The evaluation report is one of seven produced for the Occupational Exploration Program (OEP), a series of simulated occupational experiences designed for junior high school students. Describing the pilot testing of the simulation dealing with manufacturing production, the report contains sections describing the simulation context, evaluation procedures, results, and a Reviser's Information Summary (RIS). In the simulation, students set up and put into operation a 38-step assembly line producing extension speakers for transistor radios. Safety rules, administrative procedures, and job training were introduced. Occupational roles included supervisory positions and assembly line production. The experimental design involved two Colorado schools, with a total of four experimental and four control groups involving 77 eighth and ninth graders. Instrumentation included knowledge and affective testing, student and teacher questionnaires, and a panel review. Analysis of variance and other descriptive statistics were employed and reliability estimates were calculated. Analysis of variance results revealed that the simulation did not have a positive impact on student occupational knowledge but did have some positive impact on student occupational preferences. The RIS records and extrapolates trends related to the strengths, weaknesses, and recommendations from all data sources. Appended materials include the evaluation instruments used and a teacher evaluation log. (MN)
MANUFACTURING PRODUCTION

AN EVALUATION REPORT FOR
THE OCCUPATIONAL EXPLORATION PROGRAM

Prepared By
James W. Altschuld
Sandra Pritz
Janice Lave
Roberta Shively

With the Assistance of
Norman Singer
Brian Fitch
Arthur Terry
Robert Klabenes
Roger Brown
Robert Campbell
Robert Cotman
Jackie Lechner
Robert Blum (Jefferson County, Colorado)
John Radloff (Jefferson County, Colorado)
Mary Harris (Jefferson County, Colorado)
Sue Willis (Jefferson County, Colorado)

The Center for Vocational Education
The Ohio State University
1960 Kenny Road
Columbus, Ohio 43210

December, 1974
This report is one of seven evaluation reports produced for the Occupational Exploration Program. The Occupational Exploration Program (O.E.P.) is funded by the National Institute of Education and is a joint development effort of The Center for Vocational Education (The Ohio State University) and the Jefferson County, Colorado public schools. O.E.P. is a series of experiences designed to provide junior high school students with the opportunity to explore occupations. One of the major vehicles for exploration is the simulation technique. In FY 1974, 12 simulations were developed and seven of those twelve were pilot tested. This report describes the pilot testing of the simulation dealing with manufacturing. The report contains sections describing simulation context, evaluation procedures, results and a Reviser's Information Summary (RIS). The RIS is useful for a variety of purposes and includes the strengths of the simulation as well as its weaknesses. Below is a synopsis of the specific content of this report.

SIMULATION CONTEXT: In this simulation, students experience various manufacturing occupations. An assembly line requiring thirty-eight steps is set up and put into operation by participants. The students are introduced to safety rules, administrative procedures, a job training program, and a production line. As a result of their participation, the students produce extension speakers that may be attached to transistor radios. The occupational roles include plant superintendent, production supervisor, production coordinator, quality control supervisor, maintenance supervisor, and assembly line workers. EXPERIMENTAL DESIGN: For evaluating this simulation, two schools, one in Jefferson County, Colorado and one in Denver, Colorado were used, each school having two experimental and two control groups. A teacher facilitated the implementation of the simulation with each experimental group. The experimental and control groups consisted of 8th and 9th graders; the four experimental groups totaled 50 students and the four control groups totaled 27 students. A modified laboratory or quasi-experimental setting was utilized for the product tryout. INSTRUMENTATION: A 35 item multiple choice knowledge test, "What Do You Know?", and a 5 item affective test, "What Do You Like?", were administered as pre- and posttest measures of student occupational knowledge gain and attitudinal change. The student post module questionnaire, "What Do You Think?", administered to the experimental group after completion of the simulation, measured student perceptions of the module. Teacher questionnaires and a panel review were used for the purpose of obtaining teacher perceptions of the simulation. ANALYSIS: The knowledge test and affective test results were derived through analyses of variance. Other descriptive statistics were employed where appropriate (i.e., frequency, percentage). Reliability estimates were calculated to obtain the internal consistency estimates of the knowledge test and to determine inter-coder and intra-coder agreement.
RESULTS: The ANOVA results reveal that the simulation did not have a positive impact on student occupational knowledge. However, nearly statistically significant (p < .06) changes in student occupational preferences occurred. There was almost unanimous response from student questionnaire data that the simulation was fun, interesting, and had a high motivational appeal. Most of the participants learned a lot from the simulation including how to work with other people. REVISOR'S INFORMATION SUMMARY: The RIS was designed to not only assist revisors to assimilate information collected during the pilot-test, but also as a unique way of summarizing the data. The summary is a record of the strengths, weaknesses and recommendations for revisors from all data sources (i.e., student tests, student questionnaires, teacher questionnaires, etc.) Trends have been extrapolated which list the most apparent strengths, weaknesses of the simulation as well as recommendations to be considered in the review of the simulation.
Acknowledgements

An evaluation report is usually a product of the endeavors of many individuals. The authors of this report therefore wish to thank:

1. The teachers, administrators, and students in Jefferson County, Colorado and Denver, Colorado who, by participating in the use of educational materials and in the testing of those materials, made this evaluation report possible;

2. Jon Schaffarzick, Michael Hock, and David Hampson of the National Institute of Education for their support of this effort; and

3. The twelve project staff members identified on the cover, who, by their support, expertise and/or direction contributed to the production of this report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. BRIEF DESCRIPTION OF THE MODULE</td>
</tr>
<tr>
<td>II. DESCRIPTION OF EVALUATION PROCEDURES EMPLOYED</td>
</tr>
<tr>
<td>A. Specific Sample Used</td>
</tr>
<tr>
<td>B. Types of Classes and Groupings</td>
</tr>
<tr>
<td>C. Experimental Design as Implemented</td>
</tr>
<tr>
<td>D. Instrumentation-Instrument Specifics</td>
</tr>
<tr>
<td>III. RESULTS</td>
</tr>
<tr>
<td>A. Knowledge Test</td>
</tr>
<tr>
<td>B. Attitude Scale</td>
</tr>
<tr>
<td>C. Student Questionnaire</td>
</tr>
<tr>
<td>D. Teacher Evaluation Log</td>
</tr>
<tr>
<td>E. Teacher Post Module Panel Review</td>
</tr>
<tr>
<td>F. Analysis of Variance for Knowledge Test Data</td>
</tr>
<tr>
<td>G. Analysis of Variance for Attitudinal Data</td>
</tr>
<tr>
<td>IV. REVISER'S INFORMATION SUMMARY</td>
</tr>
<tr>
<td>APPENDICES</td>
</tr>
<tr>
<td>A. Knowledge Test - "What Do You Know?"</td>
</tr>
<tr>
<td>B. Attitude Scale - "What Do You Like?"</td>
</tr>
<tr>
<td>C. Student Questionnaire - "What Do You Think?"</td>
</tr>
<tr>
<td>D. Teacher Evaluation Log</td>
</tr>
</tbody>
</table>

BEST COPY AVAILABLE
Manufacturing Production

I. Brief Description of the Module

This simulation, Manufacturing Production, provides an opportunity for the student to explore and get a feel for whether he/she might like to look further into manufacturing occupations for potential occupational choices. The simulation consists of an Introduction, Preparation (1st session), Participation (five production sessions), and a Summary. Twenty-eight students may opt into the simulation to work in the production of extension speakers (boom boxes) that may be attached to radios. An assembly line requiring thirty-eight steps is set up and put into operation. Of the twenty-eight workers, one is plant superintendent, four are supervisors, and those remaining are product line workers.

The Preview* or Introduction Section takes the form of an illustrated comic book. Two caricatures, Peter and Polly, give an overview describing "The World of Work, Manufacturing Production". They describe specifics of the simulation including the tools, equipment, materials, and kinds of activities that a student might engage in to build extension speakers if he/she were to opt into the simulation. The student is then asked if he/she would like to participate in the manufacturing simulation. A slide tape presentation similar to the booklet is available and may be viewed instead of or in conjunction with the comic book. The preview is scheduled to last about a class period.

*Prior to the preview, the students have seen a slide tape and/or read a booklet on Introduction to Simulation.

BEST COPY AVAILABLE
The Preparation Section (Session 1) begins with a slide/tape "Manufacturing Production" which outlines the roles in the simulation and describes an organization chart. It continues with an explanation of the safety rules (which are also provided in comic book form) and directs the students to a handbook of instructions for the job applications ("What Job Would I Like?") The handbook guides a student through the preparation of several forms that help him/her choose and get into a role for the simulation. The student may choose to work in one of the five production areas; Fabrication, Assembly, Inspection, Supervision, or Maintenance. Using an interest scoring sheet the student first works through an interest form from the records file. He/She records his/her scores and continues according to the handbook to work through the preference form, description sheet, job application form and as a last activity obtains a company identification card.

At the end of the Preparation, the job application forms are left with the instructor. Job applications are the final instrument for production area role choices. The instructor checks the job application form for conflicts in role choices. The preparation section is scheduled for about one period.

At the beginning of the Participation Phase (Session 2), a slide/tape "Operation Sheet - The Key To Your Job" instructs the group in the use of 1) operation sheets which direct them through their jobs and 2) training aids (film-o-sound cartridges and talking pages) for specific tasks. Next the group hears a tape "Electing a Plant Superintendent" while simultaneously viewing posters on the same subject. Following
the tape and posters, one of the five students applying for the plant superintendent position is voted into office by the company employees using a plant superintendent ballot. The remaining four candidates receive supervisory positions by drawing from a hat of supervisory selection cards. The supervisory roles are in booklets titled: Production Supervisor, Production Coordinator, Quality Control Supervisor, and Maintenance Supervisor. Finally, a company meeting is held during which purchase contracts are signed, the number of speakers to be produced is decided upon, and the company is given a name.

In Session 3 (and possibly 4) another organizational company meeting is called to order by the plant superintendent. The company employees view a slide tape program on the flow chart, hear a tape on the company handbook and files, and review the company rules of conduct. The supervisors continue their job preparation and training while the remaining employees are instructed to go to the Instructional Materials Center. Between Sessions 3 and 4 the production supervisor and production coordinator should have finished the production time chart in order that production may begin. If they have not, they continue to work on the chart while the remaining workers again go to the Instructional Materials Center.

Assuming the production time chart is complete, the workers are called from the Instructional Materials Center and hired by the supervisors from a "worker pool" according to their ID number from the preference chart. The supervisor of each area then records the workers' names on a worker assignment sheet. Workers are also recycled through the worker pool when their jobs are completed or an opening
comes up that is their first choice on the preference chart. As production workers are hired to do an operation, their first responsibility is to take their training program from film-o-sound 35 cartridges found in the audiovisual files. In addition to his/her work assignment, each employee is responsible for filling out a daily report form.

By Session 5, production is in full swing. Each supervisor should be assuming his/her roles and checking to see that their workers are doing the same. A brief description of each of the supervisor roles follows.

Production coordinator and production supervisor are closely related roles; in fact, they work from different copies of the same handbook during the simulation. The main difference in their responsibilities is that the production supervisor is in charge of fabrication, the production or manufacture of components or parts used in the speaker, while the production coordinator is in charge of assembly, putting together components or parts to form the speaker. They each have the responsibility of establishing a production schedule, hiring production workers for fabrication/assembly, supervising production workers in fabrication/assembly, controlling production, and assisting the plant superintendent.

The quality control supervisor's job has four parts: inspecting, inspector hiring and supervising, safety enforcement, and assisting the plant superintendent. The first part inspection involves completing the proper section of the "first part" checklist that applies to each day's production as well as looking for shoddy or otherwise
unacceptable workmanship. Inspector hiring and supervising involves hiring inspectors from the production worker pool when they are needed and returning them to the pool for reassignment when they are done. Safety enforcement involves general shop safety and operations safety. It is the quality control supervisor’s responsibility to become familiar with all the company safety rules and see that all employees are familiar with rules too. During the simulation he is to watch, correct, and report any problems of safety to the plant superintendent. As a plant superintendent assistant, he will be required, as will other supervisors, to assist the plant superintendent upon request.

The maintenance supervisor also has four parts to his job: inventorying tool/equipment/special apparatus; maintaining tools and equipment; supervising equipment and work area cleanup; and assisting the plant superintendent. Tool/equipment/special apparatus inventory requires the maintenance supervisor to complete an inventory sheet and to know the number of tools and equipment on hand as well as where they are. In addition, the maintenance supervisor needs to know the number of work stations (areas where a single operation can be performed) and act as an information source since the individual in this role will know more about the tools and equipment and the special apparatus than anyone else in the company. Tool and equipment maintenance requires a daily check of the tools and equipment to see that they are in good working order. The tools and equipment needed for all operations (1 through 38) are illustrated, and instructions are given for replacement and repair of the tools. Equipment and work area cleanup are important roles
requiring tact and diplomacy on a daily level from the maintenance supervisor. He must oversee the cleanup of machinery and the work area, watch the time, and check for safety during cleanup. As a plant superintendent assistant, he/she needs to be ready to assist the plant superintendent upon request.

The plant superintendent works with other supervisors and staff to keep the manufacturing company organized and the production line moving smoothly. He/She is responsible for resolving the personnel problems, time conflicts, and other problems that may arise in the simulation. Of course, the superintendent may at any given time choose to confer with top management (the instructor) to resolve difficult problems.

Session 6 is a continuation of the production line with all participants continuing in their roles until the desired production quantity is reached. (The production quantity should equal or exceed the total number of speakers company employees contracted for when they signed their purchase contracts during Session 2.)

The Summary provides the students with an opportunity to think about what they have done, where they are now, and where they would like to go in the future in terms of occupational exploration. The summary is divided into three tasks. The first task focuses upon the individual's experience asking such things as: "Did I like the working conditions associated with manufacturing production?" The second task focuses on sharing experiences and personal feelings about what each participant did during the simulation. The superintendent first calls a brief meeting, then the class divides into small groups to work on a presentation describing their roles during the simulation. The groups then come together to hear each other's
presentations. Task 3 of the Summary uses a "decision point" form from the company files to give the participants an opportunity to think about how manufacturing production and other experiences in the simulation have affected their plans for exploring the world of work. The students receive their speakers at the end of the simulation.

Ideally the Manufacturing Simulation would take about 12-13 periods of class time. Given, however, needs such as start-up time, getting-organized time, and clean-up time, the simulation more realistically is scheduled for about 15-18 periods of class time. The breakdown by class sessions is shown on the following page.
<table>
<thead>
<tr>
<th>Simulation Component</th>
<th>Estimated Time in Class Periods*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Simulation</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Preview</td>
<td>1</td>
</tr>
<tr>
<td>Preparation</td>
<td>1</td>
</tr>
<tr>
<td>Participation</td>
<td>6</td>
</tr>
<tr>
<td>Summary</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>12 - 13</td>
</tr>
</tbody>
</table>

(15 - 18 with allowance for preparation and clean-up)

A class period is assumed to contain a minimum of 45 minutes.

BEST COPY AVAILABLE
II. Description of Evaluation Procedures Employed

A. Specific Sample Used

1. Schools

For this module one Jefferson County and one Denver school were used. In each school there were two experimental and two control groups. The schools and the teachers were selected via discussion with administrators and teachers in each of the districts. A brief description* of the schools follows.

Wheat Ridge Junior High School (Grades 7-9), Jefferson County.

Wheat Ridge Junior High School is a small school with approximately 725 students in grades 7-9. Twenty students are classified as mentally retarded. Generally, the school draws its student body from a middle class, blue collar area. About 30 students come from families receiving Aid to Dependent Children (ADC) and many students are from divorced homes. The area of Jeff Co. represented by this school has many older single family houses. There is a sizeable retired subgroup within the area population. The students are primarily white (93%) with the rest (7%) having Spanish surnames. The school reports that standardized test results indicate that school scores are improving and that it is either at or above district norms in most cases.

Lake Junior High School (Grades 7-9), Denver.

Lake is a large Denver junior high school with well over a thousand students. Although demographic data was not available at the time of this writing several factors about the school are known. First, it has a sizeable percentage of students with Spanish surnames.

*Descriptions were obtained by John Radloff of the Jefferson County project staff.
Secondly, in general Lake has a high rate of absenteeism. (As soon as additional data becomes available, it will be appended to this report.)

2. Sample Within Schools

a. Teachers

In Wheat Ridge Junior High School two male industrial arts teachers conducted the simulations. In Lake Junior High School one male industrial arts teacher conducted two separate simulation groups. (Due to difficulty in obtaining questionnaire data from these teachers, further demographic data is not available.)

b. Students

State regulations in Colorado necessitated that a simulation of this type, i.e., one involving a great deal of manipulation of tools, be housed in an industrial arts setting. In Denver and in Jefferson County, classes utilizing the industrial arts facilities consist of all male students. Therefore only eighth and ninth grade male students enrolled in industrial arts classes were in the experimental groups. These students were volunteered by their classroom teachers. To provide for comparable control groups, intact industrial arts classes were selected for the control groups. The classes were generally a mixture of eighth and ninth grade students.

In summary, the sampling was far from ideal. While the procedures for sampling within the two schools were quite similar, the schools themselves were somewhat different. Caution should be exercised when making interpretive judgements about the experimental results of the pilot test.
It also should be noted that experimental results are based only on students who took both the pre and posttest. There was sample loss in the testing of the module as follows:

- **Denver experimental groups**, of the thirty-five students who started the module, thirty students completed it (fourteen percent loss);

- **Jeffco experimental groups**, of the twenty-nine students who started the module, twenty students completed it (thirty-one percent loss);

- **Denver control groups**, of the thirty-six students who took the pretest, twelve did not complete the posttest (thirty-three percent loss);

- **Jeffco control groups**, of the twenty-six students who took the pretest, thirteen did not complete the posttest (fifty percent loss).

