddles in elementary mathematics

DORA DOHLER Owatonna Public Schools, Owatonna, Minnesota

What can we do to make math more inviting for our students? How can we lead them into the interesting experiences which are so much a part of mathematics?
I have found that puzzes, riddles, and games can not only arouse interest, but they can also help further mathematics knowledge and understanding.

Careful analysis of so-called "trick riddles" can show fallacies in thinking and bring out the necessity of careful study before drawing conclusions. This analysis also can help concept formation by pointing out the "whys." A thorough understanding of mathematics is necessary if a child is to tell why a certain incorrect solution was

Figure 1
obtained or why a certain problem always "works out."

Much meaningful practice can be presented in an exciting way through the use of games. Dot-to-dot puzales can be construeted where the sums or products (depending upon the grade level) are the numerals to be connected. This is good practice with the mathematics facts.

Another game for practice with the various operations is a squared sheet Where each triangle is to be colored to correspond to the givei number representing the simplest name for the expression in the triangle (see Fig. 1).

The children consider work with a number line as a real "fun" experience. We can imagine we are grasshoppers and can jump a given number of units. This offers practice in skip-counting, addition, subtraction, or muitiplication. The grasshopper may jump thirteen units beginnilig at 7 . Where will he be after 4 jumps of thirteen units each? The children may arrive at the solution in many different 'ways, which they should be encouraged to share with the rest of the class.
T Two points, A and B, may be plotted on a number line. The children find a point half way hetween the two points, or they
find another point equidistant from the second point. They could also plot two other points which would be the same distance apart as the first two points. In this way children naturally work into a study of fractional numbers.

Addition-subtraction and multiplica-tion-division "wheels" provide practice with the various operations as well as showing the inverse relationship between multiplication-division and addition-sub)traction. The sum (or product) of the numbers recorded in the two inner circles equals the numbers recorded in the outer circle (see Fig. 2).

Figure 2
Puzales can offer an early introduction to geometry. For evample, the children can find the number of triangles in objects such as these: !

or the number of squares in an object:

A good puzzle for that spare moment is the oral "string problem" where we can attempt to solve a complex equation involving many varied operations such as in the following illustration: Take 7; multiply by 3 ; add 4 ; divide by 5 ; multiply by 9 ; add 3 ; divide by 6 ; multiply by 4 ; add 4 ; divide by 9 . The answer is 4 . Depending upon the ability of the class, we can speed up or slow down the rate of presenting the operations. Success depends upon kineing the mathematics facts, an ability to solve equations mentally, and rapid thinking.
Children enjoy reconstruction problems if a careful developmental sequence is peresented. One may begin using examples such as the following.

$$
\begin{aligned}
2+\square & =6 \\
\square+3 & =4 \\
10+\square & =(7+3)+4 \\
20+\square & =17+4 \\
4 \times 6 & =\square \\
\square \times 4 & =12 \\
(\square \times 7)+6 & =20 \\
24 & =(\square \times 6)+(2 \times 6) \\
70 \times 8 & =\square \times 10 \\
\frac{3}{2} \square \square & =1 \frac{1}{2} \\
\square-\frac{3}{2} & =5 \\
\$ 1,294+\square & =54,927-\$ 1,090 \\
\square \times \frac{1}{2} & =\frac{5}{4} \\
\square \mathrm{pt.}+\square \mathrm{q} . & =1 \text { gal. } \\
1,692,046+\square \square & =7,298,102 \\
4 \frac{1}{2} \times \square & =27
\end{aligned}
$$

Work with inequalities and equalities gives experience with the operations. Examples: Supply the $\operatorname{sign}=,<$ (less thai: $:$), or $>$ (greater than).

$$
\begin{aligned}
& 1,469,201 \bigcirc 469,201 \\
& 1 \frac{1}{2}+\frac{1}{2} \bigcirc \frac{1}{2}+\frac{3}{8}+\frac{1}{4}+\frac{1}{4}
\end{aligned}
$$

(The O serves as a placeholder for the equals sign or for the signs of inequality.)
$(4+5) \times 2 \bigcirc 18$
$(6+3)+9 \bigcirc 6 \times 3$
$4 \times 9 \bigcirc(5 \times 6)+(4 \times 6)$
$2,462,910 \bigcirc 4,262,910$

Equations with operation symbols to be supplied by the pupils prove quite chatlenging to many children besides supplying a means of practicing computation. Example are:

(The \triangle the operational sign.)
 (5)

(Distributive Property of Multiplicaion)
Number sequences are a good method of developing skill and accuracy of compuration. The students find the pattern and supply the missing terms. This can be easily adapted to any grade level or concent being developed. Examples are!:
a. $1,3,5, \longrightarrow$, , $11, \longrightarrow$,
b. $5,10,15$,

c. $7 \frac{1}{2}, 9,10 \frac{1}{2}$,
d.

c. 2:00, \qquad 1:00, 12:40,
f. $5 \neq 35$,
 $\$ 1.55$
g. $1,3,6,10$, \qquad
————, 55
These and other puzzles and riddles developed by both the teacher and members of the class supply a little extra "spark" to begin or end a class period, an enjoyable way to practice skills, an effective enrichment or remedial lesson, and an interest-. catcher for our mathematics program. They offer the dessert for a mathematics meal that can be enjoyed by all.

Fostering enthusiasm through child-created games

SARAHR.GOLDEN
Sarah Golden is a rlasstoom teacher of a combination first-and second-grade class at Halecrist School in Chula Vista City School District. Chula Vista, Californa. Mathenaties is a farorite subject for her and for har class.

How can the young child develop enthusiasm for mathematics, maintain needed skills, gain mathematical insight, and work at his individual level in a relaxed classroom climate of success?

One of the possible ways developed as a result of a recent visit by Donald Cohen, Madison Project Resident Coordinator in New York City, to my combination firstsecond class. He introduced an original Guess the Rules board game involving movenent of imaginary traffic. Following this experience, one boy tried to make up his own Guess the Rules game while the other, children played with commercial and teacher-made ganies. I noted that in playing some of the gaunes, variations of the original rules were used spontancously by small groups to increase total scores possible. For example, the chalkboard scores for Ring Toss ran into the thousands, although the indicated score for each toss was only 5 or 15 . "Oh," said Jeff, sitting on the floor with one foot extended, "When he rings my foot, it counts for one hundred. When he rings Robert's foot, that's five hundred." Excitement ran high.

The next day we discussed the possibility of each child creating his own board game. The following criteria were established:

1. The game must be fun to play.
2. The game must have rules.
3. The game should enable childritii to play together and become friends.
4. The children must learn from the gane.

Mathematics, science, reading, and spelling were suggested by the children as the content areas. The mathematics games might include, they said, go ahead and go back, counting, addition, subtraction, and multiplication. Dismissal time arrived all too quickly.

Traci (Grade 2)

Object: Get to finish line.
Rules. Use spinner or die to indicate number of moves. Correct response, stay on that box. Incorrect response bach to previous box. ${ }^{1}$

Fig. I. Number Game

[^0]The following morning one girl submitted a sketch of her game which used dice with three golf tees as pawns. Her explanations were quickly grasped by the class. As she proceeded to make a more durable copy of her game, children used the following vocabulary to describe the situation: Traci's game. Traci's pattern, Traci's copy, Traci's original. Traci's guide, Traci's directions, Traci's instructions.

Eager to start on his own, each child then developed a game on a sheet of chipboard about 12 by 22 inches. Dice, spinners, or number cubes were used to indicate direction and number of moves. In some cases, answers on cards were to be matched with the corresponding problem in the gance. The games showed a wide variation in difficulty, ranging from simple counting to the use of negative numbers. Danny asked, "What if you landed on 3 and your card said, 'Go back 6"? Where would you be? Off of the board?" He went on, "J guess that would be a negative number, and you'd have to get 'Go ahead 6' to get back to where you were on 3." Danny thought about this and incorporated negative numbers in his Bang Bang Chitty Chitty game by using a starting line with negative numbers behind it leading to the Repair Shop. The twenty-seven games included such names as Try and Guess; The Happy Game; Go Ahead, Go Back; Treasure Island; The Whacky Racer; Streets and Numbers; The Counting Game; and Bang Rang Chitty Chitty.

Each child made a map of his street and the houses on it and numbered the houses. We invited a member of the Chula Vista City Engineering Staff to come to school

For one or two players. Kathy (Grade 1)
Object: Put the greatest number of cards where they belong in the counting ladder.

Rules: Players take turns picking top card from a shuffied pack. Cards show numerals 6, 12, 14, etc. Player puts the card on his side of the Iadder. If incorrect, player loses turn. Each player counts his correct responses at end of game to determine winner.

Fig. 3. Counting Game
to explain how numbers were assigned to : new homes in the city. Deborah revised her game to reflect her new learnings in this area-odd numbers on one side of the strect, even numbers on the opposite side.

The Bang Bang Chitty Chitty board game was devised by four boys as an outcome of their interest in mathematics, model cars, races, and the story of Chitty Chitty Bang Bang. Speed limits were discussed. The boys consulted Sports Encyclopedia, almanacs, and other books for information on speed records and reasonableness of posted speed signs. Of course, the intricate speedway had to be made wide enough to accommodate the toy racing cars used. Much experience in measuring resulted.

Summary

Child-made games foster enthusiasm and contribute to learning in several ways. Children learn through a pleasurable medium of their own creation. The varying degrees of complexity in the games are commensurate with a child's mathematical concepts and interests. In devising the games, the children must try out their ideas and pursue them to a reasonable outcome. Language development is advanced as the children are highly motivated to explain the games clearly to others. There is an

Leslie (Grade 1)
Object: Get to home.
Rules: Use die to;indicate number of boxes to advance. Then follow directions in box.

Fic. 4. Happy Game
exchànge of information between players, especially when more than one correct response is possible. The teacher gains information concerning individuals and their
levels of thinking. For example, it was surprising to note some children's use of difficult combinations and negative numbers and their free use oi commutative and as-

For two players. Danny (Grade 2), Chris (Grade 1), Robert (Grade 1), Bobby (Grade 2)
Object: Get to finish line.
Rules: From a stack of cards, each player takes a card, which tells him witat to do. ${ }^{3}$

Fic. 5. Bang Bang Chitty Chitty
3. Numbers back of starting line were negative numbers and led back to the repair shop with its grease
, etc.
sociative properties of addition in computing total scores. The games provide twachable moments for the teacher to introduce pertinent material in greater depth.

Bobby (Grade 2)
Object: Get to treasure at end.
Rules: Use spinner to indicate number of moves. If answer is correct, stay until next spin. If answer is not correct, go back to preceding place. ${ }^{4}$

Fic. 6. Treasure Island Game
4. Each child has a marker of a different color \cdot or of a different kind.

Chris (Grade 1)

This gane is played similarly to the Snoopy Game (fig. 2). This first grader included multiplication and subtraction in his game.

Object: Get to finish line.
Rules: Use number cube to indicate number of boxes for move. Correct answer allows player to remain there until next spin, Wrong answer makes player go back to his preceding rosition. If player lands on "Go back," he must go back the number of places indicated in the box.

Fig. 7. Try and Guess Game

Mathematics games in the classroom

DONALDR.KERR, JR.

The Indianä University Mathematics Eduration Development Center is currently at work on a program that combines mathematics,content, mathematics
methods, and public school experience for prospective
elementary school teachers. Donald Kerr
is arsistant director of the Center.

Games are fun, and it is important to have fun. Mathematical ganes in school are good tecause, in playing them, children have fun associated with a topic that is not always considered to be enjoyable. It is neither possible nor desirable to organize the bulk of mathematics instruction around games, but it is sometimes possible to develop games in such a way that they complement the regular mathematics instruction and thereby justify more elassroom time. This artiele chronicles one classroom experience of the author in which a simple game was introduced to a nfth -grade class on a Friday afternoon.

Our first game-playing involved a version of the well-known game Multo. The children were given eopies of three-bythree arrays of squares (sec fig. 1) and were told to put some number between 1 and 20 in each of the nine squares. They were also asked to tear up bits of paper to use to cover the squares. Every child in the class knew how to play bingo. so no other instructions were needed except to say that numbers would be called by giving a multiplied pair-tivo iimes four, three times five. and so on. The author called off the numbers for the first game, and the winner thereafter served as caller.
Class impatience with repe.ted numbers and a few disputes over winners soon dictated that the caller keep trick of the numbers he had called. Disenchantment with the limitation to the numbers from

Fig. 1
1 to 20 gave rise to using other intervals, to using longw intervalls, and to discussing the effect of longer intervals on the pace of the game.

The inevitable cry of "He wins all the time," led to a discussion of which numbers were the best to choose. A child kept : tally on the frequency of called numbers, and this led to a discussion of why some numbers seenecd to be called more frequently than others. At this point, caller-player competition started to develop. Somb callers tried to call nunhers that were low on the frequency chart; some players clearly understood the greater likelihood of composites over primes.
The pupils were quite content to continue to play the sarfic game with minor modifications during last pericd on Friday afternoons. but the author decided that it was time (if you'll pardon the pun) to add a new dinension to the game: So three-dimensional Multo was introduced. The children were given copies of three three-by-three arrays of squares (see fig. 2) and were instrueted to fill them in with numbers between 1 and 30 .

Fig. 2

Since none of the pupils was familiar with the three-dimensional versions of bingo or tic-tac-toc, some explanation was needed.

Fig. 3

With a sketch like figure 3 on the board, the pupils and the author went through a number of examples of what was and
what was not a winner. For example in figure 4 the $U s, X s$, or $Y s$ provide a winther, while the Zs and W s do not. Some chíldren got the three-dimensional perspective inmediately, but others never did. F.rtunately members of the latter group were still able to win since a two-dimensional winner, such as with the U s in figure 4, was possible.

At this point the idea of repeating - Tumbers came up. The children wanted to be able to use the same number more than once in filling in their squares. They decided to try using repeated numbers but soon found that this led to quick wins with many ties, so they went back to using numbers only once.

The three-dimensional form of the game had the obvious advantage of encoaraging spatial visualization and making a threcto two-dimensional "projection." Yet this form had not enriched the numerical experience inherent in the game so the author decided to introduce another modification of, the game.

The children were instructed to put 1 , 10 , and 100 respectively under the three squares ony the three-dimensional Multo sheet (see fig. 5) and then to number

Fig. 4

100

10

\%

Fig. 5
the squares as before. This time the caller was to call off five numbers (as multiplied pairs). The winner would be the pupil with the highest total, where each number called in a square counted for the number of points under the square. This modifica-
6 tion, while abandoning the threc-dimensional aspect, had the advantage that each pupil was required to add up his score to see if he had won. For example, the pupil who had the X s in figure 5 would receive a score of 212.

The pupils evolved a streamlined system for deciding who had won. Any child who felt he had a good score would announce it. Someone whose score was higher would announce his, and so on. Thus the winner was quickly identified. The children also engaged in discussions on which scores were possible and from these the next version of the game arose.

The next and final form of the game emerged from an effort by the author and the pupils to fill in the gaps between the possible scores in the previous form. The small squares in each of the three big
squares were given values between 1 and $\dot{9}$, as shown in figure 6. The children then filled in their Multo numbers as before, and the game proceeded in the same fash'ion. So, for example, the X s in figure 6 would yield a score of

$$
\begin{aligned}
&(4+1) \times 100+(7+4) \times 10+5 \times 1 \\
&=6 \times 100+1 \times 10+5 \times 1 \\
&=615
\end{aligned}
$$

Quick ways of adding scores to take advantage of the cc,apatibility of the format with the base-ten numeration system were discussed.

There are clearly many additional directions we could have moved in. Other operations and combinations of other operations could have been used for naming points. The squares could have been given values corresponding to other bases-1, 2, 4 or 1, 3, 9. Many more probability and statistics problems could have been pursued. And basic games other than Muilu could have been used as a point of depa ture.

Fig. 6

The following points are significant in the sequence of activities that have been described:
(a) the skill reinforcement in the game.
(b) the pupil involvement in the evolution of the game,
(c) the teacher involvement in providing direction to the evolution and in seeing that many pupils participated, and
(d) the introduction of new mathematical concepts such as elemenlary statistics and probability.

The particular game and its variations are not important as such. More important is the idea of involving children in the evolution of a game and of directing that evolution in order to supplement and extend the regular mathematics program.
'AUTHORS NOTI: The author wishes to express his appreciation to teachers Katheryn Vaughan and Beth Williams, land to Principal Edwin Smith for giving him the opportunity to have the experiences described here in fifth- and sixih-grade classes at Templeton School in Bloomington, Indiana.

Sparking interest in the mathematics classroom

DONALD L. BRADFIELD
Domahd Bradfichd is a dassoom teacher in Sand Springs, Ohtahoma.

From the glamorous stars of the entertainment world come the clues for sparking interest in the mathematics classroom. Basically, these stars make use of three kinds of entertaimment-comedy, mystery. and drama. inrough proper use of these methods of entertaiment, the mathematics classroon can come alive with diversions and excitement. The intent of this article is to illustrate how to spark interest in the mathematics cidsoroom by utiluing types of recreational in themattes that are categorized under three entertamment media headings Suggestions will be made as to how to assimilate each type into a regular program of mathematical instruction.

Before a discussion of mathematical entertainment, the need for sparking interest in the mathematies classroom should be stressed. Many teachers of mathematics are unhelievalh!y !oring in their approach to teachiatis. Consequently, many potentially strong students never divatore andy great liking for mathematics. Weak students are disenchanted quichly with the course, and elect to avoid all courses in mathematics. This loss of interest is an educational waste-both to the individual and to society as a whole. Therofore a more stmulating atmosphere is needed in
most mathematics classrooms. One way to stimulate the atmosphere is to use recreational mathematics materials.

The comedy of mathematics

To entertain is to amuse, To many pupils, there is nothing funny about mathematics. However, in the world of mathematics, eatchy problems and tricky problems exemplify types of comedy that portray humorous situations and unexperted solutions which, consequently, are funny. Con sider the following two examples:

Monkey Problen

A monkey is at the bottom of a 30 -foot well. Every day, he climios up three feet and slides back two feet. When does he reach the top?

Cigarette Problem

If a tramp can make one cigarette from six butts. how many cigarettes can he smoke from 36 butts?

The solftion to the monkey problem is 28 days, since on the 28 th day he would climb and not slip back. The solution to the
cigarette problem is seven cigarettes, since after making six cigarettes and smoking then he would have six more butts from which another cigarette could be made. These comedy problenss capture attention and appeal to a sense of humor. Similar probleins from the field of recreational mathematics may be labeled as "Rat Problem," "Squirrel Problem," "Coin Problem," "Egg Problem." "Barrel Problem," "Marble Problem." 'April Fool Problem," etc. These titers attract the attention of children and ignite spatks of interest within the classraom. By solving these comedy problems, children develop a pleasant tueling. toward problem solving that should transfer to the regular curriculum of mathematics.

The mystery of mathematics

To entertain is to mystify. To many pupils, all of mathematics is a great mystery. However, in the field of mathematics, magic problems, puzzle problems, code problems, and progression problems illustrate special types of mysteries that will fascinate many students. The following four examples provide mystery and surprise.

Faded Document Puzzle

Reproduce the numbers on the document.

> Age and Family Magic ${ }^{\prime}$
> Write down your age. Double it. Multiply by 5 . Add 15. Add the number of members of your family less than ten. Subtract 15 . The first two digits in the result is your age. The iast digit is the number in the family.

Pythagoras Coded Message

Use the following key to decipher the message below:

$$
\begin{aligned}
& 0.1,2,3,4,5,6,7,8,9, \Delta . \square . \sim \\
& \text { a.b.c,d.c.f,g,h.i.j.k.l.mı } \\
& \text { n.o,p,q,r,s.t,u,v,w,x.y.z }
\end{aligned}
$$

Pythagoras says:
$07 ~!45$
$47 \square 4$
674
70884454

Salary Progression

If you were offered a salary of one punny the first day, two pennies on the second day, feur pennies on the third day and so on for thirty days, would you accépi?

Bays:	Salary
1	.01
2	.02
3	.04
4	.08
5	.16

30
Total -
What is the total salary?

The quotient in the faded document pyzzle is 90809 . The coded message of Pythagoras says, "Numbers rule the universe." The total salary in the progression problem is $\$ 10,737,418.23$. These problems and their solutions provoke amazement, stir curiosity, and challenge the intellect. Similar problems in the field of recreational mathematics may be labeled as "Age and Coin Magic," "Cryptorhythm Puzzle," "Wiggle Operation Puzzle," "Gauss's Secret Message," "Notebook Paper P̈rogression Problem," etc. These kinds of prob-
lems catch the eye of children and sp. Fk interest in the classroom. By solving these mystery problems, children experience success in problem solving.

The drama of mathematics

To entertain is to dramatize. To many pupils, mathematies is a dull subject and has no dramatic appeal. However, in the area of mathematics, many' problems can be presented to childien in such a manner as to have dramatic appeal. Consider the following three examples:

Kinge Problem

A king suspected his advisors were halfwits. To test the wit of the advisors, he threw them into a dungeon and told then that they would lose their heads if they did not solve the following problem:

The problem is to draw six straight lines through the dots without lifting your pencil or retracing a line. Could you have saved your head?

Josephus Problem

When the Romans invaded their town, Josephus and forty other men took refuge in a cave. Believing that they were about to be captured, the group wanted to commit suicide except Josephus and his friend. Fearing the others in the group and wanting to save himself and his fiiend, Josephes suggested a plan whereby the killings would take place in an orderly manner. He suggested that the group form a circle and begin kil!ing every third man until only two would be left. These renaining two persons would then supposedly kill themselves. If Josephus selected the first man in the circle írom which to begin the counting, where did he place himse!f and his friend in order that they would keep from getting killed?

Three Jealous Men and Their Wives Problem

Three jealous men and their wives come to a river to be crossed. Using one boat that holds only two people and havihg no wife ever in the presence of another man unless her own husband is present, how can the group cross the river?

The solution to these problems is left for the reader to find. These kinds of dramatic problems arouse enotions, encourage ingenuity, and te:t perseverance-as the reader will discover as he attempts to solve these problems. Similar problems in the field of recreational mathematics may he labeled "Railroad Problem," "Christian and Turk Problem," "Bridge Problem," Etc. Such problems have emotional) comnotations for children, sparking interest in the classroom. By solving these dramatic problems, children discover the humanintercst factor in mathematics.

To effectively use recreational mathematics in the classroom, the following procedures are helpful. First, make color posters of problems similar to those listed in the previous topics of this article and place them on the walls and bulletin boards within the chassroom. These posters create an exciting mathematical environment and can be referred to by the teacher when appropriate. Second, allocate time in the schedule of mathematical instruction to study topics from recreational mathematies. Between units of study and the days before vacations are especially good times to provide pupils with a treat that will leave them witis a good feeling toward mathematics and make them more willing to tackle new mathematical topics. Third, a Id recreational problems to examinations and give extra points for solving them correctly. These problems keep fast students occupied profitably while slower students are finishing the main part of a test; the only danger involved in this procedure is that slower students must be cautioned
to fimish the mam portion of the test before allempung the bonus problems. A variely of other procedures can be devsed
for using recreational mathematics in the classroom The teacher is limited onl! by ho own mgenum! and creaturt!

Enitorial Combe\t. The author has proe:ded an interesting classification structure for enrichment problems. Almost every teacher could find many opportunities to use a file of puzzles and problems such as these. If you are interested in starting or extending your oun set of enrichment actuties, you will find man! games. puzzles, and problems in the Arilhmetic Teacher, in the Mathematucs Teacher, in vanous NCTM publications. in children's magazines. in the magazines provided by airlines, in the newspaper, in paperback books on mathematics, in books on methods of teaching mathematics, in the teacher's manuals for various series of textbooks, and in many books devoted primarily to games, puzzles. number magic. and so on. A teacher is limited only by his oun effort and imagination in finding and creating "interest getters" in mathematics.

Payoff in increased instructional time and enrichmént activities

ROBERT E. REA
University of Missouri, St. Louis, Missouri
JAMLS FRENCH
Hazelwood Public Schools, Hazelwood, Missouri

Arecent research project assessed the merits of oral instruction in mental computation versus pencil and paper enrichment activities for sixth-grade pupils. An outcome of particular interest to teachers of elementary mathematics is that both treatments, as measured by standardized achievement-test scores, resulted in a significant growth over a small number of instructional sessions.

Procedure

A sixth-grade class was divided into two treatment groups that were matched on the bases of age, sex, I.Q., and achievement scores. The matching process produced the two groups shown in table 1. The instructional activities for group 1 were based on Kramer's mental computation series (1965), and the activities for group 2 were adapted
from Crescimbeni's cullection of enrichment activities (1965). Care was taken to ensure that the type of computational examples was the same for both groupsthat is, if the mental computation exercises involved multiplying a three-digit number by a two-digit number, then the game, puzzle, or activity taken from Crescimbeni was modified to providé similar practice.
SRA arhievement-test scores were ob-
tained for both groups on the first and twenty-fifth days of the project, with twenty-four successive instructional periods intervening. Both groups received their regular mathematics period each day, plus fifteen minutes of special activitics. The grade-equivalent scores derived from these test administrations are shown in the scattergrams in figures 1 and 2.

In both groups, there were individual

Treatment group 1-Mental computation

12345678910111213 Student numbers

Grade equivalents derived from table accompanying SRA Achievement Series: Arithmetic, Form E, Blue level, 1971.

> O $=$ Pretest grade equivalent $\mathbf{X}=$ Postest grade equivalent

Fig. 1

Treatment group 2-Enrichment activities

12345678910111213 Student numbers

Grade equivalents derived from table accompanying SRA Achievement Series: Arithmetic, Form E, Blue level, 1971.
$\mathrm{O}=$ Pretest grade equivalent
$X=$ Postter grade equivalent
Fig. 2

Table 1
Matched data for troatment groups
4

	Group 1 $N(7$ girls, 6 boys $)$		$\begin{gathered} \text { Group } 2 \\ N(7 \text { girls, } 6 \text { boys }) \end{gathered}$	
	Range	Afedian	Ranse	Median
Age	11.1-12.0	11.65	11.0-12.0	11.5
I.Q.	86-141	102.6	86-133	102.0
Achievement scores*	3.9-9.2	5.2	4.2-6.2	5.2

Data from Sth-grade records. SRA Achevement Senes Anthmetic. Form C. Blue lesel. 1964. Administered September 1970.
youngsters whose scores increased only slighty (students 3 and 13 in figure 1) and even certain individuals whose scores decreased (students 4 and 9 in figure 1 and student 2 in figure 2). However, the majority of the students in both groups gained so dramatically in achievement scores that the average growth for group 2 was one full year, and for group 1 was eight months.

Discussion

While this project is subject to many limitations and possible sources of error, the increase in achievement scores seems to be worth pursuing (formally in more rigorously designed experiments and informally in classroom situations where a similar set of experiences may be desirable). The following examples of activities and suggestions for additional modifications are offered to elementary teachers who may wish to try a few of them in their own classrooms. Teachers wishing to use a greater variety of activities may refer to the sources listed in the referinces.

The examples presented here were well received by the youngsters in this project and can easily. be modified to most topics or levels of computation. The mental computation and enrichment examples that follow do not involve the same computational skills. However, parallel examples can easily be constructed. In fact, constructing such parallels greatly increases a teacher's understanding and appreciation of the power of these activities in generating computational practice.

Mental computation activities

The information given in figures 3 and 4 was reproduced for use in group instruction. The instruction began with the reading of the first sentence, which contains enough information for the solution of the questions that follow it. At this point, the children were cautioned not to write the problem down on paper, but rather to think of it in the way that was indicated in the instructions. Children were then asked to search for other methods of solving the problem mentally. Following this, a similar set of problems was presented for mental solution by the method that was presented, or by an alternative method that was discovered by the class.
The second example in both figures 3 and 4 presents the inverse of the process in example one. In all lesrons, an example of one process was followed immediately by an example of the inversé proces. This
mental Computation Activity

1. The Deck family traveled 250 miles on the first day of their trip and 160 miles on the second day. How many miles did they travel on the first two days?

$$
250+160=
$$

Thunk: 160 is $100+60$
250 plus 100 is how much? (350)
350 plus 60 is how much?

\qquad
\qquad
2. Mr. Thomas has a debt of $\$ 120$. If he pays $\$ 70$ of it. how large a debt will he have left?
$120-70=$

$110^{-}-40=$
$140-60=$
$100-20=$
$40-60=$
$10-20=$
$130-40=$
$150-70=$
$160-40=$
Fig. 3

Mental Computation Activity

I. In an auditorium there are 10 rows of 14 chairs.

How many chairs are there in all?
$10 \times 14=\square$
Think: A number is multiplied by 10 by annexing a zero to the numeral to find the number.

2. Ten boys had to carry 110 books to the science room. How many books did each boy have to carry?
$110 \div 10=\square$
$240 \div 10=$
$380 \div 10=$
$540 \div 10=$

$730 \div 10=$$\quad$| $740 \div 10=$ |
| :--- |
| $840 \div 10=$ |
| $640 \div 10=$ |

Fig. 4
sequence was followed in the hope of making the inverse relationship easier for the children to grasp.

Enrichment activitios

Ladder Arithmetic, Draw-a-Trail, StarBurst, and Brain Teasers are examples oî the activities uscd with group 2. Such activities are a direct attempt to encapsule mathematics reinforcement, practice, and enrichment in forms that are appealing and enjoyable for the children. The purposes of activities of this nature include making mathematics more enticing, and involving students in situations that stimulate curiosity and quantitative thinking.

Ladder Arithmetic has a built-in, selfchecking device (see figure 5). The frames are filled with the numbers that make the horizontal sentences true. These numbers provide the digits necessary to solve the vertical sentences. The horizontal sentences can be arranged to give the correct sequence of digits or, if additional complexity is desired, a scrambled order of digits. Scrambled digits further encourage sçildren to perform the self-checking feature of the activity.

In Draw-a-Trail, solutions vary from student to student depending on the starting point and the path that is followed to the bottom box. Another dimension may be added to the exercise by asking the children to discover as many paths as possible

Fig. 5. Ladder Arithmetic
Directions: Fill in the frames with the number that makes the horizontal sentences true; then determine if these digits complete the vertical sentences. The digits may be in order, reversed, or scrambled.
within a given time limit. The teacher can adjust the level of difficulty of this exercise by increasing the size of the numbers, or by varying the operations to be performed. Such variations should be designed to meet the needs of a particular group or individual. (See tigure 6).

The examples of Draw-a-Trail selected here illustrate variations that might be used -from a simple addition exercise to a more complicated mixed-fraction and whole-number exercise. Once children understand the procedure for finding the solutions to Draw-a-Trail, they may be encouraged to construct their own examples. After constructing a trail, pupils can exchange examples and check one another's solutions.

Star-Burst is an activity that provides

$1 / 2$	$\times 2$	$-1 / 4$	3	$1 / 3$
$\times 1 / 3$	$3 / 4$	1	$1 / 2$	-2
$1 / 3$	-1	$2 / 3$	$1 / 8$	$1 / 4$
$2 / 3$	$1 / 2$	$-1 / 3$	2	$4 / 4$
$1 / 3$	3	-4	$\times 2$	$1 / 2$
$\times 1 / 3$	$3 / 4$	3	$1 / 2$	-2
4	-1	$2 / 3$	$1 / 8$	$1 / 4$

7	6	8	9	5
5	8	9	4	9
6	7	9	8	8
7	4	8	7	9
8	5	6	7	8
9	8	7	9	9
7	8	7	5	5

Fig. 6. Draw-A-Trail
Directions: The objective is to draw a trail that leads to the bottom box of the puzzle. The trail must be a continuous line connecting numerals in the boxes. It must end at the numeral in the bottom box, and the numbers in the trail must add up to the total in the bottom box. All boxes need not be used, but each box may be used only onse.
practice in various operations simply by changing the sign of the number in the middle circle. The level of difficulty of this activity can be adjusted to different groups, and it can also provide for the development of specific computational skills. Two activities are illustrated in figure 7.
Brain Teasers, such as the two that follow, were interspersed with other activities, and the pupils seemed unusually motivated to find the correct solutions.
John was given $\$ 2.00$ to buy some school sup. plies for the opening day of school. He went to the store and found that pencils cost 104 each; erasers, 15% each; paper clips, 25% per box: and rubber bands, two for 1 f . He bought 100 things. What did he buy?

A man bought a lawn mower for $\$ 20.00$. He later sold it for $\$ 25.00$. Still later, he bought the same lawn mower back for $\$ 15.00$. Did he lose money or make money on the lawn-mower trade?
These activities represent a most difficult level of word problems, yet all pupils achieved an increased degree of success. Although no specific objective data were

Pu: the numbers 11 through 18 in the outer ring - of circles so that each line totals 35 .

Put the numbers 21 through 28 in the outer ring of circles so that each line totals 40 .

Fig, 7. Star-Burst
collected concerning word-problem skills, classroom observation provided ample testimony that such practice was both enjoyable and beneficial.

Conclusion and recommendations

A small-scale study using activities in mental computation and selected enrichment activities produced almost a full year's increase in mathematics achievement scores for a sixth-grade class. This result was obtained in a total of six extra hours of instruction accumulated over a fiveweek period.

There can be little doubt that these results were influenced by factors other than the instructional activities such as: (a) the Hawthorne, or halo effect. (that often accompanies enthusiastic experimentation); (b) the instructional variable (since this project was directed toward specific computational skills, instruction was aimed at any test that measured such skills); (c) a testing set established during the pretest (even though five weeks elapsed between test adninistrations, there may hase been same retention of test material).

While there is room for further speculation on these results, two recommendations are justifiable here:

1. Additional research is needed to determire more accurately the relationships am. n. .he amount of time. nature of the
instructional activity. and mathematics achiesement.
2. Exploratory use of such activities in elementary mathematics ciasses where compurational performances are lagging. seems imperative.

References

Cressumbeni. Joseph Arahmeac Enrichment Actitures for Elemeniar: School Childrch. West ㄴack. N.Y.: Parker Publishing Co.. 1965. Kramer. Klaas. Mental Computation. Bhs. A-F, reacher's guide. Chicago- Science Research. Associates. 1965.
Science Rescarch Associates. Achievement Series: Form E. Blue Level Chisago Science Research Associates. 1971.
Nore, A more detaled report of the research findings reported in this articie is a a ailable from the authors

Whole Numbers

Amajor portion of the elementary school mathematics curriculum is devoted to a study of the whole numbers and their operations. Many of the games selected for this chapter offer a vasiety of ways to provide the muchneeded drill and practice on the basic fact. of addition, subtraction, multiplication, and division.

In the opening article. Deans offers several game activities to aid young children in developing their counting skills. This article should stimulate the reader to think of ways to adapt various classroom and playground games to aid in mathematics instruction.

The idea of using pictures to motivate students to complete a drill sheet is suggested by Crouse and Rinchart. Many students will find these "connect the dot" activities to be most enjoyable, and it is possible to create similar activities without any special artistic ability.

The "Secret Nuinber Sentence" game suggested by Swart will provide students with an opportunity to polish up their skill in asking questions while they work with number sentences at an appropriate level of difficulty.

Patterson provides a nice set of dieections for constructing drill wheels that may be used in a variety of individual or group activities to practice the basic facts. In the "Go Shopping! . .." activity suggested by Orans, students will have opportunities to role-play a shopping trip to a candy store. This should be a sweet experience for all!

The three addition games suggested by Heckman are easy to play, and the needed materials can be readily prepared by the classroom teacher for a very small price. She also suggests variations to provide practice in multiplication.

Howard Gosman suggests that dice are "loaded" with activities to help children master basic number facts while enjoj;ing the experience. He then provides instructions for playing at least a half-dnzen gemes using dice. In the next article, Bartel sugges's a "computer" game that also uses dice. She provides several "for instances" to demonstrate how her activity can be varied to suit the needs of children at various grade levels. The dice game "Multi-bet" by Miki will provide practice with the "more difficult" basic multinlication facts and appeal to students who have a flair for gambling.

For those who need practice in two- and three-digit addition, Dilley and Rucker suggest an interesting game called "Build the Greatest Sum." This game also provides opportunities for students to formulate strategies that will increase the chances of winning. Several other games are also described in this article. An activity for three-digit subtraction is offered by Smith in his "Witch's Best Game." The students will have many opportunities to gain experience with the various regrouping situations that occur in three-digit subtraction problems.

The card game described by Arnsdorf should provide the players with opportunities to make strategic decisions while they continually do mental computation in the four basic operations. This should $\bar{\rho} i \bar{u} v i d e$ an effective and enjoyable review of the basic facts.

Broadbent's "Contig" game is simple to make and will provide much practie with the basic facts of addition, subtraction, multiplication, and division. Many students will enjoy playing this game at home with their older brothers, sisters, and parents.

Six games that help the learning and retaining of a variety of mathematical skills and understandings are described by Metzner and Sharp. Each of the activities requires three decks of ordinary playing cards, and several tea gs of two or three students each may play in a game. In the next article, Ristotcellj suggests "Green Chimneys Poker" as a game to develop proficiency with the multiplication tables through twelve.
"Defy" is a game in which the student himself initiates the drill activities. The game automatically provides for individual differences and can be productive academic recreation at almost every grade level. Wills provides an excellent set, of directions and guidelines for effective use in the classroom.
In his article on "Magic Triangles" Zalewski offers a number of ideas for providing practice in addition while simultaneously stimulating the students to practice the searching, guessing, and thinking that is essential for -problem solving. Similar experiences may be developed from the work with magic squares proposed by Capon.

Games for the early grades

EDWINA DEANS

GGames are one means of helping young children develop number concepts.
Good learning situations have been observed as teachers and children engage in games sucn as the ones described below. It will be noted that some of these are adapted from familiar games with slight variations or adjustments made to highlight the mathematics aspect. Perhaps readers will sr: :im:!ar possibilities in many elassroom or playground games
that they use frequently in connection with their instructionai programs.

Kitty-cat

A game for hindergarter, and firsl grade
The children sit on the floor in a circle. One child is chosen to be Kitty-cat. Kittycat sits in the center of the circle. When all are ready to begin the game, one child slowly counts to twenty. The children forming the circle nave a designated num-
ber of small balls which they roll from one to another very quickly across the circle. As' the balls roll across, the Kitty-cat catches as many as he can before the counter reaches twenty. The number of balls caught is counted, and another Kittycat and another counter are chosen.

Any number of children can play this game at one time. Children forming the circle sit close together so that no gaps will be created through which balls nay roll to the outside.

The number value, of course, comes through the checking.
"How many balls did we have?"
"How many balls did Kitty-cat get?"
"How many did he fail to get?"
The number of balls is changed from time to time. All children should be aware of any change in the number of balls before the game begins.

Tenpins

Commercial tenpins can be used but homemade ones work just as well. Large dowel rods or broom handles sawed into about four-inch lengths make very good ones. Paper cones made from construction paper may also be used. Old golf or tennis balls are very good for rolling. Two to four children play. The tenpins are placed in the formation shown in Figure 1.

Figure 1
Each child is given two turns to see how many pins he is able to knock down. Scorir.g can be done according to the method best suited to the ability of the children who are playing. This game may be played with any number of pins. It is often played with live or six at first with an additional pin being added as the children are able to cope with larger numbers.

A similar game, well adapted to tine school room, makes, use of paper blocks instead of pins. The paper blocks are made from heavy construction paper, using the familiar sixteen square fold. The paper blocks are piled. up pyramid fashion (Fig. 2). Each child has one turn and scores according to the number of squares knocked down. Since the paper blocks make very little noise as they fall, this game can be played while group activities are going on without causing undue distraction.

Figure 2

Guessing how many

This simple game is appealing to small children. The only materials needed are a given number of small objects which can be held in ${ }^{\circ}$ one hand such as wooden beads, little pieces of chalk, or pennies.

Three to five children may play. The game starts by showing the objects to the children asking, "How many do you see?" Suppose the children count and discover that there are six. The leader continues, "I have them all in one hand. Now I am going to turn around so you cannot see, and put some in one hand and some in the other. Think about them and see if you can guess how many I have in one hand and how many in the other."

The children take turns guessing the number in each hand-four and two, five and one, six and none. After each child has had his turn at guessing the leader opens his hand and shows the sets. The first child to guess correctly gets the next chance to be leader.

Interest is maintained if the material used and number of objects is changed often.

An interesting variation of this game is to show children the total and also the number m one hand. The children guess how many are in the other hand.

Creative drill with pictures

RICHARD CROUSE
University of Delaware, Newark, Delawăre

ELIZABETH RINEHART
Krebs School, Newport, Delaware

The word drill has some bad connotations for many mathematics educators-probably generated by the recollections of gross misuses of drill in the past. However, many educators believe that drill as me:aningful practice has a definite place in the siequence of teaching activities, and they accept axiomatically that drill should occur after students understand a concept or skill.

A key to effective drill seems to be how it is motivated, and teachers often find this to be a difficult task. The following activity is one that some teachers will find useful in their own classrooms.

The idea is to use pictures to motivate students to complete a drill exercise. Figures 1 and 2 were used in a third-grade class to review simple addition and subtraction combinations, but other skills could easily be substituted and practiced. The directions for this activity are simple:
Place your pencil at the point where the answer is 1. (This point is marked with the star \star.

Look for the point that is marked 2, and connect the two points by a line segment. Neat, lo ${ }^{-k}$ for the point marked 3, and connect it by a line segment to the point marked 2. Repeat this process as far as you can.

Some teachers may feel that they do not have enough artistic ability to make these drawings. However, the drawings in this article were made from a coloring book. The picture that is wanted can be placed on top of ditto reproduction paper and traced with a pencil, or preferably a ballpoint pen. The rest is filled in freehand.

As an added feature to this activity, pictures could be chosen that would lend themselves to other activities. For example, after the picture of the sheriff was completed, the children could make up a story about the sheriff and the number of men ine captured. Many of these pictures could lend themseives to a blending of subject areas and pertaps make teaching and tearving more wot thwhile and exciting. The teacher is limited only by her imagination.

Fig. 1

Fig. 2

Secret number sentence

WILLIAM L. SWART
Central Michigan Universily, Moiait Pieasant, Michigan

William Swart is assistam professor of mathemancs at Central Michigan University.

Here is a game for primary arithmetic, providing stimulating drill on mathematical sentences and on addition, subtraction, multiplication, and division combinations.

Player A secretly fills in this pattern with a number sentence:

Player A must choose his numbers from some agreed-upon set. In Grade 2, a suitable set would be $0,1,2,3,4,5,6,7,8$, 9. If he selects $6+3=9$ as his secret number sentence, he replaces the square and the triangle with 6 and 3 , the circle - with the operational sign + , and the blank with 9. It must also be understood which operations are to be used.

Player B puts the following on his paper:

\square	O	Δ	$=$
0	+	0	0
1	-	1	
2		2	2
3		3	3
4		4	4
5		5	5
6		6	6
7		7	7
8		8	8
9		9	9

Then Player B proceeds to ask certain questions of Player A until he discovers what Player A's secret sentence is. The object is to discover the secret sentence in as few questions as possible. Player B can only ask the following' questions:

1. Is the numeral in the (square, triangle, blank) equal to__?
2. Is the numeral in the (square, triangle, blank) greater than_?
3. Is the numeral in the (square, triangle, blank) less than_?
4. Is the operation_? (addition, subtraction, etc.)

Each time Player \mathbf{B} asks a question about a position, he is able to eliminate one or more numerals under that position. For the secret sentence $6+3=9$, the question, "Is the numeral in the square equal to 4 ?" would eliminate \backslash as a possibility for the square. And the question, "Is the numeral in the square, greater than 7?" would be answered "No," revealing that 8 and 9 are not possible. After these two questions, Player B's paper should look like this:

\square	0	Δ	$=$	-
0	+	0		0
1	-	1		1
2		2		2
3		3		3
4		4		4
5		5		5
6		6		6
7		8		7
8		8		8
$-Q$		9		9

If his next question were, "Is the numeral in the square less than 5?" he would
get a response of "No." and cross off 0 , 1,2 , and 3 . Then one or two more questions will reveal that 6 is the numeral in the square.

As the game is played, the pupil should become aware that "greater than" and "less than" questions usualiy yield more information than "equal to" questions.

When Player B succeeds in discovering Player A's secret sentence, the roles are reversed and Player A becomes the questioner. The player who discovers the other player's secret with the fewest questions wins.
It is advisable to start the game with the teacher in the role of Player A and the children asking questions, and to pro-
ceed in this manner until the children know how to play. However, while the game is highly stimulating as a group activity, it is doubtful that the group approach will result in significant gain for the child who needs it most. The kind of thinking promoted by the game requires that the child have time to ponder-to decide which questions to ask, and what information an answer provides him.
In the upper grades the game can be made more challenging by including all four fundamental operations and by allowing the relationship to include "greater than" and "less than" as well as "equals," so that secret sentences such as $4 \times 8<$ 380 may be used.

Editorial Comment. This is one of many game activities that provide students with opportunities to gain experience in several important areas. First. the game will provide desirable practice with the basic facts of arithmetic. Second. and perhaps even more important, the activity will provide a framework in which students may learn how to ask the "right questions" to secure needed information.
There are many types of games that can aid in the development of questioning s'ikll. For instance, one student can select a whole number from some specified inderval, such as less than 30, and the second student can try to identify the number in five questions or fewer. Points can be a warded on the basis of the results of the questioning as follows:

Points scored	If number is identified in
5	1 question
4	2 questions
3	3 questions
2	4 questions
1	5 questions
0	
If the students are ready to work with negative integers. the scoring could be continued as follows:	
1 point	7 questions
2 points	8 questions
3 points	9 questions
.	.
:	. . ${ }^{\text {. }}$
The game could be continued prescribed number of points.	mount of time. or until one student gets a

The game could be continued for a specified a mount of time. or until one student gets a marred number of points.

Making drill more interesting

1

W. H. PATTERSON, JR.
University of Southwestern Louisiana, Lajayette, Louisiana

LLooking for ways to make drill more interesting, entertaining, and even fun? Isn't everyone? I have developed a little device that may help you provide more interesting drill sessions for your students. I call it a drill wheel.
The drill wheel is easy and inexpensive to make. It consists of a board on which are mounted two or more spinners. Cardboard rings with numerals printed on them are fitted over the spinners. The spinners are then twirled and the students add (or subtraci. or multiply, . . .) the numbers indicated by the spinners. A drill wheel with two spinners is pictured in figure 1.

Although simple, the device has several advantages. It is different and will add fun
should be taken so that the hole in the ring fits over the spinner mount. Whole numbers have been printed on the rings shown in figure 1, but other types of numbers (negative integers, proper and improper fractions, and so on) can be used. An operation indicator (see fig. 1) is a nice addition to the drill wheel.

I have made drill wheel models as large as 4 feet wide and as small as a regular piece of notebook paper. A teacher can build up a file of number rings and, with a large drill wheel hanging in the front of the classroom, be ready for many types of drill. For example, if a class needs drill in adding improper fractions, the teacher simply selects two (or more) rings with
improper fracticns on them, sets the operation indicator on + , and gees to work.

A large supply of rings for a classroom wheel can be obtained quickly by simply letting the students, either individually or in small groups, make them:

While larger drill wheels can be used for regular class drill, they can also be effectively used in other ways. For example, a class might be divided into two teams that compete in working problems with the teacher (or team captains) doing the spinning. To add interest, some numerals on the rings could be printed in different colors and bonus points given when these numbers turn up.

Smaller models of the dr.ll wheel can be

Fig. 1
made and used individually by students. Those students with any attistic inclinations will probably enjoy making their own spinner wheel and rings. In fact, an interested student can make a "drill wheel kit" with a pocket for the rings, that will fit in his notebook.

Consider using the drill wheel in your classes. $\overline{1}$ think that you, too, will find that it is an inexpensive, economical device that can give you an opportunity to vary your instructional activities, add interest to your classes, and make your students more enthusiastic about drill.

Editorial. Comment. - Another activity that you can use to make drill more interesting is called "Pencil Point Facts." First you need to construct some practice cards for the related facts you want the students to work on. For example, a multiplication/division practice card would appear as follows:

Students may work together in pairs to practice their facts. The holder of the card inserts his pencil point from the back of the card through the hole for 8 . The other student must give the product for 6×8. The holder of the card can check the answer (48) on the back of the card beside the hole through which he inserted his pencil point.

For division, the card is reversed so that " $\div 6$ " shows for the student computing the answers. The holder inserts his pencil from the back side of the card as previously described. If the pencil point is inserted through the hole for 18 , the student gives the quotient for $18 \div 6$. The holder can check the answer (3) on the back of the card.

Cards may be constructed in a similar manner for related addition/subtraction facts.
The cards may be used in game activities for pairs of students by setting goals and awarding points for correct answers. For example, one student may pick a card (from the set identified by the teacher according to need) and challenge his opponent with five "pencil point facts" on the card. One point is awarded for each correct answer, then the two students reverse roles.

Go shopping! Problem-solving activities for the primary grades with provisions for individualization

S Y L V I A R A S Parkway School, Plainview, New York

Materials

Real money (one dime, two nickels, ten pennies) brought from home by each child
Real candy (large candy gum drops, several colors)
Construction paper for price tags
Clear plastic bags (sandwich size)

The approach

.Problem situations requiring a minimal reading vocabulary of ten words, using real materials and real money in a gamelike atmosphere of playing store.

The procedure

Our candy-store activities were initiated after much exploration with simple games using real money. Our bulletin board, on which real candies were displayed, was our "store" (see fig. 1). Several candies of one color were placed in each plastic bag. The bags, containing orange, yellow, red, green, and black candies, were tacked to the bulletin board. Price tags, made by the

Nore: Color names may be omitted. Color of candy is visible.

Figure I

children, were changed often to vary the level of difficulty and/or to lend interest.

0

At the beginning, store activities were teacher-directed. All the children used the coin or coins designated at-their desks. One child was selected to "go shopping" for each problem situation. Another child was the storekeeper, and gave change under teacher supervision. As each problem was solved, the shopper was reimbursed with his original coin or coins. The childen who were seated at their desks were involved in checking out each problem. The children used their coins; the candy. however, remained on the bulletin board (!) with the promise of its distribution to all when the store closed, at the end of the week. Some oral problems follow.

1. Go shopping.

You have a dime.
How many green candies can you huy" (green-5 cents each)
2. Go shopping.

You have a dime.
How many candies do you want to buy?
What must you pay?
How much change will you get?
3. Go shopping.

You have a nickel.
Can you buy black cardy? (blach-6 cents each)
How much more money do sou need"
4. You bought five sandies of one color

You had a dime.
What color candy did you huy?
5. You bought one candy.

You had a dime.
You gol four cents change.
What color candy did you bus?
6. You bought tho candies

You had a dime.
You got three cents change
Were your candies the same color'
Could they be the same color"
Then we went shopping on the chalkboard. The candies were still on displ.iy. to refer to. and for "show" appeal. A chart wass set up (see figs. 2., 2b. and 2c).

Written work followed when the chuldren showed a readiness to apply the techniques. Problems suggested in the charts. "Vamation" and "Another V.sriation." "nere used for written work. The pupils went

Figure. 2a

Ficuri. 2b

A:other suriationmperemded problem-

*There problem wete electue
Figure 2c
"hopping" on paper. They copied the informatton from the charts on a ditto that had tive columms and headings to correvpond to the chart. The problems had become more difficult (* items were elective), yet the problens were still within the range of the lowest pupii, because he could choose to buy only one of each candy. The more capable pupil enjoyed the challenge of choosing: candy that was priced at a figure that enabled him to upend .ll of his money or to get the teast amount of clange.

It was possible to involve all the pupils, regardless of reading level, in these prob-lem-solving actuities. Becaluse of the variables of price. number of candies, and other idriables in the chart, these store atisities prosided individualization for a broad range of abilities and challenged cuth pupil', unique mathematical potenthal.

51

They all add up

M. JANE HECKMAN
Now principai of the Pembroke Elementary School, Birmingham Public Schools, Troy, Michigan, Jane Heckman has also served as an elementary school teacher und a mathematics consultant for grades kindergarten through' six.

The games described here have provided practice in addition for many children in numerous classes. The games are easy to play. and the needed materials can be readily prepared by a classroom teacher for a small price. They all add up to addition 'n fun.

Roll the sum

Number of players: 2

Game equipment:

Two cubes with the numerals $0,10,9$, $8,7,6$ in red on the faces of the cubes.

Two cubes with the numerals $0,1,2$. $3,4,5$ in green on the faces of the cubes.

Two roll the sum gameboards. (Fig. 1.)

Markers-beans, corn, buttons. disks (at least 40).

Fig. 1

Directions:

1. To start the game, each player rolls one of the red dice. The player with the largest number appearing on the top face of his thrown die plays first.
2. On his turn, a player selects two of the four dice and rolls them on the playing area. The sum of the two numbers appearing on the top faces of the thrown dice is covered on the player's gameboard. If the sum is already covered, the player loses a chance to cover a square.
3. Players take turns rolling the dice.
4. Play continues in this manner until one player has either four markers in a vertical row or five markers in a horizontal row.
5. The game can be varied by having players-

- cover the entire board with markers.
- cover four corners.
- cover a "T" (top horizontal row and middle vertical row).

Author's note. By giving each player à chance to pick his dice, this game allows for a choice of possible addends. Thus a player must have some knowledge of which numbers can and cannot be added to give the sum he wants to cover. Another game, roll the product, provides practice in multiplication and r.quires the same kind of knowledge of products and their factors.

To play the multiplication game, two Roll THE PRODUCT gameboards (fig. 2) are needed and more markers.

Fig. 2
Five sums in a row
Number of players: 2

Game equipment:

Two cubes with faces marked $0,1,2$, 3,4 , and 5 . :

Two cubes with faces marked $2,3,6$, 7,8 , and 9 .

One playing board. (Fig. 3.)
Markers-beans, corn, buttons, disks.

Fig. 3

Directions

1. Each player in turn rolls the four dice and adds the numbers appearing on the top faces. The player with the greatest total starts the game.
2. On his turn, a player rolls the four dice. He selects two of the numbers appearing on the top faces to form a sum on the playing board. He places one of his markers opposite that sum on his side of the playing board.
3. Players take turns rolling the dice.
4. Play continues in this manner until one player has placed his markers opposite five sums in a row and wins the game.

Author's note. Plajers may test two or three sums before they make the selection for their play. This game can be varied by making sums with three dice instead of two.

Kumpoz

Number of players: 2 to 4

Game equipment:

Eighty-one cards, each $41 / 2^{\prime \prime}$ by $2^{\prime \prime}$, with nine cards of each of the following: 1,2 , 3, 4, 5, 6, 7, 8, 9. (Fig. 4.)

Fig. 4

Directions:

1. Cards are placed face down on playing area.
2. To begin the game, each player turns over one card. The player turning over the highest number starts the game. (In case of ties, players in question turn over new cards.) Play then proceeds clockwise. Drawn cards are returned face down to the playing area.
3. The starting player selects one number from the set $\{10,11,12, \ldots, 18\}$. The selected number will be used for this round of play. That is, the starting player selects the number.
4. Each player draws 15 cards from the playing area.
5. Thie first player puts down two or more cards. The, numbers on the played cards must add up to the number selected in direction 3. For example, suppose the selected number is 16 and the first player puts down the three cards shown in figure 5 . This is called a run. The run must total the selected number, in this case 16.

Fig. 5
6. The second player then puts down cards to make a new run. The new run may be connected to the 1 , the 6 , or the 9 card of the first run. The new run must also total 16. (See fig. 6.)

Fig. 6
7. Play continues clockwise around the table with each plâyer in turn putting down cards to make new runs. All rune in a game must total the selected number. Possible third and fourth plays in the sample game are shown in figures 7 and 8.
8. Play continues in this manner until one player has used all of his cards, or until no player can make a play. The player who has played all his cards is declared the

Fig. 7
winner, or if no player can play all his cards, the player having the least number of cards when play stops is declared the winner.

Fig. 8
Author's note. In this game players have practice in adding two or more numbers to make a given sum and on each turn they must test several combinations.

Mastering the basic facts with dice

HOWARD Y. GOSMAN
Mathematics coordinator and teacher at P.S. I65 in New York City, Howard Gosman is also doing additional graduate work at Teachers College of Columbia University.

The dice are "loaded" with activities to help i $_{\text {i }}$ children master basic number facts and enjoy the experience. "Double Trouble" is a good example of an activity that can be used in any grade. This game helps children master the basic facts in addition, subtraction, multiplication, and division. The game can be used in any classroom, and the teacher may modify it to suit his own classroom needs.

The game can" be played with one, two, three, or four players. Two dice, a score sheet, and a pencil are all the materials needed.

The players roll the dice to determine who will go first. Each playior then rolls the dice in turn. His score is the sum of the numbers that come up on the two dice. In the simplest form of the game (called "Trouble"), the first player to score 100 points (or a lower score in the lower grades) is the winner. A simple score sheet should be prepared by the teacher so that the children can keep a running count of the score.

In Double Trouble each player may roll the dice one or more times during his turn. After each roll the player must decide to . etther pass or play. His score for the round
is the total number of points scored. If the player rolls a double before he passes the dice to the next player, then his score for that round is zero. If the player passes without rolling a double, then he adds the score for the round to his total score. Once'a player passes, he cannot lose any of his points.

Variations

Double-Double Trouble, Triple-Double Trouble, and other Multiplication-Double Troubles. The players roll the dice as usual. Their score on each round is the number on the dice multiplied by two, by three, or by any number selected before the game begins. Of course, the total number of points needed to win the game would also be multiplied by the same number.

Addition-Double Trouble. The players roll the dice as usual. Their score on each round is the number rolled on the dice plus a number selected before the game begins.

Multiplication-Addition Double Trouble. The players roll the dice. The number on the dice is multiplied by a preselected. number, and a second number is added
to the resulting product. For example, the number on the dice is multiplied by five, and eight is added to the product. ($5 \times$ number thrown on dice $+8=$ score.)

