ED 096 355	95	TM 003 971
AUTHOP	Hopkins, Kenneth D.	
TITLF	Instructional Module on the Covariance.	Analysis of
INSTITUTION	Colorado Univ., Boulder. Lab Research.	• of Educational
SPONS AGENCY	National Center for Educatio Development (DHEW/OE), Washi	
PUB DATE	Sep 73	
NOTE	32p.; For related documents,	see TM 003 967-973
EDES PRICE	MF-\$0.75 HC-\$1.85 PLUS POSTA	GE
DESCRIPTORS	*Achievement Tests; *Analysi	
	*Autoinstructional Aids; Edu Graduate Students; *Guides; Design; Validity	cational Researchers;
	I construction of the second se	

ABSTRACT

The purpose of this training workbook is to provide the user with an understanding of Analysis of Covariance (ANCOVA) sufficient to allow him to identify situations in which it can increase the credimenty and the statistical power of the analysis. The module provides a Conceptual, nonmathematical overview of the purposes of ANCOVA. The assumptions underlying the use of ANCOVA and the consequences of their violation are summarized. An illustrative ANCOVA problem is employed to graphically illustrate how ANCOVA removes bias and increases statistical power. A self-instructional problem set is included as illustration and reinforcement for the learner. The module concludes with a mastery test. The workbook is designed for students in intermediate statistics and experimental design courses and for research and evaluation personnel, especially those being trained on the job. The book requires familiarity with simple regression and one-factor analysis of variance. (Author/SE) ł

BEST DUM AVAILABLE

Ν

INSTRUCTIONAL MODULE ON THE ANALYSIS OF COVARIANCE

Kenneth D. Hopkins Laboratory of Educational Research University of Colorado

September, 1973

BEST COPY AVAILABLE

NCERD Reporting Form - Developmental Products

1. Name of Product	2. Laboratory or Center	3. Report Preparation
Instructional Module on the	(LER)	Date prepared 11/9/73
Analysis of Covariance (ANCOVA)		Reviewed by K.D. Hopkins,
		director
4. Problem: Description of the educa	tional problem this product designed	ts solve.
Many research and evaluat	ion studies have weak internal ion bias). ion studies fail to discover re is inefficient and lacks power	eal differences
•		
•		
	\sim	
	}	
-	, ,	
Stratagy, at a state of the sta		
The training materials inc article by W.S. Cochran, adapt	lected for the solution of the problem lude a rewrite of a classic AN ing the illustration from agri dule includes self-instructiona	ICOVA expository
The training materials inc article by W.S. Cochran, adapt The second part of the mod	lude a rewrite of a classic AN	ICOVA expository
The training materials inc article by W.S. Cochran, adapt The second part of the mod	lude a rewrite of a classic AN	ICOVA expository
The training materials inc article by W.S. Cochran, adapt The second part of the mod	lude a rewrite of a classic AN	ICOVA expository
The training materials inc article by W.S. Cochran, adapt The second part of the mod	lude a rewrite of a classic AN	ICOVA expository
The training materials inc article by W.S. Cochran, adapt The second part of the mod	lude a rewrite of a classic AN	ICOVA expository
The training materials inc article by W.S. Cochran, adapt The second part of the mod	lude a rewrite of a classic AN	ICOVA expository
The training materials inc article by W.S. Cochran, adapt The second part of the mod followed by a mastery test.	Iude a rewrite of a classic Aking the illustration from agridule includes self-instructiona	COVA expository culture to education. I problem sets, 8. Next Agency:
The training materials inc article by W.S. Cochran, adapt The second part of the mod followed by a mastery test.	 Iude a rewrite of a classic Allowing the illustration from agritule includes self-instructiona 7. Level of Development: Characteristic level (or projected level) of development of product at time 	 B. Next Agency: consist of problem sets, B. Next Agency: consist of problem sets (model) and the problem sets (model) and the problem set of the set o
The training materials inc article by W.S. Cochran, adapt The second part of the mod followed by a mastery test.	Inde a rewrite of a classic All ing the illustration from agri- lule includes self-instructiona 7. Level of Development: Character- istic level (or projected level) of development of product at time of release. Check one: X Ready for critical review and for	 B. Next Agency: constant above the sets. B. Next Agency: constant above the set of a set of the set of the
The training materials inc article by W.S. Cochran, adapt The second part of the mod followed by a mastery test.	 Iude a rewrite of a classic All ing the illustration from agritule includes self-instructional fulle includes self-instructional 7. Level of Development: Character- istic level (or projected level) of development of product at time of release. Check one.' X Ready for critical review and for preparation for Field Test (i.s. prototype materials) 	8. Next Agency: consistery problem sets, biological technological techno
The training materials inc article by W.S. Cochran, adapt The second part of the mod followed by a mastery test.	 Iude a rewrite of a classic All ing the illustration from agritule includes self-instructional T. Level of Development: Character- istic level (or projected level) of development of product at time of release. Check one.' X Ready for critical review and for preparation for Field Test 	 B. Next Agency:no

BEST SOPY AVAILABLE

9. Product Description: Describe the following; number each description.

- . Characteristics of the product.
- 2. How it worke.
- 3. What it is intended to do.
- 4. Associated products, if any.
- Special conditions, time, training, equipment and/or other requirements for its use.

Characteristics of the Product:

The 26-page module provides a conceptual, non-mathematical overview of the purposes of ANCOVA. The assumptions and consequences of their violation is summarized. An illustrative ANCOVA problem is employed to graphically illustrate how ANCOVA removes bias and increases power. A self-instructional problem set is designed to illustrate to and reinforce the learner. The module concludes with a mastery test.

What it is Intended to do:

Provide the user with an understanding of ANCOVA sufficient to allow him to identify situations in which it can increase the credibility and power of the analysis.

Requirements for Use:

Familiarity with simple regression and one-factor analysis of variance.

10. Product Users: Those individuals or groups expected to use the product.

The product is intended to be used by applied researchers in education and by students in intermediate courses in statistics or experimental design.

11. Product Outcomest The changes in user behavior, attitudes, effortenest, etc. reactions from product des, <u>as gurrented of zitz</u>. Please oite relevant support downented of dising for the product are not be supported of empirical evidence please of the cont

An anonymous rating form was given to a group of twenty-five users who responded to the instructional value of the module. 35% of the users responded "very good," 50% responded "good," and only 15% rated the module as "fair." In addition, only 15% indicated that there were other sources that accomplished the same purposes that are as good or better.

The 86% indication of "good" or "verv good" instructional value by users suggests learning value and efficiency for the module. The median reported error rate was 7.5%.

12. Potential Educational Consequences: Fiscuss wit only the theoretical file conceivable, implications of your product but also the more probable implications of your product, aspecially over the next decade.

