AOTHOR
TITLE
INSTITOTION
pub date NOTE

Sydow, James armin
Secondary Athletics and the computer.
Total Information Educational Systems (TIES) Project, Roseville, Minn.
Jan 74.
52p.: Paper presented at the National association of Users of Computer Applications to Learning (Minneapolis, Minnesota, Noveaber 7-9, 1974): Por a related document see IR 001152

EDRS PRICE DESCRIPTORS

MF-\$0.75 HC-\$3. 15 pLUS POSTAGE
Athletic Coaches; Athletic Programs; *Conputer Assisted Instruction; Computer Oriented Prograns: *Physical Education; Problem Solving; Scheduling: Scoring; *Secondary Education; Simulation: Statistical Analysis; Tire Sharing

ABSTPACT

A study was made to explore how a time sharing coaputer spstem can help the coach of high school sports. A structural analysis determined that the conputer's capabilicty to process information helps the coach: (1) store large quantities of information; (2) perform numerous operations in a very short amount of time: (3) provides consistent accuracy while also providing versatility. Nert, a computer model encompassing thirteen sports vas grouped according to each sport's individual needs. This grouping enabled a coach to develop general types of computer prograns for "comson" activities. Here, the computer was used as a problen solving tool to assist the coach in the analysis of activities and the data which they generate. The programs need to be sufficientiy general to suit a variety of coaches and activities, but have built in definable paramerers to meet specific needs. Five areas of secondary athletic conputer application areas have been: simulations, scheduling. scoring, statistics, and scouting. As a result, a great deal of a coach's time has been saved and a more meaningful type of information has been obtained frow computer usage. (wCM)

SECONDARYATHLET:CS
AND THE COMPUTER

January 1974

James Armin Sydow
Services Coordinator - Instructional
TIES Project
1925 West Countr Road B2 Roseville, Minnesota 55113

SECONDARY ATHLETICS AND THE COMPUTER

I. Introduction
II. Computers
A. Description
B. Capabilities
C. Timesharing
III. Athletics
A. Activities
B. Model
IV. Applications
A. Simulation
B. Scheduling
C. Scoring
D. Scouting
E. Statistics
F. Summary
v. Documentation
A. Scheduling
B. Scouting
C. Statistics

SECONDARY ATHLETICS AND THE COMPUTER

I. Introduction

Athletics and computers - an unlikely and odd couple?! Not really, altiough existing literature is almost mute on the relationship. Professional sports of today depend for their very existence on computers. Scouting data is processed by computers before being analyzed by coaches; scheduling of games and travel avoさfing the many possible conflicts requires a computer; and storing and calculating various statistics, the backbone of generating fan interest and of coaching decisions is comfortably handled by computers.

Athletic departments of most colleges have also discovered that there has been a very willing participant in a their program, resident on campus for a decade at the data processing center. Yes, the computer, an integral part of our daily life, has been found to be an extremely powerful coaching tool. By using the computer, you have recruited the only player you will ever coach who will do exactly what you tell him to do, and do it that way everytime.

Recause of the advent of timesharing computer systems, it is safe to project that all school districts will have in the near future computer power available to them. Indeed, many already have terminals connected to computers in their schools. Thus, this powerful aide to coaching does not have to remain with the exclusive club of college and professional coaches, but its usage is available to all secondary coaches.

The purpose of this presentation is to explore how the computer can help the coach of high school sports using a timesharing, computer system.
A. Description

Although only a quarter century old, the computer has already had a profound impact on our world. Their incorporation into our technologically oriented lives has been extremely rapid. In fact, our roles in society are greatly influenced and somewhat dependent upo: .ese electrical machines. Yes, the computer is a machine, a device for doing..$:$. . As in the past, many manual tasks were relieved by the aid of labor-saving machinery, so too the computer is rapidly relieving many of the menial repetitive mental tasks in a similar manner.

The tyre of work computers do is process information or data. Thus with the use of a computer at our disposal, is the ability to access a great deal more information than we did in the past. This information explosion of today is similar to the impact Guttenburg's movahle printing press had upon the Western World of the 16 th Century. Computers afford us an opportunity to greatly enhance our knowledge in any subject matter area by the rapid organization of information to be used at our discretion.

Therefore, a computer may be defined as a machine which accepts information, performs mathematical or logical operations with the information and then supplies the results of the operation as new inforr:iion. An underlying premise to this whole field of technology is that information may be prepared in some manner for processing by an electrical machine. The action of preparing and entering data into a machine is called input. Where the data is massaged, compared, is termed the central processing unit (CPU), "where the action is." It is assumed that the rules for processing problems of an algorithmic nature may be specified in a logical manner so that the machine may operate on the data on the basis of these
rules. Operations include such things as calculations, comparisons, and logical connectives. Finally the results of these actions on the data are returned to the user in some meaningful form which is output. Computers do not make judgments on their results; humans do:

Thus the basic components of a computer may be diagrammed as follows:

It becomes readily apparent that the computer as any other machine is In the control of the user. Its ability to store not only data but programs and execute a set of rules for solving a problem makes it appear to be other than human-operazed. Nevertheless, the program, or set of instructions, must be prepared by somebody; the net result as to a computer's effectiveness (quality of usage) as a data processor is in the hands of the person who writes the programs. Poor programs yield poor usage and conversely good program yield good usage. An acronym has been coined by the computer world to amplify this concept: GIGO - Gargabe in, garbage out. Therefore, the computer must be instructed exactly what to do; how effectively the computer performs these tasks depends directly on how well it has been taught or programmed.

B. Capabilities

From this brief structural analysis of a computer we may now examine what-edvantages or capahilities does computer have in assisting us with the processing information.

1. The computer has the ability to store large quantities of information which are quickly accessable to the user. This information may be in the form of programs or data files thus storing cither instructions
for the computer or the data on which the computer is to operate.
2. Because the computer is an electrical device, it may perform numerous operations in a very short amount of time. Onis-half million additiors per secfold is possible by most present day computers. Thus, speed is an advantage of great importance by affording the user an opportunity to have almost "immediate". results to complex calculation tasks or jobs involving large amounts of data.
3. Although computers may be instructed to perform a particular informational process they are basically quite stupid. But this becomes a distinct advantage because computers do not get bored, thus allowing errors to appear. They may be asked to repeat the same task millions of -imes and they will do it in the same manner each time. Their results because it is an electrical process, will be consistent and precise. Thus, the asset of consistent accuracy gives us another advantage of computer usage.
4. The computer is extremely versitile. This will be illustrated by the varying types of usages cited in discussing athletic applications.