Triple Trouble. Threc dice are used instead of two. The player's score for the round is reduced to zero if two of the three dice thrown make a double. The player's total score is reduced to zero if all three dice show the same number. Double-Triple Trouble would mean doubling the score on the three dice.

Other variations cañ be developed using
subtraction, division, and fractions. The children can also make up their own games.

Double Trouble (or any of its variations) is a fun way to learn the basic number facts. The game is completely under the control of the children. They must yoll the dice, do the appropriate computation, keep track of their scores, and decide to pass or play after each throw of the dice. Children can learn their basic number facts quickly without losing interest in numbers.

Emitorial Commevt. Another interenting activity with dice was suggested by Carol Stephens in the April 1967 issue of the Arithmetic Teac her. The game is called "Yahoo," and the basic information is as follows:

Equipment: 2 score sheets
2 dice
a multiplication fact chart
a set of bonus cards from colored construction paper with the following facts written on them:

$$
7 \times 2 \text { through } 7 \times 9
$$

7
8×2 tirrough 8×9
9×2 through 9×9
Number of players: ${ }^{2}$
Directions- Each person rolls the dice in turn. The two numbers shown on top indicate the factors. If the player knows the product, he records it on the chart. Except for the doubles facts, each product may be recorded in one of two possible places. If a player rolls a double, he gives the product and writes the answer on the chart. If correct, he selects a bonus card from the pilh, gives its product. and records the answer on the chart. When a playicr compietes a row (vertical, horizontal, or diagonal), he earns a yahoo. A Eume consists of twenty turns for each player, and ten points are awarded for each yahoo. The objective is to carn the most points in the game. A yahoo may aho be earned by completing any three consecutive bonus squares.

An obvious variation of this game would be to ddapt it to drill with addition facts.

Let's play computer

ELiAINEV.BARTEL

An associate professor of education at the University of Wisconsin-Milwaukee, Elaine Bartel . . . is director of the Intern Teaching Program for the School of Education on that campus.

Despite the burgeoning market of manipulative devices and games to enhance pupils' understanding of basic mathematics concepts, classroom teachers and paraprofessionals are still exhausting every available resource in their search for ideas and matcrials that meet the following criteria:

1. Relatively inexpensive
2. Easily adaptable to various levels of understanding
3. Related to identified problem areas of the mathematics curriculum
4. Simple enough to be introduced and used with a minimum of teacher guidance or supervision.
One idea that has passed the test of all of these criteria and has produced very positive feedback from preservice and inservice teachers, tutors, and paraprofessionals, is the game that 1 have titled "Computer." The only materials needed are several pairs of dice of varying coiors. Since the game has been designed specifically to aid in pupils' grasp and memorization of basic addition, subtraction, and multiplication facts, it speaks directly to an identified problem area in a fresh, game approach. Since "rules" for the game (programming the computer) are established by the group using it at the time, the game can be used effectively with pupils at any age or level of understanding.

Rather than attempt to explain the many
possibilities of the game in lengthy detail, it might suffice to go through a few "for instances" at various grade levels to give the reader a general idea of how "Computer" can be used with students.

Imagine, if you will, that our materials include thrce pairs of dice; one pair each of red, green, and white. At the primary grade level, the teacher could choose two youngsters, a small group, or a group divided evenly into tere teams. Initially the teacher would "program" the computer: " $R+r$ " or " $R-r$ " or " $R+r+$ $G+g . "$ (The letters refer to the color of the dice. The capital letter always denotes the larger of the two numbers on each pair of dice, and the small letter the smaller of the two numbers, unless they are 'the same.) Eventually the children will "program" the computer themselves, witing the problem on the chalkboard or on a large piece of paper on the table where the game is being played. When the children set up a problem like " $R+$ W - G," they will face the possibility of encountering a negative nuinber for their answer. This should cause no difficulty, especially if the classroom numberline extends to the left beyond zero.

In the intermediate grades pupils will tend to set up problems that match their ability to handle the basic addition and multiplication facts accurately and rapidly. This will also serve to encourage pupils to work at the mastery of these facts, since the need to know them well will be clearly
demonstrated when pupils participate in the game Sush problems as

$$
(R+r+W+w)-(G+g)
$$

or

$$
\frac{(W+G)}{R}-\frac{(w+g)}{r}
$$

will be used often a: this level, but it will not be lung before students will attempt to set up much nore sophisticated problems.

At the junior high level students will spend a great deal of time and mental energy wiile competing with each other on a problem like the following:

$$
\frac{R^{\prime}+w^{w^{*}}}{G \times g}
$$

Fo: eanample, suppose six dice are rolled so that $R=4,-r=3, W=6, w=2$, $G=5$, and $g=4$. Then, assuming that it is understood that the answer must be in the simplest form and expressed as a mixed number when possible, the correct response would be 6%.

For each game session, it is strongly suggested that children be permitted to establish their own "rules" for that session. For the example just given, students might conceivably establish the following rules:

1. A referce will be selected who will in turn choose the number and color of dice to be used, and select someone to "program" the computer (establish the problem).
2. The referee will be responsible for tossing the dice, checking answers, and keeping score.
3. No participant may touch or move the dice while computation is taking place.
4. The referee will jot down the first answer given, wait a few moments, then work through the problem orally to determine the correct answer.
5. Participants may use scratch paper for computation.
6. Scores wi!! be determined as follows: If the first answer called out is
correct, the person (or his team) gets that number of points added to his score. If the answer is under 5 or is a negative number, the answer (to the nearest whole number) is squared to determine his score. If the answer is incorrect, the correct answer is deducted from his score.

Needless to say, the possibilities for this game are endless; and if it does happen that children establish problems that are for the moment beyond their ability to solve, this can be a valid learning experience for them, and may be just the encouragement they need to increase their own level of expertise in mental computation.

Some of the obvious advantages of using this game approach for mastery of basic skills are that (a) it clearly demonstrates to students the need to have the addition and multiplication facts "at their finger tips," (b) it encourages the utilization of mental arithmetic, (c) it stresses accuracy and speed in a computation situation where the student must determine the balance between accuracy and speed, and (d) it places students in competition with partners of similar ability.

Rather than attempt to persuade you to introduce this game to your students, I would like to suggest that you find a willing colleague, set up a few problems, and play the game yourself. This will serve two purposes: It will demonstrate to you the applicability and feasibility of the game for many and varied levels, and it will quickly dispel any preconceived notions that it is boring or will lose its appeal for mathematics students. And remember, once you have introduced it to your students, they might on occasion ask you to serve as referee. You would be in a much better position to serve in that capacity if you feel comfortable about maiching your own skills with those of your students. I can't guarantee that you will always win, but I can guarantee some highly tense moments and the joy of seeing pupiis really involved in their own learning.

Multi-bet

ARTHUR K. MIKI
Wayoata Elementary School, Transcona, Manitoba, Canada

The game "Multi-Bet" provides practice with the more difficult multiplication'combinations and has proved to be one of the most popular games in the fourth grade.

Multi-Bet uses two specially marked dice-each die has the numbers $4,5,6,7$, 8 , and 9 ; a supply of counters-poker chips or bottle caps are excellent; and a chart like the one pictured in figure 1 . The numbers on the chart represent all the possible products that may result from rolling the two dice. The chart also shows the various combinations of numbers that can be played and the odds to correspond with the different combinations. A student may bet on one number, two adjacent numbers, four adjacent numbers or four numbers in a row, eight numbers, or ten numbers. Placement of the counters for the different combinations is indicated on the chart.

Each player begins with ten to fifteen counters. In each round players place their counters on the chosen numbers or groups of numbers. One player then rolls both
dice and calls out the product of the two numbers turned up. The product is the winning number for that round. When a

Fig. 1
player has played two numbers, if either number is the winning product the student gains seven counters from the house pot. Similarly, if a playershas played eight numbers, he gets two counters from the house pot if any of his numbers is the winning product. When the number or players played are not winners, the counters are lost to the house pot. The players then place their bets for the next round and the next player in turn will roll the dice and call out the product.
The house port would be all the counters left after each playyer had received the designated amount at the beginning of the game. A student who has mastered the multiplication facts, or a teacher could act as the house man.

The game can be played for a designated time period. If a player loses all his counters before the game is over, then he is out of the game. At the end of the time period the person with the most counters is the winner.'
The game can also be used in the study of simple probability. The chart itself can be used to introduce the subject: Which numbers are the most likely to occur? How were the various odds chosen? Discussions could stimulate experimental work on the different combinations that are most likely to occur when rolling two dice.

For students who are just beginning to learn basic multiplication facts, the dice can be marked from 1 to 6 . The game can also be applied to addition facts.

Arithmetic games

CLYDF A. DILLEY and WALTER E. RUCKER Urbana, Illinois .ften there is little variation in the setting in which children practice arithmetic skills (basic combinations and algorithms). In many cases the practice is unchallenging and unrewarding. An appropriate game can provide children with both a challenging and rewarding experience and an oppor tunity to discover mathematical concepts. Some games that have been used successfuily with children at all levels are described below.

The first game, "Build the Greatest

Sum," can be played as soon as children have been introduced to the addition algorithm. Ahead of time, you should make up digit cards by writing each of the ten digits (0-9) on a three-by-five card. The game is played on a table like that shown in figure 1. Each player can draw

Fig. 1
his own tables, or you can duplicate copies to distribute to the players. To play the game you shuffie the digit cards and select one at random. Tell the children to copy the digit that is on the card in any of the boxes of the table. Replace the card with the others, reshuffle, and pick another card. Tell the children to copy that digit in one of the five remaining boxes. Repeat until a total of six digits have been picked and recorded in the tables. Then ask the children to add the two three-digit numbers. The player with the greatest sum wins.

Since the cards are selected at random, chance is a factor. especially at first. However, after the game has been played a few times students will begin to formulate strategies that will increase their chances of winning. The opportunity for developing such strategies is probably the most important facet of this particular game. (The other objectives are to provide reinforcement of place-valuic concepts-a digit in one column is worth more or less than the same digit in another culumn-and to provide practice using the addition algorithm.) These strategies involve an inturtive use of probability concepts because to decide where to write a given digit the child must consider the chances of getting a greater or lesser number on a later draw. Such a strategy does not. of course, guarantee a win, but the child who uses it has a definite advantage over the child who fills in the squares at random.

There are many obvious variations of this game. For example, one variation is not to replace each digit card before the next is drawn. In this rase there will be no repetition of digits. Another variation is to extend the table so as to provide work with greater numbers. Stll! another is to have students ainı for the least sumi instead of the greatest sum. Other variations involve subtraction. multiplication, and division In fact, one of the most interesting of such games is the "Build the Least Difference" game.

Another type of game that children enjoy is called "Target Number." Here is
an example of a Target Number game. Ask the children to copy a sentence like the one shown in figure 2. Then, as digits are picked at random as in the above games, children record them as they choose in the frames of the sentence. When all the frames have been filled, students are to simplify the expression they have built. The player who has built the number nearest the target number, in this case 24 , wins the game. A winning strategy for this game is not so obvious, but children who have "number sense" will have a distinct advantage.

Fig. 2

Such a game provides an interesting setting for the practice of many arithmetic skills. Of course, ine pattern sentence can be deliberately designed to cultivate those skills in which the students lack profic.ency.

Two more pattern sentences that might be of interest are shown in figure 3. (Of course, 0 should not occur in the denominators.) You can make up pattern sentences of your own, and children should be encouraged to suggest others.

Our students have always enjoyed these games, and we think that yours will too.

Fig. 3

The Witch's Best Game .

C. WINSTON SMITH, JR.
College of Education, Wayne State University, Detroit, Michigan

Ass students encounter three-digit subtraction, many who previously have "mastered" two-digit subtraction falter, not only because of the complea :egrouping required in some problems, but also because of the wider selection of regroupings to consider. While two-digit subtraction requires the student to choose between two alternatives -no regrouping or regrouping from tens to ones-iaree-digit sutiraction can call for (1) no- regrouping, (2) regiouping from tens to ones, (3) regrouping from hundreds to tens, or (4) regrouping from hundreds to tens and from tens to ones. This range of choices, when linked with the understanding and use of basic subtraction facts and regrouping itself, creates for some a task that is very perplexing.

An activity that encourages each child to search for the best renaming, while piovviding a gamelike atmosphere, is one that the students ca!! "The Witch's Best Game" (Which Is Best). . To begin the game the teacher chooses a three-digit number. After recording this on the board, she writes the four names used most often when subtracting from this number.

	(1) $200+40+5$
245	(2) $200+30+15$
-129	(3) $100+140+5$
(4) $100+130+15$	

In some classes students assist by suggesting names and illustrating their choices on the twenty-bead abacus. Using this number as the sum (minuend), the teacher then
writes an addend (subtrahend) and asks the class to choose the name from the board that they think would be the most helpful when subtracting. After surveying the four choices and deciding upon the best renaming, each student indicates his choice by raising one, two, three, or four fingers. After the class has shown its response to the first addend (subtrahend), the teacher may substitute another addend (subtrahend) and ask the class to indicate their choices for this new problem in the same manner. (For example, 162 may be substituted for 129, and a new example, , 245-162, presented.) After five or six problems, the teacher may wish to change the sum (minuend) to vary the problem situation.

As the students raise their fingers indicating their choices, the teacher will have an opportunity to give immediate reinforcement with a nod, a smile, or a word of praise. With a perplexed look the teacher can encourage others to reconsider their answers. Observation of the total class response will aid the teacher in locating those students who are in need of individual help and will also point out areas which require reteaching to the entire class.

It is important throughout for the teacher to stress that there are times when two or more names may be appropriatetherefore the class is looking for a response that is best or most helpful, not one that is "right" or "wiong." Students who

6
choose names that do not appear to be helpful to the rest of the class should be
given an opportumty to explan their choices.

Editorial. Comment. - To provide additional reinforcement with three-digit subtraction problems, create a "Pick Your Problem" game as follows: Cover three shoe boxes with decorative paper and mark them A, B, and C. In box A, place cards that have only three-digit subtraction problems requiring no renaming. In box B, place cards that have three-digit subtraction exercises requiring one renam.ing. In box C, place cards that have three-digit subtraction examples requiring double renaming. Two to six players may participate at one time. Each student in turn spins a spinner marked A, B, and C. as shown. He then selects a card from the box indicated by the spinner and works the problem. If worked correctly, problems from A are worth 2 points, problems from B are worth 5 points, and problems from C are worth 10 points. The student who accumulates the most points in a specified number of turns or times is the winner. You may wish to have an answer key available for use if the students disagree on answers.

Beanbag-toss games may also be created to provide practice. For example, the following game board may be made from posterboard or plywood:

	326	598	200	141	475	Sorry ${ }_{5}$ Points
	94	Bonus 5 Ponts	100	783	249	505
	609	723	670	Brnus 10 Points	184	393
	542	177	316	489	320	152
	210	Sorry, Lose 3 Ponts:	425	206	588	600

Have each student throw the two beanbags on the game board and then add (or subtract) the two numbers indicated by the beanbags. One point may be awarded for each correct answer. If a bag lands on a "Bonus" or a "Sorry" block, the player records the points accordingly and takes another turn. Encourage the students to work their problems on the chalkboard or overhead projector so the results maf be verified.

A game for reviewing basic facts of arithmetic

EDWARD E. ARNSDORF
Sacramento State College, Sacramento, California

Adelightful game to use in reviewing addition-subtraction and multiplicationdivision facts for whole numbers has been developed by a Sacramento State College education student, Mary Dunlap.

Materials for the game consist of fortyfive cards cut from tagboard. Three-by-iwo-inch cards work well. The tagboard cards are numbered as shown in figure 1. Two different colors should be used for the numerals on the cards. With all top numerals one color and all bottom numerals another color, the cards can be arranged easily, right side up.

The game may be played by two, three. or four persons. To begin play, the deck is shuffled and five cards are dealt to each player. One card is turned face up and the remaining undealt cards are placed in a stack face down. The person at the immediate left of the dealer plays first.

Suppose the $(6,2)$ card (the one with the 5 on top and the 2 on the bottom) is the one that has been placed face up. The numbers on this card may represent $6+$ $2=8.6-2=4.6 \times 2=12$, or $6 \div 2$ $=3$. If the first player has a card containing two numbers whose sum, or difference, or product, or quotient is 8 , or 4 , or 12 , or 3 respectively, he may play the card from his hand by placing it face up on the $(6,2)$ card. If he does not have such a card in his hand, he must draw the top card from the pack and then determine if it can be played. If the drawn card cannot be played, it is added to the player's hand and he draws again. The process of drawing from the pack continues until an 8, or 4 , or 12 , or 3 is found. When a card can be played, it is placed on the face-up pile and the next player takes his turn. For example, assume that the first person plays

Fig. 1
the $(8,2)$ card, representing $8 \div 2=4$, on the opening $(6,2)$ card. The second player must now determine the new numbers that can be played. He may use any one of the four operations to name one of the new numbers, in this instance either 10 or 6 or 16 or 4.

Any time a card is played, another player may challenge the play by asking why that particular card can indeed be played. The game is won by the first person to play all his cards. If all the cards have been drawn and the game has not been won, all but the top card on the face-up, or' discard, pile are reshuffled and the game continues.

Notice that the two numbers on some
of the forty-five cards cannot t. used to name four different whole numbers. The sum and the product may name the same number; or the product and the quotient may name the same number; or the operation of division may not yield a whole number. Since some cards are more likely to be playable than are others, there are opportunities to make strategic decisions.

Players of this game are continually mentally performing the operations of addition, subtraction, multiplication, and division. Hence this game can be both an effective and an enjoyable way to review basic facts of arithmetic.

Eintrorial. Comment. - Many familiar card games, such as Old Maid, War, Fish, and so on, may be adapted to serve particular needs for practice experience. For example, the Old Maid game could be renamed "Mathlete" and a set of cards constructed as follows for addition and subtraction facts.

Each game cou d be played with 4,5 , or 6 players All cards are dealt to the players, and the first player chooses a card from the hand of the player on his right. The second player

解:
chooses a card from the player on his right, and so on. Whenever a player gets a matched pair, he lays it down on the tabke. If correct, he earns a point; if not, he loses a point. The game continues until all matched pairs are on the table and a player is left with the "Mathlete" card. The player who is left with the "Mathlete" card loses a specified number of points (or is a warded a specified bonus).

"Contig": a game to practice and sharpen skills and facts in the four fundamental operations

FRANK W. BROADBENT

Syracuse University, Syracuse, New York

"Ccontig" is a game that intermediategrade children love to play and with which they can challenge their older brothers, sisters, or paicinis. Eour things are required -three dice, a score pad, markers, and a Contig board. The dice, pad, and markers are readily available, and a supply of boards can be made by reproducing the sample provided at the end of this article on sheets of paper.

Rules of the Game

1. Two to five players may play Contig.
2. To begin play, each player in turn reit:s all three dice and determines the sum ui the three numbers showing. The player with the smallest sum begins play. Play then progresses from left to right.
3. The first player rolls the three dice. He must use one or two operations on the three numbers shown on the dice. He is then allowed to cover the resulting number on the board with a marker. When he has finished his turn, he passes the dice to the player on his right. A player may not cover a number that has been previously covered.
4. To score in Contig, a player must cover
a number on the board which is adjacent vertically, horizontally, or diagonally to another covered number. One point is scored for each adjacent covered number.
5. When a player rolls the dice and is unable to produce a number that has not already been covered, he must pass the dice to the next player. If he incorrectly passes the dice, believing he has no play when in fact he does have a play, any of the other players may call out the mistake. Tine first player to call attention to the error may place his marker on the proper uncovered number. This does not affect the turn of the player citing the error.
6. A cumulative score is kept for each player. A player is eliminated from further play in a game when he fails in three successive turns to produce a number that can be covered. When all players have experienced three successive failures to produce a coverable number. the game ends. Tise player with the highest cumulative score wins.

Variations of Contig

1. Use a one-minute egg timer to time the

CJNTIG

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	44	45	48	50	54	55
60	64	66	72	75	80	90	96
100	108	120	125	144	150	180	216

f.is
turn of each piayer. This will tend to speed up the game.
2. Allow any player to challenge an opponent if the opponent does not choose the number that will score the maximum number of points. The challenger should then receive the difference between the number of points scored by the chosen number and the greater number of points that could have been scored. .
3. For a faster game, allow only five turns for each player. The player with the highest score at the end of the fifth round would be the winner.
4. Allow students to play it as a solitaire game and attempt to score as many points as possible before experiencing - three successive unsuccessfut rolls of the dice.
5. To make the game easier, use a four-by-five array and the numbers $1,2,3$. $4,5,6,7,8,9,10,11,12,15,16,18$; $20,24,25,30$, and 36 . In this case. students use only two dice but play by the rules above.

axe Sample play'(four players)

Suppose four players roll the dice in their respective turns as shown in table 1 . Player 1 covers the 9 on the playing board $(2+3+4=9)$ but does not seore because no other numbers have been covered. Player 2 covers the 10 on the board ($[4-$ $21 \times 5=10$) and scores 1 point because the 10 is adjacent horizontally to the already cosered 9. Player 3 covers the 11 $(|1<5|+6=11)$ and scores 1 point
because the adjacent 10 has already been covered. Player 4 covers the $2(4-16 \div$ $31=2$) and scoies 3 points, one for the vertically adjacent 10 and one each for the diagonally adjacent 9 and 11.

Table 1
Roll of

dnce \quad\begin{tabular}{c}
Number

cocered

\quad

Points

scored
\end{tabular}

After the chuldren have played the game for a while. questions like the following might be explored:
a) How were the numbers used in Contug selected?
b) What numbers would you use if you had two dice or four dice?
c) How many ways can you cover each number in Contig?
d) What is the highest score (without challenges) a player can make in a game?
e) Why are some numbers between I and 216 left off the Contig board?
f) Would it be possible to use all the numbers from I to 216 on a Contig board if the dice went from 1 to 10 ?
g) What is the probability of being able to cover 216 on your first throw?
h) Why is part of the Contig board still uncovered when everyone has passed three tumes?

Edirorial Commivt. -- You may wish to have each student write a number sentence to illustrate his answer after each play. This will give him some of the desired written practice and also make it possible for the other players to check his werk more easily.

The questions suggested at the end of the article are excellent and should stimulate the students to do some analyucal thinking.

A variation of the game could be created by using spinners instead of dice to generate the numbers. Another variation could be created by using stacks of cards and having a player draw a card from each stack to start play.

Cardematics I-using playing cards as reinforcers and motivators in basic operations

SEYMOUR METZNER and
RICHARD M. SHARP
California State University, Northridge, California

Materials for pupil activity-learning in all areas, and especially mathematics, `are difficult to find even though more educators are advocating this approach to learning. Some teachers have used considerable initiative and ingenuity to develop and adapt inexpensive materials for pupil activ-ity-learning. One of the most inexpensive, easily obtained, and adaptable items that can be used is an ordinary deck of playing cards.

Six games or activities that have relevance to the learning and retention of basic mathematical skills and understandings are described here. The games motivate students and add a certain "pizzaz" to the mathematics program. Each of the activities requires three decks of playing cards. All nonface cards have their numerical face value, with an ace as I. Play can be 'limited to the nonface cards, or if face cards are used, the jack, queen, and king can be àssigned the numerical values of 11,12 , and

13 respectively. Other numerical values can be given the face cards, if desired.

All of the described activities suggest teams of students. Although any size team could play the game, there is greater student participation if the teams are made up of no more than two or three students. Small teams can better discuss possible answers to problems.

All games begin the same way. After the teams have been determined and the decks of cards are shuffled, each team draws three cards. Then the teacher draws a card (or cards) and shows it to all of the tearns. The procedures that follow then vary with the games, but whatever the procedure, it is repeated a predetermined number of times. In each game, the team with the largest "bank" at the end of play is declared the winner. And in every game, as soon as a team "banks" cards, it draws to replace the banked cards. A team always begins play with three cards in its hand.

These activities are self-correcting if each team is paired with another team to verify each other's answers before being allowed to bank cards or draw additional cards. The teacher may act as a court of last resort in questionable decisions.

Prime-o

Objective

Identification of prime numbers, addition and subtraction practice

Procedure

Each team, by adding or subtracting one of their cards from that displayed by the teacher, should try to reach a prime number. It is possible that more than one of a team's cards can fill this function, but the cards must be used separately. All cards that are used successfully to reach a prime number are added to the team's bank.

Round-up

Objective

Practice with basic number operations

Procedure

Each team tries to use as many of its cards as possible to reach the number drawn by the teacher. The team may use any one or any combination of the basic operations. (For example, if the teacher's card is a 4 and a team has a 5 , an 8 , and a 10 . then the team could use all three cards by showing that $5 \times 8=40$ and $40 \div 10=4$.) All cards that are used are added to the team's bank.

Magic number

Objective

Addition and subtraction practice

Procedure

The teacher announces a magic number and then draws a card. The teams add or subtract one of their cards from the card drawn by the teacher to reach the magic number. (For example, if the magic number is 8 and the card drawn by the teacher is a

5 , then a team would need a 3 to add to 5 to get 8 .) More than one card can be used by a team as long as each card is considered separately. All cards that are used are added to the team's bank.

Divvy-do

Objective

Division review with remainders

Procedure

The teacher draws two cards from the deck; the students then divide the larger number by the smaller. Each team must then see if they can get the same quotient and remainder by dividing any two of the cards in their hand. A pair of cards that can be used to get the appropriate quotient and remainder are added to the team's bank.

Even-steven.

Objective

Division practice with no remainders

Procedure

The teacher draws a card from the deck. Each team then tries to combine one of its cards with the card displayed by the teacher to make a division problem with no remainder. The card drawn by the teacher can be used either as a divisor or a dividend. (For example, if the teacher draws a 4, a team could use 2 , since $4 \div 2=2$, and an 8 , since $8 \div 4=2$.) A team may use more than one card as long as each card is used separately. All cards that are used are added to the team's bank.

Multi-match

Objective

Multiplication review

Procedure

The teacher draws two cards from the deck. The students calculate the product of the numbers on the drawn cards and then teams try to use any two or three of their cards to get the same product. (For example, if the teacher draws a 7 and an 8 ,
a team could use a 2,4 , and 7 to get the same product.) All cards that are used are added to the team's bank.

This game can be varied by having teans compete to see which team can get closest to the product of the cards drawn by the teacher. The team that gets the nearest product banks the cards it uses.

Conclusion

All of these activities should be viewed simply as starting points. Teachers can adapt these games or activities to their own particular situation or to class needs and interests. The general format can be extended to areas not covered by these half-dozen activities.

Green Chimneys poker

T. RISTORCELLI
Green Chimneys School, Brewster, New York

This game can be played by two, three, four, or more players using an ordinary deck of cards. Six cards are dealt to each player and the remaining cards, placed face down, form a drawing pile. The idea is for each player to try to rid hirnself of all his cards before any of the competing players by playing his cards one at a time consistent with the rules of the game.
The first player (clockwise from the dealer) leads a card face up on the table, thus starting a playing pile. Each succeeding player in his turn plays a card on the playing pile, but when he plays the card he must multiply the number on his own card by the number on the card that is face up on the playing pile. If he multiplies correctly, the player will have gotten rid of one card and the play goes to the next turn. If he makes a mistake in the multiplication, he must take back the card he played and pick up an extra card from the drawing pile.

All number cards stand for the number that is written on them and face cards are
valued as follows: a jack is 11 , a queen is 12 , and an ace is 1 . The kings and jokers are fred discards at the beginning of a player's turn and both have zero point value. Jokers are wild. Three or more of a kind and a run of three or more cards of the same suit are also free discards at the beginning of a player's turn.
The player who first disposes of all his cards wins the hand. Points can be scored in one of two different ways. The winner of the hand can get credit for all the points held by the other players when the hand ends, in which case a high score is the goal of the game. Or, when a player goes out, the other players can be penalized the number of points they hold in their hands. In the latter case a low score is the goal of the game.

For players who are not yet up to the multiplication tables of $12,11,10,9$, or others, the corresponding cards are simply removed from the deck before starting the game.

DIFFY

HERBERT WILLS

An associate professor of mathematics educanon at Florida State University in Tallahassee. Herbert Wills has directed NSF summer institutes in computers, and last year was director of an NSF Academic Year Institute at Florida State University.

The game DIFFY is an academic game that provides intrinsically interesting drill experiences and allows for individual differences. Moreover, teachers need not construct any of the exercises. The student himself initiates the drill, and the nature of the game provides for variety in the numbers encountered. Thus the activity promotes self-generated drill. This feature is commendable, since students won't run out of material and they become personally involved in their work. Besides automati-
cally adjusting to students of diverse abilities within a given classroom, DIFFY also provides productive academic recreation at every grade level. This flexibility stems from the fact that the game may be played with a variety of numbers: whole numbers, nonnegative rationals, integers, all rationals, or all real numbers.

To introduce a class to DIFFY, give each student a supply of game sheets, illustrated in figure 1 , then play a sample game on the chalkboard or with the use of an

Fig. 1

Fig. 2
overhead projector. This provides each student with the information needed to proceed independently and stimulates "Let me try it myself" interest. The game is started by placing numbers in the four outermost corner cells. Players may choose any numbers they wish for this purpose. Let us suppose that students chose the numbers shown in figure 2 to start a game.

The adjacent corner cells determine the number to be written between them. In this particular game three of the numbers gencrated have been entered in figure 3. See if you can guess the remaining entry.

Once these middle cells have been filled. we have determined a new four-cornered diagram (fig. 4) which, in turn, has its middle cells vacant.

Players till these cells the same way that the previous ones were filled. The only rule in DIFFY, as you probably have guessed, prohibits subtracting a larger numbber from a smaller one. Younger students. who have not learned to work with negative numbers, will need only to have this rule stated. More mature students can be introduce to the absolute-value function and apply it to the differences. The game being considered ends at the next move, since it yields a zero in each middle cell, as seen in figure 5.

This game took only two moves before zero was written in each middle cell. If zero appears in some of the middle cells but not all of them, the game continues. The game sheet distributed to the students has room for six moves (see fig. 1). Should
player reach the innermost set of cells
without writing zero in each of them, he wins.

It is gratifying when a student introduces numbers in the game that produce problems that challenge him. One is also pleased with the care players take in doing their calculalions or checking their work. This care assures them that a declared win is truly a success and not a fluke resulting from mascalculation. Also, it is not uncommon to see students cheeking the work of others, attempting to find an error that will refute a proposed win. This checking is essentially additional drill, and carefully done drill at that! Compare this with the lack of purpose and motivation of regular drill for drill's sake.

Besides providing a vehicle for selfgenerated drill in subtraction, DIFFY may be used to introduce investigations that are more intellectually stimulating. For example:

Start a sample game that requires several moves but stop short of its culmination. Instruct the pupils to continue independently. They will find by themselves that zero is the only number that gets listed beyond some move. Moreover, they can be encouraged to try additional games allowing them to discover for themselves that a set of zeros eventually results. This may encourage some to heep trying again and again in an effort to elude an arrival at zeros.

Does the order in which the numbers are listed in the corner cells affect the number of moves in a game?

Fig. 3

Fig. 4
Once a player has won the game a few times (six moves without all zeros) have him try for seven moves, eight moves, nine moves, and so forth. A continuing contest can be held to see who can come up with the longest game. Others can then try to do at least one better. This will always be possible, since there is no "longest game."

Find a winner using only single digits in the starting cells. Find another.

How does the number of moves of one game compare with the number of moves in a second game whose starting cells are entered with doubles of the entries of the first game? With triples? With other multiples?

Another time add 5 or some other number to each of the initial entries and compare the number of moves.

For younger students, exhibit a completed six-move game and ask them to come up with one that takes exactly five moves. Then four moves, and so forth.

Let older students try fractions.

Fig 5

DIFFY not only provides a good vehicle for drill in subtracting rational numbers but also gives practice in comparing them, since the rule does not permit a larger number to be subtracted from a smaller. Other skills drawn on in this activity involve multiplying, reducing fractions, and recognizing equivalent fractions.
Try DIFFY with any quadruple of integers-positive, negative, or zero.

Try $\pi, e, \sqrt{91}, 19$. Before you start, consider whether you think it will ever end. Observe the manipulative skills required in this activity.

One need not stop here, as there are many more intriguing aspects about DIFFY. Not the least of these is the fact that it involves an iterative process and so lends itself very well to the use of a computer. Many students who are familiar with BASIC or other programming languages may enjoy putting DIFFY on the computer. For this purpose, thodgh, a change in format proves useful. We can show this by appealing once more to a sample game; this one is shown in figure 6.

Fig. 6
In this format the starting numbers are listed horizontally. The "distance" between neighboring numbers is listed directly below the space between them. The last entry in each row other than the first row is acquired by finding the distance between the first and last entries in the preceding row. This format also has obvious advantages in a search for long games, since one need not concern himself with expanding the original game chart.

The computer may be programmed to print out each intermediate step or just the number of steps required. One may wish to program the game so that the player "inputs" the number of steps to beat before he plays the game. The computer would then inform the player whether he won or not. The variations available provide opportunities to apply programming skills at many levels.

Since DIFFY proves so useful for drill in subtraction, might we not try to get additional mileage out of it by considering another operation?

Indeed we might. We can change, our operation and still we the same playing chart. This time. instead of subtracting, we shall divide. Furthernore, as in DIFFY we never subtracted a larger number from a smaller one. in DIVVY we shall never divide a smaller number by a larger. This time instead of ending with zero in the last set of cells we shall end with something else. Can you guess what it will be? Go ahead and guess; then check your guess by trying a game of DIVVY. Of course, in
playing DIVVY, be sure not to enter any zeros. You wouldn't get very far, since we can't divide by zero.

DIFFY and DIVVY are but two academic games that stimulate self-generated drill that is purpoceful to the student. There are several other such games having the same fine attributes, among which is that of providing for individual differences. The slower learners can try smaller numbers and proced at their own pace-and win in time-while the more clever student may choose numbers as challenging as his heart desires and try for a win involving more moves than his previous one.

In my opinion, it is important that such activities become more widely known, since we are beginning to hear cries that "what our children need today is old-fashioned drill." True, they need drill, but not the barren set of exercise after exercise devoid of intellectual purpose. Sometimes it's better to give a child his medicine with a sugar coating. Shouldn't we give children proper drill and maintain their interest in mathematics at the same tine?

Editorial Comment. - There are many ways to provide interesting practice in elementary school mathematics. For example, have the students look at a calendar for a given month and select any four adjacent dates in a square array, such as

9	10
16	17

Lead the students to
observe that $9+17=16+10$. Have the students check to see if they can find similar arrangements on a calendar that do not work in this way. Test the idea on a three-by-three arrangement, such as

12	13	14
19	20	21
26	27	28

Does $12+20+28=26+20+14$?
You can also develop coin puzzles such as the following:
A box contans 3 coins. The total value of the coins is 20 q . Name the coins in the box.
A box contains 6 coins. There are 3 different kinds of coins in the box. The total value of the coins is 32 c . Name the coins.

Magic trianglespractice in skills and thinking

DONALD L. ZALEWSKI

Presently an assistant professor of education at the University of Nebrasha at Oinaha, Donald Zalewski teaches mathematics methods and supervises student tcachers.
 The article wos written during his investigation of mathematical problem solving while he was at the Universitv of Wisconsin in Madiron.

Can you place each of the numbers 1 through 6 in the triangular chain of circles in figure 1 so that each side has the same sum? If you are successful, congratulations. you have just created one example of a^{\prime} magic triangle. These simple figures may not have as many "angles" as the well publicized magic squares, but they possess a few powers that may be interesting to both you and your students. Obviously, important practice in addition skills is built into the puzzle and it is possible that you can at the same time stimulate the formation of problem-solving strategies.

Fig. 1

A magic triangle is a triangular chain of circles (an equal number of circles on each
side) containing numbers such that the sum on one side is equal to the sum on any other side. "Level one" magic triangles contain six circles in the chain. If only the first six positive whole numbers are inserted in the circies, the configuration will be referred to as a basic magic triangle. Although magic squares and magic triangles both provide practice-in computation and problem solving, the triangle. problem holds two distinct advantages for the beginner: (1) There are fewer sums to find and check, and (2) the simple design offers children an easier opportunity to use elementary common sense and logical thinking to solve these puzzles.

Now, back to the problem. Don't feel too smug if yøu found one correct an-swer-there are four common sums possible using the numbers 1 through 6. Can you find the others? The four solutions are given in figure 2 . Since each solution can be written in six possible forms, any forms that are related by a rotation or flip will be considered the same solution. Figure 3 gives the six possible representations for solution A from figure 2.

When posing this problem to elementary school children, it might be better to indicate which sum ($9,10,11$, or 12) they should seek. For instance, you might ask them to try to get 9 as a common sum. If a child incidentally finds one of the other possible sums, he should certainly be commended for his efforts and you should take the opportunity to challenge the children to search for other solutions.

Sometimes, hints on possible strategies for filling in the circles may be necessary to help children get started or to help them organize nonproductive trials. One helpful suggestion is, "Pick three numbers and put them in the corner circles (vertices), then try to arrange the remaining three numbers to get equal sums." A more direct cue might have the children choose 1,2 , and 3 as the vertices and then arrange 4,5 , and 6 as interior points until common sums are found. You might also suggest that the children keep a record of the numbers they have tried as vertices and interior points to avoid duplication of effort.

You may wonder if there is a method to this madness, or if trial and error is the only procedure that can be used. Inspection of the trios of numbers that formed

Fig. 2
",

!

Fig. 3
the vertices and interior points of the solutions in figure 2 produces identifiable patterns. If wé horizontally order the numbers 1 through 6 from smallest to largest, we see that solution A has the first three numbers as vertices and the last three-as interior points. (Fig. 4) Solution D has the roles of these two trios interchanged. Solutions B and C share a common partitioning of the trios into the odd and even numbers. (Fig. 5) Some children may notice these regularities, but most may need to be asked if they see any patterns that might help them solve the puzzle.

After identifying the patterns of number trios, the child has an opportunity to apply mathematical reasoning when trying to form magic triangles. Assume that three numbers have been selected for the vertices. Then the interior points can be identified by inspecting the incomplete sums. For
example, let 1,2 , and 3 be selected as vertices. (Fig. 6) Since 2 and 3 form the largest sum thus far, that side must receive the smallest of the remaining numbers, namely, 4. Similarly, since 1 and 2 form the smallest incomplete sum, that side must get the largest of the three interior numbers, namely, 6. The third side receives the remaining number, 5 .
A

D

Fig. 4

When an incorrect trio is chosen for the vertices, the same reasoning reduces the number of trials neccssary to eliminate it. For example, if 1, 2, and 4 were chosen for vertices (fig. 7), then 3 must be inserted between 2 and 4 , and 6 must be put between 1 and 2. The two completed

Fig. 5
sides form a common sum of 9 , but putting 5 between 1 and 4 gives a different sum of 10 . Since no other arrangement of 3,5 , and 6 as interior points is logically possible, we must go back and try a new trio of numbers for the vertices.

Fig. 6

If you have children who enjoy this type of mathematical problem, you need not stop at the basic magic triangles in figure 2. For enrichment, two or three digit numbers can be used. You may devise your own combination of numbers, or better yet, have children find some. There are an unlimited number of combinations, but any six consecutive whole numbers will suffice.

Fig. 7

Furthermore, the use of six consecutive integers permits the children to check the hypotheses formed and patterns observed in the basic magic triangles. (You might notice that new magic triangles can be built systematically by adding or subtracting the same number to each entry of a basic magic trianglc.)

Additional challenge can be added to this problem by looking at a "level two" magic triangle consisting of nine circles. (Fig. 8) The numbers 1 through 9 would be used in attempting to form the equal sums of basic level-two magic triangles. You can decide whether to consider answers with the same vertices but with different arrangements of interior points (fig. 9) as the same or separate solutions. The same questions about possible sums. patterns, and strategies can again be raised.

Fig. 8

Fig. 9

Children need much practice in skill development and maintenance. Building magic triangles can be an interesting respite from routine drill. It can also provide opportunities for children to practice the searching, guessing, and thinking that is essential for problem solving.

Roforences

Brown, G. "Magic Squares, More than Recreations." .Sctool Science and Mathematics 66 (1966): 23-28.

Freitag, II. T., and A. H. Freitag. "Magic of a Square." Mathematics Teacher 63 (January 1970): 5-14.
Gorts, J. "Magic Square' Patterns." Arithmetic Teacher 16 (April 1969): 314-16.
Keepes, H. D. "Logic in the Construction of Magic Squares." Artthmetic Teacher 12 (November 1965): $560-62$.
May, L. J. "Enrichment Games Get Pupils to Think." Grade Teacher 83 (1966): 53-54.
McCombs, W. E. "Fourby four Magic Square for the New Year." Arithmetic Tencher 17 (January 1970): 79.
Munger. Ralph. "An Algebraic Treatment of Magic Squares." Mathematics Tencher 66 (February 1973): 101-9.

Editorial. Comment.- Puzzles are excellent devices to stimulate and interest many students. As a variation of the "magic triangle." you may wish to give a student nine square pieces of blank paper and instruct him to number the paper squares in order, beginning with any whole number (you may wish to specify a beginning number in order to have the student practice at a specific level of difficulty). After the student has numbered the nine paper squares, instruct him to arrange the squares in a 3×3 array so that -

1. he gets the same sum in each row (horizontally):
2. he gets the same sum in each column (vertically):
3. he gets the same sum in each diagonal;
4. he gets the same sum simultaneously in each of the three directions, horizontally. vertically, and diagonally.
The difficulty level of this activity could be decreased by using only four paper squares ($2 \times$ 2 array) and the difficulty could be increased by using sixteen (4×4 array) or twenty-five (5×5 array) paper squares.

Easy construction of magic squares for classroom use

JOHN CAPPON, SR. Willowdale, Ontario, Canada
Mr. Cappon is a relired elementary school principal from Amsterdam, Holland. He also taught arithmetic at a private teachers college in Winschoten, Holland. In Canada he is an advisér to a pricale school.

InIn the December, 1963, issue of Tue Aruthmetic Teacher Bryce E. Adkins gave six rules for construction of odd-eell magic squares. ${ }^{1}$ His result for a five-by'five magic square is given in Figure 1. It is

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

Figure 1
noticed that all horizontal rows, intical columns, and diagonals have the total oi 6.5

Actually, the construction of this scheme can be simplified considerably and is easier to remember when certain numerals are replaced in symmetric positions outside the borders of the square as is customary, for example, in the calculation of determinants of the third rank.

A European method proceeds as follows: Cells are added outside the square by building a pyramid on each border line and placing the digits in the order illustrated in Figure 2 for a five-by-five square. Then, the extra cells of the pyramids are used to fill the empty cells within the

[^1]

Figure 2

Figure 3
square along the opposite border. The result is shown in Figure 3.

Although the integers 1-25 were used in the example, this is not necessary. Any sequence of numbers which is part of an arithmetical progression will suffice. Moreover, as Frances Hewitt ${ }^{2}$ has shown for a

[^2]four-by-four square, there can begaps in the progression between the parts of the rows. This holds also for all odd-rell magic squares; e.g., the sequence of numbers for a three-by-three square can be chosen as $2, \overline{5}, 8(11,14), 17,20,23(26,29)$, $32,35,38$, where the numbers in parentheses are omitted (Figs. 4 a and 4b).

Figure $4 a$

Figure 4is
Futhermore, the gaps can be taken as atty intaber, pontive or negative, if they

Figure 3

Figure 5 b . This is the reverse of 4 b !
are all the same, e.g., $2,17,32 ; 5,20,35$; $8,23,39$. The gap here is 27 (Figs. $5 a$ and ;b).

All these difficult cases can be sumhaxized in one general rule: The sequence of numbers in the "pyramidally extended "cquare" is formed ly two arithmetical progressions, one determining the numbers from u.e most left-placed cell to the upper cell, and another one determining the numbers from the most left-placed cell to

| 9 | 23 | 16 | 30 | 23 | 37 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 35 | 14 | 28 | 21 | 35 | 28 | 7 |
| 12 | 40 | 19 | 33 | 26 | 5 | 33 |
| 38 | 17 | 45 | 24 | 3 | 31 | 10 |
| 15 | 43 | 22 | 15 | 29 | 8 | 36 |
| 41. | 20 | 13 | 27 | 20 | 34 | 13 |
| 18 | 11 | 25 | 18 | 32 | 25 | 39 |

Figure 6b. The magic square formed by Figure Ga.
the bottom cell. Both arithmetical progressions can be taken arbitrarily. (See Figs. 6a and 6b.)
'The rule given by Frances Hewiti, that a new magic square can be formed from a given square by adding or multiplying the digits with a certain number or fraction, follows immediately from our general rule.

Adkins gave an easy, rule for a four-byfour magic square formed from the numbers 1-16 placed in four rows of four digits. The series of the numerals on each diagonal must be reversed. Again, it is not necessary to restrict oneself to the numbérs 1-16. In fact, we can again build up the sequence of numbers from two arithmetical progressions, one denoting the order in the first row and the other the crder in the first column. (See Fig. 7a.)

Adkins' rule also applies to a square of these numerals; the square of Figure 7 a is converted to a magic square by reversing the diagonals. (See Fig. 7b.)

Practical applicatiens

For adopting magic squares to classroom use it is desirable to have an easy method that enables us to construct a maric square for any given number. Nost easily one may employ a diagonal for the construction of the auxiliary figures of either the odd-cell squares or the four-byfour squares. The elements of this diagonal are always part of an arithmetical progression.

In the odd-cell squares (see Fig. 6a) the
increment of the horizontal diagonal (7) equals the sum of the increments of the border rows (2 and 5 respectively in the figure), while the increment of the vertical diagorial (3) equals the difference of the border row increments. The same applies to the oblique diagonals of the four-byfour squares (see Fig. 7a).

Furthermore, the sum of the first and last elements of either diagonal is an important quantity. For the odd-cell squares this sum equals twice the term in the middle, which in turn equals the magic sum divided by the rank of the square (see Fig. 6a: $[3+10+17+24+31+38+45] \div 7$ $=24$). In the four-cell squares the sum of the first and the last elements of the diagonal equals half the total of the four elements. With the knowledge of this it is possible to construct any magic square with a given number as totals of rows, colunns, or diagonals.

Columbus discovered America in the year 1492; let us make a four-by-four magic square ${ }^{\text {with }}$ totals 1492 . Starting with the diagonal of the ausiliary figure, the first and the last numbers of the diagonal must equal $1492 \div 2=74 \dot{6}$. The last number of the diagonal equals the first one plus three increments, from which it follows that the difference of the num-

Fıgure 7a

Figure 7b
bers must be divicible by three (if we want to aroid fractions). The numbers 100 and 646 suffice. The increment is then $(6,6$ $-100) \div 3=19$. The entire diagonal is therefore $100,292,464$, and 646 . Further, we split this inerement in two parts, $\mathrm{c} \underline{\square}$. 82 and 100 , and we there parts to construct the first row and the first columu Then the rest 15 known. The evample is Gemontratel in Figure Sa and Sh.

INCREMENT 82

100	182	264	346	
100	200	282	364	446
	300	382	464	546
400	482	564	646	

Frome sa luaburs quar

646	182	264	400
200	464	382	446
300	364	282	546
346	882	564	100

 square the children check the results by performing the fiftern possible additions: 4 rows, 4 columns, 2 diagonals, 4 two-bytwo squares in the corners, and 1 two-bytwo square in the middle. By the choires of the first and last numbers of the diagonal and the inerement, the teacher can vary the difficulty of the arithmetic caleulation according to the progress of the class.

The year 1964 consists r : 19 and 64 . We shall make a magic square for 19 and 61 The number 19 is a prime number. Horce,
we :mbet avail curelsen of fractions. In the amviliary figure for the five-by-five square, one places the number $19 \div 5=3.8$ in the middle. (Sor Fig. 9a)

I wher lat lixthary figure for mance number 19
The left-cell of the borizontal diagonal is less than 3.8 , e.m, 2 . The increment of the diagonal is then fived, riz. (3.8-2) $\div 2=0.9$. The complete diagonal is now known. Then the increment 0.9 is split into two numbers, e.g., 0.2 and 0.7 , which determines the border rows. We chose these numbers so that the entire square contains all different numbers. The resulting magic square is Figure 9b.

2.4	41	3.3	5	42
49	31	4.8	4	22
2.9	5.6	38	2	47
5.4	36	2.8	45	27
3.4	2.6	43	35	5.2

Figure 9h. The magic square of 19.
The magic square for 64 is made as the one for 1492 . The diagonal is $4,12,20$, and 28. The increment (8) we split in 7 and 1 (ligs. 10a and 10b).

If interested in the magic squares for 32 or 16, one can utilize the magic sqiadre of 64 by dividing all terms by 2 and 4 respectively. (See ligs. 10c and 10d.)

Figure lla lumarysalare for 64.

28	11	18	7
5	20	13	26
6	19	12	27
25	14	21	4

Figure 10b. Magic square after diagonal reterse.

14	$5 \frac{1}{2}$	9	$3 \frac{1}{2}$
$2 \frac{1}{2}$	10	$6 \frac{1}{2}$	13
3	$9 \frac{1}{2}$	6	$13 \frac{1}{2}$
$12 \frac{1}{2}$	7	$10^{\frac{1}{2}}$	2

Figure 10c. Magic square for 32.

7	$2 \frac{3}{4}$	$4 \frac{1}{2}$	$1 \frac{3}{4}$
$1 \frac{1}{4}$	5	$3 \frac{1}{4}$	$6 \frac{1}{2}$
$1 \frac{1}{2}$	$4 \frac{3}{4}$	3	$6 \frac{3}{4}$
$6 \frac{1}{4}$	$3 \frac{1}{2}$	$5 \frac{1}{4}$	1

Figure lod Vagic square for 16 .

It in not alwas's possible to split the increment of the diagonal in such a manner that no two numbers oreur twice, particularly in squares with a low magic sum as might be used in lower grades. Suppose a child in the third grade has his ninth birthday, for which occasion the teacher plans to make a magic square with totals equal to nine. The niddle term in a three-by-three square is then $9 \div 3=3$; the increment of the diagonal is $3-1=2$. This is divided in 1 and 1 (if no fractions are to be used). (Sce Fïrs. 11a and 11b.)

Figure 1 ta. A ursliary square for 9.

Figure 11b. Magic square for 9.
The magic square with totals 10 can be made with a four-by-four square. The diagonal is $1,2,3$, and 4 . The fraction $\frac{1}{2}$ is chosen for both increments. (See Figs. 12 a and 12 b .)

1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$
$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3
2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$
$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4

Figure 12a. A uxiliary square for 10.

4	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$
$1 \frac{1}{2}$	3	$2 \frac{1}{2}$	3
2	$2 \frac{1}{2}$	2	$3 \frac{1}{2}$
$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	1

Figure 12 b The magic square for 10 .
The magic square for 11 is casily built on a threr-by-three square 'The middle number is

$$
11 \div 3=3 \frac{2}{3} .
$$

Choose $\$$ for the left cell in pyramid.
Magic squares for 12 and 13 are obtained from Figure 4b and Figure 3 respectively. The numbers in the cells are divided by five.

The magic square for it can be obtained by adding one to ear h cell of Figure $1: 2$, by constructing a four-b-four square (diagonal 2, 3, 4, and 5 ; increment ${ }_{6}^{2}$ and $\frac{5}{6}$), or by constructing a seben-by-seren stluare (in the middle $14 \div 7 \cdots 2$, left-cell! inerements $\frac{1}{2} \sigma$ and ${ }_{20}^{3} 0$).

These evamples are suitable for all elementary school grades from the third
grade up, according to the age of the pupils, providing decimal fractions cam be hed in seventh- and eighth-grade arithmetic.

The high sehool teacher ean use negatise numerals; for cample, he can subtract 10 from each ce! in Figure 1. He can also change the numeral, to another numeration sratem.

Emmorini Conmina Magie squares can provide many opportunties for students to learn to think mathematically. However. thes will not oceur if the students experience is limited to "plugging in" values in certain places in accordance with rules set forth by the teacher. For example, let's examine the nine-cell magee square in which we are to arrange the numerals 1 through 9 so that the numbers reprexented in each row. column. and man dagonall hate a sum of 15 .

a	b	c	
d	e	f	
g	h	l	

First. have the students experment whth the task on a tral-and-error bass Then focus class attention on the nine cells and ask for ideas thout the devired arrangement Don't tell or show the class how to arrange the numerals. Some class menibers should begin to observe that certain cells involved will be dssociated in three different combinations of three numbers, others in two combinations. and so on.

Encourage each wass member to make a list of his ideas about the arrangement of the numerals in the nine cells when eath student has completed and organted has list of ideas on the basis of his experiments, develop a class summary.

It is hoped that the students will observe that eill a is asociated with three sets of three numbers each $[(a, h, 1),(a, d . g)$. and $(a, c, t)]$ and that each corner cell is simbarly a sociated. Other observation should include the fat that cells h, d. f. and h are each assoclated with two sets of three numbers (for example, b, e. h and $b, a,($).
Next, encourage the students to focus on the goal of creating a sum of 15 for each row. column, and man dagonai. Agan, th may be easter to tell the student, that they should look for various sets of three numbers that total 15 . However, far more learning will take place if you allow the students tume to come to this conclusion on their own.

Students should be encouraged to do some mathematial thinking for themselves. and mage squares provide excellent opportunitics You may wish to have your students try to form nine-eell magu squares with each of the following sets of numbers lead them to look for patterns and to make note of ther observations.
C $\{2,4,6,8,10,12,14,16,18\}$
$2\{3,6,9,12,15,18,21,24,27\}$
3 \{1, 3, 5, 7, 9, 11, 13, 15, 17\}
4. $15,10,15,20,25,30,35,40,45\}$
5. $\{10,20,30,40,50,60,70,80,40\}$

Numeration

The ideas of base and plate value are mort fundamental to the undersanding of our numeratien system and the four fundamental operations on whole numbers Children need many woncrete experiences in grouping ungle objects in sets of ten and then in grouping sets of ten in sets of ten tens to form a hundred. It is possible to provide much of tims practice through games

The first artucle in this section describes a game that may be used in the early grades to provide some of the dessred experience with place value MacRae provides a clear set of instrutions for constructing and playing her game, and many varrations are possible The Placo game created by Calvo thould generate many kinesthetic plate-value experiences for children in a most enoyable atmouphere.
Sereral games and puates involving nondeumal numeration are suggested in the last feu artules of this chaptet Shurlow suggestes a ring-tors game for devcluping an understanding of a base-five numeration system His deas cuuld easuly be adapted for use wath other basees. moluding our own base-ten system.
Alfonso. Balaer, and Hartung provide deas for several mathematical puaAer relating to base-two and bare-three numeration More mathenatical magic relating to the binary system is suggested by Niman, and Ranucut tantalues the reader with several puates built around the base-three system

A Place-Value Game for First Graders'

A Teacher-Made Device

Ireve R Muc: ve.

Manis trat. 1 t. ks fand that phace whuc is one of the more dithecult number coneepts to explain to small children. The following game wis devised to help reinforce the understanding of place whe after it has been introduced bs the use of the Hundreds, Fens and Ones Chart. This chart is familiar to primary teachers. The game uses the same poeket deviee used in the chart. Thus children can remforce their initial learning be practice under conditions similar to thore in whech the kearmene took place

The game can be used in the firyt grade, but can also be adapted to the second and third grades merely by increasing the saze of the numbers set as goals if the goal is set from 25 to 50 for first graders, it is recommended that 2 to 4 children plas, dependine on the tume available The more players. the longer the game will take. If the soal

[^3]is set at 100 tor second eraders, and 1000 for thard eraders, pe thaps two plasers would be more practucal the game is easily and quickly made, so that a teacher could provide several games for a class (hildren could even make the game themselves.

Directions

Ompect of the Game:
Io scure a puedetcrmmed number of ponts
For terst graders. 2550 ponts
I or second graders 100 pome,
for thad ghaders. 1000 pout,
Nouber of Pionifri-
Fust grade: 2-4
Scoond grade: 2
Third grade: 2
Span to determane who plas, first and play to the left

Procfoleze:
Cath player place, the counte, an piles în front of ham, ardaging the colors in the same order as they are placed in the pochets blue at extreme

The Game in Pictures

COUNTER

...Tagboard.

right and proceding to the left, green, red and vellow.

- First player spins and places in the extreme right pocket a number of blue counters equal to the number to which the spinner points. The other plavers do the same On the second span, if a player pichs up enough more bluc counters to equal ten or more when added to what he already has, he "bundles up" ten blue counters, placing them with the pile of blue counters in front of ham, and takes one green counter which he places in the next pochet to the left. This comtinues unal some player has accunulated ten green counters in the ten's pocket which he then removes and puts bath in the pite in front of him. He then may place one red counter m the hundreds pocket. The tast player to do thes wins the game unless the goal is set at 1000 .

Since the game is one of chance rather than shill, a fast learner mas be paired with a stow learner without doing injustice to the last learner. He can help the siower chald and at the same time remforce his own learning as well as get fion from the game
There are other walues to be derived tren this game in addation to the anderstanding of place whue When used in the first crade, it will seme to give practice in number vahue as a result of spimmen to determine who plas first. It will provide occasion for chuldren to reproduce atstract numbers with concrete comiters. To those beyond the immature level of counting, there will he pracluce in addition by adding the namber which the plater spasto the momber of connters be has decumulated on his perious turns When this sun exceeds 10, there will be practice in subsaction be removine the eromp of ten, leaving the remainder in the ones pochet. The ten ones are bundled and replaced by one counter, representine a group of ten, and moved one place to the left in the scoring pocket. This provides practice in transformation.

The game can be given added interest by providing a pach of penalty and bonus cards, and panung two or three nambers on the spinner dial in colurs. When the spinner stops on a color, the player turns up a card from the pach, which is face down, and proceeds to do what the card directs,
such as, lose your neat turn, tahe an extra turn, add 5 ones, wa lose three of your ones, ctc.

How to Make the Game

The following detaled instanctuons are merely suggestions. The teacher (an ine any materials she has at hand.