- 1. The use of analyses that will yield less equivocal results.
- 2. The use of more power analyses of research and evaluation studies.

13. Product Elements: List the elements which constitute the product.	14. Origin: Circle the most appropriate letter				
One self-contained and self-instructional	DN A				
		DNA			
	•	DNA			
		D M A			
	· · · · · · · · · · · · · · · · · · ·	D M A			
	······································	D M A			
		D N A			
	**** —	D N A			
		D N A			
(+		D N A			
		D M A			
<u> </u>		D M A			
		D M A			
······································		DNA			
		D N A			
	· · · · · · · · · · · · · · · · · · ·	D= Developed M= Nodified A= Adopted			
15. Stort-up Costs: _ Total expected costs to procure, install and initiate use of the product.	16. Operating Costs: Projected c use of product after init installation (i.e., fees, c special staff, training, e	ial adoption and onsumable supplies,			
Reproduction costs only.	Reproduction only.	·			
17. Likely Markoh What is the likely market for this p the user group; number of possible substitute (co the likely availability of funds to purchase prod Research and evaluation personnel, espe Students in intermediate statistics and	mpetitor) products on the market; luct by (for) the product user grou cially those beig trained ou	and ap. n the job.			
	·				

•

•

.

Instructional Module on the Analysis of Covariance^d

This paper discusses the nature and principal uses of the analysis of covariance (ANCOVA). As Fisher (1934) has expressed it, the analysis of covariance "combine the advantages and reconciles the requirements of the two very widely applicable procedures known as regression and analysis of variance."

In experimental and quasi-experimental studies covariance can perform two distinct functions. One is to remove bias, that is, statistically equate groups on some confounding variables. In quasi-experimental studies coping with bias is typically its primary function. However, even if there are no real differences between the two groups on the covariable, hence no danger of bias, covariance may still be valuable for increasing the power of the analysis.

The Use of ANCOVA

To remove the effects of confounding variables in quasi-experimental studies.

In research endeavors in which randomized experiments are not feasible, two or more groups differing in some characteristic such as age, can be studied to discover whether there is a significant difference among groups on the dependent

^aThe ANCOVA overview is adapted from portions of W. S. Cochran's article in <u>Biometrics</u> (13:261-278), 1957.

variable when groups are statistically equated on the characteristic on which they differ (such as age, IQ, or pretest score). Examples where the experiments are not practicable or possible are studies constraining cross-cultural studies, social class studies, urban vs. rural school districts, etc. In quasiexperimental studies it is widely realized that an observed association, even if statistically significant, may be due wholly or partly to other disturbing variables X_1, X_2, \ldots in which the groups differ, i.e., X_1 and X_2 are threats to the internal validity of the study. Where feasible, a common device is to match the groups for the disturbing variables thought to be most important. This matching often results in serious problems (cf. Hopkins, 1969). In the same way, the analysis of the X-variables can be treated as covariates and ANCOVA be employed to extricate the influence of X-variables, at least partially.

In a companison of the heights of children from two different types of schools, accordern (1953) found that the two groups differed slightly, though not significantly, in mean age. A covariance adjustment for age resulted in a more resultive comparison of the heights. Another study statistically equated motifies an inon-mobile students on IQ when examining achievement consequences of motility. School districts have been compared in pupil achievement after covarying on numerous socio-economic variables.

Unfortunately, quasi-experimental studies are subject to difficulties of interpretation from which true experiments are free. Although covariance has been skillfully applied, we can never be sure that bias may not be present from some disturbing variable that was overlooked. Indeed, unless the covariate is perfectly reliable, ANCOVA does not remove all of the bias due to X itself. In true experiments, the effects of all variables measured and unmeasured, real and illusory, are distributed among the groups by the randomization in a way that is taken into account in the standard tests of significance.

There is no such safeguard in the absence of randomization.

Secondly, when the X-variables show real differences among groups -- the case in which adjustment is needed most -- covariance adjustments involve a greater or less degree of extrapolation. To illustrate by an extreme case, suppose that we were adjusting for differences in parents' income in a comparison of private and public school children, and that the private school incomes ranged from \$10,000-\$12,000, while the public school incomes ranged from \$4,000-\$6,000. The covariance would adjust results so that they allegedly applied to a mean income of \$8,000 in each group, although neither group has any observations in which incomes are at or even near this level.

Two consequences of this extrapolation should be noted. Unless the statistical assumption of linear regression holds in the region in which observations are lacking, covariance will not remove all the bias, and in practice may remove only a small part of it. Secondly, even if the regression is valid in the "no man's land," the standard errors of the adjusted means become large, because the stahdard error formula in a covariance analysis takes account of the fact that extrapolation is being employed (although it does not allow for errors in the form of the regression equation). Consequently, the adjusted differences may become insignificant statistically merely because the adjusted comparisons are of low precision.

When groups differ widely on some confounding variable X, these difficulties imply that the interpretation of an adjusted analysis is speculative rather than definitive. While there is no sure way out of the difficulty, two precautions are worth observing.

1. Consider what internal evidence exists to indicate whether the regression is valid in the region of extrapolation. Sometimes the fitting of a more complex regression formula serves as a partial check.

2. Examine the standard erors of the adjusted group means, particularly when differences become non-significant after adjustment. Confidence limits for the difference in adjusted means will reveal how precise or imprecise the adjusted comparison is.

The Use of ANCOVA

To increase power.

The use of ANCOVA to increase power in true experiments is frequently overlooked. The covariate X is a measurement, taken or available on each experimental unit before the treatments are applied, which correlates with the dependent variable Y. This first illustration of the covariance method in the literature was of this type (Fisher, 1932). The variate X was the yield of tea per plot in a period preceding the start of the experiment, while Y was the tea yield hat the end of a period of application of treatments. Adjustment of the responses Y for their regression on X removes the effects of variations in initial yields from the experimental errors, insofar as these effects are measured by the linear regression. In this example these effects might be due to either inherent differences in the tea bushes or to soil fertility differences that were permanent enough to persist during the course of the experiment.

With a linear regression equation, the gain in predision from the covariance adjustment depends primarily on the size of the correlation coefficient ρ between Y and X on experimental units that receive the same treatment. If σ_{Y}^{2} is the error variance when no covariance is employed, ANCOVA reduces this error variance to a value which is about

$$\sigma_{\gamma}^2(1 - \rho^2)(1 + \frac{1}{f_e - 2})$$

where f_e is the degrees of freedom associated with the error term. The factor involving f_e is needed to take account of errors in the estimated regression coefficient. If, o, the correlation of covariate and the dependent variable, is less than 0.3 in absolute value, the reduction in variance is inconsequential (less than 9%), but as o increases sizeable increases in precision are obtained. In Fisher's example o was 0.928, reflecting a high degree of stability in relative yield of a plot from one period to another. The adjustment reduced the error variance roughly to a fraction $(1 - (0.928)^2)$, or about one-sixth, of its original value. Some of the most spectacular gains in precision from covariance have occurred in situations like this, in which the covariate represents an initial calibration of the responsiveness of the experimental units. In educational studies it is usually relatively easy to find pretreatment measures that correlate .6 or higher with posttest measures thereby reducing the error term by 36° or more -- approximately the same gain in power that would result from doubling the sample size.

