The basic parameters of intrinsic motivation to work are explored. Principles are sought relevant to ways of redesigning jobs to increase their intrinsic motivation properties and to avoid task overload and boredom. Coordinated field and experimental laboratory studies are described. (Author)
This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-07-A-0308-0015, Contract Authority Identification Number, NR 151-351

FINAL REPORT

INCREASING THE INTRINSIC REWARD VALUE IN JOBS AND CAREERS

Principal Investigator
Bernard M. Bass

Co-Principal Investigator
Gerald V. Barrett

Approved for public release; distribution unlimited.

September 15, 1974

Reproduction in whole or in part is permitted for any purpose of the United States Government.
Title: Increasing the intrinsic reward value in jobs and careers

Authors: Bernard M. Bass, University of Rochester
Gerald V. Barrett, University of Akron

Performing Organization: Graduate School of Management, University of Rochester, Rochester, New York 14627

Contract or Grant Number: N00014-67-A-0398-0015

Report Date: 15 September 1974

Number of Pages: 11

Security Class: Unclassified

Distribution Statement: Approved for public release; distribution unlimited

Abstract: The basic parameters of intrinsic motivation to work are explored. Principles are sought relevant to ways of redesigning jobs to increase their intrinsic motivating properties, to avoid task overload and boredom. Coordinated field and experimental laboratory studies are described.
ABSTRACT

The basic parameters of intrinsic motivation to work are explored. Principles are sought relevant to ways of redesigning jobs to increase their intrinsic motivating properties, to avoid task overload and boredom. Coordinated field and experimental laboratory studies are described.
PURPOSE

To explore the basic parameters of intrinsic motivation to work, principles were sought relevant to ways of redesigning jobs to increase their intrinsic motivating properties, and to avoid task overload on the one hand, and boredom on the other. We concentrated on the fundamental question: What stimulus properties of a job itself will make it more attractive to a job holder? Two kinds of jobs were examined: maintenance and monitoring using two approaches: field study and laboratory experiment.

Properties investigated included:

1. The job requires abilities valued by the operator.
2. Self-control and autonomy are possible.
3. The job provides a sense of completion.
 a. It is not such a small part of a whole task that it lacks meaningful completion in its own right.
 b. It is not so long in time that it fails to provide a readily perceived termination.
4. The job provides feedback of performance.
5. The job creates a sense of progress or growth and "forward thrust."
6. The job involves the complete attention and absorption of the job holder.
7. The job requires some optimum variety of skills of the operator.
8. The job provides a pattern of stimulation which is optimal for the job incumbent.

INVESTIGATIONS

Literature Survey

Relevant literature was surveyed and reference lists compiled
with the aid of a computerized editing program, WYLB6R, in five areas: human factors, intrinsic-extrinsic motivation, task analysis, laboratory studies in maintenance and monitoring, and laboratory studies on the effects of goals and intentions in task behavior. Several hundred items led to a working draft: "Intrinsic-Extrinsic Motivation: Some Parameters for Job Design," summarizing the findings in the recent psychological, social-psychological, and industrial-social psychological areas relevant to job design and motivation.

FIELD STUDIES

Interviews

To identify and define the dimensions on which jobs might be redesigned, following the literature survey, a number of on-site interviews about Naval monitoring and maintenance tasks were conducted to gather information on possible dimensions to include in succeeding phases of the study. Fifteen active duty men mostly in ratings of the maintenance or monitoring categories were interviewed. The interviews were open-ended and lasted from one-half to one hour. The focus of the interviews was on what the men liked most and liked least about their jobs, the reason for their answers, and suggestions on how they felt the jobs could be redesigned. Similar interviews were conducted with twelve men from Army Reserve unit for a total of 27 interviews. Interviewing was terminated when additional information became redundant.

Each interview was recorded on tape, transcribed, and content analyzed. From the interviews and literature review, sixteen attributes were generated and defined together with specific items to measure the amount or frequency of each attribute.
Reallocation Study

Each job element was named, defined in terms that blue collar workers could understand, and followed by seven statements expressing "how much" of that element is present. (Figure 1 is an example.) Two problems manifested themselves immediately. The first was a discrimination problem and the second was a scaling problem.

