Module Thirteen: Series AC RLC Circuits and Resonance; Basic Electricity and Electronics Individualized Learning System.

Bureau of Naval Personnel, Washington, D.C.

NAVPERS-94558-13a

Jan 72

95p.; For other modules in the series, see CE 002 573-589

Course Content; *Electricity; *Electronics; Individualized Instruction; Individualized Programs; Industrial Education; Military Training; Post Secondary Education; *Programed Instruction; *Programed Materials; Study Guides; Trade and Industrial Education; Units of Study (Subject Fields)

In this module the student will combine RL (resistive-inductance) and RC (resistive-capacitive) circuits and learn some of the phenomena which result. The module is divided into four lessons: solving RLC (resistive-inductance-capacitive) circuits, resonant frequency in series circuits, conditions of series resonance, and experiments with series resonance. Each lesson consists of an overview, a list of study resources, lesson narratives, programed instructional materials, and lesson summaries. (Author/BP)
BASIC ELECTRICITY AND ELECTRONICS

INDIVIDUALIZED LEARNING SYSTEM

MODULE THIRTEEN

SERIES AC RLC CIRCUITS AND RESONANCE

Study Booklet

BUREAU OF NAVAL PERSONNEL

January 1972
OVERVIEW
MODULE THIRTEEN
SERIES AC RLC CIRCUITS AND RESONANCE

In this module you will combine RL and RC circuits and learn some of the phenomena which result.

For you to more easily learn the above, this module has been divided into the following four lessons:

Lesson I. Solving RLC Circuits
Lesson II. Resonant Frequency in Series Circuits
Lesson III. Conditions of Series Resonance
Lesson IV. Experiments with Series Resonance

TURN TO THE FOLLOWING PAGE AND BEGIN LESSON I.
Solving RLC Circuits
OVERVIEW

LESSON I

Solving RLC Circuits

In this lesson you will study and learn about the following:

- the impedance triangle
- voltage drops
- other circuit quantities
- quality of a coil
- deriving the formula for Q
- the value of Q
- effective or AC resistance
- skin effect
- proximity effect

BEFORE YOU START THIS LESSON, PREVIEW THE LIST OF STUDY RESOURCES ON THE NEXT PAGE.
LIST OF STUDY RESOURCES
LESSON I

Solving RLC Circuits

To learn the material in this lesson, you have the option of choosing, according to your experience and preferences, any or all of the following:

STUDY BOOKLET:
Lesson Narrative
Programmed Instruction
Lesson Summary

ENRICHMENT MATERIAL:
NAVPERS 93400A-1b "Basic Electricity, Alternating Current."

AUDIO-VISUAL:
Sound-Slide Presentation - "Solving for Total Impedance and Total Voltage."

YOU MAY NOW STUDY ANY OR ALL OF THE RESOURCES LISTED ABOVE. YOU MAY TAKE THE PROGRESS CHECK AT ANY TIME.
Volts in Series

The voltage drops in a series RLC circuit have, of course, phase differences. Because of this, it is necessary to use instantaneous values and graphs or vectors to find the total values in the circuit.

When using vectors, current is used as the reference, for it is the value which has the same phase (is common) in all parts of the circuit. The drop across the resistance is in phase with the current and so is represented with a vector in the standard position. The capacitor voltage drop lags circuit current by 90° and the voltage across the inductor leads current by 90°. Combining either the instantaneous values or the vectors for E_C and E_L reduces the value of the larger one. In other words, you must subtract the smaller value from the larger.
The diagrams on the preceding page show, graphically and by vectors, the addition of 100 volts E_L and 80 volts E_C. They show that the voltages are in direct opposition, so that the resultant voltage (the voltage which affects electron movement) is the difference between E_L and E_C. This circuit, then acts just like a circuit with 20 volts dropped across a single inductor.

Rectangular notation provides a convenient method for finding the total voltage in a series RLC circuit like this one:

$$E_T = E_R + jE_L - jE_C$$

$$= 40 \, \text{v} + j70 \, \text{v} - j40 \, \text{v}$$

$$= 40 \, \text{v} + j30 \, \text{v}$$

Impedance

Once again voltage and impedance are directly related, so the impedance can be found in the same way as total voltage. In the circuit diagram on the following page, the values of resistance and reactance are written in rectangular form then added.
The circuit impedance is $15 + j20$ ohms or, in polar form, $25/53.1^\circ$ ohms. Current is therefore 4 amperes, and the phase angle is -53.1°. So far as the overall effect on the source is concerned, this circuit could be replaced with a 15 ohm resistor in series with an inductor having a reactance of 20 ohms, but the individual components will develop much greater voltage than the source provides to the circuit because of the cancellation between E_L and E_C. For example, E_{L1} is 80 volts, E_{L2} is 40 volts, and E_{L3} is 40 volts for a total of 160 volts dropped across the inductors. This increase in voltage can sometimes be useful, and you will learn more about it later.

Now work the following problems for practice with these concepts.
Solve the RLC circuit shown.

By using the formula $P_t = I^2 R$, we find $P_t = 120$ w.

By the formula $P_a = E \times I$, $P_a = 200$ va.

You know that $\theta = -53.1^\circ$, and PF is equal to the $\cos \theta$ or 0.6.

Solve this RLC circuit.

Draw the Vector Diagrams

$Z_T = 40 \ \Omega - j30 \ \Omega$ or $50 \ \Omega / -36.9^\circ$; $I_T = 2 \ a$; $E_R = 80 \ v$;

$E_L = 40 \ v$; $E_C = 100 \ v$; $P_t = 160 \ w$; $P_a = 200 \ va$; $PF = 0.8$;

$\theta = -36.9^\circ$
Figure of Merit

The figure of merit (Q) of a reactor is a measure of how close the reactor comes to having all reactance and no resistance. For example, a coil with a high Q is one with very little resistance in its wiring. This means that very little power is dissipated in the coil and nearly all the power delivered to the coil is stored and later returned to the source. Q is defined as the ratio of power stored to power dissipated in the coil $\frac{P_x}{P_t}$. Since the reactive (stored) power is found by I^2X_L and true (dissipated) power by I^2R, this can be written as $Q = \frac{I^2X_L}{I^2R}$. Cancellation of I^2 in the fraction leaves $Q = \frac{X_L}{R}$, a more useful equation for most practical uses.

The figure of merit is seldom used with capacitors, for their construction normally keeps their internal resistance so low that it can be ignored. This is not true of inductors; however, because the wires used to make coils usually have significant amounts of resistance, and the Q of the coil is affected. In most RLC circuits, the coil contains nearly all the resistance of the circuit, so the Q of the coil can be used as the circuit Q.

A coil with a Q of ten or greater is considered a high Q coil. This is because, in most circuits at least, a resistance one-tenth or less of the reactance will have so little effect on the circuit that it can be ignored. Compare these coil values for a pure inductive reactance of 500 ohms with those for a coil containing 500 ohms of inductive reactance in series with 50 ohms of resistance. (NOTE: The dotted line around the inductor and R_{eff} indicate that both are contained in the coil.)

\[Z = 50 \text{V} \]
\[X_L = 500 \Omega \]
\[I = 100 \text{ ma} \]
\[/\theta = 90° \]

\[A. \ Z = 500 \Omega \]
\[I = 100 \text{ ma} \]
\[/\theta = 90° \]

\[Z = 502.3 \]
\[I = 99.5 \text{ ma} \]
\[/\theta = 84.3° \]

\[B. \ Z = 502.3 \]

10
The differences between these two circuits are smaller than you could detect with normal test equipment and can be considered identical.

Find Q, ω, Z and I for this circuit.

$Q = 2$; $\omega = 63.4^\circ$; $Z = 559 \ \Omega$; $I = 89.4$ ma

The circuit above illustrates a low Q coil. Compare these values to those for the ideal coil and high Q coil you worked out earlier. As a rule of thumb, if the coil Q is 10 or more (reactance is at least 10 times the resistance), ignore the resistance and treat the coil as a pure inductance. If Q is less than 10, include the resistance in your calculations.

The resistance we have discussed so far has been a constant value unaffected by any condition within a circuit. Unfortunately, this is not exactly the case, and frequency of the applied voltage often affects circuit resistance. When the Q of a circuit is figured, the resistance used must be the actual resistance of the circuit at the applied frequency. This is called the AC resistance or effective resistance. The Q of a circuit is also defined as $\frac{X_L}{R}$ but in this case R includes all the resistance in the circuit, and not just the AC resistance of the coil. Unless otherwise specified, when dealing with series circuits Q means the Q of the circuit rather than the Q of the coil.

AC resistance is the result of two actions in a wire carrying an alternating current. Skin effect results from self induction inside the conductor which causes electrons to crowd away from the center of the wire toward its outer surfaces. This effectively reduces the cross section of the wire, increasing its resistance.

At fairly high frequencies, no electrons travel near the center of the wire, so hollow tubing can be used to save weight and expense in building a circuit without any loss of efficiency.
Proximity effect is the second major factor of AC resistance. The proximity effect occurs when wires carrying AC are placed side by side. The electrons in each wire tend to move away from the adjacent wire like this:

This further reduces the cross-sectional area available for current flow and increases the wire's resistance.

Both skin effect and proximity effect cause resistance to increase with frequency. Since both X_L and R increase as frequency increases, the Q of a circuit will remain nearly constant over a broad frequency range.
1. Recall that E and I are in phase in a resistive circuit, E leads I in an inductive circuit, and I leads E in a capacitive circuit.

Plot E_L, E_R, and E_C on the graph shown below.
2. Since the voltage drop across X_L leads the current by 90°, X_L is plotted upward in the $+\angle$ position on an impedance triangle.

Since the voltage drop across X_C lags the current by 90°, X_C is plotted downward or in the $-\angle$ position.

(downward; $-\angle$)
3. Since \(E \) and \(I \) are in phase through a resistance, \(R \) is plotted in the standard vector position.

On the following graph, indicate where the values of \(X_L \), and \(X_C \), and \(R \) are plotted by labeling the respective vectors.
4. Since X_L is plotted opposite X_C, they can be added algebraically.

5. Recall from Module Twelve that the j operator is simply another tool for solving AC resistive circuit problems. $\Lambda + j$ indicates a 90° counterclockwise rotation or an X_L quantity, a $-j$ indicates a 90° clockwise rotation or an X_C quantity.
6. To express a series RLC circuit in rectangular notation you must express each component in rectangular notation and algebraically add.