1 To make the sconimg pochets, use pieces of tagboard, $5 \frac{1}{2}$ by $9^{\prime \prime}$.
2 Fold to $33^{\prime \prime}$ by 9^{*} so that there is a 13^{*} pochet arross the bottom.
3. Place a strip of brightly coloned mistic tape along cach edge to hold porket in place. The color helps make the game attactice, but the learning values would not be lost if the poxket were held an place by mesely stapling.
4. To divide the pochets into four sections representung the place positions, black inctal rivets wete used wheh wete snapped together but not specad w.ih a hammer. ل̈ns method allows the poehets to stand out a hattle so the counters ean be cashe mented. If revets are mot acodily adalable. staps of meste tape maght be used, on wople vaplane would serve the purpone the words soning Poket weac mamestipted actoss the pocket.
5. Iot commers, consatuctom paper in four colors is necded (ut sup) $1^{\prime \prime}$ b $4 /^{2 \prime}$. . It least 18 counten are needed fon all colors cicept for the color arperenturs the 1000 positen. Only one of the is nec ded. (Only mue counters are acall mecosary for the 10 and 100 pontions.)
6 for spmate diak. cut four edenteal erreles from tashoad Mank two moto eugh equal parts, and write the numbers fiom 1 to 8 in the seetuons.
The spmaners in this partocular mstance were mode of the stays from men's sport shuts by panchies a inoic m the center with a hand pume hand msenting part of a wate. The other half of the wet was plated at the bath of the dat and the t.. o napped terecther, bat not spreat the bhank catles of taghoard were then slued to the backs lo mathe the game more attractue in appedrance, another larger cuele was cut fom wed poster board to mateh the red mustic tape used on the pockets thes was glued to the bachs to make red borelers. (Iwo spinners were made, but one would be enough af only two etaldren were playing.)
The game can lee hept together by placing in a box cosered with gas paper or simply marked su that the children will recoenize its contents. Keep the commters, divided equally according to color, in the individual pockets to make it easier for the next players who use the game.

Emitoral. Comment. Many variations of this game are possible. Fg example, change the numbers represented on the spinner face to $23,32,12,21,45,54,18$, Ind 81 (or any others you wish to use). Then have each student in turn spin the spinner and create sets of tens and ones with the counters to match the number indicated by the spinner.

Placo-a number-place game

R OBERT C. CALVO Wondland Hills, California

This game emphasizes fun and the learning of positional and place-value aspects of our number system. Placo (pronounced play-so) is a number game that boys and girls can play to good advantage in the classroom. The children blindfold each other, one at a time, and then attempt to fit the rings on the highest place-value pole (see diagram). One value of the game is the manipulative aspect. The children enjoy handling the rings, fitting them on the dowels, and then computing to find the amount they "win."

While Placo is chiefly a place-value game, in actual classroom practice it contributes to other operations in arithmetic as well. It provides stimulating practice in computation and enables children to have fun while they play the game. It can be used with success in Grades 2 through 6 and can be refined to challenge even the brightest students. It may be played by as few as two children or as many as the whole class.

Three colored dowels are glued on a base. as shown. These dowels are stationary. The dowel to the left is highest in value, the one to the right is least in value. They may be painted blue, rec. and white in that order. They are tábeled 100 's, 10 's, and 1 's. Thus 100 's (in a whole-number game) are blue, 10 's are red, and 1's white.

One player is blindfolded and given some rings (9-18) of which he may put not more than nine on any one dowel. This blindfolded player then tries to place the rings on the dowels. The other players (split in teams) watch in glee. The object of the game is to get the largest score by putting the rings on the highest-value dowel. After all rings have been placed, the blindfold is removed, and the whole class or a small group comrutes the amount. The other players then take their turn. Players can play with a goal of 10,000 or with a time limit, the highest score winning. In playing decimal-fraction Placo, the blue dowel represents ones; the red dowel, tenths; and the white dowel, hundredths.

Placo cards may be developed to use with the game. These cards are used as follows: After each turn, a player solects
one of the cards and follows the directions given. They say, "Double your score" or "Cut your score in half" or "Subtract three tens," etc. This serves to provide variety in the game. These cards can be developed to reinforce specific skills needed by the class or to provide the class with needed drill. Cards might give directions to add, subtract, multiply, or divide. In addition to dramatizing and creating added interest, they serve to equalize scores of fast and slow learners without penalizing the fast ones.

A word here about the use of colored dowels. While some experts say that placevalue instruction should not depend on color, we can't rule it out completely at early levels of learning. In place value, it is important that the child knows that "this ring is in the place to the right" or "that peg is in the units column," but that doesn't mean color can't be brought in to augment these instructions. It merely means color should not be used as a sole means of identifying number-place. If color can help the children gain a concept or can make a game more attractive, then its. use is defensible.

Other uses can be found for this game. One possibility is to use it with sight-saving classes by cutting niches in the base to-identify the corresponding numbervalue. Computation could be done mentally. Another potential use would be to roll special dice and compute the score in whatever number base the dice show when rolled. The dice could be made so only certain number bases would result.

Materials list for Placo

1. Piece of wood 12 inches long. 4 inches high, and 6 inches wide
2. Doweling (also known as "closet poling"), 13 inches in diameter, three pieces of 7 inches each
3. Drapery "cafe curtain" rings, 1! inches inside diametcr, 12 to 20
4. Cards and tacks
5. Sandpaper
6. Paint-white, red, and blue high gloss
7. Carpentry tools, including drill and saw
8. For variation noted, 3-by-5 cards
9. Large handkerchief or clean rag for blinder
10. Oak tag for power chart

Building the game

1. Drill three holes equally distant from each other in the 12 -by- 6 -by- 4 inch piece of wood, making these holes 1 inch deep and $1 \frac{7}{16}$ inches in diameter.
2. Sand one end of each 7 -inch piece of doweling smooth. Put some white glue on the bottom inch of the dowels and the inside of the drilled holes. Slip the dowels in and allow to dry overnight.
3. Purchase cafe curtain rings of the size specified in the materials list.
4. Paint the game three different colors, as mentioned previously, making the dowels and the base of matching colors.
5. You may want to put two small nails about 3 inches from the top of each dowe! (exact placement would depend on the thickness of the curtain rings). In this way, players could put only 9 rings on each peg-a 10th would have nothing to keep it from falling off. This style of counting uses only 9 units. When 1 more is added, it becomes the number on the left.

Editorial Commivi Two other varation of Placo will provide excellent kinesthetic learning experiences for chaldren. In the first variation, identify a whole number tess than 1000 and have the blindfolded student try to represent the number correctly on the three pegs with rings. The number may be identified by drawing a card by spinning a spinner, or simply by having someone name it orally. In the second variation, have one student write a threedigit numeral on the chalkboard and then put rings on the three pegs to represent the number.

Then have a blindfolded student try to count the rings and name the number. In each variation, it is possible to devise a scoring system and conduct the activity as a game.

The game of five

HAROLD J. SHURLOW Columbus Public Schools, Columbus, Ohio

Purpose

Ithas heen stated many times that the key concepts needed by elementary teachers in order to teach arithmetic meaningfully include the distinction between number and numeral, the st ructure of our numeration system, and the concept of place value. This game is designed to provide teachers with an interesting way of reviewing the important concept of place value and of working into a study of numeration systems that have different bases.

To a class:

"Would you like to learn to play a new game? Of course! Now there are two things you have to know before you can learn this game. First, you must know how to count to five. Well now, you all know that. Then you must know how to count by 5's to 25 . Let's try that. 5-10-15-20-25. Next you must know how to count by 25 's to 125 . Shall we try that ton? $25-50-75-100-125$. This game is a ringtoss game. How many know what a ringtoss game is?"
(Most children know, and at this point classroom interest picks up.)
"Let's draw a picture of some pegs for our ring-toss game."
(See Figure 1. For lower grades, artual pegs with standards would be more effective than mere drawings, but for older students drawings serve adequately since most students are acquainted with peg games.)

Figure 1
"Now in a ring-toss game there is usually a score, so we fave to get that into our game. Let's say that if a ring is on the peg to the righi, it counts 1 point. If a ring is on the next peg, it counts 5 points; on the next, 25 points, and on the next, 125 points. (See Figure 2.) So now we know what makes our score."
(At this point teachers may pretend to become vi.sibly shaken at the prospect of rings flying all over the room.)
"Now comes a change in this game. In most ring-toss games you toss the rings and count up the score. Not so here. In this game you know the score ahead of time, and it will be your job to put the rings on the pegs in theright places.
"Iet's think about a score of 13 . One way of placing the rings would be to put 13 rings on the peg to the right. But there is more to this game. You have not won this game unless you have used the fewest number of rings possible. So with a score of 13 , there would be two rings on the peg marked 5 and three rings on the peg to the right."

Figure 2

To the feacher

It this point it is best to go ower a few more examples, and then let your pupals try the game during rainy-day recen or at other eomenient times. The game werms to work best if three or four pupils phay together. One pupil can ansign a soore, and then the other pupils can try to place the rings, using pencil and puper to record where they have plared them. Contests of spered may result. However, the purpone here is for pupils to become quite familiar with the gatrec lwere they proceed to the next step.

Gou might next suggest that it would be nice to have an orderly way of recordng what we were doing jn the game-something like the following

```
A SCORE OF
    13 LEADS TO
    39 "
```


Figure 3
(Notice if there is no ring we indicate the absence with a zero.)

After this orderly recording has been done for a while, you can draw your pupils' attention to the faet that the recorded numerals-- 23, 124, and 203 look suspmciously like some old friends. Here ask the question, "In our game in lizt really one hundred twenty-four" Xo" Then what is it?"

If pupils have been playing this game, they will tell you, " 1 twenty-fise, 2 fiver, atad 1 ones." As teachers, you can see that here is the ciance to tell pupils that a numeral's place value is important.

It is a simple matter then to show your pupils that 39 and 124 really represent the same seore if we kneme the value of the places. Now we ned a way to show the balue of the platers Hete we introduce $39_{(6 n)}=12 t_{\text {dars }}$ So we hate two pictures (numerals) for the sime seore (number).

1 must warn that in using this game the taacher must proeed slowly in order that the students amimilate eacll idea at it comes. first the game and its rules, then recording the results, then comparing place values, and finally recording mumerals by means of different bases.

Here are some good questions for tathers to ank along the way:
I In the "game of five" what is the greatest namber of rings that will ever go on a single peg?
2 The peg on the right has a value of 1 , and the next peg to the left of it has a value of 5 . How do you get the value of the next preg, the next, ete."
3 Suppose we wanted to play the "game of 4 " (or "game of . ."), what would the valuc on cath per (plawe) be" What would be the greateat number of rings on a single prg"
4 In base 7 , what is the large: numeral used in any single plare? Why?

Many of our clementary teachers have told me that they hat of ten wanted to try some work on mumelation s.- tems that have bare other than 10, but they did not know a way to introduer weh work to chatleren in an interesting mamer. "The game of fire" sermed to sating thin nord. I hope that you, too, will find it useful.

Entora Conmivt Although the author suggests that the davily be conducted without actually playng a ring-toss game, it is possible in many situations to apply his ideas to a real ring-toss game For example, eath student may be gaven an opportunity to toss four rings on the base-five pegs to establish some base-five numeral He may then calculate the number of points in our decimal syatem and score this amount if his work is done cerrectly.

For students who need more work in our base-ten system, you maty whish to try the ring-toss activity with the peg, named of es, tens, hundreds, and so on.
.

From second base to third base

MICHAEL ALFONSO
Carol City High School, Carol City. Florida

RICHARD BALZER
Hackettstown High School, Hackenstown, New Jersey

PAUL HARTUNG

Bloomsburg State College. Bloomshurg, Pennsylvania

You may have seen the game consisting of four cards-call them A, B, C, and D. for convenience-on which sets of cight numbers are written. (See fig. I.) Usirg these four cards, Mr. Rhee asks a student to pick a number from one to fifteen and to tell him which cards the number appears on-whereupon Mr. Rhee quickly announces the number to the amazed student.

How does Mr. Rhee do it? When the student tells him which cards contain his
number. Mr. Rhee quickly adds the first number on each of those cards togetier:

the sum is the number the student chose. As an example, suppose the number appeared on cards A, C, and D. Then Mr. Rhee adds $1+4+8$ to find the number is 13 .

To see why this happens, we write the numbers from one to fifteen in binary notation. (Sce fig. 2.) Now you can readily see how the cards are developed.

1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Fig. 2
Card A contains all the numbers having a " 1 " in the ones place in the base two notation Card B contains all the numbers having a " 1 " in the twos place (the second digit from the right in the base two notation). Card C contains all the numbers having a " 1 " in the fours place (the third digit from the right in the base two notation); and Card D, all the numbers with a " 1 " in eights place (the fourth place from the right in base two notation). (See fig. 3.)

	0001	A			
2	0010		B		
3	0011	A	B		
4	0100			c	
5	0101	A		c	
6	0110		B	c	
7	0111	A	B	c	
8	1000				D
9	1001	A			D
10	1010		B		D
11	1011	A	B		D
12	1100			C	n
13	1101	A		c	D
14	1110		B	C	D
15	1111	A	H	C	D

Fig. 3
It is possible to develop another set of cards with which the same game can be played.. Fi- example, a new set can be
consiructed using base three notation. To obtain the cards, we write the numbers from 1 to 26 in base three notation. (See fig. 4.) The first card, Card A, will consist of those numbers whose base three notation has a " 1 " in the ones place.

1	001
$?$.002
3	010
4	011
5	012
6	020
7	021
8	022
9	100
10	101
11	102
\vdots	\vdots
25	221
26	222

Fig. 4
Card B will include the numbers having " 2 " in ones place. Card C will include the numbers with a " 1 " in threes place (the second digit from the right in the base three notation). Card D will have all the numbers having a " 2 " in threes place. Card E will have all the numbers with a " 1 " in the nines place. And Card F will have the numbers with a " 2 " in nines place. (Sce fig. ₹)

A	1
1 5 9 13	[rr $\begin{array}{r} \\ \\ \\ \because \\ \square\end{array}$

D

E

F

Fig. 6

Now to play with these cards. Suppose someone tells us his secret number appears on cards B, D, and E. Then the secret number is $2+6+9=17$.

Base four could also be used for this game. A set of cards using base four would look like those in figure 6.

The stopping point in any base is relatively unimportant. Hgwever, it will always be of the-form

$$
b^{n}-1
$$

where b is the base you're workforg with and n is a natural number. Examifing the stopping points fór bases 2,3 , and 4 respectively, we see that

$$
\begin{aligned}
& 15=2^{4}-1 \\
& 26=3^{3}-1
\end{aligned}
$$

and

$$
15=4^{2^{\prime}}-1
$$

Other stopping points could be chosen so
that each student would pick a different number, thereby encouraging total parficipation.:

The easiest way to determine the number of cards needed is to add the digits of the largest number, written in whatever base you are working with, as if the digits were in base 10. For example,
$15=1111_{2}=1+1+1$ in $/ 1=4$ cards , and

You will notice that the place values are reversed when we set up the cards. When someone picks a number and tells you what card it's on, the number in that base is converted to base 10 . That is; for the secret number 13 (Mr. Rhee's student's number), the base two numeral is 1101 one 1 , one 4 , and one 8 . And $1+4+$ $8=13$, the secret of the game.

Editorial Comment.-Stidents who have had considerable experience in looking for pat-/ terns may quiekty discover that the answer is determined by finding the sum of the first numbers on the identified cards. This will, of course, provide an excellent basis for leading the students to discover why this technique works.

If you wish to create a system in which your secret is more difficult to discesver, arrange the numbers on the cards in random order and remember that you must use the smallest number on each identified card when you calculate the desired sum. For example:

A
9
15
3
7
5
13
1
11

B
6
11
3
10
2
15
7
14

C
15
-7
12
14
6
4
5
13

D
12
8
14
9
13
11
15
10

If the number is represented on card A. you would use 1 , which is fee smallest number on card A; if the number is represented on card B. you wouid use 2 . which is the smallest number on card B, and so on.

A game introduction to the binary numeration system

JOOHN NIMAN
An assistant professor at Hunter College of the City University of New York, John Niman teaches courses in mathematics and mathematics education. His research interests include applied mathematics and curriculu devi'opment.

Have you ever encountered a teasing child who would only answer you with yes or no? If you ever do, tell him that you are going to read his mind through his revealing yeses and noes-and all you are going to do is ask him the same question seveeral times! Tell him to choose a number be, tween 1 and 256 . Then pose the question "Is the number odd?" If he says yes, tell him to subtract one and divide the remainder by two. If he says no, simply tell him to divide his number by two. Follow this procedure until the question has been asked at most eight times. The game stops when the number one is reached.

In order to play the game, the child has to know how to subtract and to divide by 2. He must also know what odd and even numbers are. Suppose, as an example, that your friend chose the number 98 . The dialogue would go as follows:
numeration system. The number expressed by 1100010 in the binary system is expressed by 98 in the decimal numeration system.

To convert an expression from the binary to the decimal system, start with the last digit on the right and multiply it by 2^{0}. (Note: Any number" greater than zero raised to the zero power is defined as one.) Then multiply the next digit by 2^{2}, the next by 2^{2}, the next by 2^{3}, and so on. Finally, sum the results.

In our example, 1100010 becomes

$$
\begin{aligned}
\left(0 \times 2^{0}\right) & +\left(1 \times 2^{1}\right)+\left(0 \times 2^{2}\right)+\left(0 \times 2^{3}\right) \\
& +\left(0 \times 2^{4}\right)+\left(1 \times 2^{5}\right)+\left(1 \times 2^{\prime}\right) \\
& =0+2+0+0+0+3.2+64 \\
& =98 .
\end{aligned}
$$

The game is summarized in figure 1 .

Now you have all the information you need-the seven yeses and noes. Starting with the last answer, replace each no with a " 0 " and each yes with a " 1. ." Such a process transforms the result into 1100010. This is the number you are looking for! However, it is expressed in the binary

The choice for the number does not have to be restricted to numbers between 1 and 256. Generally, no reștrictions are necessary. The number of questions needed depends on the number to be guessed. For example, consider how many questions are needed for numbers from 1 to 1000 . We

Fig. I. "Guessing" a number
can solve the problem by finding out how many times it is necessary to divide successively by two to end up finally with one. For numbers from 1 to 256 , at most eight divisions are needed, since $2^{5}=256$. Similarly, at most nine divisions are needed for numbers from 1 to $512\left(2^{\circ}=512\right)$, and at most ten divisions are necessary for numbers from 1 to 1024 ($2^{1 n}=1024$). Consequently, to guess a number between 1 and 1000 , at \cdot most' ten divisions are needed. The above leads to the result that the greatest number of questions needed to guess a particular number from 1 to N^{\prime} is equal to one plus the minimum exponent
of 2 such that when 2 is raised to that exponent, the resulting number is equal to or gteater than N .

The game could be used in a variety of ways to determine such characteristics as age, height, and weight. The fact that one does not have to ask his subject the final result after the sequence of questions makes the game quite intriguing. Furthermore, it would serve as an effective tool for acquiring practice in the basic operations of the arithmetic of counting numbers, and an explanation of how the game works could serve as an introduction to the base-two numeration system.

- Enitorial. Comment.- This is one of many mathematical games and puzzles that appear to be "number magic." Such activities can serve to stimulate student curiosity and create interast in t...thematics if used effectively. However, the student should ultimately investigate the mathematics that explains the why of the "number magic."

Tantalizing ternary

ERNEST R. RANUCCI
State University of New York at Albany,, Albany, New York

Dr. Ranucci is professor of mathematics education. Lust summer he was in Colombia, South America, for three months on a Fulbright srant. His work there was with teacher education for both elementary and secondary levels.

Arithmetic computation in bases other than ten is a fertile field to explore. Especially interesting are certain problems that arise in the base three (ternary) system.

Place value in the ternary system is based upon powers of three. The units digit has a value of 1 , the base digit a value of 3 , the base-two digit a value of 9 , the base-three digit a value of 27 , etc. The number 12012 in base three has a value of 140 in base ten.

$$
(12012 \mathrm{incos}=140 \mathrm{con})
$$

... Place value as a power of three
... Calculated place
$12012_{\text {tree }}$
$=1 \times 81+2 \times 27+\underset{54}{0 \times 9}+1 \times 3+2 \times 1$
$=81$
$=140$ 10n.
In the ternary system only three digits are needed. We shall use 0,1 , and 2 .

Many intriguing puzzles are based on the ternary system. For the exploration of several of these, we need to convert the decimal numbers from 1 to 40 into basethree numerals. (See Table 1.) Note that

$$
40=1+3+9+27
$$

This fact will prove to be of extreme significance later on.

Let us first consider the "butcher problem." A certain Scottish butcher finds that he can get along surprisingly well with

Table 1

Decimal notation	Ternary notation	Decimal notation	Ternary notation
1	1	21	210
2	2	22	2111
3	10	23	212
4	11	24	220
5	12	25	221
6	20	26	222
7	21	27	1000
8	22	28	1001
9	100	29	1002
10	101	30	1010
11	102	31	1011
12	110	32	1012
13	111	33	1020
14	112	34	1021
15	120	35	1022
16	121	36	1100
17	122	37	1101
18	200	38	1102
19	201	39	1110
20	202	40	1111

nothing but a simple balance scale and individual weights of one, three, nine, and twenty-seven pounds. As long as no customer asks for n!eat in a quantity requiring the use of half-pounds, the butcher finds that he can weigh any integral number of pounds of meat from one to forty. He can, what's more, do this in one weighing (providing the customer is not so fastidious as to object to the placing of weights on the same pan with the cut of meat.) To weigh out five pounds of chopped beef, for example, he places a weight of nine pounds on one pan. He then places weights of one and three pounds on the other pan and adds meat until the scales
balance (Fig. i). This leads to the simple* equation:

Figure 1
Weighing ten pounds of meat is easy. All this takes is the placing of weights of one and nine pounds on one pan and the addition of meat to the other pan until they balance (Fig. 2). The equation here is

$$
M=1+9 ; M=10
$$

Figure 2
Curiously, each total, from one to forty, can be achieved by only one combination of the various weights available. Table 2, based on the ternary system, indicates the unique structure behind the "butcher problem." Remember that there is but one weight of each size.

The table is used as follows: All positive weights are placed on one pan; all negative weights are placed on the other pan. Meat is always added to the pan on which the negative weights have been placed. In weighing out 20 pounds, for example, weights of 27 and 3 are placed on one pan; weights of 9 and 1 are placed on the other. Meat is added to the 9,1 , side until a balance is secured. With the addition of another weight of 81 pounds to the set, every integral weight from 1 to 121 may be achieved. The "butcher" approach to equation solving can be handled by the average sixth grader if the approach is gradual.
Martin Gardher, in an article in the May ${ }^{2} 964$ issue of the Scientific American, offers

Table 2

1	1		21
2	$3-1$	$27-9+3$	
3	3		$27-9+3+1$
4	$3+1$	23	$27-3-1$
5	$9-3-1$	24	$27-3$
6	$9-3$	25	$27-3+1$
9	$9-3+1$.	26	$27-1$
8	$9-1$	27	27
9	9	28	$27+1$
10	$9+1$	29	$27+3-1$
11	$9+3-1$	30	$27+3$
12	$9+3-$	31	$27+3+1$
13	$9+3+1$.	32	$27+9-3-1$
14	$27-9-3-1$	34	$27+9-3+9-3+1$
15	$27-9-3$	35	$27+9-1$
16	$27-9-3+1$	36	$27+9$
17	$27-9-1$	37	$27+9+1$
18	$27-9$	38	$27+9+3-1$
19	$27-9+1$	39	$27+9+3$
20	$27-9+3-1$	40	$27+9+3+1$

an unusual approach" to the "butcher problem." This starts with the value of the desired weight expressed in the ternary notation. To weigh out 33 pounds, for example, first consider the ternary numeral 1020 tbreo. Add a 1 and subtract a 1 in the column where a 2 occurs. It is advantageous to rewrite as follows:

$$
\begin{gathered}
1 \\
1020 \\
1
\end{gathered}
$$

The addition of a 1 and the subtraction of a 1 does not affect the value of the number. (We are really adding 1×3 and subtracting 1×3, but there is no real need for this extra step.) The addition of 2 and 1 means that we can carry a 1 to the adjacent column. The result may now be expressed as $11 \overline{1} 0$. This means $27+9-3$, whose value is 33 . Several solutions of this type are carried out:

20 pounds: $202_{\text {thres }}{ }^{\circ}$
II
$=202=1 T I T$ 11
(This means $27-9+3-1=20$.)
32 pounds: 1012 three

$$
=1012=102 \overline{1}=\frac{1}{1}=\frac{\overline{1}}{1}=11 \bar{I} \bar{I}
$$

(This meants $27+9-3-1=32$.)

$$
\begin{aligned}
& 23 \text { pounds: } 212 \text { threc } \\
& \mathbf{I} \bar{I} \\
&= \bar{T} \\
& 212 \\
& 11
\end{aligned}=1 \overline{1} 2 \bar{I}=1 \overline{1} 2 \bar{I}=10 \overline{1} \overline{1}
$$

(This means $27-3-1=23$.)

The first forty- numbers in the decimal system have values in the ternary system, numerals $1,0, \overline{1}$, as shown in Table 3.

Table 3

1	1	21	1110
2	$1 \overline{1}$	22	111]
3	10	23	$10 \overline{1}$
4	11	24	1010
5	111	25	101]
6	110	26.	1001
7	III	27	1000
8	$10 \overline{1}$	28	1001
9	100)	29	1017
10	101	30	1010
11	111	31	1011
12	110	32	111
13	111	33	11 i 0
14	ITIT	34	1111
15	$1 \overline{1} 0$	35	$110 \overline{1}$
$1 i$	1111	36	1100
17	$1 \overline{10}$	37	1101
18	$1 \overline{1} 00$	38	1111
19	- !101	39	1110
20	1TIT	40	1111

Most puzzles of the the, "Find your age on each of the following cards and I'll tell you what it is," are based on the ternary system. So a.- a series of puzzles in which names are guessed. Following is a description of one of the better of the name puzzles.

First prepare four cards according to the directions which follow.

Girl's Name Puzzle		
First card (Worth 27 points)		
(Front) Brunette, Brown Eyes		
Dinah	Florence	Helen
Dolores	Fredrika	Hilda
Dorothy	Gail	Ida
Edith	Geraldine	llene
Elizabeth	Gertrude	Ingeborg
Eloise	Grace	Ingrid
Ethel	Gwendolyn	Jacqueline
Fanny ${ }^{\text {' }}$	Harriet	- Jeannette
Flora	Hazel	Joy

(Back) Brunette, Blue Eyes

Nancy	Petunia	Ursula
Naorni	Rita	Vicki
Nina	Roberta	Viola
Nora	Sarah	Wanda
Ocelie	Suzanne	Wendy
Ophelia	Tallulah	Winifred
Pamela	Tisa	Yvette
Patsy	Tess	Yvonne
Paula	Tracy	Zaza

Secomd card (Worth 9 points)
(Front) Blonde, Brown Eyes

'Third card (Worth 3 points)
(Front) Auhurn, Brown Eyes

Alice	Gwendolyn	Nancy
Anne	Harriet	Naomi
Audrey	Hazel	Nina
Charlotte	Jacqueline	Petunia
Corinne	Jeannette	Rita
Diane	Joy	Roberta
Ethel	Lana	Ursula
Fanny	Lena	Vicki
Flora	Lisette	Viola

(Back) Auburn, Bluc Eyes

Barbara	Helen	Pamela
Betsy	Hilda	Patsy
Betty	Ida	Paula
Dinah	Katherine	Tina
Dolores	Kay	Tess
Dorothy	Kyle	Tracy
Florence	Marilyn	Yvette
Fredrika	Mildred	Yvonne
Gail	Nanette	Zaza

Fourth card (Worth 1 point)

- (Front) Red, Brown Eyes

Abigail	Grace	Nancy
Audrey	Hazel	Nora
Betty	Ida	Pamela
Carol	Ingrid	Petunia
Diane	Joy	Sarah
Dorothy	Katherine	Tina
Eloise	Lana	Ursula
Flora	Louise	Wanda
Gail	Mildred	Yvette

Alice	Gwendolyn	Nina
Barbara	Helen	Ophelia
Bunny	llene	Paula
Charlotte	Jacqueline	Roberta
Dinah	Joyce	Tallulah
Edith	Kyle	Tracy
Ethel	: Lisette	Viola
Florence	Margaret	Winfred
Geraldine	Nanette	Zaza

Following is a list of possible names, with numerical value.

	Pusince
1. Abigail	21. Fanny
2. Alice	22. Flota
3. Anne	23. Fiorence
4. Audrey	24. Fredrika
5. Barbara	25. Gail
6. Betsy	26. Geraldine
7. Betty	27. Gertrude
8. Bunny	28. Grace
9. Carmen	29. Gwendolyn
10. Carol	30. Harriet
11. Charlotte	31. Hazel
12. Corinne	32. Helen
13. Diane	33. Hilda
14. Dinah	34. Ida
15. Dolores	35. tlene
16. Dorothy /	36. Ingeborg
17. Edith	37. :ngrid
18. Elizabeth	38. Jacqueline
19. Eloise	39. Jcannette
20. Ethel	40. Joy
	Negutice
-1: Joyce	-21. Patsy
-2. Katherine	-26. Paula
-3. Kay	-23. Petunia
-4. Kylc	-24. Rita
-5. Lana	25. Roberta
-6. Lena	-26. Sarah
-7. Lisette	27. Suzanne
-8. Louise	28. Tallulah
-9. Mary	Tin
-10. Margaret	-30. Tess
-11. Mildred	-31. Tracy
-12. Marilyn	-32. Ursula
-13. Nanetie	-33. Vicki
-14. Nancy	-34. Viola
-15. Naomi	-35. Wanda
-16. Nina	-36. Wendy
-17. Nora	-37. Winifred
-18. Ocelie	-38. Yvelte
-19. Ophélia	-39. Yvonne
-20. Pamela	40. Zaza

The puzzle is worked as follows: Someone is asked to pick a name from the cards and to identify the hair color and cyes each time the name is mentioned. The score on any card is considered positive when
the eyes are brown. The score is considcred negative when the cyes are blue. Thus: Rita-Bruñette, Blue Eyes (-27); Auburn, Brown Eyes (3). Add the scores algebraically. The, sum is -24 . Look up -24 in the list of names and identify "Rita."

Thus: Joy (27, 9, 3, 1) or 40
Yvonne (-27, -9, -3) or -39
Harriet $(27,3)$ or 30
Ethel (27, -9, 3, "1) or 20
The structure of the Girl's Name Puzzle is identical to that of the "butcher problem." Once the desired number has been converted to the Gardner positive-negative number, the name associated with that number is placed on the appropriate face of the proper card.

An examination of othes number systems will reveal the unique nature of the ternary system. Suppose that the weights used in the "butcher problem" had been $1,2^{1}, 2^{2}, 2^{3}$, etc.-clements of the binary system. Then meat, in the amounts indicated below, could have been weighed as fullows:

1. 1 or $4-2-1$, etc.
2. 2 or $8-4-2$, etc.
3. $1+2$ or $4-1$, etc.
4. 4 or $8-4$, etc.

Such weights could, of course, be used, but there would be nothing unique about such a system. Each weight could be produced in a variety of ways.

A base-four (quaternary) system presents its own problems. Let us attempt to weigh out the first twenty pounds; we may use only individual weights of 1,4 , 16,64 , etc.

1. 1	11. $16-4-1$
2. $?$	12. $16-4$
3. $4-1$	13. $16-4+1$
4. $4-4$	14. ?
5. $4+1$	15. $16-1$
6. ?	16.16
7. ?	$17.16+1$
8. ?	$18 . ?$
9. ?	$19.16+4-1$
10. $?$	$20.16+4$

Certain "clusters" appear with a pre-
dictable pattern, but many "holes in the Swiss cheese" show up. This deficiency becomes aggravated when the number base increases.

It would appear that the ternary system alone allows us to achieve all integral weights in a unique manner.

Integers

Thhe introduction of integers as early as third grade in recently published elementary school mathematics textbooks is an outgrowth of the natural encounter of elementary school children with many situations that require the use of integers. When primary-grade children learn to use thermometers, they note that thermometers can register temperature below zero as well as at or above zero. The countdowns for space launchings involve negative and positive numbers, and altitudes are recorded as above or below sea level. In football games, we make note of yardage gained and yardage lost, and we speak of budgets being in the red or in the black.

The study of integers in the primary and intermediate grades should be largely informal, and many such experiences can be provided through game activities. In the opening article, Demehik suggests a cardgame salled "Integer Football" as one way of generating interest and enthusiapm for a practice exercise involving integer addition. Milne suggests a sludent-created game that could lead to the discovery of a method for subtraction of integers as a result of various moves on a game board.

In a game described by Mauthe, upward movements on a ladder correspond to positive integers, and downward movements correspond to negative integers. The composition of movements *identified as addition. Imagine the excitement of students as they reach the tup of the ladder or as their opponents fall off the ladder. Frank incorporates much fun in her shuffleboard game while relating integers, number lines, and operations on integers. Children will enjoy this activity and gain practice in working with integers.

To provide more drill with the operations on integers, Milne has developed a spinner game; Cantlon, Homan, and Stone have devised a student-constructed game that uses Popsicle sticks. Both activities will provide much student involvement and painless practice.

In the closing pair of selections, we see how creative minds with an interest in mathematics can generate sóme challenging puzzles. Many upper elementary and middle school students-will find "Grisly Grids" quite interesting.

Integer "football"

VIRGINIA C. DEMCHIK
Bowie State College, Bowie, Maryland

the team's advantage; a positive integer $(+5$ or +15$)$ is to the team's disadvantage. The "ball goes to the other team" after each play. On the team's next play, the integer on the drawn card is added to the total from the previous play:

A team "maker a touchdown" and thereby scores six points whenever the tamis total play becomes zero or less. When a team scores a touchdown. the scoring team plays for the extra point by drawing the next card. If the nest card is negative, the play is good and the team
scores the extra point. If the next card is positive. Where it no extra point.

After every touchdown and the play for the extra point, play resumes again on the fifty sard line. This time the team that did not score begin the play. The game contines until time runs out. The to ah with the largest score at the end of the playing tine wins the game.

The time limit for the game is optional: thirty minutes is suggested. At halftime. both teams go back to the fifty yard line and play is resumed.

Eimtoriat. Convent \i. Most children gain extra enjoyment when a "football field" and "football" are used in playing this game The football field can be cosily constructed from posterboard and marked along the edges to indicate the "yard lines" A piece of sponge or a football drawn on posterboard may be used to mark the position of the ball.

$$
0 \text { O! OZ OE Ot OG Ot OE OZ OI } 9
$$

Subtraction of integers-discoverted through a game

ESTHER MILNE

Onachildegame for two people there were two dice. Or was red and one was blue. When it was your turn you noe both dice. Then you advance the number of spacious ae shown on the red die. Then do the opposit for the blue die.

Thhis game description was a student's idea of a good problem requiring subtracton.
From this suggested game, a variation was devised to include ne ${ }_{\mathrm{B}}^{\mathrm{E}}$-five integers. Thus it can be used to introduce subtraclion of negative integers.
Materials needed are a game board, two or three markers (buttons or small toys), and several blank cubes to use in "place of dice. The cubes are marked with names of integers.

Two cubes are used at a time. One represents addition: it has red numerals on it. The other one is for subtraction: it has blue numerals printed on it. It is suggested that each of the first cubes used be marked with $0, \cdot 1, \cdot 2, \cdot 3, \cdot 4$, and $\cdot 5$ in its respective color.
'To start the game each player rolls the cubes. The person who rolls the higher value on the addition cube gets the fight , turn. In case of a tie, the player with the higher value on the other cube goes first.

It is agreed that subtraction means to do the opposite of addition. A 3 on the addition cube means go forward three spaces. Then a 3 on the subtfaction qube means go backward three spaces.

Usually with the two cubes suggested, little progress is made by either player. (It won't take students long to realize that a $\cdot 3$ on both cubes gets them' exactly nowhere.) After several turns where little progress is made, a new cube should be introduced. A subtraction cube with $1, \cdot 2$, $\cdot 3,-1,-2$, and -3 on the fáces could speed up the game. (If this speed-up measure seems a bit inadequate after a fair trial, substitute a subtraction cube with $0,-1,-2$, $-3,-4$, and -5 .) The person who reaches home first is the winner.

Suggestions for some other cubes:
Addition: $2, \cdot 3, \cdot 4, \cdot 5, \cdot 6,7$
Subtraction: 0, $1, \cdot 2, \cdot 3, \cdot 4, \cdot 5$ (Starter Cube)
Additión: ${ }^{-1,-1, ~}{ }^{4},-4,7,-7$
Subtraction: Similar to, or same as, addition cube
Addition: $10,9,-6,-5,-4,-3$
Subtraction: $-10,-9, \cdot 6, \cdot 5, \cdot 4, \cdot 3$

Any combination of these or other cubes suggested by students should be tried.

After the students have played a few games, make a rule that the one who goes first alsp chonses the pair(s) of cubes with which to play the game. Of course, both players throw the same cubes.

This game, if introduced early enough (before any models for subtraction are offered), could be the vehicle by which students figure out a method for subtraction of integers. It is quite possible that they will intuitively arrive at the very "rule" so often presented to first-year algebra students in the past.

And what are the chances that this game could depelop into a study in probability?

Éditor's Note.-There is a good possibility this might happen in a classroom in which the teacher creates a learning situation where someone can ask the question! It might be interesting to survey available children's games with reference to application of mathematical skills and principles. It mǎy be that many more of them than we now realize can be used to introduce or to practice mathematical understandings.-Charlot'te W. Junge.

Climb the ladder

ALBERT H. MAUTHE

Abstract

Albert Mauthe is chairman of the deparenent of mathematics at A. D. Eisenhouer High School at Norristown. Pennsylvania. He is on leave from his position this year to participate in the Experienced Teacher Fellowship Program in Mathematics for Prospective Supervisors at Teachers College, Columbia, Úniversity.

Here is a new game. It is calied "Climb the Ladder." The rules of the gane are f very easy to learn, and you will have iots * of fun playing Climb the Ladder.

To play the game, you will have to make a ladder and a dial-spinner. (These will be shown later.)

As many players, who wish to play the game together may do so. The object of the game is to go above the 12 step on the ladder. Anyone who falls below the 12 step on the ladder has fallen off the ladder, and he is out of the game. Thus a player can win the game in either of two ways:

1. if he is the first person to go above the ' 12 step on the ladder,' he wins the game; or
2. if he is the last person remaining on the ladder after all the other players have fallen off the ladder (by falling below the - 12 step), he wins the game.

Everyone starts by putting his marker at "Zero", the " 0 " step. We will call the numbers above 0 "positive numbers," and we will call the numbers below 0 "negative numbers." We will not call 0 either "positive" or "negative"; 0 will be, called "zero."

The first person spins the spinner.' If the spinner stops on a ${ }^{\circ} 1, \cdot 2, \cdot 3$, or ${ }^{\prime} 4$ space, the player moves his marker up the ladder the number of steps indicated $(1,2,-3$, or 4). We will call the numbers $\cdot 1, \cdot 2, \cdot 3$, and $\cdot 4$ on the spinner-dial "positive numbers." If the spinner stops on a $1,-2,-3$, or 4 space, the player moves his marker down
the ladder the number of steps indicated ($1,2,3$, or 4). We will call the numbers $-1,-2,-3,-4$ on the spinner-dial "negative numbers."

If the spinner stops on the 0 space, the player does not move up or down the' ladder. We will call this number "zero."

Each player takes one turn at a time until he has fallen off the ladder or some player has been declared the winner.

Let us watch Betty, Bob, and Dave play the game. We will watch each player's progress up the ladder on the demonsuration ladder. At the same time, we will keep a record of each player's steps at the right side of this page.

Betty begins. She starts	BETTY	
at Zero, 0 .	Start	0
She spins a +3 . Thus, she		
goes 3 steps $u p$ the ladder.	Add	+3
		Step
She is now on step +3.		

Bob and Dave each take their first turns. Bob lands on -2 , Dave on 4 . The second turns for Betty, Bob, and Dave look like this:

	BETTY	
Betty was at ${ }^{+3}$.	Start	+3
She spins a ${ }^{+1}$. Thus, she goes 1 step up the ladder.	Add	+1
She is now on step ${ }^{+4}$.	Step	+4

	BOB	
Bob was at -2.	Start	-2
He spins a ${ }^{+3}$. Thus, he goes 3 steps up the ladder.	Add	+3
He is now on step ${ }^{+1}$.	Strp	$+1$

Dave was at -4 .
He spins a -2. Thus, he goes 2 steps down the ladder.

He is now on step -6.

Bob spins a - 2 on his third turn. He was at ${ }^{+1}$. Thus, he goes 2 steps down the ladder.

He is now at -i.

Bob spins a 0 on his fourth turn. He was at -1 .
Thus, he does not move either ug or down the ladder.

He is still at -1 .

DAVE
$\begin{array}{ll}\text { Start } & -4 \\ \text { Add } & -2 \\ \text { Step } & -6\end{array}$
BOB
$\begin{array}{ll}\text { Start } & { }^{+1} \\ \text { Add } & -2 \\ \text { Step } & -1\end{array}$
BOB
$\begin{array}{lr}\text { Start } & -1 \\ \text { Add } & 0 \\ \text { Step } & -7 .\end{array}$

The game continues until one player passes ' 12 or all but one piayer passes $\mathbf{~} 12$.

Make your own game

Materials needed.-We'll want to play this game in class. But before we begin playing, we'l want to make our own game to keep. To make the game, each person in the room will make the game from these materials:

1. A square piece of heavy cardboard, about 15 centimeters on a -side (15 centimeters is about $53 / 4$ inches).
2. A piece of heavy paper or cardboard, approximately 8 centimeters by 28 centimeters (that is. about 3 inches by 11 inches).
3. A paper clip.
4. A thumbtack.
5. Several small pieces of cardboârd or other objects to serve as markers.
6. A ruter, preferably one with centimeter markings.'
7. A piotractor.
8. Compasses (to draw a circle).

The dial-spinner.-On the heavy cardboard, draw a circle, with center in the middle of the cardboard, with a radius of 5 centimeters (about 2 inches).

Study the spinner-dial shown in Figure
i. Note that there are nine different sectors, four for the numbers ${ }^{\circ} 1, \cdot 2, \cdot 3$, and 9 , four for the numbers $-1,-2,-3$, and -4 , and one for 0 .

Figure 1
Do you remember that there are 360 degrees in one complete turn around the center of a circle? How many degrees must there be in each of the angles around the circle if we use 9 sectors that have equal angles?

Draw a radius from the center of the circle you have drawn to any point on the circle. Measuring with your protractor, draw another radius so that the two radii make an angle of 40 degrees at the center of the circle.

Continue making 40-degree angles until you have nine equally spaced radii, and nine sectors of the same size around the center of the circle. Label these sectors as shown in Figure 1.

Take a paper clip and bend the last loop out se that it looks, like the one shown in Figure 2.

Figure 2
Place a thumhtack through the oval still remaining in the paper clip, and place the thumbtack through the center of the circle you have drawn. Your spinner-dial
should look like the one shown in Figure 3.

Fisc. 3. -Thumbtack through oval of paper clip.
Make_sure_the paperclip spins freely around the dial.

The Ladéér:-On a heavy piece of paper (or cardboard), draw a straight line segment 24 centimeters long (or 9 inches, if you do not have a ruler marked 1 in centimeters). Make a mark at the bottom of the line segment. Then mark off each centimeter (use $3 / 8$ inch, if you used a 9 inch line segment), until you get to the top of the line segment.

Label each step from -12 to 12 , as was done with the ladder in Figure 4.

Let's play!

Although any number of players can play together, let's divide into groups of about three players each and try playing our new game. Each group will use one ladder; each player will use his own marker.

With each turn, be sure to move your marker up or down the ladder. And be sure to keep score, as we did for Betty, Bob, and Dave.

If your game finishes before the others, play another game. Keep score for this game also. If time runs out before anyone has won the game, the player highest on the ladder will be the winner.

Have fun!

Figure 4

Editorial Comment. - You may wish to have the student write a number'sentence to describe each $\mathbf{c} f$ his moves on the ladder. This will provide the connecting link between the manipulations and movements on the ladder and the symbolic representation of these movements. Many times the student fails to realize that these game experiences have any relationship to the symbolic language of mathematics.

Play shuffleboard with negative numbers

CHARLOTTE FRANK
Albert Einstein Intermediate School 131, Bronx, New York

Shuffleboard, aniyone?" can you imagine how a student-filled math classroom would respond to that invitation? Compare that with the reaction to a teacher announcing, "Students, today we are going to learn the four fundamental operations of the set of integers:" By the time the teacher had finished saying the word "fundamental" his pupils would have tuned out both him and his lesson. Negative Shuffeboard can be used to introduce the four basic operations of negative integers to the elementary school youngster in a fun setting.

For the few who have never played, regular Shuffleboard is a game in which players. use long-handled cues to shove wooden disks into scoring beds of a dia-

gram. Each player tries to push his own disk into one of the scoring areas or to knock his opponent's disk out of a zcoring. area and hopefully into a penalty area.
By adding positive and negative signs, the playing field (Fig. 1) can easily be transformed into Negative Shufficboard (Fig. 2).
Other adjustments necessary to fit our new game to the facilities of a classsroom are the following:

1. Target diagrams are drawn on paper sheeting large enough to cover the student's table.
2. Red and black checker-size disks replace the larger disks normally used.

Figure 1

Fioure 2
3. A pencil, pen, or ruler is used as a propelling instrument.
4. The ratio of the playing field to the disk is increased in order to allow for more scoring activity.
5. A number line is used to keep a running score.

When Anne and Harley played the game, their mathematical computations developed this way:

Anne (O disks) $-10+-10=-20$.

$$
\text { or } 2 \times-10=-20
$$

Harley (disks)

$$
\cdot 8+\cdot 7+\cdot 10=\cdot 5
$$

Round 2

Anne $(O$ disks $)\left(3 x^{+} 7\right)+70=11$. Harley (disks)

$$
4 \times 70=-40
$$

This game continues untıl a previously - rreed upon winning score is reached.

Some of the computations at another table, where Matthew and Sidney were seated, were as follows:

Situation 1.-Matthew had $7,8, \cdot 10$ and one disk out of limits, giving him a total of '25. When Sidney's turn came he successfully knocked Matthew's disk out of the ' 8 box and into the -10 box. Matthew's ' 8 was taken away; written mathematically, it was - 8 . This number sentence describes the last play:

$$
8-8=0
$$

Situation 2.-Sidney successfully knocked his own disk out of the - 10 penalty box. Translated into our language of numbers, Sidney had a - 10. When he took away the -10 , it gave him a 0 for the box. This number sentence is written:

$$
-10-10=0
$$

Situation 3.-After Round 4 Matthew had 30 points more than Sidney had. With three disks still to shoot, Sidney told the group watching that he could win if Matthew were unlucky enough to end the round with a -30 . That would be written by the following number sentence:

$$
-30 \div 3=-10
$$

The target diagrams vary from table to table to meet the needs of the individual

Ficure 3
children. Some suggestions for a few possidle changes to match the learning'styles of your students are indicated in Figure 3.

Editorial Comment. - Many variations of this activity are possible. A beanbag -game format could be used in a manner similar to that suggested for the shuffleboard activities. The game arrangement will actively involve the children and provide an interesting format for skill development. If the students can be encouraged to record their scores on a number line and write equations to represent the operations, they will gain additional insight into the oprations with directed numbers.

Disguised practice for multiplication and addition of directed numbers

ESTHER MILNE

Esther Milne is a Mathematics Helping Teacher in the Tucson Public Schools, Tucson, Arizona.

Practicing computation can be drudgery. But practicing computation with integers is necessary. Games aren't drudgery. Let's combine games with practice. Then students can have fun as they improve the accuracy of their computation.

Try this game.

Integer Game

How many can play? Two, three, or a whole class divided into two teams.

What equipment is needed? Two spinners* and paper on which to write scores. (When a Jarge group is playing as two teams, it is best to have replicas of the spinner dials on an overhead projector transparency.)

Mark some numerals + (positive) on the first spinner. Mark the rest of the numerals - (negative). On the second

[^4]spinner, label a couple of the numer .. "power" and the rest positive and negative. (There might be a zero on a dial.)

How do you play? Spin the first spinner. The number on which the pointer stops is the first factor. Spin the second spinner. Where the pointer stops gives the second factor, or tells us the power to which the first factor is to be raised. (If a large group is playing, place a marker on each dial on the overhead projector to show where the pointer stopped. A coin could be used as a marker.) Record the product. Keep a running score.

Who wins? Decide before the game
starts how many turns will constitute a game. After the last turn the player or team whose score is farthest from zero is the winner. Score is kept by all players.

Each one keeps his own score and that of his opponent(s).
If 10 turns is to be a game, the score sheet looks something like this:

ME

	Factors	Product	Running Score
1.	$-5 .+4$	-20	-20
2.	$+4 .+4$	+16	-4
3.	$(+3)^{2}$	+27	+23
4.	$0 \cdots-6$	0	+23
5.	$0 .+1$	0	+23
6.	$-8 .-6$	+48	+71
7.	$(+1)^{2}$	+1	+72
8.	$(+3)^{2}$	+9	+81
9.	$0 .-5$	0	$+8!$
10.	$(-7)^{2}$	+49	+130

THEE

	Factors	, Product	Running Score
1.	-5.-6	30	+30
2.	+3. +4	+12	+42
3.	(-5)	+25	+67
4.	0-6	0	+67
5.	(1) ${ }^{2}$	+1	+68
6.	-6. +1	-6	+62
7.	+2.-5	-10	+52
8.	(-6) ${ }^{2}$	-216	-164
9.	-8. +1	-8	-172
10.	$\left({ }^{+2}\right)^{2}$	+8	-164

Thee is the winner!

Editorial Comment.-Many variations of this game are possible. For example, a basic addition game may be played by having students add the two integers identified by spinning the two spinners. A subtraction game may be played by having a student spin the first spinner to identify the minuend and then spin the second spinner to identify the subtrahend. The student then finds the difference between the two integers.

If you are looking for a way to design spinners that work extremely well, borrow a pair of plastic lazy Susan turntables from your kitchen cabinets and cut posterboard disks to fit in the turntables. The disks can be marked and numbered according to your needs and a pointer can be placed on the desk top beside the turntable.

Plostic lazy Susan iurntable with boll bearing base.

Posterboard disk out to fit in the turntobie.

Pointer card

A student-constructed game for drill with integers

MERLE MAE CANTLON
Jefferson Junior High School, Caldwell, Idaho

DORIS HOMAN
Vallivue Junior-Senior High School, Caldwell, Idaho

BARBARASTONE
Central Junior High School, Nampa, Idaho

In teaching a unit on integers, teachers are invariably faced with the age-old problem of how to provide interesting and meaningful drill. Popsicle sticks can be used to provide a motivating, "hands on" laboratory exercise in which the students build their own game. The anticipation of using what they are studying in a fun situation seems to be an added motivational factor for students. The exercise shown in figure 1 is a suggestion for the first activity, in which the children make the materials and experiment with the "Popsicle-Stick Game."

For this activity, the students should be divided into groups of three or four. Without further instructions, each group is given its assignment sheet for the day (fig. 1).

The second activity involves the actual playing of the Popsicle-Stick Game with the numbered Popsicle sticks that the children have made. Instructions for playing the game follow:

1. The class is divided into teams of three or four students, and each team is given a set of numbered Popsicle sticks.

Names of team members:
Check the box at the right when the, team has completed each step, please.

1. Get 15 Popsicle sticks and one felt marker.
2. Mark $=1$ on the first stick, keeping the sticks in vertical position. Mark $=2$ on the second stick, and so on through -5 .
3. Mark $\mathbf{0}$ on both sides of one stick.
4. Mark -1 on one side of a stick and 1 on the opposite side. Mark -2 on one side of a stick and $\underline{\underline{2}}$ on the opposite side, continuing on in this manner through -9 and $\underline{9}$.
5. Build with Popsicle sticks the following math phrases (expressions) that are equal to -4 .

> a. $\frac{-3+-1}{\text { b }}=$ b. $\frac{-8+4}{(-4 \times 2)}+4=$
6. With your sticks, write three math phrases that are equal to 48.

7. Using at least one negative integer in each, write three math phrases equal to 3.
a. $\ldots=3$
b. $-=3$
c. $-==3$

Fig. 1
2. Students on each team take turns acting as captain, the honor rotating around the table with each new problem. A permanent scorekeeper should be chosen for each team.
3. The object of the game is to see which team, using one or more of the four operations on integers, can be the first to construct a mathematics problem with an answer equal to the integer that the teacher has written on the board. Numbers from -100 through 100 can be used for the integer answers, and for variation, these can be written on slips of paper and then drawn from a box by the captain of the last winning team.
4. When a team has constructed a problem with an answer equal to the integer on the board, all members of the team must raise their hands. The teacher notes the first team whose hands are all raised. When it is apparent that most groups have completed a problem, time is called.
5. The completed problems are written on the board (or on the overhead projector) by the respective team captains, and the accuracy of all problems is checked by the class. The team captains have the re-
sponsibility for writing the correct operations as well as the correct integers, and for indicating the order in which the operations are to be performed.
6. If the problem prepared by the first team whose hands were raised is correct, the team receives four points. Two points are awaicied to each of the other teams that has a corres.t problem. Teams with incorrect problerns receive a score of -1 . Each team keeps its own score.
7. For variations, the teacher may place restrictions on the problems to be constructed. For example, some possible restrictions are:
a. There must be at least one negative integer in the problem.
b. At least two operations must be used in the problem.
c. The problem must be worked with a minimum of two sticks, or three sticks, and so on.
The Popsicle-Stick Game has several advantages. It promotes total student par-ticipation-groups are small. The honor of acting as captain is rotated within the groups. All members of the team must raise their hands in order for the teafn to
be recognized as first. All students are involved in checking the problems that are put on the board, since numerous correct responses are possible. The scoring procedure provides additional opportunities for practice. "Hands on" materials are used, and little teacher direction is needed.

In summary, this experience provides students with useful and enjoyable practice for operations with integers through the use of manipulative materials in a laboratory ${ }^{\prime}$ setting. In the words of a Chinese philosopher: I hear and I forget; I see and of I remember; I do and I understand.

Editorial. Comment. - The first activity shown in figure f^{t} requires the students to "write math phrases" in sieps 5, 6, and 7, using Popsicle sticks; however, there is no provision for the oferation signs. You may wish to provide each team of students with a number of paper squares on which they may write the desired operational symbols in order to compiete their math phrases with the Popsicle sticks.

Game activities such as these can provide very interesting and stimulating practice experiences, but these experiences should be pieceded by meaningful instruction to develop an understanding of the operations with integers.

Grisly grids

WIILIAMG. MEHL and DAVID W. MEHL

William Meht is a teacher of mathematics at
1 Wilson Junior High School in Pasodena, California.
David As-hl, his son, was a student in Mr. Meh's summer class in exploratory algebra and assisted in the writing of the article.

Thhe multiplication lattice grid is familiar to most teachers and many students throughout the country. A more challenging version of this grid type might include directed numbers. The writers have modified the traditional presentation and introduced a grid incorporating a new set of "rules." The grid can be used to stimulate and to entertain the most ambitious prealgebra or algebrà student.

Let's look at the grid's anatomy. Each small square shall be called a cell. Each cell consists of two congruent triangular regions. The upper region is designated $U R$ and the lower region $L R$ (Fig. 1). The total grid may be in the form of a square or other rectangle, thus enabling the teacher to regulate the number of factors and cells for any given presentation. All marginal entries at the top and right of the grid shall represent factors. while the entries at the left and bottom shall represent sums. Each cell contains a product. Aly entries consist of integers, \rightarrow and all margmal entries are integers x such that $10<x<{ }^{\prime} 10$.

Figure 1
The following rules regulate, the operation of the grids:

1. All tens are recorded in UR, while all ones are entered.in $L R$.
2. A negative product consisting of two digits is always recorded such that the tens digit is negative and the ones digit is not negative.
3. A positive product consisting of two digits is always recorded such that neither digit may be negative.
4. The integers in the margins opposite any cell may have one digit only.
5. Marginal sums are found by adding obliquely from right to left, starting in the lower right corner of the rectangle.
6. The solution consists of any necessary marginal or tabular entries, and in some cases requires that the marginal sums be totaled and entered in a frame as directed by an arrow (Fig. 4).

The teacher might begin simply by presenting a grid such as Figure 3. A varia-

Figure 3
tion of the first presentation might appear
as shown in Figure 4. Note the required answer recorded in the frame at the head -

- It is suggested that the teacher formulate several grids of the type previously shown to provide sufficient orientation for students and as a prerequisite to attempting the grid types that follow. The student must be thoroughly familiar with the multiplication, division, and addition of directed numbers, some minor rules for divisibility, and have a talent for observation and deductive reasoning. Of course, the teacher may elect to have students attempt some simpler solutions than those shown here, or confine the entisé presentation to merely determining products.

Complete the grid (Fig. 5) and place your final answer in the frame at the head of the arrow.

As the students attempt the solution of this and, similar grids, many observations may be noted, and the writers have found that successful students are most eager to share them. These observations include the following:

1. No product can exceed 81 or be less than 81.
2. No factor can consist of two digits.
3. If $U R$ is positive or negative, than ' $L R$ is positive.
4. If $U R$ is positive, the signs of both factors are alike.
5. If $U R$ is negative, the signs of both factors are unlike:
6. If $U R$ is 0 , then $L R$ is 0 , negative

Figure 5

Figure 6
or positive.
7. If $L R$ is negative, then $U R$ is 0 .
8. If $L R$ is even, then either the upper or right-hànd marginal entry for that cell is even.
9. If $L R$ is 0 or 5 and $U R \neq 0$, then either the upper or right-hand marginal entry for that cell is 5 or -5 .
10. If "carrying" is necessary while adding obliquely, a positive sum "carries" a .positive tens digit, while a negaiive sum "carries" a negative tens digit.