1. Goal Clarity: the degree of clarity and specificity in the objectives of the job.
 1. People always explain what I'm to do in ways that I can understand.
 2. Nobody has to tell me what I'm supposed to get done each day.
 3. It is clear what someone in my job should accomplish.
 4. The direction I go in seems to change from one day to the next.
 5. Sometimes it is hard for me to understand what others want me to do.
 6. I have to be constantly asking people what to do on this job.
 7. By the time they get to me plans are usually distorted.

Figure 1. Job structural attribute named, defined, and followed by sample statements expressing "how much?"

Smith and Kendall's (1963) reallocation procedure was employed to test the conceptual discriminability of the elements. Several hundred judges, mainly from Army reserve units (non-college level) were instructed to assign each of the statements into the defined category that they believed best corresponded with the meaning of the statement.
The criteria for the retention of an item were that 70% of its allocations were to a single category and no more than 20% allocations to any second category.

Magnitude estimation was employed in which any value is assigned to a referent concept and then all other stimuli are judged in relation to the referent concept. For example, if an individual attaches the value 10 to the work "sometimes" he might assign zero to the word "never" and 100 to the word "always" if he felt that always expressed 10 times as much as the word sometimes. Of the twenty-five or so stimuli presented, the aim is to arrive at five or six that bear the approximate ratio 5, 4, 3, 2, 1, 0 to each other.

Subjects were drawn from several populations, namely, MBA students (most of whom are working), college students and high school students. Both males and females participated, and the total sample was 125 Ss. Results were reported in Bass, B. M., Cascio, W. F., & O'Connor, E. J. Magnitude estimations of frequency and amount, *Journal of Applied Psychology*, 1974, 59(3), 313-320.

Job Design Elements

The job design elements studied dealt with the work itself (Figure 2) and the work environment (figure 3).
Figure 2

WORK ITSELF

1. Variety
2. Attention
3. Learning New Skills (Opportunity)
4. Learning New Skills (Necessity)
5. Closure
6. Task Interdependence (Forward Sequence)
7. Task Interdependence (Backward Sequence)
8. Internal Feedback
9. External Feedback (How Often)
10. External Feedback (How Much)
11. Independence (Pace)
12. Independence (Methods)
13. Independence (Sequence)
14. Responsibility (Culpability)
15. Responsibility (Material)
16. Responsibility (Monetary Loss)
17. Responsibility (Human Life)
18. Optional Interpersonal Interaction
19. Required Interpersonal Interaction
20. Order
21. Goal Clarity
22. Physical Effort
23. Job Difficulty
24. Job Complexity
Figure 3

WORK ENVIRONMENT

1. Salary
2. Interpersonal Relations (Supervisor)
3. Interpersonal Relations (Subordinates)
4. Interpersonal Relations (Peers)
5. Technical Supervision
6. Company Policy and Administration
7. Working Conditions
8. Status A
9. Status B
10. Job Security
11. Availability of Resources
12. Work Scheduling
13. Job/Person Fit
Importance of Individual Differences

Within our overall conceptual framework, individual differences played a crucial part. We conceptualized an overall "g" factor in the population which will influence a person's preference for job complexity. This is the brainpower factor, or as R. S. Woodworth stated in 1918, "capacity is its own motivation". "Big" people prefer "big" jobs, "little" people, "little" jobs. We also can conceive of "s" factors which represent the specific task-related aptitudes which a person brings to the performance of any given task. So far this theoretical position is consistent with Spearman's (1904) two-factor theory of intelligence. In addition we hypothesize that "p" factors are operating. These "p" factors represent the preferences and characteristics of an individual. These will include such factors as task orientation, self orientation, and job involvement. In terms of Bass' Orientation Inventory, we viewed people as varying in task-orientation, i.e. the extent to which they obtain satisfaction for persisting at tasks and completing them successfully. They also vary in self-orientation toward extrinsic rather than intrinsic rewards.