The impedance of this circuit is:

\[
\begin{align*}
R &= 50 + j0 \\
X_L &= 0 + j70 \\
X_C &= 0 - j120 \\
\text{TOTAL} &= 50 - j50
\end{align*}
\]

Express the impedance of the following circuit in rectangular notation.

\[
(75 + j0) + (0 + j170) + (0 - j1250) \Rightarrow 75 - j800
\]
7. Algebraic addition enables us to simplify the circuit, leaving either a simple RL or RC circuit to solve.

Solve the following for all values indicated.

\(X_L = 70 \)

\[
\begin{align*}
\text{a. } & \frac{1}{Z} = \\
\text{b. } & Z_T = \\
\text{c. } & \text{sine} = \\
\text{d. } & \text{cosine} = \\
\text{e. } & \text{TAN} =
\end{align*}
\]

(a. 53.1°; b. 30 + j40 or 50; c. 0.7997; d. 0.6004; e. 1.3319)
8. Solving a series RLC circuit for voltage values is accomplished in the same way as solving for impedance.

\[E_L = 0 + j50 \text{ v} \]
\[E_R = 40 \text{ v} + j0 \]
\[E_C = 0 - j80 \text{ v} \]

b. Express the voltage across each component in rectangular notation.

\[E_R = 40 \text{ v} + j0 \]
\[E_L = 0 + j50 \text{ v} \]
\[E_C = 0 - j80 \text{ v} \]

c. Algebraically add
\[40 \text{ v} - j30 \text{ v} \]

d. Determine the TAN \(\theta \)
\[.75 \]

e. Determine \(\theta \)
\[-36.9^\circ \]

f. Determine \(E_a \)
\[50 \text{ v} \]

Solve for \(E_a \).

\[(50 \text{ v} / 36.9^\circ) \]
9. Recall that only resistance dissipates true power.

The formula for true power is:

- a. \(P_t = EI \).
- b. \(P_t = IR \).
- c. \(P_t = I^2R \).
- d. \(P_t = \frac{E}{R} \).

10. Use of the formula \(P = EI_T \) results in apparent power. However, recall that in a reactive circuit true power may be determined by the formula \(P_t = E_a \times I_T \times \cos \theta \).

(150 va; 102 w)

11. Solve.

- a. \(E_a = \) ________
- b. \(\theta = \) ________
- c. \(Z_T = \) ________
- d. \(P_a = \) ________
- e. \(P_t = \) ________

(THIS IS A TEST FRAME. COMPARE YOUR ANSWERS WITH THE CORRECT ANSWERS GIVEN AT THE TOP OF THE NEXT PAGE.)
ANSWERS - TEST FRAME 11

a. 141.4 v

b. 45°

c. 70.7 Ω

d. 282.8 va

e. 200 w

IF ALL YOUR ANSWERS MATCH THE CORRECT ANSWERS, YOU MAY GO TO TEST FRAME 31. OTHERWISE, GO BACK TO FRAME 1 AND TAKE THE PROGRAMMED SEQUENCE BEFORE TAKING TEST FRAME 11 AGAIN.

12. To this point, we have talked about resistance in a circuit as though it were a fixed value and actually a physical component. Let's take a brief look at what the resistance in a circuit actually is.

Besides the physical resistors, the conductor has resistance and consequently the coil has resistance.

The total resistance in the circuit below is only a physical resistor.

true/false

(false)
(We have said in the past that frequency has no effect upon resistance; however, we need to qualify this statement a bit. Frequency does have a slight effect on resistance.)

13. Recall that alternating current causes flux lines to expand and collapse around a conductor. These flux lines induce a voltage into the conductor. The induced voltage opposes the current and tends to decrease it. This induced voltage is greater at the center of the conductor where the flux lines are concentrated. The effect of this is to force the electrons to move towards the skin of the conductor.

By forcing current to flow along the skin of the conductor, the cross-sectional area of the conductor is effectively _______.

(reduced or decreased)

14. When the cross-sectional area of a given conductor decreases, what happens to the resistance of the conductor?

(it increases)

15. Increasing frequency increases the skin effect. Thus, the higher the frequency, the _________ the resistance.

(higher or greater)
16. Because of skin effect, hollow conductors are sometimes used to reduce weight and cost. In a high-frequency circuit a reduction in weight and cost may be obtained by using ____ conductors.

(hollow)

17. There is another factor which causes resistance to increase with frequency. This is called the proximity effect. The proximity effect is also caused by the magnetic field around a conductor. This effect, however, is caused in adjacent conductors.

The proximity effect causes resistance to ___ when frequency decreases. ___/___

(decrease)

18. Electrons in conductors placed side by side are forced away from the parts of the conductors nearest each other. Here is an end view of two wires showing electron distribution resulting from both skin effect and proximity effect:

Proximity effect is similar to skin effect in that the effective cross-sectional area of the conductor is ____.

(reduced)

19. Proximity effect causes the resistance of the conductor within a coil to increase as frequency ____.

(increases)
20. The method used to reduce the problem of proximity effect is to space the turns of the windings farther apart. This method reduces the amount of voltage induced, thus reducing the increase in (resistance).

21. Proximity effect and skin effect cause a conductor to offer more resistance to AC than to DC. Because of this, we call the resistance offered to AC the effective or AC resistance, abbreviated \(R_{\text{eff}} \) or \(R_{\text{ac}} \). The resistance any inductor offers to AC is somewhat greater than that offered to DC, and it is called the (effective or AC) resistance.

22. The purpose for discussing the effective resistance of a coil is to discover its effect on the ability of a coil to store energy. The greater the resistance, the more power (lost or dissipated).

23. The ratio of the amount of energy stored in an inductor to the amount of energy lost in the same period of time indicates the quality of a coil. The quality of a coil is also referred to as the figure of merit of a coil and is abbreviated Q. The Q of a coil may be indicated as: \(Q = \frac{P_x}{P_t} \).
24. Using the formula \(Q = \frac{P_x}{P_t} \), and substituting the equivalent values for \(P_x \) and \(P_t \), results in \(Q = \frac{1^2 X_L}{1^2 R_{ac}} \).

(Note that \(R_{ac} \) must be used to determine the correct value of true power.)

Deleting the common factors in the numerator and denominator result in the formula for the Q of a coil:

\[
Q = \frac{X_L}{R_{ac}}
\]

25. Since both \(X_L \) and \(R_{ac} \) are directly proportional to frequency, how is \(Q \) affected by a change in frequency?

(Not appreciably affected.)

26. The Q of a series circuit and the Q of a coil are determined in the same way: \(Q = \frac{X_L}{R_{ac}} \). The only difference between the two is the value of resistance.

\[
\begin{align*}
\text{X_L} & \quad 100\Omega \\
R_{ac} & \quad 2\Omega \\
R_l & \quad 18\Omega
\end{align*}
\]

(Note: The dotted line around the inductor and \(R_{ac} \) indicate that both are contained in the coil.)

a. Determine the Q of the coil. __________

b. Determine the Q of the circuit. __________

(a. \(Q \) of the coil = 50; b. \(Q \) of the circuit = 5)
27. Unless otherwise specified, when dealing with series circuits, Q means the Q of the circuit rather than the Q of the coil.

The Q of a series circuit is determined by using the values of the X_L of the coil and ____________.

(total effective circuit resistance)

28. When Q is 10 or greater, the coil is considered to be a high-Q coil. A coil with a Q of less than 10 is a low-Q coil. In solving high-Q circuits, the resistance is normally disregarded and only the reactance is considered.

When solving a circuit with a Q of 2, the resistance is ____________.

(considered or important)

29. You may have recognized that the formulas for the tangent and Q are the same.

What is the ϕ for a circuit with a Q of 10?

(approximately 84.2°)

30. You can see that ϕ is very near 90°; therefore, the circuit is almost purely reactive. This is the reason the resistance in a circuit with a Q of 10 or more is disregarded.

(Go to the next frame.)

31. Solve for Z_T:

![Diagram](image)

$Z_T = ____________

(This is a test frame. Compare your answer with the correct answer given at the top of the next page.)
ANSWERS - TEST FRAME 31

200 .. for all practical purposes

IF YOUR ANSWER IS INCORRECT, GO BACK TO FRAME 12 AND TAKE THE PROGRAMMED SEQUENCE.

IF YOUR ANSWER IS CORRECT, YOU MAY TAKE THE PROGRESS CHECK, OR YOU MAY STUDY ANY OF THE OTHER RESOURCES LISTED. IF YOU TAKE THE PROGRESS CHECK AND ANSWER ALL THE QUESTIONS CORRECTLY, GO TO THE NEXT LESSON. IF NOT, STUDY ANY METHOD OF INSTRUCTION YOU WISH UNTIL YOU CAN ANSWER ALL THE QUESTIONS CORRECTLY.
In this lesson you will learn how to solve series RLC (combination resistive-inductive-capacitive) circuits.

Voltage leads current by 90 electrical degrees in a purely inductive circuit, lags current by 90 electrical degrees in a purely capacitive circuit, and is in phase with current in a purely resistive circuit. Since the individual voltages are out of phase, vectors must be used to solve for total voltage.

Impedance must also be solved vectorially because the reactive components (inductors and capacitors) vary in the opposition to circuit current as the applied frequency is changed. Circuit current is used as the reference in all series circuits because it is common to all parts of the circuit. Since E and I are in phase across a resistive component, E_R and I_R are plotted in the standard vector position. Kirchhoff's Voltage Law, "Sum of the voltage drops around a circuit must equal source voltage," still applies, and the instantaneous and vector sums of the voltage drops across the components equal the applied voltage, although the individual voltages across the capacitor and the inductor may be many times the voltage applied.

A coil has a figure of merit called the quality (Q) of the coil. The Q of a coil is X_L divided by the effective resistance of the coil. The effective resistance (R_{eff} or R_{ac}) varies with frequency as does X_L; therefore, Q does not vary appreciably as frequency changes. The variation of R_{eff} caused by frequency is a result of two factors - the skin effect and the proximity effect.

