

79p.; see ED 059 896 for an earlier edition

USAEC Technical Information Center, P. O. Box 62, Oak Ridge, TN 37830

MF-$0.76 HC-$4.43 PLUS POSTAGE

*Annotated Bibliographies; *Bibliographies; *Booklists; Elementary School Science; *Government Publications; *Nuclear Physics; Physics; Resource Materials; Science Education; Secondary School Science

AEC; *Atomic Energy Commission; Nuclear Energy

This booklet, part of the United States Atomic Energy Commission's series of information booklets, lists selected commercially published books for the general public on atomic energy and closely related subjects. It includes annotated bibliographies for children (grade level indicated) and adults. The books are arranged by subject, alphabetized by title and also indexed by author. A list of publisher addresses is included along with a brief introduction to library usage. The booklet is illustrated with photographs of nuclear physicists, research installations, and some applications of nuclear energy. (BT)
A Bibliography of Basic Books on Atomic Energy

This is made available by

ERDA
United States Energy Research
and Development Administration
Technical Information Center
Oak Ridge, TN 37830
Nuclear energy is playing a vital role in the life of every man, woman, and child in the United States today. In the years ahead it will affect increasingly all the peoples of the earth. It is essential that all Americans gain an understanding of this vital force if they are to discharge thoughtfully their responsibilities as citizens and if they are to realize fully the myriad benefits that nuclear energy offers them.

The United States Atomic Energy Commission provides this booklet to help you achieve such understanding.
A Bibliography of Basic Books on Atomic Energy

How to Use this Booklet .. ii
How to Find Information in a Library 2
Subjects ... 4
 Accelerators .. 4
 Biographies ... 5
 Desalting ... 13
 Elements ... 14
 Elementary Particles ... 16
 Encyclopedias ... 19
 Environment .. 21
 Experiments for Students ... 22
 Fusion ... 24
 Noble Gases .. 25
 Nuclear Science ... 26
 Physics ... 38
 Radiation ... 42
 Radioisotopes .. 44
 Ships and Submarines ... 46
 U. S. Atomic Energy Commission 49
 Weapons ... 51
Publishers' Addresses .. 53
Author Index .. 59
Title Index ... 67

United States Atomic Energy Commission
Office of Information Services

Library of Congress Catalog Card Number: 79-180874
This booklet lists selected commercially published books for the general public on atomic energy and closely related subjects. Books for young readers have school grade annotations.

The books are alphabetized by title under the subjects listed on the contents page. An author index begins on page 59, a title index on page 67, and a list of publishers' addresses on page 53.

Those books marked "out of print" usually can be obtained through libraries.

This booklet is part of the AEC's series of information booklets; others in the series are listed on the inside back cover along with information on how to obtain them.
Persons seeking information on nuclear energy can find many sources in public or school libraries. The library card catalogue contains an alphabetical list of books filed by author’s last name, title, and subject. Each card will have a call number in one corner. This number is usually derived from the Dewey Decimal System, which classifies books in the following way:

- 000 General Works
- 100 Philosophy
- 200 Religion
- 300 Social Sciences; Sociology
- 400 Linguistics
- 500 Pure Science
- 600 Applied Sciences
- 700 Arts and Recreation
- 800 Literature
- 900 History

Books on nuclear physics would be found in the 530 group, which is the physics classification.

The Subject Guide to Books in Print, revised annually, is a good supplement to the card catalogue. This guide is especially helpful since it uses subheadings. For example, under Atomic Energy one finds subheadings such as Dictionaries, Economic Aspects, History, International Control, etc.

Encyclopedias provide a good starting point in an information search. The Encyclopedia Americana has 8 text pages under Atomic Energy in addition to a glossary, cross references, and bibliography.
The Reader's Guide to Periodical Literature, issued monthly, lists articles by subject and author from 126 periodicals. (Titles are given only for works of fiction.)

Periodicals such as Science, Scientific American, Science Digest, Popular Science, and Science News are often sources of nuclear energy articles. The first two issue indexes.

Good general guides to information are:

The following bibliographies are also useful:

ACCELERATORS

Explains the most common types of accelerators, the history of their development and the way in which each type contributes to nuclear physics.
Grades 9-12.

An extremely lucid delineation of Einstein's work as a theoretical physicist. Winner of the 1973 American Institute of Physics—U. S. Steel Foundation Science Writing Award in Physics and Astronomy.

This well-written, scientifically accurate, and very interesting biography captures the excitement of Lawrence's life. Ernest Lawrence was the inventor of the cyclotron, a major
member of the wartime atomic energy development, and the
director of the Lawrence Radiation Laboratory.

Oxford, $9.50.

This book, which can be understood by anyone who has
had a high school physics course, presents atomic theory
development from Dalton through Bohr. It achieves a good
balance between popular treatments and highly technical
works without slighting the technical aspects.

Atoms in the Family: My Life with Enrico Fermi. Laura
Fermi. 1954. 267 pp. Chicago, $5.00 (hardback); $2.45
(paperback).

Laura Fermi writes about her husband, Enrico Fermi, the
physicist who led the group that built the first nuclear
reactor.

*The Born-Einstein Letters: The Correspondence Between
Albert Einstein and Max and Hedwig Born from 1916 to
1955*. Commentaries by Max Born. Translated by Irene Born.

These interesting letters reveal the scientific and personal
lives of these two atomic scientists.

The Cosmos of Arthur Holly Compton. Marjorie Johnston

A collection of essays and reminiscences concerning
Compton’s life and work.

Discoverer of X Rays: Wilhelm Conrad Roentgen. Arnulf K.

This interesting biography includes a brief, but very
helpful, pronouncing gazetteer of the German, Swiss, and
Dutch names in the text.

Grades 7-10.

(hardback); $1.95 (paperback).
This biography of Einstein is organized around the three basic themes in his work: The special theory of relativity, the general theory of relativity, and gravitation and quantum theory.

A brilliant biography that reveals the richness of Einstein's life and work and the tremendous impact he made upon physics.

A biography of the man who built the first nuclear reactor.

Grades 5-8.

Enrico Fermi, Physicist. Emilio Segre. 1970. 288 pp. Chicago, $6.95 (hardback); $2.95 (paperback).

This biography tells of Enrico Fermi's intellectual history, achievements, and his scientific style. The scientific problems faced or solved by Fermi are explained in layman's terms. Emilio Segre was a friend and scientific collaborator of Fermi for many years.

A well-done biography of this famous atomic scientist. Many of the drawings illustrate theoretical ideas very well for the elementary grades. A glossary is included.

Grades 5-7.

This well-written book combines a biography of Faraday with a historical and philosophical discussion of his work and ideas.

A brief account of this Nobel Laureate's contribution to nuclear physics. Joliot-Curie was Marie Curie's son-in-law. Grades 10-12.

The life and accomplishments of a great scientist. Grades 7-12.

Urey's personal life is described as well as his discovery of deuterium, his work on isotope separation, his research into the origin of the moon and planets, and his other work. Grades 6-12.

A dramatic presentation of Newton's life and work for the young reader. Grades 6-9.

A short biography of one of the major figures in 19th century chemistry. Berzelius discovered new elements and determined the weights of 45 of the then 49 known elements. He contributed evidence in support of Dalton's hypothesis of the atom.

This biography, written by J. J. Thomson's son, describes his research at the famed Cavendish Laboratory in Cambridge, England.

A biography for the general reader and the high school science student. Dalton is famous for his development of chemical combinations based on atomic theory. This provided the basis for modern structural theories of chemistry.

The drama of Dalton’s life—his rigorous self-teaching, scientific work, and struggle to overcome class barriers in 19th century England—is well presented. Quotations from letters, diaries, and published works give a clear picture of Dalton’s atomic theory research and his time.

A simply written biography of Joseph Henry, who was a physicist, inventor, and the first administrator of the Smithsonian Institution.

Grades 6-9.

A biography of the woman who first correctly interpreted the fission experiments of Otto Hahn.

Grades 6-9.

Madame Curie: A Biography. Eve Curie. Translated by Vincent Sheean. 1937. 385 pp. Doubleday, $5.95 (hardback); $0.95 (paperback).

This superb biography, which won the 1937 National Book Award for Nonfiction, illustrates dramatically the full spectrum of Marie Curie’s life.

Grades 8-12.

Atomic energy history is told through the work of pioneer scientists from Thales to present-day researchers. Grades 7-9.

An excellent, well-illustrated biography. Grades 4-6.

An articulate and scholarly biography by the friends and co-workers of this outstanding atomic pioneer.

An interesting biography of one of the pioneers in the study of the internal structure of the atom.

