ABSTRACT
This teacher-prepared Learning Activity Package (LAP) for individualized instruction in topics in pre-algebra covers the natural numbers, whole numbers, and integers. The unit contains a rationale for the material, a list of behavioral objectives, a list of resources including texts (with reading assignments and problem sets specified) and tape recordings, a problem set for student self-evaluation, suggestions for advanced study, and references. (DT)
LEARNING ACTIVITY PACKAGE

BEST COPY AVAILABLE

NATURAL NUMBERS, WHOLE NUMBERS, AND INTEGERS

Pre-Algebra

Ninety Six High School

REVIEWS BY

LAP NUMBER 7

WRITTEN BY Diane Evans
RATIONALE (The LAP's Purpose)

You have previously studied both the natural numbers and the whole numbers. For many centuries these were the only numbers man needed. But as time passed and civilizations grew more advanced and sophisticated, men found these numbers were not enough. They needed numbers to represent losses, below zero degree temperatures, and other such situations. To solve this problem, the set of integers were invented. In this LAP you will study the set of integers and operations using integers. You will also study the properties of integers and absolute values.
SECTION I

Behavioral Objectives

At the completion of your prescribed course of study, you will be able to:

1. Identify and/or write a definition for the sets of natural numbers, whole numbers, and/or integers.

2. Given a statement in words, write and/or identify an integer which represents it.

3. Determine if each of the eleven previously studied properties hold for the sets of natural numbers, whole numbers, and/or integers.

4. Compare which properties hold for the set of integers that do not hold for the natural numbers and/or the whole numbers.

5. Draw and/or identify a number line to represent the sets of natural numbers, whole numbers, and/or integers.

6. Given any two integers, write a comparison using > or < and/or determine if such a comparison is true or false.

RESOURCES

Objectives 1, 2

Dolciani, read pages 111-112, 170, Ex. 1-28 even page 113.
Wollensak C-3458 The Real Number System

Objectives 3, 4

* Appendix I, II
Dolciani, read pages 71-72, Ex. Appendices I, II.
Nichols, read pages 34-44, Ex. Appendices I, II.
Wollensak Tapes C-3453: The Commutative Property
C-3454: The Associative Property
C-3456: The Closure Property
C-3457: The Inverse Elements
C-3459: The Identity Element

Objective 5

Vanatta, read page 81, Ex. 3 page 83.

Objective 6

Dolciani, read page 114, Ex. 1-12 oral page 114.

* required (turn in to teacher)
Obj. 1 I. Define:
 a) natural numbers
 b) whole numbers
 c) integers

II. Write an integer to represent each of the following:
 1. ten degrees below zero
 2. 40 feet above sea level
 3. a loss of $90
 4. 15 yards gain in a football game
 5. sea level

III. Put a cross (X) beside the properties that hold for the natural numbers. Put a circle (O) beside the ones that hold for the whole numbers. And put a (✓) beside the ones that hold for the integers.
 1. closure +
 2. closure X
 3. comm. +
 4. comm. X
 5. asso. +
 6. asso. X
 7. dist.
 8. ad. id.
 9. ad. inv.
 10. mul. id.
 11. mul. inv.
IV. Put a circle (O) around the number(s) of the properties that hold for integers but not for natural numbers. Put a cross (X) on the number(s) of the properties that hold for integers but not for the whole numbers.

1. closure
2. closure X
3. comm. +
4. comm. X
5. assoc. +
6. assoc. X
7. id. id.
8. id. inv.
9. id. id.
10. id. inv.
11. dist.

V. Draw a number line to illustrate:
 a. natural numbers
 b. whole numbers
 c. integers

VI. Put either > or < to make these true.
1) -6 ___ -3
2) -3 ___ -4
3) -10 ___ -1
4) -1 ___ -i
5) 12 ___ 7
6) -1 ___ -2
7) -10 ___ -10
8) 0 ___ -7
9) -5 ___ -5
10) -6 ___ -10

If you have satisfactorily completed your work, take the Progress Test. Consult your teacher first.
Behavioral Objectives

After having completed your prescribed course of study, you will be able to:

7. Given any integer, write and/or identify its absolute value.

8. Given any statement of relations between two absolute values, determine if it is true or false.

9. Evaluate expressions involving absolute values.

10. Given two or more integers, write and/or identify their
 a. sum
 b. difference
 c. product
 d. quotient.

Objective 7

Objective 8

Dolciani, read pp. 79-80, in., page 124.
Nichols, read p. 81, ex., page 62.

Objective 9

Dolciani, ex. 1, 2, 3, 4, 5, 6, 9, 13, 14, 15, 23, 71; page 96 nos. 1-6, 10, 19-21.
Vanatta, read pp. 16-17, page 90.

Objective 10

A. Dolciani, read pp. 1-14; ex.: page 126 orals 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14.
Vanatta, read pp. 58-59, ex.: page 95 nos. 1-6, 1-3, 9, 13, 15, 23, 71; page 96 nos. 1-6, 10, 19-21.