Across the four types of situations described above the percentage loss is approximately thirty-one percent. Sample loss is always difficult to account for in an experimental situation. Some students may have been sick or otherwise out of the classroom during the pre or posttesting time. The logistical set-up for the test of this module required that an administrator be present at each testing session. Provisions for follow-up testing of students who missed a session were not feasible given the available manpower in the field. Some students may simply have avoided taking the tests. Students in industrial arts classes may have an especially strong disposition against tests. The sample loss, at any rate, is larger than one would ordinarily like to see. Caution, therefore, should be taken when interpreting the
experimental results of the pilot test.

B. **Types of Classes and Groupings**

Given the unique nature of the manufacturing simulation, only existing intact classrooms were utilized. Since the simulation was designed for a maximum of 28 students per group, all class members within an intact classroom participated in the module. The module was tested within the industrial arts area of the two schools. These areas were free from competing influences or distractions and it was felt that students were able to experience the module in the manner intended by developers.

C. **Experimental Design as Implemented**

Since the industrial arts classes involved in this pilot test had only male students, partitioning of the groups by sex was not possible. Aside from this one difference, the design is basically that stated in the proposal. Schematically the design could be depicted as shown on the following page.
*In order for a student's scores to be included in the analysis, he would have had to participate in both the pre- and posttest.
The analysis will be the same as designated in the project proposal for the Occupational Exploration Program (FY'74) with the exception that the sex variable has been deleted. Of key interest will be the interaction between the experimental-control variable and the pre and posttest variable. If the module has had an impact upon students, a significant interaction would be expected with the source of the interaction being a sizeable experimental group gain on the posttest. Separate analyses will be run for the total cognitive test scores as well as for two dimensions of the attitudinal scale. The analyses will be in accordance with the abbreviated summary table shown below.
Table 2 - Partial Anova Summary Table
For The Manufacturing Module

<table>
<thead>
<tr>
<th>Source*</th>
<th>df</th>
<th>Potential F Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Students</td>
<td>abc(n-1)</td>
<td></td>
</tr>
<tr>
<td>Term No.</td>
<td>Between Classes</td>
<td>abc-1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>a-1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>b-1</td>
</tr>
<tr>
<td>3</td>
<td>AB</td>
<td>(a-1)(b-1)</td>
</tr>
<tr>
<td>4</td>
<td>C/AB</td>
<td>ab (c-1)</td>
</tr>
<tr>
<td>Within Classes</td>
<td>abc (n-1)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>E/C/AB</td>
<td>abc (n-1)</td>
</tr>
<tr>
<td>Within Students</td>
<td>abc(n-1)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>(d-1)</td>
</tr>
<tr>
<td>7</td>
<td>AD</td>
<td>(a-1)(d-1)</td>
</tr>
<tr>
<td>8</td>
<td>BD</td>
<td>(b-1)(d-1)</td>
</tr>
<tr>
<td>9</td>
<td>ABD</td>
<td>(a-1)(b-1)(d-1)</td>
</tr>
<tr>
<td>10</td>
<td>CD/AB</td>
<td>ab (c-1)(d-1)</td>
</tr>
<tr>
<td>11</td>
<td>E/D/C/AB</td>
<td>abc (d-1)(n-1)</td>
</tr>
<tr>
<td>Total</td>
<td>abc(dn-1)</td>
<td></td>
</tr>
</tbody>
</table>

*A brief discussion of the variables will be included in the text immediately following this table.

**If the results from the two starred F tests yield insignificant F ratios, then the two terms 4 and 5, and 10 and 11, could be respectively pooled and used for the remainder of the appropriate F tests.
The independent variables for this module are described below:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Treatment (experimental vs. control)</td>
<td>Fixed; between levels of C</td>
</tr>
<tr>
<td>B</td>
<td>Schools (Denver vs. Jefferson County)</td>
<td>Fixed; between levels of C</td>
</tr>
<tr>
<td>C</td>
<td>Classrooms (n=8)</td>
<td>Random; nested within AB</td>
</tr>
<tr>
<td>D</td>
<td>Testing (Pre. vs. Post)</td>
<td>Fixed; within S's (repeated measure)</td>
</tr>
<tr>
<td>E</td>
<td>Students</td>
<td>Random; nested within ABC</td>
</tr>
</tbody>
</table>
D. Instrumentation - Instrument Specific

1. Knowledge Test - What Do You Know? (The test is appended to this report)

The knowledge test for manufacturing consisted of 35 questions. The test included 16 multiple choice questions and 19 matching type questions. In general, the questions were at a low comprehension level in relation to the Bloom Taxonomy. Three basic areas on thrusts were emphasized in the tests: process (10 questions); responsibility (10 questions); and environment/tools (15 questions).

An example of a process question is as follows:

Test Question #5

Which of the following things is manufactured?

a. Coal
b. Haircut
c. Candy bar
* d. None of the above

*Indicates correct answer

Process questions generally deal with understanding the steps involved in manufacturing a product, understanding what information might be necessary to perform a certain function, etc.

Responsibility questions are focused on who or what group has responsibility for making decisions at a certain point in time, etc. An example of a responsibility question is given below.

Test Question #3

Which of the following assignments would be a major responsibility of the plant maintenance supervisor?

a. Scheduling production time
b. Supplying tools
c. Analyzing defects in products
d. Planning new products

*Indicates correct answer
Environment/tools is a category of questions which deal with understanding the environment one works in, the types of tools that might be used in a job, the functions of tools, etc. An example of a question from this category is:

Test Question #4

In manufacturing production many different kinds of tools are used to perform various functions. Match the function with the tool needed to perform the function by placing the letter of the function by the tool. Place only one letter by each tool.

<table>
<thead>
<tr>
<th>Function</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. shaping</td>
<td>b. staple gun</td>
</tr>
<tr>
<td>b. fastening</td>
<td>b. glue gun</td>
</tr>
<tr>
<td>c. cutting</td>
<td>c. utility knife</td>
</tr>
<tr>
<td>d. grinding</td>
<td>b. screwdriver</td>
</tr>
<tr>
<td></td>
<td>c. scissors</td>
</tr>
<tr>
<td></td>
<td>a. box and pan brake</td>
</tr>
<tr>
<td></td>
<td>b. rivet gun</td>
</tr>
<tr>
<td></td>
<td>c. miter box saw</td>
</tr>
<tr>
<td></td>
<td>c. tin snips</td>
</tr>
<tr>
<td></td>
<td>d. sander</td>
</tr>
<tr>
<td></td>
<td>b. soldering gun</td>
</tr>
<tr>
<td></td>
<td>c. handsaw</td>
</tr>
<tr>
<td></td>
<td>c. squaring shear</td>
</tr>
</tbody>
</table>

The letters in this column indicate the correct answers.
2. Affective Test - What Do You Like? (The test is appended to this report.)

The affective test was designed to measure attitudinal change on the part of the student. The first five questions consist of asking the student if he/she would like to try doing an activity. The student could respond in one of four ways to the item.

- Yes, I would like to try this
- No, I would not like to try this
- I'm uncertain about trying this
- I don't have enough information to know if I would like to try this.

The scale is scored so that the stronger the preference for trying to do an activity, the higher the score. Thus, yes and no responses receive the same scale value of 3, uncertain responses receive a 2 and not enough information types of responses receive a value of 1. These values are then summed and used in the analysis of variance described earlier. Summed scores can vary from zero (no response whatsoever) to 15. Note that the scale is scored so that strength of preference, rather than direction of preference is the important factor (i.e., yes and no responses while being in opposite directions, represent the same strength of preference and therefore receive the same score).

In addition to the scaled responses, students were encouraged to state reasons for their preferences. These reasons were classified and, in conjunction with the scaled responses, were coded and transferred to machine scorable forms. Checks were made on the scoring procedures to assure that the data was reasonably accurate, especially with regard to the first five questions.

There were 13 other questions included in the What Do You Like? scale. The 5 questions following those just described were similar in nature to the earlier ones, but they required the student to supply or
fill in the type of activity that he preferred or did not prefer to do.

Given the totally open-ended nature of this set of questions, it was difficult to develop an adequate and relatively exhaustive scoring scheme. In addition, given the state of development and the early trial nature of the pilot test, a decision was made to exclude results from these questions in the analysis of variance.

(The last 8 questions on the test were open-ended and asked the students about the experiences one should have before deciding on a job, the types of things that one should consider before taking a job, etc. The responses were classified and scored. Due to some difficulties in scoring these questions, results will not presented.)

3. Student Post Module Questionnaire - What Do You Think? (The questionnaire is appended to this report.)

This questionnaire was administered to students after they had completed the module and the module posttest. This instrument was administered only to the students who participated in the module. The content of the questionnaire relates directly to student perceptions of the module. The first twenty questions are in a scaled format. Questions in this set relate to a student's perception of the clarity of directions, the extent to which the module interested him/her, etc. For analysis and use, the results will be grouped and descriptively reported by the subject area to which they pertain. Other questions in the questionnaire deal with parts of the module the student liked best, parts he/she liked least, role(s) played in the simulation, etc. These questions will be descriptively summarized and included on the Reviser's Information Summary (RIS).

4. Teacher Evaluation Log (The log is appended to this report.)

The Teacher Evaluation Log consists of six instruments packaged in one booklet. The instrument order within the log parallels the ordering
of the module. In other words, after students had completed the Introduction to Simulation, teachers would fill in the questionnaire regarding that part of the module. After students had completed the preview, teachers would fill in the questionnaire pertaining to the preview, and so on.

Below is an instrument by instrument description of the six instruments contained in the log.

LISTING AND DESCRIPTIONS OF TEACHER EVALUATION LOG

<table>
<thead>
<tr>
<th>No.</th>
<th>Questionnaire</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Introduction to Simulation</td>
<td>What materials were used; effectiveness in terms of student understanding and interest, technical quality, suggestions, etc.</td>
</tr>
<tr>
<td>II.</td>
<td>Module Preview</td>
<td>What materials were used, effectiveness in terms of student motivation, technical quality, etc.</td>
</tr>
<tr>
<td>III.</td>
<td>Preparation Phase</td>
<td>Similar to above questionnaires with the addition of questions regarding integration or fit with the rest of the module and questions pertaining to the role selection process.</td>
</tr>
<tr>
<td>IV.</td>
<td>Participation Phase</td>
<td>A questionnaire similar to a daily log wherein teachers primarily identified student and teacher problems in getting tasks done.</td>
</tr>
<tr>
<td>V.</td>
<td>Summary Phase</td>
<td>Questions relating to the summary in terms of its being a reasonable culminating activity, etc.</td>
</tr>
<tr>
<td>VI.</td>
<td>General Module Evaluation</td>
<td>Questions relating to the overall adequacy of materials, the sequencing of materials, module implementation, student participation and learning, etc.</td>
</tr>
</tbody>
</table>
5. **Teacher Post Module Panel Review**

After a module was completed, the teachers who had participated in the pilot test were convened to discuss the module. Per each individual section of a module teachers were asked about: the particular strengths of that section; the weaknesses; classroom solutions they used to overcome weaknesses; and what recommendations or suggested changes they had for revising the module. Emphasis during the review was placed upon probing into their perceptions of the module and looking for consensus among the teachers.
A. 1. Knowledge Test: Internal Consistency

Internal Consistency (K.R. #21)

By Total Groups and Testing Time

For Total 35 Item Test

<table>
<thead>
<tr>
<th>Group</th>
<th>Pretest</th>
<th>Posttest</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIMENTAL</td>
<td>0.64</td>
<td>0.78</td>
</tr>
<tr>
<td>CONTROL</td>
<td>0.81</td>
<td>0.75</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.75</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Interpretation/Comments

As clearly indicated in the table, the knowledge test for the manufacturing simulation is very reliable. The reliability coefficient for the posttest is slightly higher than that of the pretest. This would be expected both on the basis of experimental group growth in knowledge as well as the effect of the pretest on both experimental and control group understanding. The total test scores for this module can be interpreted with a relatively high degree of confidence.
A. 2. Knowledge Test: Validity

See Reliability Table for upward bounds or estimates of potential validity coefficients. (These would be equivalent to the square root of the reliability coefficients.)

III. RESULTS

Interpretation/Comments

Although no direct attempt was made to develop strategies or methods for determining validity, certain factors which would contribute to test validity should be kept in mind. First, care was taken in test development to eliminate items which were not career oriented. Items dealing with trivial detail were omitted. Secondly, three individuals reviewed the drafts and final version of the test. The test was considered to have reasonable face validity.

Other types of validity such as predictive, concurrent, construct, etc., were beyond the scope of this pilot test. For example, if a factor analytic study were attempted in order to determine construct validity, the values derived would be questionable with the sample size used in the pilot test. As a general rule of thumb, 200 cases are necessary for a factor analytic study. This is more than double the obtained sample size of 87.
III. RESULTS

A. 3. KNOWLEDGE TEST: TOTAL SCORE RESULTS

GROUP MEANS AND STANDARD ERRORS BY TOTAL GROUPS AND TESTING TIME FOR TOTAL 35 ITEM TEST

<table>
<thead>
<tr>
<th>TESTING TIME</th>
<th>PRETEST</th>
<th>POSTTEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>S.E.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>EXPERIMENTAL</td>
<td>GROUP</td>
</tr>
<tr>
<td></td>
<td>22.5</td>
<td>2.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>CONTROL</td>
<td>GROUP</td>
</tr>
<tr>
<td></td>
<td>20.2</td>
<td>2.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>EXPERIMENTAL AND</td>
<td>CONTROL GROUP</td>
</tr>
<tr>
<td></td>
<td>21.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Interpretation/Comments

From this table several major facts emerge. First, the reliability estimates given earlier and the standard errors shown in this table suggest that the knowledge tests generally operated in a similar manner for all groups, exclusive of where the actual mean values fell. Secondly, there is apparently no change in the pre to posttest scores of the experimental group, and at the same time the control group realized a one point loss. The latter is probably a result of the control group "turning off" on taking the same test twice.
III. RESULTS

A. 4. KNOWLEDGE TEST: SUBTEST RESULTS

GROUP MEANS AND STANDARD DEVIATIONS BY TOTAL GROUP AND TESTING TIME FOR SUBTESTS

<table>
<thead>
<tr>
<th>TESTING TIME</th>
<th>PRETEST</th>
<th>POSTTEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>S.D.</td>
</tr>
<tr>
<td>Group</td>
<td>SUB-TEST*</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>A 5.3</td>
<td>2.1</td>
</tr>
<tr>
<td>EXPERIMENTAL</td>
<td>B 5.6</td>
<td>1.9</td>
</tr>
<tr>
<td>GROUP</td>
<td>C 11.6</td>
<td>2.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>A 5.1</td>
<td>2.1</td>
</tr>
<tr>
<td>CONTROL</td>
<td>B 5.1</td>
<td>2.0</td>
</tr>
<tr>
<td>GROUP</td>
<td>C 10.1</td>
<td>3.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>A 5.2</td>
<td>2.1</td>
</tr>
<tr>
<td>(EXPERIMENTAL AND CONTROL)</td>
<td>B 5.4</td>
<td>2.0</td>
</tr>
<tr>
<td>GROUP</td>
<td>C 11.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*SUBTEST A = 10 Process Questions
" B = 10 Responsibility Questions
" C = 15 Environment and Tools/Skills Questions

Interpretation/Comments

As is apparent in Table A.3. and as verified here, no appreciable differences are occurring in results from the pre to posttest. Subtest scores remain virtually unchanged.

Several conclusions may be drawn from this data:

1. The test, while reliable, is not adequately measuring the content of the module;
2. The module has no appreciable impact on student knowledge in this area;
3. Students were already knowledgeable about the content and the module impact was not of sufficient magnitude to increase this knowledge.

The reviser (and the evaluator) should note that the conclusions stated are but three of the many possible ones that could be drawn from this data. Care, therefore, should be taken before assigning an absolute value to a particular conclusion.
III. RESULTS

B. 1. Attitude Sale: Reliability

<table>
<thead>
<tr>
<th>Testing Time</th>
<th>Percentage Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>88%</td>
</tr>
<tr>
<td>Post</td>
<td>92%</td>
</tr>
</tbody>
</table>

* n = 13 test booklets (6 from the pretest and 7 from the posttest) randomly selected from groups tested.

Interpretation/Comments

The figures in the table were devised by dividing the total number of disagreements in coding between two coders by the maximum number of responses coded. Very few differences between coders were observed.

Thus, reliability of the scoring for the attitude scale was achieved. (Reliability of the scale itself has not been measured in that the scale consisted of only 5 items. Reliability estimates of such a brief scale with a relatively small sample would not be too meaningful.)
III. RESULTS

B. 2. Attitude Scale: Validity

Data regarding the validity of the scale was not collected in the pilot test. The scale, however, was reviewed by staff members who were familiar with the content and goals of the module. Changes were made in accordance with comments they made about the scale. Thus a measure of face validity was achieved.
III. RESULTS

B. 3. Attitude Scale: Preferences

Means (Strength of Preference)* by Group and Testing Time for Questions 1-5

<table>
<thead>
<tr>
<th>Testing Time</th>
<th>Group</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>12.0</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>11.5</td>
<td>11.5</td>
</tr>
</tbody>
</table>

*There were five questions each with a scale value of from zero (no response) to a strong preference value of 3 (yes or no). Hence the scale range is zero to 15 (5 x 3).

Interpretation/Comments

In terms of strength of preference, it is apparent from the table that the module did have an impact on the experimental group of students. On a relatively short scale (see footnote in the left hand column), the experimental group gained more than a full scale point. Several interpretations of these results are offered below:

- the module was able to influence student attitudes even though the students' basic knowledge of the field did not change;

- the scale with only 5 questions was sensitive enough to detect the change in attitude. (Also see the ANOVA for this set of data.)