For effective ccmputer usage the user extends his abilities and experiences by taking advantage of the computer's capabilities. A word of caution must be made that inspite of the numerous capabilities of this powerful tool when better methods exist for obtaining the information do not force the usage of the computer. A philosophy of "Computer can, computer do" should never govern our thinking.

C. Timesharing

The advent of timesharing made computer services available and economically feasible for secondary schools. Timesharing allows several
users to simultaneously access the computer, with the computer's time being shared among the users. To each user it appears that the computer is solely devoted to their activities, because no one user, normally, requires all of the processing powers of the uter. Thus, assuming that the computer is in general available to the sacondary schoni coach, the remainder of our attention will be focused on a matching oi the needs cf athletics with the computer's capabilities.
III. Athletics
A. Activities

For the purpose of examining various athletic activities, the following list was obtained from the Minnesota State High School League.

1973-j4 Minnesota Interscholastic Athletic Activities

1. Baseball
2. Basketball
3. Cross Country
4. Football
5. Goif
G. Gymnastics
6. Hockey
7. Skiing
8. Soccer
9. Swimmin $_{6}$
10. Tennis
11. Track
12. Volleyball
B. Model

From the standpoint of the developer of computer applications it is advantageous to group these activities according to their specific needs. By examining the nature of these activities several natural groupings occur. Some factors considered include the following:

1. Is it a team activity or essentially individual with team scores based on the placing, judging, times, andfor scores of the member participants?

Normally the word game is used to describe "team" activities whereas match or meet is used to descrile "individual" activities.
2. Is the type of play a continuous flow of action or stop-action (episodic)?
3. Is the length of the activity determined by a time measure or not?
4. Is the scoring based on tallying by goals (points) or placement by judging or time measures?

It was found by using the first two categories, 2 grouping model of
"like" type activities with common needs can be constructed, as seen on the following page.

Uitilizing these groupings enables a person to develop general types of programs which apply and may be readily used by a whole set of "common" activities, thus. eliminating the necessity of writing numerous, programs limited to a unique activity. These groups with differing needs will be referred to when discussing actual types of athletic computer applications.

IV.

Applications
The computer is used as a problem solving tool to assist the coach in the analysis of activities and the data which they generate. Although actual programs to be used may be written by the coach, in general, it is assumed that a coach has no programing experience and therefore wants to use existing programs in a system library. This points out the need for programs to be sufficiently general to suit a variety of coaches and activities, but have built-in definable darameters to meet specific needs.

The following secondary athletic computer application areas have been identified: simula:ions, scheduling, scoring, statistics, and scouting.

Drill and practice has not been included in this listing because it is felt that this is too limited a usage in this area. Nevertheless, football players could use this tutorial mode for the learning of plays. Also, it is not being assumed that programs may be developed which do not fit into any of the above areas.

A. Simulations

Similations are a means of having the computer approximate the actual athletic activity. A program must be developed which incorporates an accurate model of this activity. A great deal of value can be derived from the actual writing of such a program, because it is necessary to thoroughly analyze the activity in such a way that the instructions given to the computer clearly model what happens in reality. Most athletic simulations have been developed for stop-action type of activities such as football, baseball, and golf. These types are especially suited tc an interactive mode, where each normal. pause in the action affords an opportunity to input new decisions. More benefits can be derived from simulations than just game playing. A thorough examination of an
accurate model will reflect which factors are most important and their effect on the play of the activity.

Thus, strategies may be tested as to their net effect on the outcome of a game. Earnshaw Cook in his book, Percentage Baseball, with the assistance of a computer has examined several commonly accepted practices such as the sacrifice bunt and intentional walks and illustrates statistically that in many cases their usage mey actually hinder total team run production. Gross and Brainard in Fundamental Programming Cencepts use a simplified baseball model for finding the optimal run producing batting order. The selection of football plays and golf clubs may be studied with a simulation.

Although a randomness is incorporated with branching on the basis of probabilities for many simulations, models may also be developed using actual data. These types of usage are usually found in individual stopaction sports such as track and swimming. The actual times, distances, and/or points for an opponent are entered in the meet simulation, then the coach using his team's data places his participants into the various events of the meet model attempting to maximize the team's points by finding the best arrangement of his team members in the events of the meet.
B. Scheduling:

Many man-hcurs are spent scheduling both teams and indiviciuals in varłous activities. Teams in most secondary conferences play some sort of round robin schedule each season. This type of conflict free schedule can be easily generated, balancing home-away games, for any number of teams. (See the program SCHDLl, However, more difficult problems arise when modifications must be made to the basic round robin scheme. This is especially true in individual activities where more than two teams may
compete at one time. Several reasons may be cited: non-school facilities usage necessary, restrictions on the maximum number of meets or matches, and travel limitations. For example, a nine team conference was limited to a maximum of fourteen golf matches per season but still wanted every team $i o$ play every other team twice. Although some scheduling idosyncracies may be rectified by using a general round robin schedule as the basis, many cases necessitate the creation of a program which is specific to the situation. The computer is used to great advantage here by examining all possibilities, checking to see if it meets all the necessary requirements, and then generating a schedule.

Probabilities of outcomes and length of var ous series of games may be examined using the computer. A Mathematics Teacher article "Predicting the Outcome of the World Series" by Richard Brown investigated using the computer ou:comes, lengths, home/away advantages of this seven game series.

For large meets or matches involving numerous teams the problem of individual event assignments is often foreboding. Participants are commonly seeded in heats or flights on the basis of past performance. This is a task which the computer can effectively perform. For example, in a track meet, once ali the entrants and corresponding data have been entered, the numeric data for a particular event needs to be sorted in either ascending (time) or descending (distance) order and the heat/lane or flight assignments made (See the program SCHDL2).

C. Scoring

The scoring at the match or meet of individual stop-action activities often becomes a difficult task. Not only are the people working at the scoring table required to figure the final team outcome of the match or meet, but individual and event totals must be computed, maintained, sorted,
and points allocated to the appropriate team totois which also must be computed and maintained. Usually the more teams involved, the more difficult this scoring task. A gymnastics scoring program was developed by LACE for usage at the 1973 NAIA National Championships held in La Crosse, Wisconsin. Because gymnastics meets are similar in format to other individual stop-action type activities such as swimming, wrestling, track, and skiing, one general program can be developed to handle their scoring needs.

