This document contains the outlines of each of 34 lectures given in the Earth Control and Investigations course sponsored by the Denver Laboratories. Topics covered include construction control of earth dams, canals, and filters; field and laboratory test procedures; soil classification and logging; and field investigations. (DT)
Earth Control and Investigations
CONTENTS

Description of Course ... 1
Schedule of Classes .. 2
Instructors .. 6
Participants ... 8
Lecture Outlines ... 11
Conversion Factors - British to Metric Units of Measurement
Organization Chart - Engineering and Research Center
DESCRIPTION OF COURSE

The Earth Control and Investigations course has been given by the Denver Laboratories during 20 of the past 28 years. The course is presented by the Earth Sciences Branch of the Division of General Research with assistance from the Divisions of Design, Construction, and Planning Coordination. The training is designed to promote consistency and uniformity in control and investigation procedures throughout the Bureau of Reclamation.

This notebook contains the outlines of each lecture and space for note taking. At the end of each outline are study references that you should review before each day's lectures.

On the last day, there will be a panel discussion of any questions you would like to ask. Questions should be deposited in the container at the front of the auditorium.

Three examinations will be given during the course. On Friday, February 8, you will be tested on construction control. On Monday, February 11, a test will be given that covers field and laboratory test procedures. The last examination will be given on Friday, February 15, and will cover soil classification and logging and investigations. The grades of these tests will be reported to your project or your agency and will become a permanent part of your personnel file. Special recognition is given to those students with the highest grades.
EARTH CONTROL AND INVESTIGATIONS COURSE - 1974

Class Schedule

Monday - February 4

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Registration</td>
<td></td>
<td>A. K. Howard</td>
</tr>
<tr>
<td>8:15</td>
<td>Welcome</td>
<td></td>
<td>H. G. Arthur</td>
</tr>
<tr>
<td>8:30</td>
<td>Denver E&R Center</td>
<td></td>
<td>H. J. Cohan</td>
</tr>
<tr>
<td>8:45</td>
<td>Current Construction Program</td>
<td></td>
<td>W. R. Groseclose</td>
</tr>
<tr>
<td>9:00</td>
<td>Design Concepts</td>
<td></td>
<td>J. W. Hilf</td>
</tr>
<tr>
<td>9:15</td>
<td>Future Projects</td>
<td></td>
<td>W. W. Reedy</td>
</tr>
<tr>
<td>9:30</td>
<td>Introduction to Course</td>
<td></td>
<td>H. J. Gibbs</td>
</tr>
<tr>
<td>9:45</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Construction Control Introduction</td>
<td>1</td>
<td>C. A. Lowitz</td>
</tr>
<tr>
<td>11:00</td>
<td>Fundamental Definitions (related to field and lab test procedures)</td>
<td>2</td>
<td>A. K. Howard</td>
</tr>
<tr>
<td>11:30</td>
<td>Group Photograph</td>
<td></td>
<td>W. M. Batts</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Field and Laboratory Test Procedures First Session</td>
<td>3</td>
<td>R. D. Richmond</td>
</tr>
<tr>
<td></td>
<td>Field Density</td>
<td></td>
<td>O. R. Harju</td>
</tr>
<tr>
<td></td>
<td>Lab Compaction</td>
<td>4</td>
<td>P. C. Knodel</td>
</tr>
<tr>
<td></td>
<td>Standard Properties</td>
<td>5</td>
<td>J. Merriman</td>
</tr>
<tr>
<td></td>
<td>Permeability and Settlement</td>
<td>6</td>
<td>G. DeGroot</td>
</tr>
<tr>
<td></td>
<td>Rapid Compaction Control</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Tuesday - February 5

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Construction Control - Earth Dams</td>
<td>8</td>
<td>E. W. Gray, Jr. and E. L. McAlexander</td>
</tr>
<tr>
<td>9:45</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Construction Control - Earth Dams Quality Control</td>
<td>9</td>
<td>A. Zlaten</td>
</tr>
<tr>
<td>10:30</td>
<td>Responsibilities of Inspectors</td>
<td></td>
<td>C. E. Tackett</td>
</tr>
<tr>
<td>11:00</td>
<td>Construction Control - Foundation Grouting</td>
<td></td>
<td>L. R. Gebhart</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Field and Laboratory Test Procedures Second Session</td>
<td>3-7</td>
<td></td>
</tr>
</tbody>
</table>
Class Schedule - Continued

Wednesday - February 6

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Earth Dam Instruments</td>
<td>10</td>
<td>W. W. Daehn</td>
</tr>
<tr>
<td>8:30</td>
<td>Earth Dam Instruments - Application of Data</td>
<td>11</td>
<td>R. W. Kramer</td>
</tr>
<tr>
<td>9:30</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:45</td>
<td>Special Laboratory Tests</td>
<td>12</td>
<td>W. Ellis</td>
</tr>
<tr>
<td>10:30</td>
<td>Construction Control - Canals and Miscellaneous Structures</td>
<td>13</td>
<td>H. J. Gibbs</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Field and Laboratory Test Procedures Third Session</td>
<td>3-7</td>
<td></td>
</tr>
</tbody>
</table>

Thursday - February 7

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Construction Control - Field Laboratories and Reports</td>
<td>14</td>
<td>W. Ellis</td>
</tr>
<tr>
<td>8:30</td>
<td>Construction Control - Filters</td>
<td>15</td>
<td>J. A. Aikele</td>
</tr>
<tr>
<td>9:30</td>
<td>Break</td>
<td></td>
<td>C. W. Jones</td>
</tr>
<tr>
<td>9:45</td>
<td>Soil-Cement - Slope Protection</td>
<td>16</td>
<td>G. DeGroot</td>
</tr>
<tr>
<td>11:15</td>
<td>Soil-Cement - Pipe Bedding</td>
<td>17</td>
<td>G. DeGroot</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Field and Laboratory Test Procedures Fourth Session</td>
<td>3-7</td>
<td></td>
</tr>
</tbody>
</table>

Friday - February 8

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Construction Control - Examination</td>
<td></td>
<td>A. K. Howard</td>
</tr>
<tr>
<td>8:45</td>
<td>Safety Program</td>
<td></td>
<td>R. J. Searle</td>
</tr>
<tr>
<td>9:15</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>Film</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>Field Investigations - Introduction to Foundation Requirements</td>
<td>18</td>
<td>H. J. Gibbs</td>
</tr>
<tr>
<td>11:00</td>
<td>Field Investigations - Relation to Project Planning</td>
<td>19</td>
<td>G. H. Talbott</td>
</tr>
<tr>
<td>11:30</td>
<td>Free Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Field and Laboratory Test Procedures Fifth Session</td>
<td>3-7</td>
<td></td>
</tr>
</tbody>
</table>
Class Schedule - Continued

Monday - February 11

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Field and Laboratory Test Procedures - Exam</td>
<td></td>
<td>A. K. Howard</td>
</tr>
<tr>
<td>8:45</td>
<td>Classification and Logging - Geology and Origin of Soils</td>
<td>20</td>
<td>I. E. Klein</td>
</tr>
<tr>
<td>9:45</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Classification and Logging - Geologic Logs of Drill Holes</td>
<td>21</td>
<td>L. R. Burton</td>
</tr>
<tr>
<td>11:00</td>
<td>Field Investigations - Field Tests</td>
<td>22</td>
<td>P. C. Knodel</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Classification and Logging - Classification Introduction - Discussion and Practice</td>
<td>23 24</td>
<td>J. P. Bara Assistants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. T. Coffey</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. J. Cox</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. DeGroot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O. R. Harju</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. C. Knodel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. A. Lowitz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R. D. Richmond</td>
</tr>
</tbody>
</table>