A technical report was completed by W. Cascio "Value Orientation, Organizational Rewards, and Job Satisfaction" dealing with one aspect of the individual difference issue.

The nation-wide sales force (N=540) of a large food and beverage firm responded to a survey designed to investigate the role of value orientation as a moderator of the relationship between organizational rewards and job satisfaction. From equifinality theory it was hypothesized that individuals who emphasize the intrinsic (extrinsic) aspects of work can achieve the same relative level of overall job satisfaction.
if intrinsic (extrinsic) organizational rewards match their value orientation.

Results indicated that the normative (Survey of Work Values) instrument was most predictive of both intrinsic and extrinsic value orientation. The intrinsic subscale of this instrument correlated zero with the extrinsic subscale. The two scales representing intrinsic and extrinsic organizational rewards, however, correlated .41. These results are counter to those reported earlier by Lawler and Porter. A modification of the Lawler-Porter model relating performance to job satisfaction was suggested to account for the positive spillover effect due to the interaction of intrinsic and extrinsic organizational rewards.

A double cross-validation procedure was employed to arrive at the best estimate of the predictive ability of each of the four models of job satisfaction. In order of predictive ability they were: "Is Now" (.55), "Importance-Rewards" (.46), "Orientation-Rewards" (.40), and "Importance-Rewards" (.32). It was suggested that each model could have utility in a specific context and within a well-defined conceptual framework. An attempt was made to relate each model to those contexts in which its use would be most appropriate.

For those Ss high in intrinsic value orientation and low in extrinsic value orientation, satisfaction with the work itself was not the most significant determinant of overall satisfaction. However, satisfaction with work environment factors was the most significant determinant of overall satisfaction for those Ss high in extrinsic value orientation and low in intrinsic value orientation. Finally
the high intrinsic/low extrinsic group was significantly more satisfied in terms of overall as well as job facet satisfaction across all facets than the high extrinsic/low intrinsic group. These results were discussed in terms of an organizational climate variable.

We are now in the latter stages of the field study. The summary table indicates work performed and to be performed.

LABORATORY INVESTIGATIONS

A laboratory for studying monitoring and maintenance was created at the University of Akron under subcontract.

The Monitoring Task

The basic monitoring task consists of identifying symbols projected on a screen in random locations. The stimuli are numerous geometric shapes projected on a 23" x 23" screen by Kodak Ektographic slide projectors (Model E-2). In order to minimize visual loading cues, slides are presented to each subject alternately from two projectors. McKinsey dissolve control units (Model AD-2) are adjusted so as to minimize changes in light intensity. The screens are divided into 6 areas.

There are four booths in which the subjects are seated in front of the screens. Two slide projectors service each booth. The rate of presentation of the slides is controlled for all four booths by an Optisonic's Sound-o-matic 1 cassette programmer-recorder. In this way all four subjects simultaneously receive identical stimuli. The subjects responses, both latency and errors, are recorded by a Lafayette Instrument Company recorder (Model 76103).

The experimental design involves both vertical and horizontal job enlargement. In addition, is simultaneous vertical and horizontal enlargement as part of the basic research design.
Summary Table for Field Study

<table>
<thead>
<tr>
<th>Stage</th>
<th>Objectives</th>
<th>Measures</th>
<th>Methods</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To arrive at a set of attributes that reflect intrinsic motivational properties of jobs</td>
<td>g, s, and p measures; job descriptions (about 25), ratings on each attribute for each job description by every subject</td>
<td>Literature review and synthesis of existing theory and data</td>
<td>Isolation of a minimum number of structural variables that describe intrinsic motivating properties of jobs</td>
</tr>
<tr>
<td>2</td>
<td>Investigate problem of job redefinition across several job levels--superior, subordinate, job analysis and relate to g, s and p measures</td>
<td>Each subject in sample may give an overall rating or a preference judgment for each job in terms of his perceived satisfaction</td>
<td>Compare means and variances of attribute ratings across subject groups; relate ratings to g, s, and p measures within groups</td>
<td>Quantitative data that shows how jobs are redefined by different groups and how job perception relates to individual differences</td>
</tr>
<tr>
<td>3</td>
<td>To obtain importance weights for each job attribute, cross validate the weights, and relate to g, s, and p measures</td>
<td>Either experimental manipulation of attributes in lab setting and/or selection of real jobs that vary on attributes</td>
<td>Either regression analysis or Srinivasan's (1971) procedure to find weights</td>
<td>Importance weights for each job attribute for each individual; relate to g, s, p measures</td>
</tr>
<tr>
<td>4</td>
<td>To relate structural attributes of jobs to individual job outcomes</td>
<td></td>
<td>Compare subjects subjective perceptions of time, boredom, and satisfaction for different amounts of job attributes</td>
<td>Evidence to show the relevance of the job attributes for affecting workers intrinsic motivation</td>
</tr>
</tbody>
</table>