In the use of ANCOVA to increase power, its function is the same as that of stratification and blocking. It removes the effects of an environmental source of variation that would otherwise inflate the experimental error and hence the error mean square. When the relation between Y and X is linear, covariance and blocking can be about equally effective. If, instead of using covariance, we can group the subjects into block such that the X values are equal within a block the error variance is reduced to $\sigma_V^2(1 - \rho^2)$.

In a covariance analysis, the covariate X may be measured on a completely different scale from that of the dependent variable Y. Bartlett (1937) used a visual estimate of the degree of saltiness of the soil to adjust cotton yields. Federer and Scholottefeldt (1954) used the serial order (1, 2, ...7) of the plot within a replication as a basis for a quadratic regression adjustment of tobacco

-5

data, thereby removing the effects of an unexpected gradient in fertility within the replications. Similarly, the reading performances of children under different methods of instruction may be adjusted for variations in their initial IQ's. Note also that X need not be a direct causal agent of Y -- it may, for instance, merely reflect some characteristic of the environment that also influences Y.

When ANCOVA is used in this way, it is important to verify that the treatments have had no effect on X. This is obviously true when the X's were measured before treatments have been applied, as when plant number shortly before harvest is used to adjust crop yields for uneven growth, or as happened in the index of saltiness used by Bartlett. When the treatments do affect the X-values to some extent, the covariance adjustments take on a different meaning. They no longer merely remove a component of experimental error -- in addition, they distort the nature of the treatment effect that is being measured. If the higher performance by a superior reading treatment also improves IQ scores, a covariance adjustment (which attempts to measure what the means would have been if IQ means were equal for all treatments), may remove much of the real treatment effect.

ASSUMPTIONS REQUIRED FOR THE ANALYSIS OF COVARIANCE

The assumptions required for valid use of the analysis of covariance are the natural extension of those for an analysis of variance, namely, (i) Treatment, block and regression effects must be additive as postulated by the model,

(ii) the residuals, e_{ij} , (differences between observed and predicted scores within each treatment group) must be normally and independently distributed with zero means and the same variance.

Much of the related work regarding the effects of violating statistical assumptions on the analysis of variance extends logically to ANCOVA ---for instance the practical unimportance of the additivity assumption (see Glass, Peckham, and Sanders, 1972, p. 241). Table 1 summarizes an abundance of research literature on the empirical consequence of violating assumptions in ANOVA.

Certain qualifications of the conclusions in Table 1 are regarded in the extension to ANCOVA. For example, non-normality in the dependent variable is inconsequential in ANCOVA only if the covariate is normally distributed (which in itself is not necessarily assumed in ANCOVA).

ANCOVA makes three assumptions that involve the regression term in covariance; (1) the regression lines for each group are assumed to be parallel, i.e., $b_1 = b_2 = \dots = b_3$. If this is violated, the covariance adjustment may still . improve the precision, but (i) the meanings of the adjusted treatment effects become cloudy, and (ii) if covariance is applied in a routine way, the investigator fails to discover the differential nature of the treatment effects -- a point that might be important for practical applications.

Peckham (see Glass, Peckham, and Sanders, 1972) found that violation of the parallel regression slopes to be inconsequential in a one-factor fixedeffects ANCOVA for a wide variety of conditions. The effects in more complex factorial design with mixed and random models appears not to have been studied.

(2) The covariance procedure assumes that the correct form of regression equation has been fitted. Perhaps the most common error to be anticipated is that linear regressions will be used when the true regression is curvilinear. In a randomized experiment, the randomization insures that the usual interpretations of standard errors and tests of significance are not seriously vitiated, although fitting the correct form of regression would presumably give a larger