Tuesday - February 12

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Field Investigations - Exploration Procedures and Sampling Materials</td>
<td>25</td>
<td>R. C. Hatcher</td>
</tr>
<tr>
<td>8:30</td>
<td>Classification and Logging - Test Pits and Auger Holes</td>
<td>26</td>
<td>A. Zlaten</td>
</tr>
<tr>
<td>9:30</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:45</td>
<td>Field Investigations - Canals and Miscellaneous Structures - Foundations and Materials</td>
<td>27 28</td>
<td>C. A. Lowitz</td>
</tr>
<tr>
<td>11:00</td>
<td>Field Investigations - Field Permeability Tests</td>
<td></td>
<td>C. W. Jones</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Classification and Logging - Fine-grained soils - Discussion and Practice</td>
<td>23 24</td>
<td>J. P. Bara Assistants</td>
</tr>
</tbody>
</table>
Class Schedule - Continued

Wednesday - February 13

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Classification and Logging -</td>
<td>23</td>
<td>J. P. Bara</td>
</tr>
<tr>
<td></td>
<td>Coarse-grained Soils -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion and Practice</td>
<td>24</td>
<td>Assistants</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Classification and Logging -</td>
<td>23</td>
<td>J. P. Bara</td>
</tr>
<tr>
<td></td>
<td>Borderline Soils -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion and Practice</td>
<td>24</td>
<td>Assistants</td>
</tr>
</tbody>
</table>

Thursday - February 14

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Field Investigations - Sampling Foundations</td>
<td>29</td>
<td>R. C. Hatcher</td>
</tr>
<tr>
<td>9:15</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>Field Investigations - Earth Dam Foundations</td>
<td>30</td>
<td>L. W. Davidson</td>
</tr>
<tr>
<td>10:30</td>
<td>Field Investigations - Earth Dam Materials</td>
<td>31</td>
<td>E. W. Gray, Jr.</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Classification and Logging -</td>
<td>23</td>
<td>J. P. Bara</td>
</tr>
<tr>
<td></td>
<td>Undisturbed Soils -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion and Practice</td>
<td>24</td>
<td>Assistants</td>
</tr>
</tbody>
</table>

Friday - February 15

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Outline</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Classification and Logging and Examination</td>
<td></td>
<td>J. P. Bara</td>
</tr>
<tr>
<td>9:30</td>
<td>Rock Mechanics - In situ Testing</td>
<td>32</td>
<td>E. J. Sleibir</td>
</tr>
<tr>
<td>10:30</td>
<td>Rock Mechanics - Instrumentation (I)</td>
<td>33</td>
<td>W. G. Austin</td>
</tr>
<tr>
<td>10:30</td>
<td>Rock Mechanics - Instrumentation (II)</td>
<td>34</td>
<td>J. W. Fabry</td>
</tr>
<tr>
<td>11:30</td>
<td>Free Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>Question and Answer Panel</td>
<td></td>
<td>Instructors</td>
</tr>
<tr>
<td>2:00</td>
<td>Discuss Examinations</td>
<td></td>
<td>J. P. Bara and</td>
</tr>
<tr>
<td>3:00</td>
<td>Present Certificates</td>
<td></td>
<td>A. K. Howard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H. J. Cohan</td>
</tr>
</tbody>
</table>
INSTRUCTORS

Aikele, John H. Engineering Technician
Austin, William G. Structural Engineer
Bara, John P. Civil Engineer
Bock, Richard W. Section Head
Burton, Lynn R. Earth Dams Section
Callow, B. A. Hydraulic Structures Branch
Coffey, Carroll T. Geologist
Cotton, Charles E. Geology and Geotechnology Branch
Cox, Lyman J. Engineering Technician
Daehn, Wilmar W. Engineering Technician
Davidson, Luther W. Engineering Technician
DeGroot, Glenn Engineering Technician
Ellis, Willard Earth Sciences Branch
Fabry, Joseph W. Section Head
Gebhart, Lloyd R. Soil Properties Testing Section, Earth Sciences Branch
Gray, Edward W. Structural Engineer
Hatcher, Robert C. Civil Engineer
Harju, Oiva R. Construction Liaison
Howard, Amster K. Chief, Earth Sciences Branch
Jones, Chester W. Civil Engineer

Earth Sciences Branch
INSTRUCTORS - Continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein, Ira E.</td>
<td>Geologist</td>
<td>Geology and Geotechnology Branch</td>
</tr>
<tr>
<td>Knodel, Paul L.</td>
<td>Civil Engineer</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Kramer, Richard W.</td>
<td>Civil Engineer</td>
<td>Earth Dams Section</td>
</tr>
<tr>
<td>Lowitz, Clemith A.</td>
<td>Civil Engineer</td>
<td>Hydraulic Structures Branch</td>
</tr>
<tr>
<td>McAlester, Errol L.</td>
<td>Civil Engineer</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Merriman, John</td>
<td>Civil Engineer</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Peterson, Robert A.</td>
<td>Civil Engineer</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Richmond, Robert D.</td>
<td>Civil Engineer</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Roselle, Larry A.</td>
<td>Engineering Technician</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Slebir, Edward J.</td>
<td>Structural Engineer</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Tackett, Cecil E.</td>
<td>Civil Engineer</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Talbott, George H.</td>
<td>Chief, Water Management Planning Branch</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Tiedemann, Drew A.</td>
<td>Civil Engineer</td>
<td>Earth Sciences Branch</td>
</tr>
<tr>
<td>Zlaten, Alexander</td>
<td>Civil Engineer</td>
<td>Earth Dams Section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulic Structures Branch</td>
</tr>
</tbody>
</table>

SPEAKERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. G. Arthur</td>
<td>Director, Design and Construction</td>
</tr>
<tr>
<td>H. J. Cohan</td>
<td>Chief, Division of General Research</td>
</tr>
<tr>
<td>W. R. Groseclose</td>
<td>Chief, Division of Construction</td>
</tr>
<tr>
<td>J. W. Hilf</td>
<td>Chief, Division of Design</td>
</tr>
<tr>
<td>R. J. Searle</td>
<td>Chief, Division of Safety</td>
</tr>
<tr>
<td>W. W. Reedy</td>
<td>Chief, Division of Planning Coordination</td>
</tr>
<tr>
<td>D. J. Duck</td>
<td>Deputy Director, Design and Construction</td>
</tr>
</tbody>
</table>
1974
EARTH CONTROL AND INVESTIGATIONS TRAINING COURSE
PARTICIPANTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Project</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACIFIC NORTHWEST REGION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodney D. Pegram</td>
<td>Columbia Basin</td>
<td>Ephrata, Washington</td>
</tr>
<tr>
<td>David A. Huss</td>
<td>Third Powerplant</td>
<td>Grand Coulee, Washington</td>
</tr>
<tr>
<td>Robert B. MacDonald</td>
<td>Third Powerplant</td>
<td>Grand Coulee, Washington</td>
</tr>
<tr>
<td>Robert J. Roelofsz</td>
<td>Third Powerplant</td>
<td>Grand Coulee, Washington</td>
</tr>
<tr>
<td>Harold J. Fry</td>
<td>Chief Joseph Dam</td>
<td>Manson, Washington</td>
</tr>
<tr>
<td>Keith D. Weverstad</td>
<td>Rathdrum Prairie</td>
<td>Post Falls, Idaho</td>
</tr>
<tr>
<td>Gerald V. Jacob</td>
<td>Teton Basin</td>
<td>Newdale, Idaho</td>
</tr>
<tr>
<td>Douglass C. Jarvie</td>
<td>Teton Basin</td>
<td>Newdale, Idaho</td>
</tr>
<tr>
<td>Richard D. McClung</td>
<td>Teton Basin</td>
<td>Newdale, Idaho</td>
</tr>
<tr>
<td>Tommy R. Strickland</td>
<td>Teton Basin</td>
<td>Newdale, Idaho</td>
</tr>
<tr>
<td>John L. Chase</td>
<td>Tualatin</td>
<td>Forest Grove, Oregon</td>
</tr>
<tr>
<td>Dell L. Norman</td>
<td>Tualatin</td>
<td>Forest Grove, Oregon</td>
</tr>
<tr>
<td>Joseph C. Schrage</td>
<td>Tualatin</td>
<td>Forest Grove, Oregon</td>
</tr>
<tr>
<td>MID-PACIFIC REGION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gary A. Hollinger</td>
<td>Regional Office</td>
<td>Sacramento, California</td>
</tr>
<tr>
<td>James E. Oliverson</td>
<td>Auburn-Folsom South</td>
<td>Auburn, California</td>
</tr>
<tr>
<td>John D. Wilkie</td>
<td>Auburn-Folsom South</td>
<td>Auburn, California</td>
</tr>
<tr>
<td>Edward J. Bennett</td>
<td>Sacramento Valley</td>
<td>Willows, California</td>
</tr>
<tr>
<td>James A. Talley</td>
<td>Lahontan Basin</td>
<td>Carson City, Nevada</td>
</tr>
<tr>
<td>LOWER COLORADO REGION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burton J. Simpson</td>
<td>Regional Office</td>
<td>Boulder City, Nevada</td>
</tr>
<tr>
<td>Stanley E. Foster</td>
<td>Yuma</td>
<td>Yuma, Arizona</td>
</tr>
<tr>
<td>Wesley A. Farley</td>
<td>Salt River Valley</td>
<td>Phoenix, Arizona</td>
</tr>
<tr>
<td></td>
<td>Water Users Association</td>
<td></td>
</tr>
<tr>
<td>John D. Bayles</td>
<td>Arizona Projects Office</td>
<td>Phoenix, Arizona</td>
</tr>
<tr>
<td>Leland K. Bervin</td>
<td>Arizona Projects Office</td>
<td>Phoenix, Arizona</td>
</tr>
</tbody>
</table>
LOWER COLORADO REGION - Continued

Jesus B. Espinoza
Eugene W. Keeler
James K. Swapp
Tom Beeston
Allen R. Gates
Shannon L. Hebb
Edgar G. Esslinger
Walter L. Sanchez
Leon E. Youd

Arizona Projects Office
Arizona Projects Office
Arizona Projects Office
Regional Office
Regional Office
Regional Office
Regional Office
Regional Office
Regional Office

Phoenix, Arizona
Phoenix, Arizona
Phoenix, Arizona
Salt Lake City, Utah
Grand Junction
Grand Junction
Duchesne, Utah
Duchesne, Utah

UPPER COLORADO REGION

David O. Allen
Mac C. Baccus
J. P. Bartley
Orlando R. Pacheco
Warren D. Berggren
Donald D. La Rue
Paul B. Larimore
Kenneth C. Hoyt
David E. Sims
Elmer D. Swarts
John W. Chapman
Charles W. Davis
John M. Williams
John E. Crist

Regional Office
Regional Office
Regional Office
Regional Office
Mountain Park
Mountain Park
Mountain Park
Navajo Indian Irrigation
Navajo Indian Irrigation
Navajo Indian Irrigation
Palmetto Bend
Palmetto Bend
Palmetto Bend
Weslaco, Texas
Amarillo, Texas

SOUTHWEST REGION

Amarillo, Texas
Amarillo, Texas
Amarillo, Texas

Altus, Oklahoma
Altus, Oklahoma
Altus, Oklahoma
Farmington, New Mexico
Farmington, New Mexico
Farmington, New Mexico
Edna, Texas
Edna, Texas
Edna, Texas
Weslaco, Texas

UPPER MISSOURI REGION

Theodore M. Chancellor
Kenneth R. Kiel
Wilson C. Bevington
Donald A. Charpentier
David J. Davidson

Missouri-Oahe
Missouri-Oahe
Missouri-Souris
Missouri-Souris
Missouri-Souris

Huron, South Dakota
Huron, South Dakota
Bismarck, North Dakota
Bismarck, North Dakota
Bismarck, North Dakota
<table>
<thead>
<tr>
<th>Upper Missouri Region - Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harold L. Field</td>
</tr>
<tr>
<td>Morris Pattyn</td>
</tr>
<tr>
<td>Russell E. Childers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower Missouri Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verlyn D. Saladen</td>
</tr>
<tr>
<td>Stanley A. Gardner</td>
</tr>
<tr>
<td>Donald W. Stackhouse</td>
</tr>
<tr>
<td>James B. Kircher</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering and Research Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward H. Diekmann</td>
</tr>
<tr>
<td>Stephen C. Cowgill</td>
</tr>
<tr>
<td>Jerry D. Gilbert</td>
</tr>
<tr>
<td>Kleth L. Christiansen</td>
</tr>
<tr>
<td>Ronald D. Mohr</td>
</tr>
<tr>
<td>Charlotte A. Bechtold</td>
</tr>
</tbody>
</table>
CONSTRUCTION CONTROL INTRODUCTION

A. Introduction

B. Types of Laboratories
 1. Type C - Large
 2. Type B - Medium
 3. Type A - Small
 (1) Stationary
 (2) Mobile
 4. Vehicle
 5. Combinations of types of laboratories

C. Laboratory Equipment
 1. Calibration
 2. Care and maintenance
 3. Use

Study references: Earth Manual

Laboratories pages 187-190
Laboratory equipment pages 400-408
FUNDAMENTAL DEFINITIONS

A. Introduction

1. Purpose

2. Test procedures to be covered
 a. Field density
 b. Lab compaction
 c. Standard properties
 d. Permeability and settlement
 e. Rapid compaction control

B. Field Density

1. Designation E-24, page 582

2. Density calculations

C. Laboratory Compaction

1. Proctor compaction (cohesive soils), Designation E-11, page 455
 a. Density calculations
 b. Penetration needle calculations

2. Relative density (cohesionless soils), Designation E-12, page 467
 a. Minimum density calculations
 b. Maximum density calculations
 c. Relative density calculations
D. Standard Properties

1. Sample preparations, Designation E-5, page 408

2. Gradation analysis, Designation E-6, page 414
 a. Sieve analysis calculations
 b. Hydrometer analysis calculations

3. Soil consistency tests, Designation E-7, page 426
 a. Liquid limit
 b. Plastic limit
 c. Shrinkage limit
 d. Moisture content calculations

4. Specific gravity, Designation E-10, page 442
 a. Apparent specific gravity calculations
 b. Bulk specific gravity calculations

E. Permeability and Settlement

1. Soils passing No. 4 sieve, Designation E-13, page 474

2. Soils containing gravel, Designation E-14, page 489

3. Coefficient of permeability and settlement calculations

F. Rapid Compaction Control

1. Designation E-25, page 591

2. Calculations

G. Summary
FIELD AND LABORATORY TEST PROCEDURES
FIELD DENSITY TEST
(Designation E-24, Earth Manual)

I. Introduction
A. Replacement methods
B. Definition
C. Uses of test
 1. Construction control
 2. Investigation work
D. Equipment
 1. General equipment
 2. Specific equipment - demonstration
 3. Discussion of errors (replacement methods)