In comparison, it should be noted that the control group did not change from the pretest to the posttest.
III. RESULTS

B. 4. Attitude Scale: Number of Reasons

<table>
<thead>
<tr>
<th>Testing Time</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>2.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Control</td>
<td>3.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Means (Number of Reasons)* by Group and Testing Time for Questions 1-5

*Students were requested to state the reasons for their preference choice. The numbers in the table represent the mean number of reasons given for the first five questions for a group.

Interpretation/Comments

Several key facts are apparent in this table. They are:

- the control group stated more reasons to justify their choices than did the experimental group;

- the experimental and control groups both stated less reasons on the posttest than they did on the pretest;

- the drop in posttest response is roughly equivalent for the two groups and it is unlikely that an interaction effect will be observed. (See Table G. 2.)

There are several possible explanations that could be postulated for these results. For example, it is plausible that the complexity of the module and the vast number of forms decreased experimental group interest in stating posttest reasons. The control group may have simply "turned off" on taking the same test twice. Another explanation may be that the test form itself needs improvement and was inadequately measuring the impact of the module. Another explanation is that the module has very little or no impact on student reasons for their choices. The reviser should note that these are but a subset of the plausible explanations for the results.
III. RESULTS

B. 5. Attitude Scale: Type of Reasons

<table>
<thead>
<tr>
<th>Reason</th>
<th>Frequency</th>
<th>%**</th>
<th>Frequency</th>
<th>%**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>37.4</td>
<td>27</td>
<td>42.2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.2</td>
<td>4</td>
<td>6.3</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>28.6</td>
<td>12</td>
<td>18.8</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6.6</td>
<td>4</td>
<td>6.3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7.7</td>
<td>7</td>
<td>10.9</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3.3</td>
<td>5</td>
<td>7.8</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8.8</td>
<td>4</td>
<td>6.3</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>39.8</td>
<td>41</td>
<td>47.1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>30.1</td>
<td>21</td>
<td>24.1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1.9</td>
<td>4</td>
<td>4.6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2.9</td>
<td>4</td>
<td>4.6</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>19.4</td>
<td>9</td>
<td>10.3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2.9</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2.9</td>
<td>4</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Interpretation/Comments

Several factors are apparent from the table. First, although there is some shifting of response, it is difficult to interpret the change given the sizeable pre to posttest decrease in student willingness to provide reasons for their preferences. The decrease is approximately 29% for the experimental group and 16% for the control group. Secondly, while there is some pre-posttesting shifting of response in the experimental group it does tend to be paralleled by similar shifting in the control group. For example, note the shifts in reason categories one and four for the two groups, respectively. This comparison, however, does not hold for reason seven in the two groups.

These results are difficult to explain, especially in light of the decreased sample size. The authors of this report therefore cautiously conclude that the module either did not have a strong impact on student statements of reasons or that possibly the instrument was an insufficient means of measuring module impact.
B. 5. (Continued)

*Reasons were classified into nine basic types. These are:

1. liking or enjoying
2. past experience
3. financial reasons
4. interest/ability
5. learning new things
6. desire for responsibility
7. ignorance of job
8. undecided
9. other reasons

**Frequency in row divided by total frequency in respective column, multiplied by 100.
II. RESULTS

C. 1. Student Questionnaire: Reliability and Validity

The Student Questionnaire was administered to experimental group students after they had completed the module. Since there was only one test administration, the use of a test-retest coefficient was not possible. Furthermore, the questionnaire consists of many different types of questions (including open-ended questions) regarding various aspects of the simulation experience. The meaning of internal consistency coefficients calculated for this type of instrument would be extremely questionable and hence they were not utilized.

Validity was basically ascertained by having the writers of the simulation review the instruments and by incorporating their comments and suggestions into the final form. In terms of face validity, the instrument was judged to be a reasonable means of assessing the student's perspectives of the module. Secondly, comparisons between subsets of questionnaire items and achievement test data do tend to support the conclusion that the instrument is at least partially valid. As a group, students did well on the achievement tests and reported that the module did answer questions they had about jobs and did provide much information about jobs.

(Continued on next page)
The reviser and evaluator should also keep in mind one other important fact about the student questionnaire. The questionnaire was not designed to evaluate students but as a means for students to provide the project staff with their opinions of the module as well as their suggestions for revision. Students were informed about the use of the questionnaire. It was hoped that their responses would be open and honest.
III. RESULTS

C. 2. Student Questionnaire: Results From Questions Dealing With Perceptions of Learning

Questions Dealing With Perceptions About Learning by Response Category in Frequencies and Row Percentages

<table>
<thead>
<tr>
<th>Question</th>
<th>Positive</th>
<th>Uncertain</th>
<th>Negative</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I learned quite a bit about jobs from the simulation.</td>
<td>21(46%)</td>
<td>13(28%)</td>
<td>10(22%)</td>
<td>2(h%)</td>
</tr>
<tr>
<td>2. I learned quite a bit about how to work with other people from the simulation.</td>
<td>21(46%)</td>
<td>13(28%)</td>
<td>10(22%)</td>
<td>2(h%)</td>
</tr>
<tr>
<td>3. The simulation helped to answer some of the questions I have about jobs.</td>
<td>20(43%)</td>
<td>10(22%)</td>
<td>15(33%)</td>
<td>1(2%)</td>
</tr>
</tbody>
</table>

* n = 46

Interpretation/Comments

Across the three questions there is a very consistent response pattern with 43-46% of the responses in the positive category (overall, 62 of the 138 possible responses or 45%) and 22-33% in the negative category (35 out of 138 or 25%). Although no clear-cut majority emerged, there are many more positive responses than negative ones, indicating that a moderate number of students felt that the module provided them with information about jobs and about how to work with other people.

However, when compared to the responses to the same questions for the other simulation modules, it is clear that the manufacturing simulation had much less impact than the others on student perceptions about learning. (For example, see the evaluation reports for other modules tested during 1973-74.)
III. RESULTS

C. 3. Student Questionnaire: Results from Questions Dealing with Overall Perceptions of the Module

<table>
<thead>
<tr>
<th>Questions</th>
<th>Positive**</th>
<th>Uncertain</th>
<th>Negative</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. The simulation was Boring</td>
<td>15(33%)</td>
<td>15(33%)</td>
<td>14(30%)</td>
<td>2(4%)</td>
</tr>
<tr>
<td>4. Would Recommend Simulation to Friends</td>
<td>17(37%)</td>
<td>17(37%)</td>
<td>9(20%)</td>
<td>3(7%)</td>
</tr>
<tr>
<td>5. Would Like to go through more Simulations</td>
<td>20(43%)</td>
<td>13(28%)</td>
<td>13(28%)</td>
<td>-</td>
</tr>
<tr>
<td>6. Would rather do Something else with this Time</td>
<td>17(37%)</td>
<td>18(39%)</td>
<td>11(24%)</td>
<td>-</td>
</tr>
<tr>
<td>8. Simulation Took too Long</td>
<td>15(33%)</td>
<td>18(39%)</td>
<td>13(28%)</td>
<td>-</td>
</tr>
</tbody>
</table>

Interpretation/Comments

Across these eight questions dealing with overall perceptions of the module, the responses were divided with no clear trends emerging. Out of the total possible responses (n = 368), 127 or 34% were positive, 109 or 30% were negative, and 132 or 35% were uncertain. This mixture of opinions indicates that the module did not have sufficient impact to change the responses from a generally random pattern. Comparing these results with those for the other simulation modules mentioned on the previous page, it is apparent that students' overall perceptions of the manufacturing production module were less positive as well as less definitive.

The highest percentages of positive reactions (37-43%) were expressed in regard to what seems to be the general concept of simulation (questions #4, 5, and 6) rather than to this particular simulation module.

Note that the wording on question 15 may have made it difficult for students to correctly identify how they wanted to respond to the question.
Table C. 3. (Continue')

<table>
<thead>
<tr>
<th>Questions</th>
<th>Positive**</th>
<th>Uncertain</th>
<th>Negative</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Simulation was Over too Soon for Me.</td>
<td>9(20%)</td>
<td>17(37%)</td>
<td>21(46%)</td>
<td>-</td>
</tr>
<tr>
<td>12. Enjoyed working with Others</td>
<td>13(28%)</td>
<td>19(41%)</td>
<td>14(30%)</td>
<td>-</td>
</tr>
<tr>
<td>15. Simulation is a Good Way of Getting out of Class</td>
<td>21(46%)</td>
<td>11(24%)</td>
<td>14(30%)</td>
<td>-</td>
</tr>
</tbody>
</table>

*n = 46

**For questions with negative stems, disagreement with the stem constitutes a positive reaction to the module and is entered in the positive category on the table. This fact should be kept in mind when reviewing the table.
III. RESULTS

C. 4. Student Questionnaire: Results from Questions Dealing with Specific Module Parts

Questions Dealing with Specific Module Parts by Response Category in Frequencies and Row Percentages*

<table>
<thead>
<tr>
<th>Question</th>
<th>Positive**</th>
<th>Uncertain</th>
<th>Negative</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Tasks too Complicated or Hard</td>
<td>22(48%)</td>
<td>16(35%)</td>
<td>8(17%)</td>
<td>-</td>
</tr>
<tr>
<td>11. Summary Helped Pull Things Together</td>
<td>12(26%)</td>
<td>16(35%)</td>
<td>18(39%)</td>
<td>-</td>
</tr>
<tr>
<td>13. Activities were Exciting To Me</td>
<td>13(28%)</td>
<td>15(33%)</td>
<td>18(39%)</td>
<td>-</td>
</tr>
<tr>
<td>14. Had Trouble Knowing What to do Next</td>
<td>20(43%)</td>
<td>10(22%)</td>
<td>16(35%)</td>
<td>-</td>
</tr>
<tr>
<td>16. Too Many Tests and Forms to Fill out</td>
<td>10(22%)</td>
<td>16(35%)</td>
<td>20(43%)</td>
<td>-</td>
</tr>
</tbody>
</table>

Interpretation/Comments

As noted in the previous table, the reactions to questions dealing with the module as a whole were rather divided; this is true of the reactions to specific module parts as well. Across the entire set of questions (with n=414 possible responses), 146 or 35% were positive, 130 or 31% were negative, and 135 or 33% were uncertain. Here again the responses are close to what would be expected of random answers although there is a shading toward the positive. The strongest positive reactions were on role selection and knowing what to do next. The most strongly negative reaction was that there were too many tests and forms to fill out (43%). Thirty-nine percent of the students responded negatively to statements that the activities were exciting and that the summary helped to pull things together.

It is possible to surmise that the structure and implementation of the module would need to be improved to elicit enthusiasm for specific module parts strong enough to carry over to a more positive student viewpoint on the module as a whole. For that reason, it would seem that the need for some simplification and improvement of the structure can be inferred from these results.
Table C. 4 (cont.)

<table>
<thead>
<tr>
<th></th>
<th>Positive**</th>
<th>Uncertain</th>
<th>Negative</th>
<th>No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Pretest and Posttest were Difficult for Me</td>
<td>16(35%)</td>
<td>20(43%)</td>
<td>10(22%)</td>
<td>-</td>
</tr>
<tr>
<td>18. Simulation Parts Fit Together Well</td>
<td>16(35%)</td>
<td>16(35%)</td>
<td>13(28%)</td>
<td>1(2%)</td>
</tr>
<tr>
<td>19. Preview, Etc. Helped to Prepare Me for Simulation</td>
<td>14(30%)</td>
<td>16(35%)</td>
<td>15(33%)</td>
<td>1(2%)</td>
</tr>
<tr>
<td>20. Liked the Way I Selected My Role(s) in Simulation</td>
<td>23(50%)</td>
<td>10(22%)</td>
<td>12(26%)</td>
<td>1(2%)</td>
</tr>
</tbody>
</table>

*n=46

**For questions with negative stems, disagreement with the stem constitutes a positive reaction to the module and is entered in the positive category on the table. This fact should be kept in mind when reviewing the table.
III. RESULTS

C. 5. Student Questionnaire: Results from Other Important Questions

| Other Important Questions by Response Category in Frequencies and Row Percentages*
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes, Yes, All of the Time</th>
<th>Yes, Yes, Most of the Time</th>
<th>No, Usually</th>
<th>No, At All</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Did You Perform Well in Your Roles?</td>
<td>12 (26%)</td>
<td>22 (48%)</td>
<td>6 (13%)</td>
<td>-</td>
<td>6 (13%)</td>
</tr>
<tr>
<td>28. Did Your Feelings About Work in Manufacturing Production Change?</td>
<td>More Interested: 19 (41%)</td>
<td>No Change: 15 (33%)</td>
<td>Less Interested: 7 (15%)</td>
<td>No Answer: 5 (11%)</td>
<td></td>
</tr>
<tr>
<td>29. Did You Discover Any New Interests?</td>
<td>Yes Answer: 14 (30%)</td>
<td>No Answer: 24 (52%)</td>
<td>-</td>
<td>8 (17%)</td>
<td></td>
</tr>
</tbody>
</table>

Interpretation/Comments

Students were positive about how they performed in their roles with 74% responding that they performed well at least most of the time. There was no one who answered that he did not perform at all well.

The results reveal a moderate positive change in students' feelings about work in manufacturing production with 41% of the students responding that they are now more interested in such work. There were 14 of the 46 students (30%) who discovered new interests.
III. RESULTS

C. 6 Student Questionnaire: Collated Open-Ended Responses to Questions #23, #25, #30, and #31.

#23. List a few reasons why you liked or did not like your role (or roles).

I liked them, fun, O.K., interesting (17).
They were easy (1).
There was too much time waiting between operations, took too long (2).
It was something I knew already (1).
It was boring (4).
The roles were fine but the people I worked with were always playing and trying to do other peoples jobs (1).

(No response=11)
Describe the one thing which you feel you did best in the simulation and the one thing you did least well. Be sure to say why you did well or poorly.

<table>
<thead>
<tr>
<th>Best Thing</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluing (4)</td>
<td>I put a lot of glue on;</td>
</tr>
<tr>
<td></td>
<td>Because I wanted to; It was easy.</td>
</tr>
<tr>
<td>Sanding (2)</td>
<td>Because I liked it.</td>
</tr>
<tr>
<td>Box making (3)</td>
<td>It was fun; I did it well.</td>
</tr>
<tr>
<td>Metal layout (2)</td>
<td>It went along fast.</td>
</tr>
<tr>
<td>Single responses:</td>
<td></td>
</tr>
<tr>
<td>Rivet</td>
<td>Don't know</td>
</tr>
<tr>
<td>Standing around</td>
<td>Nothing to do.</td>
</tr>
<tr>
<td>Hand drillier</td>
<td>Went fast.</td>
</tr>
<tr>
<td>Everything</td>
<td>Easy</td>
</tr>
<tr>
<td>Screwing on legs</td>
<td>I liked it.</td>
</tr>
<tr>
<td>Inspect</td>
<td></td>
</tr>
<tr>
<td>Free speaker</td>
<td>It's free</td>
</tr>
<tr>
<td>Put together wires & jacks</td>
<td></td>
</tr>
<tr>
<td>Printer</td>
<td>Only fun thing.</td>
</tr>
<tr>
<td>Supervise</td>
<td>Far out.</td>
</tr>
<tr>
<td>Printing</td>
<td>It was fun.</td>
</tr>
<tr>
<td>Bending</td>
<td>None</td>
</tr>
<tr>
<td>Not sure (2)</td>
<td></td>
</tr>
</tbody>
</table>

(No response = 23)
#25. (continued)

Worst Thing

- None (10)
- Cut metal (2)

Single Responses:

- Electronics
- Putting on contact
- Drilling
- Test
- Sheet Metal Layout Mn.

Reasons

- Needed help. I didn't cut straight all the time.
- Nothing worked.
- I didn't know how to well.
- Boring
- No
- Boring
- Boring
- I just laid around

(No response = 23)
#30. Name some of the things you liked most about the simulation and some of the things you liked least about the simulation.

Liked Most

- Speaker (10)
- Gluing, glue gun (3)
- Working with others, working with friends (2)
- Inspecting (2)

Single responses:

- The sanding
- Working
- Everything
- It was fun
- Putting it together
- Boring
- Box making
- Box making
- Bending the metal
- Box printing
- Put the paper on the metal

Liked Least

- The work (3)
- Paper work (2)
- Nothing (7)

Single responses:

- The whole thing; there was nothing to do!
- The paper on it
- Didn't get paid, no benefits; no lunch break
- The way they ran the whole program
- Inspecting
- Everything
- The older

(No response = 24)
#31. Write down some of your ideas on how the simulation might be made better.

Change jobs everyday.
Solders guns
If they didn’t make cartons.
I think it was good enough.
Better jigs
You can’t make it better.
By putting better paper like cougar or lion designs.
Made a good cart - OK.
It was OK (>).

(No responses = 34)
D. 1. Teacher Log and General Module Evaluation:
 Reliability and Validity

DATA NOT AVAILABLE

Due to either lack of completion or to partial completion of the forms, data from the Teacher Logs and the General Module Evaluations is not available. To a degree, the questionnaires may not have been entirely compatible with the special nature of this module. All forms and comments that were collected were synthesized by Jeffco staff into the Panel Review Report.

Interpretation/Comments

The Teacher Log and General Module Evaluation is a set of six questionnaires to be completed by teachers as they observed students progressing through a module. The questionnaires varied considerably depending on the part of the module the teacher was to evaluate. Space was provided for teachers to supply comments about the materials and to make recommendations for change. The variable nature of the question content make it difficult to determine the reliability of the questionnaires. Further, even if a reliability coefficient could be calculated, the small sample size (n=4 experimental teachers) would render the coefficients meaningless.