AT THIS POINT, YOU MAY TAKE THE LESSON PROGRESS CHECK, OR YOU MAY STUDY THE LESSON NARRATIVE OR THE PROGRAMMED INSTRUCTION OR BOTH. IF YOU TAKE THE PROGRESS CHECK AND ANSWER ALL OF THE QUESTIONS CORRECTLY, GO TO THE NEXT LESSON. IF NOT, STUDY ANOTHER METHOD OF INSTRUCTION UNTIL YOU CAN ANSWER ALL THE QUESTIONS CORRECTLY.
BASIC ELECTRICITY AND ELECTRONICS
INDIVIDUALIZED LEARNING SYSTEM

MODULE THIRTEEN

LESSON II

Series AC Circuits at Resonance

Study Booklet

Bureau of Naval Personnel
January 1972
Overview

OVERVIEW
Lesson II

Series AC Circuits at Resonance

In this lesson you will study and learn about the following:

- resonant frequency
- circuit analysis at f_0
- voltage gain
- solving for resonant frequency

TURN TO THE FOLLOWING PAGE AND BEGIN LESSON II.
Study Resources

List of Study Resources
Lesson II

Series AC Circuits at Resonance

To learn the material in this lesson, you have the option of choosing, according to your experience and preferences, any or all of the following:

STUDY BOOKLET:
Lesson Narrative
Programmed Instruction
Lesson Summary

ENRICHMENT MATERIAL:
NAVPERS 93400A-1b "Basic Electricity, Alternating Current."
Powers of Ten Program.

AUDIO-VISUAL:
Slide/Sound Presentation - "Factors Affecting Resonant Frequency."

YOU MAY NOW STUDY ANY OR ALL OF THE RESOURCES LISTED ABOVE. YOU MAY TAKE THE PROGRESS CHECK AT ANY TIME.
Looking at this series RLC circuit, we see that the values of X_L and X_C both equal 100 ohms. Let's draw the impedance vector diagram to compute Z_T, and see what happens.

Current is the common reference and, as always in a series circuit, the resistive values are plotted in the standard position with current.

The X_L vector is rotated 90° counterclockwise, the X_C vector is rotated 90° clockwise. Since the X_L and X_C vectors are equal and in opposite directions, the voltages across them cancel each other.

$$X_L = +j100 \ \Omega$$
$$X_C = -j100 \ \Omega$$

Reactance $= 0 \ \Omega$

For all practical purposes the circuit at this frequency has only one kind of opposition -- resistance.

Resistance is the only thing that limits current, and therefore, the source sees the circuit as being purely resistive. In a purely resistive circuit, all quantities are in phase and the vector representation is $R = 10 \ \Omega$. The phase angle is 0.

This circuit condition, in which $X_L = X_C$ and I is limited only by R, exists at the resonant frequency. For every value of L and C in a series circuit, there is a single frequency which causes X_L to equal X_C. That frequency is the resonant frequency of the circuit -- abbreviated f_0.

At f_0, these conditions exist in a series RCL circuit:

$$X_L = X_C$$
$$Z_T$$ is minimum (R only)
$$I_T$$ is maximum (limited only by R)
Analyzing the Circuit at f_0

Let's look at the circuit again to determine other factors about it. Since at f_0 the circuit appears purely resistive, \(I = 0 \), PF is 1, and \(Z_T = 10 \Omega \).

![Circuit Diagram]

Solve the above circuit.

\[
\begin{align*}
I_T &= \\
P_t &= \\
P_a &= \\
E_R &=
\end{align*}
\]

By Ohm's Law, \(I_T = 10 \, \text{a} \); \(P_t = 1000 \, \text{w} \); \(P_a = 1000 \, \text{va} \); \(E_R = 100 \, \text{v} \).

Now you may be assuming that since the full applied voltage of 100 volts is dropped across the resistor, there is no voltage drop across the coil or the capacitor, but this is not the case.

Voltage Drops at f_0

Remember that in AC series circuits which have resistive and reactive components, we must compute the total voltage drops vectorially.
Therefore, with 10 amps current through the coil, \(E_L = I \times X_L \)

or \(E_L = 10 \times 100 \Omega \)

\(E_L = 1000 \text{ v} \)

We know that \(X_C \) is equal to \(X_L \); therefore, \(E_C \) also equals 1000 volts.

We can plot the voltage vectors this way.

\[E_L = +j1000 \text{ v} \]

\[E_C = -j1000 \text{ v} \]

Total = 0 v

Because these voltages are 180° out of phase, they cancel each other, leaving the full applied voltage of 100 volts dropped across the resistance.

If we connect a voltmeter across both reactive components as shown, the meter indicates 0 volts.

This is true because \(E_L \) and \(E_C \) are equal and opposite and cancel each other.

If, however, we connect meters across the individual components as shown here, the meter reads 1000 volts in each case. This means we can tap off 1000 volts across either the inductor or the capacitor. Notice that the source voltage is only 100 volts, but at \(f_o \), the circuit is capable of providing a greater voltage than the amount supplied by the source.

This increase of voltage is called voltage gain.
Solving for Resonant Frequency

We have said that for every value of L and C, a frequency exists which causes X_L to equal X_C. This is the resonant frequency.

The formula for finding f_0 is derived from the formulas for X_C and X_L.

At f_0: $X_L = X_C$

Substituting: $2\pi f_0 L = \frac{1}{2\pi f_0 C}$

$2\pi f_0 C \cdot 2\pi f_0 L = 1$

$4\pi^2 f_0^2 LC = 1$

Solving for f_0^2: $f_0^2 = \frac{1}{4\pi^2 LC}$

Taking the square root of both sides: $f_0 = \frac{1}{2\pi\sqrt{LC}}$

Simplifying, $f_0 = \frac{0.159}{\sqrt{LC}}$

Using this equation, let's find f_0 for this circuit.

$\begin{align*}
 f_0 &= \frac{0.159}{\sqrt{LC}} \\
 f_0 &= \frac{0.159}{\sqrt{(1.27 \times 10^{-3}) \cdot (0.127 \times 10^{-6})}} \\
 f_0 &= \frac{0.159}{\sqrt{(1.27 \times 10^{-3}) \cdot (1.27 \times 10^{-7})}} \\
 f_0 &= \frac{0.159}{1.27 \times 10^{-5}} \\
 f_0 &= 12.5 \times 10^3 \text{ Hz or } 12.5 \text{ KHz}
\end{align*}$

(Note: If you do not understand the procedure for extracting the square root of a number containing a power of ten, refer to the Powers of Ten Program in the reference library.)
Practice:

Solve for f_0 when:

1. $L = 100 \text{ mh}$
 $C = 10 \text{ uf}$
 $f_0 = $

2. $L = 20 \text{ mh}$
 $C = 50 \text{ pf}$
 $f_0 = $

3. $L = 3 \text{ mh}$
 $C = 120 \text{ uf}$
 $f_0 = $

Check answers, and procedures if necessary, on following pages.
1. Solution:
\[f_0 = \frac{0.159}{LC} \]

\[f_0 = \frac{0.159}{(100 \times 10^{-3}) \times (10 \times 10^{-6})} \]

\[f_0 = \frac{0.159}{(100 \times 10^{-3}) \times (1 \times 10^{-5})} \]

\[f_0 = \frac{0.159}{100 \times 10^{-8}} \]

\[f_0 = \frac{0.159}{10 \times 10^{-4}} \]

\[f_0 = 0.159 \text{ KHz or } 159 \text{ Hz} \]

2. Solution:
\[f_0 = \frac{0.159}{\sqrt{(20 \times 10^{-3}) \times (50 \times 10^{-12})}} \]

\[f_0 = \frac{0.159}{\sqrt{(20 \times 10^{-3}) \times (5 \times 10^{-11})}} \]

\[f_0 = \frac{0.159}{100 \times 10^{-14}} \]

\[f_0 = \frac{0.159}{10 \times 10^{-7}} \]

\[f_0 = 0.159 \text{ MHz or } 159 \text{ KHz} \]
3. Solution: \[f_o = \frac{0.159}{\sqrt{(3 \times 10^{-3}) (120 \times 10^{-6})}} \]

\[f_o = \frac{0.159}{\sqrt{(3 \times 10^{-3}) (12 \times 10^{-5})}} \]

\[f_o = \frac{0.159}{\sqrt{36 \times 10^{-8}}} \]

\[f_o = \frac{0.159}{6 \times 10^{-4}} \]

\[f_o = 0.265 \text{ KHz or } 265 \text{ Hz} \]

AT THIS POINT, YOU MAY TAKE THE PROGRESS CHECK, OR YOU MAY STUDY ANY OF THE OTHER RESOURCES LISTED. IF YOU TAKE THE PROGRESS CHECK AND ANSWER ALL OF THE QUESTIONS CORRECTLY, GO TO THE NEXT LESSON. IF NOT, STUDY ANY METHOD OF INSTRUCTION YOU WISH UNTIL YOU CAN ANSWER ALL THE QUESTIONS CORRECTLY.
1. Both X_L and X_C within a series RLC circuit are affected by the frequency of the applied voltage.

(Note: Unless R is specified to be effective or AC resistance, it is considered not to be affected by frequency.)

Changing the frequency of the applied voltage causes:

a. L and C to change and R to remain the same.

b. X_L and R to change and C to remain the same.

c. X_L and X_C to change and R to remain the same.

d. X_C and R to change and L to remain the same.

2. If the frequency applied to an RLC series circuit is increased, X_L increases and X_C decreases.

X_L is ________ proportional, and X_C is ________ proportional to frequency.

(directly; inversely)
3. As frequency varies, the values of \(X_L \) and \(X_C \) change.

Solve for \(X_L \) and \(X_C \) in the circuit below using the applied frequency of 60 Hz in circuit A and 120 Hz in circuit B.

A.

\[
\begin{align*}
\text{60 Hz} & \quad \text{L 0.2h} \quad \text{R 120\Omega} \\
\text{C 50\mu F} &
\end{align*}
\]

\[
\begin{align*}
X_L &= \quad \ \ \\
X_C &=
\end{align*}
\]

B.

\[
\begin{align*}
\text{120Hz} & \quad \text{L 0.2h} \quad \text{R 120\Omega} \\
\text{C 50\mu F} &
\end{align*}
\]

\[
\begin{align*}
X_L &= \quad \ \ \\
X_C &=
\end{align*}
\]

(A. \(X_L = 75 \Omega \), \(X_C = 53 \Omega \); B. \(X_L = 150 \Omega \), \(X_C = 26.5 \Omega \))
4. Since frequency affects X_L and X_C, it also has an effect on total circuit impedance.

Solve for Z_T and θ in the circuit below.

\[Z_T = \boxed{123 \Omega}; \quad \theta = 10.8^\circ \]

5. A change in the applied frequency results in a corresponding change in Z_T and the circuit phase angle.

Solve the Z_T and θ in the circuit below.

\[Z_T = \boxed{174 \Omega}; \quad \theta = 45.9^\circ \]
6. When a frequency applied to a series RLC circuit causes X_L to equal X_C, the frequency is known as the resonant frequency for that circuit.

In the circuit represented by the vector diagram below, does frequency increase or decrease for the circuit to become resonant?

7. Remember, X_L increases as frequency increases; X_C increases as frequency decreases.

The vector diagram below represents a series RLC circuit at resonance. Decreasing frequency has what effect on the circuit?