D. Scouting

Many secondary athletic team type activities do scouting. The Opponent is examined in an attemp to find predictable patterns of play which may assist the coach in preparing his team. It is ironi: that a great deal of effort is spent in scouting opponents, and very little scouting is done of a coach's own team. If this were done the coach would not only know what the future opponents discerr, but he is able to use his team's scouting report by directly affecting patterns over which he has some control.

In most cases other than football there is not a sufficient amount of quantitative data generated from a scouting report to necessitate the usage of the computer. One of the primary concerns of any team stopaction activities, is the tendencies of the initiator of the action. In football it is the offensive play; in baseball it is the pitch; and in volleyball it is the serve. The more predictable the initiator, the better a coach can prepare his team. (Initiatees).

Thus extracting meaningful information from a large amount of football scouting data is an application especially suited to computer usage. By using an information retrieval program a scouting data file may be
created and examined. (See the program INFRET). From this data base information on common play tendencies may be extracted such as:

1. Position (Horizontal \& Vertical)
2. Down \& Distance
3. Formation

The key to usage of any information retrieval system is the identification of categories and characteristics within the categories which are "scoutable" and may be used to satisfy overall objectives of a scouting report. A great deal of time must be spent in determining whether the specific piece of data is essential or not. The development of codes which includes a set of similar actions can simplify the process of classifying, entering, and extracting meaningful information from che data base. A sample category and coding schemes is included in the INFRET documentation.

Data Base usage is not limited to football scouting but may be used in other situations such as inventory where a data file is created and interogated. The Minnesota State High School ceague Football Ratings utilises a computer data bank of schedules and game results for determining playoff participants at the end of a regular season.

E. Statistics

The final area of consideration encompasses all athletics, namely gtatistics. Numerical data from the activities is used for evaluation, publicity, and records (quantitative goals) on both teams and individual participants. Assuming an objective tallying of statistics, if common definatle criterion are used, individuals and teams may be compared. In some cases for the evaluation of players on a team, programs which are designed primarily for classroom grading pirposes may be used.

Since it is desirable that all coaches maintain some statistics the question of which obtainable ones to use may be raised. Extreme care should be exercised in the usage of numeric data to evaluate an individual's performance. The individual and team data which are maintained should attempt to reflect in their computation and usage the philosophy of the coach. In timed team sports it is necessary to calculate on the basis of some common time measure (periods) to more equitably compare players with varying amounts of playing time.

Commonly used sports statistics by the various publicity mediums may not best represent the player's value to the team. Often times they more or less measure a player's value, more less than more. Thus, if a hockey player is being evaluated on the difference in the number of goals for and the number of goals against while he is on the ice, these should be the statistics publicly announced, rather than the points (the sum of goals and assists). Many other calculatatle statistics have been derived in otier activities which more fairly reflect the player's contribution to the team. With the assistance of the somputer, the coach need no longer shy away from the computation of these valuable measures. Hence, from the specific categories of data to be tallied, a coach may derive more meaningful information to his situation possible.

The following factors should be taken into consideration when determining the statistics to be tallied.

1. Quality of data categories and not quantity is important.
2. Minimize the number of data categories and maximize the computations using the data, thereby extracting as much meaningful information as possible.
3. Measure and calculate only statistics which are going to be used.
4. Avoid discreationary tallying by measuring only overt happenings.

The objective should be the statistically reward the player in proportion to his activity and contribution with respect the the overall team objective.

By the very nature of all athletic activities two types of statistics are necessary; the most recent or latest and cumulative. Thus a generalized flow pattern computer program can be developed for the storing, calculating and updating of data. The rapid and accurate calculating and storing powers of the computer are used to great advantage with this type of application. (See the program package STIX).

In determining whether a particular set of statistics should be maintained via the computer the following points should be considered:

1. Are the data and corresponding computations easier and quicker to maintain by hand? Usually this is more dependent upon the number of players than the number of data categories.
2. Is it easy to use both the statistical program and the terminal?
3. How much time is required for the entering data and printing out the results? Charts should be prepared which arrange the data to be entered for rapid input.
4. Are the reports generated by the computer in a usable and easy to read format?

F. Summary

- This summary of athletic applications represents a sampling of the types of things which may be and have been done using the computer as a valuable and viable assistant to the coach. It is felt a great deal of coach's time may be saved and more meaningful type of information may be obtained from computer usage. Also it has been noted that coaches using
the computer in athletics discover many of tinese capabilities may be put
to good advantage in their classroom activities.
V. DocumentationThis section is used to describe the programs mentioned in the text.
Included in the documentation for each program is the following information:
]. Name

2. Description
3. Comments
4. Instructions
5. Acknowledgements
6. Length
7. Sample Run
8. Listing
The materials are arranged in outlined order as follows:
A. Scheduling
9. SCHDLI
10. SCHDL2
B. Scouting
11. INFRET
C. Statistics
12. STIX
13. STIX10
14. STIXII
15. STIX12
16. STIX17
17. STIX20
18. STIX21
19. STIX30
20. STIX31

A. SCheduling

SCIIDL]
July, 19\%3

G:T-S.BC:OM, 1

best COPY Avallable
R1IO
SCHDL 1

ROUND ropin sciribille					
INPUT		?			
0	1	2	3	4	5
1	0	3	4	5	2
2	3	0	5	1	4
3	4	5	0	2	1
4	5	1	2	0	3
5	2	4	1	3	0

PERIOD 1

GANE	HONE AKAY	
1	1	2
2	5	3
3	6	4

PEPIOD 2

CAME	HONE AYAY	
4	3	1
5	6	2
6	4	5

perion 3

CAME	HO:SE AWAY	
7	1	4
8	2	3
9	5	6

PE:ZION 4		
GA:CE	HONE	AGAY
10	5	1
$1!$	4	2
12	3	6

pleplon 5

CA:SE	HONE AWAY	
13	1	6
14	2	5
15	3	4

10:3

NAME:
DESCRIPTION: This program constructs a file of names, schools, and numeric data for participints in an athletic event (ie., track and swim meets, golf matches, cte.). When all the participants and corresponding data have been input, the program then sorts the data in either ascending or descending order and may be output as a schedule of heat/lane or flight assignments.