[ab]	e 1
------	-----

Summary of Consequences of Violation of Assumptions of the Fixed effects ANOVA

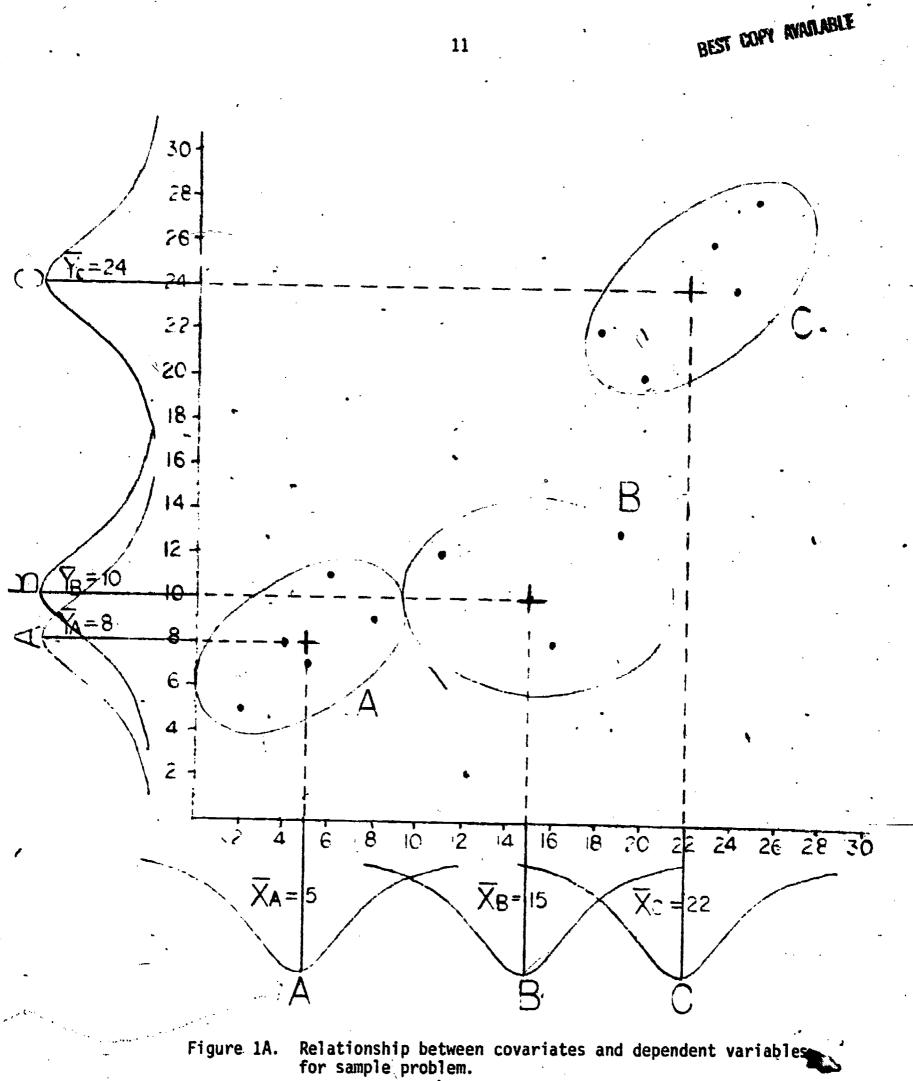
•	Equál	R'6 _	Unequi	el n'i			
ype of Violetian	Effect on a	Effect on Power	Effect on Q	Effect un Puwer			
an indopendence af arrara	Non-independence of errors serious	y affects both the level of significance	and power of the F-test regardless whe	lber n's are equal or unequal.			
en siernality : Skotuen	Shewed populations have very little effect on either the level of significance or the power of the fixed-effects model F-test, distortions of nom significance levels of power values are rarely greater than a few hundredths. (However, skewed populations can actionally affact the level of significance and power of directions?-or "one-tailed"- tests)						
Kurtanis 1	Actual α index, than nominal α when populations are leptokurtic (i.e., $\beta_2 > 3$). Actual α exceeds nominal α for platykurtic popula- tions (Effects are slight.)	Actual power is less than numinal power when pupulations are pla- tykurtic. Actual power exceeds nominal power when populations are leptokurtic. Effects can be substantial for small n.	Actual α is less than summal α when populations are leptokurtic (i.e., $\beta_2 > 3$). Actual α encodes nominal α for platykurtic popula- tions. (Effects are slight.)	Actual power is less than nominal power when populations are pla- tykurtic. Actual power were populations nominal power when populations are leptokurtic. Effects can be substantial for small n's.			
riorograecous Variances	Very slight effect on α , which is ackloss distorted by more than a few hundredths. Actual α assess always to be slightly increased over the nominal α .	(No theoretical power value quints when variances are betero- geneous.)	a may be seriously affected. Actual a exceeds nominal a when smaller samples are drawn from more veriable populations; actual a is less than nominal a when smaller samples are drawn from less tariable populations.	(No theoretical power value exists when variances are beloro- geneous.)*			
embined nois-normality of belorgeneous rismous	Non-normality and heterogeneous a example, the depressing effect on a from the more variable, leptokurtic p	of leptokurtania could be expected to	y ("non-interactively") to affect eith be counteracted by the elevating effect	er level of significance or power. (For it on a of having drawn smaller samples			

From Glass, Peckham, and Sanders (1972).

9

increase in precision. The danger of misleading results is greater when there are real differences from treatment to treatment on the covariate. Fortunately, most cognitive and psychomotor variables are linearly related, and unless measurement procedures are faulty (e.g., a test that lacks Ceiling), the linear regression model works well in most applications (see Li, 1964, for treatment of curvilinear ANCOVA). Frequently, curvilinear relationships can be made linear by mathematical transformations of either the dependent variable Y, or the covariate X, or both.

(3) An assumption of ANCOVA that is not widely recognized is that the covariate is fixed and measured without error. Lord (1960) has shown how large errors in the covariate can produce misleading results. The effects of the less-than-perfectly-reliable covariate are usually predictable so the nature of the bias in the adjustment can be considered in any interpretation. It should be emphasized, however, that, to the extent the covariate is unreliable, the statistically equating of the groups is incomplete.


Illustrative ANCOVA Problem

Suppose there inter intact groups (A, B, C), each was given a treatment. They were pretested (X) before the treatment and posttested following the treatment. The data are depicted graphically on the X and Y axes in Figure 14.

	•		Trea	tment					•	
•	• A		/ 1	<u>B</u>	<u></u>	<u>C</u>				•
•	X.	Y	́Х	Y	Х	Y	t			
Summary Data	2 4 5 8 6	5 8 7 9 11	14 16 15 19 11	7 8 10 13 12	20 18 - 23 25 24	20 22 26 28 24	. Tot	tals		
Σ Χ	25		l 75	•	110		(X) 210	(¥)	r	•
ΣΥ		40	ľ.	50		120		210	•	
ΣX ²	145		1159		2454		. 3758			
£¥2		340	1	526		2920		3786		
Σ ΧΥ	215		755		2670		3640			
Means	5	8	15	10	1 22	24	X.=14	Y. =14		,
Exxj		20		34	1	34	Withi	n Trea 88 = E	tments xx	5.(E)
E _{xyj} .		15 [.]		5		30	-	50 = E	xy	·
Е _{уу ј}		20		26	 	40		86 = E	уу	
	tal Da	ta (S)			B	etween	Treatm	ents (Τ)	
S _x	x = 813	B		A .		Т	xx = 73	_	/	J.
s _x	y = 700 y = 840	D		ι ι		Т	xy = 65 yy = 76	0		

Let's ignore the pretest differences for the moment and perform a simple ANDVA on the Posttest (Y).

SV .	SS	df	MS	F	р
Treatments error	760 86	2 12	380 7.16	53.1.	<.01
Total	846	14			<u> </u>

ERIC

 Obviously, this highly significant difference in posttest means is not very meaningful in light of the pretest differences. To confirm our suspicion that there were non-random, systematic differences between groups prior to the treatments, we run an ANOVA on pretest scores (X) and find that there were highly significant differences among groups prior to the treatments.

SV	SS	df	MS	F	р	
Treatments error	730 88	2 12	365 7.33	49 .8	<.01	
Total	818	14	7			

Now, the crucial question is: when we statistically equate groups on the pretest, would there continue to be significant differences in posttest means. ANCOVA allows us to adjust the total sum of squares on the posttest (S_{y}) to (1) remove predictable portion due to differences in pretest means (the "correcting" for bias function of ANCOVA) and (2) take advantage of predictability of posttest score from pretest score to reduce our error term (the power function of ANCOVA).

To adjust total sum of squares, S_{vv}:

$$S'_{yy} = S_{yy} - \frac{(S_{xy})^2}{S_{xx}} = 846 - \frac{(700)^2}{818} = 247$$

To adjust sum of squares error, E_{yy}:

$$E'_{yy} = E_{yy} - \frac{(E_{xy})^2}{E_{xx}} = 86 - \frac{(50)^2}{88} = 57.6$$

To adjust treatment sum of squares, Ty:

$$T'_{yy} = S'_{yy} - E'_{yy} = 247 - 57.6 = 189.4$$

The summary ANCOVA table is shown below:

SV	SS'	df	MS '	F	р
Treatments error	189.4 57.6	2 11	94.7 5.24	18.07	<.01
Total •	247.0	13	· · · · · · · · · · · · · · · · · · ·		

(Note that one df is lost from error for each covariate)

We therefore conclude then that there are differences among the adjusted posttest means that are not explicable solely in terms of initial pretest differences.