(a) $R + X_C + X_L$
(b) $R + X_C + X_L$
(c) $R + X_C + X_L$
(d) (none of the above)
8. In a series RLC circuit at resonance, \(E_L \) cancels \(E_C \) and \(X_L \) and \(X_C \) no longer affect the total circuit values.

What component represents total impedance of the circuit below when it is at resonance?

![Diagram of RLC circuit](image)

(resistor)

9. The resultant of a vector diagram representing an RLC series circuit at resonance is resistance only.

At resonance, the circuit appears purely __________ to the source.

(resistive)

10. The formula used to find the resonant frequency for a given value of \(L \) and \(C \) is derived from the fact that, at resonance, \(X_L = X_C \).

\[X_L = X_C \]

Substituting Formula:
\[2\pi f L = \frac{1}{2\pi f C} \]

Cross Multiplying:
\[4\pi^2 f^2 L C = 1 \]

Isolating Frequency:
\[\frac{4\pi^2 f^2}{L C} = \frac{1}{4\pi^2 L C} \]

Resulting in:
\[f_0^2 = \frac{1}{4\pi^2 L C} \]

Take Square Root of Both Sides:
\[\sqrt{f_0^2} = \sqrt{\frac{1}{4\pi^2 L C}} \]
\[f_0 = \frac{1}{2\pi\sqrt{LC}} \]
Determine the resonant frequency of a circuit when $L = 50 \, \text{mh}$ and $C = 5 \, \text{f}$. $f_o = \ldots$

$(318 \, \text{Hz})$

11. Solve for f_o in the circuit shown.

\[
\begin{align*}
 f_o &= \frac{0.159}{\sqrt{LC}} \\
 f_o &= \frac{0.159}{\sqrt{20 \times 5 \times 10^{-6}}} \\
 f_o &= \frac{0.159}{\sqrt{100 \times 10^{-6}}} \\
 f_o &= \frac{0.159}{10 \times 10^{-3}} \\
 f_o &= 0.0159 \times 10^3 \text{ or } 15.9 \, \text{Hz}
\end{align*}
\]

(NOTE: If you do not understand how to extract the square root of numbers including powers of ten, refer to the Powers of Ten Program in the reference library.)
12. Solve for f_o in this circuit.

$$\text{R 30\,\Omega}$$

$$(f_o = 10 \text{ KHz})$$

13. At resonance, X_L and X_C are of _______ value.

14. Also under these conditions, the circuit impedance is _______.

15. Under resonant conditions, the circuit impedance is equal to circuit _______.

16. Since at resonance Z_T is equal to R, the circuit phase angle at resonance is _______.

$$(\text{zero})$$
17. Let's review the characteristics of a series RLC circuit at resonance.
 a. The values of X_L and X_C are __________.
 b. Z_T of the circuit is equal to the circuit __________.
 c. Circuit current is __________.
 d. Phase angle between E and I is __________.

(a. equal; b. resistance; c. maximum; d. zero)

18. We know that the circuit shown below is operating at resonance because X_C is equal to __________.

19. Since the circuit is operating at resonance, Z_T is equal to the __________. By Ohm's Law, current is __________ amps.

(resistance, 6)
20. Using Ohm's Law, we can solve for the voltage drop across each component.

The voltage drop across the resistor is \[\text{ volts}. \]

The voltage drop across the coil is \[\text{ volts}. \]

The voltage drop across the capacitor is \[\text{ volts}. \]

\[(120; \ 1200; \ 1200) \]

21. The source voltage is only 120 volts, yet \(E_L \) and \(E_C \) are 1200 volts each. This voltage gain is characteristic of series RLC circuits at resonance.

How is it possible to have a voltage drop across a component greater than the applied voltage? (The canceling effect of the opposing voltages across the capacitor and the inductor makes it possible.)
22. If a voltmeter is connected across point A to C in this series RLC circuit operating at resonance, what is the reading?

\[V \]

(zero)

23. If the voltmeter is connected from points D to E in the same circuit, the reading is equal to

\[V \]

(source voltage)

YOU MAY TAKE THE PROGRESS CHECK, OR YOU MAY STUDY ANY OF THE OTHER RESOURCES LISTED. IF YOU TAKE THE PROGRESS CHECK AND ANSWER ALL THE QUESTIONS CORRECTLY, GO TO THE NEXT LESSON. IF NOT, STUDY ANY METHOD OF INSTRUCTION YOU WISH UNTIL YOU CAN ANSWER ALL THE QUESTIONS CORRECTLY.
Series AC Circuits at Resonance

In this lesson, you will learn that when the value of X_L is equal to the value of X_C, a series RLC circuit is operating at a condition known as resonance. For any combination of values of L and C, there is a frequency which produces a value of X_L that is exactly equal to the value of X_C. The symbol for resonant frequency is f_0.

You will find that the voltage drops across the reactive components at resonance are also exactly equal, and that they are 180° out of phase; thus, they effectively cancel each other, and the entire source voltage is dropped across the circuit resistance.

At resonance, the total impedance of the circuit is equal to the value of R since X_L cancels X_C. Circuit current is maximum at resonance and limited only by the value of R. If the applied frequency is changed from the resonant frequency, Z_T increases and I_T decreases.

The formula for f_0 is $f_0 = \frac{1}{2\pi\sqrt{LC}}$, or $f_0 = 0.159\sqrt{\frac{1}{LC}}$. From the formula, you can see that if the value of L or C is changed, the resonant frequency changes. An increase of L or C causes a decrease in f_0.

AT THIS POINT, YOU MAY TAKE THE LESSON PROGRESS CHECK, OR YOU MAY STUDY THE LESSON NARRATIVE OR THE PROGRAMMED INSTRUCTION OR BOTH. IF YOU TAKE THE PROGRESS CHECK AND ANSWER ALL OF THE QUESTIONS CORRECTLY, GO TO THE NEXT LESSON. IF NOT, STUDY ANOTHER METHOD OF INSTRUCTION UNTIL YOU CAN ANSWER ALL THE QUESTIONS CORRECTLY.
MODULE THIRTEEN
LESSON III

Resonance in Series AC Circuits

Study Booklet

Bureau of Naval Personnel
January 1972
Resonance in Series AC Circuits

In this lesson, you will study and learn about the following:

- current and impedance curves at \(f_0 \)
- circuit behavior above \(f_0 \)
- circuit behavior below \(f_0 \)
- bandwidth
- effects of \(Q \) on bandwidth
- practical applications

BEFORE YOU START THIS LESSON, PREVIEW THE LIST OF STUDY RESOURCES ON THE NEXT PAGE.
LIST OF STUDY RESOURCES
LESSON III

Resonance in Series AC Circuits

To learn the material in this lesson, you have the option of choosing, according to your experience and preferences, any or all of the following:

STUDY BOOKLET:
Lesson Narrative
Programmed Instruction
Lesson Summary

ENRICHMENT MATERIAL:
NAVPERS 93400a-1b "Basic Electricity, Alternating Current."

YOU MAY NOW STUDY ANY OR ALL OF THE RESOURCES LISTED ABOVE. YOU MAY TAKE THE PROGRESS CHECK AT ANY TIME.
In this lesson we will analyze the behavior of a single series RLC circuit as three different frequencies are consecutively applied: resonant frequency, a frequency above f_o, and a frequency below f_o.

This is the circuit we analyzed in the previous lesson.

![Circuit Diagram]

We know that as this circuit is operating at f_o, these conditions exist:

- I_T = maximum
- Z_T = minimum (R only)
- $X_L = X_C$
- $E_L = E_C$

By the formula $f_o = \frac{0.159}{\sqrt{LC}}$, we can determine that f_o is 12.5 KHz.

To find the value of X_L, we can use the formula for X_L and use f_o for f:

$$X_L = 2\pi f_o L$$

$X_L = 98.55$ (approximately 100 ohms)

At f_o, $X_L = X_C$; therefore,

$$X_L = 100 \text{ ohms}$$

$X_L = +j100$, and $X_C = -j100$; the voltage across them oppose, since they are equal and they cancel each other. This leaves Z_T at a minimum with the resistance of 10 ohms being the only impedance.
Because Z_T is minimum, I is maximum at f_o and equal to 10 amps. We know that the source sees a purely resistive circuit. Then E and I are in phase and ϕ is 0. The power factor is 1.

By $P = I^2R$, true power equal 1000 w $(10^2 \times 10 \Omega)$. In a purely resistive circuit, true power equals apparent power; therefore, $P_a = 1000 \text{ va}$. We can prove this by the formula $P = E \times I$ $(100 \text{ v} \times 10 \text{ a} = 1000 \text{ va})$.

Current and Impedance Curves at f_o

Recall that earlier you saw curves representing the relationship of voltage and frequency for both RL circuits and RC circuits. A similar graph of current shows some relationships in a series RLC circuit.

At the peak of the current curve (maximum current) we have resonant frequency. The lines that are inversely proportional to I represent Z_T, so when I is maximum, Z_T is at its minimum.

Now for a better understanding of what resonance means, we will analyze the same circuit with the applied frequency above resonance.

Assume we have increased the frequency from 12.5 KHz to 13.125 KHz.
When \(f \) increases, what happens to:

\[
\begin{align*}
X_L & \quad \text{(Indicate with arrows.)} \\
X_C &
\end{align*}
\]

ANSWERS: \(X_L' \); \(X_C' \)

\(X_L \) increases to 105 \(\Omega \); \(X_C \) decreases to 95 \(\Omega \). The formulas prove this to you if you are in doubt: \(X_L = 2\pi f L \), \(X_C = \frac{0.159}{f C} \).

By algebraically adding, we can determine the value and direction of the reactive vector of the impedance vector diagram.

\[
\begin{align*}
X_L &= + j105 \Omega \\
X_C &= - j95 \Omega \\
\text{reactive vector} &= + j10 \Omega
\end{align*}
\]

Now the source effectively sees a circuit containing only \(R \) and \(X_L \). Notice that \(R \) and the effective \(X_L \) are equal.

What frequency condition exists when \(R \) and effective \(X_L \) are equal? __________

What is \(/\phi \)? ______________

When \(R = X_L \), we have the frequency cutoff point \((f_c) \). Since the resistance and reactance are equal, \(/\phi \) is 45°.co

At \(f_c \), we are at the half-power point, so \(P_t \) is 500 watts, or half of what it was in the purely resistive circuit at \(f_o \).

