The course of study represents the second of six modules in advanced crop and soil science and introduces the agriculture student to the subject of physical features of the soil. Upon completing the two day lesson, the student will be able to determine the texture and structural types of soil, list the structural classes of the soil and where they are found in the profile, discuss the influence soil texture and structure have on the physical features of the soil, and calculate bulk and particle density. The course outline suggests teaching procedures, behavioral objectives, teaching aids and references, problems, summary, and evaluation. Following the lesson plans, pages are coded for use as handouts and overhead transparencies. A materials source list for the complete soil module is included. (NW)
PHYSICAL FEATURES OF SOIL

Agricultural Education, College of Education
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

In Cooperation With

Agricultural Education Service, Division of Vocational Education
State Department of Education, Richmond, VA 23216
Prepared by Larry E. Miller

Publication AP-10
1974
ADVANCED CROP AND SOIL SCIENCE
A COURSE OF STUDY

Prepared by
Larry E. Miller

Agricultural Education Program
Division of Vocational and Technical Education
College of Education
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

In Cooperation with

Agricultural Education Service
Division of Vocational Education
State Department of Education
Richmond, Virginia 23216

1974
ACKNOWLEDGEMENTS

Appreciation is expressed to Julian M. Campbell, State Supervisor of Agricultural Education, State Department of Education, Richmond, Virginia, for sponsoring these curriculum materials; to James P. Clouse, Professor and Head of Agricultural Education, for his guidance and direction in the preparation of these curriculum materials.

A Virginia Polytechnic Institute and State University
Extension Division
Education Field Service Publication
How to Use This Book

This course of study is divided into six modules, as enumerated in the index. Each lesson plan contains the title of the:

- course,
- module,
- a suggested time allotment,
- a suggested teaching procedure,
- objectives of the lesson,
- example introduction techniques,
- suggested references and teaching aids,
- problems,
- summary.
- and example evaluatory statements.

Space is provided for individual evaluation.

Modules are lettered consecutively, with numbered pages within each module. A small letter following the number denotes its position within the numbered sequence. Following the lesson plans, pages are also denoted with the letter "H", recommended as a handout; and the letter "T", recommended as an overhead transparency.

Some instructors may find it of greater convenience to assemble a "slide-bank" of these teaching aids.
Materials Source List
(Soil Module Only)
SELECTED REFERENCES:

Books:

*Our Soils and Their Management, Donahue, Interstate, $5.00.
**Farm Soils, Worthen and Aldrich, Wiley & Sons.
**Fundamentals of Soil Science, Millar, Turk.
**Soils and Soil Fertility, Thompson, McGraw-Hill.
**Soil Fertility and Fertilizers, Tisdale and Nelson, Macmillan, 2nd Ed. 1966, $12.95.
**Soil Use and Improvement, Stallings, J. H., Prentice-Hall, $8.36.
**Soil Physics, Kohnke, McGraw-Hill.
**Using Commercial Fertilizers, McVicker, Interstate, 1961, $4.00 Good.
**Our Natural Resources, McNall, Interstate, 1964.
**Soil Conservation, Stallings, Prentice-Hall, 1957, $11.75.
**Experiments in Soil Science, California State Polytechnic College, San Luis Obispo, California 93401, $4.00.
**Factors of Soil Formation, Jenny.

Bulletins:

**"Soil Judging in Indiana" Purdue Mimeo I.D. 72.
**"Soil Color" Voc. Ag. Service, 434 Mumford Hall, Urbana, Illinois 61801
**"Soil Texture" - Illinois V. A. S.
**"Teaching Soil and Water Conservation, A Classroom and Field Guide" PA 341 U. S. D. A.
**Soils Yearbook, U.S. D.A.
**Land Capability Classification, Agriculture Handbook No. 210, U.S. D.A.
**Soil Survey Manual, U.S. D.A."
**"Sampling the Soil", National Fertilizer Association, Washington, D.C.
"Soil Testing" Purdue University Extension Circular, 488.

*Student Reference
**Instructor or Classroom reference
*"Our Land and Its Care", N. P. F. I.
*"What is Fertilizer?" N. P. F. I.
*"How to Take a Soil Sample", N. P. F. I. (Leaflets** and Poster*)
*"Lime Means More Money for You", N. P. F. I. (leaflets** and Poster*)
*"How Soil pH Affects Plant Food Availability", N. P. F. I. (Poster)
*"Hunger Signs in Crops", Illinois V. A. S., VAS 4011a
*"Soil and Plant Tissue Tests", Purdue Station Bulletin 635
*"Soil Science Simplified", Kohnke, Published by or

Films:

"The Depth of Our Roots", New Holland, C-18 Min.
"Making the Most of a Miracle" (Plant Nutrition), N. P. F. I.
"The Big Test" (Importance of Soil Testing), N. P. F. I.
"What's in the Bag" (Fertilizer) N. P. F. I.