The reader may enjoy attempting the next grid (Fig. 6) while paying particular attention to the observations previously noted.

Perhaps some explanation or advice may be useful to the teacher who desires to formulate grids of his own. For best results, the writers recommend that a completed grid be formulated at the beginning. The teacher would then contribute to the difficulty of the solution by removing appropriate factors, products, sums, and partial products. Here it is advisable for the teacher to attempt his own solution in, order to decide whether or not he may have abbreviated the original grid beyond the point of effecting a complete suiution.

- An aliernate method of presenting and solving grids of our type follows.

Complete the grid in accordance with the mathematical instructions below:

1. A is not positive.
2. $d=5$.
3. $-3<g<-1$.
4. k is not negative.
5. $(A)(F)>0$.
6. $B \neq 7$.
7. $7<p<9$.
8. $i>0$.
9. $|A|+|B|=(C)(D)$.
10. $D-A=j$.
11. $q \nleftarrow 0$.

Editorial feedback ${ }^{\prime}$:

MARY HELEN BEAN

Bel Air Junior High School, Bel Air, Maryland

My eighth graders thoroughly enjoyed working with "Grisly Grids" (May 1969) after their study of integers. The grids proved to be a highly motivating type of drill.

The students found that one of the grids does not have a unique solution (fig. 5,
p. 358). Some of the students examined is and found that the inclusion of one additional number would have resulted in a unique solution. (Note fig. 1.)

The circle can be replaced with 8,8 , $\cdot 7$, or $\cdot 7$, in order for the original grid to have but one solution. The four possible

Figure 1

Figure 2
solutions obtained when the additional number clue is provided are shown in figures 2-5.

Our thanks to the authors William G. Mehl and David W. Mehl for making drill so enjoyable!

sFigure 3

Figlerf 4

Figurl 5

Rational Numbers

Aconsiderable portion of the elementary school mathematics curriculum is devoted to the teaching of fractional numbers and their operations. Although whole numbers are extremely important in everyday living, it is the use of rational numbers with their fractional and decimal representations that has made progress possible in any field requiring measa:ement.
Many of the games selected for this section deal with the equival \because nce of names for rational numbers. These include equivalences of decimals and percents as well as the usual equivalences with fractions. To create instructional games for use with operations on fractions, many of the games suggested for whole-number operations may be adapted.
The first article, by Junge, gives directions for a most useful fraction activity: fracion strips. She suggests several games with these materials that are either based on equivalences or designed to show how fractional parts relate to make a whole.

If Caflisle's "Crazy Fractions" reminds you of Crazy Eights, it should. Students get much practice recognizing like denominators and fraction dquivalences with this game.
"Fracto," by Molinoski, is a game of fraction, decimal, and percent equivalences. It is strongly reminiscent of the universal game called poker.

Lazerick's "Conversion Game" is a variation of Bingo using percent, decimal. and fraction equivalences. Be sure to let the winner of one game be the caller for the next game. Armstrong's "Fradécent" is à card game related to the same equivalences.

The activity discussed in "An Adventure in Division" helps children to un-. derstand the concept of repeating decimals and to recognize that rational numbers expressed in fraction form can also be expressed in repeating decimal notation. Lots of practice in long division as well as in graphing is provided in this activity.

The article "Introduction to Ratio and Proportion" will give you some ideas on presenting rate pairs to children and for showing how rate pairs differ from ordinary fractions. The function machine can be used effectively with this activity.

Rode's "Make-a-Whole" and 7.ylkowski's "Game with Fraction Numbers" are useful when working with operations on rational numbers. Make-aWhole gives students an intuitive feeling for many ways to generate a unit region from fractional parts. "A Game with Fraction Numbers" provides much practice with computations of the four basic operations."

A game of fractions

CHARLOTTE W. JUNGE

This game may be played by two, three, or four children. Each one makes his own set of fractional parts as follows:

1. Cut from lightweight tagboard five rectangular regions $12^{\prime \prime} \times 4^{\prime \prime}$.
2. Very carefully mark four of them into fractional parts, and label them as shown below. Leave one region unmarked as a measure.

1	1	1	1	1	1	1
4	8	8	8	8	8	8

3. Cut along the lines drawn. Write your name or initiai on the back of each of the fractional parts and place them in an envelope for ease of storing.

These parts may be used for several games. For example:
I. Each player empties all the fractional patts from his envelope into a common pile. Each player in turn draws a part until all have been drawn. Then each player. begins assembling the parts he has drawn into rectangular regions the same shape and size as the uncut card. The first child to assemble tinree "wholes" wins the game.
II. Start as before. Set a limit of three to four minutes. The player who in this time has the greatest number of equivalent expressions for $1 / 2$. wins.
III. This game is something like "Authors." Each player in turn quickly draws two fractional parts from the common pile until he has taken ten. The remaining parts are put aside in a box and not used in the game. The player who first fits all of the parts he has drawn into a region or regions equivalent to one, wins. Besides the parts he has drawn, each player in turn may ask any other player for the parts he needs, giving in return an equivalent, thus: $3 / 12$ for $2 / 8 ; 1 / 4$ for $2 / 8 ; \%$ for $1 / 3$, etc.

A variation of this game may be played without reference to objective materials. Children often refer to this game as "Make One." One player starts the game, saying " $1 / 3,1 / 6$, make one." The next player adds another fraction which will "make one," thus: " $1 / 3,1 / 6,1 / 2, "$ " $1 / 3,1 / 6,3 / 6$," or "i/3, $1 / 6,4 / 8 . "$ This game is played orally, without reference to written solutions, except where they are needed for clarification.

Editorial Comment. - This game should provide some very interesting practice with a variety of fractional-rumber concepts. Additional variety could be provided by the construction of five circular regions, which are marked and cut into the same sets of fractional parts suggested for the rectangular regions. This would enable the students to view the fractional parts in anuther spectrum.

Crazy fractions: An equivalence game

EARNESTCARLISLE
Columbus College, Columbus, Georsia

The game "Crazy Fractions" is useful in helping fifth and sixth graders learn equivalent fractions and the renaming of whole numbers as fractions.

The game is played with a deck of seventy-two cards. There are cards for the following sets of fractions: halves, thirds, fourths, fifths, sixths, sevenths, eighths, ninths, tenths and fourteenths. There are also cards for the whole numbers one, two, three, and four.
The game works ideally with four players; however, aniy reasonabie number of players may piay. The game begins with the dealer giving each player seven cards, turning one card faceup (starting the discard pile), and placing the remaining cards
in the center of the table facedown. Play starts with the player to the left of the dealer discarding a card of the same suit (same denominator) or of equivalent value to the top card of the discard pile, or a whole number card. Whole number cards act as wild cards because a player may rename a whole number card to any suit he chooses.

During his turn, a player may discard or draw a eard from the deck. A player does not both draw and discard unless the drawn card is discardable. The object of the game is for a player to get rid oi his cards.

A typical hand may begin as follows (refer to fig. 1): Dealer turns 0/4 faceup;

Fig. 1
player one discards $2 / 4$; player two has no fourths but discards the equivalent fraction $3 / 6$; player three discards $5 / 6$; dealer has no sixths or equivalent fraction but draws 2 from the deck, which he plays and names sevenths as the suit; player one follows by discarding $1 / 7$; player two discards 4/7; and the play continues until one player is rid of all of his cards.

When one player gets rid of all of his cards, or wheu is one can play, the hand is over and the points are totaled. In case
of a blocked game, no one receives any points. Otherwise, a player receives twentyfive points for getting rid of his cards plus the total of the cards remaining in all other hands-one point for each fraction less than $1 / 2$; two points for each fraction equal to or greater than $1 / 2$;'and three points for each whole number. Before play begins, players should agree on the number' of points that will constitute the game. Fifty- and hundred-point games have worked well in the past.

Editorial. Comment. --The cards for homemade card games such as "Crazy Fractions" can be made more attractive and more durable if you cover the back side of the card with a colorful pattern of con'act paper and then cover the front, or playing, side with clear contact paper. The cards may be cut from indei cards, posterboard, or other lightweight cardboard.

Fracto

MARIE MOLINOSKI

Worith Junior High School, Worth, Illinois

Upper elementary and junior high mathematics teachers are always searching for ways of teaching or reviewing the relationships between decimals, percents, and fractions. Fracto is a card game designed to make the review a little more fun.

Meterials needed

Fracto is played with a deck of fifty-two cards. The cards can be of any convenient size; index cards may be used. The makeup of a deck of Fracto cards can vary depending on the type of practice desired. Following are some suggested decimals, percents, and equivalent fractions:

One set consists of thirteen fractions. $1 / 5,1 / 4,3 / 8,2 / 5,1 / 2,3 / 5,5 / 8,2 / 3$, $3 / 4,4 / 5,5 / 6,7 / 8$, and $8 / 9$.

One sel consists of thirteen equivalent
fractions with a denominator of 100.

$$
\begin{aligned}
& \frac{20}{100}, \frac{25}{100}, \frac{371 / 2}{100}, \frac{40}{100}, \frac{50}{100}, \frac{60}{100}, \\
& \frac{621 / 2}{100}, \frac{80}{100}, \frac{662 / 3}{100}, \frac{75}{100},-\frac{831 / 3}{100}, \\
& \frac{871 / 2}{100}, \text { and } \frac{888 / 9}{100} .
\end{aligned}
$$

One set consists of thirteen equivalent decimals. .20, $25, .371 / 2, .40, .50,60$, $.621 / 2, .662 / 3, .75, .80, .831 / 3, .871 / 2$, and $.888 / 9$.

One set consists of thirteen equivalent percents. $20 \%, 25 \%, 371 / 2 \%, 40 \%$, $50 \%, 60 \%, 621 / 2 \%, 662 / 3 \%, 75 \%$, $80 \%, 831 / 3 \%, 871 / 2 \%$, and $888 / 9 \%$.

Number of players

The number of players can be from two to six. A class could be divided into groups of varied size.

Rules of the game

Shuffie the fifty－two cards and deal five cards to each player one at a time，Players sort their cards，trying to keep equivalent cards together．Starting with the player to the left of the dealer，each player is given a chance to discard from one to three cards and ask for new ones．A player may choose to keep his hand as it was dealt．After every player has had an opportunity to draw new eards，the player to the left of the dealer lays down his hand with the other players following in order．The player with the best hand wins．When the points
have been recorded，a new hand is dealt and the game continues until a player reaches 300 points．

Point values of cards in hands．

Two of a kind or one pair 20 points
Two pairs 40 points
Three of a kind 50 points
Straight 60 points
Example：5／8，2／3，3／4，4／5，5／6
Four of a kind $\quad 70$ points
Full house 80 points
Example： $1 / 2, .50,50 \%, 1 / 4, .25$

The conversion game

BETH ELLEN LAZERICK
The Dalton School，New York，New York

Just how do you convince a sixth or seventh grader that he should in auie quickly to recall fraction－decimal－percent equivalents？After students have used the こさんぇさpt of（for example）

$$
\frac{1}{2}=.50=50 \%
$$

in word problems and computations，they frequently forget their facts；and to help them retain mastery of the．various equiv＝ alencies I fashioned the＂Conversion Game．＂This game also reinforces the con－ cept that a＂number＂is represented by many＂numerals．＂

Playing cards fashioit：＇＇：ike bingo cards were made from brightly colored oaktag．I
used cards measuring five inches by five inches，but three－by－three or four－by－four cards could be used with slight alterations． My key list contained 28 sets of basic facts and their equivalents．This number can vary according to the level of the class．The list included halves，thirds， fourths，fifths，sixths，eighths，tenths，elev－ enths，twentieths，and one－hundredths． Fractions in lowest terms，nonreduced frac－ tions，decimals（repeating and nonrepeat－ ing），and percentages comprised the list． A portion of it is reproduced in figure 1.

The students had learned that .6 and.$\overline{6}$ （＂point 6 repeating＂）are not the same and that $\overline{6}, \%, 4,4$ ，and 66% percent are all numerals representing the same number．

Fig. 1

These and other facts were placed randomly on the cards so that each card had an equivalent of 24 of the 28 facts and each card had about eight fractions, eight decimals, and eight percentages. Samples of the cards are shown in figures 2 and 3.

To play the game, the caller (teacher or -student) simply chooses randomly from the key list any equivalent-or he can select from duplicates of the list that are placed in a box, as in bingo. He might select $1 / 3$ or $10 \% / 30$. He then calls the number and writes it on a chalkboard while the players search for any equivalent (i.e., $\overline{\mathbf{3}}$ or $331 / 3$ percent) on their cards. When a player locates an equivalent on his card, he covers it with a simple marker. After many pulls from the key-numbers box or: selections from the list, someone will complete a horizontal, vertical, or diagonal line

The Conversion Game				
$8 \frac{1}{3} \%$	\pm	90%	$\frac{6}{10}$.07
$\frac{1}{6}$	100%	$\frac{6}{46}$	5	$83 \frac{1}{3}$
1%	375%	FREE	5%	20%
$\frac{20}{98}$	$\frac{3}{33}$	$87 \frac{1}{2} \%$	3	6
$\frac{7}{10}$	$\frac{100}{38}$	$\frac{2}{16}$	80%	$\frac{3}{20}$

Fig. 2
and call out "Conversion!" The caller then checks the winning line by looking for equivalents of all the covered numerals as listed on the chalkboard.

The game is over if the student is correct. Boards can then be cleared and the game repeated two or three times without, in most cases, any loss of interest.

The advantage of putting an equivalent of nearly every key number on each card is that students then know they have to look carefully after each call. Better students simply find more answers on their cards, while s!ower students can always iuentify halves, thirds, and other simple equivalents.

Since most students enjoy games, the Conversion Game proves to be a fun way to review important facts long after the "real" mathematics of these concepts have been stored away!

The Conversion Game				
375	760	60%	15%	$33 \frac{1}{3} \%$
$66 \frac{3}{2} \%$	1	$\frac{1}{12}$	4	$\frac{5}{8}$
14	$\frac{3}{60}$	FAEE	70%	$\frac{2}{6}$
$16 \frac{2}{3} \%$	$\frac{58}{10}$	05	$\frac{4}{3}$	1.0
90	$\frac{1}{11}$	75	30%	$\frac{3}{24}$

Fig. 3

"Fradécent"-a game using equivalent fractions, decimals, and percents

CHARLES ARMSTRONG

Claypit Hill School
Wayland, Massachusells

Fradecent is a card game that is useful in helping sixth graders learn equivalent fractions, decimals, and percents as well as aiding theri in adding and subtraeting fractions. The word fradécent contains parts of the words fraction, deeimal, and percent.

The game is played with a deck of eightyone cards. The following fractions are used: $1 / 2,2,4,48.510 .1$ '4, 2 8.4/16,3 4, 68 . $12 / 16,1 / 5,2 / 10,3 / 15,2 / 5,4 / 10,6 / 15$. $4 / 5,8 / 10,12 / 15,18,38,5 / 8,7 / 8,1 / 10$. 3,10, 7, 10, and 9,10 . Cards with the corresponding equivalent decimals and percents are used with these fraction cards.

Play begins with the dealer giving each player seven cards and placing the remaining cards in the center of the table face down. The player to the left of the dealer
begins by drawing the top card from the deck. Each player in turn tries to make a scoring set. There are two possible scoring sets: (1) a set of three cards consisting of an equivalent fraction, a decimal, and a percent (one of each), and (2) a set of three cards consisting of three equivalent fractions. When a player is able to make a scoring set, he places the cards face up in front of himself. Whether or not he is able to make a scoring set, each player must discard (place a card face up beside the deck of cards in the center of the table) to complete his turn. A player may not go_{s} out without discarding. Play continues clockwise.

Additional scoring is possible by adding on to existing scoring sets. This may be

Fig. 1. Drawing from the discards
done by any player during his turn. He may build on his own sets or on the sets of his opponents. A player builds on his opponets' sets by placing the scoring card in front of himself and declaring the set on which he is building.

During his turn, a player may draw a card from the deck in the center of the table or any number of cards from the pile of discards. If he draws from the discards, he must use the last card he takes in a scoring set during that turn and keep all the other discards in his hand. In figure 1 , for example, if the player takes the top
three cards, he must use the .25 card in a scoring set and add the 3 ,15 and 4,8 cards to his hand.

When a player gets rid of all his cards, the hand is over and the points are added. The face values of the cards are counted for points. The total of the cards remaining in a player's hand is deducted from the total of his scoring cards. The winner of the game is the player who gets five or ten points first. Before play starts, players should agree on whether they will play a five-point game or a ten-point game.

Editorial. Comment. - This game should provide some meaningful practice for students, and once the rules are learned, they should be able to play independently. As a possible variaion of the game, you might suggest that the goal is to build a set of four cards equal to one (for example: $1 / ヶ,{ }^{3} 1,30 \%, .375$).

An adyenture in division

LOIS STEPHENS Camarillo, California

Lois Stephens is principal of McKinna School in Oxnard, California.
She recently completed her doctoral dissertation and is now making a study of mathematics in the primary grades.

The adventure upon which you are about to embark requires some computation, so before reading any further, get a pencil and some scratch paper

Ready? Here we go!
Until a few years ago \dot{I} had viewed division as a process to be used only when needed to solve a practical problem. What changed my attitude was an investigation of the patterns to be found in the repetends of the decimal equivalents of commonfractions having prime numbers as denominators. Try these operations with me:

For a start, find the equivalents oi the sevenths, carrying each division problem to the : umber of places necessary to repeat the gittern twice.

Finished?
You should have these answers:
$\frac{1}{7}=0.142857142857 \ldots \frac{4}{7}=0.571428571428 \ldots$
$\frac{2}{7}=0.285714285714 \ldots \frac{5}{7}=0.714285714285 \ldots$
$\frac{3}{7}=0.428571428571 . \ldots \frac{6}{7}=0.857142857142 \ldots$
Although at a glance these appear to be different patterns, it is easily shown that the same sequence of six digits appears in each of the decimal equivalents, and there is only one pattern for the sevenths, this one made up of six digits.

Moving on to the nizt prime number. eleven, find the decimal values of the ten proper fractions, then check your answers with those given below.

$$
\begin{array}{ll}
\frac{1}{11}=0.0909 \ldots & \frac{6}{11}=0.5454 \ldots \\
\frac{2}{11}=0.1818 \ldots & \frac{7}{11}=0.6363 \ldots \\
\frac{3}{11}=0.272 \% & \frac{8}{11}=0.7272 \ldots \\
\frac{4}{11}=0.3636 \ldots & \frac{9}{11}=0.8181 \ldots \\
\frac{5}{11}=0.4545 \ldots & \frac{10}{11}=0.9090 \ldots
\end{array}
$$

Again, at a glance there appear to be ten patterns, but closer inspection reveals that one eleventh and ten elevenths follow the same pattern, two and nine elevenths the same, thiree and eight, and so on, for a total of five different patterns of two digits each.

Let's try one more easy scries-the thirteenths. You know now what to do, so perform the operations and check your results with the answers given here:

$$
\begin{aligned}
& \frac{1}{13}=0.076923076923 \ldots \frac{7}{13}=0.538461538461 \ldots \\
& \frac{2}{13}=0.153846153846 \ldots \frac{8}{13}=0.6153846 i 5384 \ldots \\
& \frac{3}{13}=0.230769230769 \ldots \frac{9}{13}=0.692307692307 \ldots \\
& \frac{4}{13}=0.307692307692 \ldots \frac{10}{13}=0.769230769230 \ldots \\
& \frac{5}{13}=0.384615384615 \ldots \frac{11}{13}=0.846153846153 \ldots \\
& \frac{6}{13}=0.461538461538 \ldots \frac{12}{13}=0.923076923076 \ldots
\end{aligned}
$$

This time, did you find the two patterns of six digits each?

Now try putting all the results you have

- obtained so far into a chart with four columns. Head the first column " N " for the prime number which is the denominator. The second column will be " D " for the number of digits in $\times .$. h pattern. Heading the third column will be "P" for the number of different patterns. You can determine the heading for the fourth column by discovering the relationship among the entries made in each row. Your chart should look like the one in Figure 1.

N	D	P	$?$
7	6	1	
11	2	5	
13	6	2	

Figure 1
If you are having difficulty in heading ' the last column, go on to 17, 19, and other prime numbers to obtain more entries for your chart. (More about this later in the article.)

Now let's go down another path on this adventurous journey. Looking back to the decimal values of the elevenths, designate the different patterns by letters, thus:

$$
\begin{array}{lll}
\frac{1}{11}-A & \frac{5}{11}-E & \frac{9}{11}-B \\
\frac{2}{11}-B & \frac{6}{11}-E & \frac{10}{1!}-A \\
\frac{3}{11}-C & \frac{7}{11}-D & \\
\frac{4}{11}-D & \frac{8}{11}-C &
\end{array}
$$

These patterns can then be graphed in the manner shown in Figure 2.

Figure 2

And using the same, kind of desig:ation, the thirteenths produced the graph shown in Figure 3.

Figuae 3
Going back to the chart you made, did you try the product of D and P and find it to be N - 1? Test this as a possible heading for the fourth column by calculating the decimal equivalents of the seventythirds: Before you begin calculations, predict the number of digits and the number of patterns by making a factor tree for $72, N-1$ in this case. (Sec Fig. 4.)

Figure 4
This gives many possibilities:

$N=2$,	$D=36 ;$
$N=4$,	$D=18 ;$
$N=8$,	$D=9 ;$
$N=12$,	$D=6 ;$
$N=24$,	$D=3 ;$

and the opposites of all these!
Write your prediction at the top of your paper, and start dividing.

Finished? Now wasn't that fun? And was your prediction correct?

You may ask, "What is the value of this so-called adventure?" Not only have I had many pleasant surprises as I have explored these repetends myself, but I have found many junior high school students who would spend hours on problems such
as $1 / 97=?$, even though they had previously avoided all practice in division. (This problem is not recommanded unless you are ready for a lof practice in division, which of course also means practice in multiplication and sulaction!)

One successful method of using this computational game was to allow one student to work at the chalkboard while the other students looked on. In this way, without any teacher direction, the rest of the
cláss became self-appointed "checkers," and ali were participating in camouflaged drill as a sideline while the regular classroom assignment was being pursued.

If you have followed me down this path so far, do not think you have teached the end, for I predict you will find yourself wondering such things as, "How do you, suppose 997 behaves as a denominator?" And do try 101 next! *

Have fun!
/Editorial Comment. - If you are loeking for something a little different after the work in division suggested by Stephens, have your students do the following puzzle by coloring in each region that is labeled with a symbol for one-half. This puzzle would be especially good just before Halloween.

Introduction to ratio and proportion

ROLAND L. BROUSSEAU
North Attleboro High School, North Attleboro, Massachusetts

T.HOMAS A. BROWN
Merrill Junior High School, Des Moines, Iowa

PETER J. JOHNSON
Jim Bridger Junior High School, North Las Vegas, Nevada

Thhe oljective of this lesson is to introduce fifth- and sixth-grade students to ratio and proportion through a discovery situation. This approach would also be applisable for junior and senior high general mathematics students. This technique should allow students to find patterns that will enable them to verbalize algorithms for the solution of proportions. The following is from an actual demonstratio: with fifth graders.

As a starting point, in developing a feeling for ratio, the children took cobjects from a container. In order to keep the number property small, large objects were used. A comparison of the number of objects drawn by each of two children was made. A table was constructed to keep a record of the number of objects drawn. (See Example 1.) Each time the children came to the container, they were told to draw the same number of objects they had drawn on their first turn. The objects drawn were displayed where they could be seen by the entire group.

The girl in the example cited drew three objects, while the boy drew four. Thereafter, and with each successive drawing, the total number of objects was recorded in the table. (If by chance the same number of objects are drawn by both children, these numbers should be recorded, but another drawing is made to get different numbers. After three or four drawings, children should be able to supply new values without actually' drawing objects from the container. If the children have trouble supplying the values, they should return to the container for additional drawings.)

After the first table was completed, a second table was constructed without having the children draw objects from the container. At this point the word "rate" was introduced. The children were asked to think of the table as a record of the rate at which these objects were selected from the container (Example 2). The girl drew threc to the boy's five-expressed as a rate of 3 to 5 .

Example 2

Girl	Boy	(G, B)
3	5	$(3,5)$
6	10	$(6,10)$
12	20	$(12,20)$
15	25	$(15,25)$
.	.	.
.	.	.
.	.	.

Children were then asked to fill in the tat!e. Once again it should be stressed that the table can be verified by having the children actually draw the number of objects specified.:

At this stage, the notation of ordered pairs was introduced. The tables were constructed vertically to make this transition easy for the childrèn. The values listed in the second table were written using ordered pairs which were referred to as "rate pairs."

Once the concept of rate pairs had been established, the next step was to show equivalence between rate pairs. At this point, a child was asked to explain to his classmates how the objects were drawn from the container and how the t..Jles were constructed. Children were asked to volunteer other rate pairs that showed the same rate of drawing. (See Example 3.)

Example 3

$$
\begin{aligned}
& (3,5)=(9,15) \\
& (3,5)=(6,10)
\end{aligned}
$$

It is necessary for the children to see that equivalence exists between other rate pairs from the same table. The children were asked to find a rate pair that was equivalent to (21,35), but they were told not to use $(3,5)$. A second rate pair was introduced and children supplied rate pairs.

The term "equivalent rate pairs" was used to express the same rate. The pair $(3,5)$ expresses the same rate as $(6,10)$ even though different numbers are used.

As further exercises on finding equivalent rate pairs, examples can be devised which call for replacements supplied by the students.

EXAMPLE 4

$$
\begin{gathered}
(2, \square)=(6,9) \\
(12,16)<(\square, 4)
\end{gathered}
$$

The symbol of replacement should be used in all positions.

A game based on equivalent pairs was devised to help the children see the relationship between the product of the means and extremes. The game revolves around an expression like this: $(3 ; \Delta)=$ ($\square, 4$). The rules of the game are as follows: The girls pick a pair of numbers that would yield equivalent rate pairs. They then give one value and let the boys find the other. In a similar fashion the boys could pick a pair of replacement values.

A table like the one below could be constructed to record replacement values.

Δ	12	1	3	$\frac{4}{3}$	$\frac{6}{2}$	$\frac{2}{6}$
\square	1	12	4	3		

Other good examples for this gan:e would be $(\square, \sigma)=(5, \Delta)$ and $(8, \square)$ $=(\Delta, 2)$.

Hopefully, the children will soon realize that the product of the replacements listed in the table is the same as the product of the numbers in the examples. This might set the stage for a verbalization of the rule.

It is possible to see that replacement could also include fractions. A last example might be one such as this: $(4,1 / 2)=$ ($\Delta, 2$). If the children have discovered the rule of the game, examples such as the one above silould not cause any frustration, but merely make the game more interesting.

In conclusion, the brief development of proportion as outlined above would, with extension, lerd itself to problems involving percent, scale drawing, conversions, similar figures, area, and volume.

Make a whole-a game using simple fractions

JOANN RODE
University of West Florida, Pensacola, Florida

Thhe game called "Make a Whole" helps develop the concept of fractional numbers by using concrete examples; it gives reinforcing experience with the use of fractions and thr:r equivalents. It is suggested for use at third-grade level and above, depending on the achievement of the students.

The material required for the game is pictured in figure 1 and described more completely in a later section. The sections are made in four different colors, equally distributed; that is, of 8 sections representing $1 / 2,2$ could be red, 2 blue, 2 green, and 2 ycllow. The area for the "Whole" is also prepared in four different colors. The faces of the die are marked with a
star and the following fractions: $1 / 2,1 / 3$, $1 / 4,1 / 6$, and $A / 8$.

Rules of play

The object of the game is to use the fractional sections to construct a multicolored disk, the "Whole," in the black mat frame. The Whole may be constructed with any of the differently colored sections so long as they fit together to be equivalent to a whole.

Two to eight children may play the game in individual competition (in which case the color of the area for the Whole makes no difference), or they may play on color teams as determined by the color of that area.

Editorial Comment. - The game may be extended to include shapes other than circles. The game may also be played on a number line with the draw pile being pieces of paper with fraction names. A student draws a piece from the pile and marks on his number line a segment representing that fraction.

Fig. 1

The fractional sections are placed in a box, from which they are to be selected by the children as they roll the die, in clockwise order.

To determine who goes first. each child rolls the die seen in figure 1. The child rolling the star or the fraction with the greatest value goes first.

At each turn the child must decide whether he can use one of the sections represented by the fraction showing on top of the die.

If the player cannot use the section, he passes.

If he decides to take the section and can -use it, he places the section in his mat. (If the section taken completes the Whole for that player, then the game is over and that player has won. If it does not, the roll of the die passes to the text player.)
If he decides to take the section and cannot use it, he loses his next turn.

If the passes up a section he could have used, he loses his next turn.

If the star is rolled, the player may choose any section he can use.

The winner is the first to construct a multicolored Whole.

The game may be played in various other ways. according to rules designed by the teacher. For example, a ch:ld might be asked to construct five Wholes with no more than one of a kind of fractional section (${ }^{1},{ }_{2}{ }^{1} 3$, etc.) to go into each. For
advanced students, the numeral identification may be omitted from the sections.

The materials may also be used by the teacher to show equivalent fractions in classrooin demonstrations and by the individual student in working with equivalences at his desk.

Construction of game materials

A complete list of pieces follows, the color of the mat disks and sections being equally divided among whatever four colors are used.

Mats, 8
${ }^{\prime} 1 / 2$ sections, 8
${ }^{1 / 3}$ sections, 12
1/1 sections, 16
$1 / 6$ sections, 24
1/x sections, 32
Die, 1
The material used for the black mat frame and the fractional sections is inexpensive tagboard (poster board) in different colors. Because the Wholes constructed by the students are to be multicolored and because the fractional sections come in equal numbers of the different colors, the colors give no clues to value.

The mats were made first by cutting 8 cight-inch squares from black tagboard. Disks six inches in diameter were cut from the center of these squares, and the frames were then glued to other eight-
inch squares, 2 of each of the four colors chosen.

Five disks in each of the four colors were then constructed, with a diameter of six inches. A compass was used for accuracy. The disks were then divided, with the aid of a protractor, into sections corresponding to $1 / 2,1 / 3,1 / 4,1,6$ and $1 / 8$. The central-angle measurements for the five sections are $180^{\circ}, 120^{\circ}, 90^{\circ}, 60^{\circ}$, and 45°, respectively. Depending on the level
of the children, the sections may or may not be marked with the fractions to which they correspond, as seen in figure 1 .

The die was made from a cube cut at a lumber yard so that each edge had a measurement of three-fourths of an inch. The five fractions were painted, one to a face on each of live faces of the cube. A star was placed on the sixth face. The cube was sprayed with a clear varnish to prevent smudging.

A game with fraction numbers

RICHARD THOMAS ZYTKOWSKI
University Heights, Ohio

The game described below is a unique way to provide practice in the addition, subtraction, multiplication, and division of fractions. The game can also be used to teach ratios as well as the sequence of numbers.

Use a 2-by-2 ft. piece of oaktag or cardboard to make a playing board. Divide it into spaces as shown below, then write the fractions as figure 1 shows.

$\sqrt{\overline{S u n}}$	$\frac{1}{2}$	$\frac{2}{4}$	$\frac{3}{6}$	5 10 $\frac{6}{12}$
$B\left[\frac{2}{3}\right.$	$\frac{4}{6}$	$\frac{6}{9}$	$\frac{8}{12}$	$\frac{10}{15}-\frac{12}{18}$
$\frac{3}{4}$	$\frac{6}{8}$	$\frac{9}{12}$	$\frac{12}{16}$	[$\frac{15}{20}$
$\text { D } \frac{4}{5}$	$\frac{8}{10}$	$\frac{12}{15}$	$\frac{16}{20}$	$\begin{array}{\|l\|l\|} \hline \frac{20}{25} & 24 \\ \hline \end{array}$
E $\frac{5}{6}$	$\frac{10}{12}$	$\frac{15}{18}$	$\frac{20}{24}$	[$35: \frac{30}{36}$
F ${ }_{\text {Win }}^{\text {Win }}$	$\frac{6}{7}$	$\frac{12}{14}$	$\frac{18}{21}$	$\frac{24}{28}-\frac{30}{35}$

Figure 1
On some small pieces of tagboard $31 / 2$ in. by 8 in. write the following symbols and numerals: $-1 / 2 ;+1 / 3 ; \times 1 / 4 ; \div 1 / 3$;

Figure 2
$+1 / 6 ; \times 1 / i ;-1 / 8 ; \times 1 / 4 ;+11 / 2 ; \times 22 / 3$; $\div 33 / 4 ;+44 \% ; \times 5 \% ;-66 \% ;+71 / 8 ;$ and $\times 8 \%$.

In figure 2, examples are shown of how the front side of the small pieces of tagboard would be labeled.

On the back of each small piece of tagboard write the answers for the problem that is on the front. There will only be sir possible answers, since there are only six rows: A, B, C, D, E, F; the rest of the fractions in the row are equivalent to the first fraction in that row. Figure 3 shows how the back side of $-1 / 2,+1 / 3, \times 1 / 4, \div 1 / 3$ would look respectively.

Two to six students can easily play this game, or the class may be divided into groups.

Figurf 3

The rules of the game are as follows:

Each player will begin with the first numeral on the large tagboard. which is the fraction $1 / 2$.

He will. without looking. pick a small piece of tagboard with a symbol and fraction on it.

He will then peiform the mathematical operation in order to arrive at the correct answer.

If the player gets the inswer correct, he moves one'space. If he is wrong, he remains where he is. (The answer can be verified by cheching the back of the card used by the player in perform. ing the mathenatical operation.)

The first student to reach "winner" is the "mathematical champ" or "whiz kid."

All answers must be reduced to their lowest terms. Improper fractions must be changed to mixed numbers.

Each player is given only oric chance per card. then it is the next player's turn.

The fraction on the sinall piece of taghoard or cardhoard should always be considered to represent the second numeral in the problem: thus, it will either be the second addend, the minuend. the multiplier. or the divisor.

Example:

To begin the game, player A. without looking. picks a card. The card states x $1 / 4$. Since all players begin with the first
square on the large oaktag board ($1 / 2$), the piayer must muitiply $1 / 2 \times 1 / 4$.

Player A's computations:

$$
1 \times 1=1
$$

Player B checks the back of the card being used to see if the answer is correct. The answer is correct, so player A moves to the next space, ${ }^{\prime \prime}$. . It is now player B's turn. Player B misses his problem. Therefore, he must remain at the same place until it is his turn again.

If there are no more than two players, it will be player A's turn again. Only this time instead of being at $1 / 2$, he has now moved to $\not \approx 1$. He draws another card; the card states - $1 / 2$. Player A must subtract - $1 / 2$ from $1 / 4$.

Player A's computations:

$$
z-\frac{1}{2}=z-0
$$

Player B checks hiš answer by looking at the back side of $-1 / 2$ to find the answer. He sees that the answer is correct, so player A moves to the next space, $3 / 3$. It is now player B's turn again. Player B should always get his turn last, since player A was first.

If the game is used by the teacher in row competition a few times, the pupils should be led to see the relationship between numerals. The student should be asked what numeral would follow the sequence in each row; then this can be expanded to lead the pupils to see the relationship between the numerator and the denominator of each fraction.

Number Theory and Patterns

Most contemporary elementary and middle school programs contain topics from number theory-factors, primes. multiples, divisibility, patterns, sequences, and so on. There are two major reasons for including these topics in the curriculum:
I. Number theory topics are convenient tools used in conjunction with fractional number computations.
2. There is an intrinsic fascination in the relatedness of number proper-ties-this natural intrigue can be used to provide many opportunities for practice with whole-number computations.
Most of the articles in this section reflect the sentiments expressed by Kapp and Hamada in the lead article, "Fun Can Be Mathematics"-"Every mathematics classroom can be a laboratory where students experiment with numerical ideas. . . . The games s.-ggested . . . can stimulate the students' mathenatical thinking by use of number sequences and patterns."
The first article gives several suggestions for turning sequence investigations into games. There is an especially good game for developing the concept of greatest common factor. This game is easily adapted to the concept of lowest common multiple.
Allen's description of "Bang, Buzz, Buzz-Bang, and Prime" is guaranteed to give a vigorous presentation of multiples and primes. Be prepared for a high level of excitement when you play this game.
The ever-popular Bingo game is the basis for Holdan's game of "Prime." This is a game of disguised practice in the recognition of prime and compositenumbers. Most students enjoy playing Bingo games, especially when the reward for winning a game is being the next caller.
If you are interested in a game requiring the development of a strategy to win rather than just chance, then try Harkin and Martin's "Factor Game." The game rules are presented in the form of a computer printout - however, you don't need a computer to play the game! If you do have programming capabilities, then by all means make the computexthe opponent.

You will find additional strategy-based games in Trotter's "Five 'Nontrivial' Number Games." The secrets behind several very clever and useful games are exposed. One of the secrets involves the Fibonacci sequence.

At first glance, Sawada's article on "Magic Squares" may seem somewhat complex for elementary or middle school students. However, the author's purpose is not to encourage the teaching of abstract concepts but rather to "suggest the strategy of taking ịnteresting ideas, such as magic squares, and extending them in ways that lead to the discovery of other mathematical structures, "all the while providing interesting practice of fundamentals as griginally intended." In addition, the article gives some very good illustralions of activity cards, using magic squares as the subject.
-The final two articles provide a potpourri of tricks and games designed as "Interest Getters" and "Just for Fun." Such diversions provide the perfect fillers for those in-between times.

Fun can be mathematics

AUDREY KOPP and ROBERT HAMADA
Edison Model Mathematics Demonstration Center,
Los Angeles City Sc: $\mathrm{mol} / \mathrm{s}$, California

Every mathematics classroom can be a laboratory where students experiment with numerical ideas. Two-way communication between teacher and class by means of games can foster an atmosphere of eager participation in mathematical activities. The games suggested below have characteristics that can stimulate the student's mathematical thinking by the use of number ideas and number sequences and patterns. Some of the exercises call for use of paper and pencil' by students and either the chalkboard or the overhead projector for the v teacher to show collection of data. Often each child may be asked for an oral response, thus allowing all to participate, as well as permitting the teacher to check if each student understands the rules of the game.

1. An easy way to establish the notion of patterns and sequences is to first ask the class to count by five. Tell the students to listen for a secret as each child in order gives an answer. Then again court by five but use $1,2,3$, or 4 as the initial number. For example, count:-3,-8,-13;-18; 23 . Again suggest that students listen for the secret. Try a third time. The teacher can judge if students know the secret by the promptness of their responses. If they have not caught on by the third round, the teacher may repeat earh answer, enabling students to hear the terminal digits. By this
time, usually everyone knows the secret and you may have a perfect response on the fourth try.

The game can be used at the end of a class period in order, to set the groundwork for the lessons to come on patterns and sequence. If only a few students discover the secret one day, try again the next.
2. Number sequences may be introduced by the teacher presenting the first numbers on the chalkboard:

$$
1,4,7,-,-, \cdots
$$

The class discovers more numbers in the sequence

$$
\text { i. } 4,7,10,13,16,19, \cdots
$$

Then the teacher asks the class to verbalize the rule governing the sequence. If practical, the class should be asked to write the rule in some form depending on the ability of the class: Add 3 to the previous number: $1+(3 \cdot 0), 1+(3 \cdot 1), 1+$ $(3 \cdot 2), 1+[3 \cdot(n-1)]$ where n is the nth term in the sequence. Here is another example:

$$
1,4 ; 9,-\cdots
$$

After the class suggests the correct numbers in sequence:

$$
1,4,9,16,25,36, \ldots
$$

it is time to formulate rules again. Some classes may come up with the rule of squares; others may suggest adding the odd numbers in sequence. Teachers may find
sequences or make up some that are commensurate with class levels. The patterns should not be difficult at first so that students can easily be acquainted with the idea of formulating a rule. After a few sequences the students can participate by offering sequences themselves. One student gives a series of numbers which the teacher records on the board. The student calls on other members of the class to complete the sequence and can either supply the rule himself or ask another student to do so. Rules and sequences may be recorded by all students.

Occasionally not enough data is supplied to predict just one pattern.

1. 2, 4, —. -, -....

As many possibilities as can be found should be examined along with their rules.

$$
\begin{aligned}
& 1,2,4, \frac{8}{7}, \frac{16,}{11}, \frac{32,}{16}, \cdots \\
& 1,2,4,
\end{aligned}
$$

3. Siudent Participation Game

Each child in the room is assigned a number in sequence. Students may count off in order to make sure each knows his own number and those of the others around them. The teacher then asks students to stand according to a particular rule.

The relationship between ordinal and cardinal numbers may be illustrated by having every third student stand, or asking each student after the tenth student to stand. The game extends to practice with factors and primes. After the teacher makes a statement, the class members respond by standing, making it easy to check answers and locate missing ones. Sample directions:

> The even numbers Multiples of three Factors of twelve Numbers with only two factors The prime numbers.

Eventually, students will te able to make up appropriate directions themselves. Students often express ideas as they play this game. After a series of statements regarding factors, Carl asked, "Why do I have to stand all the time?" Dave replied immediately. "Because l is a factor of every
number." When Ernest was 1, he announced that he would stand for every question that had to do with factors. He learned that he was wrong when the teacher asked all the prime factors to stand. Questions are easily found for each direction. After the even numbers are standing, for instance, one may ask 8 why she is standing. If she doesn't know, somebody will probably state that it's because 8 contains a factor of 2 . The question of why 13 should stand in the prime numbers was answered by Mary as " 13 has only 2 different factors." Jerome, number 17, was tired of sitting so he suggested "the factors of 34 stand." Here is another example of a series of statements.

Factors of 12 :
Students assigned to numbers $1,2,3$, 4,6 , and 12 should stand.

Factors of 18:
Students assigned to numbers $1,2,3,6$, 9. and 18 should stand.

Common factors of 12 and 18:
Only those students who stood up both times previously should stand.

Greatest common factor of 12 and 18 :
The student with the largest number remains standing.
Another drill on fundamentals would have the teacher make a statement such as:
4 plus 3 , multiplied by 2 , minus 2 , divided by 6 .
Obviously, the student assigned to the number 2 should stand up.

Instead of having pupils stand, each may be given a 3×5 card with his number written on both sides in bold color. Cards may be held up for answers. After a while the numbers may be given out randomly, which may increase the difficulty of the game.
4. Ordered pairs lend themselves to games wherein students select and verbalize rules. Visual reproduction of a function machine is often helpful. Basic parts are Input. Output, and Function Rule.' Many
rules can be used, depending again on the level and needs of the class. Here are two sample sets of number pairs:
$(2, A)(3,6)(8,16)(12,-)(-, 100)$
$(4,9)(5,11)(6,13)(9,19)(10,-)(-, 51)$

Students enjoy working out their own rules and trying them on the other members of the class. Thus the notion of function can be introduced at even a very elementary level.

Editorial Comment. The student-participation game described above may be adapted for use with lowest common multiples (LCM). To find the LCM of 6 and 4 , give directions such as the following:
"Multiples of 6 stand:" $6,12,18,24,30, \ldots$
"Now sit down."
"Multiples of 4 stand:" $4,8,12,16,20,24,28, \ldots$
"Only those of you who stood up both times remain standing:" The student with the lowest number remains standing. This will be the LCM of 6 and 4 .

Bang, buzz, buzz-bang, and prime

ERNESTE. ALLEN
Southern Colorado State College, Pueblo, Colorado

Games often provide an excellent technique to stimulate motivation and maintain interest. This article discusses four versions of a simple counting game. Though the game is easily played by primary youngsters, it is also applicable to older children and adults.
"Bang" is by far the easiest version. Here are the rules:

1. Seat a sr.all number of students, say less than ten, in a circle.
2. Have a student begin the counting in a clockwise manner.
3. When it is a student's turn to say " 5 " or any multiple of five, such as 10,15 , 20, . . . , he says "bang" instead.
4. At this point the counting direction reverses, beginning in a counter-clockwise manner, so that the person who said " 4 " now says " 6 ," etc.
5 , The game continues in this manner. When a student-
a) utters the wrong number name
b) forgets to say "bang"
c) doesn't say anything'(as when counting reverses direction),
the game starts over with this person saying " 1. "
"Buzz" is played much like Bang but with the following exception:

The student says "buzz" on multiples of 7 and numbers which have names that include the numeral 7 , such as 17,27 , 37,
"Buzz-Bang" is a combination of the above two games. It requires a better knowledge of our number/numeral system and more concentration. The following
diagram indicates the correct moves up to thirty.

"Prime" is played exactly like Buzz except that the student says "prime" instead of the particular name for the prime number.

Prime: a drill in the recognition of prime and composite numbers

GREGORY HOLDAN Indiana Unitersity of Pennsyltania

Driill has atways been of fundamental importance in mathematics for mastering and reinforcing the basic concepts. To discourage the development of unfavorable attitudes towards mathematics, a drill exercise should not become a boring, rote exercise. Instead, drill should be made meaningful for the student so that its con-
tributions become functional in later learning experiences. Whenever drill is disguised in some other not-so-obvious form, such as a game, it tends to be more fruitful.
"Prime," as I have devised it, is basically a disguised drill in the recognition of prime and composite numbers less than 100. The game sheets, rule slips, and rules for
playing "Prime" are very similar to those for "Bingo." As you read the rules for constructing and playing "Prime," you will probably find that the game is quite versatile; it can be readily adapted, in terms of subject matter and the methods used in constructing and playing it, to practically any situation.

Coristruction of the game sheets

On a ditto master, construct a five-inch square; subdivide it into twenty-five oneinch .squares. Above the five columns of squares you have constructed, print, the letters P-R-I-M-E, one letter per column. From this master ditto, duplicate the number of game sheets you will need.

Selech sets of twenty-five numbers between 1 and 99 from a table of random numbers. Place one number in each square on each game sheet. (When I constructed the game sheets, I used a black ditto master and. on the copies, wrote in the numbers with a red fine-tipped felt pen.)

Your game sheets should look something like that shown in Figure 1.

\mathbf{P}	\mathbf{R}	I	M	E
47	13	54	77	38
72	38	16	11	5
28	46	9	76	23
27	62	61	99	41
30	97	54	20	39

Figtri. 1

Constructing the rules

On slips of paper. write or type an appropriate selection of the following statements for each of the letters P-R-I-M-E:
(In items 21 and 22. you may select the number to take the place of the blank.)

1. A prime number
2. The largest prine number
3. The smallest prime number
4. A composite number
5. The largest composite number
6. The smallest composite number
7. A twin prime
8. A composite number between a pair of twin primes
9. A single-digit prime number
10. A two-digit prime number
11. A two-digit composite number
12. A two-digit number if either of its digits is a prime number
13. A two-digit number, the sum of whose digits is a composite number
14. A two-digit number, the sum of whose digits is a prime. number
15. A two-digit numbir with a prime number in the ones place
16. A two-digit number with a composite number in the ones place
17. A two-digit number with a prime number in the tens r^{\prime} ace
18. A two-digit number with a composite number in the tens place
19. A two-digit composite number with both of its digits prime numbers
20. A prime number less than \qquad
21. A prime number greater than
22. An even prime number
23. An odd prime number

Your rule slips should look something like this:

M: a two-digit prime number

Playing the game

Pass out the gance sheets to the students. Spread out the rule slips face down in front of you. Randomly choose a rule and read it aloud to the students. If a student has a number on his game sheet, under the appropriate letter P, R, I, M, or

E, which has the property defined by the rule read, he is to put an X in that square. (If you require that only a pencil can be used for marking the game sheets, and that the X s are to be marked lightly, the game sheets can easily be, erased and reused.)

For checking purposes, have the students write the number of the rule in the lower right-hand corner of the square in which he places an X . For instance, the first rule read would be considered number one; the second rule read would be considered nombet two, and so on. As each rule is read, place it to the side. Keep these rules in the order that they are read!

Make sure that the students understand that "only one square can be crossed out per rule, and that after a square is crossed out, the number in it cannot be considered for any following rules.

Continue selecting rules and reading them aloud to the students until someone has crossed out all the blocks in a single column, row, or diagonal.

Possible winning game sheets might look like one of those pictured in Figure 2. The student signifies that he feels he is a winner by saying aloud the word "Prime."

Figure 2

Checking

Have the winner read aloud the numbers in the row, column, or diagonal, along with the rule that permitted him to cross out each of those numbers. Record these rules and numbers on the chalkboard and then have the class help you to check the validity of the winner's card.

Anyone for a game of "Prime"?
'EDitorial. Commines. To help students discover which whole numbers are prime and which are composite. you may develop a game using the pegboard. Show children that prime fumbers have peg arrays that are single rows or single columns. Composite numbers have other kinds of arrays.

Sine :i.: student:, pegboard and a supply of pegs. Call out a number. The first team (or -student) to determine whether the number is prime or composite using an array cores a $5^{-} \mathrm{7t}$. Play the game to a fixed number of points.

The factor game

Abstract

J. B. HARKIN and D. S. MARTIN

Foth authors are on the faculty of New' York State University College at Brockport. J. B.,Harkin is a professor of mathematics with responsibility for preservice and in-service mathematics programs for elementary school leachers. D. S. Martin is an instructor of mathematics with an interest in computer-assisted instruction in the mathematics curriculum of the elementary school.

IIn a systems approach to teaching, particularly in the individualization of activities, manipulatives and other media hardware play an essential role. An activity package in the delivery system is a sequence of multigroup activities developed for a content unit. A variety of media hardware (a term that embraces everything from a geoboard, a projector, or a video set to a piece of chalk) can be exploited in the activity package. This includes a computer, when it is available to a school.

The "factor game" has appealed to prescrvice and in-service elementary teachers because of the diversity of skills and con-
cepts embodied in the game. It involves the student with concepts of prime and composite as well as applications of the fundamental theorem of arithmetic. These experiences are basic preparation for addition of rationals.
In the framework of an activity package designed to treat algorithms for the addition of rationals, we included the factor game as an individualized computer instruction activity. The following computer print out displays the student and machine dialogue that reveals how the factor game is played as well as the strategies of the game.

WELCOME TO THE GAME OF FACTORING. THE RULES ARE EASY. WE START WITH THE FORLOWING TABLE:

2	3	4	5	6	7
8	9	10	11	12	13
14	15	16	17	18	19
20	21,	22	23	24	25
26,	27	28	29	30	31
32	33	34	35	36	37

THE IDEA IS SIMPLE. WE TAKE TURNS PICKING NUMBERS FRGiM THE BOARD. AFTER ONE OF US PFCKS A NUMBER, THE OTHER MAY THEN CLAIM ALL THE DIVISORS OF THE NUMBER THAT ARE NOT 'ALREADY USED. EACH NUMBER IN THE TABLE MAY BE USED ONLY ONCE, WHETHER IT IS PICKED OR CLAIMED. THE SCORE WILL BE THE SUM OF ALL THE NUMBERS PICKED OR CLAIMED BY A PLAYER. HIGHER SCORE WINS.

IF YOU WANT TO GFF AN UP-TO-DATE CHART AT ANY TIME, JUST PIISH THE RETURN BUTTON.

YOU WILL START THE FIRST GAME AND WE WILL ALTERNATE AFTER THAT. YOU MAY WANT TO RIP OFF THE PAPER CONTAINING THE BOARD, SO THAT YOU CAN X OU'T THE NUMBERS ALREADY USED.
START BY TYPING ANY NUMBER ON THE CHART. REMEMBER, YOU MUST PUSH THE RETURN BUTTON AFTER YOU TYPE.

937
YOUR SCQRE IS NOW
MY CHOICE IS 31 AND MY SCORE IS NOW 31. IT IS NOW YOUR TURN. YOU CAN EITHER CLAIM A DIVISOR OF MY NUMBER (IF THERE IS ONE NOT YET USED). OR YOU MAY PICK A NUMBFR OF YOUR OWN.

IF YOU WANT TO CLAIM. TYPE 1.
IF YOU WANT TO PICK, TYPE THE NUMBER.
IF YOU WANT TO SEE THE CHART, JUST PUSH THE RETURN.

YOUR CHOICE IS
YOUR SCORE IS NOW
?29

IT IS YOUR TURN. TYPE EITHER I (TO CLAIM), A
NUMBER, OR JUST PUSH THE RETURN BUTTON. YOUR CHOICE is

YOUX SCORE IS NOW
l CLAIM THE NUMBER (S)
101
5 7

MY SCORE IS NOW
MY CHOICE IS

IT IS YOUR TURN. TYPE EITHER I (TO CLAIM). A NUMBER. OR JUST PUSH THE RETURN BUTTON. YOUR CHOICE IS
WHAT IS A NUMBER YOU WISH TO CLAIM ?5 I AM SORRY BUT WE HAVE ALREADY USED THAT NUMBER If YOU WANT TO CLAIM ANY OTHER NUMBERS, TYPE ONE OF THEM IN. GTHERWISE. TYPE I. IOUR CHOICE IS il YOUR NEXT CHOICE IS ?! YOUR SCORE IS NOW I20
MY CHOICE IS 33 AND MY SCORE IS NOW 124
IT IS YOUK TURN. TYPE EITHER A I (TO CLÀIM). A NUMBER, OR JUST PUSH THE RETURN BUTTON. YOUR CHOICE IS ? 1
WHAT IS A NUMBER YOU WISH TO CLAIM ?3
YOUR SCORE IS NOW 123
IF YOU WANT TO CLAIM ANY OTHER NUMBERS TYPE ONE OF THEM IN. OTHERWISE. TYPE I. YOUR CHOICE IS ?II YOUR SCORE IS NOW 134
IF YOU WANT TO CLAIM ANY OTHER NUMBERS. TYIPE ONE OF THEM IN. OTHERWISE, TYPE I. YOUR CHOICE IS '7
I AM SORRY BUT WE HAVE ALREADY USED THAT NUMBER.
If YOU WANT TO CLAIM ANY OTHER NUMBERS. TYPE ONE OT THF:M IN. OTHERWISE, TYPE I. YOUR CHOICE IS $\%$

2	x	4	x	6	x
8	9	10	x	12	-13
14	15	16	17	18	x
20	21	22	x	24	x
26	27	28	x	30	x
32	x	34	x	36	x

YOUR NEXT CHOICE IS "9
NO 9 IS NOT A FACTOR OF 33 33, $9=3.66667$
IF YOU WANT TO CLAIM ANY OTHER NUMBERS. TYPE ONE OF
THEM IN. OTHERWISE. TYIPE 1. YOUR CHOICE IS il
YOUR NEXT CHOICE IS ?34
YOUR SCORE IS NOW
168
I CI.AIM THE NUMBER(S)
17
MY SCORE IS NOW
143

Program strategies

The numbers 2 through 37 were chosen (1) to avoid I, (2) to fit into a convenient array (here, six by six), and (3) to give a
nice spread of both primes and composities that are low enough for easy calculation by the student.

The first strategy is to choose (in order) 37, 31, 29, and 23. The choice of 19 next is not optimal as, for example, the choice of 35 will result in a forfeit of 5 and 7 and. the net gain is thus $35-12=23$. which is, greater than 19.

This quantity-choice minus forfeitcan be calculated very easily by the machine. This net gain is a measure of the value of the choice. Without attempting to justify our decision by game theoretic considerations, we will say that a choice is optimal if (1) no other choice has a larger net gain and (2) among all choices with the same net gain, it is the largest in numerical value (for reasons of convenience, the program actually minimizes the nega-
tive of the net gain rather than maximizing the net gain).

If the machine were to choose the optimal choice every time, the benefit to the student would be limited and, perhaps, psychologically destructive. In this program, the machine will pick the optimal choice one-half of the time. The rest of the time, the machine will pick randomly (occasionally picking an optimal choice).

After two losses, the machine will pick the random choice only one-third of the time. Experience has shown that on the first try, most students can play two or three games in thirty minutes. More experienced players will probably encounter the better machine strategy.

Editorial Commfnt. - (1) Adapt the card game Fish for use with prime factorizations. In this ga me, a "run" consists of a card for a whole number and cards for its prime factorization ($12,2,2,3$). When you prepare the playing deck, include cards for the numbers 2 through 24 and a liberal number of cards fcr the prime factors 2,3 , and 5 . Include a few cards for the prime factors 7 and 11 . See the description of Fish in Hunt's article in chapter 9.
(2) You can develop dice games to work the "multiple of" and "factor of" relationships. Start with two blank cubes of different colors. On one cube write the numerals $2,3,4,5,6$, and 7 . On the other cube write the numerals $10,12,14,16,18$, and 20. Players roll the two cubes. Points are scored if the number named on one cube is "a multiple of" or "a factor of" the number named on the other cube.

No Score
14 is not a multiple of 4 4 is not a foctor of 14

Score
12 is a mattiple of 4
4 is a factor of 12

Five "nontrivial" number

 gamesTERREL TROTTER, JR.
Formerly a teacher of high school mathemalics at the Norwidh High Schofit in Norwich, Kansas, Terrel Trotler is a partic, ant in the 1.971-72 Academic Year Institute for mathemalic.s teachers at the University of Illinoms.

Number games can proviué clementary students with a good opportunity to test their observation skills for problem solving, and at the same time they will be practicing such drill skills as adding and subtracting. Here are five trivial number games guaranteed to provide hours of fascination and lots of pidden drill. The word trivial is used here with two mcanings in mind. The games are trivial in the usual mathematical sense-namely, once the secret is known to both players, the game's winner is predetermined, based on the starting number and who begins play. The games are nontrivial from the point of view that they are valuable teaching aids for motivating student thinking.

The rules for the games will be presented first, followed by discussions of the respective winning strategies. You are encouraged to try the games before reading the solutions section. This wav voll may have the pleasure of discovering the secrets for yourself before challenging your students to attempt the same.

Rules

Game 1. The first player selects any integer from 1 to 10 . Then the two players alternately add any integer from 1 to 10 to the sum left by the opponent. Play continues until one player can make an addition giving a grand total of 100 . That player is thereby declared the winner.