II. Test Procedure (USBR Method)
A. Preparation for test
 1. Equipment
 2. Control of minus No. 4 (fine-grained soils containing little or no gravel)
 3. Control of minus 3-inch soils (containing appreciable gravel)
 4. Calibration procedure - demonstration
B. Field procedure
 1. Selection of test site
 2. Preparation of area
 3. Placement of template
 4. Excavation of test hole
 5. Measurement of volume of hole
C. Laboratory procedure - cohesive soils (see Earth Manual, page 586, or Drawing No. 101-D-285)

D. Laboratory procedure - cohesionless soils

III. Demonstration of Special Equipment
A. Speedy moisture meter
B. Nuclear moisture - density equipment

IV. Practical Exercise
A. Discussion of data sheets
 1. 7-1425 Field Density Record
 2. 7-1657 Calibration of Sand Density Test Apparatus and Density Sand
B. Calibration of density sand - class
C. Sample calculations - field density tests

V. Summary

Study references: The following references are found in the Earth Manual, Revised Edition, 1968.

1. Designation E-24, Field Density Test Procedure, pages 582-591
2. Chapter III, Control of Construction, pages 248-251, page 300
3. Practice Problem Handouts
FIELD AND LABORATORY TEST PROCEDURES
COMPACTION, RELATIVE DENSITY

A. Introduction - Compaction

1. Origin

2. Summary of compaction standards
 a. ASTM
 b. AASHO - Standard
 c. AASHO - Modified
 d. Corps of Engineers - Modified (airfields)
 e. USBR - Large scale
 f. USBR - Standard

3. Specifications of equipment
 a. Equipment (calibration)
 (1) Hand equipment
 (2) Mechanical compactors
 b. Soil

4. Test procedure
 a. Mechanics of the test
 b. Moisture determination
 (1) 16 hours at 110° C±
 (2) Size sample
 c. Computation and plotting
 d. Source of error
5. Penetration resistance
 a. Use of the penetrometer
 b. Source of error
 c. Value of the penetration resistance curve
6. Zero air voids curve
 a. Significance of the curve
 b. Computations - Zero air voids curve
7. Materials adaptable to compaction
 a. Processing
 b. Types of curves to expect
8. Value of the compaction test

B. Introduction - Relative Density
1. Origin
2. Specifications
 a. Equipment
 b. Materials
3. Test procedure
 a. Minimum density
 b. Maximum density
4. Calculations and use of nomograph
5. Value of relative density test

Study references: Earth Manual, Designation E-11, Proctor Compaction Test, pages 455-467; Earth Manual, Designation E-12, Relative Density of Cohesionless Soils, pages 467-474
LABORATORY TEST PROCEDURES
SAMPLE PREPARATION, GRADATION,
ATERBERG LIMITS, SPECIFIC GRAVITY

I. Presentation

A. Introduction

B. Sample preparation
 1. Visual inspection and classification
 2. Synthetic gradation analysis
 3. Preparation of composite samples

C. Gradation test
 1. Purpose and definition of terms
 2. Separation of No. 4 sieve
 3. Hydrometer analysis (minus No. 4 material)
 4. Mechanical analysis
 5. Computation and plotting
 6. Interpretation of test results

D. Atterberg limits test
 1. Purpose and definition of terms
 2. Sample preparation
 3. Liquid limit
 a. One-point method
 4. Plastic limit
 5. Plasticity index
 6. Shrinkage limit
 7. Interpretation of test results
E. Specific gravity test

1. Purpose and definition of terms
2. Sample preparation
3. Test procedure for minus No. 4 material
4. Test procedure for plus No. 4 material

II. Review

A. Answer student questions
B. Summarize main topics

Study references:
Earth Manual, Designation E-5, Preparation of Soil Samples for Testing, pages 408-414;
Designation E-6, Gradation Analysis of Soils, pages 414-426; Designation E-7, Soil Consistency Tests, pages 426-437; Designation E-10, Specific Gravity of Soils, Aggregate, pages 442-453
FIELD AND LABORATORY TEST PROCEDURES
PERMEABILITY AND SETTLEMENT OF SOILS

I. Introduction
 A. Types of permeability tests
 B. Purpose of test
 1. Determination of coefficient of permeability
 2. Determination of percent consolidation
 C. Principle
 1. Darcy's Law
 2. Ranges of permeability
 3. Standard overburden loads

II. Test Procedure - Standard Test
 A. Apparatus
 1. Equipment
 2. Calibration of constant-head tank
 B. Preparation of sample
 1. Data needed before test
 2. Moisture
 C. Placing of specimen
 1. Check preparation sheet and compute data for packing
 2. Check equipment
 3. Ring readings
 4. Placing specimen
 5. No-load readings
 6. Loading
D. Application of water to sample
 1. Procedure
 2. Readings

E. Sample removal
 1. Final readings (loaded)
 2. Rebound
 3. Penetration resistance needle test
 4. Moisture

III. Test Results
A. Calculations
 1. Coefficient of permeability
 2. Settlement due to saturation

B. Sources of error
 1. Piping
 2. Entrapped air and foreign matter
 3. Temperature
 4. Permeability of apparatus
 5. Validity of Darcy's Law

C. Reporting results in L-29 report

IV. Other Laboratory Permeability Tests
A. Undisturbed samples
B. Nonloaded soil specimens
C. Soils containing gravel
Study references: All of the references below are contained in the Earth Manual:

Chapter I, Section 21, pages 60-65, Permeability; Chapter III, Section 62, pages 218-220, Permeability; Designation E-13, pages 474-489, Permeability and Settlement of Soils; Designation E-14, pages 489-492, Permeability and Settlement of Soils Containing Gravel
FIELD AND LABORATORY TEST PROCEDURES
RAPID COMPACTION CONTROL

A. Introduction

1. Provides a means of construction control for fine-grained soils which is accurate and can normally be performed in 1 to 2 hours.
 a. Density control - degree of compaction (percent of maximum dry density) is precisely determined.
 b. Moisture control - difference from optimum is determined to a satisfactory degree of accuracy.

2. Density and moisture conditions must be compared to standards to confirm that the field conditions are similar to those assumed during design.

B. Theory

1. Dry density determination based on oven moisture determination which requires 16 to 24 hours.

2. Rapid method control based on relating all densities to the wet density at fill water content.

3. Red line corrections for moisture control based on moisture and density characteristics of average soils. These corrections are necessary since water contents added are based on wet weights rather than dry weights.

C. Practice Problems

1. Symbols

 Fill wet density (pcf) γ_{wf}

 Cylinder wet density (pcf) γ_{wc}

 Maximum density point of converted wet density curve (pcf) γ_m

 Fill water content (%) w_f

 Optimum water content (%) w_o
Ratio of fill dry density to maximum laboratory dry density (Degree of Compaction) D

Ratio of fill dry density to cylinder dry density at same water content C

Difference between optimum water content and fill water content $w_o - w_f$

2. Outline of problem method

a. Perform fill density test and screen material through No. 4 sieve to find fill wet density (γ_{wf}).

b. Compact material at fill water content by standard laboratory test procedure to find cylinder wet density at fill water content (γ_{wc}).

c. Add 2 percent water to sample of material at fill water content, compact by laboratory test procedure. Divide wet density by 1.02 (1 + water added expressed as a decimal) to find density at fill water content.

d. If second point has higher converted wet density, add 4 percent water and proceed as in (c.). Divide by 1.04 to obtain converted wet density.

e. If second point has lower converted wet density, allow material at fill water content to dry until it has lost 2 percent water. Compact and convert to density at fill water content. Divide by 0.98 to obtain converted wet density.

f. Three points are sufficient if left and right points have lower converted wet densities than center point. Use $Y_2 - Y_4$ method.

g. If second point has lower converted wet density than point at fill water content but is within 3 pcf, add 1 percent water to soil at fill water content, compact and convert to density at fill water content. Use $Y_1 - Y_2$ method.