COMMENTS:

SCHDL2

The following options are used in the program:
$\left.\begin{array}{ll}1=\text { ADD } \\ 2=S O R T\end{array} \quad \begin{array}{l}\text { Adds input information into the file. } \\ \text { This may be done in several different } \\ \text { teletype sessions. To terinate entering } \\ \text { names, type an } X \text { for the name. }\end{array}\right\}$

Prior to usage, a separate data file must be opened for each event used. Type the following:

OPEN - file narie, number of records.
The file name can be any alphanumeric combination with a minimum of one and maximum of six characters. In general, the number of records can be determined by figuring that 16 particinants will fit in one record.

For example: If your file name is TFAY and there are 30 participunts, you should type:
OPEN-TEAM, 2
ACKNONLLISGISENTS: J. Sydow, TIES
LENGTH:
1157 hords

BEST CUPY AUALLABLE

```
OBF.V-F.UEYT,?
G.T-ETT:%R!?
HuT
SCTIDL?
OPTIONS: i=ADD, 2=SORT, 3=HEAT-LANE, 4=FLIGHT, 5=STOP.
FILE?EUEMT
```

OPT ION? 1
NA: ET? 1 TTT:I TMNT
SC:100L?:
RATA?1?
NAME? OFr.:r.aNT
SCHO S1. ?
กATA??7
NASE?ELAYR: YOV
SC!MJ1.? : 3
MTA? 1 ค.?

SCHOOL? CO
JAT.1?

SCHOS1.? $5 \cdot 5$
D:TTA?2?.0
NथY: ? TMST 4.3 $\because=$
SCHO 11.? 12
以サTก? กn
N1 ME.?

BEST COPY AVAILABLE


```
QTT10:1?3
```



```
HENTS ??
1.ANES?R
```


HEAT 2

3	occuraivt	XYX	27
4	PARTICIPAMT	A 3 C	
5	PlAYET VON	$1 ? 3$	12.3

OPT 10:? ?
SORT (ASCENDI VG=1, DECEMDI:SC=n)?n

OTT10N?A
TOTA1, NUMER EVT:BAVTS = 6
FLIGYT:3?3

FLIGMT	1		
1	OCCUP-?.it	XXX	27
2	SA:TPILE NAME	ADC	2?.?

FLICHT	P		
1	TEST MAYY	ABC	
$?$	PLAYE: YON	103	120

FLIG:IT
1
$?$

3
PATYICIPATM ABC 12
PIAYY: TOD Y Y
9.9
$0-1109 ? 5$
M:

NANE:

DESCRIPTION:

CONNENTS

INERET

This program allows the user to build a data basc file of information and then to retrieve selected portions of the information on the basis of various data categories.

To use this progran, a file must be opened with the number of records depending upon the anount of data to he stored. The following list of options are used in accessing the information in your file:

ADD = Enter data into the file
CHANGE = Modify the name or data for a specific item. DELETE = Onit a data item and its corresponding data. LIST = Output entire file. PERC:ENT = Calculate percentage of occurance of ratings within
a data category with respect to a specified situation. RETRIEVE = Obtain information on specified data categorics. STOP \& Jerminate progran. HELP = Give hints on input items in the program.

Other information which must be input by the user ario lis'ed below. The four questions listed are answered the $f: r s$: time you use your file; any subsequent runs will jus: ask for your file name.

What is the name of your information file? File name
What is the maximum number of letters in a name? number of characters in longest name

Number of ilems per entry? Number of data categories
Alphabelized? Yes or No? If the response is yes, the names and corresponding data will be alphabetized when they are entered.

Data No $=$ Data caterory nunber
Ratings = Specific values vithin a data category
Stop $=$ Terminates cype of input beins asked
Scparate listings or composite? (hetriceval option)
Separate $=$ Any jten which satisfies at least one of the conditions
Composite $=$ Any item which satisfies all of the conditions
List or Coult (Ketrieval Option)
List ${ }^{\text {. Outputs iters thich satisfy specified condltions }}$ Comet = lally iters which satisfy sperificd conditions

Lach item placed in the file must have a oune and corterpending ratines for each chata catequry.

The miximan numer of characters in a nome is 7?, and the masimun namior of data citegorios is 50.

Be\{ore entering information into the file:

1. Determine the data categories and assign each a nunber.

BEST COPY Avallable

2. Specify divisions under each catcgory and ascign a rating scale, values from $0-98$.
3. List the nam : of the linings being ranked and assign a rating to each diata cutegois.

ACRNO:LLIDGEALNMS:
TIES

LENGTH:
3930 words

딘잉
1.VE: $\because . T$

V!at IS T:

0:T T0ㄴ? ann
MY: OE.? TT:
DATS IT: $\because: 3$
31,3,
NM:i:?STV?
MuTa li=ijis
?2, 3, \%.1
N4:\% ? 501:
[ATA IT $\because:$:S
36, $2,3,2$
N1: $\because 8 \% \mathrm{~B}:$
127T: IT…:!
22.1.27:1

M子M以? 27
0.710? ?

? $2,3,01$

? $\because \cdots ?$

1	\square

OPT IOV?:3FT?IT:T
1.7TA $10 ? 1$
RAT INGS
$\frac{31}{32}$
3ST0?
mirn vo? ?
RAT INES
33
3500
RA'A SO? STVTM

LIST OR COUVT?I.IST
COMPDSITE: LISTING
STII
STi?
EMD OF LISTINC.

OPT10V3こ?.ropuT
MTA :NO?1
vat I ! ! ©
? $?$
? TOT
MTへ :0? 5T0?

BAT ING PE:TCENT
$5 \quad 50$
7 5n
Visemato: bata no?
RATING :CREEVT
3 50
$4 \quad 50$
NJMi:intos Mata xo?a.
mATI:Mi
mATI:Mi
I
I
+1 (noongetme
+1 (noongetme

$0.710 v: 909$

Football Scouting

Other Possible Categories
Play \#
Sequence \#
Quarter
Time
Score Difference
Blocking
Defense

GET-SINFRET
RUN

I NFRET

MHAT IS THE NAME OF YOUR INFORMAIION FILE?SCOUT

OPIIONPRETRIEVE
dATA NOTE
RATINGS
83
24
86
?STOP
DATA NOTI
RAIINGS
71
82
TSTOP
DATA NOTSTOP
SEPARAIE LISTINGS.OR COMPOSIIE?COMPOSITE LIST OR COLINTPLIST
(LISTS THE LONG OR SCORING RUNNING AND PASS PLAYS)
COMPOSITE LISTING
S47
P34 AP
OUICK P
C43
OUICK P
020
C834 AP
541
ROLL R D
P22
END OF LISTING
(HORIZONTAL FIELD POSITION---MIDDLE)
OPTIOMPPERCENT
DATA NOT4
RATINGS
20
?STOP
DATA NOTSTOP
NUMERATUR DATA NO?6 (HOLE AREA)
RATING PERCENT