Film Bulletin:

"Films to Tell the Soil and Water Conservation Story" 1970 Soil Conservation Service, Film Library, Rm. 503-134 So. 12th St., Lincoln, Nebraska 68508.

Film Strips:

"Soil Color" Vo-Ag. Service, 434 Murnford Hall, Urbana, Illinois.

Slides:

"How to Take a Soil Sample", N. P. F. I.
"Deficiency Symptoms" (Choice by crop, 25¢ ea.) N. P. F. I. (Send for Catalog.)
"Soil Profile Slides", 16 slides, $6.00. (Send for Catalog.)

Periodicals:

"Plant Food Review", N. P. F. I. (Free to Schools.)
TEACHER'S CURRICULUM GUIDES FOR SOILS

Extension Division Bulletins, VPI & SU, Blacksburg, Virginia 24061.

<table>
<thead>
<tr>
<th>NO.</th>
<th>PUBLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>342</td>
<td>"No-tillage Corn - Current Virginia Recommendations"</td>
</tr>
<tr>
<td>429</td>
<td>"Soil Fertility Guides for the Piedmont"</td>
</tr>
<tr>
<td>97</td>
<td>"Agronomy Handbook"</td>
</tr>
<tr>
<td>136</td>
<td>"How Soil Reaction Affects the Supply of Plant Nutrients"</td>
</tr>
<tr>
<td>297</td>
<td>"Soil Fertility Guides - for the Coastal Plains Region of Virginia"</td>
</tr>
<tr>
<td>299</td>
<td>"Soil Fertility Guides - for the Appalachian Region of Virginia"</td>
</tr>
<tr>
<td>684</td>
<td>"Liming for Efficient Crop Production"</td>
</tr>
<tr>
<td>36</td>
<td>"Your Fertilizer Use and Crop Record"</td>
</tr>
<tr>
<td>106</td>
<td>"Lime Use Guides - for the Coastal Plains Region of Virginia"</td>
</tr>
<tr>
<td>107</td>
<td>"Lime Use Guides - for the Appalachian Region of Virginia"</td>
</tr>
<tr>
<td>108</td>
<td>"Lime Use Guides - for the Piedmont Region of Virginia"</td>
</tr>
<tr>
<td>405</td>
<td>"Lime for Acid Soils"</td>
</tr>
<tr>
<td>34</td>
<td>"Soil and Water Conservation Record Book"</td>
</tr>
<tr>
<td>CS48</td>
<td>"Soil Sterilization"</td>
</tr>
<tr>
<td>47</td>
<td>"Know Your Soils, Unit 2, Major Soil Differences"</td>
</tr>
<tr>
<td>23</td>
<td>"The Story of Land"</td>
</tr>
<tr>
<td>228</td>
<td>"Working Together for a Liveable Land"</td>
</tr>
<tr>
<td>No.</td>
<td>Publication</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>AH210</td>
<td>Land Capability Classification. 1961</td>
</tr>
<tr>
<td>AH18</td>
<td>Soil Survey Manual. 1951.</td>
</tr>
<tr>
<td>AB320</td>
<td>Know the Soil You Build On. 1967.</td>
</tr>
<tr>
<td>L539</td>
<td>Land Forming, A Means of Controlling Surface Water on Level Fields. 1967</td>
</tr>
<tr>
<td>L512</td>
<td>Mulch Tillage in the Southeast</td>
</tr>
<tr>
<td>YB1957</td>
<td>Soil (Yearbook)</td>
</tr>
<tr>
<td>L307</td>
<td>How Much Fertilizer Shall I Use? 1963.</td>
</tr>
<tr>
<td>G89</td>
<td>Selecting Fertilizers for Lawns and Gardens. 1971.</td>
</tr>
<tr>
<td>TITLE</td>
<td>Superphosphate: Its History, Chemistry, and Manufacture. 1964.</td>
</tr>
</tbody>
</table>

*"Maintaining Organic Matter in Soils" VAS, Illinois
**"Soil Structure" VAS, Illinois

*Student Reference
**Instructor or Classroom Reference
TEACHING AIDS:

1. Samples of Soil separates, Purdue Agronomy Club
 Life Science Building
 Purdue University
 Lafayette, Indiana 47907

2. Soil Profiles
 Information and directions necessary to make soil profiles.

5. Tissue Test Kit V.A.S. $4.00/kit.

6. Transparencies.

7. Samples of soil structure.
Proper preparation, as in all things, is one of the best assurances of success. Therefore, it is imperative that prior planning be completed before teaching each lesson.