An exciting, suspenseful, and humorous biography of one of the pioneers in atomic energy. Includes a glossary and references. Grades 8-12.

Robert Oppenheimer’s work as a scientist, teacher, and public servant is told in the personal recollections of his colleagues and friends.

Autobiography of the man who discovered that the atom could be split.

Otto Hahn, winner of the 1944 Nobel Prize for his work in atomic fission, reviews the pioneer days in which a new science was created, and the role he played in its development.

Out of My Later Years. Albert Einstein. 1950. 276 pp. Greenwood, $11.00 (hardback); Citadel, $2.95 (paperback).

A collection of essays ranging over such topics as “Convictions and Beliefs”, “Science and Life”, and “Public Affairs”.

Henry’s private letters to his friends and acquaintances reveal both the science and the culture of his period.

Warmly human portrait of Ernest Rutherford, his colleagues, and their pioneering work on atomic structure at Cambridge University in England.

Andrade was one of Rutherford’s assistants at the University of Manchester.
Grades 10-12.

A biography of Marie Curie’s daughter, who was herself a Nobel-Prize-winning chemist.
Grades 7-10.

Oppenheimer’s complex personality is delineated in this well-written biography. In the bibliography is a list of books that Oppenheimer felt “had done the most to shape his vocational attitude and philosophy of life”.

This detailed biography, illustrated with line drawings, historical photographs and papers, is a fine addition to Watts’ “Immortals of Science” Series. Grades 5-8.

Dr. Frisch presents a history of nuclear energy research and provides experiments for the reader. He gives a personal account of the pioneering work in which he and Lise Meitner explained the splitting of uranium and introduced the term “nuclear fission”. Grades 9-12.
DESALTING

A well-illustrated and interesting account of desalination with a section on nuclear energy applications.

A comprehensive and interesting discussion of the elements.
Grades 8-12.

A well-illustrated history of the chemistry of the elements.

Grades 9-12:

How transuranium elements were discovered, their position in the periodic table, and predictions of further discoveries.

Grades 6-9.

Man-Made Transuranium Elements. Glenn T. Seaborg. 1963. 120 pp. Prentice-Hall, $6.95 (hardback); $3.50 (paperback).

The discovery, properties, and applications of elements heavier than uranium are considered in this book, which is designed as an introduction to the subject. Seaborg was co-discoverer of 9 of the 12 transuranium elements.

This book, based on lectures delivered by the author at Yale in 1957, covers the plutonium story, chemical properties of the actinide elements, nuclear properties of the transuranium elements, and future synthetic elements.
ELEMENTARY PARTICLES

This semitechnical book describes the experimental and conceptual developments that led to the discovery of the electron.

These researches won for Millikan the Nobel Prize for Physics in 1923. An introduction by an associate of the author puts the discoveries in perspective.

An account of the basic properties of particles and the experimental techniques used to study them.

Dr. Yang was a co-winner of the Nobel Prize along with Dr. Tsung-Dao Lee for suggesting the experiments that led to the downfall of the conservation of parity principle. Here he provides a general outline for laymen of the history of elementary particle research during the last 60 years.

The author traces a century-long chain of events that proved, to the surprise of scientists, that a strange little particle called the neutrino actually exists and is produced in astronomical numbers inside the sun and other stars.

A brief and simple presentation of this field.

This presentation elucidates the new theory of the universe based on atom-smashing experiments that reveal
symmetry in the production of particles and antiparticles. This new cosmology is based on the complete symmetry between matter and antimatter.

This excellent collection of biographical sketches is clearly and interestingly written.

This source book combines the features of a dictionary and an encyclopedia. It is designed to be of value to the medical and biological professions and as a quick reference work for researchers, teachers, administrators, and students. Its entries vary from concise definitions to journal-length articles.

This dictionary of terms also contains brief biographies of important research scientists in this field and descriptions of organizations that sponsor atomic research.

These definitions and explanations, given in nontechnical language as much as possible, form an admirable guide to terms used in nuclear science.

This encyclopedia includes a glossary, chronology, reading list, and other useful tables and reference charts. Grades 7-12.

This encyclopedia is designed to be of use to both scientists and others. In addition to the nuclear items, entries are included from other technical fields with which nuclear energy is interrelated.
ENVIRONMENT

These papers, taken from a conference at the University of Minnesota, concern the scientific, social, and political issues involved in the use of nuclear power plants and their impact on man and his environment.
EXPERIMENTS FOR STUDENTS

A manual of 54 experiments that demonstrate the fundamentals and some of the applications of nuclear energy. Grades 8-12.

This well-written and well-illustrated book gives directions for conducting experiments and building an assortment of nuclear devices using ordinary materials. Grades 5-8.

Step-by-step instructions are given so that high school science students may repeat great scientific experiments performed originally by Aristotle, Isaac Newton, Joseph Henry, Michael Faraday, Antoine Becquerel, and 14 other scientific pioneers. Grades 9-12.
Project Sherwood: The U. S. Program in Controlled Fusion.
An account of the program in controlled nuclear reactions carried out by the AEC during the period 1951–1958.
Noble Gases

An historical account of the noble gases, which, until 1962, could not be made to combine chemically with each other or with other elements.

Grades 8-12.
NUCLEAR SCIENCE

This text, couched in a question and answer form, provides a simple explanation of nuclear energy and its applications.

Scientific and philosophic concepts concerning the physics, chemistry, and physiology of matter from the beginning of scientific research are presented eloquently.

The story of atomic energy for junior high school readers. Grades 5-9.

A detailed explanation of atomic theory.

Principles and concepts of atomic science are defined. Included are the electrical nature of matter, the discovery of the electron and the nucleus, the meaning of quantum mechanics, wave theory of the atom, the nature of chemical bonding, the uncertainty principle, gas laws and ideal gases, and the geometry of molecules. Grades 10-12.

A popular-level discussion of nuclear structure and the applications of nuclear energy.

One third of this book discusses atomic physics.

A picture book of peaceful applications of atomic energy. Each application is illustrated by one or more photographs and described in a brief paragraph. Grades 4-8.

A clearly written, accurate discussion of atomic energy. Grades 4-6.

The peaceful uses of atomic energy in the U.S. and overseas are described.
Grades 8-12.

A one-volume encyclopedia prepared for nonspecialists. The entries range from simple explanation to treatment in depth.

This guide to what atomic energy is and how it is used is for readers with no special training in science. Questions and answers are included at the end of each chapter.
Grades 10-12.

Describes the nature and structure of the atom and presents many safe home experiments, such as producing and controlling an electron beam, photographing alpha tracks, observing scintillations, making a reactor model, and constructing a Van de Graaff generator.
Grades 8-12.

A personal narrative of the research that led to the release of atomic energy on a useful scale by a scientist who played a principal part in the atomic bomb project during World War II.

Explains nuclear energy and how it is used. Atomic submarines and surface ships, reactors, nuclear space vehicles, peaceful atomic explosions, and radioisotope use in industry, medicine, and agriculture are described in words and pictures. A glossary is appended.

Grades 5-8.

A simple book for young children.
Grades 1-3.

A simply written history of nuclear energy with special sections on nuclear power and isotopes.
Grades 4-6.

An elementary introduction to nuclear energy principles.
Grades 3-6.

A nontechnical introduction to atomic energy applications, including nuclear power and radioisotope use.

An intimate and informative account for the layman, illuminating the hopes and plans of the participants, the problems encountered, the people involved, and the successful culmination of months of planning and work entailed in U. S. participation in the 1955 Geneva Conference.

Describes applications of atomic energy in agriculture, industry, and medicine. Radioactivity and its control and the
effect of bomb tests on the weather are also examined. Grades 7-11.

A nontechnical presentation of atoms and the laws governing their behavior. Grades 7-9.

The history of a carbon atom from its birth in a star billions of years ago until it becomes part of a human being. Winner of the 1965 Thomas Alva Edison Foundation Annual Children's Book Award for the Best Children’s Science Book. Grades 3-7.

A popular-level, well-illustrated book describing Camp Century, a scientific research station directed toward opening the polar regions for human use. This army base, constructed under the ice 800 miles from the North Pole, used a nuclear reactor to provide power, heat, and light.

This excellent collection of essays, book reviews, and profiles originally appeared in *The New Yorker*. Several of the outstanding ones include "A Question of Parity: T. D. Lee and C. N. Yang", "I am this Whole World: Erwin Schrodinger", and "Einstein and Bohr: A Debate".

A compilation of 30 key articles beginning with the discovery of nuclear fission in 1938 and ending in 1945.

Describes all aspects of this "atomic heart", its structure, motion, radiation, and large-scale application. Grades 9-12.