0	8
2	23
4	25
6	8
8	8
10	17
11	8

NUMERATOR DATA NO?7 (FORMATION)

RATING 1
258
388
UMERATOR DATA NOTSTOP

BEST COPY AVAILABLE

OPII ONTPERCENT
POSITION---LEFT)
DAIA NETS
RAIINGS
71
2SIOP
DAIA NOPSTOP
NUMERAIUR DATA NOT6RATING PERCENT125
1 8
2 8
3
4 17
6 17
10 8
18 8
NUKERATOR DATA NOTT (FORMATION)
BFST COPY AUALLABLE:
RATINGPERCENT
1 33
2 67
NUMERATOR DATA NOPSTOP
(HORIZONTAL FIELD POSITION-
OPIIONPPERCENT
DAIA NO? 4
RATINGS
32
TSTOP
DAIA NO?STOP
NUMERATOR DATA NO? 6 (HOLE AREA)
RATING percent
3 14
6 14
7 29
10 14
11 14
20 14
nUMERATOR DATARATINGfEREENT614
2 43
3 43
NUMERATOR DATA NOTSTOP
OPIIONTSIOP
END

NAME:
DESCKIPTION: This program uses a generalized option flow which allows the user to process etatistical data. Any combination of input, storage, and output patterns can be used with the options.

STIX was written for athletic team statistics although it can be used in other areas. A computational output subroutine must be appended to the program.

The number of players must be less than 31. The number of data items must be less than 17. If data and name files are not used, then answer the file input questions with aly non-existent file name. Files must be opened and initialized (option 8 \& 9) before using the first tine. In general the number of data items and nunber of players will remain the same for a particular output subroutinc and corresponding files.

Run - 180 omits the listing of the options.
The following ontions are used in the program:
$1=$ Input Data
The user inputs the data separated by commas for each player after the player's number (name) and the question mark. An input matrix is used, thus if a mistake js made at most one player's statistics will be affected.
$2=$ Read Data
Before typing run, the user must include data statements with line numbers between 9000 and 9990. This option reads the statistics from the data statements into the matrix.
$3=$ Update File Data
The user is able to update the data in any data files used for storage. The data file name is needed each time this option is used; hence by running mors than once, more than one file can be updated and utili\%ed for storing data.
$4=$ Output latest Data
This option uses the output subroutine appencled to the program. The last dota input or read will be output.
$5=$ Output Fije or Total Data This option uscs the output subroutine appended to the program. The cualative or file data wijl be output.
$6=$ Outpul Data Tape (Injut)
This option oatputs the cumalative data so that jot may be stored on paber tape. An X-off character is printed after cash dine oit the tape so that the data may be input using: Optio: 1.
7 = Output Data Tape (Read)
This option outputs the cumulative clata as data statements
to be stored on paper tape. The line numbers start at
9001 with the last digits corresponding to the pliyer
number. The information from this rape mas be read into
the program matrix using Option 2.
8 = Input Names Into Name File
Names may be loaded into a name file by typing the name
after each question mark. The maximum length naiic is 20
characters. This option needs to be used only once, to
load the names in the rile.
9 = Initialize Data File to 7ero
Before each data ifle is used the first time, it must be
initialized to zerc. This option needs to be used only
once to initialize the data.
$10=$ Stop
. 111 options except $4 \& 5$ may be run without appending an output subroutine, but including 2000 RN: subroutine
2001 Return
9999 lind
To open files type the following:
OPEN-FILE NSAE, 1 (name file)
OPEN-FILE NAME, 4 (data file)
The file name should be different for cach file used.
The following variables are needed in the output subroutine:
MAT C = Data Matrix
N = \& Ilayers
$N 1=$ \# Lata Items
$\mathrm{F}=$ File Flag (return value from assign statement)
NS = Mlayers Name
The appended nutput suliroutine must start with line number 2000 and include an end statement in line 9999.
A sample run illustrating all possiole options is included with STIX10.

ACHMOWILDCEIINTS: J. Sydow, TIES

LEKGIH: $\quad 1215$ words

NAME: STIX10

DESCRIPTION: This is a tean basketball statistics subroutine which compares team and opponent statistics. Output includes a listing of input data, yer game averages, and differences between team and opponent data.

COMMELTS: A name file is not needed for this subroutine. To run, this subroutine must be appended to STIX.

The 13 data items for the team fixst and then the opponent are input in the following order:

```
    Points by Quarter: 1, 2, 3,4
    FGM = Ficld Goals Made
    FGA = Field Goals AttempLed
    FTM = Free throws Made
    FMA = Free Throws Attempted
    REB = Rebounds
    F}=\mathrm{ Fouls
    TO = Turnovers
    G = Games
    W = Wins
```

Calculated Statistics are per game averages, total points, ficld goal and free throw percentages, and the difference between team and opronent statistics for cach data category.

ACKNOWI,FDGFIEAIS: J. Sydow, TIES
LENGH: $\quad 840$ words

BEST COPY Avallapif

```
GFT-FST1:
AP{-SSTiK17
```



```
RON
STIX
OOTIOVS:
I=INPUT nATA
P=READ DATA
3=IJPI:ATE FI!EE DATA
&=OUT?UT LAT:̈ST DATA
5=OUTPIJT FIL.F O? TOTAL DATA
6:0:UTPIIT r:MT? TA?E (SMPIJT)
7:OUITPUT \Gamma:ITA T:^FE (?EAL)
R=I VO!IT \\AYES INTO NO:%E FILS
9=INITIALI?F DATA FII.E TO %ERO
10=STO?
* PLAYE:SS??
# DNTA ITHOSS?13
0T10N??
NHME: FILOR?NO\PES
TYDE VA:IE AFTER EACH OUESTEON MARK
8Trinv
3DPFOG?MT
OPTIOV:?9
BATA FILE?DATII:
OTTIU.N?1n
MONE
```


BEST COPY AVAILABLE

CF:T-SSTIY A!t- 5 ?1:Tr FIn-1: Sin

- PLAYERS??

- Data Itei:5? 13

OPTIOV?1

1 TEAi:?2,1,12,13,15i,25,7r,11:,?n,32,14,17,1,1

MATA FILETRAZUS
OPT IOSi?4
NAME FILE?NHAS:S

TEA:	FGM	FGA	FG7	FTK	FTA			F	T0
TEA.\%	25	76	32.9	14	? 0	70.0	32	14	17
OPP CINE.VT	20	52	38.5	10	12	$83 \cdot 3$	28	19	5
DIFFERENCE	5	24	-5.6	4	8	-13.3	4	-5	

ODT IO.V?.1.n.