For purposes of interpretation, we need to adjust the postttest means:

 $\overline{Y_{i}} = \overline{Y_{i}} - b_{\omega}(\overline{X_{i}} - \overline{X})$

 $\overline{Y}_{j}^{\prime}$ is the adjusted mean of the jth group. Except for b_{W}^{\prime} , all the information needed to adjust the means is given in the summary data. The regression coefficient, b_{W}^{\prime} , is the pooled estimate of β_{W}^{\prime} , the "average" slope within the treatment groups.

The adjusted means of the treatment groups are then:

 $\overline{Y}_{A}^{i} = 8 - .57(5-14) = 8 - (-5.1) = 13.1$ $\overline{Y}_{B}^{i} = 10 - .57(15-14) = 10 - (.57) = 9.43$ $\overline{Y}_{C}^{i} = 24 - .57(22-14) = 24 - (4.6) = 19.4$

 $b_{W} = \frac{E_{XY}}{E_{VV}} = \frac{50}{88} = .57$

Figure 1B shows a regression line with slope b_W fitted to each of the three groups. The extension of this line to the point at which it intersects with the grand mean of the covariate, \overline{X} , is the adjusted mean for the group.

Now is the assumption $\beta_A = \beta_B = \beta_C$, which legitimizes pooling, tenable? To test $H_0: \beta_A = \beta_B = \beta_C$, we need to compare the sum of squares from the pooled regression line fitted for each group (E'_{yy}) with the sum of squares allowing each group to "find" its own best fitting individual regression line. Figure 1C gives the best fitting (least squares) regression line defined separately for each group together with the pooled regression line with slope b_w . Of course the regression line b_A will fit group A better than any other regression line including the one with slope b_w . Likewise b_B and b_C give least error for groups B and C. The real statistical concern is whether or not b_A , b_B , and b_C differ significantly, that is, is $H_0: \beta_A = \beta_B = \beta_C$ tenable? If H_0 is tenable then the use of the pooled regression coefficient b_w is legitimized.

We already have obtained the error sum of squares using the pooled regression coefficient b, i.e., $E'_{yy} = 57.6$. The error sum of squares for group A using b_A is:

$$E'_{yy_A} = E_{yy_A} - \frac{(E_{xy_A})^2}{E_{xx_A}} = 20 - \frac{(15)^2}{20} = 8.8$$

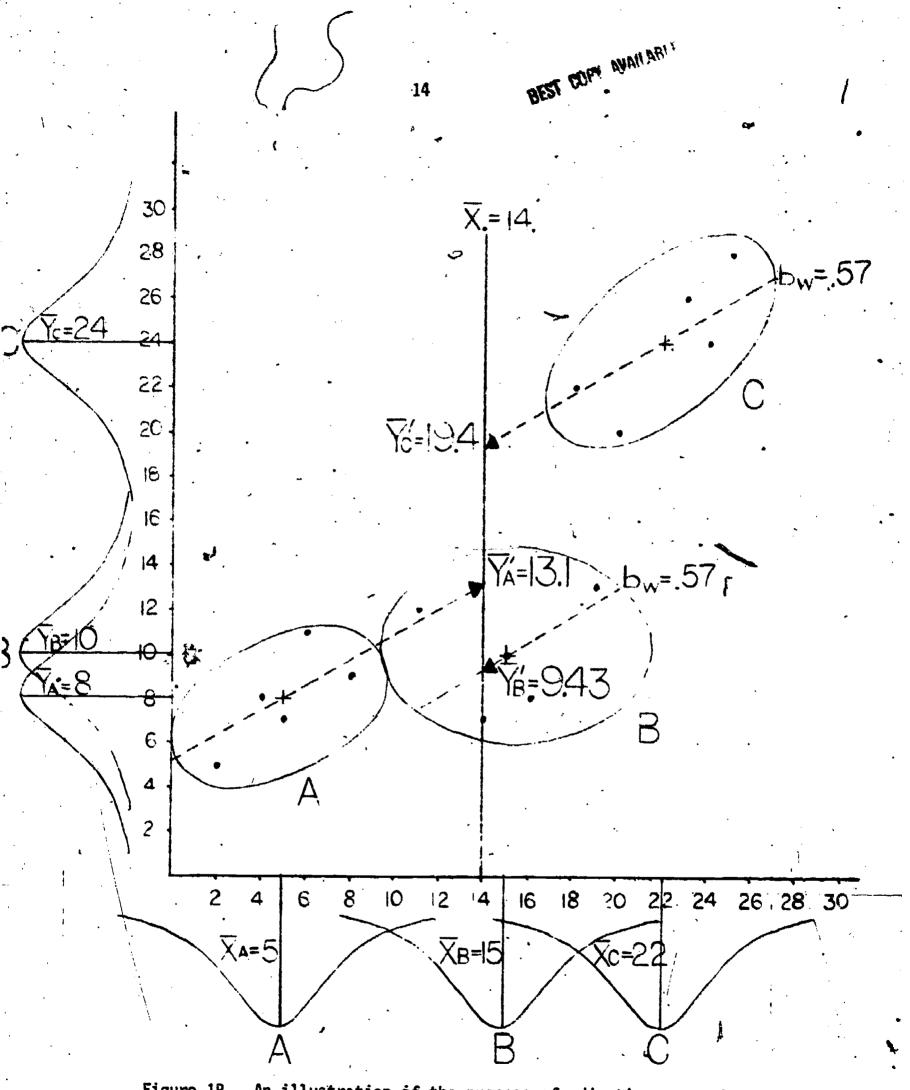


Figure 1B. An illustration of the process of adjusting means for pretreatment differences.