Nichols, ex. 1-22; ex. 3 (all parts).
Vanatta, read pp. 58-59, ex.: page 99 nos. 1-6, 9-14; page 100 nos. 1-10 (1-14, first page); page 100 (bottom) nos. 1-10.

C. Nichols, ex. 1-22.
Vanatta, read pp. 58-59, ex.: 1-14, 17-26, page 104.
SECTION 2

Resources (cont')

Nicholls, read pp. 54-63. Ex.: pages 98-99 nos. 1 a-p, 2 a-f.
Wollensak Tapes C-3331 Directed Numbers: Addition
 C-3332 Directed Numbers: Subtraction
 C-3333 Directed Numbers: Multiplication
 C-3334 Directed Numbers: Division

Filmstrips:
 Comparing Fractions: Adding and Subtraction
 Multiplying Fractions
 Multiplication of Signed Numbers
 Dividing Fractions
Obj. 7

I. Give the absolute value for each of the following:

1. \[| -8| \]
2. \[| 0| \]
3. \[| -15| \]
4. \[| 13| \]
5. \[| 20| \]
6. \[| -4| \]
7. \[| 16 - 1| \]
8. \[| 8 - 9| \]
9. \[| 10 - 20| \]
10. \[| 7 - 3| \]

II. Write true or false for each of these:

1. \[10 - 10 \]
2. \[| -1| = -1 \]
3. \[9 = | -9| \]
4. \[| -27| = 27 \]
5. \[9 = | -6| \]
6. \[| -7| = -7 \]
7. \[| 15| = -15 \]
8. \[10 = -10 \]
9. \[| 32| = -32 \]
10. \[| -27| = 27 \]

III. Perform the indicated operations:

1. \[3 + (5) \]
2. \[|-2| - |-1| \]
3. \[|6 - 7| \]
10A

1. All the following integers:

1) -7 3 5 4 -7 5 -6 12

2) -9 -2 -5 -1 -2

3) -11 -10 -5 -3 -1

4) -1 -2 -4 -6 +1 +2 +4 +6

5) +16 +7 -5

6) +16

7) 10

8) 12

9) 14

10) 16

10B

5. Find the differences of the following:

1) +12 -5 -3 -4 A +12 (5) -4 (6) +6

2) 12 10 7 4 1

3) 10 8 5 2 1

4) 2

5) 9

6) 13

7) 0

8) 3

9) 7

10) 11

10C

VI. "Mischief in the air."

1) -1 -7 -11

2) -2 -6 -10

3) -3 -7 -11

4) -4 -8 -12

5) -5 -9 -13

6) +4 x -7 =
7) (-5)(-7)
8) (-6)(-9)
9) (-2)(+4)(-1)
10) (-3)(-2)(-1)(-4)

VII. Find the following products:

1) -6 + -2 = __________
2) +2 + +3 = __________
3) +18 + -7 = __________
4) +24 + -1 = __________
5) -20 + -10 = __________
6) 6 / 2 = __________
7) 12 / -6 = __________
8) +12 / -3 = __________
9) -16 / 8 = __________
10) +1 / -1 = __________

If you have satisfactorily completed your work, take the LAP TEST.
CONSULT YOUR TEACHER FIRST.
Put an X by each property that holds for the given sets of numbers. Put a circle (O) by each property that does not hold. Do not leave a blank.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>NATURALS</th>
<th>WHOLES</th>
<th>INTEGERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure for .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closure for x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commutative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commutative x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associative x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributive x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add. Identity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add. Identity x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mult. Identity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mult. Identity x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int. Invers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int. Invers. x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. What properties hold for the whole numbers that do not hold for the natural numbers?

2. What properties hold for the integers that do not hold for the naturals?

3. What properties hold for the integers that do not hold for the whole numbers?
1. The positive and negative relationship
between two variables invalid:

\[\text{positive} \times \text{negative} = \text{negative} \]

2. The value of a variable is the sum of its parts

\[x = a + b \]

3. The inverse of a variable is the value that satisfies

\[x = \frac{1}{y} \]

We have

\[x = \frac{1}{a - b} \]

4. The inverse of the inverse of a variable is the value of the variable:

\[\left(\left(a - b \right)^{-1} \right)^{-1} = a - b \]

5. The inverse of the inverse of a variable is the value of the variable:

\[\left(\left(a - b \right)^{-1} \right)^{-1} = a - b \]

6. The inverse of the inverse of a variable is the value of the variable:

\[\left(\left(a - b \right)^{-1} \right)^{-1} = a - b \]

7. The inverse of the inverse of a variable is the value of the variable:

\[\left(\left(a - b \right)^{-1} \right)^{-1} = a - b \]
Nichols (abbreviation)

Bolciani (abbreviation)

Tanaka (abbreviation)

Wollensak (abbreviation)