BEST COPY AVAILABLE
The first set of studies focused upon the decision-making and responsibility dimensions based on completed pilot studies. The physical characteristics of the display were systematically varied. Physical characteristics varied included: frequency of signal occurrence, signal-to-noise ratio, intersignal interval, display density, and knowledge of results.

Before beginning the test session on the monitoring task all subjects were given a battery of tests which are related to the basic objectives of the study. Upon completion of the monitoring task, subjects were given selected work-related measures.

The Maintenance Task

Based upon the results of the field studies of maintenance personnel, a laboratory maintenance task was constructed to deal with the independent variables of variety, independence, learning new skills, and closure. The maintenance task involved problem diagnosis where the independent elements were systematically varied within the general context of the research design. The job structure questionnaire used in the field studies was administered to the laboratory subjects. Technical reports are expected to be completed by the end of 1974 on this work which is continuing at the University of Akron.
DISTRIBUTION LIST

NAVY

4 Dr. Marshall J. Farr, Director
Personnel and Training Research
Programs
Office of Naval Research (Code 458)
Arlington, VA 22217

1 Dr. Lee Miller
Naval Air Systems Command
AIR-413E
Washington, DC 20361

1 CAPT John F. Riley, USN
Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155

1 Chief
Bureau of Medicine & Surgery
Research Division (Code 713)
Washington, DC 20372

1 Chairman
Behavioral Science Dept.
Naval Command & Management Div.
U.S. Naval Academy
Luce Hall
Annapolis, MD 21402

1 Chief of Naval Education & Training
Naval Air Station
Pensacola, FL 32508
Att: Capt. Bruce Stone, USN

1 Mr. Arnold Rubinstein
Naval Material Command
(NAVMAT 03424)
Room 820, Crystal Plaza #6
Washington, DC 20360

1 Commanding Officer
Naval Medical Neuropsychiatric
Research Unit
San Diego, CA 92152

1 Director, Navy Occupational Task
Analysis Program (NOTAP)
Naval Personnel Program Support
Activity
Building 1304, Bolling AFB
Washington, DC 20336

1 Dr. Richard J. Niehaus
Office of Civilian Manpower Mgmt.
Code 06A
Washington, DC 20390

1 ONR Branch Office
495 Summer Street
Boston, MA 02210
Attn: Research Psychologist

1 ONR Branch Office
1030 East Green Street
Pasadena, CA 91101
Att: E. E. Gloye

1 ONR Branch Office
536 South Clark Street
Chicago, IL 60605
Att: M. A. Bertin

1 Office of Naval Research
Area Office
207 West 24th Street
New York, NY 10011

6 Director
Naval Research Laboratory
Code 2627
Washington, D.C. 20390

12 Defense Documentation Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, VA 22314

1 Special Assistant for Manpower
OASN (MERA)
Pentagon, Room 4E794
Washington, D.C. 20350

1 LCDR Charles J. Theisen, Jr.
MSC, USN
4024
Naval Air Development Center
Warminster, PA 18974

1 Chief of Naval Reserve
Code 3055
New Orleans, LA 70146
Air Force
1 Research Branch
AF/DPMYAR
Randolph AFB, TX 78148
1 AFHRL/DOJN
Stop #63
Lackland AFB, TX 78236
1 Dr. Martin Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230
1 Major P.J. DeLeo
Instructional Technology Branch
AF Human Resources Laboratory
Lowry AFB, CO 80230
1 APOSRL/NL
1400 Wilson Boulevard
Arlington, VA 22209
1 Commandant
USAF School of Aerospace Medicine
Aeromedical Library (SUL-4)
Brooks AFB, TX 78235