Plans should be made several weeks or months preceding the need for much of the material. Films should be booked as soon as possible to assure their arrival when needed. This will necessitate careful thought in the preparation of your teaching calendar for this module. An inventory of present equipment should yield information necessary to securing needed teaching aids, equipment, and replenishing supplies.

Many other teaching aids can be compiled on shorter notice. Handouts and overhead transparencies can be supplied on rather short notice in most schools. Adjustments will be necessary according to the instructor's and school's clerical assistance in this area.

Short range planning varies considerably with individual instructor's competencies in the teaching area and with previous teaching experience. One may generalize, however, and conclude from good teaching methods, that films should be previewed; experiments and demonstrations "pre-run". Subject matter should be reviewed, and adapted and updated lesson plans will be of benefit for each lesson.

The author has attempted to exclude materials that were presumably taught in previous vo-ag. offerings. It will be necessary for each instructor to discern if a review of previous material is necessary. The author has attempted to provide several teaching techniques for each lesson. It is not assumed that all would be used within the time allotment, but that you may have as many alternatives as possible from which to select.
Soil Module Time Allotment
Allotted days: 15 (at 55 minutes period per day)

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: What is soil?</td>
<td>110</td>
</tr>
<tr>
<td>II: Physical Features of Soil</td>
<td>110</td>
</tr>
<tr>
<td>III: Biological Features of Soil</td>
<td>110</td>
</tr>
<tr>
<td>IV: Soil Water</td>
<td>165</td>
</tr>
<tr>
<td>V: Chemical Features of Soil</td>
<td>220</td>
</tr>
<tr>
<td>VI: Soil Erosion</td>
<td>110</td>
</tr>
</tbody>
</table>

TOTAL (15-55 min. days) 825
Course: Advanced Crop and Soil Science

Module: Soils

Lesson II: Physical Features of Soil

Suggested teaching time: 2 days

Suggested teaching procedure:

1. Introduce lesson by relating objectives and motivational statements and other teaching aids.

2. Make assignment and supervise study period.

3. Discuss results using teaching aids:

 a) Show the transparencies "Soil Texture", "Relative Sizes of Sand, Silt, and Clay", "Sizes of Soil Separates", and "Soil Textural Classification Triangle" and discuss. Show filmstrip "Soil Texture" and use bulletin "Soil Texture" to supplement discussion. Use either, or both, of the demonstrations to illustrate how texture is determined. Discuss determination using handout on "feel method."

 b) Show transparency "Soil Structure" and discuss using bulletins "Soil Color" and "Soil Structure" and filmstrips of the same name.

 c) Show transparency "Characteristics of Various Soil Classes" and discuss to bring out practicality of soil texture and structure study.

 d) Show the transparencies "Bulk Density" and "Particle Density" and discuss the illustrated calculations.

4. Summarize and evaluate the lesson.

Objectives:

1. Students be able to determine the texture, and structural types of the soil.

2. Students should be able to list the structural classes of the soil and where they are found in the profile.

3. Students should understand and be able to discuss the influences soil texture and structure have on the physical features of the soil.

4. Students should be able to calculate bulk and particle density.
Introduction:

Quite often during a droughty summer some places in a field the crop will "fire" before another. Why is this?

References:

Text: Selected reference

Film Strips: "Soil Texture" V.A.S., Illinois
"Soil Color", V.A.S., Illinois
"Soil Structure", V.A.S., Illinois

"Soil Color", V. A. S. 4029, Illinois
"Soil Structure", V. A. S. 4028, Illinois

Problems:

1. What are the physical features of the soil?
2. How is soil texture defined?
3. What are the soil textural classes?
4. What is soil structure? What causes it?
5. What are the soil structural types and where are they found in the soil profile?
6. What are the physical characteristics of a sandy soil? a silty soil? a clay soil?
7. What is bulk and particle density?