This comprehensive, well-written text explains nuclear energy and its applications. Grades 7-10.

An explanation of the structure of the atom and the amazing discoveries in recent years about its nucleus.

An outgrowth of an intensive course for high-school teachers developed by a committee of the Argonne National Laboratory Branch of the Scientific Research Society of America. Included are a brief review of atomic structure, discussion of detection methods and the known forms of radiation, description of the nucleus and nuclear reactions, survey of accelerators and reactors, and applications of nuclear science in chemistry and biology. The book is basic in content to narrow the gap between the training of the average high-school teacher and the state of scientific knowledge.

This textbook was written for college humanities students.

The technological applications of nuclear energy.

Grades 7-12.

A nuclear reactor provides power for the "atomic energy town" of the title. A good explanation of how and why a nuclear power plant works is followed by descriptions of other peaceful uses of nuclear energy. A glossary, reference list, and a list of projects are appended.

Grades 3-6.

Provides a spectrum of the present and future uses of nuclear energy that can create a better world with cleaner cities, more productive agriculture, desalted seawater, etc.

This book begins its story with a discussion of the first reactor and then presents a very complete discussion of the peaceful uses of nuclear energy.

A history of atomic pioneers and their work. American wartime development of the nuclear weapon and subsequent accomplishments of the peaceful atom are also discussed.

One of the original members of the AEC, later its Chairman, recalls his experiences in a lifetime of public service.

Library, $0.75 (paperback), originally published in 1965 with the title *The Questioners: Physicists and the Quantum Theory*. Crowell, $5.00 (hardback).

An exceptionally well-delineated and personable account of the development of the quantum theory by physicists in the first quarter of this century.
Grades 9-12.

An exploration of the structure of matter.
Grades 2-6.

Mr. Tompkins in Paperback. George Gamow. 1967. 186 pp. Cambridge, $8.50 (hardback); $1.95 (paperback).

A reprint of the author’s two books, *Mr. Tompkins in Wonderland* (1940) and *Mr. Tompkins Explores the Atom* (1944). The text has been enlarged to incorporate new information on nuclear energy.
Grades 8-12.

A nontechnical history of atomic energy.

An interesting, clearly written introduction to atomic energy.
Grades 4-6.

An in-depth description of atomic energy today.
Grades 8-12.

A commentary on many well-known nuclear scientists and their work.

A nonmathematical textbook written for high school students. The basic science of the nucleus is stressed.

Grades 10-12.

Atomic history and theory are presented and dramatically illustrated, using the old fairy tale of the Fisherman and the Genie as an introduction.

Grades 7-9.

The birth of atomic energy, early experiments to harness it, its present uses, and its future.

Grades 4-6.

A well-illustrated, nontechnical introduction to atomic energy for high school science students. Includes a useful glossary.

Grades 9-12.

The Questioners: Physicists and the Quantum Theory. Barbara Lovett Cline. 1965. 274 pp. Crowell, $5.00 (hardback); New American Library, $0.75 (paperback) with the title _Men Who Made a New Physics: Physicists and the Quantum Theory_.

An exceptionally well-delineated and personable account of the development of the quantum theory by physicists in
the first quarter of this century.
Grades 9-12.

A stimulating nonmathematical account of the classic early experiments that advanced knowledge about atomic particles.
Grades 9-12.

Historical survey of nuclear physics beginning with Roentgen's discovery of X rays and concluding with the discoveries of the rare elements.
Grades 10-12.

This outstanding history of nuclear research from Roentgen to Fermi is dramatically presented. The uncertainty of the unknown, the accidental discovery and the often lengthy and tedious research are woven into a fascinating tale. The international aspect of science is revealed in this story of scientists from around the world who pooled their knowledge and experience to unlock "the secret of the mysterious rays".
Grades 4-8.

Secrets of the Nucleus. Joseph S. Levinger. 1967. 127 pp. McGraw-Hill, $2.95; NSTA, $0.50 (paperback).

This introduction to nuclear energy includes science projects and experiments.
Grades 9-12.

An excellent reference work, written for both scientists and the general public.

This history of the atom is for the college student or the above-average high school student.

This popular narrative concerns development of the first sustained nuclear chain reaction and of the subsequent developments to use atomic energy in war, research, and industry.
Grades 8-12.

An interesting and well-illustrated account of atomic energy from Democritus through the development of SNAP reactors. Anderson was captain of the first atomic submarine, the Nautilus.
Grades 7-12.

Text and drawings describe a nuclear power plant.
Grades 6-12.

Contains the actual text of landmark documents in the history of atomic physics, each preceded by commentary that places it in the context of the discoverer’s personal life and in the conditions prevailing in science and in society in his time.

This book provides a history of and an introduction to nuclear energy. About half of the text covers current peaceful applications while the other half is devoted to explanations of atomic energy principles and history. Grades 7-9.
PHYSICS

This collection of addresses and articles is a valuable contribution to the philosophy of atomic physics.

A history of theoretical physics.
Grades 9-12.

An account of Newton's formulation of classical physics that includes the historical events leading to this master stroke.

Seven physics immortals—Archimedes, Galileo, Pascal, Newton, Huygens, Von Helmholtz, and Einstein—tell the stories of their discoveries.

This discussion of the development of 20th century physics is designed for both scientists and laymen who are interested in modern physics as a chapter in the history of human thought. Mathematics is kept to a minimum.

Nuclear physics—its history and current uses. Grades 7-12.

Traces the steps from the mechanical view of the universe held by the classical physicists through subsequent developments that led to quantum mechanics.

Classic experiments of 24 physicists are explained. Biographical sketches of the experimenters are included. Grades 9-12.

A well-written survey of the field. Grades 7-12.

These essays on physics, which include the author's Nobel Prize speech, were written by one of the pioneers in quantum mechanics.

A clearly written account of this science which ranges from the nucleus to the universe.

Werner Heisenberg, a Nobel Prize physicist, presents his autobiography in the form of conversations with such men as Max Planck, Albert Einstein, Niels Bohr, Ernest Rutherford, Otto Hahn, and Enrico Fermi.

A popular introduction to a complex subject. Includes a glossary and supplemental references.

A complex subject is presented in a clear and fascinating way in this beautifully written book. Philosophical as well as scientific implications of quantum mechanics are discussed. A glossary and a well-annotated reference list are included.

The development of the quantum theory presented in nontechnical language.

Understanding Physics. 3 volumes. Isaac Asimov. 1966. 768 pp. Walker, $6.95 each (hardback); New American Library, $1.25 each (paperback).

Surveys the development and growth of the physical sciences in terms that the general reader can grasp. Volume I deals with motion, sound, and heat; Volume II with light, magnetism, and electricity; Volume III with the electron, proton, and neutron.

The progress of physics from the Greek philosophers through classical physicists to Einstein, dealing with the tools of physics, methods of discovery, electricity, magnetism, light, general relativity, the puzzle of time, the birth of galaxies and planets, radioactivity, energy quanta, lasers, and many other subjects.
RADIATION

A popular-level, well-written study of genetics and the effects of radiation.

A careful popular-level discussion of the genetic effects of radiation.
Introduces the student or layman to the principles of atomic physics and biology and their interplay, with emphasis on the impact of radiation on human and animal life.

Fifty-one experiments for the enrichment of high school courses in biology, chemistry, and physics.
Grades 8-12.

A readable encyclopedic record that surveys the field from Roentgen’s time to the present.

The Story of Radioactivity. Colin A. Mawson. 1969. 64 pp. Prentice-Hall, $4.95
The complete story of radioactivity—its history, uses, and potential.
Grades 3-6.

An interesting account of the history and present-day uses of this radiation.
Grades 10-12.
RADIOISOTOPES

The theory of radioisotopes and how they are used in laboratories, hospitals, and on farms.
Grades 7-10.

Isotope use in industry, science, medicine, and agriculture is discussed in nontechnical language.

The broad spectrum of radioisotope use is presented—ranging from determining the age of the Dead Sea Scrolls to locating a brain tumor.

Grades 7-10.

A lavishly illustrated history of nuclear submarines. William Anderson was the captain of the Nautilus, the first atomic submarine.
Grades 4-8.

The story of nuclear submarines.

The construction and operation of the NS Savannah are explained in simple language. Good photographs and a glossary are included.

Grades 7-11.

Describes a nuclear submarine and its crew.

Grades 10-12.

A fictionalized account of an overnight visit by two children on board the Lafayette.

Grades 3-6.

A history of the Polaris submarine.

Grades 7-12.