3. Example problems

a. Chart methods

(1) $Y_2 - Y_4$ method used with even 2 percent moisture spread. Letter points from left A, B, and C.
Values in chart give ordinates of the maximum density point of the converted wet density curve from Point A.

(2) Y_1-Y_2 method used with even 1 percent moisture spread (eliminates need for drying back if converted wet density of point with 2 percent added water is lower in density but within 3 pcf of point at fill water content).

(a) Number points in order in which they were run (i.e., Point (1) at fill water content, Point (2) with 2 percent water added, Point (3) with 1 percent water added).

(b) Values in chart give ordinates of the maximum density point of the converted wet density curve from Point (1).

(c) If the ratio of Y_1/Y_2 is greater than 0.38 or if the Zm obtained from the chart is less than -1.0, this method is not considered applicable. In that case, a dry back point should be obtained and the problem solved by Y_2-Y_4 method.

b. Graphical methods - outlined on cover sheet

(1) Can be used on all problems but is more time-consuming than chart methods.

(2) Must be used if uneven moisture spread is obtained.

c. Both chart and graphical parabola methods assume that the compaction curve can be approximated by a parabola whose axis is vertical.
4. Calculations

a. Rapid control method

\[C = \frac{\text{Fill wet density (} \gamma_{wf} \text{)}}{\text{Cylinder wet density of material at fill water content (} \gamma_{wc} \text{)}} \]

\[D = \frac{\text{Fill wet density (} \gamma_{wf} \text{)}}{\text{Maximum density point of converted wet density curve (} \gamma_{m} \text{)}} \]

\[\omega_0 - \omega_f = \text{Added water at Point A + } x_m + \text{red line correction} \]

b. For record purposes after fill water content has been determined \(\omega_f = \text{fill water content expressed as a decimal (e.g., 10% = .10)} \)

\[\text{Fill dry density} = \frac{\text{Fill wet density (} \gamma_{wf} \text{)}}{1 + \omega_f} \]

\[\frac{\text{Maximum density point of converted wet density curve (} \gamma_{m} \text{)}}{1 + \omega_f} \]

\[\frac{\text{Cylinder wet density of material at fill water content (} \gamma_{wc} \text{)}}{1 + \omega_f} \]

\[\text{Cylinder dry density} = \frac{\text{Optimum water content} = \omega_f + (1+\omega_f)(\text{added water at maximum density point})}{1 + \omega_f} \]

5. Class exercise

a. Test apparatus

b. Rapid compaction test

c. Computations and discussion

Study references: Earth Manual, Designation E-25, pages 591-613

Engineering Monograph No. 26

Practice Problems Handout
CONSTRUCTION CONTROL - EARTH DAMS

A. Introduction
 1. Importance of construction control
 2. Control related to investigation and design
 3. Comparison of soils with other construction materials
 4. History of earthwork control
 5. The modern concept

B. Foundations
 1. Types
 2. Control of treatment
 3. Dewatering

C. Impervious Zones (Rolled Earthfill)
 1. Criteria of satisfactory impervious zones
 2. Control features of each criterion
 3. Moisture and density control
 4. Types and frequency of tests

D. Compacted Pervious Zones
 1. Criteria of satisfactory pervious zones
 2. Control features of each criterion
 3. Moisture and density control
 4. Types and frequency of tests
E. Riprap and Rockfill

1. Criteria of satisfactory riprap and rockfill

2. Control features of each criterion

F. Summary

CONSTRUCTION CONTROL - EARTH DAMS
QUALITY CONTROL

A. Reporting Tests
 1. Forms
 2. Reports

B. Analysis of Field Control Tests
 1. Design recommendations
 2. Summary of quality control.
EARTH DAM INSTRUMENTATION

A. Types of Instruments and their Purpose

1. Pressure measurement apparatus - pore water pressure
 a. Dams
 b. Structures

2. Internal movement apparatus
 a. Vertical movement devices
 b. Horizontal movement devices
 c. Foundation settlement, baseplate devices

3. Surface measurement points
 a. Embankments
 b. Structures
 c. Land movements

4. Seismic apparatus
 a. Accelerographs
 b. Seismic - seismographs

B. Description of Apparatus

1. Twin-tube piezometers
2. Porous-tube piezometers
3. Internal movement apparatus
 a. Vertical movement (crossarm) devices
 b. Horizontal movement devices
4. Foundation settlement (baseplate) devices
5. Measurement points
 a. Embankments
 b. Structures
6. Seismic
 a. Accelerographs and seismographs
C. Materials for Instrument Installations
 1. Purchase by Government for Government installation
 2. Purchase by Government for contractor's installation
 3. Purchase and installation by contractor
D. Installation of equipment by
 1. Government forces
 2. Contract specifications
 a. Prime contract
 b. Special contract or extra work order
 c. Supplemental contract
E. Reports Required on Installations
 1. During construction - progress report - monthly - L-15
 2. At completion of construction - L-16
 3. At scheduled intervals - periodic - L-23
F. Quality of Data Obtained
 1. Care during installation
 2. Maintenance of recording apparatus
 3. Possible failure of equipment
G. Forms Used for Reporting Data on Instrument Installations

1. 7-1346, 7-1347, 7-1348, 7-1355, 7-1355A, 7-1359, 7-1600, and special forms

H. Suggestions for Improving Apparatus

1. Field reports on malfunction of equipment
2. Field suggestions for design changes
3. Awards

Study references: Earth Manual, pages 258-264, Designations E-27 to E-35
EARTH DAM INSTRUMENTS - APPLICATION OF DATA

I. Why Instrumentation?
 A. Verify design assumptions
 B. Monitor structure for potentially dangerous conditions

II. Instruments and Information
 A. Movements
 1. Internal vertical movement (crossarm) device
 2. Internal horizontal movement device
 3. Surface measurement points
 4. Deflectometer
 5. Foundation settlement baseplate
 B. Pressures
 1. Twin-tube piezometers
 2. Porous-tube piezometer
 3. Standpipe
 C. Seepage
 1. Flow-measurement devices
 2. Reservoir level gage
 3. Pressure measurement devices in B
 D. Earthquake effects

III. Examples of Applications

IV. Data Collection (more than filling out forms)

V. Summary
SPECIAL LABORATORY TESTS

A. Introduction

The special tests of the laboratory are described to acquaint the field personnel with the facilities of the laboratory and how the materials sent from the field are studied.

B. Consolidation Test

1. Purpose and use in undisturbed soils and in disturbed soils
2. General discussion of the principle
 a. Load - consolidation
 b. Time - consolidation
3. Sample preparation and equipment operation
4. Results obtained
5. Permeability testing
6. Use for expansion determination

C. Shear Tests

1. Purpose and use in undisturbed soils and in disturbed soils
2. General discussion of the principle
3. Equipment available and types of tests
 a. Equipment: small, medium, and large
 b. Special features of the equipment
 c. Unconfined compression test
 d. Adaptations of standard shear tests with comments on the purpose
D. Earthquake Test

1. Purpose of test and applications

2. Equipment and operation

3. Evaluation of results

Study references: Earth Manual, Designation E-15
CONSTRUCTION CONTROL - CANALS
AND MISCELLANEOUS STRUCTURES

Note: All references are to pages in the Earth Manual.