Game 2. The rules are the same as those for game 1 , except inat now the winner is the player who forces his oppon-
ent to make the total 100 or more.
Game 3. The name of this game is "Aliquot." It was devised by David L. Silverman and appeared in the problem section of the Journal of Recreational Mathematics. Here is Mr. Silverman's own description from that journal (1970[a]):

Two players start with a positive integer and alternately subtract any aliquot part (factor) with the exception of the number itself from the number left by the opponent. Winner is the last player able to perform such a subtraction.

By way of example, if the original number is 12 , first player may subtract either $1,2,3,4$, or 6 (but not 12). If he subtracts 2 , leaving 10 , second player may subtract 1,2 , or 5 .

The objective is to leave your opponent without a move. This can only be done by leaving him a I, since I is the only positive integer with no aliquot part other than itself.

Game 4. This game, called "Proper Aliquot." ¿̈̀ās also devised by Mr. Siluerman. In the same issue of the Journal of Rerreational Mathematics, he gives the rules thus:
Tire rules are the same as those of Aliquot with the exception that only proper divisors may be subtracted. Consider 1 an improper divisor.

Game 5. The first player selects any reasonable large number. Then the two players alternately subtract any number they choose from the number left by the opponent, provided the chosen number mests one regu:irement: the number suhtracted must not exceed twice the value of the number subtracted by the opponent on the previous piay. For example, if player A subtracts 4 , then player B can
select any integer from 1 to 8 . The game is won when one player can "take it all," that is, leave 0 .

Solutions

Game 1. After playing this game a time or two, most students realize that whoever makes the total 89 can force the win. A player does this by adding the difference between 11 and whatever his opponent adds next. That is, if A adds 3 to 89 , B adds $11-3$, or 8 , making 100 and winning.

Similar reasoning leads to the conclusion that 78 is the next desirable total to obtain, since $78=89-11$. A continuation of the same reasoning yields the winning sequence $67,56,45,34,23,12$, and 1 . (An easy way to remember these numbers is to recognize that the tens digit is one less than the units digit.) Therefore, by starting with 1 , the first player can force the win, regardless of what the other player does. At that point the game becomes trivial. (Of course, if a player doesn't know the secret, his opponent can conceal it from him longer by simply "entering" the sequence at some later point.)

Game 2. Inasmuch as 99 is the largest total a playe: can make without leaving or exceeding 100 , it and the sequence derived by subtracting 11 s are the secret totals. (Naturally, they are the nultiples of 11.) Therefore, by allowing his opponent to select the first number, a player can once again force the win.

Game 3. The proper way to analyze this game is also to begin at the end. Only now the end is the integer 1. First, examine all the possible subtractions for some integers near the end of the game, say 2 through 10:

2	3	4	4	5	6	6	6
-1	$-\frac{1}{2}$	-2	-1	-1	-3	-2	-1
-1	2	3	4	4	5		
8	8	8	9	9	10	10	10
-4	-2	$-\frac{1}{7}$	$-\frac{3}{6}$	-1	$-\frac{5}{5}$	$-\frac{2}{8}$	$-\frac{1}{9}$

If a winning number is defined to be one from which a player can force a win, even with the best play from his opponent, a loser will be a number from which a player can only leave a winning number to the opponent, no matter what factor is subtracted. Thus, 2 is a winner-the ultimate winner, of course, since it leads directly to the game's objective. On the other hand, 3 is a loser because it leaves 2 to the opponent. Though 4 has two possible subtractions, it still can be classified as a winner because the best play (the factor 1) leaves a loser.

Further investigation along this line yields the conclusion that all even numbers are winners and all odd numbers are losers. This suggests a simple rule for winning: If player A faces an even number, he subtracts one of its odd factors so that he leaves an odd number for his opponent to play from. The logic behind this is that the only factors of an odd number are also odd, and odd - odd $=$ even. Therefore, the opponent must return some other even number, and the cycle is established. Eventually he must leave the 2, and then player A wins.

Game 4. The exclusion of 1 from the set of factors makes some interesting changes in the strategy. Now all the primes are the objectives of the game and therefore are immediate losers. Testing the other numbers as was done for game 3 leads to the conclusion that all odds are still losers, but not all evens are winners. For example, 8 is the first even loser-after 2 , that is, which is also prime. Identification of the losing even numbers becomes less difficult when the next even loser (32) is found. Factoring these three even losers yields $2^{1}, 2^{3}$, and 2^{5}. These are odd powers of 2 , that is, 2^{n} where n is odd.

In summary then, the winning procedure is to subtract such factors that leave either an odd number or an odd power of 2.

Game 5. The secret behind this garne is a great deal more sophisticated and elusive than the secrets behind the other four. It
relies on some high-powered concepts from higher mathematics. But, the secret is relatively easy to learn and use.

A preliminary observation about the game should be noted. Á player should never subtract a value that is one-third or more of the number. If he does. the opponent can always take all the remainder. For example, if a player faced 17 and - subtracted 6, leaving 11, his opponent could "take it all" because the opponent can go as high as 12.

The Fibonacci numbers are an essential part of the secret. Simply stated, the Fibonacci numbers are integers from the sequence $1,2,3,5,8,13,21, \ldots$, where succeeding members are found by adding the two preceding members A theorem from number theory, the Zeckendorf theorem, says, in effect, that all non-Fibonacci numbers can be represented uniquely as the sum of two or more nonconsecutive Fibonacci numbers. (For a proof of this theorem, see Hoggatt (1969, p 74].) Here are a few examples to illustrate thes concept:

$$
\begin{aligned}
& \text { a) } 17=13+3+1 \\
& \text { b) } 29=21+8 \\
& \text { c) } 40=33+5+2 .
\end{aligned}
$$

It turns out that when playing from a non-Fibonacci number, a player can force the win by subtracting the smallest Fibonacci number appearing in the representation. This succeeds as a result of the easily proven fact that for any iwn monconsectutive Fibonacci numbers, the smaller one is always less than one-half the larger. The significance of this is that it always allows the player to give his opponent a Fibonacci number at some future stage of the game. From there. the opponent must then return a non-Fibonacci number to the player. It will have a new representation with a smallest Fibonacci addend. and the cycle is repeated.

An illustration will serve to clear up the preceding discussion. Playing from 17, which cquals $13+3+1$. player A will
take the 1. Now B can only subtract 1 or 2. neither of which will take all the 3 in the representation. Whatever B subtracts, A will then take whatever is left of the 3 . This presents B with the Fibonacci number 13. The greatest possible number B can now subtract is 4 , depending on how the two previous subtractions were made. In any case, A will have a new non-Fibonacci number to play from, and he can return to the winning procedure described above.

As mentioned in the beginning, these games are indeed trivial from a pure, mathematical standpoint. Obviously, if both players know the secret, there would be no point in playing a game. The first to play would hand the other a losing number, and for all practical purposes the game would be over right away. If only one player knew a gane's secret, he could always win too, much to the consternation of his patsy. But, if both players are unaware of the eecrets, the games provide a lot of practice in basic skills. The importance is that the drill is only a means to an end, not an end to itself.

In order to enjoy mathematics, students need to experience some success along the way. These games often allow the poorer student to achieve some wins over the better student, especially at first, before the trategies are either discovered by the students themselves (it is hoped) or reveaied to them. The more talented student should be encouraged to seek the strategies as exercises in true problem solving. It is recommended that the secrets not be revealed too soon, if hat all. Telling the secrets of the games destroys the fun and denies an individual the satisfaction of finding them for himself. Either way, the games are far from trivial as learning experiences.

References

Hoggatl. Verner F , Jr. Fihonacci and Lucas Numbers. Bovion: Houghton Miflin Co, 1965. Solverman, David I.. (a) "Prohlems and Conjeclures" Journal of Recreational Mathematuces 2 (Oclober 1970): 227.
-- (h). Your More, New Yorh: McGrawHill Book Co.. 1971.

Magic squares:

extensions into mathematics

DAIYO SAWADA
An assistant professor in the Department of Elementary Education at the University of Alberta in Edmonton, Daiyo Sawada's main responsibility
- is the preparation of teachers for the teaching of mathematics.

Many a potentially dull practice session on addition and subtraction has been transformed into a lively encounter with mathematics through the introduction of magic squares. Figure i shows three of the more familiar ways in which magic squares are used. Normally work with magic squares in the elementary school does not go beyond the types of examples shown there. Further explôration of magic squares is usually limited to finding simple procedures for constructing 3×3 squares, 4×4 squares, and $n \times n$ squares where n is odd. The procedures are frequently presented in a rather rote fashion since the emphasis is on practice for addition, not on the properties of magic squares per se.

As an introduction to more novel ways of using magic squares, consider the sequence of activity cards shown in figures 2 , 3, and 4. After reading the cards in order. the reader can probably sense the direction of the activities. When students have completed the three activities, the discussion that follows might consider other ways of adding magic squares, including ways that the students themselves suggest. Different ways of adding magic squares could be compared and, indeed, a fourth activity card could investigate the closure property of the operation of-addition with magic squares. Subsequent cards could ask about the associative and commutative properties of addition with magic squares, the identity
magic square for addition, and the existence of additive inverses.

Any consideration of these properties with operations with magic squares assumes that the students have had prior experience with the system of whole numbers. Some students may think of comparing magic squares with integers as a system. The emphasis would not be on proof but rather on the use of basic propertie:, to characterize some new mathematical entities. In short, the students would be participating in the construction and exploration of mathematical systems-experiences that they seldom get in the usual elementary mathematics program. Furthermore, the strategy of asking questions concerning closure, associativity, commutativity, existence of inverses, and so on whenever interesting and new ideas are encountered is a highly mathematical behavior. A spirit of inquiry can be encouraged in students without insisting on formalization.

All of the suggestions so far have been rather general. The rest of this article focuses on details that teachers should find helpful if they are interested in exploring the idea of magic squares as a system.

Magic squares as a mathematical system

For teachers who believe that it is worthwhile to provide some informal experiences with mathematical systems for

Testing Magic Squares
Magic squares have row, column, and diagonal sums that are all equal. Test to see if the array below is a magic square.

4	3	8
9	5	1
2	7	6
1	1	\square
	\square	

Completing Magic Squares

Complete the following magic square.

12	89	
	45	
		78

Constructing Magic Squares

Construct a magic square that has a sum of 27.

Fig. 1

Card 1
Complete the following magic squares Write the row, column, and diagonal sums in the circles.

Fig. 2

$$
\begin{gathered}
4 \\
\vdots \\
4
\end{gathered}
$$

Card 2

Using the squares on card 1 , multiply each number in each of the nine cells by 2. Do you still have a magic square? Use the squares below to carry out your work.

Fig. 3

Card 3

Suppose we wanted to add the squares given on card 1. One way of adding is started below. Can you finish the adding?

Fig. 4
their students, it is useful to know what kinds of mathematical systems can be easily constructed using magic squares as the elements and addition as the operation. As the reader has probably already guessed, the set of 3×3 magic squares can be used to form a group. That is, if we let M designate the set of 3×3 magic squares with integer entries in the cells and let \oplus designate magic square addition as suggested on card 3 (see fig. 4), then for any magic squares $X, Y, Z \in M$ the properties shown in figure 5 hold. (Students can test these
properties on some magic squares.) These four properties (closure, associativity, identity, inverse) are the axioms of a group. In
(1) Closure. $X \oplus Y$ is a magic square.
(II) Assoctatuthy. $(X \oplus Y) \oplus Z=X \oplus(Y \oplus Z)$
(iii) Identity. The identity square is

0	0	0
0	0	0
0	0	0

(iv) Incerse. The inverse of a given magic square is generated by multiplying each cell entry by -1 .

Fig. 5
other words, the set M for the operation of addition \oplus is a group. Since it is also true that $X \oplus Y=Y \oplus X$ that is, the property of commutativity holds - ihe set M for the operation of addition is a commutative group.

As indicated earlier, it would not be a good idea to expect all students to construct proofs of these propertics of addition of 3×3 magic squares. The proofs, however, are relatively simple, if you begin with the assumption that the properties hold for integers, and they are rather typical of elementary proofs involved in number systems-like proving that addition of rational numbers is commutative. for example. Interested students may find it very worthwhile to engage in some "proving" experiences.

The proof for $X \oplus Y=Y \oplus X$. namely, that the operation of addition for 3×3 magic squares is commutative. is shown in figure 6. The other proofs are similar. (For
readers who have had experiences with matrices, it is probably evident that the proofs correspond quite closely to proofs related to the properties of matrix addition.)

Perhaps the property that is most interesting is the property of closure. Many students have some difficulty grasping what is meant by closure as related to the set of natural numbers under addition or multiplication. To them it is too obvious that "when you add two natural numbers you get another natural number"-why prove what is so obviously truc? When students are confronted with the analogous problem with magic squares, however, it is not so obvious that adding two magic squares will produce another magic square. Hence the property of closure begins to take on meaning; it begins to make a difference. Indeed many students will want to test it out on several magic squares before accepting the hypothesis that magic square addition is closed.

To be proved: $x \oplus r=Y \oplus 1$
Proof:

Let $X=$

where a.b. c. rare integers

As suggested on activity card 2 , a multiplication operation can also be defined. For example,
\(2 \begin{array}{r}\left.\begin{array}{lll}6 \& 1 \& 8

7 \& 5 \& 3

2 \& 9 \& 4\end{array}\right]=\)| 2×6 | 2×1 | 2×8 |
| :---: | :---: | :---: |
| 2×7 | 2×5 | 2×3 |
| 2×2 | 2×9 | 2×4 |
| 1 | | |

$=$| 12 | 2 | 16 |
| :---: | :---: | :---: |
| 14 | 10 | 6 |
| 4 | 18 | 8 |,\end{array}

where the multiplication of the number 2 and the magic square is indicated merely by writing them adjacent to each other. With this new operation we can get an additional property, $a(X \oplus Y)=a X \oplus a Y$, where a is an inteser. For example, ${ }_{2}$ *

It is easy to show that the property holds for this example, and other examples can be tried. Some students may even try a proof. Students may also recognize this as an example of the distributive property.

"1089 Overture"

As a closing example, consider an enrichment activity based on the interesting number pattern in figure 7. As a catalyst for discussion, column (b) is generated after the products are written in column (a). The teacher could say, "Let's pretend we have a mirror beside our column of products. What would the mirror images look like?" The images would then be written as shown in column (b). Students could then be encouraged to look for interesting relationships like the following:

1. Column (b) is column (a) written "upside down."
2. In column (a)-

- the units digits run from 1 through 9. Similar patterns hold for the tens, hundreds, and thousands columns.
- $1089 \rightarrow 10+89=99$
$2178 \rightarrow 21+78=99$
and so on.
- $1089 \rightarrow 1+0+8+9=18$
$2178 \rightarrow 2+1+7+8=18$
and so on.

3. Patterns observed for column (a) could be tested for column (b). Other relationships may be di -overed. But what has this to do with magic squares?

19			1089	9801
2			2178	8712
3			3267	7623
4			4356	6534
5	$\times 1089$	=	5445	5445
6			6534	4356
7			7623	3267
8			8712	2178
9			9801	1089

(a)
(b)

Fig. 7
Two squares are shown in figure 8. Square A is the standard 3×3 magic square. Square B can be generated from the numbers in column (a) of figure 7 by looking at the thousands digit and matching it with the numbers in square A. (Is square B a magic square? Students could find out by adding.)

8712	1089	6534
3267	5445	7623
4356	9801	2178

Fig. 8
At some point, however, it should be noted that the solution to the open sentence in figure 9 is relevant. That is, what is the result if square \mathbf{A} is multiplied by

Fig. 9

1089? If the students have already convinced themselves that multiplication of a 3×3 magic square by a whole number or integer is a closed operation, then the answer to this question must be yes, without calculating. Or the students can confirm the result by actual calculation.

Several other questions could be asked about square B:

1. Considering only the units digits in each cell, do you get a magic square?
2. Similarly, do you get a magic square if you consider just the tens digits? the hundreds digits? the thousands digits?
3. Knowing that the row sum of square A is 15 , can you figure out the row sum of square B wihout adding? (Hint: Use multiplication.)

Summary

It is hoped that enough detail has been given so that many teachers will be able to use magic squares in new ways. Activities such as those described can lead to some profound mathematics (groups. modules, theory of multiples) at the same time they provide needed computational practice with whole numbers and integers. Or if students are working with fractions. magic squares could be multiplied by fractions. The latter could lead to the explori-
tion of the well known structure of a vector space.

Although modules, vector spaces, multiples, and groups are important mathmatical concepts in and of themselves, the purpose in writing this article was not to implore teachers of upper elementary grades. or even junior high, to teach such concepts. Rather, the purpose was to suggest the strategy of taking interesting ideas. such as magic squares, and extending them in ways that lead to the discovery of other mathematical.structures, all the while providing interesting-practice of fundamentals as originally intended. It is this process of extension that is important, not the particular outcome. Such extensions require the asking of the right questions. As students discover what sort of questions lead to interesting payoffs, they will be well on the road to converting interesting practice into interesting mathematics.

References

Heath, R. V. Mathemaric. New York: Dover Publications. Inc., 1933.
Keedy, M. L.. A Modern Introduction to Basic Mathematics. Reading. Mass. Addison-Wesley. 1963.

Editorial Commfar. In the Marih 1974 issue of the Arithmetic Teacher. Anne Mae Cox suggests using magic spider webs in "Magic While They Are Young."

1. Place pairs of numbers at three locations in the outer ring.
2. Write the sum of these numbers in the adjacent triangle.
3. In the remaining triangles. write the sum of the numbers in the two adjacent triangles.
4. Now tind the sums of the numbers in opposite triangles. Surprise!

"Inte1. . t getters"

KARL G. ZAHN \therefore P. Roseman Campus Elementary School

Wisconsin State University, Whitew'ater, Wisconsin

IIt is generally recognized that it is important for a teacher to maintain -pupil interest in arithmetic. The use of a variety of learning activities is ant excetlent-technique for retaining pupil interest. One technique is to use one class period per week for presenting "interest getters." Friday is usually a good day to present these, for the teacher can review the past week's activities and then present some stimulating items to create and maintain pupil interest.

Continued interest in arithmetic is also maintained by patient, sympathetic guidance given to the student by the teacher.

The following are examples of some activities that I have had success in using with elementary and junior high school students:

> Example 1
> $1 \times 1=1$
> $11 \times 11=121$
> $111 \times 111=12,321$
> $1,111 \times 1,111=?$
> $11,111 \times 11,111=?$
> $111,111 \times 111,111=?$
> $1,111,111 \times 1,111,111=?$
> $11,111,111 \times 11,111,111=?$
> $111,111,111 \times 111,111,111=?$

Example 2

$12345679 \times 9=111,111,111$

Example 3
$9^{2}=?$
$99^{\circ}=?$
$999^{2}=?$
$9,999^{=}=?$
ExampLE 4

One purpose for using Examples 1, 2, 3. and 4 is to develop interest in arithmetic for the student. Another purpose might be to practice computational skills. Third, but not least, it is hoped that these exercises will help students develop insight and see relationships in numbers̄. In each exercisc, I would ask students to work out a few of the problems and then make some "educated guesses" concerning the pattern that is evolving.

Dividing 10 by 81 has an interesting result. Ask your students to do this and carry it out for three or four places. Then ask them if they can predict what the cighth, ninth, and tenth digits will be.

Students always enjoy stories that are humorous or challenging. Here are two favorites that I have told to children (and adults) for a numuer of years:

Pat and Mike

Pat and Mike went into the coal business. Pat said, "Seven tons of coal at $\$ 16$
per ton is $\$ 49$." Mike said, "I had better multiply that and check to see if you are correct.:

7 times 6 is 42	16
Put down the 42.	7
7 times 1 is 7 .	42
Put it under the 4?	± 7
Add.	49
Kesult is 49.	

Pat said, "I had better check your mul"uplying by dividing 7 into 49 and see if we'get 16. Seven doesn't go into 4-but it goes into 9 once.

1 times 7 is 7.
Subtract 7 from 9 and bring down the 4.
7 divides into 42 six imes.
$7 \begin{array}{r}16 \\ 749 \\ 7 \\ \hline 42\end{array}$
I's correct' ,
Mike said, "Let's check one more time by adding."

$$
\begin{aligned}
6-6=12 \div 6 & =18: 6=24 \cdot 6 \\
& =30 \cdot 6=36+6=42
\end{aligned}
$$

(then coming down the I's at the top) $43,44,45,46,47,48,49$.

16
16
16
16
16
16
16
49

It checks' (Now try the with 7 and 13.)

The Arab and His 7hree Sons

There is a story related about an Arab who died. leaving 17 horses to be divided among his three sons. According to the Arab's will, the oldest son was to receive one-half the horses, the second son was to receive one-third, and the youngest son's share was to be one-ninth. The sons could not agree upon the division of the horses and quarreled violently. Their dispute w : overheard one day by an ancient wise man who was riding by on an old gray mare. The wise man considered the problem at length and at last presented
his old mare to the sons, thereby giving them 18 horses to divide. The sons joyfully made the division; the eldest son took one-half of 18 or 9 horses, the second son one-third of 18 or 6 horses, and the third son one-ninth of 18 or 2 horses for a total of 17 horses. So the wise man mounted the remaining horse and rode away, leaving the sons happy and contented.

An interesting game that can be played in any classroom is Nim. I have usually introduced this game by putting marks on the chalkboard.

Row 1	1
Row 2	111
Row 3	11111
Kow 4	1111111

Any number of marks or rows may be used; however, I have always used the $1,3,5,7$ combination with children at the beginning for the sake of simplicity. Two players take turns in making their moves. Each player, during his turn, may cross off all or only some of the marks from any one row, but he must cross off at least one mark. The play continues until the player who succeeds in crossing off the last mark wins the game.

To illustrate, let us follow the moves in a game:

Step 1.

Row 1	1	
Row 2	111	crosses out all of
Row 3	11111	Row 4.
Row 4	+t+t+t	

Step 2
1
111
$111+t$

Player No. 2 crosses off 2 in Row 3.

Step 3
Playe No. 1 erosses off 1 in Row 1.

Step 4
Player No. 2 crosses off 2 in Row 3.

Step 5
$1 \ddagger \quad$ Player No. 1 crosses
1

Now player No. 2 can only cross off 1, so No. 1 is the winner.

This game can also be played with matches, pebbles, or toothpičks. It is. a good "rainy day" game children can play at-their desks or at the chalkboard.

Nim is frequently used as a gambling
game, but a player who knows the secret can almost always win. After some experience, chiidren can usually tell what the game-ending winning distributions should be. Can you' If someone becomes suspricious of your winning frequently, change the game so that the last mark crossed out is the loser rather than the winner.

Eintorial. Comment. - Here are some other curiositues to consider:
A "number pyramid." Place l's at each end. Find the numbers in the pyramid blocks by taking the sum of the two numbers in the blocks above.

Do you recognize this as Pascal's triangle?
Predictable answers!

$1 \times 8+1$	$=9$	$0 \times 9+1$	$=1$
$12 \times 8+2$	$=98$	$1 \times 9+2$	$=11$
$123 \times 8+3$	$=987$	$12 \times 9+3$	$=111$
$1234 \times 8+4$	$=9876$	$123 \times 9+4$	$=1111$
$12345 \times 8+5$	$=98765$	$1234 \times 9+5$	$=11111$
$123456 \times 8+6$	$=?$	$12345 \times 9+6$	$=?$

Just for fun

J. D. C A L W E L L Public Schools, Windsor, Ontario

Some of our readers might like to try the following diversion with their classes. As many times as 1 have seen it used, it never fails to stimulate pupil interest and further exploration. We might also note that this particular lesson is a good example of the inductive-deductive approach.

The teacher asks a pupil to give the last five digits of his telephone number. These are recorded on the chalkboard. Let us suppose the recorded number is 34,487 . The teacher suggests that they will add four more 5 -digit numbers to this one, and he is prepared to predict the answer. He says the sum will be 234,485 and places this in the appropriate position. He then asks a pupil to supply the second 5 -digit number, which is recorded. The teacher supplies the third number (if he wants it to work), a pupil supplies the fourth number, and the teacher the fifth. At this point the addition is carried out orally, and the predicted answer is seen to be correct.

Successive examples are done. As the teacher writes down his prediction and the
numbers which he is supplying, he says them aloud and encourages the children to say them with him, as soon as they have discovered how it is done. You will be surprised at how quickly some of the children can join the chorus and how pleased they will be with their own perception. The examples can go on until at least half the class has seen through the "trick," at which time a pupil might be asked to explain the procedure to everyone.

Follow-up on "Why does this work?" produces much worthwhile thought.

Examples

A few examples of the chalkboard work are given below, and you are left to figure out the trick for yourself. The numbers are given in the following order (but remember that the prediction is the second step):

Starting number

Number supplied by pupil
Number supplied by teacher
Number supplied by pupil
Number supplied by teacher Prediction

34,487	99,896	66,831	48,320
26,356	18,723	73,491	61,133
73,643	81,276	26,508	38,866
48,915	43,711	91,735	29,114
51,084	56,288	8,264*	70,885
234,485	299,894	$\overline{266,829}$	248,318

[^5]
Geometry and Measurement

Innemes in geometry and related meare in elementary school mathematics program during the past several years. On the one hand, geometric concepts are seen as important in helping the child give structure to his environment. On the other hand, there is a movement in the United States to adopt the metric system of measurement. Both forces have combined to make us more aware of the need for sound instruction in geometrical ideas in the elementary school years.
One measurement concept that is taught early in the mathematics program is telling time. Some children come to school already possessing this skill. In the first article, by Porlier, we find not only a game that helps children fearn this skill but also a technique for maintaining the interest of chaldren who already know how to tell time.
The second article, by Trueblood and Szabo, gives hints on games to use for introducing the metric system. The checklist they provide for helping teachers develop games is espectally good, and it can also be applied to many other games.

The next parr of articles is selated to the concept of area measurement. In additon to relationships develoned in Berman's "Geo-Gin," we find the germ of an idea for many different card games. Games such as Old Maid, f ish, and rummy can be converted into acivities for review and practice with geometric terms and symbols. The tangram square puzzie has already become familiar to many teachers. The puzzle preces take the form of many of the basic geometric shapes included in the elementary curriculum Dickoffs presentaton uses many intutive geometric constructions to create the eeven pieces through paper folding. The paper-folding artivity reminds us that the oriental art of origami is also a very appealing activity for children.
Grogan's article, "A Game with Shapes," and the artici on mirrer cards, by Walter, describe games designed to help students see the relatonships involved in the geometric transformations known as refiections, rotations, and translations. Both games are easy and excitung for children to play; both are loaded with significant geometric ideas.

Popsicle sticks and tongue depressors have found many uses in the mathematics program. They make excellent counters and bundle easily into groups of ten for work on place-value concepts. The children in Lund's ciass probably have found the way to have the most fun with Popsicle sticks-making polygons out of them! And in addation to the fun of making them, they fly, too! This sounds like a good outdoor activity.

Reminiscent of the tangram actikity is Hall's "Pythagorean Puzzle." The puzzle activity confirms the basic formulation of the Pythagorean theorem and is also used to explore the relationship bet ween a reas of various figurestriangles, squares, and parallelograms.
The last games in this section provide a means to develop and practice skills associated with graphing with Cartesian coordinates. Timmon's tic-tactoe game is a very good example of using a game to develop a significant mathematical idea. One might even expect some students to perceive the numerical relationships existing between coordinates of points falling along a line. The article by Overholser shows how to incorporate area concepts into work with coordinates. On the lighter side, and especially suitable for the earlier elementary grades, are Deatsman's "Holiday Plot Dots" and Bell's "Cartesian Coordinates and Battleship," a game that most children (and adults) attack with fervor.

Don't miss the train

CORINNA PORLIER
Goldie King School, East Gary, Indiana

I$\mathbf{I}_{\mathrm{n} \text { our }}$ fast-moving society of schedules, everyone finds a need for telling time, but whose responsibility is it to teach this ecritical topic? Is it the teacher's? Is it the parent's? Or, is the child left to learn on his own?

Evidently, the textbook authors feel that the child already knows how to read a clock before coming to school. A check of several arithmetic textbooks will show that an average of only two to four pages per grade level (for the first, second. and third grades) are devoted to reading clocks. There is usually no space at all given to telling time after the third grade.

Many parents do teach their children to tell time at a very young age and sometimes reward them with a watch or clock of their very own when the children can successfully read them. But what about the child who is left to learn on his own? He may struggle through for a few years telling timie by the locations of the "big hand" and the "little hand," or he may
just avoid having to deal with exact times.
In the first grade, where the textboor deals only with the hour and half-hour, the child who already knows that is bored. On the other hand, the child who does not know this much is not given enough classroom time or experiences to learn to read these times on the clock. The same thing happens in the second and third grades. By the time a child is in the fifth or sixth grade, he may be thoroughly confused and too embarrassed to ask for help from the teacher or his parents.

This problem has bothered me for many years. After much thought, I have come up with a solution.
I have developed a game that not only provides a fun way to teach time to children, but also holds the interest of children who already know how to tell time.

In playing this game, the older child can learn more about telling time without having to be classified by his classmates as a dummy.

Bonus cards (20)

Time cards (20)

Players' clocks $\left(\begin{array}{cc}1 \text { red } & 1 \text { green } \\ 1 \text { blue } & \text { I yeliow }\end{array}\right)$

Dice

EXAMPLE GAME BOARD

Don't Miss The Irain

(Rules for playing the clock game.)
How the game is played:
The game is played by 2,3 , or 4 players. Each player moves his marker around the railroad track according to the throw of the dice. A player may advance his clock when he lands on a space that tells him to do so or when he draws a bonus card. There are a few occasions when a player must set his clock back.

The master člock on the playing board is set at the time the train is to leave. The train's departure time is determined by the time card. The player whose clock first shows the departure time of the train is the one who "catches the train" and is the winner. All other players miss the train.

The object of the game: Don't miss the train.

Equipment:

1 playing board
4 clocks of different colors
4 colored space markers to match the clocks
2 dice
1 pack of bonUs cards (20)
1 pack of time cards (20)
1 set of directions
Playing board. The playing board shows a station with four spur lines, a circular track that is marked off as a master clock, and spaces at the bottom of the board for the bonus and time cards. The master clock has its own set of movable hands. In some of the spaces between the railfoad ties, there are special instructions for players; other spaces are blank.

Clocks. There are four clocks, one yellow, one blue, one green, and one red. Each player has his own clock on which he keeps his time as he advances. These clocks have special faces and hands that make telling time easier for the players.

Space markers. There are four colored
space markers that match the colors of the players' clocks. The markers are used to pace off the spaces on the round track.
bonus cards. The bonus cards give plavers extra chances to advance their clocks. A player must land on a space marked bonus in order to draw a card from the top of the bonus pile. Bonuses range from five minutes to one hour.
time cards. The time cards state the time that the train leaves and the present, or starting, time. The top card of the stack of tIME cards is turned up at the beginning of the game; only one time card is used in each game. The first player sets the master clock with the time shown on the tIME card that he turns up, and each player sets his own clock at the present time shown on the card.

Playing the game:

1. The players throw th: dice to see who starts first. The player with the largest total plays first, and play thereafter passes to the left.
2. At the beginning of the game, the markers are placed on the spur tracks in, the station. The cards are shuffled and placed in their proper places. The first player turns up the top tIME card and sets the master clock at the time indicated on the time card. Each player sets his own clock at the "time now" indicated on the time card. When the game begins, the clocks of all of the players are set at the same time.
3. The beginning player must roll either a one or a six on at least one of the dice in order to bring his marker out of the station. If he does so, he places his marker on the space marked start. He then totals his throw of the dice and advances his marker clockwise around the tracks for that many spaces. If he lands on a space that has special instructions, he follows the directions that are given. If a player does not throw a one or a six on his first throw, he has to remain in the station and the
play moves to the player on his left.
4. If a player throws doubles, he gets another turn. If he throws doubles a second time, he gets an added turn. If he throws doubles a third time, he does not take the count, and his turn of play is ended.
5. A player is entitled to only the top bonus card when his marker lands on a space marked bonus. After he reads the bonus card and advances his clock as directed, the player places the card face down on the bottom of the bonus stack.
6. If a player's marker lands on a space where there is already a marker, the first marker must be moved back to start. The penalized player does not have to move
his clock back, only his marker is moved back.
7. A player advances his clock fifteen minutes every time his marker moves around the entire circle and passes the space with the star.
8. When a player is sent back to start, he does not get the additional advancement , of 15 minutes on his clock. The advancement is given only when a player has completed the circle.
9. When a player's clock reaches or passes the time shown on the master clock, that player wins the game-he has caught the train. All others have missed the train.

Enitorial. Comsrnt.-- To provide practice in reading a clock, try CLOCK bingo. Two versions are suitable. In one version, the CLOCK card contains the names of times. The caller shows a large clockface. Players read the time from the clock and find the notation on the card.

In the second version; the TIME card contains pictures of clockfaces set to specific times. The caller names a time The players look for a clockface showing that time.

With some groups it is wise to use cards with fewer cells perhaps a 3×3 arrangement. This makes the game go faster.

Procedures for designing your own metric games for pupil involvement

CECILR.TRUEBLOOD and MICHAELSZABO
Currently an associate professor in mathematics education at Pennsylvania State University, Cecil Trueblood is particularly interested in the teaching of mathematics in the elementary school. Michael Szabo, also ar Pennsylvania State, is an associate professor of science education. His educational interests center on instruc tional development, individualized instruction, and complex problem-solving.

Although much has been written on the values of mathematical games in the elementary grades and many game books have been published, little has been written that would help classroom teachers design, produce, and evaluate games for use in their classroom. The focus of this article is to present a set of seven criteria that were developed in a summer workshop for inservice elementary teachers who decided that they wanted to be able to produce metric games and related activities that would fit into their "metrication" program.

The teachers in the workshop began by asking a practical question: Why should I be interested in producing my own metric games? They concluded that the game format provided them with specific activities for pupils who did not respond to the more typical patterns of instruction. They felt that in the game format they could provide activities of a higher cognitive level for pupils who had difficulty responding to material requiring advanced reading skills.

The teachers then asked a second question: Does the literature on the use of mathenatics games contain any evidence that would encourage busy classroom teachers to use planning time to develop
their own games? The available professional opinion supported the following conclusions:

1. Games can be used with modest success with verbally unskilled and emotionally disturbed students, and students for whom English is a second language.
2. Games have helped some teachers deal with students who present discipline problems because they are bored with the regular classroom routine.
3. Games seem to fit well into classrooms where the laboratory or learningcenter approach is used. This seems related to the feature that games can be operated independent of direct teacher control thus freeing the teacher to observe and provide individual pupils with assistance on the same or related content.

Plan for development

If for any of the reasons just cited you are interested in designing and evaluating several of your own metric games, how should you begin? Simply use the following checklist as a step-by-step guide to help you generate the materials needed to create your game. Use the exemplar that follows the checklist as a source for more detailed
suggestions. Each item in the checklist has been keyed to the exemplar to facilitate cross referencing.

CHECKLIST GUIDE

\qquad Write down what you want your students to learn from playing your game. (Establish specific outcomes) Develop the materials required to play the game. (Make simple materials)
Develop the rules and procedures needed to tell each player how to participate in the game. (Write simple rules and procedures)
Decide how you want students to obtain knowledge of rcsults. (Provide immediate feedback)
Create some way for chance to enter into the playing of the game. (Build in some suspense)
Pick out the features that can be easily changed to vary the focus or rules of the game. (Create the materials to allow variation)
Find out what the students think of the game and decide whether they learned what you intended them to learn. (Evaluate the game)

The exemplar

Establish specific outcomes

By carefully choosing objectives that involve both mathematics and science pro-cesses-such as observing, measuring, and classifying-the teachers created a game that involves players in the integrated activities. This approach reinforces the philosophy that science and mathematics can be taught together when the activities are mutually beneficial. That is, in many instances integrated activities can be used to conserve instructional time and to promote the transfer of process skills from one subject area to the other. The exemplar's bjectives are labeled to show their relaunship to science and mathematical processes.

1. Given a set of common objects, the students estimate the objects' weight correct to the nearest kilogram. (Observation and estimation)
2. Given an equal-arm balance, the students weigh and record the weights of common objects correct to the nearest centigram. (Measurement)
3. Given an object's estimated and observed weight correct to the nearest centigram, the student computes the amount over or under his estimate. (Computation and number relationships)

Make simple materials

The following materials were constructed or assembled to help students attain the objectives previously stated in an interesting and challenging manner.

1. Sets of 3-by-5 cards with tasks given on the front and correct answers and points to be scored on the back. (See fig. 1.)
2. A cardboard track (see fig. 2) made from oak tag. Shuffle the E's (estimate cards), O 's (observed cards), and the D 's (difference cards) and place them on the gameboard in the places indicated.
3. An equal-arm balance that can weigh objects up to 7 kilograms.
4. A pair of dice and one different colored button per player.
5. A set of common objects that weigh less than 7 kilograms and more than 1 kilogram.
6. Student record card. (See fig. 3.)

Write simple rules and procedures

The rules and procedures are crucial to making a game self-instructional. In the following set of directions notice how a student leader and an answer card deck serve to ease the answer processing needed to keep the game moving smoothly from one player to another. It is essential to keep the rules simple and straightforward so that play moves quickly from one student to the other.

Fig. 1

1. Number of players, two to six.
2. The student leader or teacher aide begins by rolling the dice.

The highest roll goes first. All players start with their buttons in the "Start Here" block. The first player rolls one dic and moves his button the number of spaces indicated on the die. If he lands on a space containing an E, O, or D he must choose the top card in the appropriate deck located in the center of the playing board or track and perform the task indicated. (In the example shown in figure 1 this would be Card E_{3}.)

The player then records the card number, his answer, and the points awarded by the student leader on his record card. The student leader checks each player's answer and awards the appropriate number of points by reading the back side on the task card. He then places that card on the bottom of the appropriate deck and play moves to the right of the first player. The player who reaches "Home" square with the highest number of points is the winner. At the end of the play each player turns in his score card to the student leader who gives them to the teacher.

Fig. 2

Provide immediate feedback

By placing the answer on the back of the task card and appointing a student leader, the teacher who developed this game built into the game an important characteristic, immediate knowledge of the results of each player's performance. In most cases this feedback feature can be built into a game-by using the back of task cards, by creating an answer deck, or by using a student leader whose level of performance would permit him to judge the adequacy of other students' performance in a reliable manner. Feedback is one of the key features of an instructional game because it has motivational as well as instructional impact.

Have students record diagnostic information. The student record card is an important feature of the game. The cards help the teacher to judge when the difficulty of the task card should be altered and which players should play togethe: in a game, and to designate student leaders for succeeding games. The card also provides the player with a record that shows his scores and motivates him to improve.

This evaluative feature can be built into most games by using an individual record card, by having the student leader pile cards yielding right answers in one pile and cards with wrong answers in another pile, or by having the student leader record the results of each play on a class record sheet.

Build in some suspense

Experience has shown that games enjoyed by siddents contain some element of risk or chance. In this particular game a player gets a task card based upon the roll of the die. He a'so has the possibility of being skipped forward or skipped back spaces, or of losing his turn. Skipping back builds in the possibility of getting additional opportunities to score points; this feature helps low-scoring students catch up. Skipping forward cuts the number of opportunities a high-scoring player has to accumulate points. The possibility of adding or subtracting points also helps create some suspense. These suspense-creating features help make the game what the students call "a fun game."

Fig. 3

Create the materials to allow variation

A game that has the potential for variation with minor modifications of the rules or materiais has at least two advantages. First, it allows a new game to be created without a large time investment on the part of the teacher. Second, it keeps the game from becoming stale because the students know all the answers. For insiance, the exemplar game can be quickly changed by making new task cards that require that students estimate and measure the area of common surfaces found in the classroom such as a desk or table tops. By combining the two decks mixed practice could be provided.

Evaluate the game

Try the game and variations with a small group of students and observe their actions. Use the first-round record cards as a pretest. Keêp the succeeding record cards for each student in correct order. By comparing the last-round record cards with the first-round record cards for a specific student, you can keep track of the progress a particular student is making. Filing the cards by student names will provide a longitudinal record of a student's progress for a given skill as well as diagnostic information for future instruction.

Finally, decide whether the students enjoy the game. The best way is to use a self-report form containing sevcral single questions like the following, which can be answered in an interview or in writing:

1. Would you recommend the game to someone else in the class? _Yes __No
2. Which face indicates how you felt when you were playing the game?

3. What part of the game did you like best?
4. How would you improve the game?

Concluding remarks

The procedure just illustrated can be generalized to other topics in science and mathematics. The following list provides some suggested topics.

1. Classifying objects measured in metric units by weight and shape
2. Measuring volume and weight with metric instruments
3. Measuring length and area with metric instruments
4. Classifying objects measured in metric units by size and shape
5. Comparing the weight of a liquid to its volume
6. Comparing the weight of a liquid with the weight of an equal volume of water
7. Predicting what will happen to a block on an inclined plane
8. Comparing - the weights of different metals of equal yolume
Why don't you try and create some games for each of these topics? Then share the results with your colleagues. Additional examples developed by the authors are available in "Metric Games and Bulletin Boards" in The Instructor Handbook Series No. 319 (Dansville, New York, 1973).

Geo-gin

\author{

- JANIS A. BERMAN
 Student, University of South Florida, Tampa, Florida
}

Most students in the upper elementary grades have played and enjoyed card games. Geu-gin is a card game that makes use of some important geometric concepts such as spatial perception, identification, and discrimination. It is designed for \cdot groups of two to four students.

Materials needed

Two sheets of poster bard (prdferably, one side white and the other sideal bright celor)

Four sheets of construction paper, one each of four different colors

Magic markers in four different colors (preferably, the same four colors as the construction paper) 战

Compass, scissors, ruler, and glue.

Constructing the game

Cut out 48 three-by-four-inch rectangular cards from the poster board. Separate these cards into three sets of 16 each.

On one set of 16 cards, draw a circle (two inches in diameter.) on the white side of each card. There should be four circles in each of the four colors. On another set of 16 cards, draw a two-inch square on the white side of each card. There should be four squares in each of the four colors. On the last set of 16 cards, draw a parallelogram with two-inch sides on the white side of each card. There should be four parallelograms in each of the four colors.

In the upper left-hand corner of each card, write the letter " T " in the color of the figure. This marks the top of the card.

On each color of construction paper, draw the three different figures. Cut each of the construction-paper figures into four parts as in figure 1.

Fig. 1

- Now glue one fourth of each color of the construction-paper figures in its respective position and in the corresponding color on each- card. Only one piece is glued on any one card. Figure 2 shows the placement of the four parts of a parallelogram on each of four cards. On each card, draw a dotted line to show the other three fourths of each figure.

Fig 2
(You can also decorate the colored side of each card with the name of the game and an appropriate design to make it iook "professional" as in figure 3.)

Fig 3

Playing the game

The deck is shuffled and one person starts the game by dealing eight cards to each player. The dealer then turns over the top card in the deck and places the remaining cards face down on the table. One person should be selected to keep score with a pencil and paper.

The object of the game is to obtain two complete figures. A complete figure consists of four cards of the same figure, with a different portion of each figure coloredall four parts would fit together to make a complete figure. The cards must all be turned so that the "T" is in the upper left hand corner. In making a complete figure, it is not necessary to use only one color. Since this is very hard to do, extra points are given if a figure is completed in only one color.

Play begins as the player left of the dealer decides whether to use the card turned face up or to draw the top card on the face-down pile. A player must decide which two figures he will attempt to complete, but he may change his mind at any point of the game, since he is the only one who sees his hand. For every card he adds to his hand, a player must discard one; therefore, he should have eight cards in his hand at the completion of his turn.
After a player has put down his discard, the player on his left then decides whether to use the last card placed face up or to pich up the top card in the face-down deck. Play continues in a clockwise manner until one player wins by getting two complete figures in his hand. The winner calls out "Geo-gin" and lays down his hand. He scores ten points for winning and an additional five points for each figure he completed using only one color. Any other player that has a completed figure in his hand in one color only, scores five points.

The player on the left of the dealer then shuffles the cards again and the same procedures are resumed until one player obtains 50 points.

Paper folding and cutting a set of tangram pieces

STEVEN S. DICKOFF
Montgomery County Public Schools, Rocksille, Maryland

Steten Duhoff is an elequentary mathematics teacher specialst in the Department of Supervision and Curriculam Detelapment in Montgomery Countw, Marylan!!. He has led many inservice workshops for elementars teachers in the states of Marviand and New Yook.

I_{n}In a recent teacher-traning workshop conducted by the author. a question arose concerning a method for duplicating the seven pieces of the ancient Chinese tangram puzzle without having to trace the pieces of another puzzle. After some thought about the relationships of the pieces in the puzzle to one another, the following paper-folding and cutting method, illustrated diagrammatically, was conceived.

Start with a rectangular sheet of paper as in figure 1 (usually $8^{1} \approx \times 11$). Fold

F!g 1
edge $A D$ (or comende with edge $D\left(\begin{array}{c}\text { as } \\ \text { in }\end{array}\right.$ figure 2. Cut off the excess, figure $E B C F$. and discard it Unfold the shape. Square -
resuit (see fig. 4). Fold eath of the tri-

Fig 4
angles in hat as in figure 5. Linfold the

- 1
two trimgle and atit ang fold A(in ont

Fig 6

Place prees numbered "1" and "2" in figure 6 ander They are the first two tangram piece Fold triangle EFD so that pomt I concides wath point (; (see lig. 7).

Fis. 7
('nfold thangle $f: I$) and cut dong fold

Ftg 8
I/I whly Sit pree numbered "3" in figure

Fig 9

8 ande Fold figure $/$ I $/ / I$ so that pomt E : coincides with point G ds in figure 9 Unfold tigure DI:II Cut along fold $I K$ and (i) Se: plecer numbered " 4 " and " 5 " m figure 10 ade Fold figure $D(i J t t$ so

Fig 10
that pomt (; comerde with pont H fee fig. 11) Unfold figure D G $J H$ ($u t$ aleng

Hg 11
fohd JI. Pac: minhered *6 and ${ }^{-7}$ in figure 12 are now formed. ihus. the tangram purde 1 now complete with all

 square in hgure?

The Chnese tungram purte has always been popular with children. who. once they h.se solld th. are delghted to "fool their triend." This sume pezzle mas aloo be salud from a plece of 1 -anch plywood or

Monemte and the pece hapt in a buebor. . dong with different perte shapes on actuit! card, for the childrens use Are III: yote bee it. t:", vure to capture the maco of the chatoren as 11 ha for age

 example. to show that the area , a a paralielogram and the area of a rectangle are related. start with a paralleingram ot two pleces

A game with shapes

DAISY GOGAN

Abstract

Dasy Gogan 15 wothing on her doktoral program at Seachers College. Columbia Universty She has hed experneme in touching high shool, serving as charman of the mathematies dipartment at Norimern Hishlands Regomal High School millondale, New Jerscs. and as an asistant in the mahemaths deparme'th at Teak hers College. Colambua Unizarsity.

During their lunch period. Ton and his friend Greg invented a new game they called "Shapes." On a sheet of graph paper they took turns filing in one square at a time with a big X to sec whether they could form various shapes. They made these rules:

1. They would toss a coin to see who W...ld start the first shape. After that they would take turns starting.
2. The "starter" could fill in any square he wished.
3. Each person, as his turn came, could then fill in any square aext to one already filled in.
4. They would stop after filling in fise squares.
5. When the five squares were finished. they would examine the resul! If the shape were a new one, the boy who had finished it would win that point. If the shape were just like one already made, the boy who finished it would lose and the point would go to the other person

Tom won the toss to be the first starter. and they filled in the squares quichly

It was Iom's point, since he iad fintshed the thape, and of course since it was the first shape it was a new one.

Greg started the second shape when four squares had been completed. it was
his turn again for the fifth square. He made sure that he filled it in so as to make the final shape a new one. He won that point.

The boys continued The game went very quichly for several shapes, since they had little trouble making them different. Tom had just made a point by finishing this shape.

and the boys were working on the next round.

Greg placed the fifth square so that he had this shape:
"My point." he said
"Oh, no!" rephed Tom "That shape is just like the one 1 just finished"
"How can you say that. Tom? Why, this one uses three columns of squares, and the other one takes only two columns."

Tom replied, "If you turn your paper clockwise, you will see that the one you just finished takes only two columns. It is exactly the same as the other one. Let's use scissors and cut yours out so that we can see that it fits on mine exactly if it fits exactly, they are the same "

Greg reluctantly agreed that Ton was right, and the point went to Tom.
The boys continued more slowly now. Tom was trying to keep his lead and Greg was trying to catch up.
Ton made a point by finishing this shape:

Several turns later, Greg finished this one:

"You lose another point, Greg," cried Tom:
"How come? If you try turnme this one, you'll get
and that's different."
"If I use scissors and cut out the shape and flip it over, 1 can show you that yours will fit exactly on mine It really is the same shape. Or better yet. if Jane will lend me a mirror, I can show you easily Secyours is a reflection of mine."
"Yes, it is the same I can see that now," sad Greg. Here is hou the boys used the mirror to show the reflection-

The game proceeded more slowly, as it became harder to find new shapes. But it was more fun: too, trying to trip each other up.

The game with shapes that Tom and Greg invented can be extended by having the players try to establish a relationship between successive reflections and a rotatoon or to find a methud of detecting reficcion without using a mirror.

How many different shapes can you find?
How would the game change if we used six squares"

Editorial Cowmin Instead of using squares as the base shape. start with other geometric figures. such as trangles or hexagons. This can be done with sall paper or plastic pieees Give students a fixed number of the shapes and ask them to make as many regions as possible, using all the given regions I his encourdges thinking about nonstandard area units and the recognition that different shapes have the same area

An example of informal geometry: Mirror Cards*

MARION WALTER
Educational Services Incorporated, Watertown, Massachusetts

Abstract

Marion Walter is a part-time mathematics instructor at the Harvard Universty Graduate School of Education. She is on the staffs of Educational Services Incorporated in the Elementary Science Study and the Cambridge Conference on School Mathematics. She teaches mathematics to the students in elementary school education at the LIarvard Graduate School of Education.

The need for informal geometry, especially in the earlier grades, is being recognized by educators, psychologists, and mathematicians. The Mirror Cards were created by the author to provide a means of obtaining, on an informal level, some geometric experience that combines the possibility of genuine spatial insight with a strong element of play.

The basic problem posed by the Mirror Cards is one of matching, by means of a mirror, ${ }^{1}$ a pattern on one card with a pattern shown on another card. For example, can one, by using a mirror on the card shown in Figure 1, see the pattern shown on the card in Figure 1a?

Figuri. 1

Figure ia

- Iliss work was beguti while the author was mark my durnig the summer of lop with the Filemeritar 'eience St:dv. a project supported by grants frome the Vational tcience Foundation and admisistered by F.du cational tervices Incopporated a monprofit orgamazation engaged in educational retearch she would tike to thank the members of the group the woiked with that summer and the group an optise of the previons sum ther for thes help and encouragement, the is erpeciall gratefil in Protesor Phifp Morriom. Mrs Phuls Stinger, and Mrs lere Rasmusen
- The reader should have a mall rectangular pooket marror handy before readang on

The problems range from the simplest, such as the one shown above, to more difficult ones, such as the one shown in Figures 2 and 2a.? Some patterns áre possible to match and others are not. ${ }^{3}$

Figure 2

Figuri 2b

Figure 2a

Figurf 2c

Using the mirror on the card shown in Figure 2, which of the patferns shown in Figures 2a, 2b, ond 2c can you make?

[^6]

We have noticed that the children usually find the colors and shapes pleasing and enjoy the challenge presented by the cards. They do not think of this work as "mathematics," and they often find the cards stimulating over and above the actual geometry involved. The cards may be a means of reclaiming the children who already dislike mathematics or are bored or frightened by it. The cards do not call for verbal response from the children, and no mathematical notation is needed. Closer connection with science and mathematics classes will be explored by the author in the future, since the cards can give insight into some mathematical and physical principles.

One advantage that the cards have is that the children can see for themselves whether or not they have made a pattern. They don't need to resort to authority to check whether they have solved the problem correctly. In addition, while playing with the cards theyare, in effect, constantly making predictions and are immediately able to test these predictions and amend them, if necessary; and it is fun to do so! Thus, while working with the cards they should gain confidence in their own powers
and learn through experience the nature of the scientific method:

While moving the mirror around on the cards, the children notice and experiment with the position of object and image in relation to the edge of the mirror. The player can decide where to place the mirror; and he soon learns that he can control its position, but that for any given position of the mirror he cannot control the position of the image!

The students also learn that a mirror does not carry out a translation. (See Figs. 3, 3a, 3b.)

Figure 3

Figure 3a

Figure 3b

Can one by using, mirrop on figure 3 make the patterns shown in figures 3 a and 3 k ? - alas, the mirror does not carry out a transiation!

They learn by experience that congruence of two parts is a necessary but not a sufficient condition for a pattern to be made by use of a mirror. Most children do not know the expression "symmetric with re-
spect to a line" or "reflection in a line" They may, nevertheless, by using the cards, gain experience that will enable then to understand the concepts that these expressions describe. This does not imply that they could give. or should be expected to give, a formal or verbal defintion of these expressions. Eventually they do notice that for a pattern to be reproducible by use of a murror. it must have two parts that lie on either sade of some line and that these must "match exactly." They soon learn. for example, that the pattern shown in Figure 4 a cannot be made from the pattern in Figure 4. and they probably have a good fceling for why this is so.

Figuri 4

Figiki 4a

Figure 4b

Pattern 4: cannot be obtaned from 4 Whar about the patturn in 460

The cards provide opportunity to practice recognizing congruent figures and selecting parts of figures congruent to another.

Where must you place the mirror in Figure 5 to see the pattern shown in figury 5a?

The children must be obervant. nut only about a shape and the positton of that thape. but also about its colors. Sothe of the patterns match in shape but not in color.

They may also notice a variety of geonietric properties of figures. Consuder. for
example, the circle. By putting the mirror on a diameter they can see the whole circle. More than that, any diameter will do and any chord not a diameter will not do. This mas give young children their first feeling for a diameter of a circle, long before they know the word "diameter"

With the diamond, (see Fig 6) they notice that there are two places where the mirror may be placed to enable them to see the whole diamond On the other hand,

Figurr 6

Figuri 7
the pattern shown in Figure 7 does not have this property-to the surprise of many!

Or, again. take the triangle (see Fig 8). the children may notice that the effect of putting the murror along $A B$ is in some way "the same" as that of putting it along

Figuri 8
$B C$. but that it is quite different from that of putting it along $A C$ What about $B D^{\prime}$

Other patterns on the cards, such as the ladybugs. arrows, etc. can he explored in similar ways

For a few cards the chuddren can obtain patterns that loek somewhat like the one required but are not congruent nor actually smilar in the mathematical sense I atend to devise cards where congruent and similar patterns are obtannatie. and simular but not congruent ones

Unfortunately, none of the present cards hate breles with arrows on them to show
perhaps more clearly, that the orientation gets reversed under a mirror mapping or reflection Thus Figure 9 becomes Figure 9 a.

Fifu'ris 9

figh R1 9at

Fiount 12

Figuri, 12a

The imagined placoment of points " A " and " B " illustrates the fact that the mirror does not "rotate" the figure. Actually the mirror "Alips" the image. (Poinls " A " and " B " are nol marked on the actual cards.)

The cards may be used at any age level. Thes have been used by children as young as five and by sophisticated professional scientists or mathematicians. It is interesting to note that some adults who "know

Ficcrilo

Figuti 10a

Fici'zi 10b

Can one by using the mirror on Figure 10 obfain the patterns shown in Figures 10a and 106 respectively?

Figiret 11

Fiticri lla

Figuri 11b

Can one by using the mirror on Figure 11 obtain the patterns shown in Figures 11 and 116 respectivoiy?

The fact that a mirror does not carry out a rotation in the plane is often masked by the symmetry of the figure. For example, one can make Figure 12a from Figure 12, but not Figure 13a from Figure 13

all the rules" verbally (such as "There must be a line of symmetry" or "Image distance = object distance") often have more difficulty in working through the sets than children who have not yet memorized such phrases. The one barrier to the effective use of the cards by adults appears to be an ingrained habit of respect for authority. Adults often do not want to rely on their own i.iility to see whether they have made a pattern correctly.

When the children find the problems becoming too easy, they may want to add the rule, "You may put the mirror down only once for each pattern," so that all the trial and error must go on in their heads. They may wish to make some of their own cards. When, as happens often, children are able to predict without using a mirror
at all whether a pattern can or cannot be made, they will have a clear demonstration of the power of reasoning based on ex-perience-i.e., that it is possible to predict results with confidence by thinking rather than doing! (And they are able to check their thinking if they wish.) In this way they are savoring an essential part of the nature of rational thought.

There are many questions that still need to be answered. I mention just a few. Will use of the cards make children more observant about other geometric patterns? Will it enable them to see figures within figures more easily? Does it improve their ability to visualize? Will they be able to describe patterns more clearly? Will it help or hinder children with reading difficulties?

Lbiferial Contin $\$ In adeation to the measurement concepts discussed in the variousarther of this section. temperature. Weight. and volume are measurement shems commonly taught in the elementary mathematics program. To encourage estumation of these and other measures. or to develup the connection between a chardateristic and it, measure, you might construct a measurement game board

Players ipin to dentify the question stack from which to draw. Questoon stacks exist for each of the following time measure. wolume measure. weight measure. temperature measure. linear measure and area measure fah queston card contans a questoon and an indacation of the number of sha ees to mole of the question answered correctly You might use questoons such as these
"What time will it be two hour, from now"."
"How long is this room"."