DOMS:


```
* !L.^ソツ:%!?%2
# rin! IT:O:S?&?
```

bEST COPY AGRALABLE
$0: 7101 ? 2$
OPTION?3
matn pilezmatige
(3PTIJI? 5
DATA FILE? RATVV:
NAYE FILE? YIVGS

basketball. team statistics

GARE = $17 \quad$ WIN $=15 \quad$ LOSS $=?$

TEAM
 AUERAGE/GA::E

OPPOVE:NT
AUEPAGE/GMAEE

DIFFEREVEE

AUERAGE/GAME

	POINTS PER	QUARTER		POINTS
1	2	3	4	TOTAL
2.07	150	159	178	694
12.2	8.8	9.4	10.5	40.8

132	114	118	111	475
7.8	6.7	6.9	6.5	27.9

$\begin{array}{lllll}75 & 36 & 219\end{array}$
40.4 2.1 $2.9 \quad 12.9$

	FG:	FGA	FG\%	FTM	FTA	FT\%	REB	F	T0
TEAM	289	851	33.1	130	348	37.4	653	191	179
AVE:?ACE/GAYE	16.6	50.1	$33 \cdot 1$	7-6	20.5	37.4	38.4	11.2	10.5
OPPONEST	187	614	$30 \cdot 5$	126	233	54.1	413	2.48	7
AVERAGE/EALE	11.0	36.1	$30 \cdot 5$	7.4	13.7	54.1	24.3	14.6	1208
MIFFESENCE.	95	237	$2 \cdot 7$	4	115	-16.7	240	-57	-38
AUERAGE/GASE.	5.6	13.9	$2 \cdot 7$	0.2	.6.13	-16.7	14.1	-3.4	-2.8

ORTION? 5
MATA FILE?NATUE:
READY PAPER TAPG VITH RUROUT LFADER (15 SECOVDS)

OPT10v?7
MTA FIEF? RATU:A
REANY PAPF.t TA!SE VIT:I BU?OUT LEARER (15 SECONDS)

O.PTION?10

IDNE:

DESCKIPIION: This subroutine anaiyzes individual player statistics for basketball. The statistics are measured in four general categorics:

1) Defense (Opponent Ball Possession)
2) Neutral (Neither Ball Possession)
3) Offense (Ceam Ball Possession)
4) Minus (Iistalies)

These are combincd on a per quarter basis to calculate a number which measures all phases of the game for each player. Output for individual players and team totals includes input data, category totals, field goal and free throw percents, points per game, and totals per quarter.

If a name file is used, the names will be printed with the totals per quarter chart. To run this subroutine must be appended to STIX.

The 16 data items for the respective players are input in the following order:

3 Defensive categories
3 Neutral categories
3 Minus categories
5 Offensive categories (Assists, FGM, FGA, FTM, FTA)
2 Time categories (Quarters, Games)

The three specific items to be measured in-the first three general categorices are left to the discretion of the user.

Calculated Statistics are derived in the following manner:

```
D = Total Defense = D1 + D2 + D3
N = Total Neutral = N1 + N2 + .N3
M = Total Hinus = Ml + M2 + M3
O = Total Offense = Assists (A) + Points (P)
FG% = FGM/FGA * 100
FT% = FMN/FTA * 100
P}=\mathrm{ Points = 2* FGM + FTM
P/G = loints per game
D/Q = Defense pur quarter
N/Q = Neutral per quarter
O/Q = Offense per guarter
+/Q == Plus per quarlor = ( ) +N + O)/Q
-/Q = Minus per quarter : : N/Q
T/Q = Total per quarter = ( N +N+N-N)/Q
```

Tcam fotals for each itcm are calculat od by taking the sum of all Llice players.

ACKNOWLDRGICHENTS: J. Sydow, TIES

LENGTH: 1287 words

GET-SSTM
 nev-EqTin!
 FUN-1:A
 STIX

- Playens??
- Data Itceis?16

00T10:1?1
NAUE FITE? OVE
$1 \quad 3,3,2,3,3,5,1,1,1,2,3,1,12, n, n, 3,1$
2 25: $2,0,1, i, 1,0,8,3,1,10,27,13,15,4,2$
OTTJON?
MAME FILE? YiNE.

BASKETBALL. STATISTICS

*	DEFEVSE				NEUTRAL					MINUS		
	D1	DP.	n3	D	N1	N2.	N3	N	MI	M?	N!3	:
1	3	?	3	8	3	5	?	10	1	1	2	4
2	5	2	4	11	1	0	1	2	2	2	3	7
TEAS	8	4	7	19	4	5	3	12	3	3	5	: 1

$*$	n	FG:	FGA	$F G \%$	FTM	FTA	$F T \%$	P	P / G	0
1	3	4	19	33.3	7	0	0.0	8	$R .00$	11
2	1	12	9.3	52.8	13	15	86.7	37	18.50	38
TEAN	4	16	35	45.7	13	15	86.7	45	22.50	49

* NAVE	Q	G	118	. $/ 2$	0/0	+10		
1	3	1	2.67	3.33	3.6) 7	9.67	-78 1.33	T/8 8.33
2	Ω	?	1.37	0.25	4.75	6.37	0.83	8.3 .3 5050
TEAM	8	2	P. 37	1.50	6.1 ?	10.00	1.37	50.50 58.60

DOVE

NAME:

STIX12
DESCRIPTION: This subroutine is written for wrestling statistics measuring both points (tcam and individual) and how the points were scored. By creating an opponent file the user can also measure the corresponding data for his opponent, with a difference being calculated for each iten.

COMEITS: If a name file is used, the names will be printed on each chart. A separate file should be opened of four records each, if both, latest opponent statistics and cumulative opponent statistics, are to be used. Each time the latest opponent statistics file is used, it should be initialized to zero (option 9). The opponent data file utilizes the options in the STIX program for cata input and storage. To run, the subroutine must be appended to S'rix.

The 11 data items for the respective players are input in the following order: .

Wins, Team points, points period 1, points period 2, points period 3, pins, near falls, take downs, reversals, escapes, penalcy/forfeit/disqualification.

Calculated Statisiics include team totals, total points, and difference on all data items between the participant and the upponent.