Summary:

Soil is composed primarily of sand, silt, clay, and organic matter in varying proportions. These proportions determine many characteristics about how well a soil will produce vegetation.
Evaluation:

A. Did the students learn how to determine the relative proportions of the soil separates in a sample?

B. Did the students learn how to recognize the various soil structural classes?

C. Can the students discuss the characteristics of a soil in terms of its texture?

Student evaluation:
SOIL TEXTURE:

- FINENESS OR COURSENESS OF THE MINERAL PARTICLES
- RELATIVE PROPORTIONS OF SAND, SILT, AND CLAY
- ALSO CALLED SOIL SEPARATES
- PERCENT OF SAND, SILT, AND CLAY IN THE SOIL

MAJOR TEXTURAL CLASSES

1. SAND
2. LOAMY SAND
3. SANDY LOAM
4. SANDY CLAY LOAM
5. SANDY CLAY
6. LOAM
7. CLAY LOAM
8. SILT LOAM
9. SILT
10. SILTY CLAY LOAM
11. SILTY CLAY
12. CLAY
RELATIVE SIZES OF SAND
SILT AND CLAY

SAND

SILT

CLAY
DEMONSTRATION OF TEXTURE DETERMINATION
(BOUYOUCOS METHOD)

MATERIAL

<table>
<thead>
<tr>
<th>Material</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortis and Pestle (rubber)</td>
<td>$10.00</td>
</tr>
<tr>
<td>2 mm. Seive</td>
<td>$60.00</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>---</td>
</tr>
<tr>
<td>Calgon</td>
<td>---</td>
</tr>
<tr>
<td>Malt-making machine with baffled cups</td>
<td>---</td>
</tr>
<tr>
<td>Bouyoucos Cylinder</td>
<td>$6.50</td>
</tr>
<tr>
<td>Bouyoucos Hydrometer</td>
<td>$12.70</td>
</tr>
<tr>
<td>Fahrenheit Thermometer</td>
<td>$2.50</td>
</tr>
<tr>
<td>Watch with second hand</td>
<td>---</td>
</tr>
</tbody>
</table>

PROCEDURE - 1. Grind the soil with a rubber pestle and pass through a 2 mm. seive.
2. Place 50.0 gms. of soil in baffled-malt cup and add distilled water to within 2-3 inches from the top.
3. Add 5 gms. Calgon.
4. Connect cup to stirring motor and stir for 5 minutes.
5. Pour and wash the suspension into special cylinder.
6. Fill with distilled water to the lower mark with the hydrometer in it.
7. Remove hydrometer.
8. Place hand over mouth of cylinder and shake vigorously, turning cylinder upside down and back several times.
9. Place cylinder on table and note time immediately.
10. Replace hydrometer, and record reading of hydrometer and the temperature of the suspension at the end of 40 seconds.
11. Carefully remove hydrometer.
12. At end of two hours replace hydrometer and record hydrometer reading and the temperature.
Since the hydrometer is calibrated at 67° F, apply a temperature correction of 0.2 graduation on the hydrometer for every 1° F above or below 67° F. Add the correction if the temperature is above 67° and subtract if below.

To calculate the conventional amount of combined sand (1.0-0.5 mm.), silt (0.05-0.002 mm.), and clay (0.002 mm. and less), as described by this method, the following procedure is used.

The corrected hydrometer reading at the end of 40 seconds is divided by the amount of soil taken (50 gms.) and multiplied by 100. The result is the amount of material still in suspension at the end of 40 seconds. This percentage is subtracted from 100% and the result is the percentage of material that has settled out in 40 seconds, or the percentage of sand.

The corrected hydrometer reading at the end of the two hours is divided by the amount of soil sample (50 gms.) and multiplied by 100. This result is the percentage of conventional clay.

The percentage of silt is obtained by subtracting the sum of the percentage of sand and clay from 100%.

Textural grade can then be determined from textural triangle.

TABULATE YOUR RESULTS AS FOLLOWS

<table>
<thead>
<tr>
<th>Reading</th>
<th>Temperature °F</th>
<th>Corrected Reading</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 sec.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILT</td>
<td>By Difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXTURAL CLASS:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternate Method for Textural Determination

Materials needed:

1. One or more 150-200 cc’s graduated burettes or a tall jar of small diameter
2. Soil sample(s)
3. Beaker of water
4. Ruler

Procedure:

1. Obtain soil sample
2. Pulverize the sample
3. Measure 100 cc’s into the burette
4. Add water to the 150 cc burette to flood the sample
5. Stopper and shake vigorously
6. Allow sample to settle overnight
7. Calculate the depth of the layers of sand, silt, and clay
8. Measure by ruler or cc graduations
9. Determine percentages by dividing total depth into depth of each layer