Validity was determined by having product developers review the Teacher Log and General Module Evaluation. The developers considered the instrument to be a viable means of collecting teacher observations especially with regard to problems incurred in implementing the module.
III. RESULTS

E. 1. Teacher Post Module Panel Review: Reliability and Validity

Interpretation/Comments

The panel review procedure and reporting format was generated from similar efforts undertaken for the School Based Component of the Comprehensive Career Education Model (CCEM) in 1973. CCEM project staff felt that panel reviews provided an important source of data for revising curriculum materials. The process is purposely designed as an open-ended one to insure that teachers have the opportunity to freely discuss any concerns or comments they have about the module. Reliability in this instance is difficult to assess. It should be noted, however, that teachers were frequently asked during the review about the extent to which they agreed upon particular points. Thus, the panel report, in many cases, represents a convergence of teacher perspectives or opinions.

Validity is judged by the degree to which the revisers and evaluators will find the data collected from the panels useful for illuminating strengths and weaknesses within the module and helpful in determining revisions to be made in the module. Validity judgments will have to come sometime after the generation of this report.

Due to the open-ended nature of the panel review, Table III - E. 2 is simply a copy of the actual panel review. The report, which is a summary of the panel discussion, was written by OEP staff. For the Reviser's Information Summary (RIS) the main ideas of the panel review have been abstracted and placed in the appropriate cells of the RIS.
E. 2. Teacher Post Module Panel Review

Reporting Form

Title of Module: Manufacturing Production
LEA: Jefferson County, Colorado and Denver, Colorado
Panel Leader: John Radloff
Panelists: James Sheeder - Denver
Robert Campbell, McKinley Turner - Jeff Co
Observer Participants: Maureen Anderson, Mary Harris - Jeff Co
James Fales - Texas A & M
Date(s) Panel Met: January 23 and 24, 1974
Number of Hours: (9 Hours Total) 3+ with panelists
6 Anderson - Fales - Harris

*Interpretation has not been provided.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>STRENGTH</th>
<th>WEAKNESSES</th>
<th>CLASSROOM SOLUTIONS</th>
<th>REVISION OR SUGGESTED CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td>-Almost unanimous response that simulation was fun -Activities which were enjoyable received positive response -Most learned a lot from simulation -Most learned a lot about working with other people -Simulation was interesting to most -Most would recommend simulation to friends -Most would like to go through another simulation -Product had high motivational value</td>
<td>A few would have preferred doing something else during simulation (probably being in another situation)</td>
<td>-Teacher tried not to allow students to be dependent upon them by encouraging workers to seek directions from supervisors</td>
<td>-Eliminate all technical errors in slide/tape programs. These technical errors or failures frustrate teachers and students. These errors also add negative impact to simulation. Most of the tapes have poor beginnings (difficult to understand). In many tapes the speaking is too fast for comprehension. Technical failures include problems as slides sticking and not dropping or filmstrips not advancing causing them not to be in sequence with the tape.</td>
</tr>
</tbody>
</table>

Top Management's (Instructor's) Guide | -Helpful to all teachers | -Too much reading -Duplicity in way tasks described -Need to be easier to use and easier to locate information -Need clearer outline of what to do next | -Condense -Regroup resources; more positive identification of resources - especially in regard to quality -Eliminate confusion -Reduce dependency upon teacher -Put summary of simulation at beginning (perhaps in form of flow chart similar to education -Put words to tackle at beginning |
<table>
<thead>
<tr>
<th>TITLE</th>
<th>STRENGTH</th>
<th>WEAKNESSES</th>
<th>CLASSROOM SOLUTIONS</th>
<th>REVISION OR SUGGESTED CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inservice Training of Teachers</td>
<td>- Valuable aid</td>
<td>- Frustration level of teachers high regarding equipment failures
- Not totally aware of what has to be done</td>
<td>- Teachers agree that instructors would have to be thoroughly familiar with
1) portable drill, 2) drill press, 3) band saw, 4) sander and safety factors important in shop setting</td>
<td>- Arrange handbooks chronologically
- Consider different color rather than separate page introduction</td>
</tr>
<tr>
<td>PREVIEW Slide/Tape</td>
<td>- Helped most prepare for simulation</td>
<td>- Teachers and students thought it was too long
- Educational quality and worth not rated high by teachers
- Too much subject matter conveyed in too short a time and too briefly</td>
<td>- Increase instruction of teachers regarding equipment failures
- Look at evaluation sheet before starting unit
- Emphasize that gauge length for certain operations may be wrong for their machines and may need to be lengthened or shortened.
- Include instruction regarding equipment failures</td>
<td></td>
</tr>
<tr>
<td>Preview Comic Book</td>
<td>- Most students used booklet</td>
<td>- Teachers' log gives low rating to booklet regarding its effectiveness for stimulating interest</td>
<td>- Divide into two parts:
1) Introduction to manufacturing production
2) Simulation experience
- Relate roles to areas on interest form
- Add more emphasis to line-staff organization
- Put additional emphasis on cooperation (teamwork) in production
- Teachers recommend having preview on different day than simulation</td>
<td>- Evaluate whether (how) to make illustrated booklet more effective for simulating student interest.</td>
</tr>
<tr>
<td>Title</td>
<td>Strengths</td>
<td>Weaknesses</td>
<td>Classroom Solutions</td>
<td>Revision or Suggested Changes</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
| PARTICIPATION Manufacturing Production (slide/tape) | - Good information | - Poor retention
- Students and teachers felt present slide/tape show too long
- Some students thought Peter and Polly were dumb and immature—some would prefer a more straight approach—some thought the use of these characters made students take project less seriously | - In one class teacher gave three extra tests regarding safety and use of 1) band saw, 2) drill press, and 3) other power equipment
- One teacher read through safety booklet with class
- Students in all classes had already received instruction in safety and passed tests regarding safe use of shop equipment | - Divide into two parts:
1) Division of manufacturing production
 - Add slides with explanation and illustration of jobs in each category
 - Include information on job application and preference chart
2) Safety
 - Put safety information close to actual production
 - Allow possibility of showing safety precautions twice to non-technical arts students
 - Need more emphasis on caution necessary in using glue guns
 - Evaluate statements of Peter and Polly; revise any that seem too corny |
| PARTICIPATION Flow Chart (slide/tape) | - Poor beginning
- Student comprehension low
- Words of speaking text run together
- Confusion in where-when students apply for job | - Poor beginning
- Student comprehension low
- Words of speaking text run together
- Confusion in where-when students apply for job | - Improve for better understanding and comprehension
- Eliminate confusion and establish better direction
- New time sequence may influence this presentation |
<table>
<thead>
<tr>
<th>TITLE</th>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
<th>CLASSROOM SOLUTIONS</th>
<th>REVISED OR SUGGESTED CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poster - Tape Series</td>
<td>-Good change of pace and offering in activity</td>
<td>-Speaking is too fast</td>
<td>-Each teacher worked with supervisors for at least one class period</td>
<td>-Add poster with list of qualifications of plant superintendent for class to read when same information is on tape</td>
</tr>
<tr>
<td>Manuals*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Superintendent</td>
<td>-Role important and valuable experience for student</td>
<td>-Students complain of too much reading</td>
<td>-Each teacher worked with supervisors for at least one class period</td>
<td>-Manuals need to be condensed to eliminate duplication</td>
</tr>
<tr>
<td>Production Supervisor</td>
<td></td>
<td></td>
<td></td>
<td>-Check readability level of information</td>
</tr>
<tr>
<td>Quality Control Supervisor</td>
<td></td>
<td></td>
<td></td>
<td>-Downgrade vocabulary, use simpler sentence structure, use some italics or offer change in visual format (help students see main points and make it easier for review and/or reference)</td>
</tr>
<tr>
<td>Maintenance Supervisor</td>
<td></td>
<td></td>
<td></td>
<td>-Give supervisors additional planning time at beginning</td>
</tr>
<tr>
<td>Production Coordinator</td>
<td></td>
<td></td>
<td></td>
<td>-Change time sequence</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-Redesign sequence of supervisory training, initial choice between 1) fabrication and assembly and 2) quality control</td>
</tr>
</tbody>
</table>

*Comments applicable to all information not just manuals.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
<th>CLASSROOM SOLUTIONS</th>
<th>REVISION OR SUGGESTED CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>-Students goof off and interfere during activity</td>
<td>-Students goof off and interfere during activity
-Film-o-sounds, talking pages and operation sheets helpful facilitating student self-direction
-Many felt these were all they had to read or use
-Many students cannot use sub-miniature jac
-Students did not like some paper coverings
-Directions not clear
-Poor quality solder--teacher and student response also indicate need for different soldering iron</td>
<td>-Too difficult to use without extensive teacher help
-Kids couldn't follow calculation sheet</td>
<td>-Develop filmstrips or other audio-visual information for use during the supervisory training
-Revise and simplify or eliminate altogether and tell students the sequence of operations or
-If all students take supervisory training (one of the revision suggestions) then develop into a more comprehensive activity</td>
</tr>
<tr>
<td>Operation Sheets</td>
<td>-Most thought these were excellent
-Film-o-sounds, talking pages and operation sheets helpful facilitating student self-direction</td>
<td>-Most thought these were excellent
-Film-o-sounds, talking pages and operation sheets helpful facilitating student self-direction
-Most thought these were excellent
-Film-o-sounds, talking pages and operation sheets helpful facilitating student self-direction</td>
<td>-Teachers worked through books with students or completed problems themselves</td>
<td>-Revise getting into roles
-Reduce importance of maintenance supervisor with main responsibility being care of equipment
-Improve directions for hiring instructors and role selection</td>
</tr>
<tr>
<td>and Operations per se</td>
<td>-Most thought these were excellent
-Film-o-sounds, talking pages and operation sheets helpful facilitating student self-direction</td>
<td>-Most thought these were excellent
-Film-o-sounds, talking pages and operation sheets helpful facilitating student self-direction
-Most thought these were excellent
-Film-o-sounds, talking pages and operation sheets helpful facilitating student self-direction</td>
<td>-Students used operation sheets and company file but new company handbook
-Some teachers actually did wire-cutting, stripped ends of wires, and soldered wires to jacs</td>
<td>-Develop filmstrips or other audio-visual information for use during the supervisory training
-Revise and simplify or eliminate altogether and tell students the sequence of operations or
-If all students take supervisory training (one of the revision suggestions) then develop into a more comprehensive activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Most thought these were excellent
-Film-o-sounds, talking pages and operation sheets helpful facilitating student self-direction
-Most thought these were excellent
-Film-o-sounds, talking pages and operation sheets helpful facilitating student self-direction</td>
<td>-Students used operation sheets and company file but new company handbook
-Some teachers actually did wire-cutting, stripped ends of wires, and soldered wires to jacs</td>
<td>-Revise and simplify or eliminate altogether and tell students the sequence of operations or
-If all students take supervisory training (one of the revision suggestions) then develop into a more comprehensive activity</td>
</tr>
</tbody>
</table>

Revision or Suggested Changes:

- Develop filmstrips or other audio-visual information for use during the supervisory training
- Revise getting into roles
- Reduce importance of maintenance supervisor with main responsibility being care of equipment
- Improve directions for hiring instructors and role selection

Classroom Solutions:

- Teachers worked through books with students or completed problems themselves

Weaknesses:

- Too difficult to use without extensive teacher help
- Kids couldn't follow calculation sheet
- Many felt these were all they had to read or use
- Many students cannot use sub-miniature jac
- Students did not like some paper coverings
- Directions not clear
- Poor quality solder--teacher and student response also indicate need for different soldering iron

Strengths:

- Students goof off and interfere during activity
- Present choice system allows person to select supervisor as #1 choice and maintenance as #5 choice and become a maintenance supervisor... yet person who selects maintenance as #1 choice may never get to do any maintenance work

Title: Production Operation Sheets and Operations per se
<table>
<thead>
<tr>
<th>TITLE</th>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
<th>CLASSROOM SOLUTIONS</th>
<th>REVISION OR SUGGESTED CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLE</td>
<td>- Good response from teachers</td>
<td>- Not used</td>
<td>- Improve instructions on: bending the sheet metal, improve directions, possibly add demonstration on attaching paper to metal</td>
<td>- Improve instructions on: bending the sheet metal, improve directions, possibly add demonstration on attaching paper to metal</td>
</tr>
<tr>
<td></td>
<td>- Good teacher and student response</td>
<td></td>
<td>- Select better quality solder and different soldering iron</td>
<td>- Select better quality solder and different soldering iron</td>
</tr>
<tr>
<td></td>
<td>- Too much printed information</td>
<td></td>
<td>- Improve production flow</td>
<td>- Improve production flow</td>
</tr>
<tr>
<td></td>
<td>- Confusion among students regarding role selection</td>
<td></td>
<td>- Need to test functioning of sound earlier</td>
<td>- Need to test functioning of sound earlier</td>
</tr>
<tr>
<td></td>
<td>- Some jigs and fixtures need slight revision</td>
<td></td>
<td>- Find solution to paint coming off of sanding jig and then not able to get off legs</td>
<td>- Find solution to paint coming off of sanding jig and then not able to get off legs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- One teacher recommended that for each operation there be an example of that operation (or step) already done</td>
<td>- One teacher recommended that for each operation there be an example of that operation (or step) already done</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Consider eliminating</td>
<td>- Consider eliminating</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Put at front of teacher's handbook</td>
<td>- Put at front of teacher's handbook</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Perhaps replace by a flow chart which combines information and thereby reduces number of printed sheets handed out</td>
<td>- Perhaps replace by a flow chart which combines information and thereby reduces number of printed sheets handed out</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Revise getting into roles</td>
<td>- Revise getting into roles</td>
</tr>
<tr>
<td>STRENGTHS</td>
<td>WEAKNESSES</td>
<td>CLASSROOM SOLUTIONS</td>
<td>REVISION</td>
<td>SUGGESTED CHANGE</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Files</td>
<td></td>
<td>Some material added before use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employee Forms</td>
<td></td>
<td>Students overwhelmed with printed work (unanimous)</td>
<td>One teacher had to read interest form to class</td>
<td>-Use two descriptions 1) fabrication, 2) assembly and quality control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Often not fill out forms which had negative influence on production control</td>
<td></td>
<td>-Add information only prior to immediate use</td>
</tr>
<tr>
<td>Supervisor's Forms</td>
<td></td>
<td>Students complain and become overwhelmed and bored with amount of paper work</td>
<td></td>
<td>-Put directions on forms (interest, scoring, preference) rather than in separate booklet</td>
</tr>
<tr>
<td>Pre/Post Tests</td>
<td></td>
<td>Negative teacher and student response to number of forms and length of forms</td>
<td></td>
<td>-Add a reference point for scoring of scoring sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Divided opinion among students whether summary is helpful</td>
<td></td>
<td>-Give forms out only immediately prior to use-- includes not handing out company handbook contents and company file contents until they are going to be used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Considerable overlap of questions</td>
<td></td>
<td>-Combine (thus reduce) number of forms and simplify</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Several felt pre-test and post-test too difficult</td>
<td></td>
<td>-On worker assignment sheet assign as many kids as possible to first job that take longest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Many of same kinds of questions asked in Summary</td>
<td></td>
<td>-Reduce number of forms and length of forms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-Downgrade vocabulary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-Should not detract enthusiasm from finished product</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-When comments are not sought list in horizontal form (linear form increases length of questionnaire)</td>
</tr>
</tbody>
</table>
III. RESULTS

F. Knowledge Test: Analysis of Variance for Total Test Scores

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Classes</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>197.26</td>
<td>197.26</td>
<td>4.08</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>271.12</td>
<td>271.12</td>
<td>5.60</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>86.65</td>
<td>86.65</td>
<td>1.79</td>
</tr>
<tr>
<td>C/AB</td>
<td>4</td>
<td>193.59</td>
<td>48.40</td>
<td>1.05</td>
</tr>
<tr>
<td>Within Classes</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects E/C/AB</td>
<td>79</td>
<td>3657.17</td>
<td>46.29</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>32.07</td>
<td>32.07</td>
<td>1.20</td>
</tr>
<tr>
<td>AD</td>
<td>1</td>
<td>1.85</td>
<td>1.85</td>
<td>.07</td>
</tr>
<tr>
<td>ED</td>
<td>1</td>
<td>50.67</td>
<td>50.67</td>
<td>1.90</td>
</tr>
<tr>
<td>ABD</td>
<td>1</td>
<td>51.31</td>
<td>51.31</td>
<td>1.92</td>
</tr>
<tr>
<td>CD/AB</td>
<td>4</td>
<td>106.76</td>
<td>26.69</td>
<td>2.22</td>
</tr>
<tr>
<td>ED/C/AB</td>
<td>79</td>
<td>949.19</td>
<td>12.02</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>173</td>
<td>5597.61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Where A=Treatment (experimental vs control)
B=Schools (Denver vs Jeffco)
C=Classrooms (n=8)
D=Testing (Pre vs Post)
E=Students

p < .05

Interpretation/Comments

As described earlier in the text of this report the key term to be observed in the analysis is the AD interaction. If AD interaction occurs and it occurs in such a manner that the experimental group shows high posttest gains, then most likely the module had an impact on student career knowledge in this particular field. As noted in A. 3 and A. 4, the interaction did not take place. Indeed, when mean scores are studied it is clear that the experimental group did not change from the pre to the posttest and the control group score actually decreased. (This latter occurrence is probably due to a lack of interest in taking the test a second time.) Table F indicates that the interaction term is not statistically significant.
III. RESULTS

G.1. Attitude Scale: Analysis of Variance for Strength of Preference Scores (Questions 1-5)

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>df</th>
<th>SS</th>
<th>ME</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Classes</td>
<td>7</td>
<td>51.5</td>
<td>51.5</td>
<td>1.5</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>21.6</td>
<td>21.6</td>
<td>.6</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>11.6</td>
<td>11.6</td>
<td>.3</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>134.0</td>
<td>33.5</td>
<td>3.4**</td>
</tr>
<tr>
<td>C/AB</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within Classes</td>
<td>80</td>
<td>784.8</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>E/C/AB</td>
<td>80</td>
<td>784.8</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>15.3</td>
<td>15.3</td>
<td>7.3</td>
</tr>
<tr>
<td>AD</td>
<td>1</td>
<td>15.9</td>
<td>15.9</td>
<td>7.6</td>
</tr>
<tr>
<td>BD</td>
<td>1</td>
<td>2.9</td>
<td>4.3</td>
<td>2.0</td>
</tr>
<tr>
<td>ABD</td>
<td>1</td>
<td>8.3</td>
<td>8.3</td>
<td>4.0</td>
</tr>
<tr>
<td>CD/AB</td>
<td>4</td>
<td>8.4</td>
<td>2.1</td>
<td>0.5</td>
</tr>
<tr>
<td>ED/C/AB</td>
<td>80</td>
<td>334.0</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>175</td>
<td>1428.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*See footnotes in Table F.