When frequency reaches a point above resonance where \(X_L \) and \(R \) are equal, we call this the high-frequency cutoff point.
On the current and impedance curve, the high f_{co} point is shown on the high side of f_o. Observe the curve shows that at the upper f_{co} Z_T has increased and I_T has decreased.

Now we will change to a frequency below the resonant frequency. We will use 11.875 KHz as the frequency this time.

We know that when f decreases, X_L decreases and X_C increases. By using the formulas for X_L and X_C' we determine that X_L = 95 Ω and X_C = 105 Ω. Notice these values are just the reverse of the values for X_L and X_C' in the circuit operating above f_{co}.

To find Z_T, we need to use vectors. The reactance vector is determined by algebraically adding.

\[
\text{Since the resistance and effective reactance are equal, } \angle 45^\circ \text{ is } -45^\circ, \text{ and } Z_T = 14.14 \, \Omega.
\]

When effective X_C = R, we know that we have reached a f_{co} point -- in this case the lower f_{co} because frequency is below resonant frequency.
We know that at f_{co}:

- I is 70.7% of maximum and is 7.07 amps.
- P_t is half of maximum or 500 watts.

At low frequency cutoff, the source sees an RC circuit.

On the current and impedance curves, the half-power point on the I curve for RLC circuits indicates the lower f_{co}.

Here again you see that at low f_{co}, I_T has decreased.

Conclusions

<table>
<thead>
<tr>
<th>at f_o</th>
<th>upper f_o</th>
<th>lower f_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_T = \text{minimum}$</td>
<td>$Z_T \downarrow$</td>
<td>$Z_T \downarrow$</td>
</tr>
<tr>
<td>$I_T = \text{maximum}$</td>
<td>$I_T \downarrow$</td>
<td>$I_T \downarrow$</td>
</tr>
<tr>
<td>$\theta = 0$</td>
<td>$\theta = 45^\circ$</td>
<td>$\theta = -45^\circ$</td>
</tr>
</tbody>
</table>
1. Above or below \(f_0 \), \(Z_T \) will \((+ \text{ or } +) \).

2. Above or below \(f_0 \), \(I_T \) will \((+ \text{ or } +) \).

3. Above \(f_0 \), the circuit will appear:
 a. purely resistive.
 b. RL.
 c. RC.
 d. RLC.

4. Below \(f_0 \), the circuit will appear:
 a. purely resistive.
 b. RL.
 c. RC.
 d. RLC.

Answers: 1. +; 2. +; 3. b; 4. c

Bandwidth

The curves below indicate the effect of \(Q \) on the shape of the current curve of a given RLC circuit.

The shaded areas on these curves represent the distance between the upper \(f_0 \) and lower \(f_0 \). This distance is called the bandwidth of an RLC circuit -- abbreviated BW. Bandwidth is the range of frequencies that a circuit passes with little loss.
Effects of Q on Bandwidth

You know that the Q of a series circuit is determined by the value of X_L and of the effective R. \[Q = \frac{X_L}{R_{\text{eff}}} \]

If we were to change R in our circuit from 10 Ω to 20 Ω, what would happen to Q?

Q would decrease because more resistance had been added and this decreased the amount of power available to be stored in the coil.

Recall that Q does not change much with a change in frequency. If it were possible to change the effective resistance of the circuit, keeping all other values constant, the following would occur.

If the effective resistance increased from 10 ohms to 20 ohms then it would take a higher frequency for X_L to equal the 20 ohms of R. Similarly, we would have to lower frequency more to have X_C equal the 20 ohms of R. The result would be an increased bandwidth, and the resonance curve would look like the one below.

(Note: The maximum current value also decreased.)

The circuit conditions at f_{co} are described in Module 12, Lesson VI.
If the effective resistance of our circuit was decreased from 10 ohms to 1 ohm, this would increase Q, and decrease bandwidth. Here \(I_{\text{max}} \) would increase tenfold.

Therefore, if: \(Q \uparrow \) then \(BW \downarrow \)

\[Q \uparrow \text{ then } BW \downarrow \]

Q and BW are:

a. directly proportional.

b. inversely proportional.

They are inversely proportional.

A second method for computing bandwidth is available if you do not know the upper \(f_{\text{co}} \) and lower \(f_{\text{co}} \).

\[BW = \frac{f_{\text{co}}}{Q} \]

In our circuit, where resonant frequency is 12.5 KHz and \(Q \) is 10, use the formula above to solve for bandwidth. \(BW = \) __________

Observe that you found \(BW = 1.25 \text{ KHz} \) just as when you subtracted lower \(f_{\text{co}} \) from upper \(f_{\text{co}} \).
A Practical Application

We cannot say that a high Q is necessarily good, or that a low Q is necessarily bad. It depends on the application and on how wide a range of frequencies is desired. If we want a wide range of frequencies, we use a lower Q. Conversely, if we want a narrow bandwidth, we use a higher Q circuit.

For example, let's say you turn on your car radio. You know you want to tune into 1250 KHz on the dial to hear "The Latest News."

The car antenna has a multitude of frequencies to pick up, but you only want 1250 KHz so you can hear "The Latest News," and you want to hear it loud and clear without garble from stations on other frequencies.

You turn the tuning knob to 1250 KHz on the radio dial. This varies the amount of capacitance in the circuit, so that the RLC circuit resonates at 1250 KHz.

Because you do not want to hear the stations at 1350 KHz or 1150 KHz along with "The Latest News," your radio needs a narrow bandwidth which passes only the frequencies you desire.

The tuning circuit of your radio should have:

___ a. a high Q.

___ b. a low Q.

A high-Q coil passes only a narrow range of frequencies on either side of f_0; therefore, a good radio has a high-Q circuit.
The ability of a circuit to tune a narrow band of frequencies is called selectivity. A circuit with high selectivity has a high Q and narrow bandwidth.

In reality, we seldom see a series circuit used in the radio application just described. At f_0 in a series RLC circuit, current is very high; therefore, circuit components have to be large, and expensive to handle the great amount of power. Generally, a parallel circuit is used for such an application and we'll soon be learning about parallel resonant circuits.

Now check yourself on the following questions.

1. If Q is decreased, will selectivity increase or decrease?
2. If Q is decreased, will BW increase or decrease?
3. The relationship between Q and Z_T at f_0 is:
 a. inversely proportional.
 b. directly proportional.
4. What is the circuit phase angle at f_0?
5. If you want to design a circuit to pass a frequency range of 950 Hz to 1050 Hz, what must Q be?

Answers:
1. decrease
2. increase
3. a
4. zero
5. Q = 10
In a circuit which has:

- upper f_{co} of 1050 Hz
- lower f_{co} of 950 Hz,
- the BW is 100 Hz

If $Q = \frac{f_o}{BW}$, then to find f_o, we simply take half the BW and subtract it from the upper f_{co}:

\[
1050 \text{ Hz} - 50 \text{ Hz (1/2 BW)} = 1000 \text{ Hz} = f_o
\]

Then:

\[
Q = \frac{f_o}{BW} = \frac{1000}{100} = 10
\]

At this point, you may take the progress check, or you may study any of the other resources listed. If you take the progress check and answer all of the questions correctly, go to the next lesson. If not, study any method of instruction you wish until you can answer all the questions correctly.
1. Once again, in a series RLC circuit operating at its resonant frequency, X_C and X_L are equal. At resonance, Z_T is:
 a. maximum
 b. minimum

2. Because the effects of X_L and X_C cancel at resonance, Z is at its minimum value and equal to the value of resistance in the RLC circuit.
 What is I_T (circuit is operating at resonance)?

3. In a series RLC circuit at resonance, $X_L = X_C$; and since current is common, this results in $E_C = E_L$. To compute E_C and E_L, it is necessary to find either X_L or X_C, and then multiply this value by I_T.
 Find E_C and E_L.
4. What does a voltmeter read when connected between the following points?

A-B:
B-C:
C-D:
B-D:
A-D:

(This is a test frame. Compare your answers with the correct answers given at the top of the next page.)
ANSWERS - TEST FRAME 4
A-B = 100 volts; B-C = 3000 volts; C-D = 3000 volts;
B-D = 0 volts; A-D = 100 volts

IF ALL YOUR ANSWERS MATCH THE CORRECT ANSWERS, YOU MAY GO TO TEST FRAME 6. OTHERWISE, GO BACK TO FRAME 1 AND TAKE THE PROGRAMMED SEQUENCE BEFORE TAKING TEST FRAME 4 AGAIN.

5. Because the reactances effectively cancel at the resonant frequency and the circuit impedance is equal to resistance, the source sees a purely resistive circuit. \(E_a \) and \(I_T \) are in phase.

Solve for \(\theta \) and PF.

\[\begin{align*}
E_a &= 100V \\
f_0 &= 2KHz \\
I &= 10a \\
R &= 10\Omega \\
X_L &= 300\Omega \\
X_C &= 300\Omega \\
\end{align*}\]

\[\begin{align*}
\theta &= \\
PF &=
\end{align*}\]

\(\theta = 0^\circ; \ PF = 1 \)

6. Solve for the following values. (Circuit is at resonance.)

\[\begin{align*}
\text{a. } X_C &= \\
\text{b. } E_R &= \\
\text{c. } \theta &= \\
\text{d. } PF &= \\
\text{e. } Q &= \\
\text{f. } Z_T &=
\end{align*}\]

(THIS IS A TEST FRAME. COMPARE YOUR ANSWERS WITH THE CORRECT ANSWERS GIVEN AT THE TOP OF THE NEXT PAGE.)
ANSWERS - TEST FRAME 6

a. 50 Ω; b. 100 v; c. 0°; d. 1; e. 5; f. 10 Ω

IF ALL YOUR ANSWERS MATCH THE CORRECT ANSWERS, YOU MAY GO TO TEST FRAME 15. OTHERWISE, GO BACK TO FRAME 5 AND TAKE THE PROGRAMMED SEQUENCE BEFORE TAKING TEST FRAME 6 AGAIN.

7. The relationship between \(I \) and \(Z \) can be seen quite well when plotted on a graph.

As you can see from the graph, as frequency increases, \(X_C \) starts to decrease and \(X_L \) starts to increase. The canceling effect between the two becomes greater and greater until \(X_L = X_C \) (at \(f_0 \)). At this point \(Z \) is minimum and \(I \) is maximum. If frequency is increased above this point, \(X_L \) becomes greater than \(X_C \) and \(E_L \) is no longer completely cancelled by \(E_C \), so \(E_R \) decreases and \(I \) decreases.

8. By using the formula to determine \(F_0 \), we calculate that \(F_0 \) for the circuit below is 2 KHz and that at \(F_0 \), \(I = 10 \) A and \(Z = 10 \) Ω.