This source book was prepared for commercial shippers, port authorities, regulation officials, construction and design engineers, writers and other interested persons. A substantial portion of the book is devoted to discussions of the NS Savannah, the first commercial nuclear ship, which is no longer in service.

A complete description of the more than 200 military and civilian nuclear-powered ships now in use.

The duties of nuclear submarine commanders are described. Grades 6-12.

The history of the U. S. nuclear submarine-missile combination.
U. S. ATOMIC ENERGY COMMISSION

A comprehensive history of the development of atomic energy in the United States from the transfer of the Government's atomic energy program to the AEC on January 1, 1947, until the end of 1952.

This book, which describes the role of the government in science education and information, was one of the Atomic Energy Commission presentation volumes at the 1964 Geneva Conference.

The achievements of the Manhattan Project, the formulation of national and international policy on atomic energy, and the legislative origins of the AEC.

This book, which surveys the U. S. progress in the development of peaceful uses of atomic power, was one of the Atomic Energy Commission presentation volumes at the 1964 Geneva Conference.

This book, which describes the scope and pace of nuclear research, was one of the Atomic Energy Commission presentation volumes at the 1964 Geneva Conference.

Radioisotopes and Radiation: Recent Advances in Medicine, Agriculture, and Industry. John H. Lawrence, Bernard Manowitz, and Benjamin S. Loeb. 1964. 131 pp. McGraw-Hill, out of print; Dover, $2.50 (paperback).

This book, which surveys the major advances in the use of radioisotopes and radiation in medicine, agriculture, and industry, was one of the Atomic Energy Commission presentation volumes at the 1964 Geneva Conference.
WEAPONS

A complete account of the wartime project that developed the first nuclear weapons and of the considerations that prompted their use.

The Effects of Nuclear Weapons. Samuel Glasstone (Ed.). 1964. 730 pp. GPO, $4.25; $1.00 extra for plastic radiation computer.

A third edition of a standard reference work prepared by the Defense Atomic Support Agency, Department of De-
fense, at the request of the Atomic Energy Commission. It updates information published in the 1957 edition and includes data on radiological, blast, and heat effects of nuclear detonations and on civil-defense planning.

The German nuclear research program during the Second World War.

This sumptuously illustrated history provides an informative explanation of nuclear physics in addition to comprehensive coverage of the bomb’s development and use. Grades 5-9.

A very complete account of all branches of the wartime Manhattan Project, which culminated in the construction of the first atomic bomb.

The history of the wartime atomic energy effort as told by its director.

A nontechnical story about the city where enriched uranium was produced for the first nuclear weapons. Selection of the site, construction of the facilities, and community life.
PUBLISHERS' ADDRESSES

<table>
<thead>
<tr>
<th>Publisher</th>
<th>Address</th>
</tr>
</thead>
</table>
| AAAS | American Association for the Advancement of Science
1776 Massachusetts Avenue N.W.
Washington, D.C. 20036 |
| ABELARD-SCHUMAN | Abelard-Schuman, Ltd.
257 Park Avenue South
New York, N.Y. 10010 |
| ADDISON-WESLEY | Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts 01867 |
| ALA | American Library Association
50 East Huron Street
Chicago, Illinois 60611 |
| AMERICAN HERITAGE | American Heritage Publishing Company, Inc.
1221 Avenue of the Americas
New York, N.Y. 10020 |
| ATHENEUM | Atheneum Publishers
122 East 42nd Street
New York, N.Y. 10017 |
| ATS | American Technical Society
848 East 58th Street
Chicago, Illinois 60637 |
| BARRON'S | Barron's Educational Series, Inc.
113 Crossways Park Drive
Woodbury, N.Y. 11797 |
| BASIC BOOKS | Basic Books, Inc., Publishers
10 East 53rd Street
New York, N.Y. 10022 |
| BLAISDELL | Xerox College Publishing
Xerox Education Group
1200 High Ridge Road
Stamford, Conn. 06905 |
| BURGESS | Burgess Publishing Company
7108 Olms Lane
Minneapolis, Minnesota 55435 |
| CAMBRIDGE | Cambridge University Press
32 East 57th Street
New York, N.Y. 10022 |
| CHEMICAL EDUCATION | Chemical Education Publishing Company
20th and Northampton Streets
Easton, Pennsylvania 18042 |
| CHICAGO | University of Chicago Press
5801 Ellis Avenue
Chicago, Illinois 60637 |
| CHILDRENS PRESS | Children's Press
1224 West Van Buren Street
Chicago, Illinois 60607 |
| CORNELL | Cornell University Press
124 Roberts Place
Ithaca, New York 14850 |
<table>
<thead>
<tr>
<th>Publisher</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>COWARD-McCANN</td>
<td>Coward, McCann, and Geoghegan, Inc.</td>
</tr>
<tr>
<td></td>
<td>200 Madison Avenue</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10016</td>
</tr>
<tr>
<td>CROWELL</td>
<td>Thomas Y. Crowell Company, Inc.</td>
</tr>
<tr>
<td></td>
<td>666 Fifth Avenue</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10019</td>
</tr>
<tr>
<td>CROWN</td>
<td>Crown Publishers, Inc.</td>
</tr>
<tr>
<td></td>
<td>419 Park Avenue South</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10016</td>
</tr>
<tr>
<td>DAY</td>
<td>The John Day Company, Inc.</td>
</tr>
<tr>
<td></td>
<td>257 Park Avenue South</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10010</td>
</tr>
<tr>
<td>DELACORTE</td>
<td>The Delacorte Press</td>
</tr>
<tr>
<td></td>
<td>1 Dag Hammarskjold Plaza</td>
</tr>
<tr>
<td></td>
<td>245 East 47th Street</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10017</td>
</tr>
<tr>
<td>DELLY</td>
<td>Dell Publishing Company, Inc.</td>
</tr>
<tr>
<td></td>
<td>750 Third Avenue</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10017</td>
</tr>
<tr>
<td>DOUGLEDAY</td>
<td>Doubleday and Company</td>
</tr>
<tr>
<td></td>
<td>277 Park Avenue</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10017</td>
</tr>
<tr>
<td>DOVER</td>
<td>Dover Publications, Inc.</td>
</tr>
<tr>
<td></td>
<td>180 Varick Street</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10014</td>
</tr>
<tr>
<td>DUTTON</td>
<td>E. P. Dutton and Company, Inc.</td>
</tr>
<tr>
<td></td>
<td>201 Park Avenue South</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10003</td>
</tr>
<tr>
<td></td>
<td>52 Vanderbilt Avenue</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10017</td>
</tr>
<tr>
<td>ERIKSSON</td>
<td>Paul S. Eriksson, Inc.</td>
</tr>
<tr>
<td></td>
<td>119 West 57th Street</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10019</td>
</tr>
<tr>
<td>FAWCETT</td>
<td>Fawcett World Library</td>
</tr>
<tr>
<td></td>
<td>1515 Broadway</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10036</td>
</tr>
<tr>
<td>FLEET</td>
<td>Fleet Press Corporation</td>
</tr>
<tr>
<td></td>
<td>160 Fifth Avenue</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10010</td>
</tr>
<tr>
<td>FREEMAN</td>
<td>W. H. Freeman and Company, Publishers</td>
</tr>
<tr>
<td></td>
<td>660 Market Street</td>
</tr>
<tr>
<td></td>
<td>San Francisco, California 94104</td>
</tr>
<tr>
<td>GANNON</td>
<td>William Gannon</td>
</tr>
<tr>
<td></td>
<td>321 West San Francisco</td>
</tr>
<tr>
<td></td>
<td>Santa Fe, New Mexico 87501</td>
</tr>
</tbody>
</table>
MESSNER
Julian Messner
1 West 39th Street
New York, N. Y. 10018

MINNESOTA
University of Minnesota Press
2037 University Avenue S. E.
Minneapolis, Minnesota 55455

NEW AMERICAN LIBRARY
New American Library, Inc.
1301 Avenue of the Americas
New York, N. Y. 10019

NSTA
National Science Teachers Association
1201 Sixteenth Street N.W.
Washington, D. C. 20036

NTIS
National Technical Information Service
U. S. Department of Commerce
Springfield, Virginia 22151

OXFORD
Oxford University Press, Inc.
200 Madison Avenue
New York, N. Y. 10016

PERGAMON
Pergamon Press, Inc.
Maxwell House
Fairview Park
Elmsford, N. Y. 10523

PETER SMITH
Peter Smith
6 Lexington Avenue
Gloucester, Massachusetts 01930

POCKET BOOKS
Pocket Books
630 Fifth Avenue
New York, N. Y. 10020

PRENTICE-HALL
Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632

PRINCETON
Princeton University Press
Princeton, New Jersey 08540

PUTNAM
G. P. Putnam's Sons
200 Madison Avenue
New York, N. Y. 10016

RONALD
The Ronald Press Company
79 Madison Avenue
New York, N. Y. 10016

SAUNDERS
W. B. Saunders Company
218 West Washington Square
Philadelphia, Pennsylvania 19105

SCRIBNER
Charles Scribner's Sons
597 Fifth Avenue
New York, N. Y. 10017

SIMON
Simon and Schuster, Inc.
630 Fifth Avenue
New York, N. Y. 10020

THOMAS
Charles C Thomas, Publisher
301-327 East Lawrence Avenue
Springfield, Illinois 62703
AUTHOR INDEX

ADLER, Irving
Atomic Energy, 27
Inside the Nucleus, 31

ADLER, Irving and Ruth
Atoms and Molecules, 29

AGASSI, Joseph
Faraday As a Natural Philosopher, 7

ALFVÉN, Hannes
Worlds—Antiworlds.
Antimatter in Cosmology, 17

AMALDI, Genestra
The Nature of Matter: Physical Theory from Thales to Fermi, 33

ANDERSON, David L.
The Discovery of the Electron: The Development of the Atomic Concept of Electricity, 16 (see Graetzer, H. G.)