**p < .01

Interpretation/Comments

An examination of Table G.1 reveals that while no significant AD interaction was achieved, the F ratio actually obtained is large in view of the respective degrees of freedom for this specific F test. This factor in conjunction with other additional data collected for the manufacturing production module tends to suggest the following conclusions:

- the module was having a fairly large impact on student attitudes;

- the limited time allotted for testing and the trial nature of the attitude scale may have precluded the complete measurement of the attitudinal effect.

Note that the above conclusions are several from the many that could have been posited. Other interpretations are plausible and should be considered by the reviser and/or reviewer.
III. RESULTS

G. 2. Attitude Scale: Analysis of Variance for Number of Reasons

SUMMARY TABLE*

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Classes</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>62.3</td>
<td>62.3</td>
<td>7.6</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0.6</td>
<td>0.6</td>
<td>.1</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>2.7</td>
<td>2.7</td>
<td>.3</td>
</tr>
<tr>
<td>C/AB</td>
<td>4</td>
<td>32.9</td>
<td>8.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Within Classes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E/C/AB</td>
<td>80</td>
<td>489.4</td>
<td>6.1</td>
<td>-</td>
</tr>
<tr>
<td>Within Subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>17.5</td>
<td>17.5</td>
<td>1.2</td>
</tr>
<tr>
<td>AD</td>
<td>1</td>
<td>.5</td>
<td>.5</td>
<td>0</td>
</tr>
<tr>
<td>BD</td>
<td>1</td>
<td>9.7</td>
<td>9.7</td>
<td>.7</td>
</tr>
<tr>
<td>ABD</td>
<td>1</td>
<td>12.3</td>
<td>12.3</td>
<td>.9</td>
</tr>
<tr>
<td>CD/AB</td>
<td>4</td>
<td>58.0</td>
<td>14.5</td>
<td>4.2**</td>
</tr>
<tr>
<td>ED/C/AB</td>
<td>80</td>
<td>274.3</td>
<td>3.4</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>165</td>
<td>960.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*See footnotes in Table F.

**p ≤ .01

Interpretation/Comments

As described earlier in the text of this report, the key term to be observed in the analysis is the AD interaction. If AD interaction occurs in such a manner that the experimental group shows high posttest gains, then most likely the module had an impact on the number of reasons students gave for supporting a preference.

Results in Tables B. 4, presented previously in this report, indicate that the module was not having an impact on the number of reasons given. In this table, G. 2, the AD interaction that did occur was obviously not of sufficient magnitude to produce a statistically significant result.
IV. Reviser’s Information Summary (RIS)

A. Description of the Summary

The Reviser’s Information Summary was developed for the purpose of assisting revisers to assimilate information collected during the pilot test of a module. To accomplish this, information from each source available was first reviewed and then only major thrusts or ideas from the source were summarized. (These key thrusts or ideas were determined by the judgment of the authors of this evaluation report.) The summary was then transferred to the appropriate location on the large sheets which constitute the RIS. Lastly, each column was studied and trends were drawn and so recorded at the bottom of the sheet. In ascertaining the trends the authors used their familiarity with data, the module, and the data collected.

In general there will be one Reviser’s Information Summary sheet per part of the module and one-two sheets covering the overall nature of the module. On sheets which pertain to module parts, only some of the data sources provided information pertinent to that part. Hence, the sheets do have some blanks or missing data cells. The reviser should exercise extreme care in interpreting the information on the sheets and should always keep in mind that comments on the sheets represent only a summary of key points. In addition, it sometimes was most difficult to determine a trend in the information obtained.

B. Use of the RIS

One way the reviser might use the RIS is as follows:

1. Read the module -- become thoroughly familiar with it;
2. Read the first part of this report (Section I and II) thoroughly. Skim the results compiled in tables (Section III, parts A, B, C, D, and E.) Read Section E-2, the teacher panel review report closely;

3. Read and study the Reviser's Information Summary. (Consult original data sources, if necessary.); and

h. Generate a set of revision specifications based upon knowledge of the module, the Reviser's Summary, project developmental criteria and other information, if appropriate.
C. REVISER'S INFORMATION

SUMMARY
The students responded favorably that the module helped them to learn about jobs and how to work with other people (46%) and answered job questions (43%). Forty-three percent of the students would like to do another module. (However in each case these percentages leave a majority of the students reacting with uncertainty or negatively.)

When asked to list reasons why they liked their role(s), seventeen of the forty-six students responded that the roles were liked, were fun, O.K., or interesting. See individual listing for positive open-ended responses.

In no case did a majority of the students respond that the simulation was fun, interesting, and contained some enjoyable activities resulting in high motivational value. The greatest number of negative responses were for the module and specific module parts were technical errors in slide/tape presentation, and students and added negative information. See individual listing for negative open-ended responses.

1. There was almost unanimous response that the exercise was fun, interesting, and contained some enjoyable activities resulting in high motivational value.
2. Most of the students learned a lot from the simulation including how to work with other people.
3. Most would like to go through another simulation and would recommend it to friends.
4. Almost all students found the simulation challenging and entertaining.
5. Teachers and students felt that the simulation was well designed and effective.
6. Students felt that the simulation helped them to understand the concept of teamwork.
7. Students felt that the simulation was too difficult for some students, and not all students were equally engaged.
8. Students felt that the simulation was too long and not well organized.
9. Students felt that the simulation was not as interesting as they had expected.
10. Many of the students felt that the simulation was not as challenging as they had expected.
11. Several felt that the simulation was too easy, and detracted from the learning experience.

Student responses to questions dealing with the module and specific module parts were mixed. In no case did a majority of the students react with uncertainty or negatively.

Some students felt that the pretest and posttest were too many tests and forms to fill out. Several felt that the pretest and posttest were not necessary and detracted from the learning experience.

It is unclear as to whether teachers or students gave the above responses. Since the data was collected in this manner, it is difficult to determine the source of the responses. Since the data was comingled in this manner, it is difficult to determine when reviewing the panel results inasmuch as they contain data from several sources.

Overall Cons: Manufacturing:
with perceptions about the jury divided in nature. As agree on a response, it indicates that there were no-ended responses.

Students frustrated teachers want to simulation. Doing something else. But what to do next and what students to read and many find that it is not all of the students. And vehemently that there is to read the operation sheets, therefore, many forms actual in the pretest, posttest, summary.

V. Cover too much material. Polly-Peter characters were felt that the characters junior high take the project less and that a more straightforward test were too difficult final product.

1. Eliminate technical errors in slide/tape programs: beginning of tapes difficult to understand, speaking too fast for comprehension, slides and filmstrips often failed to advance properly. Include provision for equipment failures.

2. Arrange the handbooks chronologically.

3. Consider having introductions be of a different color rather than a separate page.

4. Arrange the handbooks in chronological order and provide an index (or outline or table of contents) as well as a glossary at the beginning.

5. Use simpler sentence structure and highlight main points with italics or bold print for easy review and for reference.

6. Reduce the amount of printed material distributed. For example, directions could be printed on all forms rather than in a separate booklet.

7. Reduce the amount of reading required and shorten the forms.

8. Consider whether charts should be retained as they are, confusing and the directions for their use need clarifying.

9. Consider the question of whether manufacturing constitutes a cluster and this simulation a portion of it, production and production supervision. Other cluster segments might be sales and distribution, research and development, production planning, and administration.

10. Evaluate use of Polly-Peter characters.

11. Re: pretest and posttest, downgrade vocabulary, and reduce number and length of forms.

For this module all information obtained from teachers was synthesized in Jeffco interviews with the project developer and editor. (Also see Table D. 1.) Which source specific comments are drawn. Care should therefore be exercised sources. Also, it should be noted by the reviser that no Teacher Logs were
DATA SOURCE

STRENGTHS

- The strength that emerged from the pre- and posttesting is that there is some shifting of student attitudes as measured by strength of preferences. Students, who experienced the module, did have stronger posttest preferences than those who did not, although these results did not reach a point of statistical significance. (Also see comments in weaknesses column.)

WEAKNESS

With regard to cognitive achievement of students showed virtually no change to either lack of module impact or somewhat high pretest scores were reference would tend to make it difficult for already high set of scores. With actually stated fewer reasons to posttest than they did on the pre reasons did not change to any great extent.

Logs were not collected for this module.

TRENDS

1. With regard to data collected from student questionnaires, 40% or more of the students responded that the module helped them to learn about jobs. While that is not a majority, it does not indicate that the module does have the potential for providing occupational information to students.

2. This is corroborated by data from the panel which indicates that the module does have some interesting and enjoyable activities. Also, student attitudes, as judged by strength of preference, did change.

3. Note: The above two points may be more indicative of the potential of the module rather than existing strengths. This observation is prompted by the large number of problems that occurred in the implementation of this module as well as by the fact that many of the participants did not positively respond to the module.

4. There are extensive problems related to the module. A sampling of the below.

 - Excessive forms
 - Confusion with regard to the scope of simulation
 - Technical errors in simulation
 - Excessive amounts of technical errors
 - In some instances, confusion

1. With regard to many of the questions in "What Do You Think?" questionnaire, the responses were quite divided. The module was perceived quite positively, with 50% of students indicating a positive response to the questions.

2. Students did not increase their responses to the module. (This may be a problem with the level of pretest scores achieved.)

3. While strength of preferences showed some improvement, reasons supporting preferences did not change much associated with the module.

4. There are extensive problems related to the module. A sampling of the below.

 - Excessive forms
 - Confusion with regard to the scope of simulation
 - Technical errors in simulation
 - Excessive amounts of technical errors
 - In some instances, confusion

Manufacturing: Overall Core

71
RECOMMENDATIONS FOR REVISION

Both in the column above and throughout the specific RIS sheets many recommendations for revision are given. In this space no attempt will be made to pull together all of the recommendations, however, several major threads will be described.

- Reconsider the structure of the simulation with a view toward greatly streamlining it.
- Improve the directions in the simulation and carefully review the vocabulary with regard to difficulty level. Simplify sentence structure.
- Reduce amounting of reading, shorten and/or eliminate many of the forms.
- Review the conceptualization of the material presented in the simulation. For example is the detailed planning phase appropriate for the maturational level of the students?
- Also see other recommendations noted throughout the RIS.

<table>
<thead>
<tr>
<th>RECOMMENDATIONS FOR REVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Reconsider the structure</td>
</tr>
<tr>
<td>of the simulation with a</td>
</tr>
<tr>
<td>view toward greatly</td>
</tr>
<tr>
<td>streamlining it.</td>
</tr>
<tr>
<td>- Improve the directions</td>
</tr>
<tr>
<td>in the simulation and</td>
</tr>
<tr>
<td>carefully review the</td>
</tr>
<tr>
<td>vocabulary with regard</td>
</tr>
<tr>
<td>to difficulty level.</td>
</tr>
<tr>
<td>Simplify sentence</td>
</tr>
<tr>
<td>structure.</td>
</tr>
<tr>
<td>- Reduce amounting of</td>
</tr>
<tr>
<td>reading, shorten and/or</td>
</tr>
<tr>
<td>eliminate many of the</td>
</tr>
<tr>
<td>forms.</td>
</tr>
<tr>
<td>- Review the conceptualization of the material presented in the simulation. For example is the detailed planning phase appropriate for the maturational level of the students?</td>
</tr>
<tr>
<td>- Also see other</td>
</tr>
<tr>
<td>recommendations noted</td>
</tr>
<tr>
<td>throughout the RIS.</td>
</tr>
</tbody>
</table>
From an incremental test done in the Fall of 1973 the following results were obtained: 87% (n=15) or more of students using the materials felt that they understood the materials and that the vocabulary was easy to understand.

When students were questioned with enjoyment with the introduction, etc., the picture became somewhat

Only 53% of the students were of enjoying the booklet or the

About 1/3 of the students were of liking the illustrations.

*Test data was collected from students in Upper Arlington, Ohio.
regard to their overall quality of the materials, pre-mixed in nature. Some in their statement slides strongly positive in terms

Slightly over one-half of the students recommended that the slides and booklet be used together, with the slides coming first.

The teachers recommended doing the Introduction to Simulation and Preview on different days.
<table>
<thead>
<tr>
<th>DATA SOURCE</th>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDENT TESTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDENT QUESTIONNAIRES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEACHER LOGS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most students used both the slide/tape and comic book.

1. Teacher panels indicate a low rating for stimulating interest.
 Evaluators' note: Perhaps this was due to the Polly-Peter character far below the maturational level.

2. Both teachers and students felt the slide/tape was too long.

3. Teachers did not give the education slide/tape a high rating. They felt the subject matter was covered in too short a time.

Surprisingly, in this instance, no particular strengths were identified by either teachers or students.

A mixed student response and low rating preview apparently stemmed from several factors:

1. The comic book didn't stimulate due to the Polly-Peter character far below the maturational level.

2. The slide/tape was too long an subject matter.

There was mixed response to the question helped to prepare the students for the answering positively, 35% uncertain, and
1. Evaluate how to make comic book stimulate student interest.

2. Have the preview on a different day than introduction to simulation.

3. Divide the slide/tape into two sections, one an introduction to manufacturing production, the other on simulation.

4. Place more emphasis on teamwork in production and line-staff organization.

5. Relate roles to areas on interest form.

6. Use the booklet first, then slides.

Teachers' suggestions for revision as given above should be studied as a means of strengthening the preview. Of special importance is the need to present the Introduction to Simulation and the Preview on different days.
<table>
<thead>
<tr>
<th>DATA SOURCE</th>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDENT TESTS</td>
<td>Role selection got the most positive response given by the students to any questionnaire item with 50% answering that they liked the way they selected their role(s) in the simulation.</td>
<td></td>
</tr>
<tr>
<td>STUDENT QUESTIONNAIRES</td>
<td></td>
<td>References to too many forms to fill out least partially directed at the preparatory stage of the simulation.</td>
</tr>
<tr>
<td>TEACHER LOG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEACHER PANEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRENDS</td>
<td>Information delivery about roles from the slide/tape evidently resulted in a positive student reaction to the role selection, although there are some reservations as noted in the next column.</td>
<td>The teachers commented on some confusion over role selection, possibly due to poor retention of information. This could have been caused by the slide/tape. This mention combined with the fact that there were too many forms to fill out made use of the booklet indicates that it was not used in a balanced way to allow for a variety of materials.</td>
</tr>
</tbody>
</table>

1. Good information on the slide/tape "Manufacturing Production".

1. Poor retention of information on slide/tape.
2. Students and teachers felt that the slide/tape was too long.
3. Teachers agree that students did not retain the information from "Job Would I Like?"
4. Present choice system allows person to select their #1 choice and maintenance as #5 choice, yet person who selects may never get to do any maintenance.
5. Confusion among students regarding role selection, possibly due to poor retention of information from the slide/tape.
1. Divide the slide/tape into two parts: Manufacturing production (explanation and illustration of jobs in each category, information on job application and preference chart), and safety.

2. The safety portion should be closer to actual production and might be shown twice to non-technical arts students. Additional emphasis is needed on caution necessary in using glue guns. Teachers dealt with safety instruction according to class background.

3. Evaluate statements of Peter and Polly and revise any that seem too "corny".

4. Revise getting into roles.

5. Improve directions for role selection.

Teachers suggested some revision with improved directions for role selection. The slide/tape might be divided up with one part providing additional emphasis on safety.
1. The roles written into the manuals for Production Supervisor, Production Coordinator, Quality Control Supervisor, and Maintenance Supervisor provide important and valuable experiences for the student.

2. Most thought that the operation sheets and operations per se were excellent. The filmosounds, talking pages and operation sheets were helpful in facilitating student self-direction.

3. The "terms to tackle" got good response from teachers.

4. The working drawings got good response from both students and teachers.

5. The tape and posters on "Electing a Plant Superintendent" were a good change of pace in activity.

Evaluator's Note:
The filmosound cartridges used for this module will not fit on the new model of the machine.

1. The speaking on the tape "Elect...too fast.

2. Because of difficulties with co...ing as noted in the comments for (and possibly forms) were not used in... operation sheets were not of use.

3. Teacher and student comments in...sitors to have more time for students "...together, and developing skills...and with the workers. (In this process). This would improve...sions, and workers' responsibil...sitors lacked confidence because of this process.

4. In absence of Production Supervisor...take over his job.

5. Students "goofed off" and inte...together, and developing skills...other and with the workers.

6. Maintenance supervisor did not...take over his job.

7. The slide/tape on the flow chart...words of the speaking text run...about where and when students...low student comprehension.

8. The production schedule guidebook...out extensive teacher help. The calculation sheet.

9. The directions on the operation...

10. There were specific difficulties:
 a) The solder was of poor quality.
 b) The students did not like the protective coverings and some were not properly installed.
 c) Many students cannot use a soldering iron or tape player.
 d) Paint comes off the sanding disks.