ACRNO:NLEIGGEMENTS: J. Sydow, TIES
LENGTH: 934 words

BEST COPY AVAII hdic

```
GFT-SSTIM
ATP稆STTV!?
R|\-1f:R
STIX:
* PLAYERS?3
0 DATA ITE:'S?1:
OPTION? T
NMGE FDTE?YAMOES
TYPE NANE AFTE:? EACH RUESTION MARK
RRUSSFL F?%
PUTLS LI:C
3PI,AY邑?,?)V
OPTION??
DATA FILE?DATII:
OPTION?`
DATA FIIE?OPOJN
OPE:N-FIL,F VA10E, RECORDS
OPTIOV21n
DO.NF
0D1:N-9:2#0Y,4
RiNV-IEO
STIX
* PLAYER.5?3
* DATA ITENS?11
OPT10N?旦
MATA FIL.E? J.OMN
OPT10.N?1
NAB:E FILE?NM:%FS
    1 SJ!SSE!, E?:3?{:,17,15,15,11,?,5,(0,3,3,0
```



```
OPTION?3
```



```
OPT10N?1
NAME FILG%?OANES
    1 !USS:i, E?R?2,2,2,1.3,14,11,1,3,3,5,3,1
    2 WES L.JME?3,1n,n,i,n,4,r,i,ol,c,elen
```



```
0.T10.\?3
mata FII, "?OmmON
OPT 10N?5
IMTA FIL!:? MnTIj%
NA:E FILI:??
OPPO:SENT FII,:??)ODY
```


REST PIRPY AUAII ADIF

WRESTLI:SG STATISTICS

(NOME
1 RUSSEL ERR
OPPONE:ST
DIFFE? ENCE
2. WE.S LING OPODNE.NT DIFFFREVCE

3 PLAYE:R :ON OPPOVF.LT DIFFERENCE

TEAM
OPPOVENT DIFFE:?ENCE
(VAIT:
1 RUSSFI. FRP? OPPO VF.VT DIFEEREVCE
2. WES L.I.YG OPPOVEVT DIFFE!?EVCE

3 PLAYE? NON OP!OUNET DIPFESENCE

TEAM
OPPON:VT DIFFEEREVCE

WIN	T PT	1	2	3	PT	
4	17	\ldots	15	16	14	45
2	B	13	14	11	38	
2	9	2	2	3	7	
		1	14	17	14	45
3	10	24	9	5	38	
3	10	-10	8	9	7	
0	1					
	0	3	2	0	5	
0		5	10	3	5	18
1		-7	-1	-5	-13	
-1	-5					
	28	32	35	28	95	
7	23	47	26	21	94	
6	23	-15	9	7	1	

PIN	NF	TD	REV	ESC	PFD
2	5	6	3	3	0
1	3	3	5	3	1
1	2	3	-2	0	-1
1	4	7			
2	6	7	6	6	1
-1	-2	0	-3	1	0
		1	2	1	1
0	4	4	2	1	1
1	-3	-2	-1	-3	0
-1					0
	10	15	7	10	0
3	13	14	13	8	1
4	-3	1	-6	2	0

OPT 10.V?10
RONE

NAME:
DESCRIPTION:

STIX17

cosments:

This subroutine calculates various individual player hockey statistics and cumulative team totals. Also, the opponent team statistics are entered, and the program computes the differences between the team and opponent statistics.

If a name file is used, the names will be printed on the second chart only. To run, this subroutine must be appended to STIX.

The opponent team statistics should always be entered for player number one.

Thus, the maximum number of players which may be entered is twenty-nine. When responding to the question number of players ("\# PLAYERS?"), the user should enter the number of players on your team plus one.

The 9 data items should be entered in the following order:
Periods, games, shots, shots on goal, goals, assists, plus, minus, penalties.

The user may enter whether the calculated statistics are tu be on a per period or per gaine basis.

Calculated statistics are derived in the following manner.
SOG $=$ Shots on Goal
SHOTS BLKD (blocked) $=$ SOG - Goals
SHOTS PER = Shots per time measure (period or game) = shots/time measurr

SOG PER = shots on goal per time measure (period or game) = SOG/Time Neasure

SOG \% = Percent of shots that are shots on goal $=$ SOG/Shots * 100

GOALS \% := Percent of shots on goal that are goals $=$ GOAISS/SOG * 100

PIM = Penalties in minutes
$=$ Penalties * 1.5
POINTS $=$ Goals + Assists
POINTS PER $=$ points per time measure (period or came)

- points/line measure

BEST COPY AVAILABLE

```
NET = Plus (on ice when team scores) - minus (on ice when opponent scores)
```

NET $\mathrm{PER}=\mathrm{NET}$ per time measure (period or game)
= NET/Time l.easure

Team totals are calculated for each item by taking the sum of all players. The difference is found by subtracting the opponent team statistics (player number one from the team totals).

ACKNOWLEDGEMENTS:J. Sydow, TIES

LENGTH:
 1.254 words

GET-SSTIX

APP-SSTYX7
RUN-I R:0
STIX

- PLAYERST3
* DATA ITEFS??

OPT ION? 1
NAMF FILE? VOVE:
$183,1,15,7,1,7,1,2,3$
23 $3,1,7,3,1, n, 1,1,1$
$37 ?, 1,5,2,1,1,3,0,3$
OPI ION?
NAME FIL.E?NOVF.
CLACULATED STATISTICS PER TIME MEASURE: $0=P E R I O D, 1=G A M E 3 O$

HOCKEY STATISTICS

P				SOG		SHOTS BLKD	SHOTS PER	$\begin{aligned} & \text { SOS } \\ & \text { PER } \end{aligned}$	$\underset{\mathbf{2}}{\text { SOG }}$	$\underset{2}{\text { GOAL. }}$	PEN	PIM
2	3	1	7	3	1	2	$2 \cdot 3$	1.0	42.9	33.3	1	1.5
3	2	1	5	2	1	1	$2 \cdot 5$	1.0	$40 \cdot 0$	50.0	3	4.5
TEAM	3	1	12	5	2	3	4.0	1.7	41.7	40.0	4	6.0
OPP	3	1	15	7	1	6	$5 \cdot 0$	$2 \cdot 3$	46.7	14.3	3	4.5
DIFF	0	0	-3	-2	1	-3	-1.0	-0.7	-5.0	25.\%	1	1.5

- NANE	GOALS	ASSTS	POINT	POINT	PLUS	MINUS	NET	NET
				PER	+	-		PER
2	1	0	1	0.3	1	1	0	0.0
3	1	1	2	1.0	2	0	2	1.0
TEAM	2	1	3	1.0	2	1	1	$0 \cdot 3$
OPPONE.NT	1	$?$	3	1.0		2	-1	-0.3

NAME:

STIX20
DESCRIPIION: This is a baseball statistics subroutiue which uses thirteen hitting and fielding categories for each player. A team total will be output for both the hitting and fielding charts.