ERIC

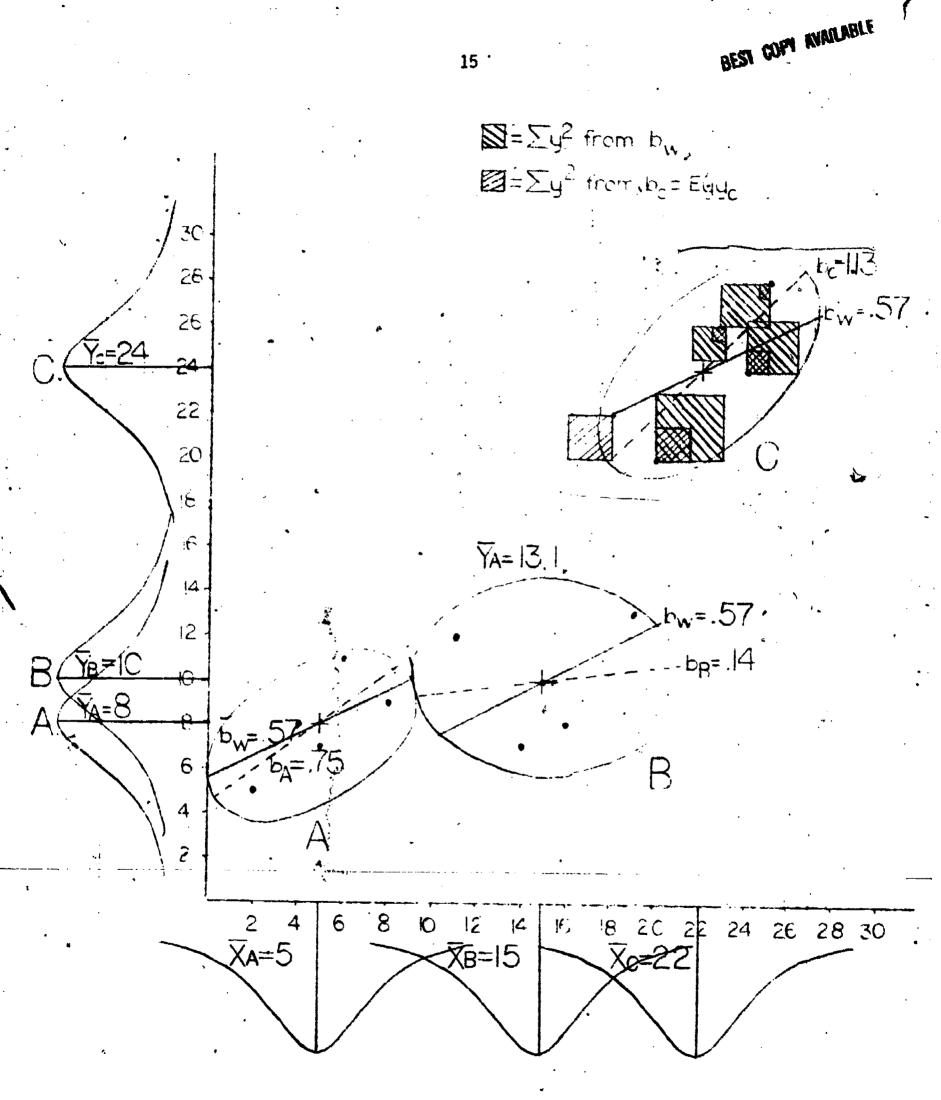


Figure 1C.

ERIC

1C. The relationship between regression lines defined by separate groups with the regression line employing pooled data.

Similarly for groups B and C using b_B and b_C respectively:

$$E'_{yy_B} = 25.3, E'_{yy_C} = 13.5$$

For convenience define $S_1 = \Sigma E'_{yy_j} = error sum of squares when each group defines its own best fitting regression line.$

$$S_1 = 8.8 + 25.3 + 13.5 = 47.6$$

The reduction in sums of squares when best fitting individual regression lines are used (i.e., b_A , b_B , and b_C) in lieu of regression lines with the regression coefficient based on the pooled information (b_w), is defined as S₂:

$$S_2 = E_{vv}^{\prime} - S_1 = 57.6 - 47.6 = 10.0$$

Obviously, if $b_A = b_B = b_{C^*} S_2$ would be zero.

To test the significance of the non-parallelism in the individual regression lines:

 $F = \frac{S_2/(J-1)}{S_1/J(n-2)} = \frac{10.0/2}{47.0/(3(3))} = \frac{5}{5.29} = .945 \quad \text{the F-ratio is below 1.0 -- obviously}$

not significant.

In setting up confidence intervals about adjusted means and/or making multiple comparisons, MS'_e is not used, but MS''_e which is larger than MS'_e to the extent that the groups differed on the covariate, i.e., if $T_{xv} = 0$, $MS''_e = MS'_e$.

 $s_{\overline{Y}'} = \sqrt{\frac{MS_e^{ii}}{n}}; MS_e^{ii} = MS_e^{i} \left[1 + \frac{T_{XX}/(J-1)}{E_{XX}}\right]$

ANCOVA Computational Problem Set

Fifteen subjects were administered a non-reactive pretest (X) and were randomly assigned to one of three treatments. The pretest and posttest data appear below (Winer notation; problem taken from Edwards).

				- •			
	1.		2 3				
X	Ŷ	X	¥-	X	Y		•
1	5	2	1	1	10		
3 ີ	9	5	7	45	16		
4 5	-8 11	47	3 8	3 6	12 17		· •
X	Y	1.X	Y	X	Ŷ	Toti (X)	als (Y)
19	45	22	21	19	68	60	134
87	435	114	127	87	958	288	1520
1	91	· · 1	18	1 2	70 .	57	79
3.8	9.0	14.4	4.2	3.8	13.6	4.0 (X.)	8.93 (Ÿ.)
	With	in Gro	oups D	ata (E	:)		
14	.8	, ₩	.2	14	.8	46.8	$B = E_{XX}$
20,	.0	1 25 1	.6	21	.6	·67.2	e = E _{xy}
• 30	.0	38	.8	33	.2	102.0	= E _{yy}
ta (S)			Bet	ween	Treatn	nents (T)
	•			T _{xx} =	1.2		
.0				$T_{xy} =$	-14.2		
	X 1 6 3 4 5 X 19 87 1 3.8 14 20	1 5 6 12 3 9 4 8 5 11 X Y 19 45 87 435 191 3.8 9.0 With 14.8 20.0 .30.0 ta (S) .0 .0	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	X Y X Y- 1 5 2 1 6 12 3 2 3 9 6 7 4 8 4 3 5 11 7 8 X Y I X Y 19 45 22 21 87 435 114 127 191 118 3.8 9.0 4.4 4.8 17.2 20.0 25.6 .30.0 38.8 38.8 38.8 ta S Bet .0 .0 .0 .0	X Y X Y- X 1 5 2 1 1 6 12 3 2 4 3 9 6 7 5 4 8 4 3 3 5 11 7 8 6 X Y X Y X 19 45 22 21 19 87 435 114 127 87 191 118 2 3.8 9.0 4.4 4.2 3.8 Within Groups Data (E 14.8 17.2 14 20.0 25.6 21 21 .30.0 38.8 33 33 ta (S) Between .0 $T_{xx} = T_{xy} =$	X Y X Y- X Y 1 5 2 1 1 10 6 12 3 2 4 13 3 9 6 7 5 16 4 8 4 3 3 12 5 11 7 8 6 17 X Y X Y X Y 19 45 22 21 19 68 87 435 114 127 87 958 191 118 270 3.8 9.0 4.4 4.2 3.8 13.6 Within Groups Data (E) 14.8 17.2 14.8 20.0 25.6 21.6 21.6 .30.0 38.8 33.2 33.2 ta (S) Between Treatm 7.2 .0 $T_{xy} = -14.2$ T 14.2	X Y X Y X Y 1 5 2 1 1 10 6 12 3 2 4 13 3 9 6 7 5 16 4 8 4 3 3 12 5 11 7 8 6 17 X Y X Y X Y Tota 19 45 22 21 19 68 60 87 435 114 127 87 958 288 191 118 270 57 57 3.8 9.0 4.4 4.2 3.8 13.6 4.0 Within Groups Data (E) 14.8 17.2 14.8 46.8 20.0 25.6 21.6 67.2 .30.0 38.8 33.2 102.0 ta<(S)

Treatment Group

1. Plot Y values against X values for each group. (Use different colors or marks for each group for visual segaration.

Following each exercise is a dotted line, below which provides the answers to the questions posed in the exercise. Attempt each question before consulting the answer.