11. The Company Rules list was not...

12. There was unanimous agreement with printed work and would of course, and supervisor forms. This had control.

13. There are times (at start of project) when students have nothing to do.
RECOMMENDATIONS FOR REVISION

1. Slow the speaking rate on the tape "Electing a Plant Superintendent".
2. Add a poster to the tape/poster series with a list of plant superintendent qualifications for the class to read while they hear it on tape.
3. Condense manuals, revise reading level, and remove duplicative information.
4. Expand the time sequence to allow the supervisors to have more time for planning and training. Perhaps the entire class could be involved in the supervisory training for greater understanding of the entire production process and other roles. Then after that time, discern which individuals want supervisory positions and develop a procedure for selecting supervisors and plant superintendent. Or there could be production planning during the supervisory training.
5. Improve workers' responsibility to the supervisors.
6. Redesign sequence of supervisor's training to choice between a) fabrication and b) assembly and quality control and use these two descriptions throughout.
7. Develop audiovisuals for use during the supervisory training.
8. Revise the role selection procedure and improve the direction.
9. Reduce the importance of the maintenance supervisor's role, perhaps to inspector rank, with care of equipment as primary responsibility.
10. The production schedule guidebook should be revised and simplified. If all students take supervisory training, it could be developed into a more comprehensive activity. Otherwise it might be possible to eliminate it altogether and tell students the sequence of operations.
11. Reduce the amount of written material given out and improve the distribution so that information is given only immediately prior to use (such as company handbook and file contents). The operation sheets should not be used until after the company meeting in the first session (which might necessitate an additional session).
12. Correct the difficulties with the resources:
 a) Select better quality solder and different soldering iron.
 b) Have variety of coverings available for speaker; make certain coverings will adhere.
 c) Use a miniature jac or give students a choice of miniature or sub-miniature.
 d) Find solution to paint coming off of sanding jig.
 e) Improve instructions on bending sheet metal.
13. Improve production flow.
14. Test functioning of sound ahead of time.
15. One teacher recommended that there be an example of each operation already completed.
16. Consider eliminating the company rules list.
17. Perhaps some of the charts could be replaced by a flow chart which combines information and thereby reduces the number of printed sheets handed out.
18. Put directions on forms rather than in separate booklet and combine and simplify forms.
19. Add a reference point to score scoring sheet.
20. On worker assignment sheets assign as many students a possible to first job that takes the longest time.
<table>
<thead>
<tr>
<th>DATA SOURCE</th>
<th>STRENGTHS</th>
<th>MANUFACTURING</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDENT TESTS</td>
<td>A moderate number of students felt that the tasks were not too complicated or hard (22 or 48%), while 20 (43%) did not have trouble knowing what to do next.</td>
<td>Few students reacted enthusiastic the simulation being exciting; of answered positively, 15 (33%) unc negatively. Corroborating this module boring, while 15 (33%) dis 15 (33%) were uncertain.</td>
</tr>
<tr>
<td>TEACHER LOGS</td>
<td>Teachers pointed out that the role activities were excellent, providing important and valuable experiences for students. The materials used and the variety provided got good response. However, while some students found that progressing through the module was no problem, the overall feeling was that there were a great number of specific implementation difficulties as noted under weaknesses.</td>
<td>The major weaknesses reported fall</td>
</tr>
<tr>
<td>TRENDS</td>
<td></td>
<td>1. An excessive amount of printed students and had negative imp result, several pieces of mate employee and supervisor forms, even the manuals. It appears only operation sheets, the pro the slide/tape.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. There were difficulties in cop materials and the slide/tape. difficult to use without ext speaking on the slide/tapes we</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. There were specific difficulties noted by the teachers above</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. The student attitude toward the module boring or at least ties in with the teachers' co when some workers had nothing tended to "goof off" and interest in the maintenance supervisor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. The supervisors were unable to complete success, perhaps be study, plan, and develop skill workers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. The production schedule guide may be above the maturational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. There apparently were far too</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Given the large number of re there are many implementation phase.</td>
</tr>
</tbody>
</table>
Participation (2)

Recommendations for Revision

1. The reading materials must be condensed and simplified and the number of forms must be reduced.
2. The slide/tapes should be reworked to be comprehensible.
3. Difficulties with the resources should be attended to.
4. A method should be sought to improve the relationship of the supervisors and the workers and to bolster the overall student attitude toward the simulation.

Specific suggestions as given in the other sections of this column by the teachers should be considered carefully with a view toward streamlining the module. Improving the implementation of the module may greatly enhance its effectiveness.
<table>
<thead>
<tr>
<th>DATA SOURCE</th>
<th>STRENGTHS</th>
<th>MANUFACTURING: STRENGTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDENT TESTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDENT QUESTIONNAIRES</td>
<td></td>
<td>Twenty-six percent of the students felt pull things together, with 35% uncertain that it did not.</td>
</tr>
<tr>
<td>TEACHER LOGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEACHER PANEL</td>
<td></td>
<td>Teachers and students have a very negative number of forms. In its present form, the enthusiasm over the finished product may detract in any form.</td>
</tr>
<tr>
<td>TRENDS</td>
<td></td>
<td>Both the teachers and a substantial number of the use of the summary did not achieve the results for and that it detracted from the successes.</td>
</tr>
</tbody>
</table>

There were no strong points of the summary that were noted.
that the summary helped. In and 39% responding

Attempts should be made to improve the integration and worth of the summary. The number of forms to fill out needs to be reduced.

It is apparent that the summary will need extensive reworking to be a contributory element of the simulation. Care should be taken in the process to keep the number of forms to a minimum. (It may be that the summary seems anticlimactic especially in light of the fact that the students already have completed the speakers.)
<table>
<thead>
<tr>
<th>DATA SOURCE</th>
<th>STRENGTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDENT TESTS</td>
<td></td>
</tr>
<tr>
<td>STUDENT QUESTIONNAIRES</td>
<td></td>
</tr>
<tr>
<td>TEACHER LOGS</td>
<td></td>
</tr>
<tr>
<td>TEACHER PANEL</td>
<td></td>
</tr>
<tr>
<td>TRENDS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANUFACTURING</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEAKNESSES</td>
</tr>
</tbody>
</table>

1. The instructor's guide was helpful to all teachers.
2. The in-service training was a valuable aid.

1. The instructor's guide required task descriptions. It was difficult, and to ascertain what to do.
2. The frustration level of teachers with failures in the in-service training.
3. The training session did not make clear what had to be done.
too much reading and duplicated
cut to use, to locate informa-
to next.
was high regarding equipment
the teachers totally aware of

1. With regard to the instructors' guide, the teachers suggested starting with a summary of the simulation (perhaps flow chart), an overview of the evaluation sheet, and a glossary of terms; condensing the rest of the material; and reorganizing to eliminate confusion and to provide more positive identification of resources.

2. In-service training should include instruction regarding equipment failures and tool and machine information (including safety factors and how to adjust for the gauge).
APPENDICES
APPENDIX A:

KNOWLEDGE TEST - "WHAT DO YOU KNOW?"
MANUFACTURING PRODUCTION

"WHAT DO YOU KNOW?"
The project presented/reported herein was performed pursuant to a grant from the National Institute of Education, Department of Health, Education, and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the National Institute of Education, and no official endorsement by the National Institute of Education should be inferred.

Copyright 1973 by The Ohio State University, The Center for Vocational and Technical Education.

Copyright for these materials is claimed only during the period of development, test, and evaluation, unless authorization is granted by the National Institute of Education to claim copyright also on the final materials. For information on the status of the copyright claim, contact either the copyright proprietor or the National Institute of Education.
The purpose of this test is to help us find out what you and other students like you know about manufacturing production. This test does not in any way affect your grade.

DIRECTIONS: To complete the test first fill in the information requested at the top of the next page. For most questions on the test there are several short phrases or statements listed. Pick the one that best describes your answer and circle the letter in front of it. For several questions special directions will be included with the questions. Please follow those directions.

If you don't know the answer to a question, GUESS. When you have completed the test return it to your teacher.

Thanks for your help.

You may turn the page and start as soon as you have completed reading the directions.
MANUFACTURING PRODUCTION

"What Do You Know?"

FILL IN THE FOLLOWING INFORMATION:

Name: ____________________________ Date: ______________

School: ____________________________ City: ______________

Age: ____________________________

Grade: circle one) 8th 9th other (please specify)

Sex: circle one) Male Female

Subject taught in this class: ____________________________

START THE TEST

1. Which of the following skills or abilities would be beneficial to the majority of workers in the manufacturing industry?

 a. Ability to read
 b. Ability to understand and follow directions
 c. Ability to work with one's hands
 d. All of the above

2. An individual who performs poorly on the job affects

 a. The quantity and quality of the work produced
 b. Other workers on the production line
 c. The cost of production
 d. All of the above

3. Which one of the following would best describe the purpose of a production time schedule?

 a. To prevent the waste of time and money
 b. To prevent accidents in the plant
 c. To reduce the number of absent employees
 d. To reduce the amount of equipment maintenance needed
4. In manufacturing production many different kinds of tools are used to perform various functions. Match the function with the tool needed to perform the function by placing the letter of the function by the tool. Place only one letter by each tool.

<table>
<thead>
<tr>
<th>Function</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. shaping</td>
<td>staple gun</td>
</tr>
<tr>
<td>b. fastening</td>
<td>glue gun</td>
</tr>
<tr>
<td>c. cutting</td>
<td>utility knife</td>
</tr>
<tr>
<td>d. grinding</td>
<td>screwdriver</td>
</tr>
<tr>
<td></td>
<td>scissors</td>
</tr>
<tr>
<td></td>
<td>box and pan brake</td>
</tr>
<tr>
<td></td>
<td>rivet gun</td>
</tr>
<tr>
<td></td>
<td>miter box saw</td>
</tr>
<tr>
<td></td>
<td>tin snips</td>
</tr>
<tr>
<td></td>
<td>sander</td>
</tr>
<tr>
<td></td>
<td>soldering gun</td>
</tr>
<tr>
<td></td>
<td>handsaw</td>
</tr>
<tr>
<td></td>
<td>squaring shear</td>
</tr>
</tbody>
</table>

5. Which of the following things is manufactured?

a. Coal
b. Haircut
c. Candy bar
d. None of the above

6. Jobs can be thought of as being in "clusters" or grouped as to the field of work. Which one of the following groups of workers does not belong to the manufacturing cluster?

a. Astronomers
b. Welders
c. Glassworkers
d. Machinists
e. Cabinet makers

7. The most important factor to keep in mind when thinking of shop safety is that

a. Fast workers are usually safer than slow workers
b. Safety is everyone's responsibility
c. Machines are impersonal
d. The safety supervisor is in charge of safety
8. The Dandy Gadget Company manufactures a battery powered tie that flashes on and off and rotates. The tie is made for use at parties and is sold at most department stores. Recently the stores have been complaining that something is wrong with the electrical wires in the tie. The group that plans production at the company plant has determined that the cause is poor workmanship. Whom should they contact to correct the problem in future ties that are made?

 a. The quality control supervisor and plant workers
 b. The production coordinator and plant workers
 c. The plant superintendent and the safety supervisor
 d. The plant superintendent and the quality control supervisor

9. Which of the following items in manufacturing production are affected when tools and equipment are not kept in good condition?

 a. Quality of work
 b. Speed of operation
 c. Safety of operation
 d. All of the above

10. Widgels are manufactured on a tight schedule by the three step process shown below:

 Step A → Step B → Step C → Widgels (Final Product)

Step A requires four highly skilled and specialized workers. If two of them get pneumonia what action should be taken to make sure that widgel production stays on its original time schedule?

 a. Hire more temporary specialized workers for step A
 b. Switch workers with different skills from step C to step A
 c. Make the remaining two workers in step A work twice as fast
 d. All of the above

11. Good production planning is indicated by:

 a. All workers doing the same job at the same time
 b. All workers being busy without waiting time
 c. All workers being satisfied and happy with their jobs
 d. Some high quality products being produced

12. Which of the following is not a main division of manufacturing?

 a. Administration
 b. Production
 c. Production Planning
 d. Research and Development
 e. Construction
13. Which of the following assignments would be a major responsibility of the plant maintenance supervisor?

a. Scheduling production time
b. Supplying tools
c. Analyzing defects in products
d. Planning new products

14. There are many different jobs associated with manufacturing production. Some of the job titles and job responsibilities are given below. Match the job titles with the job responsibilities by placing the letter of a single job title by the job responsibility it most closely describes. (You will need to use each job title more than once.)

<table>
<thead>
<tr>
<th>Job Titles</th>
<th>Job Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Supervisors</td>
<td>Organize and conduct meetings for the training, planning and scheduling necessary for manufacturing products</td>
</tr>
<tr>
<td>b. Production workers</td>
<td>Have responsibility for setting up and operating machines used in manufacturing a product</td>
</tr>
<tr>
<td>c. Inspectors</td>
<td>Examine and test manufactured products for exactness and neatness</td>
</tr>
<tr>
<td></td>
<td>Assemble things in the manufacturing production process by using hand and power equipment</td>
</tr>
<tr>
<td></td>
<td>Check manufactured products to make sure they are made well enough to be sold</td>
</tr>
<tr>
<td></td>
<td>Monitor the production process and maintain personnel records</td>
</tr>
</tbody>
</table>

15. Assembling is a manufacturing process that can best be described as:

a. Inventing or developing things
b. Putting things together
c. Breaking things down into component parts
d. Making things run or operate
15. The purpose of quality control inspection is:
 a. To make sure that each worker is working on schedule
 b. To make sure that no one is horsing around on the job
 c. To make sure that parts are made according to specifications
 d. To make sure that all working areas are kept clean

17. Which of the following would the plant superintendent be most concerned about?
 a. The general cleanliness and maintenance of the plant
 b. Supervision of the safety practices of the plant
 c. Maintaining a high level of production
 d. Storage of finished products
 d. None of the above

18. Which of the following manufacturing workers would be most frequently using gauges and measuring devices as the tools of his trade?
 a. The plant superintendent
 b. The production planner
 c. The draftsman
 d. The quality control inspector

As soon as you have completed this test, please turn it in to your teacher. Thank you.
APPENDIX B:

ATTITUDE SCALE - "WHAT DO YOU LIKE?"
MANUFACTURING PRODUCTION

WHAT DO YOU LIKE?
The project presented/reported herein was performed pursuant to a grant from the National Institute of Education, Department of Health, Education, and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the National Institute of Education, and no official endorsement by the National Institute of Education should be inferred.

Copyright 1973 by The Ohio State University, The Center for Vocational and Technical Education.

Copyright for these materials is claimed only during the period of development, test, and evaluation, unless authorization is granted by the National Institute of Education to claim copyright also on the final materials. For information on the status of the copyright claim, contact either the copyright proprietor or the National Institute of Education.
MANUFACTURING PRODUCTION

WHAT DO YOU LIKE?

THIS IS NOT A TEST. The purpose of these questions is to find out the types of activities and jobs in manufacturing production you might enjoy doing. We would also like to learn what reasons you have for liking these activities and jobs.

There are only 14 questions to answer. Directions for answering are found at the top of the page or are included in the question.

After you have completed the questions, please return this booklet to your teacher. Thanks for your help.

Please begin the questions as soon as you have finished reading the above paragraphs.
MANUFACTURING PRODUCTION

"What Do You Like?"

FILL IN THE FOLLOWING INFORMATION:

Name ______________________ Date ____________________

School ___________ ______ City ______________________

Age ___________

Grade (circle one) 8th 9th other (please specify) ______

Sex (circle) Male Female

Subject taught in this class __________________________

Teacher's name ________________________________

Turn to the next page after you have filled in the above information.
Directions: For the five questions below, place a check (✓) in the column that best describes whether you like, dislike, or are uncertain about the activity described in the question. If you do not have enough information about the activity, check the last column. List reasons for your choice in the space provided at the right of the page.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Yes, I would like to try this</th>
<th>I'm uncertain about trying this</th>
<th>No, I would not like to try this</th>
<th>I don't have enough information</th>
<th>My Reasons For My Choice Are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Would you like to work in that phase of manufacturing production which puts things together to make a completed product?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Would you like to work in that phase of manufacturing production which makes things out of raw or other materials?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Would you like to work in that phase of manufacturing production which examines and tests manufactured products for exactness and neatness?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Would you like to work in that phase of manufacturing production which looks for and replaces worn tools and machine parts?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Would you like to work in that phase of manufacturing production which has overall responsibility for overseeing the production process?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Directions: For this question (#6) name any five jobs that you know people do in manufacturing production. (If you don't know five jobs, name as many as you do know.) Then check (✓) the column which best describes how you would feel about working in this job. In the space at right, list the reasons for your checkmark.

An example is given below to help you complete this question.

Example:

Question

Yes, I would like this job.
I'm uncertain about this job.
No, I would not like this job.

My reasons are:

1. I like to make different things from all kinds of metal.
2. My neighbor is a sheet metal worker and I would like to try to use some of the power tools I have seen.

<table>
<thead>
<tr>
<th>Job</th>
<th>Yes</th>
<th>Uncertain</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Metal Worker</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Production Job #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Production Job #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Production Job #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Production Job #4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Production Job #5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. What kinds of experiences or activities do you think people should have before they select a job in the world of work? Briefly describe or list your ideas below.

8. Have you ever thought about how you would go about selecting a job? What are the most important things that you feel people should consider before they select or decide upon a job in the world of work? Briefly describe or list your ideas below.

9. Pretend that you have interviewed for several different jobs in the last few days. Yesterday two employers called you and each offered you a job in their organization. Both employers want you to decide within two days whether or not you are going to accept their offer. Briefly describe below how you would arrive at your decision.
10. Listed below are some possible reasons why it is important for people to explore careers. Check \(\checkmark \) the phrases which you think represent important reasons for you.

- You need to decide what kind of life-time job you want before you enter high school.
- You are likely to make a wiser choice about a job if you know about many different kinds of jobs.
- If you explore many different jobs you are more likely to find one which matches your interest, abilities, and aptitudes.
- Everyone has to work so everyone must explore different occupations.
- When exploring jobs it is as important to find out about those jobs you do not like as it is to find out about those jobs you do like.

11. Pretend that a friend of yours has many hobbies and interests which could lead to an occupation. But, this friend doesn't know much about possible occupations related to these hobbies and interests.