Purpose of this lecture is to discuss basic techniques and fundamentals for examining and controlling quality in foundations and miscellaneous earth structures.

B. Basic soil types and problems concerning foundations (Reference: "Engineering Use Chart," Figure 8, page 23).

1. Clays - (1) firm consolidated, (2) compressible, (3) expansive

2. Silts and low plasticity clays - (1) low density and (2) dense

3. Sands and coarse-grained soils - (1) denseness and (2) permeability

4. Rock and formation material

C. Inspection of Foundations

1. Methods of inspection and engineering guidelines

2. Protection against disturbance

3. Awareness of foundation discontinuities

4. Effect of saturation - (1) collapse, (2) expansion, (3) strength loss

5. Seepage and piping

6. Piles and caisson foundations

D. Considerations for Canal Subsoils

1. Seepage

2. Erosion

3. Ground water
E. Consideration for Pipeline Subgrades

F. Control Criteria of Special Interest

1. Expansive clay - Reference: pages 226-227
 Discussion of Table 3, page 227

2. Collapsing soil - Reference: pages 222-226
 a. Discussion of Figure 82, page 225
 b. New chart of density versus liquid limit

3. Other uses of the density versus liquid limit chart
 a. Trends of recompacted soil
 b. Soft saturated and sensitive soils
 c. Experience with expansive soil - New ideas of controlling by moisture content

4. Criterion for selecting well-graded backfill
 (References: Figure 103, page 293).
 a. Variations of fines
 b. Variations described in ASTM: D 1241 and our use for surfacings and subbase.

5. Recommended relative density limiting requirements for granular material (Reference: page 313).

7. Comment of frost action limitations (Reference: page 69).

8. Guideline for use of relative density control versus Proctor compaction. Also these guidelines are related to vibratory compaction as opposed to roller compaction (Reference: page 321 and Table 5, pages 287-291).

9. Latest criteria for canal cross section (Reference: Figure 100, pages 280-281).

10. New chart for recommendations of desirable earth canal lining material.
TYPES OF INFORMATION
USEFUL FOR VARIOUS SOILS

Sands & Gravels
- Penetration Resistance
- Gradation
- Density
- Relative Density

Silts & Low Plasticity Clays
- Penetration Resistance Moisture Change
- Density + Moisture
- Liquid Limit
- Plasticity Index
- Gradation
- Undisturbed Samples for Laboratory Testing

Clays & High Plasticity Clays
- Penetration Resistance to Show In-Place Firmness
- Density + Moisture
- Liquid Limit
- Plasticity Index
- Shrinkage Limit
- Gradation with Colloid Content for Expansion Question
- Vane Test in Soft Saturated Soil with Penetration < 10 Blows
- Undisturbed Samples for Laboratory Testing
CONSTRUCTION CONTROL - FIELD LABORATORIES AND REPORTS

A. Introduction - Inspection (Ref. Art 49; page 185)
Discuss intent of this lecture.

B. Field review of field laboratories and why they are made.
Annual report of field laboratory survey.
 1. Basic information furnished
 2. Special instructions regarding forms
 3. What is done with the report

C. Construction Control Reports (Ref. Art 51, page 190)
 1. Purpose
 2. Scope of reports (Ref. Reclamation Instruction, Part 175,
 "Records of Construction and Structural Behavior, Chapter 1,
 Periodic Reports," Paragraph 175.1, 12)
 a. Narrative - What is wanted.
 b. Summary of control data
 (1) Form 7-1581A - Consolidated Earthwork (relative
density)
 (2) Form 7-1581B - Consolidated Earthwork (Proctor
 compaction)
 (3) Form 7-1737 - Compacted soil-cement

D. Type of Compaction Specifications
 1. Method - Review Table 5, page 287
 2. Performance
E. What We Do With Control Reports

1. Initial review of L-29 reports
2. Monthly summary
3. Followup inquiries
4. Guidelines of testing frequency requirements and reworked tests (refer to page 300)
CONSTRUCTION CONTROL - FILTERS

A. Purpose of filters is to relieve seepage pressures in soil foundations and structures and carry off detrimental water.

B. Uses of filters are: (a) pervious blankets or drains under canal linings, spillways, or dam aprons; (b) intercepting or subsurface drains; (c) toe drains in earth dams or levees; and (d) weighted filters on critical areas subject to seepage pressures.

C. Component parts are base materials (foundation soils), one or more pervious filter layers with or without open-jointed or perforated pipe.

D. General requirements are that voids in filter be sufficiently small to prevent penetration by base material but sufficiently large and interconnected to readily transmit seepage water. Pipe joints or perforations small enough to prevent infiltration of filter material.

E. Filter criteria are based on results of laboratory filtration tests on typical base and filter materials. USBR filter tests (including preliminary tests on crushed rock) described in report in EM-425 (1955).

F. Selection of filter material is based primarily on grading of filter material in relation to grading of base material. For this purpose certain percent sizes are established for use in controlling the grading of the filter material within limits on these sizes.

G. As an example of a given percent size the 50 percent size is shown on the standard gradation test sheet as the particle size (abscissa), corresponding to the point where the grading curve intersects the 50 percent finer line of the ordinate. It is the size in a soil sample such that 50 percent by weight of the sample contains larger particles and 50 percent contains smaller particles.
H. USBR Filter Test Criteria

1. General

a. The maximum size of material should be 3 inches.

b. Not more than 5 percent should pass the No. 200 sieve.

c. For base materials containing more than 10 percent plus No. 4 and more than 10 percent of minus No. 200 material, the filter grading should be selected on the basis of the minus No. 4 fraction of the base material.

d. The maximum size of pipe openings or perforations should be one-half the 85-percent size of the adjacent filter material.

2. Natural subrounded materials

For uniform grain size filter material

\[
\frac{50\% \text{ size of filter material}}{50\% \text{ size of base material}} = 5 \text{ to } 10
\]

For graded filter materials

\[
\frac{50\% \text{ size of filter material}}{50\% \text{ size of base material}} = 12 \text{ to } 58
\]

and

\[
\frac{15\% \text{ size of filter material}}{15\% \text{ size of base material}} = 12 \text{ to } 40
\]

3. Crushed rock (tentative criteria)

\[
\frac{50\% \text{ size of filter material}}{50\% \text{ size of base material}} = 9 \text{ to } 30
\]

and

\[
\frac{15\% \text{ size of filter material}}{15\% \text{ size of base material}} = 6 \text{ to } 18
\]
I. Construction Recommendations

1. Base material should be lightly compacted and all holes filled.

2. Segregation of filter material should be minimized by moistening and careful placement procedures.

3. Filter materials should be compacted.

4. Infiltration of filter material into drainpipe during filter placement should be prevented.

PERCENT PASSING

GRADATION TEST

SIEVE ANALYSIS

CLEAR SQUARE OPENINGS

U.S. STANDARD SERIES

DIAmeter of PARTICLE IN MILLIMETERS

FINES

SAND

ATTERBERG LIMITS

SPECIFIC GRAVITY

NOTES

CLASSIFICATION SYMBOL

Gravel

Liquid Limit

Minus No. 4

Liquid Limit

COBBLES

Sample No.

Hole No.