ANDERSON, Oscar E. Jr.
(see Hewlett)

ANDERSON, William R., James Baar, and William E. Howard
Atomic Submarines, 46

ANDERSON, William R., and Vernon Pizer
The Useful Atom, 36

ANDRADE, Edward N. da C.
Rutherford and the Nature of the Atom, 11

ASIMOV, Isaac
Asimov's Biographical Encyclopedia of Science and Technology: The Lives and Achievements of 1195 Great Scientists from Ancient Times to the Present Chronologically Arranged, 19
Building Blocks of the Universe, 14
Inside the Atom, 31
The Neutrino Ghost Particle of the Atom, 17
The Noble Gases, 25
Understanding Physics, 41

AUERBACH, Charlotte
Genetics in the Atomic Age, 42

BAAR, James
(see Anderson, William R.)

BAAR, James, and William E. Howard
Polaris!, 48

BARNABY, Frank
Man and Atom: The Uses of Atomic Energy, 32

Newnes Concise Encyclopaedia of Nuclear Energy, 20

BEELER, Nelson F., and Franklyn M. Branley
Experiments with Atomics, 22

BENTINCK, Henry
Anyone Can Understand the Atom, 26

BERGAUST, Erik
The Illustrated Nuclear Encyclopedia, 20

BERGER, Melvin
Atoms, 29
BERNSTEIN, Jeremy
A Comprehensible World: On Modern Science and Its Origins, 30
Einstein, 6

BIQUARD, Pierre
Frédéric Joliot-Curie: The Man and His Theories, 8

BISHOP, Amasa S.
Project Sherwood: The U. S. Program in Controlled Fusion, 24

BLOW, Michael
The History of the Atomic Bomb, 52

BOHR, Niels
Atomic Physics and Human Knowledge, 38

BOORSE, Henry A., and Lloyd Motz
The World of the Atom, 36

BOOTH, Verne H.
The Structure of Atoms, 36

BORN, Max
The Born-Einstein Letters: The Correspondence Between Albert Einstein and Max and Hedwig Born from 1916 to 1955, 6

BRANLEY, Franklyn M.
(see Beeler)

BRONOWSKI, Jacob, and Millicent E. Selsam
Biography of an Atom, 30

BROWN, Bob
Science Treasures. Let's Repeat the Great Experiments, 23

CHASE, Grafton D., Stephen Rituper, and John W. Sulcoski
Experiments in Nuclear Science, 22

CHILD, Herbert
An American Genius: The Life of Ernest Orlando Lawrence, 5

CLINE, Barbara Lovett
Men Who Made a New Physics: Physicists and the Quantum Theory, 32
The Questioners. Physicists and the Quantum Theory, 34

COHEN, Bernard L.
The Heart of the Atom. The Structure of the Atomic Nucleus, 31

COHEN, I. Bernard
The Birth of the New Physics, 39

COLBY, C. B.
The Atom at Work: How Nuclear Power Can Benefit Man, 27

COMPTON, Arthur H.
Atomic Quest, 28

CORLISS, William R.
(see Seaborg)

CRAWFORD, Deborah
Lise Meitner, Atomic Pioneer, 9

CREWE, Albert V., and Joseph J. Katz
Nuclear Research: Knowledge for the Future, 50

CURIE, Eve
Madame Curie: A Biography, 9

DAUGHERTY, Charles Michael
City Under the Ice. The Story of Camp Century, 30
DAVIS, George E.
Radiation and Life, 43

DE BROGLIE, Louis Victor
Matter and Light: The New Physics, 40

DEL VECCHIO, Alfred
Concise Dictionary of Atomics, 20

DIBNER, Bern
Wilhelm Rontgen and the Discovery of X Rays, 12

DICERTO, J. J.
Missile Base Beneath the Sea: The Story of Polaris, 47

DOBZHANSKY, Theodosius
(see Wallace)

DUKERT, Joseph M.
Atompower, 28
Nuclear Ships of the World, 47

DUNCAN, Francis
(see Hewlett)

EINSTEIN, Albert
Out of My Later Years, 11

EINSTEIN, Albert, and Leopold Infeld
The Evolution of Physics. The Growth of Ideas from Early Concepts to Relativity and Quanta, 39

EPSTEIN, Sam and Beryl
Michael Faraday: Apprentice to Science, 10

ESTERER, Arnulf K.
Discoverer of X Rays: Wilhelm Conrad Roentgen, 6

ETTER, Lewis E.
The Science of Ionizing Radiation, 43

FARBER, Doris
Enrico Fermi: Atomic Pioneer, 7

FERMI, Laura
Atoms in the Family: My Life with Enrico Fermi, 6
Atoms for the World, 29

FORD, Kenneth W.
The World of Elementary Particles, 17

FOREMAN, Harry
Nuclear Power and the Public, 21

FRANK, Philipp
Einstein: His Life and Times, 7

FRISCH, David H., and Alan M. Thorndike
Elementary Particles, 17

FRISCH, Otto R.
Working with Atoms, 12

FUCHS, Erich
What Makes a Nuclear Power Plant Work?, 36

GAINES, Matthew
Atomic Energy, 28

GAMOW, George
The Atom and Its Nucleus, 27
Biography of Physics, 38
Mr. Tompkins in Paperback, 33
Thirty Years That Shook Physics: The Story of Quantum Theory, 41

GARDNER, Martin
Relativity for the Million, 40

GIMPEL, Herbert J.
(see Steele)

GLASSNER, Alvin
Introduction to Nuclear Science, 31
GLASSTONE, Samuel
Sourcebook on Atomic Energy, 35
The Effects of Nuclear Weapons, 51

GOODFIELD, June
(see Toulmin)

GRAETZER, H. G., and D. L. Anderson
The Discovery of Nuclear Fission: A Documentary History, 30

GREENAWAY, Frank
John Dalton and the Atom, 9

GREY, Vivian
The Invisible Giants: Atoms, Nuclei, and Radioisotopes, 31
Secret of the Mysterious Rays. The Discovery of Nuclear Energy, 35

GROUÉFF, Stephane
Manhattan Project: The Untold Story of the Making of the Atomic Bomb, 52

GROVES, Leslie R.
Now It Can Be Told: The Story of the Manhattan Project, 52

GUILLEMIN, Victor
The Story of Quantum Mechanics, 41

HABER, Heinz
Our Friend the Atom, 34

HAHN, Otto
Otto Hahn: A Scientific Autobiography, 11
Otto Hahn: My Life, 10

HALACY, Daniel S.
X-Rays and Gamma Rays, 43

HAMILTON, Lee David
Let's Go Aboard an Atomic Submarine, 47

HARPER, Dorothy
Isotopes in Action, 44

HARRIS-WARREN, H. B.
Dive! The Story of an Atomic Submarine, 47

HATCHER, Charles
The Atom, 27

HECKMAN, H. H., and P. W. Staring
Nuclear Physics and the Fundamental Particles, 34

HEISENBERG, Werner
Physics and Beyond: Encounters and Conversations, 40

HELLMAN, Hal
High Energy Physics, 40

HENRY, Joseph
The Papers of Joseph Henry, Volume 1: December 1797 – October 1832: The Albany Years, 11

HERMIAS, Sister Mary, and Sister Mary Joecile
Radioactivity. Fundamentals and Experiments, 43