Observation sheet:

Date________________________ Name________________________

A. Amount of soil measured in burette or jar________________________.
B. Amount of sand measured in burette or jar________________________.
C. Amount of silt measured in burette or jar________________________.
D. Amount of clay measured in burette or jar________________________.
Alternate method (continued)

Percentage of sand:
\[B \div A = \frac{_ _ _}{_ _ _} = _ _ _\% \text{ sand} \]

Percentage of silt:
\[C \div A = \frac{_ _ _}{_ _ _} = _ _ _\% \text{ silt} \]

Percentage of clay:
\[D \div A = \frac{_ _ _}{_ _ _} = _ _ _\% \text{ clay} \]

This sample, according to the textural triangle, belongs in the ________ textural class.
Procedure for determining textural class by the "feel" method:

a. Make a stiff mud ball.
b. Rub the mud ball between the thumb and forefinger.
c. Note the degree of coarseness and grittiness due to the sand particles.
d. Squeeze the mud between the fingers and then pull your thumb and fingers apart. Note the degree of stickiness due to the clay particles.
e. Make the soil slightly more moist and note that the clay leaves a "slick" surface on the thumb and fingers.

The outstanding physical characteristics of the important textural grades, as determined by the "feel" of the soil, are:

Sandy soil - Loose and single grained. The individual grains can be seen readily or felt. Squeezed in the hand when dry, it will fall apart when the pressure is released. Squeezed when moist, it will form a cast, but will crumble when touched.

Sandy loam soil - Contains much sand but has enough silt and clay to make it somewhat sticky. Individual sand grains can be seen readily and felt. Squeezed when dry, it will form a cast which will readily fall apart, but if squeezed when moist, a cast can be formed which will bear careful handling without falling apart.

Loam soil - Has a relatively even mixture of the sands, silt, and clay. Actually, however, the clay content is less than 20%. (The characteristic properties of clay are more pronounced than those of sand.) A loam is mellow with a somewhat gritty feel yet fairly smooth and highly plastic. Squeezed when moist, it will form a cast which can be handled quite freely without breaking.

Silt loam soil - When dry, may appear quite cloddy but lumps are readily broken, and when pulverized it feels soft and floury. When wet, the soil readily runs together. Either dry or moist, it will form casts which can be handled freely without breaking, but when moistened and squeezed between the thumb and fingers, it will not "ribbon" but will give a broken appearance.

Clay loam soil - Fine-textured soil which usually breaks into clods or lumps that are hard when dry. When moist soil is pinched between thumb and fingers, it will form a thin "ribbon" which will break readily, barely sustaining its own weight. The moist soil is plastic and will form a cast that will bear much handling. When kneaded in the hand, it does not crumble readily but tends to work into a heavy compact mass.

Clay soil - Fine-textured soil that usually forms very hard lumps or clods when dry and is quite plastic. It is usually very sticky when wet. When the moist soil is pinched between the thumb and fingers it will form a long, flexible "ribbon." A clay soil leaves a "slick" surface on the thumb and fingers when rubbed together with a long stroke and a firm pressure. The clay tends to hold the thumb and fingers together due to the stickiness of the clay.
Size of Soil Particles

<table>
<thead>
<tr>
<th>Name</th>
<th>Size, Diameter in Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Gravel</td>
<td>2 - 1</td>
</tr>
<tr>
<td>Coarse Sand</td>
<td>1.00 - 0.50</td>
</tr>
<tr>
<td>Medium Sand</td>
<td>0.50 - 0.25</td>
</tr>
<tr>
<td>Fine Sand</td>
<td>0.25 - 0.10</td>
</tr>
<tr>
<td>Very Fine Sand</td>
<td>0.10 - 0.05</td>
</tr>
<tr>
<td>Silt</td>
<td>0.05 - 0.002</td>
</tr>
<tr>
<td>Clay</td>
<td>Less Than 0.002</td>
</tr>
</tbody>
</table>
SIZE OF SOIL PARTICLES

Size limits of soil separates are established by the U. S. Dept. of Agriculture, Corps of Engineers, and other agencies. These size limits will vary slightly but are still of the same relative ranges. The soil particles, which resulted from glacial action and from weathering, vary greatly in size. They are classified on the basis of size into gravel, sand, silt, and clay. Gravel may range from pebbles down to particles about 1/12 inch in diameter. Sand grains feel gritty and can be easily seen. Silt looks and feels like flour and clay particles are so small that you cannot see them with your unaided eye.