COMMENTS: If a name file is used, the names will be printed with the fielding chart.

To run, this subroutine must be appended to STIX.
The 13 data items should be input in the following order:
Games, at bats, hits, runs, runs batted in, extra base hits, stolen bases, free passes (walks and hit by pitch), strike outs, sacrifices (bunts and flys), assists, putouts, errors.

Computes statistics include team totals, data updaces, batting average, chances, and fielding percentage.

ACKNOWLEDGEMENTS: J. Sydow, IIES
LENGTH: 618 words

BEST COPY AVAII AQI F

GET-SSTIX
 nop-s5igunn
 RujN-1 \sin
 STIX

- PLAYEPS??
- Data Itésis? 13

OPT ION? 1
NAME FILF:? MOYE
$\begin{array}{ll}1 & 3,2,13,5,3,3,2,2,3,4,1,7,4, ? \\ 2 & 3,16,6,1,3, ?, 1,3,1,2,13,5,1\end{array}$
OPT 10N? 1
MAIFE FILE?N2NF

BASEBALL STATISTICS HITTING

0	$A B$	H	R	$R B I$	$E B$	$5 B$	$F P$	K	$S A C$	$A V E$
1	13	5	3	3	.2	2	3	4	1	0.335
2	16	6	4	3	2	1	2	1	2	0.375
TEAM	29	11	7	6	4	3	5	5	3	0.379

FIELDI:NG

OPTIONT12 ..
DO.V5
NAME: STIX21
DESCRIPTION:
COMAENTS: If a name file is used, the names will be printed with thedata chart. To run, this subroutine must be appended to STIX.
The 5 fata items should be input in the following order:
$0 A=0 f f e n s i v e$ Appearances
$O B=O n$ base
$B A=$ Bases advanced (self \& teammates)
$R P=$ Runs produced (self \& teamnates)
SO = Strike outs
Calculated statistics are derived in the following manner:
$O E=$ Offensive Efficiency $=(O B+B A+R P-S O) / O A$
\% = Percentages are calculated per offensive appearance.
ACKNOWLEDGEMENTS: J. Sydow, TIES
LENGTH: 468 words

BEST COPY Avallabie

GET-S.STIV	
	APT-55T1Y21
	RUN-1m
	STIX
	- PLAYERS? ?
	${ }^{*}$ DATA ITESSS?
	OPTION? 1
	NANE FILF.? VOYE
	$1 \quad 3.5,0,4,1,1$
	2 37,3,7, 2,0
OPTIOV?	
	SOME FIL.E? N:JVE

BASEBALL OFTENSIUE EFFICIENCY

$\begin{array}{r} 1 \\ 2 \\ 2 \\ \text { TEAM } \end{array}$	NAME		OA	OB	3A	RP	50
			5	?	4	1	1
			7	3	7	?	0
			12	5	11	3	1
θ	OE	08\%					
1	1.9 .00	0.400			${ }_{0}^{\text {RP\% }}$		S07
?	1.714	0.429	1.000		$0 \cdot 200$		$0 \cdot 200$
TEAM	1.500	0.41%	0.917		0.286		0.000

OPT 10N? 10
DO.NE
-

BEST COPY AVAILABLE

- Platers?3
- Data Ite:is?la

OPTION?1
NA: E FILE? YOVF.
1 ? 7, $: 3,3,1,1,0, n, 0,0,1,15,1,1$
2 .. $\quad 3,5, n, n, n, 15, p, 1,1 n 3, n, n, n, n$
3 ?1,1,3,1,n,1,n,n,i,n,1,9n,?,1
OPT10N?4
NATE FILETME

FOOTBALL OFFENS IUE STATISTICS

* Name		CARR			YARD	1/C	>4	8>4	FMBL	TD			
		43	6.1	3	42.9	1	1						
2							2	5	2.5	0	0.0	0	0
3				1	13	13.0	11	00.0	0	1			
TEAM				0	61	6.1	4	40.0	1	2			
					PASS	ING							
0	ATT	Cos	$\%$	INT	YARD	Y/A	REC	Y^KD	Y/R	TD			
1	0	0	$0 \cdot 0$	0	0	0.0	1	15	15.0	1			
2	15	8	53.3	1	123	$8 . ?$	0	0	$0 \cdot 0$	0			
3	0	0	$0 \cdot 0$	0	0	0.0	4	72	18.0	?			
TEAM	15	8	53.3	1	123	$8 \cdot 2$	5	87	17.4	3			

	TOTALS AND SCORING					
\#NAKE	PLAYS	YARDS	$1 / 0$	TD	XPT	PT
1	8	5Ω	$7 \cdot 2$	2	1	14
2	17	12Ω	7.5	0	0	0
3	5	85	17.0	3	1	20
TEAS:	30	271	9.0	5	2	34

OPTIOV?12
DONE
NAME:
DESCRIPTION: This is a football defensive statistics subroutine.
COMMENTS: Tu run, this subroutine must be appended to STIIX.
The user must determine the number of data items (maximum a 12) and define cach data category. The program will calculate the sum of all the data. categories for each player and the team totals for each item.
ackionledgedents: J. Sydow, ties
LENGTH: 355 words

GET-TST $1 \times$
$A P ?-\operatorname{SST} X Y 1$
RUS-1pn
STIX

* PLAYERS? 3
* DATA ITEES?11

ODTIUN?1
NAME FILE?YOME
$1 \quad 31,3,3,1,5,6,7,4,0, n, 1$

OTTIOV?
NANE FILE? MOVE

FOOTBGL.L DEFENSIUE STATISTICS

- FOOTBAL.L DEFENSIUE STATISTICS												
- Nane	1	2	3	4	5	6	7	8	9	10	11	TOTAL
1	1	2	3	4	5	6	7	8	9	0	1	46
$?$	3	2	1	3	2	1	3	21	0	0	1	37
3	2	2	2	2	2	2	2	5	6	0	1	26
TEAM	6	6	6	9	9	9	12	34	15	0	3	109

OPT10.N? 1 n
none