Popsicle sticks and flying polygons

CHARI.ES I.UND
The American School of the Internatomal Si hook of the Hague. The Netherlands

IIn the teaching of a unit on basic deas from geometry to children in grader 5 - 8 . Popsicle sticks can be used to create a motivating. "hand-om." laboratory excreise. The following exercises have been used with chiddren mboth the Unted States and the Netherland. and the -mewage of identifieation of polygons and patterns in mathematies has been put across each time The llyng polygon purde and a few sample 6 lutoms are illustrated in figure 1

1. Iry to construt a "flyng trangle" using five Popucte stach, (No gluc')
2 liy to construct a "flyng quatc" unde Six Popsick stichs
3 Iry to cóntrat a "Alying pentagon" unag enght Popsule stachs
"Iry to construs a "flymg hexgen" ange nate Popacle stachs
5 What is the mumum number of Popacie stahs necensar ito wontrut a flyme tieptagon" ${ }^{\text {" }}$
6 Is there a pateern to the fyang polygon construction' If wo. what is it"

How are the ee purale uned in the classroom" A dittoed cops of the direction in figure I and a small container filled with Popucle stich are placed in what 1 call a "thmekers" corner" near the pencal sharpener of the claswoom at the beginmeng of the unit Although no formal clanroom discussion of the problems t.akes place. interest in the purfle undally build quite rapedly after the first day

Student are encouraged to formulati conjectures regarding the mimmum num-

Sampit Son Phons

c

FHCRI 1
ber of stechs neecsary to peifform each contruction Here are swo interesting confectures that have been formulated by my students in the past:
4.llm "If a flymg trangle can be constructad wnong five Popsacle stachs and a flying square can be comstructed using six Paposcle stichs. then a flying pentagon and a bemg hexazon can the constructed using seven and eaght Popsicie stacks respectlecly" "She wand able to constrat them but feels certan she is correct)

Imbas "A fying polygon with ally number of requared sides can ixe constructed by smply dadang two stich, to the previous bhipe for example. a llying pentagon can tee comeracted by smply adding two stachs to the model of a thyng square" iSix of the ten thapes he was able to construct are petured in lig. 2)

The Popsicle-stich models of polygons can also be utilized as a bridge to an exercise in direct measurement for example. conduct a contest to see which flymg polygen will sail the greatest dstance. The excursion can take place on the school grounds or, if the weather is melen 'nt. in the gymmasuani. Avide from the flymg poly-
gons construeted by students, the only special equipment necessary is a 100 -foot measuring tape. You may wish to have the class make that, too! By breaking the clas" up into teams. each nember can be assigned a different task to perform. Recording, weasuring distances with handmade and official measuring tapes, flying polygons, making repairs, and keeping records are a few possible jobs. All of my clases have found that the triang- construction will sail the farthest. Niy students say it is beeause "the flying triangle is the smallest and the strongest "Try this series of exereises featuring simple materials. You'll enjoy them.

The Try-Angie Puzzle

\author{

- (ibostatwoht

}

T
 whe. that the! at \cdot to le commerted

When you compirte the pattern alt-

If you fald, amd h.all mit: a taty lhe game euds.

Four scoring is 1 pornt far a complete triangle: : 3 ponnt tor 2 eompleted - wo. . and $1 / 3$ ponnt tor one udfe ot ative tatame

In lower grades. you may want to arore
 trangle contpleted. \because pomits and ome ponit for pitail! complotel thatugh -

I found t!er alar. p.atten to ber stmml:ting thishores

 and!は:anhum!"

Editorial. Comment. For something provocative related to shapes, try getting opinions on these two questions.

How many squares do you see? How many triangles do you see?

1

GA RY D. HA LL North Judson San-Pierre Schools, North Judson, Indiana

This puzzle was constructed as a project for a graduate course. It has been used in teaching sixth-grade mathematics.

Purpose

The purpose of this project is to teach the Pythagorean theorem to children who have no background in plane geometry. The ideas of squared numbers and the concept of a 3-4-5 right triangle are also introduced.

The child is taught these related concepts through the use of a brightly colored manipulative puzzle that guides him to form relationships involving area.

Materials

1 right triangle with sides 6 inches. 8 inches, and 10 inches.
1 square (side 6 inches) and 1 parallelsgram (sides 6 inches and 10 inches: an angle equal to the smaller acute angle
of the triangle described above). Each of these figures has an area of $\mathbf{3 6}$ square inches. They should be painted the same color.
1 square (side 8 inches) and 1 parallelogram (sides 8 inches and 10 inches; an angle equal to the larger acute angle of the triangle described above). Each of these figures has an area of 64 square inches. They should be painted the same color.

Fig. 1

1 square (side 10 inches) with an area of 100 square inches.
50 squares (side 2 inches), each with an' area of 4 square inches; 9 should be painted to match the 6 -inch square; 16 should be painted to match the 8 -inch square; and 25 should be painted to match the 10 -inch 'square.
1 -frame like that shown in figure 1.

Fig. 2

Procedure

El. oty the puzzile frame and give the child the basic puzzle pieces (the triangle and the three large squares). He should construct a figure such as that shown in figure 2.

Fig ?

Emply the puzzle again and give the child the pieces, substituting the smaller parallelogram for the smallest of the three squares. (Note: These two pieces are painted the same color to facilitate the conclusion that they are the same area.) The child should then conclude that the small parallelogram and the small square are the same size by constructing figure 3 .

After emptying the puzzle the third time, give the child the largest square, the smallest square, and the triangle and sub-

Fig. 4
stitute the larger parallelogram for the medium square. (These two are also painted the same- color and are the same size.) The child should construct figure 4.

The fourth construction (fig. 5) is

Fig. 5
formed by emptying the puzzle frame and giving the child the two parallelograms, the smallest square and the medium square, and the triangle. After making figure 4, the child should conclude that the two parallelograms are the same size as the largest squal hence the two smaller squares are also the same size as the largest square.
. The next series of constructions is dpsigned to reinforce the idea of the Pythagorean theorem and to introduce the idea of squared numbers and the concept of a 3-4-5 right triangle.

Empty the puzzle and put in the fifty small squares. The nine squares painted to match the six-inch square go in the small compartment, the sixteen squares painted to match the eight-inch square go in the middle-sized compartment, and the twentyfive squares painted to match the ten-inch square go in the largest compartinent. Also, put the triangle in the middle. Have the child take the squares from the large compartment and fill up the two smaller compartments. Then have him take the squares from the two smaller compartments and construct various designs, such as those

Fig. 6
shown in figure 6, in the large compartment.

Use of the puzzle would not necessarii, require a rigid lecture type of presentation such as has been outlined. If students are merely allowed access to the puzzle, many of them will make interesting discoveries in their free time.

Editor's Note. Puzzles-good ones-are helpful in developing analytical thinking. They should be readily accessible in all classrooms. They are particularly appropriate in mathematics-laboratory settings where children make original discoveries and solve quantitative problems individually.--Charlo:te W. Junge.

Tic-tac-toe-a mathematical game for Grades 4 through 9

ROBERT A. TIMMONS Commack, New York

Here is a game that can be played with equal enthusiasm in Grades 4 through 9. The game changes only in the amount of strategy used by the students in the upper grades.

The only prerequisite for the students is that they have had the concept of negative and positive numbers introduced to then before the game and are familiar with the ordinary game of tic-tac-toe.

The knowledge of negative and positive numbers would not have to be very great. It is sufficient for them to simply be aware of their existence.

The game is played with the entire class. An overhcad projector with a prepared
,

grid makes things easy. However, a grid drawn on the board will do just as well.
The instructions for the game are purposely short and simple. It will be up to the participants to fill in the gaps.

The class is divided into two teams (e.g., boys versus girls). The teams do not have to be of equal number or ability. One pupil is assigned the job as a recorder. He or she may or may not participate in the game. His job is to record, in two columins on the board, the numbers that are given to them by the students. E.g..

The teacher then gives the following instructions to the students:

1. This is a game of tic-tac-toc, but in this game in order to win you must get five " X " or " O " in a row.
2. In order to tell me where to place your "X" or "O" you must give me two numbers. Each number must be equal to or less than 10 . The recorder will write these numbers on the board and I will place your " X " or " O " in the correct place on the grid. Watch me closely and see if you can understand how I place them.
3. Once you say a number you may not change your mind. Think before you tell us your numbers, but if you take too long you will lose your turn.
4. You,are not allowed to help your team members. (This rule can be altered at the teacher's discretion.)

The game follows the rules of coordinate axes with the students supplying the two variables. The teacher should be careful that he or she does not count by pointing to the lines but rather simply placing the marks in the correct place.
The first couple of games played will most likeiy be played and won all in the first quadrant.

I have been surprised each time I have played this game it the speed at which the students discover how to locate the points. Frequently it is the student who is having difficulty with his regular program who is the first to discover it.

If a student should happen to give a coordinate that has been already given or is not in the limits previously set, he is informed that he cannot go there and that he loses his turn.

In order to force the game out of the first quadrant, the teacher may reduce the limits set in rule $\# 2$ to "numbers equal to or less than five." The game will then

quickly come to a stalemate with the first quadrant completely filled in.

At this point the students will urge the teacher to tell them how they can get out of the first quadrant. The teacher should not give in but rather keep on promoting them on with questions like this:
"Give me the right pair of numbers and it will get you out of that corner. Try a different type of number. Think back. Didn't we learn about any other types of numbers?"'

Sooner or later someone will come out with a negative numbet or a pair of negative numbers. The game can-then continue with the previous limits or any limits set by the teacher.

One of the difficulties with this game is that the children would like to play it all the time. I have yet to find a class that tires of it.

I believe the activity originated in the Madison Project. A complete description of it can be found in Discovery in Mathe-

matics, A Text for Teachers, by Robert B. Davis. (Reading, Mass.: Addison-Wesley Publishing Comfany, 1964).

The value of this activity and others like it is the enthusiasm it generates. It allows all to particıpate no matter what their degree of competency, and lends itself to the discovery method of teaching. with little effort on the teacher's part. If a student is unable to comprehend how to locate the points, there is no loss in the mathematics sequence. If on the other hand. he becomes proficient in locating points in all four quadrants, he has been brought to .the threshold of analytical geometry.

Hide-a-region- $\mathrm{N} \geq 2$ can play

JEANS. OVERHOLSER
Oregon State University, Corvallis, Oregon

Hide-a-Region is a game that can be played by two or more persons, from the first to the twelfth grade. Its purpose is to give practice in locating points on a grid, and in the concept of the area of a region.

In its simplest form, all players are given graph paper or a grid. One group decides on the locatios of a square region on the grid, with the vertices at ordered pairs of whole numbers. In figure 1, a region of area 16 is shown on a ten-by-ten grid. The other group tries to locate the region

Fic. 1.-A "hidden" square region of area 16 .
by calling out ordered pairs, while the group that has hidden the region calls out "Inside!" or "Outside!" in response to each trial. The region is located when the opposing team has named all four vertices. A tally is kept of the number of guesses.

It is now the turn of the second team to hide a región. After i; games, the winning team will have the fewest number of guesses.

For a yáriation, a rectangular region of

Fic. 2.-A "hidden" rectangular region of area 12.

Fro. 3.-A "hidden" rectangular region of area 12.
a given area can be hidden as shown in figure 2. The group who hides the region says, "Rectangular region, area 12." The solution is $(1,4),(3,4), \cdot(3,10),(1,10)$, in any order.

For another variation, the team that hides the region could specify that the boundaries are excluded. Then, if the opposing team calls out a point on the boundary, the team that hid the region can say, "Outside!" Here the vertices determine the region, although they are outside the region.

After negative numbers and three more quadrants are introduced, the area available for hiding a region is expanded. Figure 3 shows a hidden region of area 12 with vertices in all four quadrants. The group
that has hidden the rectangular region says, "Rectangular region, area 12, hidden in the region where the x-coordinates go from negative 6 to positive 6 , and the y-coordinates go from negative 5 to positive 5."

A further variation would involve putting the vertices at points determined by ordered pairs such as $(11 / 2,23 / 4)$, ($91 / 2$, $23 / 4)$, $(91 / 2,13 / 4),(11 / 2,13 / 4)$ to determine a rectangle of area 8 .

Edrtor's Note.-Is it possible that some regions could have the same area but have different dimensions? It occurs to me that the region described as "rectangular, area 12," might be a region 2 by 6 units as well as 3 by 4!-Charlotte W. Junoe.

Editorial Comment. - An appealing variation on Hide-a-Region is Hide-a-Name. And if you make the name hidden that of one of the children, it is even more exciting!

Cartesian coordinates añd battleship

WILLIAM R. BELL
Boca Raton Middle School, Boca Raton, Florida

Mathematical games are a way of relieving the dradgery of practice for some students, and this adaptation of an old and familiar game (which is often played surreptitiously by students) can also be justified as being educational. In the version of Battlesthip described here, the basic difference is that the intersections of grid lines are named instead of the squares between the grid lines. The game is best introduced lafter a study of integers and as a prelude to graphing equations of lines.

The game is played on the standard two-dimensional grid. (See fig. 1.) Students must understand that all points on the grid are identified by a pair of numbers (x, y), where x is counted horizontally and is always named and located first, and y is counted vertically and is always named and located second. A few examples-($1 ; 1,1$, $(2,2),(-2,2),(1,-1)$-may be appropriate. Limiting the size of the grid to six units in each direction from zero is best if the game is to be completed within the normal class period of forty or fifty minutes.
Each player should have a singl: sheet of paper with two grids drawn on it. The player spots his own battleships on one grid,

Fig. 1
and on the other he records his sl. 's at his opponent's forces. Each player is allowed three battleships. A battleship consists of three adjacent (horizontally, vertically, diagonally, or on a corner) points.
Players take turns firing volleys of three shots. (The decision rigatding who fires first can be made by any method.) When
hits are made, they are acknowledged immediately. A game ends when a player has lost all three of his battleships.

During a game, players must be placed in such a way that they cannot see their opponent's sheet or the opponent marking
his sheet. Notebooks placed on end can serve as improvised walls.

Be prepared to be challenged by your students. You will be pleasantly surprised at their ability and determination to beay the teacher at his own game.

Eintorial. Commfnt. - Rather than using batteships on the grid, you might consider placing fish on the ocean and have a "Fishing Rodeo." Whales might be five connected locations, mackerel could be four points, and so on to minnows, which are single points.

Holiday plot-dots

GARY A. DEATSMAN

Moorhead State College, Moorhead.
Minnesota

Here is an activity that will interest and challenge third graders and advanced second graders. By carefully following written directions, each child plots ordered pairs
of natural numbers to get points on a coordinate system. Each point is labeled with a number and when the plotting is done the child has constructed a follow-the-dots
puzzle which he can then completc. Directions for three of these "plot-dots" are given here. The first turns out to be a Halloween pumpkin and the second a Christmas tree. The third, which is shown in figure 1 , is a Valentine heart.
To do one of the plot-dots, each child should be supplied with an instruction sheet and a piece of special graph paper. Half-inch squaree must be used if the figure is to fit properly on $81 / 2$-by- 11 -inch paper. The coordinates should be on the paper. The graph paper can be teachermade. I made mine very easily by drawing the coordinates on a piece of ordinary graph paper and then making a spirit duplicating master.

Accuracy is very important if the pictures are to look right. Giving each child an instruction sheet is essentalal; Arying to read the instructions aloud to the class will result in chaos. I would encourage the children to work in pairs or small groups and to check each other's work. It seems to be futile to try to get them to write lightly so they can crase easily if they make an error, but maybe it's worth a itry. Some children confuse "over"" with "up," so some preliminary practice in this area may help. Sometimes demonstrating the ploting of some points on the blackboard helps. If your pupils are like the children I worked with, many of them will finish their work with complete accuracy and get very nice

results. A few may get discouraged and quit, so I would try to keep competition at a low key.

When a child-completes a plot-dots he should then te allowed to agd to his pic-ture-draw a face on the pumpkin, draw decorations on the Christmas tree, or write something appropriate on the heart. He then can color his creation.

Although I can't prove it, it seems reasonable to me that experience with plotdots may help prepare children for later work with linear measurement and graphing. In any case, it's fun.

Directions for Halloween Pumpkin PlotDots

1. Go over 14 and up 10 for dot number 5 .
2. Go over 12 and up 13 for dor number 7.
3. Go over 4 and up 4 for dot number 19.
4. Gn over 6 and up 16 for dot number 11.
5. Go over 9 and up 14 for dot number 9 .
6. Go over 4 and up 13 for dot number 14.
7. Go over 14 and up 7 for dot number 4.
8. Go over 10 and up 3 for dot number 1.
9. Go over 2 and up 7 for dot number 17.
10. Go over 3 and up 12 for dot number 15 .
11. Go over 8 and up 16 for dot number 10.
12. Go over 7 and up if for dot number 12 .
13. Go over 2 and up 10 for dot number 16.
14. Go over 3 and up 5 for dot number 18.
15. Go over 6 and up 3 for dot number 20.
16. Go over 10 and up 14 for dot number 8 .
17. Go over 12 and up 4 for dot number 2 .
18. Go over 6 and up 14 for dot number 13.
19. Go over 13 and up 5 for dot number 3 .
20. Go over 13 and up 12 for dot number 6 .
21. Go over 10 and up 3 for dot number 21 .

Directions for Christmas Tree Plot-Dots

1. Go over 8 and up 1 for dot number 1 .
2. Go over 8 and up 3 for dot number 2.
3. Go over 10 and up 12 for dot number 9 .
4. Go over 5 and up 12 for dot number 16 .
5. Go over 7 and up 18 for dot number 12.
6. Go over 9 and up is for dot number 11 .
7. Go over 11 and up 6 for dot number 4.
8. Go over 3 and up 6 for dot number 20.
9. Go over 4 and up 9 for dor number 18.
10. Go over 13 and up 3 for dot number 3 .
11. Go over 6 and up 3 for dot number 22.
12. Go over 8 and up 15 for dot number 10.
13. Go over 5 and up 15 for dot number 13.
14. Go over 11 and up 9 for dot number 7 .
15. Go over 12 and up 6 for dot number 5 .
16. Go over 1 and up 3 for dot number 21 .
17. Go over 3 and up 9 for dot number 17.
18. Go over 6 and up t for dot number 23.
19. Go over $t 0$ and up 9 for dot number 6 .
20. Go over 9 and up 12 for dot number 8 .
21. Go over 6 and up 15 for dot number 14.
22. Go over 4 and up 12 for dot numbet 15.
23. Go over 2 and up 6 for dk: number 19.

Directions for Valentine Heart Plot-Dots

!. Go over 13 and up 7 for dot number 3.
2. Go over 8 and up 13 for dot number 11 .
3. Go over 8 and up 3 for dot number 1 .
4. Go over 1 and up 12 for dor number 17.
5. Go over 15 and up 12 for dot number 5 .
6. Go over $t 5$ and up 13 'for dot number 6 .
7. Go over $t 2$ und up $t 6$ for dot number 8.
8. Go over 2 and up 9 for dot number 18.
9. Go over 5 and up 16 for dot number 13.
10. Go over 2 abd up is for dot number 15 .
11. Go over 14 and up 15 for dor number 7.
12. Go over 11 and up 16 for dox number 9.
13. Go over 11 and up 5 for dot number 2 .
14. Go over 5 and up 5 for dot number 20.
15. Go over 3 and up 7 for dot number 19 .
16. Gp over 9 and up is for dot number 10.
17. Go over 1 and up 15 for dot number 16.
18. Go'over 4 and up 16 for dot number 14.
19. Go over 14 and up 9 for dot number 4.
20. Go over 7 and up 15 for dot number 12.
21. Go over 6 and up 3 for dot number 21.

Stick Puzzle

If you have 12 stichs of equal length arranged as in the diayram lelow, show how you can make the following rearangements.

1. Remove 4 atick, and leave 2 square'
2. Remove 4 sticks and leate 1 square.
3. Change 3 sticks and have 3 squares.
4. Renove 2 sticks and leave 2 squares.

A Game of Squares

Geonge Janicki

- lilm Schoot, Elmucood Parli, Ill.

Cross Figure Puzzle-Measures

 George Janick!Elmwood Fark, Illinois

TTili: pittern abowe ouggests argame of dots to any bright student. In my dasses, I used this puzzle as follows:

First set a time limit of one minute. (This makes it very exciting.

The idea is to start at any 'ace and to comnect each dot, and to try to wmplete as many whole squares as possible.

You do not permit any diagonal connertions. CDEMER TAKE PENCIL OFE THE PAPER!.

You cannot retrace or cross any previons line.

When you end up in a blind alley, the game is finished.
The seoring is: 1 point for a completed square; $3 / 4$ point for 3 sides of a square completed; $1 / 2$ point for two sides completed; and 1 point for one side since you might possibly have such an arrangement.

The average score is: 7 points; the real bright students reach $83 / 4$. This game is really fascinating.

I recommend it highly to any arithmetic teacher in grades $4,5,6,7,8$.
(You can change the scoring points for lower grade sid nts to all whole numhers: 4 points, s points, 2 points, and one point since they may be unfamiliar with adding unlike fractions. In such cases, 48 is top score; sec how high they can mak'e using these scoring rules.)

ACROSS DEFINITIONS
1 - 1 of a mile in feet
$4-1 / 10$ of a mile in feet
7-. A certain type of fire alarm
8-143 minutes in seconds
8-A dozen
10-Number of ounces in 1 pound
11-Baker's dozen
14-Ounces in pound (Troy system)
16-A full day in hours
17-6 feet 5 iuches expressed in inches
$19-466 \times 1+0=$
21-Largest 3 place whole number
22-A $1 / 12$ of a mile in feet
$23-19 \times 3 \times 4 \times 4=$

DOWN DEFINITIONS

1-Product of 23 and 27
2-381 pounds changed to ounces
3-A penr.y in decimal form
4-5 feet less 2 inches in inches
$5-100 \times 2.71=$
$6-3212 \times \frac{1}{8}=$
12-One hour in minutes
13-3 feet in inches
14. 7 di gross

15-2' dozen is how many units?
17-An odi number
18-An eien lumber
20-5 feet tall is how many inches?
21 -largest 2 place whole number

Reasoning and Logic

Reasoning and logic are pervasive throughout all mathematics. The canons of logic form the bases of the deductive nature of abstract mathematics. Students naturally acquire logical prowess through reasoning in everyday affairs. This occurs throughout the elementary school years. Formal instruction in logical ideas frequently occurs in contemporary mathematics programs in the late elementary and junior high school years.

Most mathematical games require some degree of reasoning or logic (although some rely more on chance factors). Some games are designed specifically to encourage the development of reasoning, and others depend heavily

- on the development of strategy. This section contains illustrations of games of both types.

The lead article, "Rainy-1)ay Games," illustrates four games designed to heip students "learn an essential process of mathematics, namely, asking good questions and piecing information together to draw a conclusion." Be sure to follow the authors' suggestions about supplying props to the stu-dents-it will help the students put structure on the situations.

Ruderman's "Nu-Tic-Tac-Toe" is á variant on checkers, requiring strategies for timing moves, blocking, and positioning. The tic-tac-toe array becomes the playing board for the hexapawn game described in Ackerman's article, "Computers Teach Math." (You don't really need a computer for this/ game.) The article provides a good example of a procedure for analyzing games having a finite number of possible moves. Such games and their analytical procedures demonstrate clearly that there is really much more than motivation availablein the use-of classroom games.

The game Kalah has been around for thousands of years. It has been used in different versions in many cultures, particularly for the development' of quantitative judgment -tt is a gamein which victory depends solely on reasoning rather than on chance. Haggerty's description of the game provides both a clear exposition of the rules and some interesting historical notes. For those with limited resources, be sure to note the inexpensive way to construct the Kalah board in the follow-up article by Brill.

Other inexpensive strategy games are described in Masse's. "Drill Some Fun into Your Mathematics Class." Massé gives directions for playing as well as for constructing the game boards. In addition to the strategy features, these games are useful for practice with addition-subtraction relationships and number-theory concepts.
The last two articles are yfrsions of the "Whodunnit" puzzles or riddles. "Jupiter Horse Race" is a student-created puzzle-a reminder that our suidents can be a rich source of legitimate mathematical activity. "Paper, Pencil, and Book," like Kalah, lica game of ancient origins. This one dates from medieval times. Games survive not only because they provide diversions for man but because the best ones whet and test his intellectual appetite.

Rainy-day games

ROBERT C. GESSEK-GXROLYN JOHNSON, MARTY BOREN, and CHARLES SMITH

> At-the time this article was written, all fowr of the authero were Miller Mahematics specialists with the Fullerton, Ralifornia, Elementary Schools. Since then, both Robert
> Gessel and Marry Boren have left Fullerton. Robert Gessel is currently teaching mathemutics in the Audubon Junior High School in Cleveland, Ohio.

There are many occasions when "raink day games", have their special value and usefulness, and, of course, rainy-day games may even be played on sunny days too. The games described here give children a chance to ask questions that crable them to obtain information; the information is then used to reach a conclusion.

In playing the games. children frequently ask redundant or useless questions. They realize their questions are useless when no information is gained. Consequently, the children listen to classmates' questions to learn how to ask questions that will elicit useful information. This type of learning experience provides an opportunity for the children to develop an intuitive feeling for deductive reasoning.

One cannot say that because of playing these games students will improve their arithmetic skills. However. they will learn an essential process of mathematics. namely, asking good questions and piecing information together to draw a conclusion. The children will be actively involved in an experience that encourages deductive reasoning. Finally. the games are fun!

Pico-Fumi

When the game of "Pico-Fumi" is presented to a class for the first time. it is best to begin with. the definitions of the terms written on the chalkboard for casy reference as follows:

Pico means that one of the digits is right, but it is in the wrong place.
Fumi means that one of the digits is right, and it is in the right place.
To illustrate how the terms are used, you might pick the number 43 and say, "I have selected a number between 9 and 100 ; guess the number." If someone guesses that the number is 63 , your answer would be, "That is one fumi," since the 3 is a correct digit in the right place." You would then record 63 on the board with "one fumi" next to it. Suppose the next guess is 74. You would answer, "That is one pico," since the 4 is a correct digit but in the wrong position." Under the 63 you would record the 74 with "one pico" written beside it. If someone guessed 98, you would call it nothing, since it is neither pico nor fumi. The 98 would be recorded with "nothing" beside it under the 74. More examples may be given, if it seems necessary, to further establish the answers that may be given.

To actually play the game, the class is divided into two teams, and a member from each team, say Thad and Wendy, is picked to write a "secret" number be-" tween 9 and 100 on a slip of paper. They come to the front of the room. Since the teacher should record the answers for the first few games. you look at their ' im bers; sup?ose Thad's is 25 and Wendy's is 61 . Thad picks a member of his team
to guess Wendy's number. If the person guesses 56, then you record "one pico" next to the 56 under Wendy's name. Wendy then chooses a member of her team to guess Thad's number. If the person guesses 46, a 46 with "nothing" beside it would be recorded under Thad's name. The game continues until one team gets two fumis, which will be the correct number. The progress of a game might be recorded on the board in a table like that shown in figure 1 .

Thad's Number	Wendy's Number		
nothing -46^{\prime}	$56 \rightarrow 1$ pico		
1 fumi $\leftarrow 35$	$63 \rightarrow 1$ fumi		
2 picos -52	67	\rightarrow	1 fumi
2 fumis $-\frac{25}{}$	69	\rightarrow	1 fumi

Fig. 1
At the end of a game, another person from each team is picked to write down a secrel number. Thus, a new game is $/$ started. After one or two games, the students can record the guesses themselves.

A few suggestions may be helpful. 'Play the game with a friend first in order that you clearly see some of the strategies of the game. Do not expect the students to develop good strategies at the start.

thats

The game of "Hats" requires six hats and a paper bag big enough to hold them. Three of the hats ate of one color and three are of another. For the purposes of this explanation, let us assume that three of the hats are red and three are black.

To play the game, select three students and arrange them in a circle so that each may see the other. With the six hats all hidden in the bag, ask the students to close their eyes. Then remove three of the hats and place one on each head. Tell the students to look carefully at the others but caution them not to give away what they see.

Ask them to raise their hands if they
see a red hat. The game is then to see if each student can figure out what the color of the hat he is wearing is.

Name Game

The "Name Game" is a fun game that allows children more practice in logic and good question asking. It discourages wild guessing and ragged thinking.

The Name Game begins when the teacher selects a child. No one in the class, including the child himself, knows who has been chosen. The teacher gives a clue. The children use the clue to ask a question that will yield more information. If the question uses the clues the teacher has given, the yielding of information continues until the chosen child has been determined. The following is an example of how the gane proceeds.

Teacher: The person I have chosen is not a girl.

Bobby: Is it Charles?
Teacher: No, but you used my clue in your question; so you get another clue. The person sits on the right side of the room.

Laura: Is it Sherry?
Teacher: No. Sherry sits on the right side of the classroom, but is Sherry a boy? Did you use both the clues? Sorry, no new clues.

Margaret: Is it Danny?

Teacher: No, although Danny is a boy and sits on the right side of the classroom. Good guess. The person sits in row one.

Jose: It's Bill!
Teacher: Yes, how did you know?
Jose: In row one on the right side of the room, Bill is the only boy.

Teacher: Very good thinking, Jose.

Number on the Shoe

The entire class can play this game. The teacher chooses a student with a sturdy shoe sole and asks the student to think of a number between one and one hundred. The teacher records the number on the
student's sole with a piece of chalk. The class then tries to guess the number by asking questions that can be answered yesor no.
The students usually begin by asking questions like "Is it 73?" But eventually someone asks, "Is it in the thirties?" The latter type of question should be encouraged by the teacher because it takes in a greater' range of numbers.
The object of the game is, for the students to ask the minimum number of questions to determine a classmate ${ }^{\text {b }}$ s number. During the game students hive an
opportunity to listen, to verbalize, and to use and build on information gotten from students' previous questions. The teacher may want to record data from the children's questions on a number line on the chalkboard.

These games give children an excellent opportunity to develop game stategy and game planning. Overall, they offer a nonthreatening kind of total-class involvement by which deductive reasoning is exemplified through a question-answer-information-further-deduction type of sequence.

ic
 $\mathrm{Nu}-\mathrm{Tac}$ oe

HARIR D. RUDERMAN Hunter College High School, New York City

GSames like checkers and chess offer the child an opportunity to think ahead by considering alternate moves for himself as well as for his opponent. Unfortunately, in this fast-moving period many are reluctant to sit down and ponder over such games, mainly because it takes too much time.

The.game described here is a type of tic-tac-toe game that has ingredients of strategy common to checkers and chess: timing, blocking, position, anticipation. Moreover, children, as well as adults,
learn this game in less than one minute, get to grips with the challenge very quickly; and seem to drrive considerable enjoyment in playing it. It is a game that I invented recently and would like to share with others.

Directions for playing the game

1 Start with four pieces marked with crosses and four pieces marked with circles, and arrange them as shown on the twenty-square board in Figure 1.
2 Two players play. One moves the pieces

Figure 1
' with crosses, the other moves the pieces with circles, taking turns, first one player then thë other.
3 A move consists of pushing your own picce into an adjacent vacant square up or down, to the right or to the left, but NOT diagonally. There is no "jumping" or "taking" in this game, and if a square is occupied, no other piece may be moved into this occupied square.
4 The object of the game is to place three of your pieces in the same line: vertically, horizontally, or diagonally without -any intervening vacant squares. Examples of wins for the circles are shown in Figures $2 a$ and b. Examples of no wins for the circles are shown in Figures $3 a$ and $b: \cdot^{*}$ "

Figure 3

A variation

One player places all eight pieces on the board into squares in any arrangenent he chooses, one to a square. The other player makes the choice of moving first or scicond.

Editorial. Comment. - A quick but intriguing game is the game of NIM: There are many variations on this game. One of the simplest involves three containers of beads. Container \mathbf{A} has five beads, container B has four beads, and container C has three beads.

Two persons play, alternately taking beads from the containers. When it is a player's turn, he may take as many beads as he wants from a single contaher as long as he takes at least one bead. The person to take the last bead is the winncr. (Tُhe strategy for winning uses concepts from binary numeration.)

Computers teach math

JUDY ACKERMAN
West BoyLston, Massachusetts, School System, Worcester, Massachusetts

IIn order to maintain a high degree of interest in my sixth-grade mathematics classes, I decided to introduce a year-long class project. Each child belongs to a committee and is able to help with the work.

Our. project for the year is to learn about, and, build game-learning computers. The classes are working with the simplest kind of game-learning computers-ones that play games that can be completely analyzed. ${ }^{1}$ The ultimate goal is to design and build a game-learning tick tack toe computer. The first phase of this project involved studying and building a small gamelearning computer for hexapawn, ${ }^{2}$ a game designed by Martin Gardner.

Figure 1
The game of hexapawn is played on a 3-by-3 board with three markers for each player. (See Fig. 1.)

The markers are moved in the same way as the pawns in chess:

1. A marker may be moved forward one square to an empty square.
2. A marker may be moved forward

[^7]diagonally to the left or right to capture an enemy marker. The captured marker is taken out of play. The game is won in three ways:

1. By moving a marker to the opponent's side.
2. By capturing all of the opponent's markers.
3. By planning moves so that a point is reached in the game where the opponent is unable, to move.

As the class learned to play hexapawn, they observed that a draw was impossible and that there was a decided advantage for one of the players. (See if you can discover which player has the advantage.)

When the class became familiar with the game, they charted all the possible combinations of moves that couid face the computer during any game if the computer went second. (There are only twen-ty-four possible combinations.) For each combination, arrows were drawn in different colors to illustrate the choices that the

A combination diagram Figure 2
computer faces on each move (Fig. 2). The "brain" of the computer consists of twenty-four cups which were suspended

The hexapawn computer
Figure 3
in the side of a cardboard carton (Fig. 3). The combination diagrams were stapled to the cups. All the possible second moves, fourth moves, and sixth moves were grouped together.

The "memory" was made up of marbles placed in the cups. The number and colors of the marbles in each cup were determined by the number and color of the arrows on each combination diagram.

The learning took place as the class played the computer. The human player always started first. The operator then located the cup that contained the present board position. He randomly removed one marble from that cup and made a move for the computer that corresponded to the color of the marble. The game continued until there was a winner. When the computer won, it was rewarded by replacing ali the marbles removed during the game and by adding an extra marble to correspond to the marble removed on the
last move of the game. If the computer lost, it was punished by permanently removing from its memory the marble that corresponded to its last move of the game. The other marbles removed during that game were replaced.

As the members of the class took turns playing the computer, the rest of the class was busy keeping records of the results of each game. In this way there was an excellent opportunity to introduce a unit on graphing. The class found that the line graph was one of the more effective ways of illustrating the results. (See Fig. 4.)

Figure 4
The experience that my classes have gained from building the hexapawn gamelearning machine has given them many ideas for the design and construction of a ticktacktoe-learning computer. They are most enthusiastic and willing math students who look forward to coming to class.

Editorial Comment.--Be sure to make a file of all the "brainteasers" you run across. Put each one on a separate file card and keep in yqur puzzle corner. Students can pull out cards to work on whenthey have a spare moment. For example:

Cyl a circular pie into eight pieces by making only three cuts.

KALAH-an ancient game of mathematical skill

JOHN B. HAGGERTY Public Schools, Melrose, Massachusetts

Mr. Haggerty is an instructor of mathemalics in the Calvin Coolidge School in Melrose.

Alarge number of elementary and secondary teachers of mathematics have found it advantageous to use games as part of their instruction. The use of these games is much more than a nere whin upon the teacher's part. It has been shown that games, when properly used within the classroom environment, do actually produce an improvement in the ability known as quantitative judgment.

We realize that this term, quantitative judgment, is inclusive; there are many facets involved. The important point is, however, that the pupil is led by involvement in the game to make a decision based upon the relative position of his opponent.
The past few years have seen a sudden upsurge in the use of mathematical games in the classroom. More teachers than ever before are becoming interested in the use of games in teaching. More people than cier before are playing these games. Ganics such as chess and checkers are interesting, and do involve to some extent the quality which this article describes, namely, quantitative judgment. There are games which do even better in this regard. For several ${ }^{1}$ years we experimented with various games in the classroom. What we were looking for were games in which the element of chance was uinimal or absent altogether. These are extremely hard to find and, in many cases, are not altogether practical from an educational point of view.

Quoting from notes which the author made in a class in advanced statistics at Harvard University in 1947, "Most games now known contain at least some elements
of probability. To the best of my knowledge there are but a handful of games which, do not, and most of these are listed in Recreations Mathemalique, Volume III, page 105 . . . written by Lucas." "

In the October, 1963, issue of Scientific American, page 124, two of these games are described, together with two games of more modern origin. The two older games are The French Military War Game and Tafl, a game of Scandinavian origin. These games combine the characteristics of extreme simplicity and unusual strategy based upon immediate decision depending solely upon the last move by the opponent.

We have used all these games throughout the system in Grades 1 through 8 with some limited success. The games lacked in most cases an essential element which we felt was highly desirable: cultural significance and a relationship to the historical development of the number systems, bases, and systems of numeration.

Dr. Kelley did not know back in 1947 that there was, indeed, a game which possessed all of the essential elements to promote the development of pure reason in the form of quantitative judgment without a trace of chance or probability as it is known in most modern mathematics books and courses. Further, and equally important, was the fact that the game was as old as civilization itself and had been continuously played throughout the Near and Far East for seven thousand years.

The name of this fascinating game was Kalah. While we were busy taking notes

[^8]in Dr. Kclley's classes, less than fifty miles away from us, in Holbrook, Massachusetts, 67 -year-old William Champion was devcloping a modern version of this ancient game after a lifetime of persoual historical, as well as archacological, research throughout the countries of the eastern half of the world.

It is a fact of recorded history that many games which were popular at one time or another became lost in antiquity. Many of these gaines never appcared again. We only know about them through archaeological research. So far as we know, the game of Kalah is the only game continuously played in widely scparated parts of the world on at least three continents from the time of the first civilized country, Sumeria, down to the prescnt.

The following quotation from the June 14, 1963, issuc of Time gives us a vivid account of the background and ancient origin of this game.

Carved on a vast block of rock in the ancient Syrian city of Aleppo arc two facing ranks of six shallow pits with larger hollows scooped out at each end. The same design is carved on columins of the temple at Karnak in Egypt, and it appears in carly tomb paintings in the valley of the Nile. It is carved in the Thescum in Athens, and in rock ledges along caravan routes of the ancient world. Today the same pits and hollows are to be found all over Asia and Africa, scratched in the bare earth, carved in rare woods or ivory inlaid with gold.

In 1905, the year he graduated from Yele, William Champion read an article about an exhibit of African game boards at the Chicago Exposition of 1893 in which the author noted that Kalah "has scrved for ages to divert the inhabitants of nearly half the inlabited area of the globe." Fascinated by the failure of such a pandemic pastime to catch on in the U.S. and Europe, Champion began tracing its migrations and permutations.

He found an urn painting of Ajax and Achilles playing it during the siege of

Troy; he found African chieftains playing for stakes of female slaves, and maharajahs using rubies and star sapphires as counters. He finally traced it back some 7,000 years to the ancient Sumerians, who evolved the six-twelve-sixty system of keeping numerical records.*

These people inhabited the fcrtile vallcys between the Tigris and Euphrates rivers in that part of the world presently known as Iraq. This has long since been accepted in archaeological circles as the birthplace of civilization.

Atter having searched for several ycars for the game which was most adaptable to the modern math approach, I was naturally intrigued by the Time article. A letter to both the periodical staff and the author drow unexpected responses. Time granted unq̧ualified authority to quote at length from the article entitled "Pits and Pebbles," but most pleasant of all was the surprise of receiving a call from the subject in person from his home in Holbrook, Massachusetts. He thanked me for my letter and invited me to mect him at the Boston Public Library where the game was being granted prine exhibit space during the month of September in the Sargent Gallery which is devoted exclusively to subjects of documented archacological and cultural significance.

Naturally, I went to meet this remarkable mau, who at the age of 83 can still run at full speed up three flights of stairs. He spelled out for me the fascinating story of his travels over much of the earth's surface in his quest of the ancient origin of this game which is still widely playcd in Scmitic countries of the Near East and Africa.

He told me he first became interested in the game that his porters on an African trip were playing in the sand. The place was the Makahlai Desert of Africa. These Arabs called it Mancalah, "ör "The Game of Intelligence."
"Two players sit behind the two ranks of six pits on the board between them.

[^9]Each pit contains three (for beginners) or six "pebbles" (which may be anything from natches to diamonds). Purpose of the game is to accumulate as many pebbles as possible in the larger bin (kalah) to his right. Each player in turn picks up all the pebbles in any one of his own six pits and sows them, one by one, in each pit around the hoard to the right, including, if there are enough, his own kalah, and on into his opponent's IITS (but not his kalalı). If the player's last counter lands in his own kalah, he gets another turn, and if it lands in an empty pit on his own side, [only] he captures all his opponent's counters in the opposite pit and puts' them in his kalah together with the capturing pebble. The game is over when all six pits on one side or another are empty. It is not always an advantage for a player to go "out," since all the pebbles in the pits on the opposite side go into the opponent's kalah. The score is determined by who has the most pebhles. Bach player eleans out his own kalah at the end of the game and replaces three pebbles in each pit on his own side. All pobbles left over represent the inargin of yictory.'"

This method of tallying euables even very young children to play the game and, although they are unable to conat formally, they know whether they won or lost by this tally. It they end with excess counters afteriloadiuge each pit, they know intuitively thit they have won. It is precisely this intuitive outcome of the game which we feel is one of the important outcomes of playing the game.

- A sophisticated player learns not to accept all short-term advantages, however teupting. Sometimes the early gain is wiped out in the later stages. It is this fact which adds to the fascination of the ganc. We would invite the reader to play one full game to check this fact for himself.

Figure 1 on page 329 is a sketch of the layout of the board. These pits can. be scooped out of the ground, and ordinary
pebbles can be used in playing, much as in the game of hopscotcli. The mathematical implications are, however, much more importaut than those of hopscotch.

The modern version of the game is played upon a wooden gaine board which is made in the loft of a factory in Holbrooks, Massachusetts. Some 24 styles of boards in all are turned vut. The simplest board is routcd out of ponderosa pine by automated machining. The counters are a species of Italian bead which are extremely durable and adaptable to vegetable dyeing processes. The most elaborate of these boards is carved in the form of an original Nile skiff, a craft which is so common to that area of the world.

The city of Roston's 160 playgrounds have 1000 of these game boards. Los Angeles, Cleveland, Chicago, and New York playgrounds are also equipped with this highly interesting educational-diversionary aid.

The most frequent question asked by parents is, "Will this game increase my child's mathematical ability?" Our most frequent answer is not lightly stated: "Kalah is the best all round teaching aid in the country." We are not alone in this belief. The Harvard Graduate School of Education also thinks highly of the game and is publishing a teaching manual to cover not only the rules for play but also tise ancient cultural origins of the game. Alsodiscussed in the Harvard manual are the implications of the game for the teaching of "modern mathematics."

One must again recognize that the term "Quantitative judgment" is a general term which has several facets. Anong these is one which, for want of a better term, might be defined as a "quality of the mind to make a specific decision based upon the array of the opposing position. This decision is entirely intuitive and is based upon a grasp of special relationships within the scope of that which is loosely defined as 'human intelligence.' ",

[^10]This ability seems to be best fostered in children by providing them with problemsolving situations which require them to usc whatever natural intuitive akill they possess. In this sense the game of Kalah is purely mathematical, no element of chancc enters in, and the basic rules are so simple that even a young pre-echool child can play the game after a short demonstration.

We have found that this ancient game of Kalah not only induces very young children to think quantitatively but, also develops intuitive decision-making so necessary in problem-solving. It also helps pupils think computatively. The method of play-distributing counters one by one to the right-confirms and structures the habit of moving from left to right as in reading and writing.
Small children learn to count without using their fingers; to distinguish units from multiples; to assess special array in a physical order to objects as well as to acquire other mathematical concepts in a natural way while playing an interesting and absorbing game.
The four fundamental processes in math are all used in determining the number of counters in the twelve pits at any given time. This attribute is also used in computing the score. Pure reason is vital to victory. The strategic move must be immediately evident to the play̌er involved.
. There is absolutely no clement of chance in this game. It is purely a game of skill, as it has always been. The opponent moves, and the player responds intuitively to the situation at his own level of sophistication.
The number of counters in each pit can be increased to six or reduced to one for pupils of widely varying mental ages. The use of increased numbers of counters creates so many variables that no matho-- matician could compute the combinations. No doubt some of today's larger computers could be programmed to do this, but the probabilities are so great
against there being two identical games in a lifetime.
The following demonstration gane has been found effective for teaching even very young pupils how the game is actually. played. An interesting projection of this game, which the classroomi teacher will find useful in introducing the game to large numbers of pupils in Grades 1 through 12, will be described later in the article.
In the game illustrated Player A began by moving the.three pebbles in his pit A4, ending in his Kalah and thus earning another move, which he used to play from pit A1, ending on empty pit A4 and thereby capturing B's men. By similar moves and captures, A, by the fourth turn, has become pebble-proud with ceven in his, kalah to a pathetic one in B's (see Fig. 1). The sequence of moves in the sample

Figure 1. The board after Al
gaine is $\mathrm{A} 4, \mathrm{~A} 1-\mathrm{B} 6-\mathrm{A} 3, \mathrm{~A} 2, \mathrm{Al}-\mathrm{B4}, \mathrm{B6}$, $\mathrm{B} 1-\mathrm{B3}-\mathrm{A} G-\mathrm{B} 2, \mathrm{Bl}$. By the fourth turn A is dangerously concentrated in the two pits, A5 and A6. B, seeding six pebbles on his own side, forces A to start distributing his hoard around the board. By the eighth turn (see Fig. 2) A still has twelve in his Kalah to five in B's, but B moves the five

Figure 2. B's winning move
pebbles in B2 and then has only to move the single pebble in his pit Bi to capture A's seven remaining pebbles, ending the game and winning it by a score of $2 t-19$.

We have found that the use of a demonstration game such as that just described is the most practical way to introduce thr game to a group of pupils. In our own case two applicationis of this method were adopted at different levels of instruction.

For groups of pupils in Grades 4 and up we used an overhead projector with the Kalahs and the pits drawn on the platen overlay. We used corn seeds as counters which appeared on the sereen as irregular opaque pebbles. As these objects were manipulated upon the platen, cach move was clearly visible on the overhead streen to the watching group.

With younger pupils who have a much shorter attention span we found that ant aetual demonstration game on a teaching board which used separate colors for cach side of the board wias more interesting. The game was taught developmentally: While the children observed, asking and answering many questions. This demonstration was followed by several practice games between pupils selected from the class. The two basie rules of the game were structured by discussion and additional demonstration.' We then paired of the whole class at boards previously set up. Considerable interest resulted, and it seemed to be entirely spontancous.

It has long been felt in professional cirelcs that experiences in problem-solvins and the development of intuitive poncrs in solving problems have been sparingly used in pre-school and Grades 1 and 2 . One of the difficulties has been that many youns pupils do not read well at all. some teachers hale attempted to surmomit these difficulties through extemsive use of diagrammatic and pictorial representation. This procedure, white usciul in some sithatiols, is generally not the way to start. We think now that a mathematical game such as Kalah has more value.

We feel that the pupils" imability to read is no justitic:ation for omitting problems from these carly programs. The teacher can present these situations orally to the pupils. The game of diatah is olle of the best nonverbal means of accomplishing this end.

In addition to its value as a diversion and as a means of developing the intuitive
 there is anothersmetrane equally valuable. This outcone is the reconnition of the close identiteation of the name throughout the histony of rivilization with the developmant of siotems of munarion and the conerpt :and idene of mumber. This outcone alone would make it a valuable activ ity for pupils in the mathematies bab)oratory.

It the sery leari it makes the elassroom a more interestine place. l'upils are given an opportmity to identify themselves closely with a gance which certainly has a rich cultural heritase.

We do not wish to imply, howerer, that mathematics can be completely taught by means of a gallue or ally series of games. We merely think that this pame of Kalah is one way of producing some desirable outcones in the teaching of mathematics since pupil usually pliy it with great interest and enthusiasm.

The uiderotanding, cuthnsiasm, and interest that lialah engouders is not at all remarkable when nue considers that the game has persisted for scien thousand years in widely sepmatated areas all over the ghobe. We tend to agree with the :anciont historian Harodutus, who was guoted as having said, ". 1 cultural heritape may be lost once and yet he retrieved by sumeone of persisteuce and dedication, but twice loot it may prove to be irretriesable. "3 hs a result of our own bricf ex: pericuce with this fascinating game we certainly hope that other sch:ool pupils throughout the coustry will soon be given a chance to play it.

[^11]
A project for the low-budget mathematics laboratory: the game of kalah

RANDALL L..BRILL
A tencluer of sixth-grade mathematics at St. John Vianny School in Nor:hlake, Illinois, Randy Brill has studied with Dr. James Lockwood at Northeastern Illinois University.

Teachers often see a kit or game that theyfeel would be ideal for use in the mathe-matics-laboratory activities of their classrooms but find it financially out of reach. By using a little imagination, they very often can make similar kits or games and at a much lower cost.

Kalah, a fascinating count-and-capture game, is easily made and ofiers endless opportunities for the student to develop his basic arithmetic skills while having fun. It' involves the players in a strategic and logical pattern of thinking.

We are told that this game, which was firs: played in ancient Africa, was found to be so simple and fascinating that it became a popular form of gambling. It is said that men even, determined their empires and harems over a game of Kalah. Although no longer used for such purposes, it still holds a great fascination for young and old "alike and has spread to many parts of the world.

Following is a list of materials needed to make this game:

1. One piece of stiff cardboard approximately $8^{\prime \prime} \times 24^{\prime \prime}$
2. Eighteen paper cups (the 4 oz . size is best)
3. Glue and cellophane tape
4. Dried beans to be used as counters
(You may want to vary the sizes or the
materials to fit your situation. For instance, egg cartons are a possible substitute for the cardboard and paper cups, and marbles or beads might be used as counters.)

Cut all the paper cups so that they are $1 / 2$ inch to $3 / 4$ inch deep as shown in figure 1 .

Fig. 1
Two large containers, called kalahs, are needed. To make a kalah, prepare three of the cups as shown in figure 2. One cup should be trimmed on both sides and the

Fig. 2
other two cups should be trimmed on one side only. Taping these three cups together provides the large container that is used to gather the playing pieces during the game. (Other available materials-for example, milk shake or cottage cheese containerscan be used to form the kalahs.)

Arrange the remaining twelve cups in two rows of six on the cardboard so that the members of each pair are directly across from each other as shown in figure 3.

Fig. 3
The two rows should be about two inches apart. Glue the cups into place. At each end of the cardboard glue one of the kalahs. Armed with your beans, which will serve as the counters, you are now ready to play a game of Kalah.

The game is played by two players who sit on opposite sides of the playing board. Each player deposits three counters in each of the six cups on his side of the board. The object of the game is to collect as many counters as possible in the kalah, the large container, at each player's right.

The method of determining who moves first can be decided by the players. Each player, in turn, takes all the counters that are in any one of the six cups on his side of the board and distributes them one by one in each cup going to his right. If a player has enough counters to go beyond his kalah, he distributes them in his opponeut's cup, skipping the opponent's kalah. Those counters now belong to the opporent.

There are two important elements that give the game its challenging strategy. If the player's last counter lands in his ownkalah, he gets another turn; if his last counter lands in an empty cup on his side
of the board, he captures all his' opponent's counters in the cup opposite and puts them in his own kalah, along with his capturing piece. In figure 4, player A has emptied cup A-3 for his opening move. His last counter landed in his own kalah, and so he is entitled to another move. He now empties cup A-6 to capture the opponent's counters in cup B-4 because his own cup A-3 was empty when his last counter landed in it. All the counters from B-4 and the single counter that landed in A-3 go into his galah. Once a counter is placed in either kalah, it remains there until the round is ended. A capture ends the move, and play goes to the opponent.

Player B

Fig. 4

A round of play is over when all six cups on one side are empty. The other player adds the remaining counters in his cups to the ones that are in his kalah. The score is determined by who finislies with the most counters. If the winning player has collected 23 counters, his score is 5 because each player begins with 18 counters. The winning score for the game can be determined according to the situation or playing time allowed, but a score of 40 is usually the goal.

As you can see, the rules of the game are quite simple, but play can become very complex depending on the abilities of the opponents. Lower grades or slow learners can begin learning to play by simply putting one counter in each cup. More experienced players or faster students can play with as many as six counters in each cup.

Three general objectives in having pupils play the game of Kalah are (1) to offer a recreational learning experience, (2) to sharpen basic computational skills and concepts, and (3) to involve students in a situation in which they use a logical pattern of stratcgy.
In addition to being played as an independent activity, Kalah is very effective; when used as a part of a specific lesson or guided activity. Is may be used to present concepts as well as to reinforce skills. Counting can be demonstrated in playing the game and tallying the score, addition and subtraction are used during play as the number of counters in the cups in-
creases or decreases according to the moves that are made, and increasing the number of counters in the cups at the beginning of the game encourages new strategic patterns.

The board and counters can be used as a model to demonstrate other concepts, even without playing the game. The counters in a cup can become a set and the board a universe, or using simple modifications on the board, such as markings or coloring, can be helpful in discussing place value and grouping. Creative individuals may find many other variations of Kaiah that will prove effective and interesting in their classrooms.

Eitorial Comment.--Many classroom games can be created using sets of objects variously called "logical blocks" or "attribute blocks." You can make"an inexpensive version of these materials with file cards and the three attributes-color. number, and shape. Use two colors, red and blue; four numbers, $1,2,3,4$: and three shapes, \quad. $\$$. Using these characteristics, construct twenty-four attribute cards representing all the possible combinations of the three attributes. For example, you will have cards looking like these:

Distribute the 24 cards to a small group of children. Place one card face up on a table top. Students then take turns discarding (one card per turn) from their hands following the game rules. For exampie, one game involves discarding cards if they are different in one and only one way from the card on top of the discard pile. The first person to discard all the cards is the winner. Another game is based on this rule: Discard if the card is like the top card in one and only one attribute.

Students can make up their own ruies. The student who made up the rule "difierent in two ways" soon realized that this was equivilent to the rule "alike in one way."

Drill some fun into your mathematics class

MARIE MASSE
Central Elementary School
West Newbury, Massachusetts

Would you like to drill some fun into your mathematics class? Put aside the usual mathematics drill and get out an electric drill, some scrap wood, some golf tees, and some dice. From these inexpensive materials you can develop a variety of mathematics games, even some that accomplish the same results as the usual mathematics drill, but in an unusually enjoyable way.

Project 1

Materials needed

A piece of wood measuring approximately $1^{\prime \prime}$ by $3^{\prime \prime}$ by $8^{\prime \prime}$ in which two parallel rows of 10 holes each are drilled (see fig. 1), and two golf tees.

Object of the game

To land exactly on 20.
Player A moves his tee one, two, or three spaces; player B moves his tee one, two, or three spaces from where A landed. Play continues alternately until someone lands on 20.
The strategy, which some childien see almost immediately, is to land on $!6$ thereby forcing your opponent to land on 17, 18, or

19, any of which leaves the next move the winning play. After discovering that 16 is a crucial point, a player must then figure out how he can control the play so that he can land there every time. Gradually it becomes clear that the multiples of four are the key to winning every time. The sly player learns that it's not only polite to let your opponent play first, it's also good strategy. The game can be varied by changing the number of holes on the board

Fig. 1
or by taking moves of one through four, or more, spaces.

Frojoct 2

Materials needed

A piece of wood measuring approximately $1^{\prime \prime}$ by $4^{\prime \prime}$ by $4^{\prime \prime}$ in which a square array of nine holes is drilled (see fig. 2), three white tees, three red tees.

Fig. 2

Object of the game

To get your three tees in row.
Each player gets three tees. Players take turns placing tees, one at a time; on the board. When all six tees have been placed, play continues by players alternately moving tees one at a time and one space at a time in any direction until someone is able to ge his three tees in a row.

Projoct 3

Materials needed

A piece of wood measuring approximately $1^{\prime \prime}$ by $3^{\prime \prime}$ by $10^{\prime \prime}$ in which two parallel rows of twenty holes each have been drilled (see fig. 3) and numbered from 1 to 20 ; two white dice, one red die. two tees.

Object of the game

To reach 20, or beyond.
The players take turns throwing the dice. On each throw, the player moves his tee forward the total of the white dice and backward the number on the red die. The player who first finishus his play on 20 or beyond wins the game. A player does not need to end up on 20 to win.

Fig. 3

Project 4

Materials needed

A piece of wood measuring $1^{\prime \prime}$ by $6^{\prime \prime}$ by $6^{\prime \prime}$ with lines marked and intersections drilled as in figure 4, thirteen white tees, and one other colored tee.

Fig. 4

Object of the game

To pen the fox (colored tee).
The name of the game is "Fox and Geese"-the white tees are the geese and the odd color, the fox. The fox is placed in in the center (see star in fig. 4). The geese
are lined up on one side as shown in figure 4. This is a strategy game in which the geese try to hem in the fox. The problem is that the fox can jump any lone goose and remove him from the board as in checkers. Double and triple jumps are allowed. Clever geese
should be able to trap the fox.
With these as a starter, children can design their own games. Children can mark out the boards to be drilled even though, generally, they would not be allowed to use the power drill.

Jupiter horse race

ELINOR J. WRITT

Brunswick Junior High School, Brunswick, Maine

Eighth graders at our school recently had a great deal of fun trying to solve a problem in logical reasoning that was invented by one of their classmates. Perhaps your students will enjoy solving such a puzzle, and they might possibly be motivated to create similar ones. The problem
is presented here as it was submitted by the student.

Jupiter herse race by Oliver Batsen

(Do not be put off by the weird things you see in this puzzle.)

Fill out the chart below.