2. Perform an analysis of variance of the posttest scores (Y) so that we may later compare the results with those from ANCOVA.

SV	· · · · · · · · · · · · · · · · · · ·	SS	` df	MS	F
Treatmen	ts	•	2		12.99
error	1	02.0		8.5	
•		,	\sim	(F_212	= 6.93)
220.9/2 =	110.45; 102.0	0/12 = 8.5			
3. Now p	erform ANCOV	A, covarying	on X		¢
Adjusted t	otal	· (a)?			
sum of squ	ares, $S'_v = S'_v$	$v = \frac{(S_{xy})^2}{S}$	= () - ($\frac{1^2}{1} = 264.4$	•
322.9 - <u>15</u>		y xx	•		
4	8			٠ .	
4. E' =	() - {	$\frac{1}{1}^{2} = 102 - \frac{1}{100}$	$\frac{(67.2)^2}{46.8} = 5.5$	= Adjusted error	sums of squares
΄ Ε -	(E _{xy}) ² /E _{xx}		•		· · ·
5. T' = yy error	() - (in estimatir) = 258.9 ng ß from b _j	(Not T _{yy} -(T _{xy} 's.)) ² /T _{xx} ; this is	affected by
S'yy -	Е' уу				
6. There	fore:				•
SV		SS	df	MS	. F .
Treatments Error (E'yy	(T;))			129.45	258.4

.99^F2,11 = 7.21

258.9/2; 5.5/11

7.	degree(s) of freedom is (are) lost for each covariate employed (one in this example), which accounts for the slight(increase or decrease) in the critical F-ratios.
	ncrease
8.	Why didn't T' and T giffer greatly as they did in the earlier illustrative $\gamma_{\rm c}$ problem?
•	because the group means on the covariate differed minimally, hence the unadjusted means did not differ greatly from the adjusted means.
<u>9</u> a.	Will T'_{yy} be larger than T_{yy} as a general rule in true experiments, i.e., when random assignment of subjects to treatments has been employed?
	no, no consistent trend
9b.	When will T' = T ?
	when $r_{xy} = 0$ (within cells), or when $\overline{X}_1 = \overline{X}_2 = \dots = \overline{X}_j$
10.	When will $E'_{yy} = E_{yy}$?
	only when r_{xy} (within cells) = 0, hence $b_w = 0.0$
11.	The relative advantage of ANCOVA over ANOVA can be seen best by comparing which one of these?
	a. E' with E _{yy} b. T' with T
、 .	b. T_{yy} with T_{yy} c. S_{yy} with S_{yy}
•	d. computed F-values
	a.
12.	The gain in the power of ANCOVA over ANOVA is shown by the ratio of MS' to
-	or, in this example, .50/8.5.
	MSe
13.	The gain in precision is a direct function of the correlation between the and the dependent variable (within cells, it is not r _{xv} for all
	observations combined).
	covariate

14.
$$NS_{a}^{c} \stackrel{2}{=} NS_{a}(1 - r^{2})$$
, therefore in this problem: ($\stackrel{2}{=}$ means "approximately equal to")
 $r^{2} = 1 - \left\{ \frac{1}{(1 - r^{2})} = 1 - \frac{(5)}{(3 - 5)} = 1 - .059 = .941$.
 $\frac{NS_{a}^{c}/NS_{a}}{NS_{a}^{c}}$
15. More precisely, $r_{3}^{2} = \frac{E_{xy}^{2}}{E_{xx}\frac{1}{yy_{3}}}$ for each group, or pooling our within groups
information:
 $r_{w}^{2} = \frac{E_{xy}^{2}}{E_{xx}\frac{1}{yy_{3}}} = \frac{(1)^{2}}{(1 - 1)^{2}} = .946$
 $\frac{(67.2)^{2}}{46.8(112)}$ (This uncommonly high r is the reason MS' and NS_a differ so
 $\frac{(67.2)^{2}}{46.8(112)}$ (This uncommonly high r is the reason MS' and NS_a differ so
 $\frac{(57.2)^{2}}{46.8(112)}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{46.8(112)}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{46.8(112)}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{46.8(112)}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{46.8(112)}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{7}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{7}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{7}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{7}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{7}$ (This uncommonly high r is the reason MS' and NS_b differ so
 $\frac{(57.2)^{2}}{7}$ (This value indicates that for every unit a score deviates from the grand mean
of the covariate, \overline{X} , it will be expected to deviate units from the
grand mean of the dependent variable, \overline{Y}
1.44
18. $\overline{Y}_{1}^{2} = \overline{Y}_{1} = b_{w}(\overline{X}_{1}^{2} - \overline{X}_{1}) = (1) - 1.44 (1 - 1) = 9.0 + .29 = 9.29$
 $\overline{9.0 - 1.44 (3.8 - 4.0)}$
19. Since group A was below the grand mean \overline{X} , \overline{Y}_{A} would be (smaller
or larger) than \overline{Y}_{A} .
 $\overline{Y}_{2}^{2} = (1) - (1)(\overline{X}_{2} - \overline{X}_{1}) = 4.2 = 1.44(4.4 - 4.0) = 3.62$
 $\overline{Y}_{2}^{2} - b_{w$

١.

- 26. Then the variation within each group about its own best-fitting regression, summed for all groups, S_1 , is _____ + ____ = 5.35. (Note that S_1 does not refer to group 1 but is total sum of squares when each group is allowed to define its best fitting regression line.) 2.97 + .70 + 1.68
- 27. Obviously, S₁ (can or cannot) exceed E'_{yv} cannot
- 28. When would S₁ = E'yy?
 when all cells had precisely the same regression coefficient, i.e., b₁=b₂=b₃=b_w
 29. S₁ and E'_{yy} should differ only randomly if H₀: ______ is true.
- ^{$\beta_1 = \beta_2 = \dots = \beta_j$} 30. The difference in unpredictable variance, allowing each group to use its own regression coefficient in predicting Y from X, from that in which all use the pooled value is then: $S_2 = () - () = 5.5 - 5.35 = .15$ $E'_{yy} - S_1$
- 31. By dividing S_2 and S_1 by their respective degrees of freedom, (J 1) and J(n 2), we have two unbiased estimates of population variance which will follow the central F-distribution when H_0 : $\beta_1 = \beta_2 = \cdots = \beta_1$ is true.

$$F = \frac{S_2/(J-1)}{S_1/J(n-2)} = \frac{()/()}{()/()} = \frac{.075}{.594} = .126$$

32. Is it necessary to reference the F-table? Why? No, if F < 1, H_o is never rejected in the typical (one-sided) F-test.