HEWLETT, Richard G., and Francis Duncan

HEWLETT, Richard G., and Oscar E. Anderson, Jr.
The New World, 1939/1946. Volume I—History of the
United States Atomic Energy Commission, 50

HOFFMANN, Banesh
Albert Einstein: Creator and Rebel, 5

HOGERTON, John F.
The Atomic Energy Deskbook, 28 (see Zinn)

HOWARD, William E.
(see Anderson, William R.)
(see Baer, James)

HUGHES, Donald J.
The Neutron Story, 17

HYDE, Margaret O.
Atoms Today and Tomorrow, 29

INFELD, Leopold
(see Einstein)

IRVING, David
The German Atomic Bomb: The History of Nuclear Research in Nazi Germany, 52

JAINIS, Patricia
Joseph Henry: Father of American Electronics, 9

JAWORSKI, Irene D., and Alexander Joseph
Atomic Energy: The Story of Nuclear Science, 28

JOECELE, Sister Mary
(see Heraldias)

JOHNSTON, Marjorie
The Cosmos of Arthur Holly Compton, 6

JORPES, J. Erik
Jacob Berzelius: His Life and Work, 8

JOSEPH, Alexander
(see Jaworski)

KATZ, Joseph J.
(see Crewe)

KELMAN, Peter, and A. Harris Stone
Ernest Rutherford: Architect of the Atom, 7

KOGAN, Philip
The Cosmic Power: Foundations of Nuclear Physics, 39

KOHN, Bernice
The Peaceful Atom, 34

KRAMER, A. W.
Nuclear Propulsion for Merchant Ships, 47

LAPP, Ralph E.
Roads to Discovery, 35

LARSEN, Egon
Atoms and Atomic Energy, 29

LAWRENCE, John H., Bernard Manowitz, and Benjamin S. Loeb
Radioisotopes and Radiation: Recent Advances in Medicine, Agriculture, and Industry, 50

LAWRENCE, William
Men and Atoms, 32

LEVINGER, Joseph S.
Secrets of the Nucleus, 35

LITTAUER, Raphael
(see Wilson)

LLORET, Antonio
(see Musset)

LOEB, Benjamin S.
(see Lawrence, John H.)
MANN, Martin
Peacetime Uses of Atomic Energy, 34

MANOWITZ, Bernard
(see Lawrence, John H.)

MARCH, Robert H.
Physics for Poets, 40

MASSEY, Harrie S. W., and
Arthur R. Quinton
Basic Laws of Matter, 30

MAWSON, Colin A.
The Story of Radioactivity, 43

McCUE, John J. G.
An Introduction to Physical Science: The World of Atoms, 31

McKOWN, Robin
She Lived for Science: Irène Joliot-Curie, 11
The Fabulous Isotopes: What They Are and What They Do, 44
Giant of the Atom: Ernest Rutherford, 8

MEYER, Leo
Atomic Energy in Industry:
A Guide for Tradesmen and Technicians, 28

MICHELMORE, Peter
The Swift Years: The Robert Oppenheimer Story, 12

MILLIKAN, Robert Andrews
The Electron: Its Isolation and Measurement and the Determination of Some of Its Properties, 16

MOORE, Ruth
Niels Bohr: The Man, His Science, and the World They Changed, 10

MOTZ, Lloyd
(see Boorse)

MUSSET, Paul, and Antonio Lloret
Concise Encyclopedia of the Atom, 20

NOURSE, Alan E.
Universe, Earth and Atom: The Story of Physics, 41

OLIPHANT, Mark
Rutherford: Recollections of the Cambridge Days, 11

PAIS, Abraham
(see Serber)

PATTERSON, Elizabeth C.
John Dalton and the Atomic Theory: The Biography of a Natural Philosopher, 9

PERLMAN, James S.
The Atom and the Universe, 27

PITTMAN, Frank K.
(see Zinn)

PIZER, Vernon
(see Anderson, William R.)

POLKING, Kirk
Let's Go to an Atomic Energy Town, 32

POLMAR, Norman
Atomic Submarines, 46

POTTER, Robert D. and
Robert C.
Young People's Book of Atomic Energy, 37

QUINTON, Arthur R.
(see Massey)
RADLAUER, Edward and Ruth S.
Atoms Afloat The Nuclear Ship Savannah, 47

RITUPER, Stephen
(see Chase)

ROBINSON, George O., Jr.
The Oak Ridge Story, 52

ROMER, Alfred
The Restless Atom, 35

ROSS, Frank Jr.
Superpower: The Story of Atomic Energy, 36

ROZENTAL, S.
Niels Bohr: His Life and Work as Seen by His Friends and Colleagues, 10

SCHIONIAND, Basil
The Atomists, 6

SCHULTZ, Pearle and Harry
Isaac Newton: Scientific Genius, 8

SEABORG, Glenn T.
Man-Made Transuranium Elements, 15
Nuclear Milestones: A Collection of Speeches, 33
The Transuranium Elements, 15
(see Serber)

SEABORG, Glenn T., and William R. Corliss
Man and Atom: Shaping a New World Through Nuclear Technology, 32

SEABORG, Glenn T., and Daniel M. Wilkes
Education and the Atom, 49

SEABORG, Glenn T., and Evans G. Valens
Elements of the Universe, 15

SEGRE, Emilio
Enrico Fermi, Physicist, 7

SELSAM, Millicent E.
(see Bronowski)

SERBER, Robert, Victor F.
Weisskopf, Abraham Pais, and Glenn T. Seaborg
Oppenheimer, 10

SHAMOS, Morris H.
Great Experiments in Physics, 39

SHILLING, Charles W.
Atomic Energy Encyclopedia in the Life Sciences, 19

SILVERBFKG, Robert
Men Who Mastered the Atom, 10
Niels Bohr: The Man Who Mapped the Atom, 10

SILVERSTEIN, Alvin and Virginia
Harold Urey: The Man Who Explored from Earth to Moon, 8

SLATER, John C.
Concepts and Development of Quantum Mechanics, 39

SMITH, E. Sheldon
The Atom and Beyond: A New Introduction to Modern Physical Science, 27

SMYTH, Henry D.
Atomic Energy for Military Purposes, 51

STARRING, P. W.
(see Heckman)
STEELE, George P., and Herbert J. Gimpel
Nuclear Submarine Skippers and What They Do. 48

STOKLEY, James
The New World of the Atom. 33

STONE, A. Harris
(see Kelman)

STRAUSS, Lewis L.
Men and Decisions, 32

SULCOSKI, John W.
(see Chase)

TAYLOR, John G.
The New Physics, 40

THOMSON, George
The Atom, 27
J. J. Thomson: Discoverer of the Electron, 8

THORNDIKE, Alan M.
(see Frisch, David H.)

TOULMIN, Stephen, and June Goodfield
The Architecture of Matter, 26

VALENS, Evans G.
(see Seaborg)

VICTOR, Edward
Molecules and Atoms, 33

WALLACE, Bruce, and
Theodosius Dobzhansky
Radiation, Genes, and Man, 42

WEEKS, Mary E.
Discovery of the Elements, 14

WEISSKOPF, Victor F.
(see Serber)

WILKES, Daniel M.
(see Seaborg)

WILSON, Robert R., and
Raphael Littauer
Accelerators: Machines of Nuclear Physics, 4

WOLFF, Peter
Breakthroughs in Physics, 39

WOODBURN, John H.
Radioisotopes, 45

WOODBURY, David O.
Atoms for Peace, 29
Fresh Water from Salty Seas, 13
The New World of the Atom, 33

YANG, Chen Ning
Elementary Particles. A Short History of Some Discoveries in Atomic Physics, 17

ZINN, Walter H., Frank K. Pittman, and John F. Hogerton
Nuclear Power, U.S.A., 50
TITLE INDEX

Accelerators: Machines of Nuclear Physics
Robert R. Wilson and Raphael Littauer, 4

Albert Einstein: Creator and Rebel
Barnesh Hoffmann, 5

An American Genius: The Life of Ernest Orlando Lawrence
Herbert Childs, 5

Anyone Can Understand the Atom
Henry E. Bentinck, 26

The Architecture of Matter
Stephen Toulmin and June Goodfield, 26

Asimov's Biographical Encyclopedia of Science and Technology: The Lives and Achievements of 1195 Great Scientists from Ancient Times to the Present Chronologically Arranged
Isaac Asimov, 19

The Atom
Charles Hatcher, 27

The Atom
George Thomson, 27

The Atom and Beyond: A New Introduction to Modern Physical Science
E. Sheldon Smith, 27