Depth (ft (m))
SOIL-CEMENT SLOPE PROTECTION

A. Used as slope protection on earth dams as a substitute for rock riprap

1. Cost of slope protection can be less with soil-cement since rock is scarce and costly in some areas.

2. Use of soil-cement should be investigated if rock is more than 20 miles away.

3. Local soils can normally be utilized with the addition of 8 to 14 percent cement by dry weight of soil.

B. Historical Background. - Soil-cement had been used extensively in highway work for years.

1. Bonny Test Section using two soils was constructed in 1951.
 a. Mixed-in-place construction procedures were used.
 b. Soil-cement was placed in horizontal layers in a stair-step fashion up the slope.

2. Eight major Bureau of Reclamation structures have been faced with soil-cement since 1963 using a total of 670,000 cubic yards of soil-cement.

3. In addition, the Portland Cement Association lists 62 other structures faced with soil-cement. Volumes of these facings range from 1,000 to 250,000 cubic yards.

4. Bid prices range from $5 to $12 cubic yard with most of the bids in the $6 to $9 per cubic yard range.

C. Material and Cement Content Selection

1. Gradation. - Preferred gradation is fairly well graded.
 a. Well-graded materials require less cement.
 b. Durability of individual grains checked by less violent dispersion action.
 c. Deposits which contain lenses of clay should be avoided.
2. Compaction. - Material should compact to dense mass.
 a. Significant increase of density at increase of cement content may indicate use of cement to fill voids.
 b. Compaction test is used as a basis for placing test specimens.

 a. Specimens are placed similar to compaction tests, using 0.033-cubic-foot mold.
 b. Specimens are used for 7 days at 100 percent humidity and 70° F (fog room curing).
 c. Wet-dry tests are wetted for 5 hours and dried at 160° F for 43 hours.
 d. Freeze-thaw tests are frozen 24 hours, thawed in fog room for 24 hours.
 e. Specimens are brushed with wire brush after each cycle and a total of 12 cycles are performed. Total loss is expressed as a percentage.
 f. Design criteria. - 6 percent max loss for wet-dry tests and 8 percent for freeze-thaw tests.

4. Compressive Strength Tests. - Used mainly as an indirect measure of equality.
 a. Specimens are placed in 2.83- by 5.67-inch molds, 3-, 7-, 28-, and 90-day tests.
 b. Specimens are cured in fog room with 4- to 24-hour soaking period in water before testing.
 c. Ends are capped with sulfur and tested at a rate of 20 psi/sec.
 d. Design criteria. - 600 psi minimum for 7-day specimens, 875 psi minimum for 28-day specimens.
5. Compaction, Water Content, and Time Delay Effects
 a. Increase of density usually increases quality.
 b. Highest quality is usually obtained from 2 percent dry to optimum water content.
 c. Due to cement-water reaction, quality decreases with time delays; delays of 1 to 2 hours are usually not too critical.

D. Construction Procedures

1. Material must be excavated and stockpiled in such a fashion that a consistent material is fed to the mixer.

2. Soil and cement must be proportioned correctly prior to mixing.
 a. Reciprocating plate feeder has been the most successful device for soil feed.
 b. Surge hopper with vane feeder is used to proportion the cement.
 c. Both devices must be calibrated at start of construction and checked occasionally.
 d. Soil and cement are mixed with pugmill mixer and sufficient water is added during the mixing to bring the soil-cement to the desired water content.

3. Mixed soil-cement is transported to the placement area with trucks.
 a. Soil-cement is spread to a uniform loose lift with dozer-mounted spreader.
 b. Thirty-minute time limit from mixer to spreader on fill.
 c. Approach ramps must be adequate to protect previous layers.
 d. Slope of up to 8:1 on placement is permitted to increase working width.
4. Material is compacted with a combination of sheepsfoot and pneumatic-tired rolling.
 a. Lower portion of lift is compacted with sheepsfoot roller. Roller weight is adjusted until it begins to walk out.
 b. Upper portion of lift is compacted with pneumatic-tired roller. Roller weight is adjusted until it does not cause significant lateral movement of the soil-cement.
 c. Time limits between each operation are 30 minutes.
5. Curing is usually accomplished by sprinkling.
 a. Use of excessive water may be detrimental.
 b. Water should be applied in a fine fog-type spray.
 c. Smooth compaction plane is removed by brooming and brooming is usually repeated to clean lift for next layer.

E. Construction Control Procedures

1. Gradation, specific gravity, and Atterberg limits tests are run on soil.
2. Soil and cement feed are calibrated by timing feeds separately.
 a. Soil feed is checked by timing truckload during production and using cement feed calibration to determine soil weight.
 b. Cement feed is usually quite consistent in a well designed plant.
 c. Moisture contents are determined by "quick" methods during calibration.
3. Sample of soil-cement is obtained prior to compaction.
 a. Laboratory compaction is performed at about the same time as compaction on the placement to account for time dependency of soil-cement.
b. Fill density test is performed as soon as possible after compaction near the spot from which soil was taken.

c. Unconfined compression specimens placed to density found in fill density test.

d. One test for every 500 cubic yards placed.

4. Chemical cement content determinations can be made if soil source is low in calcium.

5. Construction control data is reported on Form No. 7-1737.

F. Record Coring

1. One core hole for every 5,000 cubic yards.

 a. Unconfined compression and durability tests performed on representative pieces.

 b. Comparisons with data from design tests indicate whether material meets design requirements.

 c. Core holes usually filled with grouted anchor bar to provide quick reference for future inspections.

G. Portland Cement Association film "Soil-Cement Slope Protection for Earth Dams."
PLASTIC SOIL-CEMENT PIPE BEDDING

I. Introduction

A. First used by Bureau of Reclamation on Canadian River Project.

B. Conclusions of research done by American Pipe and Construction Company.

1. The soil-cement backfill should be used only if the soil can give adequate support for the pipe and trench backfill.

2. The cradle trench and soil-cement backfill eliminate large quantities of excavation and recompaction.

3. The soil-cement backfill provides uniform transfer of load to the soil foundation.

4. The most suitable soil types for soil-cement are sands and silty sand.

5. The total water requirement is a function of the percent fines and grain-size distribution within the material being used.

6. Cement requirements should be based on strength and durability requirements for the bedding.

7. Seven-day compressive strengths of 50-psi minimum can normally be obtained with 2 to 3 sacks of cement for each cubic yard of bedding material.

8. Cement and water should be premixed before adding to the soil.

9. A noncohesive soil can be mixed satisfactorily in a drum-type mixer.

II. Comparison of Bedding Methods and Materials Used

A. Conventional Bedding

1. Trench excavated to bottom of pipe
2. Material placed around pipe to specified depth
 a. Consolidated to 70 percent relative density for free-draining material
 b. Compacted to 95 percent of Proctor maximum dry density for fine-grained material
3. This method often requires considerable labor.

B. Plastic Soil-cement Pipe Bedding

1. Trench excavated to depth corresponding to top of bedding - springline elevation. (Depth of bedding depends on design of pipe.)
2. Remainder of trench is excavated as semicircular section 4 to 6 inches greater in diameter than the outside diameter of the pipe.
3. Pipe sections are supported about 2 inches above the trench bottom on sand pads.
4. Annular space filled with plastic soil-cement.
5. This method eliminates the excavation and recompaction of the block of material between the springline and bottom of the pipe. It also is a fairly mechanized procedure.
6. Material and cement content selection
 a. Unconfined strength must be high enough to transfer pipe load to foundation (50-psi minimum usually desired).
 b. After placement and initial set, volume change should be fairly small.
 c. After set, material should be durable through moisture changes.
 d. Sandy materials with less than 10 percent fines are usually suitable with about 10 percent cement by weight.
 e. Strengths over 500 psi are not desirable as bedding might alter shape of pipe.
III. Field Test Section

A. Installation. - Four sections of pipe installed using four different soils for bedding material. Each soil had 2-1/2 sacks of cement per cubic yard.