Place	Owner	Stall number	Niame of horse	Color of ribbon	Age	Sex
First	Color of hair					
Second						
Third						
Fourth						
Fifth						

Clues:

1. Jupiter horses all foal at the age of three, with one exception.
2. Prepon has the middle stall.
3. First place is green.
4. Curly came second in his/her heat, but did better in the finals.
5. Speedball lost to Running Thing and Prepon by an inch.
6. Mr. Smith washed his horse's ribbon, and his white socks turned pink.
7. Mr. Petéfs collected 5th-place money.
8. Curly is a celebrated stallion.
9. If Running Thing had come in fifth. Runner wouldn't have placed.
10. Prepon hated Running Thing, and kicked his/her wall.
11. Prepon loves Curly because of his/her polka dots.
12. Speedball was born two years before the latest leap year.
13. Prepon's ribbon is a mixture of black and blackish-black:
14. Mr. Jones' favorite color is violet.
15. Mr. Peters and Mr. Evans were seen betting together.
16. This was Prepon's first race.
17. Running Thing is the same age as his/her stall number, less one.
18. Runner foaled last month.
19. Runner is his/her mother's first foal.
20. Winners of horse shows are put in stall two.
21. Speedball lives next to Prepon.
22. Runner wishes that his/her ribbon
wasn't the same color as his/her coat.
23. Runner lives next to the 3rd-place winner.
24. Purple horses always win horse shows.
25. When Prepon flies, you lose him/her against the clouds.
26. Mr. Peters bet $\$ 50$ that Curly would come in second.
27. 4th place brought a blue ribbon.
28. All Jupiter horses race at the age of one.
29. Curly won - a prize for one-year-olds last year.
30. The electronic picture put Prepon ahead of Running Thing a tiny bit.
31. Runner has the color of a tree trunk.
32. Mr. Evans jecringly calls Spcedball a flower.
33. Mr. Evans got $\$ 50$ on a bet he made on his horse.
34. Running Thing is in heat.
35. Speedball was the head of a wild horse band.
36. Running Thing won first prize for beauty two months ago.
37. Mr. Davis owns a female horse wht is one of the five winners.
38. Runner is a year younger than his/her mother, a Jupiter horse, when she foaled.
Note 1: The stalls are in this order: 1, 2, 3, 4, and 5. You must find out which horse goes in which stall.
Note 2: Placing means coming in first, second, third, fourth, or fifth place.

Suppose you have nine coins identical in size and appearance but one is counterfeit and heavier than the other eight. How can you with a simple balance scale locate the counterfeit coin in just two balance tests? For your first step place any three on one side of the balance and any other three on the other side. Now complete the test and find the counterfeit coin.

Paper, pencil, and book

HENRYLULLI

Henry Clay Junior High/School, Los Angeles, Calijornia

$$
y
$$

This is a mathematical game that has been used successfully in the classroom. It was tried with various levels of seventh and eighth grade classes at an inner-city school.
The origin of the game dates back to medieval times. The earliest reference is in the eighth century. Many versions of the game have been published and sold since 1900.

In the present versign of the game, the code key has been alphabetized, which
makes it easier for the students to memorize. The game uses a box with twentyfour counters-paper clips can be used as the counters-and three items: a sheet of paper, a pencil, and a book. (Any items could be used. Cards with the names or pictures of the items could also be used if desired.)
To play the game, choose three students, A, B, and C. Give A one counter, B two counters, and C three counters out of the box. A fourth student turns his back to
the class while each of the first three students cheoses one of the three selected articles. The student who chose the paper then takes from the box of counters as many counters as he was given initially; the one who chose the pencil takes twice as many counters as he was given; and the student who chose the book takes four times as many counters as he was given.

After the three students have each taken the appropriate number of counters, the fourth student turns around and counts the counters remaining in the box. With the

Number of counters	Code hey	Articles
1	AERO	Paper, pencil, book
2	BEACON	Pencil, paper, book
.3	CANOE	Paper, book, pencil
5	ENCOMPASS	Pencil, book. paper
6	FLOATER	Book, paper. pencil
7	GOLDLEAF	Book, pencil. paper

Fig. 1
aid of the code key in figure 1 he instantly tells which student took which article.

Number of counters taken by	Counters left oter in box		
A	B	C	
1	4	12	1
1	6	8	3
2	2	12	2
2	6	4	6
3	4	4	7
3	2	8	5

Fig. 2

Suppose three counters remain in the box. The code key for 3 is CANOE. This means that the first student, A, took the paper; the second student, B, took the book; and the third student, C, took the pencil.

Each code key has three vowels. Each vowel corresponds to one of the three items-in this case, A corresponds to the paper, E to the penci!, and Q to the book. The order of the vowels in the code key indicates the distribution of the three items.

Notice that there is no code word for 4. It is impossible for fown counters to remain in the box. Why? A careful analysis of the situation provides the answer.

Take any of the six possible combinations of the numbers of counters taken by A, B, and C. (See fig. 2.) The total number of counters remaining in the box after the first 6 are distributed (1 to $A, 2$ to B, and 3 to C) is 18 . If the sum of the numbers of counters taken by A, B, and C is subtracted from 18, the difference is from 1 to 7 , but never 4.

References

Ball, W. W. R. and H. S. M. Coxeter. Mathematical Recreations and Essays. London: Macmillan, 1942.
Gardner, Martin. Mathematics Magic and Myslery. New York: Dover Publications, 1956.
Gibson, Walter. Magic with Science. New York: Grosset \& Dunitap, 1968.

Multipurpose Games and Puzziles

BBy the time you have reached this point, you have probably said to yourself many times over, "You know, if we just changed this' a little, we could use that game for . . " To encourage this kind of thinking, we included in this last section a collection of games whose utility seems multifaceted. Articles appearing in this section were selected because-

1. they describe several games;
2. they show how one game has many uses;
3. they describe a game with a multipurpose potential.

By this time, you have also found that games wisely used in the mathematics classroom provide-

1. both diversion and motivation;
2. a technique for accomplishing the necessary repetition for sound drill and practice;
3. an intellectually honest means for developing new mathematical ideas.

As you read through the articles of this last section, keep in mind the more serious purposes of instructional games-initial teaching, drill, and eval-uation-as well as the obvious and much-desired charficteristic of fun.

To create multipurpose games for mathematics instruction, we borrow heavily from games and diversions in our ordinary lives. We use action games, especially for the early grades. We adapt all kinds of games that use playing cärds. Athletic games-baseball, football, the Olympics-are a rich source of ideas. Television has more games than you can count on your fingers. Children are fond of creating their own games patterned after popular TV shows. Familiar games such as dominoes, checkers, and Monopoly are highly versatile. And the ever-popular crossword puzzles and crostics find their matches in cross-number puzzles and "mathematicalosterms." Where would we be if we couldn't find some use for dice (which you may prefer to call "number cubes"). Familiar teaching aids, such as the geoboard and geometric shape cutouts, provide the raw material for many activities. For those who enjoy brainteasers, there is a multitude of number oddities, codes, and riddles to ponder. Even the bulletin board can do a turn as a mathematical game board!

We hope that you have found some of these games useful and that you have been able to create some of your own. Remember-be sure to share your ideas with other teachers. After all, this collection was created from the ideas of classroom teachers.

Active games: an approach to teaching mathematical skills

 to the educable mentally retardedGEORGER. TAYLOR and SUSAN T. WATKINS

As associate professor and chairman of the Department of Special Education at Coppin State College in Ballimore, George Taylor reaches methods courses in special education to both undergraduate and graduate students. He has taught both educable and trainable retarded children in the District of Columbia
Public Schools. Susan Watkins is a reacher of the educable mentally retarded at Shady Side Elementary School in Prince Georges County, Maryland. She has used the active.game idea for a number of years in her classes.

Pragmatic experience has shown that curriculum adjustment must be made if schools are to meet the everyday needs of educable mentally retarded children. Many retarded individuals have been unable to cope "successfully with the curriculum of the regular grades; they are too different from the average child to adjust to the usual academic demands. For this reason various forms of instructional procedures have evolved. "Active games" are an example.

The active-game approach to learning is concerned with how children can develop skills and concepts in various school subject areas while actively engaged in game situations. Although all children differ in one or more characteristics, the fact remains that they are more alike than they are different. One common likeness of all children is that they move and live in a mobile world. The active-game approach to learning is based essentially on the theory that children will learn better when learning takes place through pleasurable physical activity; that is, when the motor component of an individual operates at a
maximal level in skill and concept development in school subject areas traditionally oriented to verbal learning, (Humphrey 1970).

Research (Cruickshank 1946) indicates that there are significant differences in the ways by which mentally retarded children and normal children learn mathematics. Educable mentally retarded children tend to learn certain mathematical skills and concepts better through active games than through traditional approaches and media.

The following activities are illustrative examples of active games related to major areas in elementary school mathematics.

Number system

Objective

The student will demonstrate his ability to match numerals and sets of objects with eighty percent accuracy.

Activity: Hot spot

Pieces of paper with the numerals 1 through 10 are placed in various spots around the floor or play area. There should be several pieces of paper with the same

numeral. The teacher has a collection of large posters picturing various numbers of different objects. He shows a poster to the class. An overhead projector can also be used to show different quantities of objects. The children must identify the number of objects on the poster and then run to that numeral on the floor. A child gets a point every time he finds the right numeral. Any child who is left without a spot gets no points for that round. Any child who has five points at the enc of the period of play is considered a winner.

Expected outcomes

Children are helped to count from one through ten objects and then to identify numurals that represent the number of objects. After a game, the posters can be put on display around the room along with the correct numerals. Procedures may be repeated for children who do not master the skill.

Addition

Objective

Given numbers from 1 through 9 , the student will correctly add them during a specified period of time.

Activity: Addition tag

Each child is given a card bearing a numeral from 1 through 9, which he keeps throughout the game. One child is then chosen to be the tagger. He may go to any child and tag him. The tagger then adds his number to that of the child he tagged, and su on.

Expected outcomes

Such a game provides practice in adding for those who need it most. There are no penalties for children who make mistakes and have to drop out of the game. For children who score perfectly for several days, some other enrichment work or
games should be planned while the other children are playing addition tag.

Subtraction

Objective

i
When presented with simple problems in subtraction, the child will demonstrate his understanding by giving the correct answer eighty percent of the time.

Activity: Musical chairs

Chairs, one less than there are children playing the game, are arrarged in a circle, facing out. As the music plays, children walk, run, or hop around the chairs. When the music stops, all children try to find a seat. The child left without a chair drops out of the game-and takes a chair out of the circle of chairs. The teacher may also take out two or more chairs at a time. The activity may be repeated as many times as seems appropriate to the teacher.

Expected outcomes

Children see concrete examples of subtraction; chairs are taken away. The teacher may have the children determine the number of chairs left each time the game is repeated. Results may be recorded on the chalkboard, and later on chart paper, for children to review at their seats.

Multiplication

Objective

Given a pair of one-digit numbers, the student will demonstrate his knowledge of simple multiplication facts.

Activity: Call ball

The children stand in a circle. The teacher stands in the center of the circle with a ball. The teacher calls out a combination (for example, 2×3) and bounces the ball to a child in the circle. The child must try to catch the ball and give the correct answer before the teacher counts to ten. One point is given for knowing the fact and another for catching the ball. The
teacher may elect to have a child be the one in the center calling the problems and bouncing the ball. In such case, it should be emphasized that all children in the circle should be given a chance to catch the ball and answer problems.

Expected outcomes

This game is a little easier for children to play than the regular game of call ball, where they have to be very quick to remember the answer to a given problem. This activity helps to provide the repetition necessary to develop quick recall of the multiplication facts. Addition, subtraction, and division facts might also be used for this game.

Fractions

Objective

The student will demonstrate his knowledge of simple fractions by being able to verbalize values, to know that fractions are part of a whole, and to express wholes in simple fractional parts.;

Activity: Hit or miss.

Children are divided into teams. Each team is given an eraser, which is set on a table, a chalk tray, or the floor. The teams stand in rows a specified distance from the erasers. Each child is given three or foui erasers. He tosses the erasers, trying to knock down the one set up on the table. As each child plays, he calls out his score, expressing it as a fraction. One hit in four tries equals one-fourth; three hits in four attempts would be threefourths, and so on. The team with the highest score wins.

Expected outcomes

Children can learn to use the relationship between successful and unsuccessful attempts at making points to develop an understanding of fractions. The children can use this concept in those situations in which they are practicing skills; shooting baskets, for exampis.

Measurement

Objective

The student will demonstrate his knowledge of linear measurement (centimeters and meters) by being able to use a meter stick to measure distances from various points.

Activity: Ring toss

A regular ring toss game can be used for this activity. A meter stick is needed. The class is divided into two teams. Each team has a ring, and both teams try to ring the same post. The first child on each team takes a turn tossing his ring. Each child then iakes the meter stick and measures the distance between the post and his ring. The ring closest to the post scores one point for the playci's team. Children should use centimeters or meters, and tenths of hundredths of meters. The team with the highes! score wins.

Expected outcomes

Each child has the opportunity to develop his measuring skills when he determines the closeness of his ring to the post. To get additional practice, a child could check his opponent's measurement.

Tolling time

Objective

The student will demonstrate that he can correctly and with little, hesitation tell time by the hour and that he understands the term clockwise.

Activity: Tick-tock

The class forms a circ!e that represents a alock. Two children, called Hour and Binute, are runners. The children in the circle chant "What time is it?" Minute then chooses the hour and calls it out (for example, six o'clock). Hour and Minute must stand still while the children in the circle call "one o'clock, two o'clock, three o'clock ..." until they reach the time that Minute chose. When the count
gets to the chosen hour, the chase begins. Hour chases Minute clockwise around the outside of the circle. If Hour can catch Minute before the children in the circle once again count up to the chosen number, he chooses another child to become Hour. The game can also be played by counting by half-hours.

Expected outcomes

Children are exposed to and given practice in telling time by the hour, as well as developing and understanding tise term clockwise. Children may play this game independently to review or reinforce previously learred skills.

Monotary syssem

Objective

Given symbols that represent coins (pennies, nickels, dimes, quarters, and fifty-cent pieces) the student will demonstrate that he recognizes them and that he can correctly use their values in different combinations.

Activity: Banker and coins

The teacher has a set of signs denoting the basic coins or their values: $5 \&$, five cents, nickel, penny, 14 , one cent, and so on. One child serves as the Banker. The Banker calls out a coin. The children then run and group themselves with other children until their group amounts to the value of the coin called. Every child who is a part of a correct group gets a point.

Expected outcomes

The ciildren become aware of the terms for and value of different coins. The children get practice in combining different amounts of money to arrive at a specific amount. To check that a group is correct, the teacher can help the-whole class count it out. In this manner children can be helped to see how it takes two nickels to make one dime, or five pennies and a nickel. And they learn that "five cents" is the same as "one nickel."

Implications

In planning for learning through active games, an attempt is made to arrange an active learning situation so that a fundamental skill or idea is being practiced in the course of participating in the active game situation. Actifies are seiected on the basis of their degree of involvement .. of (1) a skill or coneept in a given school subject area, and (2) physical activity appropriate to the physical and social developmental level of a given group of children.

Carefully. selected active games provide purposeful and pleasurable experiences. They involve the learner actively and give the child the opportunity to dramatize the idea. Active gaines reinforce a concept and develop skills by providing the repetitive drill that educable mentally retarded children need.

Since educable mentally retarded children are more severely handicapped in the
study of mathematies than the majority of children, it is suggested that the use of purposeful active games for the development of mathematicai concepts is a very effective instructional process.

References

Brueckner, Leo J. How to Make Arithmetic Meaningful? Philadelphia: John C. Winston Company, 1947.
Cruickshank. William M. "A Comparative Study of Psychological Factors Involved in the Responses of Mentally. Retarded and Normal Boys to Problems in Anthmetic." Doctoral Dissertation, University of Michigan, 1946.
Hood, H. "An Fxperimental Study of Piaget's Theory of Development of Numbers in Children." Britush Journal of Psychology 53 (1962): 273-86.

Humphrey, James H. Chld Learning Through Elementary School Physical Education. Dubuque, Iowa: William C. Brown Company, 1966.
——and Dorothy D Sullivan. Teaching Slowl.carners Through Actue Games. Springfield, III.: Charles C. Thomas Publisher, 1970.

0

More games for the early grades

EDWIMA DEANS

Guessing and checking

Play a game of guessing and checking the weights of differeut children and of differ-s ent objects in your room. Let several children lift an object in turn. Each will guess
the weigint and record his guess. Then the object is weighed to see which children came closest to the correct weight. Children are encouraged to use good judgment in making guesses. For example, if a child who has just been weighed stands beside
the child who will be weighed next, there is some basis for comparison.

If children are to improve in the ability to make approxinate estimates, they must discover and keep in mind that large objects are not necessarily heavy nor are small ones always light. They must learn to estimate weight by actually lifting objects or by some risual comparison of similar objects.
"Guessing and checking" can also be played with measuring. Mark off nine feet along the floor to serve as a model mcasure just as a ruler or yardstick. The door, a window, the chalkboard may be measured and marked as other model measures. Provide rulers, yardsticks, and tape for measuring stationary objects. Guess the width, length, and height of various objects, record the guesses, and nieasure to determine correct measurements.

Many of our decisions with regard to number experiences are reached, not by the pencil and paper method, but by rapid. rough calculation which gives a working estimate of the amount. Any number learning which leads the child to inprove his ability to season sensibly and arrive at a fairly arcurate estimation will prove of infinite worth to him.

Button game

To play this game, assemble a paper cup, a paper plate, and six to ten buttons (two or three different colors will facilitate the recognition of groups). Glue the paper cup exactly in the middle of the paper plate and allow it to dry thoroughly.

Two to four ehildren play. The players take turns throwing the buttons one at a time into the paper eup. The exact distance to stand from the plate is determined, measured accurately, and marked. Scoring for this game is done according to the desired scoring device. Fach child playing will determine these facts: "How many did I throw into the cup?" "How many did I miss."" "Do the ones in the cup and the ones outside equal the total number I had to begin with?"

Hauling lumber

Individual children can benefit greatly from stimulating game-like experiences which are designed to help them overcome some difficulty in number understanding.

Anita Riess gives a report of a retarded child of eleven who was helped to build up an understanding of oûr number system and of money values by means of a game nceessitating the use of money and of tens. A miniature lumber yard was set up and the lumber (wooden sticks) was bundled into tens. This enabled the lumber man to ship his lumber more easily. A toy truck was used for making deliveries. The boy, pretending that he was the truck driver, did the bundling, the loading and unloading, and kent account of his deliveries. At the beginning he drew heary black lines to stand for earh bundle of ten and thin lines to stand for the single sticks. Payment was made in pennies only. or in dimes for the bundles and pennies for the single sticks. Finally, figures were used to sum up the number of bundles and single sticks which were checked with the number of dimes and pennies.

I'm thinking of a number

One child says, "I am thinking of two numbers that make six. What are they?"

The leader answers "No" until the correct guess has been made. The child who guesses correctly thea takes the place of the leader.

Some concrete means of working out or demonstrating wrong ariswers ihould be provided for the children For example, if a child should say, "Are you thinking of four and three?" the leader will challenge him to prove or demonstate iny a eequest such as, "Show us four and theree. Sre if it could be six."

The child will use sticks, blocks ar otfer available materials to denonstrate and to check his thinking.

This came can be played by any number of children. After it is well learned by the children, it may be played in small groups of six to ten to give all children an oppor-
tuinty for aetive participation. It can also be adapred for use with larger addition combinations and with column addition and multiplication.
"I am thinking of two numbers that make thirteen."
"I am thinking of three numbers that make nine."
"I am thinking of two numbers that multiplied together will make twentyfour."

It is recommended that ehildren be eneouraged to use the language form "eight three's are twenty-four," or "six four's are twenty-four," which immediately suggests to the child a method of eheeking his answer by the use of drawings, a counting frame, or a similar deviee.

The guessing element comes into play as the children attempt to guess which of the combinations that make up a given number the leader has in mind. The teaeher helps the child analyze the guesses that show laek of understanding so that the individual ehild who needs help will profit from the game.

Number puzzles

Make a set of disks the same size. Draw sets on the disks-four dots, five crosses, six squares, five ears, ete. Divide eaeh eirele into two parts. Be careful that no two cireles are divided in exaetly the same way (Fig. 1).

Figure 1
Two ehildren work together as partners. They mix the pieees well and place them face down. Then they take turns drawing
and matehing the pieces. When the cireies are all together, the children name the sets on each of the two pieees of the puzzle and the total number represented on the disks. If one player ean eatch the other one in a mistaice, he ean take the eirele. When all the disks have been named, the person who has the most disks is the winner.

Similar puzzles ean be made from other shapes, such as squares and oblongs.

Shooting rubber bands

Games invented by teacher and ehildren to serve a spécifie purpose are often great fun for all. A precocious kindergarten youngster arrived at sehool one morning with a broken broom handle and a supply of rubber bands. He was ansious to demonstrate his skill in shooting the rubber bands off the end of the broom handle. The teaeher, wary of his ability to keep within bounds, drew a target on tagboard. The outside area of the circle was painted red, the next eirele blue, and the inside circle white (Fig. 2). The ehildren and the teaeher deeided that the little eirele should count the most beeause it was hardest to hit. Values deeided upon for the white, blue, and red areas were five, four, and three points, ruspeetively.

Figure 2
The target was placed on the floor. A chart on the blackboard served as a reminder of the number values. The ehildren took turns shooting the rubber bands. The idea was to hit the bull's eye and get a score of five if possible. Interest in this game lasted for days.

An ingenious teaeher had turned a potentially troublesome situation into a worthwhile learning activity.

A deck of cards, a bunch of kids, and thou

PETERK. GURAU
Springfield College, Springfield, Massachusetts

Peter Gurak is an assistant professor of education at Springfield College.

0ne of the more frustrating problems faced by the kindergarten and first-grade classroom teacher is the problem of providing for individual differences.

All too often the range of initial abilities of a kindergarten class is just large enough to invalidate the best-planned lesson. In arithmetic, for example, we may have one child who cannot even count when he enters the kindergarten or firstgrade classroom, while another may actually be able to do simple addition and subtractidn, and more. The problem is complicated by the fact that youngsters of this age group have not as yet learned how to sit still for any great length of time, and thus the more we can individualize their instruction, the better the chances that we will be able to hold their attention. Finally, if a lesson can be presented in pure game form, the lesson is much more likely to go down smoothly and without emotional or academic indigestion.

The following series of card games is offered almost as a curriculum in beginning mathematics. It presupposes only that the youngsters have all learned to recite the counting numbers up through 10 -an event which is usually quite easy to achieve through a series of counting soags.

The stage that follows rote counting is usually considered to be symbol recognition. To implement the first stage, seat the youngsters around tables, with three players ut each. Every table will have a
deck of cards from which all the jacks, queens, and kings have been removed. In each instance, divide the deck into the four distinct suits and give each of three children a suit, keeping one suit aside. Now arrange the cards in the extra suit in order of size, from ace to 10 , and place them face up on the table. Explain to the children that the object of the game is to match all the cards in the players' decks with the cards already on the table. Each child in turn places a card from his deck on top of the appropriate card on the table. The first few times, the children should receive their suits in order of size so that they will be able to associate their rote counting with the game. Each child will then in turn place his first card (the ace) on the ace on the board and call out, "One!" In the same manner, they will next place their 2's on the 2 on the board, and call out, "Two!"

After having the children play this game once, twice, or three times, you can add a variation by having the cards preshuffled. Now each child will come up with a different card) and should try to call out the right name for the card as he places it on the right card on the board. However, no great stress should be placed on calling out the correct name of the numeral, since

[^12]at this stage the primary objective will still be to have the youngsters recognize the visual symbol subverbally. You, as a teacher, can go around acting as referee. In the process, you will have an automatic coding device telling you which youngster is not placing the right numeral on the appropriate pile (because of the suit designation). Thus, if Johnny has the hearts at Table 3 and is placing a 6 on the 9's pile, you can make a mental note of, that fact. The most common errors at this stage are reversals of 6 and 9 , reversals of the ace ("A") and 4. (or of the ace and 7), and an occasional reversal of 3 and 8.

Within a very short time the children can' not only recognize the symbols but also name them. Those children who, at this stage, still need more practice may be regrouped for more practice with this game, while the remainder of the class go on to the next game.

The next game can still be played in a group, but it requires each child to work with his own suit in front of him. Receiving the suit in preshuffled form, each youngster is instructed to lay the cards out before him in order of size (i.e., A, $2,3,4,5,6,7,8,9,10$). If competition is deemed appropriate, then a speed contest can be instituted, with the winners ${ }^{`}$ from cach of the tables competing with each other in an elimination contest.

Once the children have gained proficiency with this game, a game of "magic" is in order. This game starts off exactly like the previous one, with each child laying the cards out in front of himself in order of size. Next, all ten cards are turned face down on the table, still in order, however. Some youngster starts off the game by pointing to one of the cards in front of the chiid to his left. The child to his left must then "predict" what numeral is under the card, with points or prizes of some kind being awarded for correct responses, if the teacher desires it. In effect, each child is a magician who can tell what is under a given card by secretly counting. Youngsters enjoy this
kind of game immensely and are likely to want to play it for long periods of time, especially for visiting "firemen" such as parents, the principal, or other teachers.

An alternate game-one which also stresses symbol recognition-is "Concentration." This game can be played with two to five youngsters working on one deck of cards. The deck is shuffled and, laid out in a face-down, 5-by-8 array. One youngster starts the game off by turning over any two cards. If both cards are numerically equal, he takes them as -his winnings and may go again. As long as he continues to pick up equals, he may continue to go on. However, once he misses, the pair of cards are again turned face down, and the next youngster goes. Memory plays a major part in this game, and you will find that children are better at it than adults. I know that I have been beaten repeatedly by my youngsters, despite my most sincere efforts to win.

By this time, youngsters have mastered symbol recognition and the appropriate name for each symbol. In addition, they are able to plafe the numerals in correct order of size. This stressing of the serial order of the first ten numbers leads to the concept of inequality and size.

Children who have mastered the previously mentioned gamès-usually have no trouble whatscever with the game called "War." While War can be played with more than two participants, for the sake of simplicity it will be explained for two players. Each child 'gets half the deek in a preshuffled form. Buth players hold their decks face down and simultaneously reveal one card apiece. The player whose card has the higher numerical value wins both cards, which he places on the bottom of his deck. To prevent controversy over which of two numbers is the greater, each youngster could be provided with a picture of the number line. Ties are settled in the following manner. If both players display a three, for example, each player counts out four more cards, which he places face down in front of himself,
and then places a fifth card face up. These fifth cards then determine the outcome of the 'tie. Of course, should another tie result, the procedure is repeated. Children tend to enjoy this game immensely and are likely to wish to play the game long after the apparent pedagogic values seem to have disappeared. Again, it is possible to make this sort of situation into a competition by having the winners from one group play the winners from another group until all but one individual are eliminated. A natural extension of this game, as well as of all the previous games, would be to create more cards by adding the numbers from 11 through 15 , or even from 11 through 20.

A follow-up of the game "War" actually involves the child in a form of sub-
traction, or at least in thinking in terms of addition and subtraction. Actually, the rules of the game are identical to those of "War" except that the player with the card of higher value gets as many cards from the loser as are represented by the numerical difference between the two cards. Thus, if the players show respectively a 3 and a 7 , the player holding the 7 gets four cards from the player holding the 3 , plus the originally played cards. Chips can, of course, be substituted; and variations on the rules can lengthen or shorten the game.

The presentation of these materials can be so designed as to allow advanced learners and youngsters new to numerical concepts to work together in harmony, thus providing for productive peer learning.

Arithmetic card games

MARTIN H. HUNT
Boston Public Schools, Boston, Massachusetts

We all realize how importait it is to provide youngsters with a variety of reinforcing opportunities that promote the acquisition of a knowledge of number facts. Playing arithmetic card games that have been adapted from games familiar to children and young adults not only is an enjoyable social experience for pupils, 'but serves as an interesting school or home activity that enhances facility with the number facts.

Because each card is imprinted with both numerals (the ace represents a one) and the equivalent number of elements (spades, hearts, clubs, and diamonds), the
child who has not memorized a particular fact can compute it by counting. Any involvement in games, however, soon makes it clear that "knowing the number facts well" makes the game more enjoyableand winning easier.

The five games described below were initially introduced at a recent summer program and should not be considered, a complete list by any means. Both students and teachers should feel free to design new games or modify any of the given ones. While we encourage children to play the games, we would never compel any pupil to participate, as this would detract from
the value of the activity as a game to be enjoyed. Generally, the children will be employing the aces through the 9's. However, if the goal is to achieve a combination equaling a number less than 10 , the highest valued card used would be that which is one less than the desired goal. For example, if the purpose is to combine cards equaling 5 , the 4 would be the highest card used.

War

The deck is divided equally among the players. Each player in succession turns over a card from his pack,-which is held face down. The player with the highest valued card takes in the set, and either the player who ends up with all the cards or, if a time limit is set, the player with the most cards at the end of the time, is the winner. If two or more players turn over cards of equal value, "war" results. Two cards from the tops of the packs belonging to these latter players are discarded facedown, and the third card is played faceup. The player engaged in "war" whose third card is greatest in value takes in all the cards played. This game enables the children to learn to recognize numerals and their ordered relationship. It promotes an understanding of the concept of "equals," "greater than," and "less than."

Fish

Depending upon the needs of the children, the goal might be to obtain "runs" of three cards (A, 2, 3; 2, 3, 4; 8, 9, 10) to find two cards whose difference equals a specific number, or to obtain combinations of cards whose values equal a given number. Each player in turn asks another player for the needed card. If the card is not available, the requesting player selects the top card from the closed deck. The player with the most "books" at the end of the game is the winner.

Number Trick

Each player discards one card at a time, Idding the value of his card to the one
previously thrown by the player before him. The "trick" is made when a player, through the card he plays, succeeds in getting the cards io total a given number, such as 10 or 21 . An alternate version involves having the cards totaled until the sum falls between 14 and 20 , then subtracting the value of each successive discard until the value of 13 is reached. If one wishes to concentrate on subtraction skills, the players might begin with 25 and then subtract the value of each card until 3 is reached. Chips may be given each time a "trick" is completed.

Number Serabble

This game is played in a manner similar to the commercial game of "Scrabble" in that a player attempts to complete combinations of numbers (instead of letters) equaling a designated sum such as 5 or 10. For more able students, players may attempt to make the combination of cards equal 85 , using any combination of the arithmetical processes. Each time a player successfully combines the cards, he receives a chip and draws the appropriate number of cards from the deck to replace those he has just used. After all the cards have been removed from the deck, the student with the most chips is declared the winher.

Sample Combinations
(a) $(9 \times 9)+4=85$
(b) $(3 \times 4 \times 7)+1=85$
(c) $(7+6) \times 7-6=85$

Number Rummy

Each player is dealt seven cards. The first card from the remaining closed deck is turned over. The children in turn choose
a card from the open pile of discards or from the closed deck in an attempt to obtain combinations of two or more cards , that equal 5 (in the simplest version) or
that calculate, when using any combination of the axithmetical processes, to 100 (a more complicated version). Again, the player with the most "tricks" at" the end of the game is the winner.

Editorial Comment. - Sporting events often provide a successful way to motivate students to do practice exercises. In the spring, baseball is appropriate. A playing field is needed-a square piece of tagboard with the bases and a pitcher's mound marked out will do. Place a spinner on the pifcher's mound.

Place questions in boxes marked " $1, "$ " $2, "$ " 3 ," and "H." The hardest problems, corresponding to homeruns, should be placed in the box marked " H." The, easiest problems, singles, should be placed in the box marked " 1. ."

To play the game, two teams are needed (the game is easier to manage if there are no more than four students on a team). Each player needs a markc blayers spin to see from which question box to choose. If the question is answered correc.,y, the student gets a single, double, and so on, according to the number marked on the box. Play changes hands when a team misses three questions.

Supply answers to an "umpire," give him a hat marked UMPIRE, and you're off!

Arithmetic Football

Eart, A. liamau
Sagïnau, M, Michigan

Amithmetic football is a game of mental arithmetie. It is played without the aid of pencil or paper. A football field made of roll paper or oilcloth is laid out as shown in the drawing. It is 120 inches long and 36 inehes wide. The line markers areten inches apart for easy layout of the field:

- Over the top edge of the field a wire is strung with-marks one itich apart. Put a small dent at every inch mark so it is easy to set the ball wire in place. One football on a moveable wire is used. The wire should be at least twelve inches long and the size of the foothall should be about two inches by three-quarters of an inch. This bali moves up and down the field as each team plays the pait of the offensive team. Foun" "dosin" cards are used iin place of a "down" hox. You hang up the inumber of the "down" so the quarterback will know what play to call. A wire ten inches long is used like the chain measure to
mark off the ten yards to a first "down:" This hangs from the top wire and must' be moveable. It is placed and used as in an aetual game. It shows how maily yards are needed for a first "down."

You will need enough problen play cards to carry on the game. The cards are put in piles according to the type of play thereon. The following types of plâys were found suitable:

Gain
Off-guard (liasiest problems)

Off-tackle		1 to 8 yds.
Reverse	(1;asy \|rưolkems)	1 to 25 yds .
Find run		1 to 15 yds .
${ }^{\text {P }}$ Pass	(Harder problems)	1 to 60 , cls :

Punts
Field goals
kick-of
Runlacks
Here are some examples of plays and their problems:

Lach card carrics a gain or a loss. If the problem is answered eorrectly within the 30 becoud time limit you use the gain section. If the time runs out or the wrong answer is given you use the loss section. The loss maty be: 110 yards gained, yards loss, fumble, or in case of a pass, it may be incomplete or intercepted. The cards are turned over, one at a time, so even the teacher doesn't know what problem is coming up next in any of the play stacks.

A stop watch is fine for timing but any sweep-second-hand watch will do. A fair knowledge of foothall is needed by the teacheras he acts as referee of the game.

ITwo teains are picked and a quarterback from each team is elected to rum the team. The cuarterback should know a little about football as he calls ill the plays ineluding the person to carry the ball: The teacher flips a coin to see which team shall kick-off. If teanin a kicks-off the moieable football is placed on the A's forty-yard line. A kick-off card is pieked up by the teacher and quarterback A picks a team member to answer the problem on the carcl. The problem is given, and if answered by the player, the hall is moved down the field the number of rards shown on the card. Now team B has the ehance to run the kick-off back so the B guaterback picks a team member to answer the problem the teacher has picked up off the top of the run-back stack: The player B has 30 secouds to answer the problem. If lie answers the problem correctly the ball is moved the number of yards shown on the card, but if he misses the problem the loss may be: tall down at that point or fumble, de* pending on the carcl.'

Toam $\dot{\beta}$ now hats the ball and the moveable ten yard marker is placed so that our end is at the point of the hall and the other end is tell yards away. This is the same principle as the chain measure used at a real game. "Down" 1 is put up on a hook and tram B is ready to try its first
play of the game. Quarterback B picks a team player and the type of play he wants. him to rum. The quarterback can't call on one team member again till every one on his team has had a chance to carry the ball: The quarterback has five different types of plays he may cal!: off-guard, offtaekle, end-rin, reverse, and pass. The easier problems give less yards ont: play. The pass plays are the hardest but the greatest gains are made on this type of play. On each card is written the number of yards to gain if answered correetly and the card also carries the loss if the wrong answer is given. The teacher makes up his owin problems aud adds new. problems as new work is learued in class. You can fit zour cards to any gixde level you wish. For seventh grade it is best to have more than a hundred play eards and use them over again. The students work out= side of class to learn what types of prob1ems are must difficult for them. They work on their weak points so as not to let their team down.
Field goal cards are used for the extra point when a touchdown is made. You may also let a team try a field goal if within the twenty-yard line for these carls the point is made if the problem is answered correctly and the point-is missed if the problem is missed.

Penalties can also be applied, for example, if one team member helps anuther tram member it is fifteen-yards and the "lown" remains the same. If team A bothers tean B by talking, team A is penalized five yards and the "down" remains the same. Not many penalties are marked of as eaeh team really wants to win."The teacher may set any time limit. he wishes for the duration of the game.

The use of this game in seventh and eighth grade classes has been highly successul in stimulating rapid and accurate computation without pencil and paper. Both the boys and girls enjoyed it and worked hard to improve their skill in mental arithmetic.

Television games adapted for use in junior high mathematics classes

DORIS HOMAN

Vallivue Junior and Senior High School, Caldwell, Idaho

Today, as in the past, the use of matinematical games is an effective way to provide meaningful, interesting drill for, junior high students. Highly competitive by nature, students at the junior high level respond with enthusiasm to activities of this kind. When these games can be associated with familiar, pleasant experiences, there is an added motivational factor. Why not, then, relate mathematics to the most familiar activity of all-viewing television. Three games that have been adapted from television shows are described here.

For each of the games, the class is divided into two teams. Each team numbers off, and each member writes his number on
a small card and puts the card into his team's box. Players take their turns at play as their numbers are drawn from the boxes.

Mathword

"Mathword," a game based on the television show "Password," provides practice with mathematical terms.

Materials:

A list of mathematical terms of either one or two words. (Examples: equation; product, numeral, assocjative, commutative, ratio, inverse, prime, set, diagonal, polygon, integer, square, rectangle, prism, triangle, obtuse triangle, right triangle, re-
ciprocal, terminating decimal, decimal, vertex, altitude, disjoint, volume, area, parallel, circle, perpendicular, quadrilateral, cylinder, circumference, diameter, radius, factor.)

Instructions for play:

1. Place a chair at the head of each team so that the occupant will face the class and his back will be turned to the overhead screèn or the chalkboard.
2. Choose the first two contestants by drawing a number from each team box. The two contestants come forward and sit in the teàm chairs.
3. Write a mathematical term on the overhead projector (or chalkboard) so that the class can see the term, but the contestants cannot. Then turn off the overhead projector (or erase the term). Tell the contestants whether the term is one word or two words.
4. Draw another number from each team box. The two students whose numbers are drawn are the first to give a clue; the student-with the fower number goes first. The first player can give the first clue, or he can pass and allow the other team to give the first clue.
5. The clues may be only one word or one number. The opportunity to give clues alternates between the teams. After one player gives a clue, another member of his team is selected, by drawing, to give the next clue for the team.
6. The contestants stay the same until the term has been identified, or until the -five-point clue has been given. The game is over when the list of terms has been exhausted.

Scoring:

When a contestant gets the term on n_{0} the first clue, his team receives ten points. The team gets nine points if its contestant gets the term on the second clue; eight points, on the third clue; and so on. When the five-point clue is given and missed,
the game is over. Newi contestants are drawn, and another term is chosen.

Eye Guess Math

"Eye Guess Math" is a game based on the television shows "Eye Guess" and "Concentration" that provides drill with integers, fractions, decimals, whole numbers, and mathematical terms.

Materials:

Eye Guess Math board on an overhead projector transparency, as in figure 1 (a large piece of posterboard can be used), nine problems, overlay transparency for the Eye Guess Math board (on the overlay, as shown in figure 2, an answer to one of the selected problems is written in each of the eight outside squares. The ninth answer, the answer for the Eye Guess square, is not put on the overlay until later), and Nine cardboard squares to cover the answers on the Eye Guess Math board.

Fig. 1

Instructions for play:

1. Show the blank Eye Guess Math board to the students. (See fig. 1.). Explain to the students that answers to problems will be put in the squares on the board. The answers in the eight outside squares will then be revealed for fifteen seconds. The students are to try to remember the positions of as many answers as possible.
2. After the eight answers have been revealed, the ninth answer is put in the Eye

Fig. 2
Guess square, and all squares are covered with small cards as shown in figure 3.

Fig. 3
3. The teacher then reads the first problem on his list. After sufficient time to work the problem has elapsed, the feacher draws a number from the box of the team chosen to go first. The team menber whose number is drawn will then call out the number of the square in which he thinks the answer is located. The teacher lifts off the cover and reveals the number in that square. If the number in the uncovered square is the right answer, then the team receives one point. Right or wrong, the square is quickly covered again. The teacher then proceeds to give the next problem to the other team, following the same procedure as before.
4. When a problem is answered correctly, the teacher crosses off that problem on his list. If a problem is not answered correctly, the teacher leaves the problem
unmarked on his list and goes on to the next problen. After going through the list of problems once, the teacher then gocs back and uses the problems missed in the first tound. This continues until all problems have been answered correctly. The team with the larger score is declared the winner.

Celebrity Math

"Celebrity Math," which is a game bașed on the television show "Celebrity Game," provides drill in fràctions, decimals, or whole numbers. It also encourages mental calculation and approximations.

Materials:

A list of thirty problems that cannot be easily worked without pencil and paper. (Examples: $53 \times 79=\ldots ; 3798-$ $59=$ \qquad ; $5800 \times 500=$ \qquad ; 19 + $78+53+98=$ \qquad .)

Instructions for play:

1. Each team numbers off $1,2,1,2$, and so on. Each one is a "celebrity" for his team, and cach two is a contestant.
2. Each stadent who is selected to be a celebrity must think of some celebrity that he would like to be. He writes the name of that person on the small card provided. The cards are collected, and the celebrities for each team are listed on the chalkboard.
3. The contestants (the twos) for each team number off $1,2,3,4$, and so on, and. place their numbers in their team box.
4. One tean ${ }^{1}$ is selected to go first. The gane begins as the teacher draws a number from the starting team's box of contestant numbers. The contestant whose number is called selects one of the opposite team's celebrities to answer his problem.
5. The teacher then reads the problem or writes it on the overhead projector. The celèbrities can use pencil and paper, but thè contestants cannot. The selected celebrity works the problem as quickly as possible and gives his answer. The contestant
must immediately agree or disagree, If the contéstant is correst, his team receives the point. If the contestant is not correct, the celebrity's team receives the point. The next problem is given to a contestant on the oother team. A number is drawn from that team's box of numbers, and the contestant chooses a celebrity from the other team's list to answer the problem.
6. The game continues in this manner until all the problems from the list have
been used, or until the time allotted for the game has clapsed.
7. Since the object of the gante is to secure, points for the team, a celebrity may deliberately give a wrong answer in an attempt to trick the contestant from the other team. The contestant cannot use pencil and paper; but he can approximate the answer or work the problem mentally, if . he can do so in the time it takes the celebrity to give an answer.

Emitorial Commint. - In addition to the n.any television games of the contest type that may be adapted for use in mathematics classrooms, you should consider incorporating children's favorite TV characters into board games. Spending a few hours watching the Saturday morning cartoons will give you many ideas. If you feel that you cannot draw the cartoon figures, you can usually find a coloring book from which to trace the characters.

The concentration game

HOMER F. HAMPTON Central Missouiri State College, Warren.burg, Missouri

The use of drill has fallen into disfavor in recent years. In spite of the shortcomings of drill in and of itself, it does seem to make a dvorthy confribution to a student's learning experience. Perhaps we can imiprove the setting in which drill experiences are conducted and benefit from drill.without incurring its faults. The current image of drill is vague, but its theme could well be "reoccurring but varied contacts with a concert, skill, or procedure."

Extensive use of physical models and gamelike activities will assist a teacher in carrying out this theme. I should like to describe a game that provistes for drill activities in a setting that can be both inviting and satisfying to pupils from grades Tho to six.

This game is patterned after a television program called "Concentration." The principal piece of equipment is a board that can be constructed from a piece of $3 / 8$-inch plywood 18 inches wide and 24 inches long. Eyelets are used to attach small cards in a seven-by-seven array. Whole numbers are written on one side of these cards, and the cards-atementached so that the numbers
are not shown when the cards hang down but appear when they are turned up. The space arrangements àre such that a turnedup card does not cover another card. The rows and columns are numbered, so that a pupil selects a card to be turned up by choosing an ordered pair of numbers. (See fig. 1.) With a little practice you can adjust the opening of the eyelet so that the cards can be easily and quickly replaced if, a need should arise.

The concepts or skills that can be pursued with this game are limited only by your imagination. I shall describe only one in some detail to serve as a prototype.

Suppose you have a fourth-grade class and wish to improve their facility with multiplication facts of the sixes, sevens, and eights. Choose forty-nine whole numbers so that you can find a large number of multiplication facts utilizing three of then at a time. I suggest the inclusion of a symbol for a placeholder (variable), but it should be used as a factor only-not as a product.

Locate theśe cards, with the numbers selected as described above, at random on

*Fig. 1
the board. Divide youlr class into two teams and each team into subgroups of two or three players each. Alternate plays from team to team and rotate among the subgroups.

We are now ready for the procedure and rules. Each subgroup selects three cards to be turned up by choosing, an ordered pair for each card. They are to "make a product" (state a multiplication fact) using the
numbers on those three cards. If they are successful, their team scores a point and all cards are turned down. If it is not possible to make a product, the cards are turned down and the play moves to the other team.

If a product is made, then that particular prociuct and its commutative counterpart are not to be used again. They should be written on the chalkboard for all to see.

But one or two of those numbers can be used to form a different product in another situation. For example, suppose a subgroup chose 6,2 , and 12 . The product $6 \times 2=$ 12 (or $2 \times 6=12$) could not be used again later, but if a subgroup found a 3 and could recall the locations of the 6 and the 2 , then they could score with 2×3 $=6$.

The excitement really starts when the placeholder appears. It plays the role of a "wild card," and the pupil's ingenuity is now unleashed. If used as a product, however, it would permit scoring almost at will.

Of course, there are many possible variations, and you are encouraged to make use of them. A subgroup may wish to pass on their third choice of a card during their play if the two numbers. already showing
suggest that a successful third choice is very unlikely. You might permit a challenge from the opposing team to an attempt to make a product or a failure to recognize one, and award or take away a point depending on the outcome of such an effort.

If a class is not strong, a subarray, say a fiverby-five array is suggested. You can build up several "decks" of cards and be prepared to "reload" the board for different situations.

This game can also serve as a readiness activity for a unit on graphs. The notiohs of ordered pairs of numbers representing points and perpendicular lines as references are the basic essentials of graphs. This alone will alnost justify the use of this game in your classroom. Have fun.

Editorial. Commbi. - Concentration games can be construcied using two boards, one for questions and the other for answers.

Students call for one card from buard 1 (example. C,4) and one from board? 2 (example $D, 8$). If the answer matehes the problem, a point is scored.

The Match Game

LARRY HOLTKAMP

Mariemom Mididle School
Cincinnati, Ohio
fter the concept is, understood, children need much drill in changing pércents to decimals and fractions or changing fractions to decimals and percents. However, needless to say, drill can be very boring unless there is some means of motivation To provide such motivation, I developed a game that I call the "Match Game."

Preparation

You will need fifty three-by-threc-inch squares (I cut them from yellow construction paper) and between forty and tifty three-by-five-inch plain file cards. Take twenty-five of the squares and write a fraction or a decimal on each. On the remaining squares write ag equivalent percent, one for each of the fractions and decimals, thus making a total of twenty-five matches. Mix the squares and, using double-stick Scotch tape, attach them face down on the blackboard in a five-by-ten arrangement. I call this the Match Board.

On the file cards write various problems that the children have had in the past and put them in some type of container.' I call this container Potluck.

Explanatiơn

Before the game begins, divide the class into two teans, A and B, and turn over any four squares on the Match Board.

To start the game. a member of team A picks a card from Potluck and hands it to the teacher. The player then goes to the blackboard and the teacher dictates the problem to him and the rest of the class. (1 have all the chiidren' do the problems for practice.) If the player answers the probien correctly, his team scores one point and he advances to the Mateh Board. If the problent is incorrect, there is no sscore and the other team takes its turn.

At the Match Board the player thrns over any one of the squares and says either "Match" and makes his claim or "No match."

Several possibilities now exist:

1. The player claims a match correctly and scores one additional point.
2. The player clains a match incorrectly and lones one point.
3. The player claims no mateh and scores no points.

Anytime a player says "No match," the teacher asks the other team for a challenge -there is a possibility that a match is overlooked. If the opposing team challenges and makes a correct match, it scores one point. 'i they challenge and make an incorrect match they lose one point.

The/teams alternate turns for as many round's as are needed to give each child a chance at the Match Board. At the completion of the play, the team with. the most points is the winner.

It is possible that you may uncover a match before the game when you expose the four squares. This is fine. In fact, there is a slim possibility that in exposing the four squares two matches occur. This is also fine, būt it is a rule that a player may make only one match a turn, no matter how many matches there may happen to be.

Remember, the only time a challenge may occur is when a. player at the Match Board stätes, "No match."

A Cross Number Puzzle for
St. Patrick's Day

ACROSS

1. Product of $3 \times 9 \times 7$.
2. The unit's digit in the date of St. Parich': Dily.
3. The ten's digit in the date of St. Patrick's Day.
4. March is the \qquad month of the year.
5. The number of prime numbers between 1 and 20.
6. The least common denominator of $\frac{1}{2}, \frac{1}{2}$, and $\%$.
7. The altitude of a triangle whose base is 12 units and whose area is 42 square units.
8. The number of days from St. Patrick's Day to Christmas. (Do not count St. D'atrick's Day or Christmas Day.)
9. The number of letters in the name of the color associated with St. Patrick's Day.
10. The square root of 1936 .
11. The number of degrees in a right angle.

DOWN

1. The day of the month on which we celebrate St. Patrick's Day.
2. The number of sides an octagon has.
3. The average of $97,88,94,80$ and 86 .
4. The number of sides of a triangle.
5. Two angles of a triangle are 42° and 50°. How many degrees arp in the third angle of the triangle?
6. Two dozen.
7. A pentagon has \qquad sides.

Contributed by Margaret Wibierding of San Diego State College, California

Dominoes in

the mathematics classroom

TOM E. MASSEY
P. K. Laboratory School, University of Florida, Gainesville, Florida

During a summer mathematics program for ninth-grade students at the P. K. Yonge Laboratory School of the University of Florida, the mathematics staff found a traditional game to be a very popular and effective-learning aid. The game of dominoes was enjoyed and played frequently by students of all levels of ability.

The game was an effective vehicle for practice in addition and recognition of multiples. The game as played traditionally (by two to four players) provides practice in addition and recognition of multiples of five. This practice results from the rule that ${ }_{\bar{s}}$ a player scores by producing an addition total, on the exposed halves of the dominoes, which is a multiple of five. An example of play resulting in a score of ten is shown in figure 1.

Practice in recognition of multiples of numbers other than five may be obtained by requiring.that the total be a multiple of a number other than five to score.

There seems to be no limit to the variations of rules of the game that will pro-

Fig. 1
duce practice in a particular elementary mathematics skill. In one particularly effective variation the basic ideas of dominoes were transferred to playing tiles with fractions rather than spots. The fraction variation of dominoes, also, was well received by the students participating in the program. The play of the game is like dominoes in that tiles are played by matching the adjacent halves of the tiles. Scoring is accomplished by a player when he produces an additional total that is a natural
number. Figure 2 shows play that resulted in a score of two.

Fig. 2
The.level of difficulty can be altered hy the choice of fractions to be used in con${ }_{\text {* }}$ structing the tiles and the number of different fractions used. A set consisting of twenty-eight tiles with the numbers $0,1 / 4$, $1 / 3,1 / 2,2 / 3,3 / 4$, and 1 was used in initial
experiments with the game. Another set of twenty-eight playing tiles consisted of the numbers $0,1 / 6,1 / 3,1 / 2 ; 2 / 3,5 / 6$, and 1 . If the numbers of both of the above sets are used in constructing a set, it will contain fortyfive playing tiles. Again, there seems to be no limit to the number of useful variations.

Any teacher can manufacture a crude set of plywood tiles for use in the class: room. The experimental tiles were constructed out of $3 / 8$-inch plywood measuring one inch by two inches. A light coat of varnish was applied to preserve the markings on the tiles. The students in the program were eager to assist in the determinàtion of which fractions were utilized in the construction of the sets. Each set constructed is expected to provide many hours of enjoyable practice with-fractions.

A Cross Number Puzzle for Valentine's Day $\hat{\mathbb{F}}$

ACROSS

1. Date of Valentimes I Das, Pelmans \qquad
2. Valentime's Day is the \qquad year.
3. 'There ate generally days in the month of liehrnary.
(i. There are \qquad months in a year.
4. St. Valenting lived in the \qquad century.
5. Seven months of the year have _—_ daves.
6. Number of letters in the month in which Valentines Das is.
7. The number of dass in a numal year multiplied by 3k.
8. Four months of the year have days.

DOWN

1. Tuo less than the product of $\overline{5} \times 5 \times 5$:
2. $8 \times 6=$ \qquad -.
3. 216 divided by 6.

4 . The product of 22 and 24 .
8. In a normal year there are \qquad days between Valentine's Day and Christmas. (Do not count Valentine's Day or Christmas Day.)
9. The number of quarters in $\$ 40$.
11. The number of days in the year we send Valentines.
12. The number of days in a week plus one. Contrib:ted by Margabet Whiserdinc; of San Diego State College, California

A CROSS-NUMBER PUZZLE FOR JUNIOR HIGH SCHOOL

Margaret F. Willerding San Diego State College
a

ACROSS

1. How many yards are in 4,890 fect?
2. 15^{2}
3. 8 dozen ${ }^{-}$
4. Write five minutes past eight in figures
5. How many acres are in one square mile?
6. XLIV represents what Hindu-Arabic numeral?
7. What is the total cost of 4 and $\frac{3}{4}$ yards of cambric at $\$.40$ a yard, 1 package of pins at $\$.10$, and 3 spools of thread at $\$.05$ each?
8. What is the average of $728,964,247,425$, and 316?
9. What is 90% of 100 ?
10. What is the perimeter of an equilateral triangle with a base of 104 feet?
11. What is the cost of 1 yard of bunting if 27 yardś codst \$11.61?
12. How many quarters are there in $\$ 33.75$?
13. Write $4 \frac{1}{2} \%$ as a decimal

Omit decimal points and percent signs in the quizile. Just write the figures.

DOWN
2. What is the perimeter of $a^{9} g$ garden 180 feet by 168 feet?
3. Write the number of days in a regular year from January 1 through December 30
4. Express $1 / 5$ as a per cent
5. Cor.pute the interest for one year on $\$ 127.00$ at 2%
9. Reverse the digits in \ddagger miles (express in feet)
11. What is the area in square.feet of a rectangle 1 yard 2 feet by 9 feet?
12. What is the total cost, including 2% state sales tax, for 1 dozen cream puffs at $\$.06$ each, 2 loaves of breàd at $\$.17$ a loaf, and 1 coffee cake at $\$.40$?
14. How many ounces are in one pound?
16. How many dozen cookies are needed to feed a troop of 33 Boy Scouts if each boy gets 4 cookies?
18. How many days remain in a normal year after January has passed?
19. What is the age in 1957 of a man born in 1930?
20. Write $\{$ as a decimal
2.1. Write $2 / 5$ as a decimal

A CROSS-NUMBER PUZZLE FOR INTERMEDIATE GRADES

Margaret F. Willerding
San Diego State College

1. $100-15$
2. $3,240 \div 36$
3. $7+8+9+6+5+3$
4. $2,650 \div 25$
5. $11,820 \div 60$
6. 8×7
7. $315 \div 9$
8. 52×92
9. $12-4$
10. 8×8
11. 14×7
12. 7×7
13. $121 \div 11$
14. $\frac{1}{2}$ of 164

JOWN

1. 9×9
2. $884-379$
3. $2.765 \div 7$
4. $3,356+3,288$
5. 2,408-1,059
6. $63 \div 9$
7. $780-711$
8. $616 \div 7$
9. $6+7+8+9+10$
10. $2 \times 4+9$
11. Reverse the digits in the product of 9×9
12. $100-80$

A CROSS-NUMBER PUZZLE FOR PRIMARY GRADES

Margaret F. Willerding
 San Diego State College

1. What number comes after 110 ?
2. What time does this clock say?

3. How many tens are there in 40?
4. What time docs this slock say?

5. When counting by 5 's what number comes after 20?
6.

This is a number picture of what number?
10. When counting by 2 's what number comes after 150?

DOWN

2. How many eggs in a dozen?
3. What number comes after 117 ?
4. What three numbers come after 3?
5. $1+1=$?
6. What number comes after 74?
7. What is 6 take away 5?
8. What is 7 take awav 5?

Editoria!. Comment.-Here is another word activity.
Unscramble these mathematical words:

NOTEQUAI	(equation)
EST	(set)
DADNOITI	(addition)
CRAFTINO	(fraction)
MADELIC	(decimal)
MEETGORY	(geometry)
RASQUE	(squäre)
RIMPE	(prime)

Mathematicalosterms

SALLY MATHESON
North Junior High School, Portage, Michigan

If you had trouble deciphering the title of this article, perhaps you should read no further. Robert E. Keys' "Mathematical Word Search" that appeared in the April'

1967 issue of The Mathematics Teacher gave me the .idea for this puzzle. I was sure that my junior high students would enjoy a puzzle of this kind, but Mr: Res
made use of words such as ellipse, con-, gruence, calculus, polynomial, contrapositive, etc. Junior high students would find these words as nonsensical as the whole array of letters. So I decid d to create my own puzzle using mathematically related words thát a junior high student would recognize. It is a challenge to hide as many of these words as possible in a $20-$ by- 20 square. Try it and see.

As I anticipated, the students loved working with this (and so did some of the teachers!) I gave both my seventh- and eighth-grade classes half of one class period (about twenty-five minutes) to work : on the puzzle, and the better students found as many as. fifty math-related words and several others that are not mathematical and therefore did not count. At the end of the class period the students were so captivated that they asked me to postpone giving them the complete solution until they had more time to search on thein own. The next day I posted a solution. The students ${ }^{\text {were }}$ delighted with themselves over the many words they had found, and surprised to have revealed to them some words that were hidden so well that they missed thèm. I'm quite sure you will find this an interesting class activity if you try it.

The words are located horizontally, vertically, and diagonally. All of the words are spelled forwards. How many words can yoü find? That depends on how hard you look! But, if you look very hard you can find seventy-five words that I've placed there, and maybe even more that. 1 haven't discovered myself! See if you can find the math word that appears three different times in the puzzle-once horizontally, once vertically, and once diagonally. (Incidentally, this only counts as one word!)

Can you find all of the numbers from zero through ten? Watch for words within words, for example, the word "exponent" contains the word "one." Both of these are mathematical, so you can count this as two words. Watch for words that overlap, such as those in the title of this article. It might be fun to challenge your students to make a puzzle of this kind that contains all of the numbers from one to twenty, using as few letters as possible: In the meantime, check your own ability to locate mathematical words in this puzzle. If you get stuck, look for help in my list of hidden terms.