As a rule, both gravelly and sandy soils drain readily and work easily. If soils contain too much sand or gravel, however, the water drains away too fast and plants suffer from drought during a dry spell. In soils of this kind, organic matter decays rapidly after it is plowed down. The plant food which is released, particularly the nitrogen, leaches out readily and is carried away in the soil drainage water.

Since silt is much finer than sand, soils made up largely of this material retain moisture well. At the same time they are open enough that air and water move freely through them. These soils usually work well.

The very fine particles in clay soils help to hold water in the soil and also serve as a storehouse for minerals upon which plant roots can draw. Too much clay, however, makes the soil slow to drain and hard to work.
SIZES OF SOIL SEPARATES

<table>
<thead>
<tr>
<th>PARTICLE</th>
<th>DIAMETER (MM.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOULDERS</td>
<td>256</td>
</tr>
<tr>
<td>COBBLES</td>
<td>256-64</td>
</tr>
<tr>
<td>PEBBLES</td>
<td>64-4</td>
</tr>
<tr>
<td>GRAVEL</td>
<td>4-2</td>
</tr>
<tr>
<td>FINE GRAVEL</td>
<td>2-1</td>
</tr>
<tr>
<td>COARSE SAND</td>
<td>1-0.5</td>
</tr>
<tr>
<td>MEDIUM SAND</td>
<td>0.5-.25</td>
</tr>
<tr>
<td>FINE SAND</td>
<td>.25 - .1</td>
</tr>
<tr>
<td>VERY FINE SAND</td>
<td>.1 - .05</td>
</tr>
<tr>
<td>SILT</td>
<td>.05 - .002</td>
</tr>
<tr>
<td>CLAY</td>
<td>.002 - AND LESS</td>
</tr>
</tbody>
</table>
SOIL TEXTURAL CLASSIFICATION TRIANGLE

PERCENT SAND
1. SANDY LOAM

SAND

17
DEMONSTRATION TO SHOW SAND, SILT, AND CLAY

MATERIAL - A quart jar with lid.
1/2 teaspoon of Calgon
A handful of medium - textured soil

PROCEDURE - Fill the jar half-full of soil.
Add enough water to make the jar 3/4 full.
Add 1/2 teaspoon of Calgon.
Shake for 5 minutes.
Set jar aside and allow to settle undisturbed.
Note the soil separates settling into layers.
MECHANICAL ANALYSIS OF SOILS
STEP I

DISPERGING AGENT

WATER

SOIL
MECHANICAL ANALYSIS OF SOILS
STEP II

(24 HOURS AFTER SHAKING)
SOIL TEXTURAL CLASSES

SAND — **DRY:** LOOSE AND SINGLE GRAINED; FEELS Gritty. **MOIST:** WILL FORM VERY EASILY-CRUMBLED BALL. SAND--85-100%, SILT--0-15%, CLAY--0-10%.

LOAMY SAND — **DRY:** SILT AND CLAY MAY MASK SAND; FEELS LOOSE, GRITTY. **MOIST:** FEELS Gritty; FORMS EASILY-CRUMBLED BALL; STAINS FINGERS SLIGHTLY. SAND--70-90%, SILT--0-30%, CLAY--0-15%.

SANDY LOAM — **DRY:** CLODS EASILY BROKEN; SAND CAN BE SEEN AND FELT. **MOIST:** MODERATELY GRITTY; FORMS BALL THAT CAN STAND CAREFUL HANDLING; DEFINITELY STAINS FINGERS. SAND--43-85%, SILT--0-50%, CLAY--0-20%.

LOAM — **DRY:** CLODS MODERATELY DIFFICULT TO BREAK; MELLOw, SOMEWHAT GRITTY. **MOIST:** NEITHER VERY GRITTY NOR VERY SMOOTH; FORMS A FIRM BALL; STAINS FINGERS. SAND--23-52%, SILT--28-50%, CLAY--7-27%.

SILT LOAM — **DRY:** CLODS DIFFICULT TO BREAK; WHEN PULVERIZED FEELS SMOOTH, SOFT AND FLOURY, SHOWS FINGERPRINTS. **MOIST:** HAS SMOOTH OR SLICK "BUTTERY" OR "VELVETY" FEEL; STAINS FINGERS. SAND--0-50%, SILT--50-88%, CLAY--0-27%.