The test of linearity is considerably more involved, the basic rationale being, by allowing a quadratic, or cubic, etc. expression into the regression equation, to give the best-fitting curvilinear regression line, would the Σy^2 be significant less for the curved regression line than for a single straight line? The researcher usually knows from previous study, the variables which are more likely to be related in a non-linear fashion, i.e., personal, social, affective variable. Curvilinearity may be removed by certain transformations or it may be built in an ANCOVA model (cf. Li, J. C. R., <u>Statistical Inference</u>, Vol. II, 1964). The procedures in a factorial design are the same, the cell being analagous to the group in the present example.

Comparing ANCOVA With Other Analysis Strategies.

It is interesting to compare the ANCOVA results with the probable results had a randomized blocks design been used, blocking on pretest scores.

SV	SS	df	. MS	. F
Treatments	220.9	2	110.45	235.02
Blocks	98.3	4	24.56	
Error	3.7	8	.47	
	322.9		· · ·	

- 33. The MS' from ANCOVA is slightly _____ (larger, smaller) than the error MS from the analysis from the randomized blocks design.
- 34. However, the error term in the latter analysis is based on _____(fewer, more) (8 vs.___) degrees of freedom which requires a ______(larger, smaller) F-value in order to reject H₀. In this case for ANCOVA, $.95F_{2,11} = 3.89$, and for the randomized blocks design, $.95F_{2,8} = 4.46$.

fewer; 8 vs. 11; larger

- 35. The randomized blocks analysis is more "robust" in that it is free from assumptions of parallel regression lines and ______ implicit in ANCOVA.
- 36. Edwards (1960) performed an ANOVA of the same data using gain scores (posttestpretest) for each subject

<u> </u>	SS	df	115	F
Treatments Error	250.5 -14.4	2 12	125.3 1.20	104.4
	264.9		`	

It is evident in comparing error MS values, that the latter analysis is much (more, less) efficient than the ANCOVA and randomized blocks design.

less

Post Organizer

ANCOVA can be a useful statistical tool both for true and quasi-experiments. Its two potential advantages over ANOVA are (1) statistical compensation for pretreatment differences or bias, i.e., removing various "selection" threats to the internal validity of the study, and (2) increasing the power of the analysis.

With respect to the bias removing function it is important to be aware that pretreatment differences may exist on certain unmeasured variables, hence the adjustments are never complete and impeccable. In addition, the statistical commensation will be incomplete to the extent that the covariate is unreliable. ANCOYA cannot bring results from a quasi-experiment to the same-level of credibility allowed by a true experiment.

Regarding the increase in power function, ANCOVA can make a substantial contribution to true experiments. If the covariate (or combination or covariates) correlate about .7 with the dependent variable within groups, the gain in power is approximately the same that would accompany a four-fold increase in N. There are other design and analysis strategies for capturing this gain in power, the most common of which is blocking or stratifying on the X-variable. These alternatives are generally preferable if the experimenter has complete control over the conditions of the study since the unique ANCOVA assumptions are of no concern and stratifying allows one to detect interaction effects between the treatments and the X-variable.

The basic ANCOVA rationale extends logically to multiple covariates where the covariates are the predictors in a multiple regression context.

۶.

(• •	nus ce	ery Test on ANCOVA	•
ł,	Y	n	Y
	I	11	III
		•	
E	c	C E	
0.4	9		Ø
Covar	iate	Covariate	Covariate
MStreatm	ining the situations ments from ANCOVA, c mored and an ANOVA p	depicted above, how does t ompare to the ^{MS} treatments erformed?	he adjusted had the covariates
	ments would differ l	ittle in situations	and and and
		adjusted error mean square error mean square, MS _e ?	, MS', differ
	in power from ANCO	VA over ANOVA appears great	est in situation
3. The gain			
	lata suggest any ser	ious violation of ANCOVA as	sumptions?
4. Do the d		ious violation of ANCOVA as represent quasi-experiments	· · · · · · · · · · · · · · · · · · ·
4. Do the d 5. Which si 6. In which	tuations appear to		?,
4. Do the d 5. Which si 6. In which to those	tuations appear to situation are the from ANOVA? re I, the adjusted m	represent quasi-experiments	?, e almost identical
 Do the d Which si In which to those In figur a, b, or 	tuations appear to situation are the from ANOVA? The I, the adjusted m c?	represent quasi-experiments results from ANCOVA would be	?, e almost identical nearest of point
 Do the d Which si In which to those In figur a, b, or An addit Other th 	tuations appear to situation are the from ANOVA? Te I, the adjusted m c? tional covariate app	represent quasi-experiments results from ANCOVA would be ean of the E group would be	?, e almost identical nearest of point situation I, II, or II
 Do the d Which si In which to those In figur a, b, or An addit Other th error me 	tuations appear to situation are the from ANOVA? re I, the adjusted m c? tional covariate app nings being equal, in	represent quasi-experiments results from ANCOVA would be ean of the E group would be ears to be needed least in s n which situation has the s	?, e almost identical nearest of point situation I, II, or II

f	A 1		•	/ •	U U
· 3.	III			8.	III
4.	•No			9.	III
<i>``</i> 5.	I and	II		10.	0.0
0					
	·				

÷

REFERENCES

Cochran, W.G. Analysis of covariance: Its nature and uses. <u>Biometrics</u>, 1957, <u>13</u>, 261-281.

Glass, G.V., Peckham, P.D., & Sanders, J.R. Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. <u>Review of Educational Research</u>, 1972, 42, No. 3, 237-284.

Hopkins, K.D. Regression and the matching fallacy in quasi-experimental research. <u>The Journal of Special Education</u>, 1969, <u>3</u>, No. 4, 329-336.

Li, J.C.R. Statistical Inference II. Michigan: Edwards Brothers, Inc., 1964.

Lord, F.M. A paradox in the interpretation of group comparisons. <u>Psychological</u> <u>Bull.</u>, 1967, <u>68</u>, 304-305.

Winer, B.J. <u>Statistical Principles in Experimental Design</u>. New York: McGraw-Hill, 1962; 2nd edition, 1971.