If frequency is increased by 30 Hz the balance between the reactances is upset. \(X_L \) increases to 305 ohms and \(X_C \) decreases to 295 ohms.
Compute Z and I at the increased frequency.

$Z =$

$I =$

(14.14 ∴ 7.07 a)

9. At the increased frequency, Z is no longer equal to R, but once again is a combination of resistance and reactance.

At frequencies above resonance, the circuit appears:

(a) resistive.

(b) inductive-resistive.

(c) capacitive-resistive.

(b) inductive-resistive

10. At a frequency of 2030 Hz, X_L is 10 ohms greater than X_C, so impedance equals $R + jX_L - jX_C$ or $10 + j10$. Notice that $R = X_L - X_C$. You've seen this condition before. It's known as

(\(f_{co}\) or cutoff frequency)
11. The circuit is now operating at \(f_0 \) on the high or inductive side of resonance. As the source sees it, the circuit now consists solely of 10 ohms of \(R \) and 10 ohms of \(X_L \), even though \(X_L \) actually represents total reactance \((X_L - X_C) \). The conditions described in Module Twelve, Lesson VI, for cutoff now exists (series RL circuits).

Solve for the values indicated.

\[\begin{align*}
\text{Ea} & = 100V \\
R & = 10 \Omega \\
X_L & = 305 \Omega \\
\end{align*} \]

\[\begin{align*}
a. & \ \angle = \\
b. & \ E_L = \\
c. & \ E_R = \\
d. & \ P_t = \\
\end{align*} \]

\[\text{a. } 45^\circ; \ b. \ 2156.25v; \ c. \ 70.7 \text{ volts}; \ d. \ 500 \text{ watts} \]

12. Frequency is now reduced to 30 Hz below \(f_0 \). As this is done, \(Z \) decreases to its minimum value \((10 \text{ ohms, } Z=R \text{ at } f_0) \), and then increases as frequency goes below \(f_0 \) to \(1.97 \text{ KH} \). \(X_C \) is now 305 ohms while \(X_L \) is 295 ohms. \(X_C \) is 10 ohms greater than \(X_L \).

Solve for \(Z \) and \(I \) at this new frequency.

\[\begin{align*}
\text{Ea} & = 100V \\
R & = 10 \Omega \\
X_L & = 295 \Omega \\
X_C & = 305 \Omega \\
\end{align*} \]

\[\begin{align*}
Z & = \\
I & = \\
\end{align*} \]

\(Z = 14.14; \ I = 7.07 \text{ amps} \)
13. Notice that Z and I are the same value at 30 Hz below resonance (1.97 KHz) as they did at 30 Hz above f_0. The difference lies in that the circuit appears capacitive and the phase angle is negative.

Which statement is correct?

1. Impedance increases as frequency increases above f_0.
2. Impedance increases as frequency decreases below f_0.

 a. 1
 b. 2
 c. both
 d. neither

(c) both

14. The circuit now appears resistive-capacitive with 10 ohms resistance and 10 ohms capacitive reactance. Once again resistance equals reactance and the circuit is at cutoff on the low or capacitive side of resonance.

Solve for the following values.

(a. $\frac{V}{\theta} =$
 b. $E_L =$
 c. $E_R =$
 d. $P_t =$

(a. -45°; b. 2085 volts; c. 70.7 volts; d. 500 watts)
15. A series RLC circuit below f_0 appears to be:

 ____ a. inductive-resistive.
 ____ b. resistive-capacitive.
 ____ c. purely resistive.

(This is a test frame. Compare your answer with the correct answer given at the top of the next page.)
16. The extent of the range of frequencies between the upper and lower cutoff frequencies is known as the bandwidth (BW) of the circuit.

Determine the bandwidth of a circuit whose upper f_{co} is 1520 Hz and lower f_{co} is 1480 Hz.

- a. 1520 Hz
- b. 20 Hz
- c. 1480 Hz
- d. 40 Hz

(d) 40 Hz

17. Determine BW if:

upper $f_{co} = 13.125$ KHz, and
lower $f_{co} = 11.875$ KHz.

$BW = \underline{}$
18. Q is a prime factor in determining the bandwidth of a circuit. The higher the Q, the more narrow the bandwidth.

Which drawing depicts a high-Q circuit?

A.
 ![Diagram A]

B.
 ![Diagram B]

(A)

19. A narrow BW indicates a high-Q or a highly selective circuit. The bandwidth indicates the range of frequencies a circuit will pass with the output taken across the resistor.

A.
 ![Diagram A]

B.
 ![Diagram B]

Which circuit represented in the above graphs passes the wider range of frequencies? Which graph has the poorer selectivity?

(B; B)
20. Bandwidth is inversely proportional to \(Q \). As circuit \(Q \) increases, \(BW \) decreases.

21. To increase the \(Q \) of the circuit, the effective resistance \((R_{eff}) \) must be decreased. As we decrease the \(R_{eff} \) value of the circuit, \(BW \) decreases.

22. Since decreasing \(R_{eff} \) decreases \(BW \) and increase circuit \(Q \), \(BW \) is directly proportional to \(R_{eff} \) and inversely proportional to \(Q \).

23. To determine the \(BW \) of a circuit, you may use the formula \(BW = \frac{f_0}{Q} \).

The \(BW \) of a circuit with a \(Q \) of 100 and an \(f_0 \) of 12.5 KHz is 125 Hz.

24. A radio circuit with a \(BW \) of 125Khz receives a signal from a station 62.5Khz above \(f_0 \) to 62.5Khz below \(f_0 \).

This circuit adjusted to a \(f_o \) of 1250 Khz passes a band of frequencies from 1187.5 KHz to 1312.5 KHz.
25. The circuit discussed in the previous frame shown on a resonance curve graph looks like this:

![Resonance Curve Graph]

What is the f_0 of the circuit represented by the graph below?

![Graph with f_0, f_{co}, 15.75KHz, and 16KHz]
26. Fill in the following spaces.

1. A series RLC circuit, in which \(X_L = X_C \), has total reactance of \(\boxed{ \text{equation} } \).

2. If there is zero reactance at resonance, then circuit impedance is equal to the circuit \(\boxed{ \text{equation} } \).

3. The equation for finding the resonant frequency is
 \[f_0 = \frac{1}{2\pi} \cdot \boxed{ \text{equation} } \]

4. In a series RLC circuit at resonance, the phase angle between source voltage and current is \(\boxed{ \text{equation} } \).

5. If the Q of a series RLC circuit is increased, the resonance curve is \(\boxed{ \text{equation} } \); bandwidth is \(\boxed{ \text{equation} } \); steeper/flatter \(\boxed{ \text{equation} } \) wider/narrower; and selectivity is \(\boxed{ \text{equation} } \); higher/lower \(\boxed{ \text{equation} } \).
ANSWERS - TEST FRAME 26

1. zero; 2. resistance; 3. \(\text{LC} \); 4. zero;
5. steeper, narrower, higher

IF ANY OF YOUR ANSWERS ARE INCORRECT, GO BACK TO FRAME 18 AND TAKE THE PROGRAMMED SEQUENCE.

IF YOUR ANSWERS ARE CORRECT, YOU MAY TAKE THE PROGRESS CHECK OR YOU MAY STUDY ANY OF THE OTHER RESOURCES LISTED. IF YOU TAKE THE PROGRESS CHECK AND ANSWER ALL THE QUESTIONS CORRECTLY, GO TO THE NEXT LESSON. IF NOT, STUDY ANY METHOD OF INSTRUCTION YOU WISH UNTIL YOU CAN ANSWER ALL THE QUESTIONS CORRECTLY.
Summary

SUMMARY
LESSON III

Resonance in Series AC Circuits

You have already studied resonant circuits. You know that resonance occurs when X_L equals X_C in RCL series circuits.

In this lesson, we will take a resonant circuit and vary the frequency above resonance and below resonance to observe the effects of the circuit.

Recall that a circuit at resonance offers minimum impedance to current flow -- total impedance is equal to the value of circuit resistance, so maximum current flows. If frequency is increased above resonance, X_L increases and total impedance increases as it is the vector sum of X_L and R. Circuit current decreases as the frequency increases, and the circuit becomes more inductive.

If we go the other direction from resonance and decrease frequency, the value of X_C increases, again increasing total impedance and decreasing circuit current. The more the frequency is decreased, the more capacitive reactance increases and the more capacitive the circuit appears. The series RCL circuit has a usable output across the resistive component through a central frequency range. The extent of this range is dependent upon the quality (Q) of the circuit. The lower end of this range is called the low-frequency cutoff point and the upper or high end is called the high-frequency cutoff frequency. The range of frequencies between the low f_{co} point and the high f_{co} point is called the circuit bandwidth. Resonant frequency is the center frequency. This range of frequencies that provides a usable output explains why you can hear your favorite radio station around the exact station frequency. When you tune the station in loud and clear, you have adjusted the circuit to resonate at the station frequency. As you adjust above or below this point, the reception gets progressively worse.

The bandwidth of the circuit is dependent upon the circuit Q.

Remember, Q is determined by the value of $\frac{X_L}{R_{eff}}$. f_o is determined by $\frac{1}{2\pi\sqrt{LC}}$. Bandwidth (BW) is determined by dividing f_o by the circuit Q, $BW = \frac{f_o}{Q}$.

At this point, you may take the Lesson Progress Check, or you may study the Lesson Narrative or the Programmed Instruction or both. If you take the Progress Check and answer all the questions correctly, go to the next lesson. If not, study another method of instruction until you can answer all the questions correctly.
Experiments with Resonance in a Series RCL Circuit

Study Booklet

Bureau of Naval Personnel
January 1972
Experiments With Resonance in a Series RCL Circuit

In this lesson you will perform experiments with a series RCL circuit, using various equipment to see the effects of resonance that you have learned in the previous lessons.

You will use:

- an audio signal generator.
- NEAT board 6.
- a multimeter.

You will:

- determine f_0.
- read voltage drops at f_0.
- see the effects of varying capacitance.

BEFORE YOU START THIS LESSON, PREVIEW THE LIST OF STUDY RESOURCES ON THE NEXT PAGE.
LIST OF STUDY RESOURCES
LESSON IV
Experiments With Resonance in a Series RCL Circuit

Since this lesson consists of experiments, there is only the narrative. There are no other study resources and no progress check.

TURN THE PAGE AND BEGIN THE NARRATIVE.
Experiments With Resonance in a Series RCL Circuit

Now that you understand the theory of resonance in an AC series RCL circuit, you will have the opportunity to see these concepts at work.

For this lesson, go to the materials center and get any of the following which you do not have in your carrel.