The Atom and Its Nucleus
George Gamow, 27

The Atom and the Universe
James S. Perlman, 27

The Atom at Work: How Nuclear Power Can Benefit Man
C. B. Colby, 27

Atomic Energy
Irving Adler, 27

Atomic Energy
Matthew Gaines, 28

The Atomic Energy Deskbook
John F. Hogerton, 29

Atomic Energy Encyclopedia in the Life Sciences
Charles W. Shilling, 19

Leo Meyer, 28

Atomic Energy for Military Purposes
Henry D. Smyth, 51

Atomic Energy: The Story of Nuclear Science
Irene D. Jaworski and Alexander Joseph, 28

Atomic Physics and Human Knowledge
Niels Bohr, 38

Atomic Quest
Arthur H. Compton, 28

Richard G. Hewlett and Francis Duncan, 49

Atomic Submarines
William R. Anderson, James Baar, and William E. Howard, 46

Atomic Submarines
Norman Polmar, 46

The Atomists (1805-1933)
Basil Schonland, 6

Atompower
Joseph M. Dukert, 28

Atoms
Melvin Berger, 29

Atoms Afloat: The Nuclear Ship Savannah
Edward and Ruth S. Radlauer, 47

Atoms and Atomic Energy
Egon Larsen, 29

Atoms and Molecules
Irvings and Ruth Adler, 29

Atoms for Peace
David O. Woodbury, 29

Atoms for the World
Laura Fermi, 29

Atoms in the Family: My Life with Enrico Fermi
Laura Fermi, 6

Atoms Today and Tomorrow
Margaret O. Hyde, 29

Basic Laws of Matter
Harrie S. W. Massey and Arthur R. Quinton, 30

The Birth of the New Physics
I. Bernard Cohen, 39

Biography of an Atom
Jacob Bronowski and Millicent E. Selsam, 30

Biography of Physics
George Gamow, 38

The Born-Einstein Letters: The Correspondence Between Albert Einstein and Max and Hedwig Born from 1916 to 1955
Charles Michael Daugherty, 30

Breakthroughs in Physics
Peter Wolff, 39

Building Blocks of the Universe
Isaac Asimov, 14

City Under the Ice: The Story of Camp Century
Marjorie Johnston, 6

A Comprehensible World: On Modern Science and Its Origins
Jeremy Bernstein, 30

Concepts and Development of Quantum Mechanics
John C. Slater, 39

Concise Dictionary of Atomics
Alfred Del Vecchio, 20

Concise Encyclopedia of the Atom
Paul Musset and Antonio Lloret, 20

The Cosmic Power: Foundations of Nuclear Physics
Philip Kogan, 39

The Cosmos of Arthur Holly Compton
Marjorie Johnston, 6

Discoverer of X Rays: Wilhelm Conrad Roentgen
Arnulf K. Esterer, 6
The Discovery of the Electron: The Development of the Atomic Concept of Electricity
David L. Anderson, 16

Discovery of the Elements
Mary E. Weeks, 14

The Discovery of Nuclear Fission: A Documentary History
H. G. Graftzer and D. L. Anderson, 30

Dive! The Story of an Atomic Submarine
H. B. Harris-Warren, 47

Education and the Atom
Glenn T. Seaborg and Daniel M. Wilkes, 49

The Effects of Nuclear Weapons
Samuel Glasstone, 51

Einstein
Jeremy Bernstein, 6

Einstein: His Life and Times
Philipp Frank, 7

The Electron: Its Isolation and Measurement and the Determination of Some of Its Properties
Robert Andrews Millikan, 16

Elementary Particles
David H. Frisch and Alan M. Thorndike, 17

Elementary Particles: A Short History of Some Discoveries in Atomic Physics
Chen Ning Yang, 17

Elements of the Universe
Glenn T. Seaborg and Evans G. Valens, 15

Enrico Fermi: Atomic Pioneer
Doris Faber, 7

Enrico Fermi, Physicist
Emilio Segrè, 7

Ernest Rutherford: Architect of the Atom
Peter Kelman and A. Harris Stone, 7

The Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta
Albert Einstein and Leopold Infeld, 39

Experiments With Atomics
Nelson F. Beeler and Franklyn M. Branly, 22

Experiments in Nuclear Science
Grafton D. Chase, Stephen Rituper, and John W. Sulcoski, 22

The Fabulous Isotopes: What They Are and What They Do
Robin McKown, 44

Faraday as a Natural Philosopher
Joseph Agassi, 7

Frédéric Joliot-Curie: The Man and His Theories
Pierre Biquard, 8

Fresh Water from Salty Seas
David O. Woodbury, 13

Genetics in the Atomic Age
Charlotte Auerbach, 42

The German Atomic Bomb: The History of Nuclear Research in Nazi Germany
David Irving, 52
Giant of the Atom: Ernest Rutherford
Robin McKown, 8

Great Experiments in Physics
Morris H. Shamos, 39

Harold Urey: The Man Who Explored from Earth to Moon
Alvin and Virginia Silverstein, 8

The Heart of the Atom: The Structure of the Atomic Nucleus
Bernard L. Cohen, 31

High Energy Physics
Hal Hellman, 40

The History of the Atomic Bomb
Michael Blow, 52

The Illustrated Nuclear Encyclopedia
Erik Bergaust, 20

Inside the Atom
Isaac Asimov, 31

Inside the Nucleus
Irving Adler, 31

Introduction to Nuclear Science
Alvin Glassner, 31

An Introduction to Physical Science: The World of Atoms
John J. G. McCue, 31

The Invisible Giants: Atoms, Nuclei, and Radioisotopes
Vivian Grey, 31

Isaac Newton: Scientific Genius
Pearle and Harry Schultz, 8

Isotopes in Action
Dorothy Harper, 44

Jacob Berzelius: His Life and Work
J. Erik Jorpes, 8

J. J. Thomson: Discoverer of the Electron
George Thomson, 8

John Dalton and the Atom
Frank Greenaway, 9

John Dalton and the Atomic Theory: The Biography of a Natural Philosopher
Elizabeth C. Patterson, 9

Joseph Henry: Father of American Electronics
Patricia Jahns, 9

Let's Go Aboard an Atomic Submarine
Lee David Hamilton, 47

Let's Go To An Atomic Energy Town
Kirk Polking, 32

Lise Meitner, Atomic Pioneer
Deborah Crawford, 9

Madame Curie: A Biography
Eve Curie, 9

Man and Atom: Shaping a New World Through Nuclear Technology
Glenn T. Seaborg and William R. Corliss, 32

Man and Atom: The Uses of Nuclear Energy
Frank Barnaby, 32

Manhattan Project: The Untold Story of the Making of the Atomic Bomb
Stephane Groueff, 52
Man-Made Transuranium Elements
Glenn T. Seaborg, 15

Matter and Light: The New Physics
Louis Victor de Broglie, 40

Men and Atoms
William Lawrence, 32

Men and Decisions
Lewis L. Strauss, 32

Men Who Made a New Physics: Physicists and the Quantum Theory
Barbara Lovett Cline, 33

Men Who Mastered the Atom
Robert Silverberg, 10

Michael Faraday: Apprentice to Science
Sam and Beryl Epstein, 10

Missile Base Beneath the Sea: The Story of Polaris
J. J. Dicerto, 47

Molecules and Atoms
Edward Victor, 33

Mr. Tompkins in Paperback
George Gamow, 33

The Nature of Matter: Physical Theory from Thales to Fermi Ginestra Amaldi, 33

The Neutrino: Ghost Particle of the Atom
Isaac Asimov, 17

The Neutron Story
Donald J. Hughes, 17

Newnes Concise Encyclopedia of Nuclear Energy
D. E. Barnes et al., 20

The New Physics
John G. Taylor, '40

Richard G. Hewlett and Oscar E. Anderson, Jr., 50

The New World of the Atom
David O. Woodbury, 33

The New World of the Atom
James Stokley 33

Niels Bohr: His Life and Work As Seen by His Friends and Colleagues
S. Rozental, 10

Niels Bohr: The Man, His Science, and the World They Changed
Ruth Moore, 10

Niels Bohr: The Man Who Mapped the Atom
Robert Silverberg, 10

The Noble Gases
Isaac Asimov, 25

Now It Can Be Told: The Story of the Manhattan Project
Leslie R. Groves, 52

Nuclear Milestones: A Collection of Speeches
Glenn T. Seaborg, 33

Nuclear Physics and the Fundamental Particles
H. H. Heckman and P. W. Starring, 34

Nuclear Power and the Public
Harry Foreman, 21
Nuclear Power, U. S. A.
Walter H. Zinn, Frank K. Pittman, and John F. Higorton, 50

Nuclear Propulsion for Merchant Ships
A. W. Kramer, 47

Nuclear Research: Knowledge for the Future
Albert V. Crewe and Joseph J. Katz, 50