This is a list of the words that can be found in the word puzzle-in no particular order. The word that appears three difierent times in the puzzle is the word "odd."

Editorial feedback

VERNE G. JEFFERS
,Mansfield State College, Mansficld Pennsylvania

Inoted with interest the article entitled "Mathematicalosterms" by Sally Mathison in the January 1969 issuc of The Arithmetic Teacher. I have been using a version of this puzzle for a number of years ${ }^{+}$

- but had never attached a name to it. However, seceing the idea in print did give rise to another idea which, like "Matnematicalosterms," may not be original, but has not had popular usage. It involves using nu-

merals rather than words in a matrix. My . graduate students in "Mathematics for the Elenientary School Teacher" thought a puzzle of the following type had possibilities and encouraged me to develop it. I am sure that nonc of us realized its potential at that time.

Number combinations appear in the grid vertically, horizontally, and diagonally. If you examine the matrix closely you will find many of the basic facts for addition $(6+8=14)$, subtraction $(8-3=5)$, multiplication $(9 \times 2=18)$, and division $(27 \div 9=3)$. Also. inverse operations ($28=4 \times 7$ and $28 \div 4=7$) and commutative, associative, and distributive properties can be shown. Decade addition (19 $+9=287$, column addition $(7+13+$
$12=32$). simple subtraction ($28-11=$ 17), and compound subtraction (44-17 $=27$) may also be found.

Variations may be used in marking combinations, 'possibly depending on grade level and purpose. These may range from merely encircling the combinations for identification purposes to inserting the appropriate signs to complete a number sentence. A few combinations âre encircled here for illustration

I first tried this o.. ...' own children, who are third- and fifth-grade students. Both were intrigued and found much enjoyment in seeing how many faniliar combinations they could find. My wife's fourth-grade class found the puzzle equally interesting and challenging.

Editorial Comment. - Try a mathematicalosterm using the names of famous mathematicians.

SSAUGAUSGO PYTHAGORAS
DILCUEEUUN CATASUUSSO ASWNSACSTT NIETSNIEOW TONOWENLRE NTORPYTL!N

Can you find these names:
Gauss
Newton
Einstein
Pythagoras
Euclid
Russell
Cantor

Two mathematical games with dice
 RONALD G. GOOD

Florida State University, Tallahassee, Florida

Each of the games described here uses a pair of dice. The two dice must be distinguishable by color, one die of one color and the other of a different color. The variations in color can bę in the dice or in the spots on the dice. Such dice can be purchased commercially or they can be produced by making wooden cubes and then using magic markers to make the required spots on the faces of the cube. Only. two colors are needed and it might be a valuable activity to allow students to make their own dice before learning how to play the games.

In the descriptions of the games that follow, one dic is red and the other is black.

Game 1

A number line (secfig. 1), a marker for each player, and a pair of colored dice are peeded to play the game. The winner's spot, marked by x in figure 1 , could be eitier to the left or to the right of 0 . The number that turns up on the black die means a move to the right. The number that turns up on the red die means a move to the left. Each player begins at 0 and on each turn rolls a red die and a black die. A few sample plays will illustrate the game.

Suppose player A rolls first and rolls a red 2 and a black 5 . He ends up on black 3. Player B then rolls and follows the same
directional moves. Suppose B rolls a red 6 and a black 2. B then ends up on the red 4. On his next turn A rolls a red 4 and a black 2 , which puts him at the black 1 . B then rolls a black 5 and a red I, which takes him back to 0 . The , play continues until a player gets a roll that places him on or beyond the win slot. That player is then the winner and the game is over.
 9876543210123456789 Red

Black
Fig. 1
The main intent of the game is to introduce subtraction in a concrete way. Although negative numbers as such do not appear on the game board, the fact that there are numbers to the left of 0 is one way of looking ot negative numbers on a number line.

The game can be varied in several ways. Number lines of different lengths can be used. A "lose" spot ceuld be substituted for the "win" spot-children might want to see if this changed their luck."

Because the "laws of chance" are operating when the dice are being rolled, the children will likely gain an intuitive idea of such laws because of the tendency for the play to remain near 0 . In fact, if number lines of different lengths are used, children will probably notice that it is more difficult to win with a longer linc than with a shorter line.

Game 2

Ccordinate paper with axes drawn; pins, map tacks, or other small markers; and a pair of colored dice are needed to play the gamc. The coordinate paper (see fig. 2) should be prepared by the teacher in advance so that children can take the dice and begin the game after minimal initial instructions.

The object of this game is to move the playing pieces from 0 to the point on the
paper marked by an \times (see fig. 2)..A player rolls one red die and one black die. The black die means move either right or left and the red die means move either up, or down. A player cannot move both up and down in the same move, nor can he move both left and right in the same move. The following series of moves illustrates the game.

Player A rolls a-red 4 and a black 3. He proceeds from 0 to the right 3 spaces and then up 4 spaces. He puts his marker at (3,4). Player B rolls a red 6 and a black 5 and puts his marker at $(5,6)$. On his next turn, A rolls a red 4 and a black 7 , which puts him at $(10,8)$. Then B rolls a red 6 and al black 3 , which puts him at $(8,1-2)$. A then rolls a red 3 and a black 2. Since A is already beyond the \times, he

Fig. 2
chooses to move to the left 2 spaces and up 3. This puts him a $(8,11)$. (The direction of a player's move may be dictated by a boundíry. Thus, if A had rolled a black 3 he would have been forced to move to the left. A move of 3 to the right would have put him "out of bounds.") On his next furn B rolls a red 2 and a black 1. This enables B to move 1 space to the right and 2 spaces down, which puts him on $\times . B$ thereby wins the game.

Number pairs are obviously involved in
this game, as well as rudimentary ideas of the whole process of graphing. Adding and subtracting, as useful processes, are emphasized. Perhaps most importantly, the game requires some strategy, planning ahead and considering the consequences of different moves.

As with any game with predetermined rules, the children should be allowed, and perhaps even encouraged, to "see what happens" if they change the rules in some way. The "game board" can be extended
to include all four quadrants of the graph thereby involving negative numbers. The \times could be put in any of the quadrants.

Minimal computational skills are required to participate with understanding in both dice games and yet the outcomes in terms of other kinds of mathematical thinking are potentially greạt. If left to their own devices, it is likely that children will devise other variations of the two games which might prove to be even more valuable to their mathematical thinking abilities.

Editorial. Comment. - Ordinary dice do not have enough faces to practice all the basic facts with one pair of dice. Dodecahedron dice will do the trick. Make models for two dodecahedra and write the numerals I through 12, one to a face, on each die. Roll the dice and add, subtract, multiply, or divide with the two numbers named on the top faces.

Three games

BRUCE F. GODSA•V-E

Bruce Godsave is associate professor of mathematies at Gallaudet College, Washington, D.C. All his undergraduate students are deaf. The ideas for these games were developed while he was teaching a graduate course in mathenatics education to future teachers of the deaf.

When René Descartes sat up in bed one day and created coordinate geometry, he did a fantastic thing for mathematics. Many students and teachers believe that much of mathematics came to us in a manner similar to that of the Ten Commandments._In. fact, something like the coordinate system was made up by a mortal man, in much the same way that man created Monopoly. It would be difficult, if not impossible, to devise an intuitive way of learning the rules of Monopoly. We are told the rules, and after we learn them, we use our skill and intelligence to send our friends to the "poorhouse." The same is true with coordinate geometry and most other mathematical concepts: we need to learn the rules.

The idea of a point, how/ to name a point. where to begin numbering, and the direction the numbers go arje all part of the rules of a coordinate system. Assume now that we have a class that has been given the rules; the children recognize the axis and have been given a method for finding a point. We need to add "experience."

The first two games described below are geoboard activities that provide such. experience in naming points, checking points. writing the names of points, and organizing data. This will help children become, famuliar with coordinate systems before we complicate the idea with lines. circles, graphs, and things like that. The activities will talso be fun for the class.

The third game described disguises general review as a game of tag.

Treasure Hunt

This is like the game "Battleship," except it is nonviolent! Use 4×4 or 5×5 geoboards, balls of clay, and two teams. Each team will put five balls of "gold" (clay) on the pins or nails of the geoboard without letting the other team know where the gold is (see fig. 1). The teams

Fig. 1
take turns naming points. When one team names a point that has gold on it, this team gets the gold. The first team to lose its five pieces of clay loses the game.

The rules of the game are simple, but the skills required to win efficiently involve practice with using oidered pairs to name points and organizing data so that students know whether or not a point has already been named. While one team gets practice by naming points, the other team gets practice by checking each point to see if it has any gold on it.

For the first game or so, after naming ten or more points the students will forget whether they have already called a particular point or not. This should lead to writing down the ordered pairs as they are named so that the players don't have
, to waste time checking the same point over and ovent ehildren don't do this on their own, suggest it. Here again is the practice they need. Later, their list will be rather long and they may spend a long, time checking the list. This should lead to organizing the list as shown in figure 2. Again, if children don't do this on their own. suggest it.

First List				
	(0,0)		$(2,2)$	
	(3.4)		(4.4)	
	$(2,1)$	-	(0,1)	
	$(1,3)$		$(1,1)$	
	$(4,2)$			
	$(1,2)$			
	(0.3)			
	(4.1)			
	(2,3)			
Organized List				
$(0,0)$	(1.3)	(2.1)	$(3,4)$	(4,2)
$(0,3)$	(1,2)	(2.3)		(4,1)
$(0,1)$	$(1,1)$	$(2,2)$		$(4,4)$

Fig. 2

Through the Maze

This is also a team game involving group versus group, although it may be played by one student against another. Each;team constructs a maze, using rubber bands and a geoboard. By calling off ordered pairs, one team is to get through the other team's maze without seeing the maze. Figure 3 shows two mazes with their solutions.

In this game, no rubber bands are to be crossed, nor may. anyone land on a peg with a rubber band on it. The beginning is at $(0,0)$, and the goal is to get to (n, n).

To play, someone on team 1 names a point on the maze. If there is a straight-line path between where he is and where he wants to go, he is told he can move. For example, on Maze II he could make one of two possible first moves, $(2,1)$ or $(3,1)$. All other choices are blocked.

This game requires a different recording method from that used ir Treasure Hunt. Points that are bloeked while a player is in one position will not be blocked if he is in another position. Here are some suggestions for this game:

1. Use a marier to show the position of the team in the maze.
2. The first time the game is played, make up a maze and play while the class looks at the maze. Explain why various moves can or can't be made. Be sure there is a path through the maze.
3. For the next game, make up a maze and show it only bricfly to the elass. Then have the class work together to choose points. Once they understand the method of playing, they can divide into groups or pairs to play.

Children find this a very interesting game, although it can't be played fast. It can be played during the time before or after school, or during lunchtime. It's a quiet game that provides needed practice in finding points on a plane.

Another game that could be used to provide experience in naming points is "Four-in-il-Row," a game used in the Madison Project. It is similar to tic-tac-toc, except that there is an extra column and row.

Fig. 3

The teams take turns naming points where an X or an O is to go．

Mathematical Tag

Sometimes in the teaching of mathe－ matics we feel compelled to do a little review．I＇m sure most of you have tried to find different ways to review that don＇t seem like review．I was faced with a review and also needed to keep a promise that we could have mathematics outside someday My solution to both problems was a varia－ tion on the game of tag．I called it＂Mathe－ matical Tag，＂since that described very well what was going on．
．Mathematical Tag is based on the rules of－the tag you played（or still play）．Here is how it works：

Everyone in class chooses a number from 1 through the number of students in the class．No two pupils can lave the same number．Each child will wear his number so it can be seen from the front or the back． Wide tape does a good job．You will have already prepared a pack of 3×5 cards on which are written expressions like the following：
> \square is not equal to 5 ．
> 3 is greater than \square ．
> $\square+3$ is an odd number．
> is a member of $\{5,10.15,20\}$ ．
> $\square+4=\square+4$ ．

You will need to keep a tally of your solu－ tion sets to check that each number is used about the same number of times．If after checking you find you need another 1，16，and 19，you can make up a card with the expression
\square is a member of $\{1.16,19\}$
—and yol＇re all set，so to speak．Try to avoid cards whose solution set will have only one or two members．It＇s hard on whoever is＂it＂to go after only two people．

Now comes the hard part－deciding who will be＂it．＂Let me suggest that you be＂it．＂This shows that you＇re a real sport， and it will show the children how the game is played．

Now＂it＂draws a card，reads it to him－ self，and figures out the solution set．With－ out telling anyone what the solution set is，
he must tag a person whose number is a member of the solution set．The person tagged is then＂$i t$ ，＂and the new＂$i t$＂draws a card．This can continue until the desire to hold class outside is climinated from everyone，or until the hids are tired enough to do seatwork．

What do you do when＂it＂tags someone whose number is not a member of the solution set？You could impose a penalty， but that is not necessary．The truth（set） will out．

Just a few more comments．The level of difficulty of the cards depends on the abili－ ties of the students．For example，compare （ \square is not equal to 5）with $(x \neq 5)$ and （ \square is between -3 and 3 ）with（ $|y|<3$ ）． After the game is played once，the class can be askedjito make up a pack of cards for the next time．They will see how hard it is to get the number of occurrences of each number the same．

Try to work out a way of usipenegative numbers．

Try to keep the playing area restricted to a small space．

This game cam be played indoors；but it is a noisy game，so choose a place ac－ cordingly．

I have played this with my classes，and it is a lot of fun．If your class size is about twenty－five，you could use the following sentences for your deck of cards．Copy each sentence on a card by itself．If I figured right，each number will appear，in seven different solution sets．

[^13]Have fun with mathematics！

Take a mathematical holiday

\therefore ETEAETNCCALLA
Christian Academy in Japan, Tokyo, Japan

The day before vacation usually brings an air of carefree excitement into the classroom as the children come, bubbling over with thoughts of "No school tomorrow!" To the teacher, educationally speaking, I'm afraid it often meaǹs a wasted day. I have found a way to put some of this restlessness to work, and so I invite you to join me as we "take a mathematical holiday"-the day before Christmas vacation.

The ideas presented here can be made as simple or complex as desired, so they can be adapted to most grade levels. They can also be altered to/fit the particular mathematical skill or concept you wish to incorporate; i.e., from basic operations of whole numbers, fractions and decimals, to geometry and probability. One holiday idea can be used for almost any other holiday, simply by adapting the figure.

Good old St. Nick (Fig. 1) can be uised to construct and to name different geometric figures. Halloween could use a few witches made from squares, circles and triangles; Thanksgiving vacation could easily fatten up a geo-turkey; and spring vacation could bring geometric flowers into bloom
Santa Claus (or any other holiday figure) can easily be drawn by "joining the dots" (Fig. 2), employing mathematical problems of varying difficulty.
I hope that these ideas will give birth to many more mathematical holidays as you use your imagination to create some
vacation plans of your own. Happy holiday!

Figure: 1
Gim. Snsita

1. Draw the following geonetric figures:* cut them out; put them together to make a Santa.
2. For Santa's hat. make an roup atrral. triwoire measuring I inch on each side. The brim is made from at rictasert that meanures $1 / 6$ by 1 inch.
3. Santa's face is made from a sou wr: I inch on eath vide. Gine him tuo litle trawais

[^14]for eyes, a little square for a nose, and a little circle for a mouth.
4. Make Santa's beard with an isosceles triangle, measuring I inch on one side, $I^{1 / 2}$ inches on each of the other two sides.
5. His body is made from an isosceles trapezold measuring 3 inches on the two equal 9 but nonparallel sides, 3 inches on one paral-- lel base and 1 inch on the other base.
6. Santa's arms are outstretched with two rectangles that are 1 inch long and $1 / 2$ inch wide.
7. His ${ }^{7}$ hands are made from two ${ }^{\circ} \mathrm{Cl}$ RCLES that are $1 / 2$ inch in diameter.
8. Each of Santa's legs is made from a rhombus, 1 inch on a side.
9. His feet are made trom two rectangles, $11 / 2$ by $1 / 2$ inches.
10. Give him three cIrcl.e buttons, and you've finished your task!

Santa Claus Dots
Join the dots from 1 to 29 in the correct order.
$1+1+1$.

Classroom Experiences with Recreational Arithmetic

Ruth H. Nies*
Sixth Grade, Wright School, St. Louis County, Mo.

MuM of tile so-called dislike for arithmetic in the intermediate grades is only pretense. Attitudes of apathy and hatred can be changed to contagious enthusiasm when methods of recreational arithmetic are employed. Wher pupils participate in the healthy enjoyment of number games, they are not ashamed to admit, their enjoyment to the world in general. Original puzzles, tricks, and recreational units devised by pupils prove that working with numbers is not really distasteful.

Recreational mathematios can serve as a "pepper-upper" to start a school day or to legin all arithmetic period. A short impromptu game will sharpen wits on a dull day and will relicce tensions and boredom. Sometimes between periods. just lefore lunch, or lefore dismissal time there are five. or tein minutes which seem to "dangle" and which are opportune for a game which can louild a worthwhile interest in working with numbers. An occasional interruption of the usual rontine with a puzzle. joke, story. riddle, or game not only provides a pleasurable break but may also be stimulating for interest in learning. There are many stories, games, and puzzes with a mathematieal content.

In our area some children must come to school early and have free time before sehool and must stay indoors when Weather does not permit ontdoor play. A "inumber oddity" or a number progression or some pattern of numbers writ-

[^15]ten ou the clalk board will fill the pupil's time pleasantly and to good adrantage.

Heme are i few eximples:
I. Select a number less than 10

Multiply it ly 9
Use the result as a multiplier of 123456789
(The final produrt will be a suecession of the digit originally chosen)
(Expect for a zero in the 10 s place.)
${ }^{-7} \quad 123456789$

2. Select a threce-digit
number
 number from thic larger
divide the result by
(The answer can be read backwarl or forward)
3. . $1 \mathrm{dd}: 123+5(5789$

987651321
123.506789

987654321
$\xrightarrow{2}$
$22: 222222$
(Don't show the answer, let pupils find it.)
Boys and girts like to see for themselves how these excreises "work out." They will test one repeatedly, try it with other
numbers, and int the meantime they are developing speed and accuracy without. sensing any drill. They think it is "kinda fun." Some days I will put a number oddity or riddle on the chalk board or bulletin board, and make no comment about it. Many children will "surprise" me by solving the oddity in their spare time. Like many teachers, I have a stack of seasomal items. Occasionally codes are used and both the boys and girls have a great fonduess for them.

1. Code Problam:

did: In the sum each letter represents a distinet digit. Find the numbers.

	S	E	N	D
	λ	O	R	E
X	O	N	F	Y

2. Hoces Pocts Maldowen:

idd. In the sum each letter represents a distinet digit. Find the numbers.

$$
\begin{array}{rrrrr}
11 & 0 & \mathrm{C} & \mathrm{C} & \mathrm{~S} \\
\mathrm{P} & 0 & \mathrm{C} & \mathrm{E} & \mathrm{~S} \\
\hline \mathrm{P} & \mathrm{R} & \mathrm{~B} & \mathrm{~S} & \mathrm{~T}
\end{array}
$$

3. Iphia Foon's l'czale:

Write a number of three digits on your paper. Be sure that the difference between the first and last digit exceeds one. Reverse the digits. Find the difference betwen the two numbers. Reverse the digits of this difference. Add these twe numbers. Multiply by a million. Subtract $96 i 6,685,433$. Substitute these letters for figures: under every figure 1 , write the letter 1 , under every figure 2 , write the letter (). under erery figure 3, write the letter F , under every figure 4 , write the letter I, under every figure 5 . writes the letter R. under every figure 6 , write the letter P, under every figure 7 , write the letter A. Read the result backwards.

I have observed that frequently pupils will take a greater interest in numbers and measures if they know something about how these originated. The history
of mathematics in a simplified version fascinates the elementary school child. My pupils particularly liRe süch things as the "stick method" of counting, añ"cient ways of telling time, early ealendars, etc. These topics also help them to appreciate modern arithmetic, The formula for finding area seems more useful to a child when he sees how troublesome area problems were to the Egyptian rope-stretchers. 'The story of our modern standardized measures and how these were developed can be both dramatic and worthwhile. The humor of impractical methods of measuring yards and feet in the days of King Henry II helps emphasize the importance of accuracy.

- The interest of almost all children can be captured by stories, but some will prefer action. When pupils experiment with an abaeus, geometric paper folding, or a set of Napier's "bones" which they themselves construct, I find their concepts of numbers and processes strengthened. Certain games and puzzles afford action, but not every child will enjoy arithmetie games immediately. He may not "catch on" to the tricks and short computations or he may not "see" a pattern or relationship in number progressions, or he may not grasp the essential point of a riddle. On the other hand, there are times when recreational materials will help a child to sense number relationships which he cannot understand through basic techniques. In- certain remedial cases, when all other methods have failed, "light has dawned" during use of recreationali devices. But it would be a mistake to force a child to participate in number games. Let him observe passively, he may soon take an active interest along with his classmates.

Likewise, it is a mistake to "explain" some short computations which may only confuse some of the children. A trick or a puzzic which calls for processes beyond the current learning level of the class is not useful. Conversely, one which
makes application of a child's, current stoek of number facts provides him with a thrill when he sees it work. The fourth grader who sees for the first time the interesting patterns made by multiples of 9 is actually gleeful when he reaches grades five and six and more advanced patterns he ean work out with "Magic !," "Tricky 3," and "lacky 7."

TRICKY 3

$37 \times 3=111$
$37 \times .6=222$
$37 \times 9=333$
$37 \times 12=444$
$37 \times 15=\mathbf{5 5} 5$
$37 \times 18=666^{\circ}$
$37 \times 21=777$
$37 \times 2 \cdot \dot{4}=888$
$37 \times 27=999$

LUCKY 7

$1 \overline{5}, 873 \times 7=111,111$
$15,873 \times 1.4=222,222$
$15,8 \overline{7} 3 \times 21=333,333$
$1 \overline{\mathrm{i}}, 873 \times 28=4.4,444$
$15,873 \times 35=5 \overline{5} 5,555$

$15,873 \times 48=777,777$
$15,873 \times$ 다 $=888,888$
$1.5,873 \times(03=999,099$

MAGIC 9

$123+56789 \times{ }^{\prime} 9=111111111$
$123+5$ ($789 \times 18=222222222$
$123456789 \times 27=333333333$
$123456789 \times 36=44444+4+4$
$123+5<489 \times+5=555555555$

$123+54789 \times 133=777777777$
$123+56789 \times 72=888888888$
$1 \cdot 23$ но $\mathbf{6} 789 \times 81=999999999$
$2222222222 \times 9=1999999998$
$333333333 \times 9=2999999997$
$4+4 t+4+4 \times 9=3999999994$
$555555555 \times 9=4999999995$
6ificic666i(iti) $\times 9=5999999994$
$777777777 \times 9=69999999993$
$888888888 \times 9=7999999992$
$999999099 \times!=8999999991$

I have no wish to over-emphasize arithmetic in our course of study. Any sixth grade teacher knows that she must cover much ground in teaching miny other subjects. Oecasionally correlation with arithmetic proves valuable. In science the study of the solar systern has provided information and entertainment for pupils who have devised recreational type units. They prepare.these in committees and small study groups beyond the minimum assignment. Our language arts activities include dramatizations. We have written and presented several dramatizations based upon arithmetic. In, the social studips our units the Latin American countries, the British Isles, Canada, and Australia. Possibilities fór recreational units involving arithmetic are obvious. Comparisons and contrasts relative to size in area, population, etc. always -strengthen knowledge in both fields. I have had many such units worked out by pupils. Subjeet matter of the sixth, seventh, and eighth grades is especially: good for incidental correlation' of other subjects with arithmetic.

Drills and mumber games for fun can le used in lower grades, but recreational arithmetic begins to come into its own in grades four through eight, after basic: fundamentals have beeil mastered. Of course, these same fundamentals need constant review.

Because sixth-graders love guessing games, I may start one out by saying, "Think of a number between 1 and 10 , and I'll bet I can guess your number! Write it down, but don't let anyone see it. Now multiply your number by 3. Add 1. Multiply the result by 3 . Add the number which you selected in the beginuing and be ready to tell me your final answer. I'll promise to guess your original number if you have made no careless mistake!" By striking cut the units digit in the final answer, the ehild's number will remain, but of course I don't tell that "secret" to the class. Cintil they diseover it, they are amazed at my ability, and
they all clamor to have me guess their chosen numbers. I may add a few more difficult guessing tricks with two or three ${ }^{\text {- }}$ digits. When the secrets are exposed, the pupils all try the trieks on Mom, Dad,
Big Brother, or Sister when they go home. It gives my sixth-graders a. chance to "show-off" at home, perhaps to gain added prestige. Often, as Dr. Willerding has pointed out, childrèn call establish, through recreational arithmetic, a new type of comradeship with the elder members of their families. This leads to an exchange of tricks and puzzles, whieh stimulates interest in mathematics. Fyes and ears are alerted for new trieks to try. I am always delighted when my pupils bring a trick worked out at home or spotted in a newspapter or magazine.
Guessing ages, birth dates, small change, pages in a book, ete. is sufficient fun to prove to an eleven year old that working with numbers is not all dreary business.
On the basis of persoual experience, I feel impelled to reiterate that, going beyoud the point of having fun, working with magie squares and cross number puzzzles can actually strengthen mathematical ability. When I present a magic squiare to my class, I explain what one is and how it is constructed. I demonstrate with one simple 9 -celled square and teli the class that there are seven other possible combinations. Within a few minutes many pupils come up with the other squares filled in: they beg for more patterns. larger and more difficult şuares.
Giross-number puzzles serve as good review of basir processes. I teach area. Derimeter, percents and decinals as applied to pratical. every-day life, of course. But the necessary processes and formblae can be reviewed in cross-number puzzles. These are not usually included in text-books, and, while the text-hook is important in an arithmetic program, materials not found between its pages seem to have more magnetism for the minds of sixth-graders. If the pupils like the puzzles
magic square

I give them for review, they make puzzles of their own to exehange with classmates. None of these has been required, but I have been surprised at the number of puzzles turned in on a voluntary basis. My files are full of really good recreational materials which hare the original ereations of pupils.
When youngsters choose to use leisure time to "play" with numbers sad when they, loeg to remain indoors at recess to work on number puzzles (which plea I do not grant in good weather!), I am sure that sixtl-graders do like arithmetic. But of course the true test comes in evaluating the results of a program where recreational neethods are used. Standard tests show the pupils' performance to be well above the norm. Fach year the improvement in arithmetic achievement is gratifying. During this year the grogressive growth in skills has been especially noteworthy. I must in no way imply that recreational arithmetic is solely responsible for a good achievement record. There are varions contributing fartors.
I recognize that many teaching procedures are neeessary for a thoroughly rounded arithmetic program. Recreãtional devices are only among the many, but their value should not be overlookéd. Some teachers will say that they have no time for fun in aritlinetie. I think that they should allocate some time for it. I believe improvement in pupils' skills and attitudes will result.

Edrorial. Comment.-Can you solve this code problem?

> FIVE
-FOUR
ONE

"Arithmecode" puzzle

DAVID F. WINICK Minneapolis, Minnesoka

The dashes below, labeled with Roman numerals, represent the words of a quotation or phrase. Each dash stands for a single letter. For example, five dashes rep-- resent a five-letter word. To determine each word, the reader must examine the clues by the corresponting Roman rumerals and
identify the number described. Once the number is identified it must be decoded by selecting the appropriate code letter for each digit of the number. Each digit corresponds to exactly one letter of the word in the same order, but there may be two or three code letters for any given digit.

-francois. duc de la rochefoucauld

CODE			
A	0		
D	1	I.	$04,011,272$
E	2	II.	$\left(59 \times 10^{3}\right)+\left(47 \times 10^{1}\right)+10^{0}$
F	3	III.	5 plus the number of feet in 148 fathoms
IV.	$(14046) 2^{-1}$		

G 4
H 5
I 6
L. 7

N 8
O. 9

Q 0
R I'
S 2
T 3
U 4 -
W 5
Y 6
V. 64 plus the total number of degrees in all the interior angles of a 46 -sidicd polygon
VI. $\sqrt{3,969}$
VII. $(26+25+24+\ldots+3+2+1)+1$
VIII. $(5!\times 254)-7$
IX. If 6 is subtracted from this number the result will "be what Euclid called a "perfect number."
X. 79 plus the product of the greatest two-digit prime number and the least three-digit prime number
XI. $343_{\text {five }}$ expressed as a base-ten numeral
XII. If this number is X, then $\log _{\text {fous }}(X+42)=5$
XIII. MMDCXI!

Solution

i. $04,011,272$
II. $\left(59 \times 10^{3}\right)+\left(47 \times 10^{1}\right)+10^{0}=59,471$
III. 5 plus the number of feet in 148 fathoms 893

QUARRELS
WOULD
NOT
IV. $(14,046) 2^{-1} 7023$

LAST
V. 64 plus the total number of degrees of all the interior 64 plus the total number of degrees of all the interior
angles of a 46 -sided polygon $7,984 \ldots \ldots$. LONG
VI. $\sqrt{3,969}$
.63
VII. $(26+25+24+\ldots+3+2+1)+1352 \ldots$ THE
VII. $(5!\times 254)-7$ isen 30,473

FAULT
IX. If 6 is subtracted from /this number the result will be
what Euclid called a/"perfect number." : 502
WAS
X. 79 plius the product of the greatest two-digit prime num-
ber and the least three-digit prime number $99,876 \ldots$ ONLY
XI. $343_{\text {five }} \cdot 98_{\text {ten }}{ }^{3} \ldots \ldots$.
XII. If this number is X, then $\log _{\text {four }}(X+42)=5 \quad 982$ ONE
XIII. MMDCXII $2,612 \ldots \ldots$.

Enitorlál. Comment. - Here is an casier one:
I II III IV $\bar{V} \overline{\mathrm{VI}}$. $\overline{\mathrm{VII}} \overline{\mathrm{VIII}} \cdot \overline{\mathrm{IX}}$

Clues:

I. 2×3	IV. 3×3
II. 2×2	V. 3×1
III. 2×1	VI. 4×2

VII. 5×1
VIII. 1×1
IX. 7×1

$\begin{array}{llrl}\mathrm{I} & 3 & \mathrm{~S} & 8 \\ \mathrm{M} & 6 & & \mathrm{~T} \\ \mathrm{~N} & 7 & \mathrm{U} & 1\end{array}$
C

Arithmetical brain-teaşers for the young

HENRY.WINTHROP, University of South Florida
Dr. Winthrop is professor and chairman of the Department of Interdisciplinary Social Sciences at the University of South Florida, Tampa, Florida.

An interest in numbers ${ }^{\text {'is }}$ sometimes stimulated in the elementary grades by arithmetical brain-teasers. Provided below are a number of arithmetical briain-teasers that range in difficulty from items that may be employed in the lower grades to items that can be sused in those schools than have introduced a little eleme'tatry algebra in the seventh and eighth years. yithout more ado liet me present these in an order that reflects, in my judgment, their increasing difficulty.

1. Q. Perform any operations you wish with the digit 9 , which is to be used four times, so that the result of all the operations employed will give the number 100 .
A. $99+9 / 9$.
2. Q. Name two coins that add up to 11द, but one of them mustn't be a penny; and give the reason for your answer.
A. Oṇe dime and. one penny.
Many, children and adults fail to distinguish between the condition which demands that neither of them must be a penny and the milder condition which demands only that oree.of them 'mustn't be $a^{\text {a p penny. }}$
3. Q. If a bottle and cork together cost $\$ 1.05$ but the bottle costs $\$ 1.00$ more than the cork, how much does the cork cost?

- A. $2^{1 / 2}$ ¢ .

Many individuals develop a mental block to this problem, seeking for a solution that shall be an integer.
Where youngsters have been taught how to obtain the square and cube of the
digits from 1 through 9, the following brain-teaser will be in order.
4. Q. Notice that $43=4^{2}+3^{3}$, that is to say, the digits that make up 43 are so relatea that the square of the first-digit plus the cube of the second digit will yteld the number 43 itself. How many other numbers can you find exhibiting the following property? A two- or three-d.? it number is to be found such that if its digits from left to right are raised to the first, second, and third powers, respectively-and in that order-the sum of these digits raised to the first, second, and third powers will give the number itself. :
A. Sample answers: $1^{1}+3^{2}+5^{3}=$ $135 ; 5^{1}+1^{2}+8^{3}=518 ; 6^{2}+3^{3}=63 ;$ $1^{1}+7^{2}+5^{3}=175$; and $5^{1}+9^{2}+8^{3}$ $=598$.
5. a) Q. A number has three digits. One of these digits multiplied by the square root of the other two digits is equal to the square root of the number itself. What is the number?

$$
\text { A. } \sqrt{135}=3 \sqrt{15 .}
$$

b) Q. A number has three digits. The square root of this number is equal to the product of one of these three digits multiplied by the square roct of the other two digits. What is the number?
A. $\sqrt{783}=3 \sqrt{87}$.

If the netion of factorial is explained to youngsters, then the following brain-teaser can be given to them.
6. Q. Notice that some factorials are the product of two or more other factorials. Thus $6!7!=10$! Using nonconsecutive
numbers, how many more examples of this type; of relationship can you supply?
A_{L} Sample answers: 4! 23! . $=24!$; $2!4!/ 47!=48!2!3!+!287!=288!;$ and $B!5!7!=10!$
7. "Take a number."

Ask a person to take a number but not to let you know what it is. Then ask him to pe:form the following operations in sequence.
a) Double the number thought of.
b) Square the result of doubling.
c) Multiply the result obtained in Step

2 by the number 3 .
d) Ask the person involved to divide the result of Step 3 by the number he or she riginally thought of.
e) Now ask this person to subtract, from the result of Step 4 , an amount equal to four times the product of the original number.

* f) Now ask the person in question to give you his last result from Step 5. As soon as he, dges so you can tell him the number he originally thought of. As an example, let us assume the person originally thought of 6 . Then the results of the first five operations described above would be the following: (1) 12; (2) 144; (3) 432; (4) 72; (5) 48. If you now divide 48 by 8 , you will obtain the number originally thought of, 6 .

What is the rationale of this procedure?
For a person whose task is to guess the number that was originally thought of by the other, all that is required is a slight acquaintance with the most elementary aspects of beginning algebra. Suppose you are the person whose task is to guess the number. in your own mind, think of the $r \times$ mber selected by the other party as x. Then the five results that you would get from performing the steps outlined can be represented as follows: (1) $2 x$; (2) $4 x^{2}$; (3) $12 x_{i}^{2}$; (4) $12 x$; (5) $8 x$. When the person who selected a number gives you the answer corresponding to $8 x$, you quickly divide mentally by 8 . This immediately will give you the number that this person
thought of. Thus, at the end of Step 5, the selector will give you his result, 48. Dividing 48 by 8 will iminediately give you the number he originally selected, 6 .

Obviously this procedure is such that the number. of operations to which the selector can be submitted is unlimited, while the nature of the operations can be more varied than the few operations shown in our example.

The whole procedure tends to mystify those wno select a number. Once shown what has been done, however, the effort to duplicate this type of performance with others tends to sharpen the individual's sense of the meaning of arithmetical operations. This is all to the good, This last type of brain-teaser is, of course, most appropriate for individuals in the seventh and dighth years, provided they have been exposed to a modicum of elementary algebra.

The toughest brain-teaser I can think of giving youngsters, one that will really keep then going on unfinished business for quite a while, is to interest them in automorphic numbers and then see if any of them can find automorphic numbers for themselves. An altomorphic number is one whose square ends with the number itself. Two large examples' of automorphic numbers are $43,740,081,787,109,376$ and $56,259,918,212,890,625$. In asking youngsters to find other automorphic numbers, many individuals will be surprised to discover that a fina! few or more digits of the two automorphic numbers already given will, themselves, be automorphic numbers. Thus 76^{2} ends with 76; 90625^{2} ends with 90625; and $87,109,376^{2}$ ends with $87,109,376$.

It is an interesting exercise to present the first two large automorphic numbers given above to youngsters; then to tell them that there aie sequences of successive digits in these two numbers that are themselves automorphic numbers, and to ask them to find these new automorphiç numt. bers.

"Parallelograms": a simple answer to drill motivation and individualized instruction

BENNY F. TUCKER

Abstract

Benny Tucher is mullematics consultunt for grades K-12 for the Parhnay School District, Chesterfield. Missouri. He is the author of a humalbook of activities for elementury school mathematics for use in the Parhway whools.

TQ. drill or not to drill-that is the question that "bugs" many teachers" of elementary mathematics. Some who would have us teach "modern" mathematics have said that drill and memorization have no plaee in contemparary mathematics programs. Experience and common sense tell us that these spokesmen of "modern math" are either wrong or misunderstood. Indeed, few have actually said that memorization and drill do not have their place in mathematios education. Most experts agree that both must be an integral part of our programs but that they must be hept in proper perspective.

Drill, and the memorization and shills development that can result, should come only after, the student adequately understands underlying concepts. Drill should never be used as a substitute for teaching and should not be a club to be used on children who have trouble understanding mathematics teachers.

Teachers sometimes forget that if a child ' is to, maintain a receptive attitude toward drill over any significant period of time, every effort must be made to keep the drill procedures varted and interesting. There are many drill games on the market which can be of valuable help to the teacher who wants to maintain interest.

A game that has been particularly successfui in the Parkway elementary schools
is a game similar to tic tac-toe called "Parallelograms."

Nearly cuery child hnows how to play tic-tac-toe. By requiring the plays to answer questions cotrectly at the rish of losing turns, a teacher can effuctively use tic-tactoe for drill or review. Out of a search for a game that is simalar to tic-tac-toe but that ivould seem quite different to the student, the game Parallelograms evolved. The object of the game is to be the first player to mark the four vertices of one of the many parallelograms contained in figure 1. Of course one's opponent will be trying to do the same thing, so each player must try to anticipate his opponent's strategy and block him. Although it will be obvious to the teacher that squares are also parallelograms, it may be necessary to point out to the students that the vertices of any of the four squares in the figure could also be a winning combination.

In the game at the left in figure 1 , " X " needs one more move to win. In the second game, "O" needs one more move to win.

In addition to the obvious benefits from the drill, the use of this figure gives students practice in the visualization of geometric shapes and in the use of game strategies. Parallelograms is simple enough for thirdgrade students but chatlenging enough for the most tulented sixth-grade students.

Fig. 1

Since the figure for Parallelograms is rather complicated and not easy to draw, it is suggested that dittoed copies be provided for the students. Or an overncad transparency can be used as a game sheet and marked with a crayon or wax pencil. When the game is finished the acetate can be wiped clean with a tissue to make ready for the/next game.

Perhaps the greatest value of the game is its adaptafility to many situations. A sequence of questions car be used. with the players answering them alternately. If the player answers correctly, he may mark a vertex. if he misses, he loses his turn. The questions used/in the game could just as well come from an academic area other than mathematics (for example. spelling. science, or geography). Questions could be used from several academic areas all in the same game. The teacher can, by using carefully selected questions, teach new material in the context of the game. The best application of the game may be in the individualazation of mathematics. If a teacher who is assigned thirty students is to be effective in dealing with individual needs, he must have at his disposal a wealth of materials that are worthwhile but that require only indirect teacher supervisions Parallelograms fits this description. A, set of multiplication flash cards can be the source of questions for a pair of students who need drill on their multiplication facts_-If the teacher sees a need for work in fin areafor which there are no commercially prepared cards, a deck of cards with questions on one side and answers on the other-pre-
pared by the teacher to meet the specific need-can be used.

A question that elementary teachers perpetually face is what to do with the student who is having trouble with topics normally learned in an carlier grade. Certainly the ee students should be taught what they need to learn, but many teachers do not find the time that they feel is necessary to satisfy the needs of such students. Another conmon problem is the student who always seems to finish his assignment ahead of the rest of the class. The pat answer to this problem is that such a student should be allowed to continue at his own rate-he should not wait for the other students but should go on with the next "lesson."
The gepne Paralielograms can supply one solution for these problem students. Working in pairs both students needing) remedial tasks and accelerated studeńts can enjoy playing the game, and a deck of , cards containing a programmed sequence of questions on a needed or interesting topic will allow those students to effectively teach themselves while requiring only indirect supervision from the teacher. Work with programmed materials is far more interesting to the student when it is placed in the context of a game like Parallelograms.

In the following game between Bill and Jerry, the questions are drill questions on decimals. Bill is marking with an X . and Jerry is marking with an O.

Qusstion: Where would you place the detimal point in the numeral 12345 so that the 3 would be in the hundreds place?

Bul.: After the 5. (Correct; Bill marks a vertex as shown in fig. 2.)

Fig. 2
Question: What is . $023-.009$?
Jerry: .0194. (Wrong; Jerry loses his turn.)

Question: Which is greater, 0098 or . 012 ?

Bill: .012. (Correct; see fig. 3.) /

Fig. 3
Question: Where would you place the decimal point in the numeral 12345 so that the 4 would be in the hundredths place?

Jerry: Between the 2 and the 3. (Correct; see fig. 4.)

Fig. ${ }^{4}$

Question: What is $5.62-.13$?
Bule: 5.49. (Correct: see fig. 5.)

Fig. 5
Qurstion: What is $984 \div 6$?
Jerry: . F64. (Correct; see fig 6.)

Fig. 6
Question: Answer the following: 7.96 $+\square=24.3$.

BiLI: 32.26. (Wrong; Bill loses his turn.)

Question: What is $32+1.5$?
Jerry: 1.82. (Correct; see fig.7.)

Fig. 7
Question: What is $5+.2$?
Bu l: 5.2. (Correct; see fig. 8.)

Fig. 8
Question: What is $.32 \times 1.5$?
JERRY: .48. (Correct; sce fig. 9.)

Fig. 9
Question: What is 6.5×12.4 ?
Bill: 80.60. (Correct; see fig. 10.)

Fig. 10
Bill wins the game.
The following is an example of a programmed sequence of questions, for thirdgrade students or for fourth-grade students neefling remedial work, developing the distributive property as a tool to be used in multiplying one-digit numbers by twodigit numbers.

I. 0000	0000
0000	0000
0000	0000
0000	$t++t$
0000	$t++$ +
5 fours $\left\{\begin{array}{c}\text { is the } \\ \text { same as }\end{array}\right\}$	s) 3 fours $+\square$ fours
2. 00000000	
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$	7 sixes
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$	
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$	is the same as
+ + + + + +	
$t+++++$	\square sixes +3 sixes
$t+++++$	
3. + + + + + +	,
$t++t+$	6×5
000000	$6 \times 5=(2 \times .5)$
00000	$+(4 \times \square)$
000000	
00000	
4. $\begin{array}{lllll}0 & 0 & 0 & 0\end{array}$	
0000 -	
0000	
0000	$\square \times 4=(4 \times 4)$ $+(3 \times 4)$
0000	$+(3 \times 4)$
00000	
0000	

5. 9 threes $=5$ threes $+\square$ threes
6. $9 \times 5=(4 \times 5)+(\square \times 5)$
7. $6 \times 3=(1+5) \times 3$

$$
=(1 \times 3)+(\square \times 3)
$$

8. $6 \times 9=(3+3) \times 9$

$$
=(3 \times 9)+(3 \times 9)
$$

$$
=27+1
$$

9. $7 \times 8=(5+2) \times 8$

$$
=(5 \times 8)+(2 \times 8)
$$

$\nu_{m}=\square \times \Delta$
10. $12 \times 7=(10+2) \times 7$

$$
=70+\square
$$

13. $14 \times 6=(10+4) \times 6$
$=[j+24$
14. $13 \times 8=(10+3) \times 8$
$=80+24$
$=$
15. $\begin{aligned} 15 \times 5 & =(10+5) \times 5 \\ & =(10 \times 5)+(5 \times 5) \\ & =\square\end{aligned}$
16. $32^{\circ} \times 6=(30+2) \times 6$
$=(30 \times 6)+(2 \times 6)$
$=\square+\Delta$
17. $27 \times 4 .=(20+7) \times 4$

虚 $=(20 \times 4)+(7 \times 4)$
$=$

Like most games, Parallelograms will only be as effective as the ingenuity and creativity of the classroom teacher allows. It is hoped that the reader will adapt the game to his, own needs and feel free to use it.

Note. The author would appreciate hearing from readers äbout any success or failure experienced with the game.

Take a chance with the wheel of fortune

BARBARA ROSSER
Sparta Elementary School, Sparta, New Jersey

Through the years I have noticed that any of my friends who have chosen to make mathematics their life's work have thought of numbers in terms of a game. Working out a mathematical problem is as exciting and challenging to them as deciding on a move in a chess tournament.

Why not, then, inject a little of the intrigue of the game into the math class? Undoubtedly there are distasteful aspects of any subject, and obviously we can't make it all fun and games.
Take multiplication facts, for instance. I don't know of a single child, gifted or otherwise, who has enjoyed learning them. What's more, in the day of "concept teaching" the teacher is hesitant to take class time for old-fashioned drill. But in the few years that I halve used the "game of chance," the chore has been incorpo-
rated into a suspenseful game that takes no more than five minutes out of the period and turns drudgery into a sport. I use a "wheel of fortune" for fact-study motivation. Yes, we're gambling in the classroom —and the children love it!

Here's how it works. A spinner from any game is simply converted into a number wheel by cutting a mask to fit around the outer edge of the board so as not to interfere with the movement of the spinner (mine comes from the family's "Twister" game).

Enough divisions are made on the mask to accommodate a number ior every child in the class. Each child is assigned the number that corresponds to his name in my grade book.

When the spinner lands on a n\&mber, the child who has that number gets the
"oral test of the day," consisting of five randomly-chosen multiplication fats, with about three or four seconds allowed for an answer. I usually gite three of these tests a day. Whichever facts are missed are practiced ten times for homeworh in addition to the regular assignment.

Going one step further, it's ann easy matter to make up index cards with facts on them along the left edge, with space at the top for pupils' numbers. An \times or ${ }^{\prime}$ in the appropriate box on your ruled grid provides an at-il-glance record on Johmy or Mary for quick checks on their progress.

I usua'iy limit my tests to three per marking period so that everyone has at least two or three grades to average in with the others.

At first the idea of being tested "out of the blue" produces groans of horror, but it's surprising how after a week or two the children beg for more: "Let's do four today!" "Oh, please! I really studied last night-get me today." "We should do six today instead of three: remember we skipped a day last week."

Sure-it's an casy 100 if they know there facts, and the oral quiz (five facts to a customer) cartics the weight of " regular quiz. One thang to keep in mind is that everyone has a bad das now and
then. To cut down on "test tension" I usually tell my pupils that their lowest mark will be discarded. They all want to "try for high." so nightly revien becomes a must.
A gimmach? Perhaps, but no more so than many forms of motivation. It's a game. It's exciting, and everyone wants to win. It's suspenseful, it adds excitement to what could easily be another dull math routine-the learning of multiplication facts.

It's a challenge. No one knows when it will be his turn to be tested, so everyone studies every day. Sometimes a few minutes' study time is given in class for those few children who let the home study slip. Seeing almost everyone else cramming for the "big maybe" is usually enough to prod the one or two laggards into action.

Immoral? Not at all. Life's a gamble. The math teacher/could call on anyone for an answer. She could also be accused of "picking on" someone. The wheel of - fortume is impartial.

One final advantage is that conscientious youngsters learn the lesson of cause and effect by watching the upward trend of their graphs of weekly speed tests, as well as being able to reap the immediate rewards of winning at a game of chance.

Using functional bulletin boards in elementary mathematics

WILLIAME. SCHALL
State University College, Fredonia, New'York

Visual aids-films, still pictures, models, bulletin boards, and so-on-are among the most useful tools in education, but they do not teach without intelligent planning and use (Glenn O. Blough and Albert J. Hugget, Elementary School Science and How to Teach It [New York: Dryden Press, 1957], pp. 33-34). Bulletin boards can play an important role in today's mathematics program. However, a bulletin board, if it is to be successful in achieving its purpose, must gain and be worthy of the class's attention.

The writer wishes to extend his appreciation to Mary Jane K̇oepfle and Deborah Lewis, students in his mathematics methods course at the University of Cincinuati, for their help with this article.

A good bulletin board should also be supportive of and adaptable to classroom activities in a particular subject area, elementary mathematics in this case. Since children like activities or games in which they participate or are actively involved, a gane approach is suggested for use here.

The rest of this paper describes several bulletin boards in various areas of elementary school mathematics. Each suggested builletin board includes a short discussion of the bulletin board's purpose, the appropriate grade level, concepts and objectives that the bulletin board is intended to develop or reinforce, suggested questions that the teacher might use in connection with the bulletin board to stimulate additional thougnt and discovery, and a short description of a class activity that could
involve pupils with the bulletin board.
The first bulletin board is shown in figure 1 .
A. Purpose: To review and reinforce the basic mathematical operations as well as the concept of renamingnumbers. The code or the message can be changed frequently, depending on the class, activities, season, and so on.
B. Grade level: Fourth or higher depending on the code used. For higher grades a rational-number code can be used.
C. Behavioral objectives:-

1. The children will be able to work the problems and read the message.
2. The chitdren will be able to recognize that a number can be renamed in many ways.
3. The children will be able to rename ${ }^{-}$ numbers in different ways.
D. Discussion questions:
4. What is a code?
5. Why do people sometimes write in codes?
6. How do you read a code?
E. Description of the activity:
7. The children work the problems to read the message.
8. For additional practice in renaming, each child can write his own message in code and rename the letters as
different mathematical problems. Besides reviewing renaming, this will also seview. the basic mathematical operations.
A nother bulletin board is shown in figure 2 . It is used as follows:
A. Purpose:
9. To use the written numherals as a daily practice in counting
10. To serve as a daily practice to match a set .with the appropriate cardinal number
11. To use the displayed objects as a basis of comparing sets
B. .Grade 'level: This bulletin board could be used in the kindergarten and first grade. Counting, the introduction of sets, anid the comparison of sets are usually introduced in the kindergarten and could be used for' review purposes in the first grade. (However, the specific time it is used depends on the children's progress.)
C. Behavioral objectives:
12. The child will be able to count to 10 .
13. The child will be able to identify each numeral; this means knowing a " 5 " or a " 7 " when he sees it.
14. The child will be able to name the geometric figures that are the elements of the sets. .
15. The child will be able to match the

CAN YOU READ THIS MESSAGE??

$$
\stackrel{\rightharpoonup}{2}
$$

Fig. 1

$$
\begin{aligned}
& 3+(4+3)(5+5)-3(8+2)+0(5+8)+13 \\
& 3+20(5+5+5)-10(7+7)-13(25+4)-26 \\
& (1+1)+02+2+2+2(6+6)-7(4+4)+0 \\
& (17+10)-6(24-8)+5(1+1)-1(5+6+6)-12 \\
& (1+2)+0 \quad 3+(28-27) \quad 79-53 \quad(18-7)-2 \\
& (3+1)+(1+3) \quad(8-8)+1 \\
& a=8 \quad f=25 \quad k^{\prime}=20 \quad p=21 \quad u=2 \\
& b=14 \quad g=12 \quad 1=4 \quad q=6 \quad v=24 \\
& c=22 \quad h=5 \quad m=19 \quad r=15 \quad w=10 \\
& \mathrm{~d}=9 \quad \mathrm{i}=26 \quad \mathrm{n}=17 \mathrm{~s}=23 \quad \mathrm{x}=16 \\
& z=18
\end{aligned}
$$

Fig. 2
sets with the correct cardinal number. Rope mounted on the bulletin board can be used to indicate the correspondence.
5. He will be able to compare the sets, thus using the ideas of more or less.
D. Questions to stimulate thought:

1. Can you name the numerals written on the bulletin board?
2. Can you show me where the " 5 " is (similarly for other numerals up to ten)?
3. Can you show me the set of four objects? Or, which group has the four circles?
4. Which set of objects has the largest cardinal/number?
5. Which set of objects has the smallest cardinal number?
6. Are there more circles (O) than squares (0)? How can you tell?
E. Description of the game:
7. A child can select a number and point to the numeral that represents the number.
8. Another child can match the correct set with the cardinal number.
9. If the second child gets the correct answer. he gets to select a number.
10. The activity can be varied. The teacher can point to a numeral and ask children to identify the correct set.
The next bulletin board is shown in figure 3, and its use is outlined below.

A. Purpose:

This bulletin board is designed to stimulate thinking about geometric shapes how they are made and what they are called. There is to be transifer of learning from the geometric shapes illustrated on the bulletin board to geometric shapes in the everyday environment.
B. Grade level:

This particular bulletin board is designed for the primary grades; however, the basic idea of the bulletin board (the geo-board) can be used for all grade levels in the elementary school.

Fig. 3
C. Behavioral objectives:
I. The child will be able to identify the six geometric shapes pictured on the bulletin board.
2. The child will be able to copy the indicated shapes on the geo-board.
3. The child will be able to recognize the number of points connected in each shape.
4. The child will be able to distinguish between the geometric shape and its region.
5 The child will be able to recognize a wide variety of geometric shapes in the classroom.
D. Materials:

1. Individual geo-boards
2. Rubber bands
3. Yarn (for use on the bulletin board)
E. Questions to stimulate thinking:
4. The same geometric shapes that you made on the geo-board can be found within the classroom. Can you find some examples?
5. Can you make a given shape on the geo-board?
6. If given the number of points or sides in a geometric form, can you create the corresponding form?
7. How many different geometric shapes did you see on the way to school this morning?

The last bulletin board to be discussed here is shown in figure 4 ; its use is outlined below.
A. Purpose:

To motivate children as they work with the fundamental operations of arithmetic; also, to increase the learners' skill in computation in the fundamental ${ }^{-}$ operations
B. Grade levile:

Most intermediate grade levelsdepending on the difficulty of the computation and skills involved
C. Behavioral objectives:

1. The learners will work examples using the four fundamental operations of arithmetic with increased accuracy and speed.
2. The learners will demonstrate increased interest in arithmetic through participation in the "Grand Prix" activity and other mathematical activíties.
3. The yearners will demonstrate cooperative leicrning and working skills.

through participation in the Grand Prix activities.
D. Description of the activity:

Grand Prix is designed to motivate children to attain a higher level of proficiency with the four fundamental operations of arithmetic-addition, subtraction, multiplication, and division. Children within each class are divided into teams of two. These teams

1. Are composed of one student from more skilled or more able groups and one from the less skilled or slower-moving groups to maintain a balance:
2. Are in twos so they can help each other with flash cards and other team activities;
3. Provide good "working together" experience.
These activities are done, of course, after good, meaningful experiences have been provided for the learners with the
operation; the emphasis is on refinement of the skill, that is, accuracy, speed, retenton, and operational ease. To begin the activities, the addition facts are given for the qualification day. The learners are then given a chance to have a "trial run.' They have a week to practice with their partners before "race day," when their combined scores (these scores can be predetermined values) determine where their racer moves on the track. The same procedure is re=peated for substraction, multiplication and division. Trophies, certificates, and so on, are -presented to teams that reach the "checkpoint." The checkpoints are team scores of 200 or whatever categories are chosen.

One corner of the room has letters suspended over it spelling "THE PIT," where children may go when other work is finished to get "tuned up." There is a box labeled "Mechanics' Tools" that contans flash cards and various other devices for practice with the basic facts.

[^0]: 1. It was surprising that Traci deliberately planned to have negative numbers as responses in her equations.
[^1]: ${ }^{1}$ Bryce E. Adkins, "Adaptung magic aquares to clearoorn uke." Tag Amithaztic Tracake, X (December, 1963), 498500.

[^2]: Tracain, IX (November. 1902), 395-395.

[^3]: 1 A Cheago Teachers College Student Project.

[^4]: - If you don't have your own favorite source for purchasing spinners. these are available from Vroman's. 367 S. Pasadena Ave., Pasadena, Calif. 91105.

[^5]: - With an apolory from the teacher that in this case he can use only a 4 -digit number

[^6]: * Fich bux of Virror (ards contains, in didition to mirrors. 170 cards atranged ith fourteen different sets Athough the instructions for the sets vary. the basie probicm is the same for all the sets and is the one described abone A trial edatan of Mirror Cards was produced and copyrighted by the Flementary Science turdy in Jane 1965 ithey are being uned on a trial basis un over 250 classooms around the country The author would like to acknowledge the help recesved from Mrs A Nainian, Mrs F Ployer, and Mry J Wil i.ains in cditug the gurde and prexincing the cards
 - The poxiton of the patiern ralative to the edge of the ard is to be agnored

[^7]: ${ }^{1}$ C. E. Shannon. "Game Playing Machines." Journal of the Franklin Institute, CCLX (Dciember 1955). 447-53.

 TMartin Gardner. "Mathematical Games." Scienific Americant, CCV1 (March 1962), 140-43.

[^8]: 1 Truman L. Kelley. "Advanced Statiatica," Harvard Unfversity, 1947.

[^9]: - Courteny Tima, Copyright. Tinno, Ide., 1803.

[^10]: - Jerome S. Bruner. The Procest of Education (Cambridac: Hasvard University Prean, 1901) p. G4.

[^11]: - W'orld's Grese Exanta Senses, IV. 166.

[^12]: 1 Jt should be noted that little trouble is ensountered in the ambiguous labeling of the see as a "1." However. if you feel that it is preferable to have a " 1 " symbol, it should be separately constructed.

[^13]: is even．
 is odd．
 is not even．
 is not odd．
 is a multiple of 2.
 is a multiple of 3 ．
 +1 is a multiple of 2 ．
 is a prime．
 is not a prime．
 is less than 11.
 is greater than 17.
 is between 10 and 18.
 is a multiple of 5 ．
 is a member of $\{1,2,4,7,8,11,13\}$ ．
 is a member of $\{14.16,17,19.22,23,25\}$ ． is set 15.

[^14]: - Younger children can more easthy draw the e thapes on graph paper.

[^15]: - Mrs. Nies developed an interest in and a havis for recreational arithmetic in a course with Dr. Margaret F. Willerding at. Harris 'Teachers College. St. I.ouis, Mo.