1. an audio signal generator
2. NEAT Board 6 for series resonance
3. a multimeter
4. two sets of test leads

The Audio Signal Generator

The signal generator plugs into your AC wall source and supplies to the NEAT board a controlled signal at any frequency which you determine.

This signal generator can supply a range of frequencies between 20 and 20,000 hertz by generating a sine wave. It is also capable of generating square waves in a frequency range of 60 to 30,000 hertz. The entire frequency spectrum is covered in four ranges for maximum accuracy and readability. For our use in this lesson we will be concerned with only the C scale -- the 2 KHz to 20 KHz range. (Observe the range scale in the center of the generator.)

The output voltage is obtained from the two terminal jacks labeled OUTPUT and located on the right side of the front panel. Study the illustration.
Listed below are the controls of the audio signal generator. Locate these controls on the generator.

1. Power on-off toggle switch (left side of the front panel)
2. Output jacks (right side)
3. Band selector (lower left) to set at A, B, C or D
4. Amplitude Knob (lower right) determines amplitude of output voltage
5. Waveform switch (center bottom) selects sine or square wave
6. Frequency control (center, below range dial) selects output frequency.

One word of caution. **DO NOT SHORT OUTPUT TERMINALS.** Shorting the output terminals would result in a blown fuse and your signal generator would not operate. (At this point, set the amplitude knob to 0, plug the signal generator into the AC outlet, and turn on the power switch. This is to allow warm-up of the generator while you read the rest of the instructions.)

The NEAT Board

This NEAT board is designed for experimental purposes, and has a series AC circuit built into it. As indicated by the schematic on the front panel, this NEAT board contains a coil and a capacitor. It also has a resistor that can be put in series with the resistive components, depending on the position of S-603.

Notice there are two capacitors, one of a fixed value, and the other a variable capacitor with a knob to vary the amount of
capacitance. The position of S-604 determines which capacitor is included in the circuit at a particular time.

Also observe that S-602 will need to be open if the ammeter is connected in the circuit at the location shown on the schematic. If the ammeter is not in the circuit at that point, S-602 will need to be closed to complete the circuit.

Experiment 1 - Determining f_0

Follow these instructions step by step.

1. Connect one set of test leads to the output jacks of the signal generator. The bottom jack is common (ground).

2. Insert the other end of the leads into terminal points (T,) for input to the neat board at T $601\text{-A and } T_{p} 602\text{-A}$ (common).

3. Turn band selector switch on generator to C position.

4. Turn frequency control fully counterclockwise.

5. Set waveform switch at SINE.

6. Set up the neat board as follows:
 - S-601 to ON position (1)
 - S-602 to OFF position (1) (open)
 - S-604 to position A (1) so that the fixed capacitor is in the circuit
 - S-603 to position A (1) so there is no resistor in the circuit

7. Set up your multimeter to read AC voltage on the 50-volt scale.

8. Insert meter leads in multimeter and in neat board in T $601\text{-B and } T_{p} 602\text{-B}$.

9. Now turn the amplitude knob on signal generator until you get a 12-volt reading on the meter. Leave the amplitude knob set in that position.
10. Disconnect the meter plugs from the neat board.

11. Set meter to measure DC on the 100 ma range and insert the meter between T603 (-) and T604 (+). (NOTE: A rectifier in the Heat board changes AC to DC, so the ammeter will measure DC; polarity must be observed.)

12. Draw a schematic of the neat board circuit as it is now set up -- including the ammeter.

13. Slowly turn the frequency knob clockwise on the signal generator and observe the current reading on the meter. Determine from the meter reading at what frequency resonance is reached. Record it. You will be reading f on the C scale.

\[f_0 = \]
Answers for Experiment 1

(12). Schematic

![Schematic Diagram]

(13). \(f_0 \) is approximately 4.3 KHz when \(I \) is maximum.

Experiment 2 -- Reading Voltage Drops at \(f_0 \)

1. Change S-603 to position B. This puts a resistor in series in the circuit.

 Observe the \(I \) drops when \(R \) is added.

2. Change S-603 back to position A. You have not changed frequency; it is still at \(f_0 \).

3. Remove ammeter from circuit. (Remember to observe all safety precautions.)

4. Set S-602 to ON position to close circuit.

5. Set meter to read AC voltage on 250 volt scale.

6. Insert meter probes in \(T_{604} \) – \(T_{605} \) to read the voltage drop across the capacitor. Record.

 \[E_C = \]

7. Now move probes to \(T_{605} \) – \(T_{606} \). Read the voltage drop across the inductor.

 \[E_L = \]

 Recall that at \(f_0 \), \(E_C \) and \(E_L \) are approximately equal.

8. Remove voltmeter probes.
Answers to Experiment 2

(6). Approximately 80 v
(7). Approximately 80 v

Experiment 3 -- Varying Capacitance

1. Set up neat board as follows.
 - Turn S-602 to OFF (open circuit)
 - Turn S-604 to B position.
 - Now the variable capacitor is in the circuit, but the fixed capacitor is not.
 - Adjust C-601 (variable capacitor knob) to the far left. The capacitor is now at its maximum value.

2. Set up ammeter to read DC current, 100 ma range.

3. Insert meter probes between T 603 - T 604 (check for proper polarity).

4. Because capacitance has been varied, the circuit will no longer be at f_0. Now slowly turn frequency knob on signal generator back and forth until you find f_o as indicated by the ammeter reading.

5. Now decrease the value of capacitance by turning C-601 to the mid-scale mark (straight up).

Observe that as capacitance decreases, current:

___a. increases.
___b. decreases.

As capacitance decreases X_C:

___a. increases.
___b. decreases.

X_C and X_L are no longer equal, so the circuit is not at f_0. X_C is greater than X_L now.
Narrative

6. Again turn the frequency knob on the signal generator until \(X_C \) and \(X_L \) are equal.

\[f_0 = \quad \]

7. Turn amplitude dial to 0.

8. Turn off audio generator power.

9. Disconnect all leads.

10. Return the borrowed equipment to the materials center.

Answers to Experiment 3

(4). \(f_0 \) = approximately 14 KHz

(5). As \(C \) decreases, \(L \) decreases.

As \(C \) decreases, \(X_C \) increases.

(6). \(f_0 \) = approximately 20 KHz

AT THIS POINT SEE YOUR LEARNING SUPERVISOR FOR FURTHER INSTRUCTIONS.
<table>
<thead>
<tr>
<th>Degree</th>
<th>sin</th>
<th>cos</th>
<th>tan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
<td>0.0017</td>
<td>0.0035</td>
<td>0.0052</td>
<td>0.0070</td>
<td>0.0087</td>
<td>0.0105</td>
<td>0.0122</td>
<td>0.0140</td>
<td>0.0157</td>
<td>0.0170</td>
<td>0.0187</td>
<td>0.0204</td>
<td>0.0222</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0175</td>
<td>0.0142</td>
<td>0.0209</td>
<td>0.0227</td>
<td>0.0244</td>
<td>0.0262</td>
<td>0.0279</td>
<td>0.0297</td>
<td>0.0314</td>
<td>0.0332</td>
<td>0.0350</td>
<td>0.0369</td>
<td>0.0388</td>
<td>0.0407</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0349</td>
<td>0.0306</td>
<td>0.0364</td>
<td>0.0401</td>
<td>0.0419</td>
<td>0.0436</td>
<td>0.0454</td>
<td>0.0471</td>
<td>0.0488</td>
<td>0.0506</td>
<td>0.0524</td>
<td>0.0542</td>
<td>0.0560</td>
<td>0.0578</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0523</td>
<td>0.0470</td>
<td>0.0527</td>
<td>0.0576</td>
<td>0.0593</td>
<td>0.0610</td>
<td>0.0628</td>
<td>0.0645</td>
<td>0.0663</td>
<td>0.0680</td>
<td>0.0699</td>
<td>0.0717</td>
<td>0.0735</td>
<td>0.0753</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0699</td>
<td>0.0649</td>
<td>0.0698</td>
<td>0.0747</td>
<td>0.0795</td>
<td>0.0843</td>
<td>0.0891</td>
<td>0.0939</td>
<td>0.0987</td>
<td>0.1035</td>
<td>0.1083</td>
<td>0.1132</td>
<td>0.1180</td>
<td>0.1228</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0875</td>
<td>0.0829</td>
<td>0.0885</td>
<td>0.0940</td>
<td>0.0995</td>
<td>0.1051</td>
<td>0.1107</td>
<td>0.1164</td>
<td>0.1220</td>
<td>0.1276</td>
<td>0.1333</td>
<td>0.1390</td>
<td>0.1447</td>
<td>0.1503</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.1219</td>
<td>0.1236</td>
<td>0.1253</td>
<td>0.1271</td>
<td>0.1288</td>
<td>0.1305</td>
<td>0.1323</td>
<td>0.1341</td>
<td>0.1359</td>
<td>0.1377</td>
<td>0.1395</td>
<td>0.1413</td>
<td>0.1431</td>
<td>0.1449</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.1392</td>
<td>0.1409</td>
<td>0.1426</td>
<td>0.1441</td>
<td>0.1457</td>
<td>0.1473</td>
<td>0.1489</td>
<td>0.1505</td>
<td>0.1521</td>
<td>0.1537</td>
<td>0.1553</td>
<td>0.1569</td>
<td>0.1585</td>
<td>0.1601</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.1564</td>
<td>0.1582</td>
<td>0.1599</td>
<td>0.1616</td>
<td>0.1633</td>
<td>0.1650</td>
<td>0.1667</td>
<td>0.1684</td>
<td>0.1701</td>
<td>0.1718</td>
<td>0.1735</td>
<td>0.1752</td>
<td>0.1769</td>
<td>0.1786</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.1736</td>
<td>0.1754</td>
<td>0.1772</td>
<td>0.1790</td>
<td>0.1808</td>
<td>0.1825</td>
<td>0.1843</td>
<td>0.1860</td>
<td>0.1878</td>
<td>0.1895</td>
<td>0.1913</td>
<td>0.1930</td>
<td>0.1948</td>
<td>0.1965</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1968</td>
<td>0.2025</td>
<td>0.2082</td>
<td>0.2139</td>
<td>0.2196</td>
<td>0.2253</td>
<td>0.2310</td>
<td>0.2367</td>
<td>0.2424</td>
<td>0.2481</td>
<td>0.2538</td>
<td>0.2595</td>
<td>0.2652</td>
<td>0.2709</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.2356</td>
<td>0.2413</td>
<td>0.2470</td>
<td>0.2527</td>
<td>0.2584</td>
<td>0.2641</td>
<td>0.2704</td>
<td>0.2768</td>
<td>0.2832</td>
<td>0.2896</td>
<td>0.2960</td>
<td>0.3024</td>
<td>0.3089</td>
<td>0.3153</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.3111</td>
<td>0.3177</td>
<td>0.3244</td>
<td>0.3310</td>
<td>0.3377</td>
<td>0.3444</td>
<td>0.3510</td>
<td>0.3577</td>
<td>0.3644</td>
<td>0.3711</td>
<td>0.3778</td>
<td>0.3845</td>
<td>0.3912</td>
<td>0.3979</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.3936</td>
<td>0.4003</td>
<td>0.4069</td>
<td>0.4136</td>
<td>0.4203</td>
<td>0.4270</td>
<td>0.4337</td>
<td>0.4404</td>
<td>0.4471</td>
<td>0.4538</td>
<td>0.4605</td>
<td>0.4672</td>
<td>0.4739</td>
<td>0.4806</td>
<td></td>
</tr>
</tbody>
</table>
Appendix