CLAY LOAM — **DRY:** CLODS VERY DIFFICULT TO BREAK WITH FINGERS. **MOIST:** HAS SLIGHTLY GRITTY FEEL; STAINS FINGERS; RIBBONS FAIRLY WELL. SAND--20-45%, SILT--15-53%, CLAY--27-40%.

SILTY CLAY LOAM — **SAME AS ABOVE BUT VERY SMOOTH.** SAND--0-20%, SILT--40-73%, CLAY--27-40%.

SANDY CLAY LOAM — **SAME AS FOR CLAY LOAM.** SAND--45-80%, SILT--0-28%, CLAY--20-35%.

CLAY — **DRY:** CLODS CANNOT BE BROKEN WITH FINGERS WITHOUT EXTREME PRESSURE. **MOIST:** QUITE PLASTIC AND USUALLY STICKY WHEN WET; STAINS FINGERS. (A SILTY CLAY FEELS SMOOTH, A SANDY CLAY FEELS GRITTY.) SAND--0-45%, SILT--0-40%, CLAY--40-100%.
SOIL TEXTURAL CLASSES

Each of the soil particles has a distinctive feel; with a knowledge of soil textural classes and some experience, students should be able to determine the texture of soil. The best way to estimate texture in the field is to feel the soil with your fingers. The soil should be moist because the clay is more readily estimated. The following procedure is recommended:

Moisten a sample of soil to the consistency of workable putty. From this sample make a ball about 1/2 inch in diameter. Hold the ball between the thumb and index finger. Then gradually press your thumb down and forward, forming the soil into a ribbon.

VOCATIONAL AGRICULTURE SERVICE
434 MUMFORD HALL
URBANA, ILLINOIS
61801
ESTIMATING TEXTURE

If a ribbon forms easily when pressed between the thumb and forefinger, and remains long and flexible, the sample is probably clay or silty clay and is considered fine-textured. Soils in this group are very sticky and plastic.
ESTIMATING TEXTURE

If a ribbon forms but breaks into pieces 3/4 to 1 inch long, it is probably a clay loam or silty clay loam and is moderately fine textured. Soils in this group are moderately sticky and plastic.
ESTIMATING TEXTURE

If a ribbon is not formed and the sample breaks into pieces less than 3/4 inch long, it is probably a silt loam, loam, or sandy loam. The sample would, therefore, be in one of two groups — medium textured or moderately coarse-textured. The decision will rest on whether silt or sand predominates in the sample.

If the soil feels smooth and talc-like, with no grittiness, silt predominates then the soil is termed medium-textured. If the soil feels slightly gritty, yet fairly smooth and talc-like, it is probably a loam or silt loam and is also included in the medium-textured group.

A pronounced gritty feel and a lack of smoothness indicates that sand likely predominates. This soil is then considered moderately coarse textured.
ESTIMATING TEXTURE

If the sample is composed almost entirely of gritty material and leaves little or no stain on the hand, it is a sand and is considered coarse-textured. Soils composed of gravel, with very little fine material will also fall into this classification.
CHARACTERISTICS OF VARIOUS TEXTURAL CLASSES

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>COURSE</th>
<th>MEDIUM</th>
<th>FINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOOSENESS</td>
<td>GOOD</td>
<td>FAIR</td>
<td>POOR</td>
</tr>
<tr>
<td>AIR SPACE</td>
<td>GOOD</td>
<td>FAIR TO GOOD</td>
<td>POOR</td>
</tr>
<tr>
<td>INFILTRATION RATE</td>
<td>GOOD</td>
<td>FAIR TO GOOD</td>
<td>POOR</td>
</tr>
<tr>
<td>PERCOLATION RATE</td>
<td>GOOD</td>
<td>FAIR TO GOOD</td>
<td>POOR</td>
</tr>
<tr>
<td>RESISTANCE TO CLOD FORMATION</td>
<td>GOOD</td>
<td>FAIR</td>
<td>GOOD</td>
</tr>
<tr>
<td>EASE OF WORKING</td>
<td>GOOD</td>
<td>FAIR</td>
<td>POOR</td>
</tr>
<tr>
<td>MOISTURE HOLDING</td>
<td>POOR</td>
<td>FAIR</td>
<td>GOOD</td>
</tr>
<tr>
<td>NUTRIENT HOLDING CAPACITY</td>
<td>FAIR</td>
<td>FAIR TO GOOD</td>
<td>GOOD</td>
</tr>
</tbody>
</table>
SOIL STRUCTURE - ARRANGEMENT OF SOIL PARTICLES INTO AGGREGATES, OR PEDS