What should your friend do? (Circle the letters of as many as apply)

a. Think the problem through with a counselor, teacher, parents, and other interested adults.

b. Try several part-time jobs, moving from one to another until one seems best.

c. Plan visits and activities which will help in learning about occupations and workers.

d. Choose any occupation; it will probably agree with one of his/her interests.

e. Put off a choice; sooner or later one occupation will look better than the rest.

f. Don't know.
12. During a typical week, about how much time do you spend talking with your friends and other people about jobs and career-related things you would like to do as an adult? (Circle one letter)

a. no time at all
b. less than 15 minutes
c. about 15 to 30 minutes
d. about 30 to 60 minutes
e. more than 60 minutes

13. At this point in your life, how important is it to you to explore potential occupations and gain a better understanding of the world of work?

Give reasons for your response.

a. very important
b. important
c. fairly important
d. not too important
e. unimportant

14. I would enjoy working where what I did depended on others getting their job done and where what I did was essential for others to do their job.

____ Yes
____ No

Please return this booklet to your teacher. Thank you.
APPENDIX C:

STUDENT QUESTIONNAIRE - "WHAT DO YOU THINK?"
MANUFACTURING PRODUCTION

WHAT DO YOU THINK?
The project presented/reported herein was performed pursuant to a grant from the National Institute of Education, Department of Health, Education, and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the National Institute of Education, and no official endorsement by the National Institute of Education should be inferred.

Copyright 1973 by The Ohio State University, The Center for Vocational and Technical Education.

Copyright for these materials is claimed only during the period of development, test, and evaluation, unless authorization is granted by the National Institute of Education to claim copyright also on the final materials. For information on the status of the copyright claim, contact either the copyright proprietor or the National Institute of Education.
Now that you have completed this simulation, the people who developed it would like to find out what you think about your experience. Your ideas will help to make the simulation better. Remember: THIS IS NOT A TEST and your answers will not be graded. So feel free to check and to say what you think about this simulation.

DIRECTIONS: To complete the questionnaire, first fill in the information requested at the top of the next page. There is a list of statements which describe a feeling about an idea about the simulation just completed. Answer each statement by circling the symbol which best matches your actual feeling:

(-) means the statement agrees with your feeling

(?) means you're not sure how you feel about the thing mentioned in the statement

(+) means the statement does not agree with your feeling

For several other questions, special directions will be included with the questions. Follow those directions.

When you have completed the questions, please return this booklet to your teacher.

Thanks for your help.

You may turn the page and start as soon as you have completed reading the directions.
MANUFACTURING PRODUCTION

"WHAT DO YOU THINK?"

FILL IN THE FOLLOWING INFORMATION:

Name _______________________________ Date __________________________

School _______________________________ City __________________________

Age ________________________________

Grade (circle one) 8th 9th (please specify) ____________

Sex (circle one) Male Female

Subject taught in this class ________________________________

Teacher's name ________________________________

START THE QUESTIONS

Answer each statement by circling the symbol which best matches your actual feeling:

(+) means the statement agrees with your feeling

(?) means you're not sure how you feel about the thing mentioned in the statement

(-) means the statement does not agree with your feeling

Circle one for each statement

1. I learned quite a bit about jobs from the simulation.
 (+) ______ (?) ______ (-) ______

2. I learned quite a bit about how to work with other people from the simulation.
 (+) ______ (?) ______ (-) ______

3. To me the simulation was boring.
 (+) ______ (?) ______ (-) ______

4. I would recommend the simulation to my friends
 (+) ______ (?) ______ (-) ______
<table>
<thead>
<tr>
<th>Statement</th>
<th>Circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. I would like to go through more simulations like this one.</td>
<td></td>
</tr>
<tr>
<td>6. I would have rather done something else during the time I worked with</td>
<td></td>
</tr>
<tr>
<td>6. The simulation helped to answer some of the questions I have about</td>
<td></td>
</tr>
<tr>
<td>6. The simulation took too long.</td>
<td></td>
</tr>
<tr>
<td>6. The simulation was over too soon for me.</td>
<td></td>
</tr>
<tr>
<td>6. Some of the tasks were too complicated or too hard for me to do.</td>
<td></td>
</tr>
<tr>
<td>6. The summary helped me to "pull things together."</td>
<td></td>
</tr>
<tr>
<td>6. I enjoyed working with other students during the simulation.</td>
<td></td>
</tr>
<tr>
<td>6. The activities that I did in the simulation were exciting to me.</td>
<td></td>
</tr>
<tr>
<td>6. I often had trouble knowing what to do next in the simulation.</td>
<td></td>
</tr>
<tr>
<td>6. This simulation was a good way of getting out of class.</td>
<td></td>
</tr>
<tr>
<td>6. There were too many tests and forms to fill out with this simulation.</td>
<td></td>
</tr>
<tr>
<td>6. The pretest and posttest were difficult for me.</td>
<td></td>
</tr>
<tr>
<td>6. The simulation preview, activities, and summary fit together well.</td>
<td></td>
</tr>
<tr>
<td>6. The preview and the other activities at the beginning helped to</td>
<td></td>
</tr>
<tr>
<td>6. I liked the way I selected my role(s) in the simulation.</td>
<td></td>
</tr>
</tbody>
</table>
21. What was your role (or roles) in the simulation "Manufacturing Production"? (Check all that apply)

- Band Saw Operator
- Backing Machine
- Box Printer
- Electronics Assembler
- Electronic Component Inspector
- Fabrication Inspector
- General Inspector
- Gluer II
- Grinder I
- Hand Assembler
- Hand Cutter I
- Hand Cutter II
- Hand Driller II
- Hand Packager
- Hand Riveter
- Hand Sander
- Lead Former
- Machine Cleaner
- Machine Helper
- Maintenance Supervisor
- Marker
- Material Handler
- Metal Fabricating Inspector
- Paperboard Box Maker
- Plastic Products Inspector
- Plant Superintendent
- Portable Machine Sander
- Porter II
- Production Assembler
- Production Coordinator
- Production Supervisor
- Quality Control Supervisor
- Rubber
- Scorer
- Shear Operator I
- Sheet Metal Brake Operator
- Sheet Metal Layout Man
- Small Parts Assembler
- Wireworker
- Woodworking Machine Operator

22. Do you think that you performed well in this role (or roles)?

- Yes, all of the time
- Yes, most of the time
- No, not usually
- No, not at all

23. List a few reasons why you like or did not like your role (or roles).

24. Would you choose this role (or roles) if you were going to be in the simulation again?

- Yes
- Not sure
- No
25. Describe the one thing which you feel you did best in the simulation and the one thing you did least well. Be sure to say why you did well or poorly.

<table>
<thead>
<tr>
<th>Best Thing</th>
<th>Reasons</th>
<th>Worst Thing</th>
<th>Reasons</th>
</tr>
</thead>
</table>

26. What other roles in the simulation did you find interesting? (Check all that apply.)

- Band Saw Operator
- Boring Machine
- Box Printer
- Electronics Assembler
- Electronics Component Inspector
- Fabrication Inspector
- General Inspector
- Gluer II
- Grinder I
- Hand Assembler
- Hand Cutter I
- Hand Cutter II
- Hand Driller II
- Hand Packager
- Hand Riveter
- Hand Sander
- Lead Former
- Machine Cleaner
- Machine Helper
- Maintenance Supervisor
- Marker
- Material Handler
- Metal Forming Inspector
- Packer II
- Paperboard Worker
- Paper Products Inspector
- Plant Superintendent
- Portable Machine Sander
- Porter II
- Production Assembler
- Production Coordinator
- Production Supervisor
- Quality Control Supervisor
- Rubber
- Scorer
- Shear Operator I
- Sheet Metal Brake Operator
- Sheet Metal Layout Man
- Small Parts Assembly
- Wireworker
- Woodworking Machine Operator

27. Why do you find this role (or roles) interesting? If you do not find any other roles interesting, can you explain why?

28. Compared to your feelings about the work involved in Manufacturing Production before this simulation, how do you feel now?

- I am more interested now
- I am less interested now
- I do not feel any different now

Why?
29. Did you discover any new interests by participating in this simulation?

Yes, I am now interested in ________________________________

No ________________________________

30. Name some of the things you liked most about the simulation and some of the things you liked least about the simulation.

Like: ________________________________

Least: ________________________________

Like: ________________________________

Least: ________________________________

Like: ________________________________

Least: ________________________________

31. Write down some of your ideas on how the simulation might be made better.

As soon as you have completed these questions, turn in this booklet to your teacher.

Thank you.
APPENDIX D:

TEACHER EVALUATION LOG
The project presented/reported herein was performed pursuant to a grant from the National Institute of Education, Department of Health, Education, and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the National Institute of Education, and no official endorsement by the National Institute of Education should be inferred.

Copyright 1973 by The Ohio State University, The Center for Vocational and Technical Education.

Copyright for these materials is claimed only during the period of development, test, and evaluation, unless authorization is granted by the National Institute of Education to claim copyright also on the final materials. For information on the status of the copyright claim, contact either the copyright proprietor or the National Institute of Education.
This instrument package is designed to obtain your reactions related to the simulation module which you are pilot testing as part of the Occupational Exploration Program. Your close association with the module places you in a unique position to evaluate overall quality, to note problems and to offer suggestions for further development and/or refinement. Hence, your candid appraisal of the module is sought by its developers. Your feedback will give direction to the revision process, which will be the next step in developing the module.

The package consists of several parts arranged in the order in which they should be used. These parts are described briefly in the table below. Please note that while this booklet seems lengthy, each part only requires a short amount of time to complete and the parts are spaced out over the classroom life of the module.

<table>
<thead>
<tr>
<th>PART</th>
<th>WHEN TO COMPLETE</th>
<th>Estimated Time Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction to Simulation</td>
<td>Upon completion of the Introduction</td>
<td>5-10 minutes</td>
</tr>
<tr>
<td>II. Module Preview</td>
<td>Upon completion of Preview</td>
<td>5 minutes</td>
</tr>
<tr>
<td>III. Preparation Phase</td>
<td>Upon completion of the Phase</td>
<td>5-10 minutes</td>
</tr>
<tr>
<td>IV. Participation Phase (task evaluation)</td>
<td>As students complete each task</td>
<td>5-10 minutes per task</td>
</tr>
<tr>
<td>V. Summary Phase</td>
<td>Upon completion of the Phase</td>
<td>3-5 minutes</td>
</tr>
<tr>
<td>VI. General Module Evaluation</td>
<td>Upon Completion of Posttesting</td>
<td>15-20 minutes</td>
</tr>
</tbody>
</table>
Part I: INTRODUCTION TO SIMULATION

SIMULATION - AN EXCITING WAY TO LEARN
Part I: INTRODUCTION TO SIMULATION

SIMULATION - AN EXCITING WAY TO LEARN

Complete this part after your students have seen the slide presentation introducing the idea of simulation, have read the booklet which covers the same ideas or have used both the slides and booklet together. This part consists of several brief questions about the introduction to simulation. To respond, circle the letter of the phrase that most describes your answer. Several questions will require that you supply a short answer. Space has also been provided for you to write in any comment you have. You are encouraged to do so.

Thanks for your help.

1. How many total students in your class were introduced to the concept of simulation by one or both of the means described above?

_________ students

2. How many students used: (count each student only once)

_________ The booklet only
_________ The slides only
_________ The slides first and then the booklet
_________ The booklet first and then the slides
_________ Other, please specify

3. Were the students able to understand concepts presented in the materials?

a. Yes, most of the time Comments
b. Somewhat

c. No, not much of the time

4. Was the vocabulary consistent with the maturational level of the students?

a. Yes, most of it Comments
b. Some of it

c. No, not much of it

5. How would you rate the quality of the illustrations used on the slides and in the booklet? (Answer both parts of the question.)

Slides Booklet Comments

a. Very Good a. Very Good
b. Good b. Good

Average c. Average

d. Poor d. Poor

e. Very Poor e. Very Poor
1. Overall, how would you rate the technical quality (appearance, ease of use, etc.) of the slides and booklet? (Answer both parts of the question.)

<table>
<thead>
<tr>
<th>Slides</th>
<th>Booklet</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Very Good</td>
<td>a. Very Good</td>
<td></td>
</tr>
<tr>
<td>b. Good</td>
<td>b. Good</td>
<td></td>
</tr>
<tr>
<td>c. Average</td>
<td>c. Average</td>
<td></td>
</tr>
<tr>
<td>d. Poor</td>
<td>d. Poor</td>
<td></td>
</tr>
<tr>
<td>e. Very Poor</td>
<td>e. Very Poor</td>
<td></td>
</tr>
</tbody>
</table>

2. Overall, do you feel that this introduction was stimulating to students?

<table>
<thead>
<tr>
<th></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Yes, very much</td>
<td></td>
</tr>
<tr>
<td>b. Somewhat</td>
<td></td>
</tr>
<tr>
<td>c. No, not much</td>
<td></td>
</tr>
</tbody>
</table>

3. In what order would you recommend the use of the slides and the booklet? (Choose only one.)

<table>
<thead>
<tr>
<th></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Use both in any order</td>
<td></td>
</tr>
<tr>
<td>b. Use both with the booklet first</td>
<td></td>
</tr>
<tr>
<td>c. Use both with the slides first</td>
<td></td>
</tr>
<tr>
<td>d. Use the booklet only</td>
<td></td>
</tr>
<tr>
<td>e. Use the slides only</td>
<td></td>
</tr>
<tr>
<td>f. None of the above</td>
<td></td>
</tr>
</tbody>
</table>

4. Would you recommend the use of the slides and/or the booklet to other teachers? (Answer both parts of the question.)

<table>
<thead>
<tr>
<th>Slides</th>
<th>Booklet</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Yes, with minor modification</td>
<td>a. Yes, with minor modification</td>
<td></td>
</tr>
<tr>
<td>b. Yes, with major modification</td>
<td>b. Yes, with major modification</td>
<td></td>
</tr>
<tr>
<td>c. No, I would not recommend it</td>
<td>c. No, I would not recommend it</td>
<td></td>
</tr>
</tbody>
</table>

Please write in any other comments/suggestions you might have in the space below. (If extra space is required, use the back of this page.)
Complete this part when your students finish the "Preview" section of the module. Please rate each form used by your students by checking (✓) the appropriate box in each applicable cell. You are encouraged to place comments and/or descriptions of any problems encountered in the large spaces provided in each box. (Note: Answer only for the forms of the preview that your students used and count students only once for the second column."

| Form of Presentation | # of students using this form | Rate the effectiveness of this form in stimulating student interest: | Rate the technical quality (ease of use, appearance, etc.) of this form. | Rate the quality of this form in providing pertinent information to students making decisions about mod le participation | Overall, how would you rate the educational quality or worth of this "Preview" form? | Write in any other suggestions you have for improving the Module Preview. Also describe what you considered to be the strong points of the preview. |
|----------------------|-----------------------------|---|--|---|--|
| Illustrated Booklet | | High Med Low | Comments | Comments | Comments |
| Sound-slide, film, filmstrip, etc. | | High Med Low | Comments | Comments | Comments |
| Game or similar activity | | High Med Low | Comments | Comments | Comments |
| Other, or some combination of the above forms (please specify) | | High Med Low | Comments | Comments | Comments |
PART III - PREPARATION PHASE
PART III: PREPARATION PHASE

Complete this part after your students have finished the preparation phase of the simulation module. Questions here relate to the materials used to prepare students for participating in the simulation and the actual process of getting students into roles.

To respond, circle the letter of the choice that best describes your answer or how you feel. Some questions will require that you either check (✓) an answer or write in a short response. Space has also been provided for you to write any comments or suggestions you might have. You are encouraged to do so.

Thanks for your help.

MATERIALS

1. In the following chart: describe or name the form of material used (e.g., slide tapes, booklets, combination of forms, etc.); specify how many students used the form counting each student only once; rate the technical quality of the form; and rate its overall educational quality or worth.

Ratings are indicated by placing a check (✓) in the appropriate box in the applicable cell. You are encouraged to place comments and/or descriptions of problems you encountered in the large space provided in each box.

2. Were the students able to understand the concepts presented in the materials?

 a. Yes, most of the time
 b. Somewhat
 c. No, not much of the time
3. Was the vocabulary consistent with the maturational level of the students?
 a. Yes, most of it
 b. Some of it
 c. No, not much of it

4. To what extent was the preparation phase integrated with (i.e., how well did it fit together with) the Module Preview?
 a. Very well, integrated
 b. Well integrated
 c. Somewhat integrated
 d. Poorly integrated
 e. Very poorly integrated

ROLE SELECTION PROCESS

5. Did the initial role descriptions provide students with enough information to select roles?
 a. Yes, the information was adequate
 b. Somewhat
 c. No, the information was inadequate

6. If schematic devices (e.g., schedule cards were available to help select roles, did students understand how to use them?
 a. Yes, with little or no help
 b. Yes, with some help
 c. Yes, with a great deal of help
 d. No
 e. Not applicable

7. Were the students able to independently select themselves into roles?
 a. Yes, with little difficulty
 b. Yes, with some difficulty
 c. No, some teacher assistance was necessary
 d. No, extensive teacher assistance or direction was necessary

8. If you had to help the students select roles, please describe the nature of that assistance (e.g., asked students to draw lots when several wanted the same role; explained use of schematic device; etc.) in the space below.
9. Overall, was the role selection process described in the module an effective way of getting students into roles?
 a. Yes, it was effective
 b. Somewhat effective
 c. No, it was ineffective

10. Can you suggest other ways in which this process could occur?
 a. Yes, I would suggest ________________________________

 b. No, the process was effective

Please write in any other comments/suggestions you might have in the space below.
PART IV - PARTICIPATION PHASE

TASK EVALUATION

SKILLS PACKET
PART IV - TASK EVALUATION

This part should be completed on a task by task basis as your students finish each task during the participation phase of the simulation module. Please write in the number of each task and answer the questions listed at the top of each column. IN THE "PROBLEM AREA" SECTION, PLACE A CHECK (✓) IN THE APPROPRIATE CELLS WHENEVER PROBLEMS OCCUR FOR A PARTICULAR TASK. Please write any comments, problem descriptions, and/or suggestions you have in the spaces provided.