Coast Guard
1 Mr. Joseph J. Cowan, Chief
Psychological Research Branch
(G-P-1/62)
U.S. Coast Guard Headquarters
Washington, DC 20590

Other DOD
1 Lt. Col. Henry L. Taylor, USAF
Military Assistant for Human Resources
OAD (E&LS) ODDR&E
Pentagon, Room 3D129
Washington, DC 20301

Other Government
1 Dr. Lorraine D. Eyde
Personnel Research & Development Center
U.S. Civil Service Commission
1900 E. Street, N.W.
Washington, DC 20415
1 Dr. William Gorham, Director
Personnel Research & Development Center
U.S. Civil Service Commission
1900 E. Street, N.W.
Washington, DC 20415
1 Dr. Vern Urry
Personnel Research & Development Center
U.S. Civil Service Commission
1900 E. Street, N.W.
Washington, DC 20415

Miscellaneous
1 Dr. Richard C. Atkinson
Stanford University
Department of Psychology
Stanford, CA 94305
1 Dr. Gerald V. Barrett
University of Akron
Department of Psychology
Akron, OH 44325
1 Mr. Kenneth M. Bromberg
Manager - Washington Operations
Information Concepts, Inc.
1701 North Fort Myer Drive
Arlington, VA 22209
1 Century Research Corporation
4113 Lee Highway
Arlington, VA 22207

1 Dr. Kenneth E. Clark
University of Rochester
College of Arts & Sciences
River Campus Station
Rochester, NY 14627

1 Dr. H. Peter Dachler
University of Maryland
Department of Psychology
College Park, MD 20742

1 Dr. Rene' V. Dawis
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

1 Dr. Norman R. Dixon
Room 170
190 Lothrop Street
Pittsburgh, PA 15260

1 Dr. Robert Dubin
University of California
Graduate School of Administration
Irvine, CA 92664

1 Dr. Marvin D. Dunnette
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

1 ERIC
Processing & Reference Facility
4833 Rugby Avenue
Bethesda, MD 20014

1 Dr. Victor Fields
Montgomery College
Department of Psychology
Rockville, MD 20850

1 Dr. Edwin A. Fleishman
American Institutes for Research
Foxhall Square
3301 New Mexico Avenue, N.W.
Washington, DC 20016

1 Dr. M.D. Havron
Human Sciences Research, Inc.
7710 Old Spring House Road
West Gate Industrial Park
McLean, VA 22101

1 Dr. Lawrence B. Johnson
Lawrence Johnson & Associates, Inc.
200 S. Street, N.W., Suite 502
Washington, DC 20009

1 Dr. Ernest J. McCormick
Purdue University
Department of Psychological Sciences
Lafayette, IN 47907

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Park
Goleta, CA 93017

1 Mr. Edmond Marks
405 Old Main
Pennsylvania State University
University Park, PA 16802

1 Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, VA 22207

1 Dr. Diane M. Ramsey-Klee
R-K Research & System Design
3947 Ridgemont Drive
Malibu, CA 90265

1 Dr. Joseph W. Rigney
University of Southern California
Behavioral Technology Laboratories
3717 South Grand
Los Angeles, CA 90007
1 Dr. Leonard L. Rosenbaum, Chairman
 Montgomery College
 Department of Psychology
 Rockville, MD 20850

1 Dr. George E. Rowland
 Rowland and Company, Inc.
 P.O. Box 61
 Haddonfield, NJ 08033

1 Dr. Arthur I. Siegel
 Applied Psychological Services
 404 East Lancaster Avenue
 Wayne, PA 19087

1 Dr. C. Harold Stone
 1428 Virginia Avenue
 Glendale, CA 91202

1 Dr. David J. Weiss
 University of Minnesota
 Department of Psychology
 Minneapolis, MN 55455