CAUSES OF GRANULATION
1. FREEZING AND THAWING
2. WETTING AND DRYING
3. ROOT MOVEMENT
4. EARTHWORMS
5. ORGANIC MATTER AND SLIMES
6. SOIL TILLAGE

TYPES OF SOIL STRUCTURE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LOCATION</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRANULAR</td>
<td>"A" HORIZON</td>
<td>3-5 mm</td>
</tr>
<tr>
<td>PLATY</td>
<td>"A2" HORIZON</td>
<td></td>
</tr>
<tr>
<td>BLOCKY</td>
<td>"B" HORIZON</td>
<td>5-12 mm</td>
</tr>
<tr>
<td>SUBANGULAR BLOCKY</td>
<td>"B" HORIZON</td>
<td></td>
</tr>
<tr>
<td>PRISMATIC</td>
<td>"B" HORIZON</td>
<td></td>
</tr>
<tr>
<td>COLUMNAR</td>
<td>"B" HORIZON</td>
<td>7250 mm</td>
</tr>
</tbody>
</table>
COMMON TYPES OF SOIL STRUCTURE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SHAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRANULAR</td>
<td></td>
</tr>
<tr>
<td>CRUMB</td>
<td></td>
</tr>
<tr>
<td>PLATY</td>
<td></td>
</tr>
<tr>
<td>PRISMATIC</td>
<td></td>
</tr>
<tr>
<td>COLUMNAR</td>
<td></td>
</tr>
<tr>
<td>BLOCKY</td>
<td></td>
</tr>
<tr>
<td>SINGLE GRAIN</td>
<td></td>
</tr>
<tr>
<td>MASSIVE</td>
<td></td>
</tr>
</tbody>
</table>
COMMON TYPES OF SOIL STRUCTURE

The term "structure" is used when considering the arrangement of soil particles into various sizes and shapes. This transparency illustrates the principal kinds of structures found in Illinois soils.

<table>
<thead>
<tr>
<th>Kind of structure</th>
<th>Description of aggregates (clusters)</th>
<th>Horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crumb</td>
<td>Aggregates are small, porous, and weakly held together</td>
<td>Usually found in surface soil or A horizon</td>
</tr>
<tr>
<td>Granular</td>
<td>Aggregates are small, non-porous, and are strongly held together</td>
<td></td>
</tr>
<tr>
<td>Platy</td>
<td>Aggregates are flat or plate-like, with horizontal dimensions greater than the vertical. Plates overlap, usually causing slow permeability</td>
<td>Usually found in subsurface or A sub horizon of timber and claypan soil</td>
</tr>
<tr>
<td>Angular blocky or cube-like</td>
<td>Aggregates have sides at nearly right angles, tend to overlap</td>
<td></td>
</tr>
<tr>
<td>Subangular blocky or nut-like</td>
<td>Aggregates have sides forming obtuse angles, corners are rounded. Usually more permeable than blocky type</td>
<td>Usually found in subsoil or B horizon</td>
</tr>
<tr>
<td>Prismatic</td>
<td>Without rounded caps</td>
<td>Prism-like with the vertical axis greater than the horizontal</td>
</tr>
<tr>
<td>Columnar</td>
<td>With rounded caps</td>
<td></td>
</tr>
<tr>
<td>Structure lacking Single grain</td>
<td>Soil particles exist as individuals such as sand and do not form aggregates</td>
<td>Usually found in sub-stratum or C horizon</td>
</tr>
<tr>
<td>Massive</td>
<td>Soil material clings together in large uniform masses, as in loess</td>
<td></td>
</tr>
</tbody>
</table>
BULK DENSITY

Example:

Weight = 2.66 grams

Volume = 2 cubic centimeters

\[
\frac{2.66 \, \text{g}}{2 \, \text{cc}} = 1.33 \, \text{g/cc} = \text{Bulk Density}
\]
PARTICLE DENSITY

SOIL MASS (solids and pore space)

PARTICLE DENSITY = \frac{\text{WEIGHT OF SOIL MASS}}{\text{VOLUME OF SOLIDS ONLY}}

EXAMPLE:

WEIGHT OF SOIL MASS = 2.66 grams

VOLUME OF SOLIDS ONLY = 1 cubic centimeter

\[\frac{2.66 \text{ g}}{1 \text{ cc}} = 2.66 \text{ g/cc} = \text{PARTICLE DENSITY} \]