Nuclear Ships of the World
Joseph Dukert, 47

Nuclear Submarine Skippers and What They Do
George P. Steele and Herbert R. Gimpel, 48

The Oak Ridge Story
George O. Robinson, Jr., 52

Oppenheimer
Robert Serber, Victor F. Weisskopf, Abraham Pais, and Glenn T. Seaborg, 10

Otto Hahn: My Life
Otto Hahn, 10

Otto Hahn: A Scientific Autobiography
Otto Hahn, 11

Our Friend the Atom
Heinz Haber, 34

Out of My Later Years
Albert Einstein, 11

The Papers of Joseph Henry, Volume 1: December 1797—October 1832: The Albany Years
Joseph Henry, 11

The Peaceful Atom
Bernice Kohn, 34

Peacetime Uses of Atomic Energy
Martin Mann, 34

Physics and Beyond: Encounters and Conversations
Werner Heisenberg, 40

Physics for Poets
Robert H. March, 40

Polaris!
James Baar and William E. Howard, 48

Project Sherwood: The U. S. Program in Controlled Fusion
Amasa S. Bishop, 24

The Questioners: Physicists and the Quantum Theory
Barbara Lovett Cline, 34

Superpower: The Story of Atomic Energy
Frank Ross, Jr., 36

The Swift Years: The Robert Oppenheimer Story
Peter Michelmore, 12

Thirty Years That Shook Physics: The Story of Quantum Theory
George Gamow, 41

The Transuranium Elements
Glenn T. Seaborg, 25

Understanding Physics
Isaac Asimov, 41

Universe, Earth and Atom: The Story of Physics
Dr. Alan E. Hourse, 41
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Useful Atom</td>
<td>William R. Anderson and Vernon Pizer</td>
<td>36</td>
</tr>
<tr>
<td>What Makes a Nuclear Power Plant Work?</td>
<td>Erich Fuchs</td>
<td>36</td>
</tr>
<tr>
<td>Wilhelm Rontgen and the Discovery of X Rays</td>
<td>Bern Dibner</td>
<td>12</td>
</tr>
<tr>
<td>Working with Atoms</td>
<td>Otto R. Frisch</td>
<td>12</td>
</tr>
<tr>
<td>The World of the Atom</td>
<td>Henry A. Boorse and Lloyd Motz</td>
<td>36</td>
</tr>
<tr>
<td>The World of Elementary Particles</td>
<td>Kenneth W. Ford</td>
<td>17</td>
</tr>
<tr>
<td>Worlds--Antiworlds: Antimatter in Cosmology</td>
<td>Hannes Alfvén</td>
<td>17</td>
</tr>
<tr>
<td>X-Rays and Gamma Rays</td>
<td>Daniel S. Halacy</td>
<td>43</td>
</tr>
<tr>
<td>Young People's Book of Atomic Energy</td>
<td>Robert D. and Robert C. Potter</td>
<td>37</td>
</tr>
<tr>
<td>Radiation, Genes, and Man</td>
<td>Bruce Wallace and Theodosius Dobzhansky</td>
<td>42</td>
</tr>
<tr>
<td>Radiation and Life</td>
<td>George E. Davis</td>
<td>43</td>
</tr>
<tr>
<td>Radioactivity: Fundamentals and Experiments</td>
<td>Sister Mary Hermias and Sister Mary Joecliffe</td>
<td>43</td>
</tr>
<tr>
<td>Radioisotopes</td>
<td>John H. Woodburn</td>
<td>45</td>
</tr>
<tr>
<td>Radioisotopes and Radiation: Recent Advances in Medicine, Agriculture, and Industry</td>
<td>John H. Lawrence, Bernard Manowitz, and Benjamin O. Loeb</td>
<td>50</td>
</tr>
<tr>
<td>Relativity for the Million</td>
<td>Martin Gardner</td>
<td>40</td>
</tr>
<tr>
<td>The Restless Atom</td>
<td>Alfred Romer</td>
<td>35</td>
</tr>
<tr>
<td>Roads to Discovery</td>
<td>Ralph E. Lapp</td>
<td>35</td>
</tr>
<tr>
<td>Rutherford and the Nature of the Atom</td>
<td>Edward N. da C. Andrade</td>
<td>11</td>
</tr>
<tr>
<td>The Science of Ionizing Radiation</td>
<td>Lewis E. Etter</td>
<td>43</td>
</tr>
<tr>
<td>Science Treasures: Let's Repeat the Great Experiments</td>
<td>Bob Brown</td>
<td>23</td>
</tr>
<tr>
<td>Secret of the Mysterious Rays: The Discovery of Nuclear Energy</td>
<td>Vivian Grey</td>
<td>35</td>
</tr>
<tr>
<td>Secrets of the Nucleus</td>
<td>Joseph S. Levinger</td>
<td>35</td>
</tr>
<tr>
<td>She Lived for Science: Irène Joliot-Curie</td>
<td>Robin McKown</td>
<td>11</td>
</tr>
</tbody>
</table>
Sourcebook on Atomic Energy
Samuel Glasstone, 35

The Story of Quantum Mechanics
Victor Guillemin, 41

The Story of Radioactivity
Colin A. Mawson, 43

The Structure of Atoms
Verne H. Booth, 36

Photo Credits
Cover courtesy Kunststsammlungen zu Weimar
Page

4 Stanford University
5 Lotte Jacobi
13 Ray Manley photo, courtesy Stearns-Roger Corporation
14 Dr. Erwin W. Mueller
19 Fisher Scientific Company
21 U. S. Forest Service
22 Lawrence Livermore Laboratory
24 Los Alamos Scientific Laboratory
25 Argonne National Laboratory
26 General Atomic Division, General Dynamics Corporation
38 Hale Observatories
46 U. S. Navy
49 United Press International
59 Nevada Test Site
The U. S. Atomic Energy Commission publishes this series of information booklets for the general public. The booklets are listed below by subject category.

If you would like to have copies of these booklets, please write to the following address for a booklet price list:

USAEC—Technical Information Center
P. O. Box 62
Oak Ridge, Tennessee 37830

School and public libraries may obtain a complete set of the booklets without charge. These requests must be made on school or library stationery.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Booklet Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>IB-008, IB-009, IB-010, IB-011, IB-012, IB-002, IB-004</td>
</tr>
<tr>
<td>Electricity and Man</td>
<td>IB-005</td>
</tr>
<tr>
<td>Biology</td>
<td>IB-006, IB-007, IB-008, IB-009, IB-010, IB-011, IB-012, IB-002, IB-004</td>
</tr>
<tr>
<td>Physics</td>
<td>IB-006, IB-007, IB-008, IB-009, IB-010, IB-011, IB-012, IB-002, IB-004</td>
</tr>
<tr>
<td>The Environment</td>
<td>IB-006, IB-007, IB-008, IB-009, IB-010, IB-011, IB-012, IB-002, IB-004</td>
</tr>
<tr>
<td>General Interest</td>
<td>IB-006, IB-007, IB-008, IB-009, IB-010, IB-011, IB-012, IB-002, IB-004</td>
</tr>
</tbody>
</table>

- IB-008: Electricity and Man
- IB-005: Index to AEC Information Booklets
- IB-310: Lost Worlds, Nuclear Science and Archeology
- IB-309: The Mysterious Box, Nuclear Science and Art
- IB-006: Nuclear Terms: A Glossary
- IB-013: Secrets of the Past: Nuclear Energy Applications in Art and Archaeology
- IB-017: Teleoperators, Man's Machine Partners
- IB-014, 015, & 016: Worlds Within Worlds: The Story of Nuclear Energy Volumes 1, 2, and 3
- IB-401: Accelerators
- IB-402: Atomic Particle Detection
- IB-403: Controlled Nuclear Fusion
- IB-404: Direct Conversion of Energy
- IB-410: The Electron
- IB-405: The Elusive Neutrino
- IB-416: Inner Space, The Structure of the Atom
- IB-406: Lasers
- IB-407: Microstructure of Matter
- IB-415: The Mystery of Matter
- IB-411: Power from Radioisotopes
- IB-413: Spectroscopy
- IB-412: Space Radiation
- IB-501: Atomic Fuel
- IB-502: Atomic Power Safety
- IB-513: Breeder Reactors
- IB-503: The First Reactor
- IB-505: Nuclear Power Plants
- IB-507: Nuclear Reactors
- IB-510: Nuclear Reactors for Space Power
- IB-508: Radioactive Wastes
- IB-511: Sources of Nuclear Fuel
- IB-512: Thorium and the Third Fuel