A sample of a task evaluation is provided to help you complete this form.

<table>
<thead>
<tr>
<th>Task number</th>
<th>Class time spent on task in minutes</th>
<th>Teacher time spent working directly with students in minutes</th>
<th>Is recommended time appropriate for completing task?</th>
<th>Did you modify, delete, or change the position of this task in the simulation? (Specify change)</th>
<th>Appropriate- ness of task to maturational level of students</th>
<th>Integration of task with previous, concurrent, and/or following tasks</th>
<th>Resource materials</th>
<th>Special skills required of teacher and/or instructional techniques for implementing the task</th>
<th>Student understanding of task directions and/or task materials</th>
<th>Student implementation of task</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>150</td>
<td>35</td>
<td>TAKES TWICE AS LONG AS ESTIMATED TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part IV - Task Evaluation

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Class Time Spent on Task (in minutes)</th>
<th>Teacher Time Spent Working Directly with Students (in minutes)</th>
<th>Is Recommended Time Appropriate for Completing Task?</th>
<th>Did You Modify, Delete, or Change the Position of This Task in the Simulation? (Specify Change)</th>
<th>Appropriate Necessity of Task to Maturational Level of Students</th>
<th>Integration of Task with Previous, Concurrent, and/or Following Tasks</th>
<th>Resource Materials</th>
<th>Special Skills Required of Teacher and/or Instructional Techniques for Implementing the Task</th>
<th>Student Understanding of Task Directions and/or Task Materials</th>
<th>Student Implementation of Task</th>
</tr>
</thead>
</table>

- **Major Problem Areas:**
 - Appropriate Necessity of Task to Maturational Level of Students
 - Integration of Task with Previous, Concurrent, and/or Following Tasks
 - Resource Materials
 - Special Skills Required of Teacher and/or Instructional Techniques for Implementing the Task
 - Student Understanding of Task Directions and/or Task Materials
 - Student Implementation of Task
PART IV - TASK EVALUATION

<table>
<thead>
<tr>
<th>Task number</th>
<th>Class time spent on task in minutes</th>
<th>Teacher time spent working directly with students in minutes</th>
<th>Is recommended time appropriate for completing task? (Specify change)</th>
<th>MAJOR PROBLEM AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Appropriate-ness of task to maturational level of students</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integration of task with previous, concurrent, and/or following tasks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Special skills required of teacher and/or instructional techniques for implementing task</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Understanding of task directions and/or task materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student implementation of task</td>
</tr>
</tbody>
</table>

1.32
PART IV - TASK EVALUATION

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Class Time Spent on Task in Minutes</th>
<th>Teacher Time Spent Working Directly with Students in Minutes</th>
<th>Is Recommended Time Appropriate for Completing Task?</th>
<th>Did you Modify, Delete, or Change the Position of this Task in the Simulation? (Specify Change)</th>
<th>MAJOR PROBLEM AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Appropriate-ness of Task to Maturation Level of Students</td>
<td>Integration of Task with Previous, Current, and/or Following Tasks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resource Materials</td>
<td>Special Skills Required of Teacher and/or Instructional Techniques for Implementing the Task</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student Understanding of Task Directions and/or Task Materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student Implementation of Task</td>
</tr>
</tbody>
</table>

Resource Materials Required for Testing:

- Special skills required of teacher and/or instructional techniques for implementing the task.
- Student understanding of task directions and/or task materials.
- Student implementation of task.

Special Considerations:

- Appropriate-ness of task to maturation level of students.
- Integration of task with previous, current, and/or following tasks.
- Resource materials needed for testing.

Teacher Notes:

- Considerations for modifying, deleting, or changing the position of tasks in the simulation.
- Recommendations for time allocation.

Student Notes:

- Understanding of task directions and materials.
- Implementation of tasks.
PART IV - TASK EVALUATION

<table>
<thead>
<tr>
<th>Task number</th>
<th>Classroom time spent on task in minutes</th>
<th>Teacher spent working directly with students in minutes</th>
<th>Is recommended time appropriate for completing task?</th>
<th>Did you modify, delete, or change the position of this task in the simulation? (Specify change)</th>
<th>Appropriate-ness of task to maturational level of students</th>
<th>Integration of task with previous, concurrent, and/or following tasks</th>
<th>Resource materials</th>
<th>Special skills required of teacher and/or instructional techniques for implementing activity</th>
<th>Student understanding of task direction and/or task materials</th>
<th>Student implementation of task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
PART IV - TASK EVALUATION

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Class time spent on task in minutes</th>
<th>Teacher time spent working directly with students in minutes</th>
<th>Is recommended time appropriate for completing task?</th>
<th>Did you modify, delete, or change the position of this task in the simulation? (Specify change)</th>
<th>MAJOR PROBLEM AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Appropriate-ness of task to maturational level of students</td>
</tr>
</tbody>
</table>

1:5
PART IV - TASK EVALUATION

<table>
<thead>
<tr>
<th>Task number</th>
<th>Class time spent on task in minutes</th>
<th>Teacher time spent working directly with students in minutes</th>
<th>Is recommended time appropriate for completing task? (Specify change)</th>
<th>Did you modify, delete, or change the position of this task in the simulation?</th>
<th>Appropriate-ness of task to maturational level of students</th>
<th>Integration of task with previous, current, and/or following tasks</th>
<th>Resource materials required of teacher and/or student in completing task</th>
<th>Special skills required of teacher and/or student in completing task</th>
<th>Student understanding of task directions and/or task materials</th>
<th>Student implementation of task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
PART IV - TASK EVALUATION

<table>
<thead>
<tr>
<th>Task number</th>
<th>Class time spent on task in minutes</th>
<th>Teacher time spent working directly with students in minutes</th>
<th>Is recommended time appropriate for completing task?</th>
<th>Did you modify, delete, or change the position of this task in the simulation? (Specify change)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAJOR PROBLEM AREAS

<table>
<thead>
<tr>
<th>Appropriate- ness of task to maturational level of students</th>
<th>Integration of task with previous, concurrent, and/or following tasks</th>
<th>Resource materials</th>
<th>Special skills required of teacher and/or instructional techniques for implementing the task</th>
<th>Student understanding of task directions and/or task materials</th>
<th>Student implementation of task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part IV - Task Evaluation

<table>
<thead>
<tr>
<th>Task number</th>
<th>Class time spent on task in minutes</th>
<th>Teacher time spent working directly with students in minutes</th>
<th>Is recommended time appropriate for completing task?</th>
<th>Did you modify, delete, or change the position of this task in the simulation? (Specify change)</th>
<th>MAJOR PROBLEM AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Appropriate-ness of task to maturational level of students</td>
</tr>
</tbody>
</table>

Major Problem Areas
- **Appropriate-ness of task to maturational level of students**
- **Integration of task with previous, concurrent, and/or following tasks**
- **Resource materials**
- **Special skills required of teacher and/or instructional techniques for implementing the task**
- **Student understanding of task directions and/or task materials**
- **Student implementation of task**
PART IV - TASK EVALUATION

<table>
<thead>
<tr>
<th>Task number</th>
<th>Class time spent on task in minutes</th>
<th>Teacher time spent working directly with students in minutes</th>
<th>Is recommended time appropriate for completing task? (Specify change)</th>
<th>Did you modify, delete, or change the position of this task in the simulation?</th>
<th>MAJOR PROBLEM AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Appropriate-ness of task to maturational level of students</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integration of task with previous, concurrent, and/or following tasks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resource materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Special skills required of teacher and/or instructional techniques for implementing the task</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student understanding of task directions and/or task materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student implementation of task</td>
</tr>
</tbody>
</table>

1.9
PART IV - TASK EVALUATION

<table>
<thead>
<tr>
<th>Task number</th>
<th>Class time spent on task in minutes</th>
<th>Teacher time spent working directly with students in minutes</th>
<th>Is recommended time appropriate for completing task? (Specify change)</th>
<th>Did you modify, delete, or change the position of this task in the simulation?</th>
<th>MAJOR PROBLEM AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resource materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Special skills</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>required of teacher and/or task implementation of task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student understand-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ing of task</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student implemen-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tation of task</td>
</tr>
</tbody>
</table>

MAJOR PROBLEM AREAS

- Resource materials
- Special skills required of teacher and/or task implementation of task
- Student understanding of task
- Student implementation of task

Page 140
In some of the Occupational Exploration simulation modules it is likely that students may be asked to occasionally engage in activities with which they have little or no background. This lack of background will not significantly impede the operation of the module but students might feel somewhat more comfortable with the activity if their background could be enhanced. To help in providing that background, skill packets, (e.g., a "drawing skills" packet, metric system skill kit, etc.) have been included with several modules. Fill in the chart below for all skill packets provided with the module being used in your classroom. Write in the name of the skill packet(s), write in the number of students using the packet, and then answer all questions listed at the top of each column by placing a check (√) in the appropriate box. Please comment in the space provided with regard to any problems you might have encountered or any suggestions you might have.

<table>
<thead>
<tr>
<th>Name of skill packet</th>
<th># of Students using this packet</th>
<th>Rate this packet in terms of providing information needed by students</th>
<th>Rate the difficulty of packet in terms of maturational level of your students</th>
<th>Other Comments/Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High Med Low Comments</td>
<td>too hard</td>
<td>just right</td>
</tr>
</tbody>
</table>

141

Comments

Comments

Comments

Comments
PART V: SUMMARY PHASE
PART V: SUMMARY PHASE

Complete this part when your students complete the "Summary" phase of the module. To respond, simply circle the letter beside the phrase that best describes your answer or supply the requested information. Space has also been provided for you to write in any comments/suggestions you may have.

Thanks for your help.

1. How effective was the "Summary" phase in providing a reasonable culmination to the simulation experience?
 a. Very effective
 b. Somewhat effective
 c. Not effective

2. Was the "Summary" phase well integrated with the immediately preceding activities or tasks?
 a. Yes
 b. Somewhat
 c. No

3. Did you have to modify or expand upon the "Summary"?
 a. Yes, I did the following
 b. No

4. How effective was the "Summary" phase in helping students learn about occupational roles performed by others in the simulation?
 a. Very effective
 b. Somewhat effective
 c. Not effective

5. How effective was the "Summary" phase in helping students learn about tools, processes and working conditions associated with that part of the world of work simulated in the module?
 a. Very effective
 b. Somewhat effective
 c. Not effective

Comments
6. How useful do you feel the "Summary" phase would be in helping students identify and select alternatives for further action related to other occupational exploration activities?

a. Very useful
b. Somewhat useful
c. Not useful

Comments

Please write in any other comments/suggestions that you might have in the space below.
Part VI: GENERAL MODULE EVALUATION
Part VI: GENERAL MODULE EVALUATION

These questions should be answered as soon as possible after the pilot test of this module has been completed, i.e., after the posttests have been given.

The questions are divided into several sections. The first section deals with general background characteristics of students and teachers. This information will be used solely for the purpose of describing the students and teachers who participated in the pilot test of this module. Subsequent sections will deal with implementation problems, your perceptions of the quality of the materials, etc.

Fill in the information requested at the top of the questions and then answer each question by circling the letter in front of the phrase that best describes your answer, unless given other specific directions in the question. Space has also been provided for you to write in any comments/suggestions you might have. You are encouraged to do so.

Fill in the following information

Teacher Name ____________________________
School _________________________________
City ________________________________
Date ________________________________

TEACHER BACKGROUND

1. What is your sex?
 a. Male
 b. Female

2. Including this year, approximately how many years of teaching experience do you have?
 a. This is my first year
 b. 2-4 years
 c. 4-6 years
 d. 6-8 years
 e. 8 or more years
3. In what kind of group setting (e.g., English classroom, math classroom, students from study hall, students from a guidance group, etc.) and at what grade level did you introduce this simulation?
 a. Group Setting (please specify) ______________________
 b. Grade Level (please specify) ______________________

4. Have you had any previous experience with simulation as an instructional technique?
 a. Yes, as a teacher
 b. Yes, as an observer
 c. Yes, as a participant
 d. No

5. If you answered yes to question 4, briefly describe the nature and extent of your previous experiences with simulation. If your response to question 4 was 'No' please proceed to question 6.
 a. My previous experiences with simulation include ______________________

6. Which of the following statements best describes your reasons for participating in the pilot test of this simulation module?
 a. To try out new ways of organizing instruction for students
 b. Interest in Career Education
 c. Thought material was of value for students
 d. General interest or curiosity
 e. I was requested to participate
 f. Other, or some combination of the above (please specify) ______________________
STUDENT BACKGROUND

7. How many students participated in the total simulation? (Include only those students who were involved in the module and received both the pre and posttests).

Students Participating:

8. Of the students in question 7, how many were male and how many were female?

Males: ____________ Females: ____________

9. How were students selected to participate in the simulation?

a. Most of the students were volunteers from the class
b. The class, rather than the students, was volunteered
c. Student volunteers from a study hall
d. Other, please specify ________________________________

10. If you had volunteer students participating in the simulation which of the following reasons best describes your perception of why they participated. If you did not have any volunteer students please proceed to Question 11.

a. Interest in trying something new
b. Interest in particular area simulated
c. Interest in careers
d. Interest in just getting out of class or study hall
e. Other, or some combination of the above (please specify)

f. I can't really guess at the reason(s)

11. Indicate any special characteristics of this class, e.g., many slow readers in class; many students with exceptionally good verbal skills; etc., which may bias the results of the pilot test of this module. Also describe how you feel the results will be biased by these characteristics.

a. Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Biases Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. No special characteristics
12. In general, how well did the transition from phase to phase of the module proceed?
 a. Very well
 b. Well
 c. About average
 d. Poorly
 e. Very poorly

13. Are there any additions, deletions or changes in the order of module parts that you feel should be made?
 a. Yes, make the following changes:
 b. No changes are necessary

14. In general, were the directions in the module clear enough for students to understand what was expected of them?
 a. Yes
 b. Somewhat
 c. No

15. In general, was the vocabulary of the module consistent with the maturational level of the students in the simulation?
 a. Yes
 b. Somewhat
 c. No

16. Do you feel that the knowledge (What do you know?) and the attitude (What do you like?) tests were adequate measures of the material contained in the module? (Answer both parts of the question.)
 Knowledge Test Comments Attitude Test Comments
 a. Yes
 b. Somewhat
 c. No
 a. Yes
 b. Somewhat
 c. No
1. To what extent was the knowledge test difficult for students?
 a. Very difficult
 b. Difficult
 c. About average
 d. Easy
 e. Very easy

IMPLEMENTATION OF THE MODULE

18. How well did the in-service training prepare you to work with this module?
 a. Very well
 b. Well
 c. Somewhat
 d. Poorly
 e. Very poorly

19. Did the in-service training provide you with a general understanding of your role in the module implementation?
 a. Yes
 b. Somewhat
 c. No

20. While working with this module, did you have to allot (or spend) more time than you normally would for preparation (exclude the time spent in in-service training)?
 a. Yes, specify additional time in hours
 b. Some extra time was necessary
 c. No extra time was necessary

21. How sizeable was the job of managing/coordinating this simulation module for you?
 a. Very sizeable
 b. About average
 c. Not sizeable
22. Did your students experience problems with the reading level of this module?
 a. Yes
 b. Somewhat
 c. No

23. To what extent do you feel students were receptive (interested in, excited by) to simulation as a way of learning?
 a. Very receptive
 b. Receptive
 c. About average
 d. Non-receptive
 e. Very non-receptive

24. To what extent do you feel that students were receptive (interested in, excited by) to the content of this particular module?
 a. Very receptive
 b. Receptive
 c. About average
 d. Non-receptive
 e. Very non-receptive

25. Was there any change in student interest or motivation as they progressed through the module?
 a. Yes, interest changed as follows
 b. Somewhat
 c. No

26. Do you feel that this module reinforced or helped to build the student's ability to make decisions?
 a. Yes
 b. Somewhat
 c. No
 d. Don't know

27. In your judgment, how much did students learn about the process of simulation and about the content of the module? (Answer both parts of the question)

<table>
<thead>
<tr>
<th>Simulation Process</th>
<th>Comments</th>
<th>Module Content</th>
<th>Comments</th>
</tr>
</thead>
</table>
 a. Very Much | | a. Very Much | |
 b. Much | | b. Much | |
 c. An average amount | | c. An average amount | |
 d. Little | | d. Little | |
 e. Very little | | e. Very little | |
OVERALL PERCEPTIONS AND RECOMMENDATIONS

28. In general, was this module
 a. Exciting to students. Comments
 b. About average for students.
 c. Boring to students.

29. In general did this module change the working relationships (personal interactions) between you and participating students?
 a. Yes, relationship changed as follows
 b. Somewhat
 c. No

30. Are there any students or groups of students (e.g., some students may have difficulty working in small self-directed groups) that you feel would have difficulty participating in simulated types of experiences?
 a. Yes, (please specify)
 b. No

31. For what grades would you consider this module to be appropriate? (Circle as many as apply).
 a. 10th or higher
 b. 9th
 c. 8th
 d. 7th or lower
 e. Other, please specify

32. Overall, how would you rate the quality of this module?
 a. Very good Comments
 b. Good
 c. Average
 d. Poor
 e. Very Poor
33. If possible, would you use this module with students again?
 a. Yes, with no modification
 b. Yes, with minor modifications
 c. Yes, with major modifications
 d. No

 Comments

34. Would you recommend this module to other teachers?
 a. Yes
 b. No

 Comments

COMMENTS AND/OR SUGGESTIONS FOR REVISION

Add as many comments and/or suggestions for revision of the module as you might have.

Thank you for your help in evaluating this simulation module.