Thirteen

<table>
<thead>
<tr>
<th>deg</th>
<th>sin</th>
<th>cos</th>
<th>tan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1°</td>
<td>0.017</td>
<td>0.999</td>
<td>0.017</td>
</tr>
<tr>
<td>2°</td>
<td>0.034</td>
<td>0.997</td>
<td>0.034</td>
</tr>
<tr>
<td>3°</td>
<td>0.051</td>
<td>0.995</td>
<td>0.051</td>
</tr>
<tr>
<td>4°</td>
<td>0.069</td>
<td>0.992</td>
<td>0.069</td>
</tr>
<tr>
<td>5°</td>
<td>0.087</td>
<td>0.988</td>
<td>0.087</td>
</tr>
<tr>
<td>6°</td>
<td>0.104</td>
<td>0.984</td>
<td>0.104</td>
</tr>
<tr>
<td>7°</td>
<td>0.122</td>
<td>0.980</td>
<td>0.122</td>
</tr>
<tr>
<td>8°</td>
<td>0.139</td>
<td>0.975</td>
<td>0.139</td>
</tr>
<tr>
<td>9°</td>
<td>0.157</td>
<td>0.970</td>
<td>0.157</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>10°</td>
<td>0.174</td>
<td>0.965</td>
<td>0.174</td>
</tr>
<tr>
<td>11°</td>
<td>0.191</td>
<td>0.960</td>
<td>0.191</td>
</tr>
<tr>
<td>12°</td>
<td>0.208</td>
<td>0.955</td>
<td>0.208</td>
</tr>
<tr>
<td>13°</td>
<td>0.225</td>
<td>0.950</td>
<td>0.225</td>
</tr>
<tr>
<td>14°</td>
<td>0.242</td>
<td>0.945</td>
<td>0.242</td>
</tr>
<tr>
<td>15°</td>
<td>0.259</td>
<td>0.940</td>
<td>0.259</td>
</tr>
<tr>
<td>16°</td>
<td>0.276</td>
<td>0.935</td>
<td>0.276</td>
</tr>
<tr>
<td>17°</td>
<td>0.293</td>
<td>0.930</td>
<td>0.293</td>
</tr>
<tr>
<td>18°</td>
<td>0.310</td>
<td>0.925</td>
<td>0.310</td>
</tr>
<tr>
<td>19°</td>
<td>0.327</td>
<td>0.920</td>
<td>0.327</td>
</tr>
<tr>
<td>20°</td>
<td>0.344</td>
<td>0.915</td>
<td>0.344</td>
</tr>
<tr>
<td>21°</td>
<td>0.361</td>
<td>0.910</td>
<td>0.361</td>
</tr>
<tr>
<td>22°</td>
<td>0.378</td>
<td>0.905</td>
<td>0.378</td>
</tr>
<tr>
<td>23°</td>
<td>0.395</td>
<td>0.900</td>
<td>0.395</td>
</tr>
<tr>
<td>24°</td>
<td>0.412</td>
<td>0.895</td>
<td>0.412</td>
</tr>
<tr>
<td>25°</td>
<td>0.429</td>
<td>0.890</td>
<td>0.429</td>
</tr>
<tr>
<td>26°</td>
<td>0.446</td>
<td>0.885</td>
<td>0.446</td>
</tr>
<tr>
<td>27°</td>
<td>0.463</td>
<td>0.880</td>
<td>0.463</td>
</tr>
</tbody>
</table>

Note: The table continues with similar data for other degrees.
<table>
<thead>
<tr>
<th>deg</th>
<th>sin</th>
<th>cos</th>
<th>tan</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>0.495</td>
<td>0.471</td>
<td>0.472</td>
</tr>
<tr>
<td>29</td>
<td>0.484</td>
<td>0.483</td>
<td>0.489</td>
</tr>
<tr>
<td>30</td>
<td>0.500</td>
<td>0.501</td>
<td>0.503</td>
</tr>
<tr>
<td>31</td>
<td>0.515</td>
<td>0.516</td>
<td>0.519</td>
</tr>
<tr>
<td>32</td>
<td>0.529</td>
<td>0.530</td>
<td>0.534</td>
</tr>
<tr>
<td>33</td>
<td>0.546</td>
<td>0.547</td>
<td>0.551</td>
</tr>
<tr>
<td>34</td>
<td>0.559</td>
<td>0.561</td>
<td>0.565</td>
</tr>
<tr>
<td>35</td>
<td>0.576</td>
<td>0.579</td>
<td>0.582</td>
</tr>
<tr>
<td>36</td>
<td>0.587</td>
<td>0.590</td>
<td>0.593</td>
</tr>
<tr>
<td>37</td>
<td>0.601</td>
<td>0.604</td>
<td>0.607</td>
</tr>
<tr>
<td>38</td>
<td>0.615</td>
<td>0.618</td>
<td>0.621</td>
</tr>
<tr>
<td>39</td>
<td>0.629</td>
<td>0.632</td>
<td>0.636</td>
</tr>
</tbody>
</table>

Appendix

Thirteen
<table>
<thead>
<tr>
<th>deg</th>
<th>(\sin)</th>
<th>(\cos)</th>
<th>(\tan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>0.7071</td>
<td>0.9239</td>
<td>0.0646</td>
</tr>
<tr>
<td>43</td>
<td>0.7193</td>
<td>0.9404</td>
<td>0.0966</td>
</tr>
<tr>
<td>44</td>
<td>0.7071</td>
<td>0.9239</td>
<td>0.0646</td>
</tr>
<tr>
<td>45</td>
<td>0.7193</td>
<td>0.9404</td>
<td>0.0966</td>
</tr>
<tr>
<td>46</td>
<td>0.7071</td>
<td>0.9239</td>
<td>0.0646</td>
</tr>
<tr>
<td>47</td>
<td>0.7193</td>
<td>0.9404</td>
<td>0.0966</td>
</tr>
<tr>
<td>48</td>
<td>0.7071</td>
<td>0.9239</td>
<td>0.0646</td>
</tr>
<tr>
<td>49</td>
<td>0.7193</td>
<td>0.9404</td>
<td>0.0966</td>
</tr>
<tr>
<td>50</td>
<td>0.7071</td>
<td>0.9239</td>
<td>0.0646</td>
</tr>
<tr>
<td>51</td>
<td>0.7193</td>
<td>0.9404</td>
<td>0.0966</td>
</tr>
<tr>
<td>52</td>
<td>0.7071</td>
<td>0.9239</td>
<td>0.0646</td>
</tr>
<tr>
<td>53</td>
<td>0.7193</td>
<td>0.9404</td>
<td>0.0966</td>
</tr>
<tr>
<td>54</td>
<td>0.7071</td>
<td>0.9239</td>
<td>0.0646</td>
</tr>
<tr>
<td>55</td>
<td>0.7193</td>
<td>0.9404</td>
<td>0.0966</td>
</tr>
<tr>
<td>Function</td>
<td>0.0°</td>
<td>0.1°</td>
<td>0.2°</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>\sin x</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>\cos x</td>
<td>1.000</td>
<td>0.999</td>
<td>0.998</td>
</tr>
<tr>
<td>\tan x</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Deg</td>
<td>0° 0'</td>
<td>0° 1'</td>
<td>0° 2'</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Sin</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Tan</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

... (Table continues with more values)
<table>
<thead>
<tr>
<th>Deg</th>
<th>Sin</th>
<th>Cos</th>
<th>Tan</th>
<th>Sin</th>
<th>Cos</th>
<th>Tan</th>
<th>Sin</th>
<th>Cos</th>
<th>Tan</th>
<th>Sin</th>
<th>Cos</th>
<th>Tan</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>0.99450</td>
<td>0.99470</td>
<td>0.99490</td>
<td>0.99510</td>
<td>0.99520</td>
<td>0.99540</td>
<td>0.99560</td>
<td>0.99570</td>
<td>0.99590</td>
<td>0.99600</td>
<td>0.99610</td>
<td>0.99630</td>
</tr>
<tr>
<td>85</td>
<td>0.99620</td>
<td>0.99630</td>
<td>0.99650</td>
<td>0.99660</td>
<td>0.99670</td>
<td>0.99690</td>
<td>0.99710</td>
<td>0.99720</td>
<td>0.99730</td>
<td>0.99740</td>
<td>0.99750</td>
<td>0.99770</td>
</tr>
<tr>
<td>86</td>
<td>0.99760</td>
<td>0.99770</td>
<td>0.99780</td>
<td>0.99790</td>
<td>0.99800</td>
<td>0.99810</td>
<td>0.99820</td>
<td>0.99830</td>
<td>0.99840</td>
<td>0.99850</td>
<td>0.99860</td>
<td>0.99870</td>
</tr>
<tr>
<td>87</td>
<td>0.99860</td>
<td>0.99870</td>
<td>0.99880</td>
<td>0.99890</td>
<td>0.99900</td>
<td>0.99910</td>
<td>0.99920</td>
<td>0.99930</td>
<td>0.99940</td>
<td>0.99950</td>
<td>0.99960</td>
<td>0.99970</td>
</tr>
<tr>
<td>88</td>
<td>0.99940</td>
<td>0.99950</td>
<td>0.99960</td>
<td>0.99970</td>
<td>0.99980</td>
<td>0.99990</td>
<td>0.99990</td>
<td>0.99990</td>
<td>0.99990</td>
<td>0.99990</td>
<td>0.99990</td>
<td>0.99990</td>
</tr>
<tr>
<td>89</td>
<td>0.99980</td>
<td>0.99990</td>
</tr>
</tbody>
</table>