1. Mortar sand - fairly well-graded material with 8-1/2 percent cement by weight.

2. Blow sands - uniform fine sands with 10 percent cement by weight.

3. Blow sands - uniform fine sands with 10 percent cement by weight.

4. Lean clay - medium plasticity fine-grained material with 11-1/2 percent cement by weight.

B. Curing. - Pipe sections left in place 7 days.

C. Measurements and Observations of Exposed Bedding Materials.

1. Changes of diameter after exposure were small.

2. Exposed bedding showed that good contact had been obtained.

3. All materials seemed to perform well but lab testing showed clay material was not durable.

IV. Construction Control

A. Gradation. - Percentage fines and organic material controlling factors.

1. Maximum of 10 percent fines usually specified.

B. Compressive Strength. - Adequate compressive strength to insure firm support required.

1. Companion compressive strength specimens should be formed for each 400 feet of pipe or at least twice per shift.

 a. Bedding material should be placed without consolidation.

 b. Tested after 7 days curing
2. Some specimens should be subjected to wet-dry cycles to determine whether they are durable.

C. Batching. - Batching by weight preferred to provide more consistent results.

1. Water-cement ratio maximum usually specified as 3.5.
 a. Water-cement ratio must be low enough to form a fluid which will maintain sand in suspension.

2. Fluidity of mix checked by timing flow from a special funnel.
 a. Funnel has 6 inches top diameter, 4-1/2 inches high with 11/16-inch opening.
 b. Flow time to empty funnel should be 5 to 8 seconds to insure that material can be pumped and will fill space completely.

V. Summary

A. Cost reduction possible due to amount of excavation and compaction which is eliminated.

B. Should be used only if the in-place soils can give adequate support to the pipe.
FIELD INVESTIGATIONS - INTRODUCTION TO FOUNDATION REQUIREMENTS

Note: References are to pages in the Earth Manual.

A. Introduction

Discussion of soil mechanics in investigating foundations and the effect of foundation characteristics on the design of the structure.

B. Basic Soil Mechanics Criteria for Analyses

1. Settlement must be within allowable limits.
2. Foundations must be safe against shear failure.
3. Specialized hydraulic structures require limitations in permeability.

C. Foundation Problems

1. Exploration requirements - Reference: Figure 40, page 114; Figure 42, page 117.
2. Bearing capacity - Reference: page 212.

D. Examples of Foundations With Respect to Soil Types. (Reference: pages 221-228.)

1. Clays
 a. Firm consolidated clays
 b. Compressive clays
 c. Expansive clays
2. Silts and intermediate soils
 a. Low-density deposits
 b. Normal, intermediate soil characteristics
3. Sands and coarse-grained soils
 a. Importance of density
 b. Desirable effects of gravel
4. Solid rock foundation

E. Discussion of Criteria for Evaluating Penetration Resistance
FIELD INVESTIGATIONS - RELATION TO PROJECT PLANNING

A. Introduction
 1. Necessity for project investigations
 2. Stages of investigation: Regional or basin planning, appraisal, feasibility, preconstruction

B. Project Plan Formulation - Multiobjective Planning
 1. Concepts of plans
 2. Alternatives
 3. Environmental considerations
 4. Incremental analyses
 5. Evaluating Plans
 6. Cost Sharing and Repayment

C. Earth Control Investigations
 1. Dams
 a. Site-type relationships
 b. Foundations, materials, and seepage
 c. Spillway and other structural features
 2. Canals, pipelines, and drains
 a. Excavation materials
 b. Stability, hydraulics, seepage, and lining
 3. Tunnels
 a. Excavation materials and construction methods
 b. Pressures, support, lining
 4. Structures
 a. Foundations
D. Surveying and Mapping

1. Control topography, strip topography, fly lines

2. Uses: Land classification, layout, location of drill holes, etc.

3. Use of modern USGS quad sheets

4. Force account versus contracts

E. Explorations

1. Exploration required for each level of investigations

2. Force account versus contracts

3. Methods of exploration
 a. Surface inspection
 b. Photo and remote sensor interpretation
 c. Pits and trenches
 d. Auger boring
 e. Drilling
 f. Geophysical methods - electric logging, resistivity, and seismic

Study references: Earth Manual, Chapter I, Properties of Soils; Chapter II, Investigations
CLASSIFICATION AND LOGGING
GEOLOGY AND ORIGIN OF SOILS

A. Introductory Remarks
 1. The broad range of geologic conditions covered by the term "earth materials" or "soil."
 2. The geological services of the Bureau.

B. Weathering and Erosional Processes

C. Examples of Earth Materials and Geologic Environments Involved in Bureau Projects: Slide talk based on several projects - completed, under construction, or proposed - illustrating investigations and operations of borrows with various geologic backgrounds.

D. Sources of geologic information useful for earth materials exploration and testing.

E. Summary
CLASSIFICATION AND LOGGING
GEOLOGIC LOGS OF DRILL HOLES

A. Use of Geologic Data in Engineering Operations

B. Reporting of Data
 1. Purpose
 2. Logs, sections, narrative
 3. Standard forms
 4. Ground-water levels
 5. Soil classification symbols
 6. Depth of exploration holes
 7. Method of accomplishing exploration holes
 8. Physical description of material
 9. Name of material
 10. Miscellaneous
FIELD INVESTIGATIONS - FIELD TESTS

A. Standard Field Penetration Test, Designation E-21, Earth Manual, page 574
 1. Purpose of test
 2. Test procedure and requirements
 3. Results
 4. Use of data

B. In-place Vane Shear Test, Designation E-20, Earth Manual, page 562
 1. 1 to 4 above

C. Methods for Determining In-place Density and Moisture
 1. Hand methods
 b. Undisturbed cylinder, Designation E-2, Earth Manual, page 346
 c. Field density method, Designation E-24, Earth Manual, page 582
 a. Thin-wall drive samplers
 b. Double-tube samplers
 c. Core samplers
 3. Nuclear method

CLASSIFICATION AND LOGGING SOIL
CLASSIFICATION - INTRODUCTION

A. Introduction
 1. Unified system, differences from other standards
 2. Importance to engineers

B. Soil Components
 1. Size
 a. Gravel (G)
 b. Sand (S)
 c. Silt and clay (M and C)
 d. Organic (O)
 2. Gradation (W or P)
 3. Particle shape - Angularity
 4. Moisture

C. Classification of Soils
 1. Field
 2. Laboratory

D. Engineering Characteristics of Soil Components

E. Soil Descriptions

F. Engineering Comparisons of Soil Groups

G. Summary

CLASSIFICATION AND LOGGING CLASSIFICATION - DISCUSSION AND PRACTICE

A. Clean, Coarse-grained Soils (GW, GP, SW, SP)
 Study references: Earth Manual, pages 379-388, 396-397

B. Fine-grained Soils (ML, CL, OL, MH, CH, OH, PT)
 Study references: Earth Manual, pages 388-394, 398-400

C. Coarse-grained Soils with Fines (GM, GC, SM, SC)

D. Borderline Soils
 1. Well or poorly graded (GW-GP)
 2. Gravel-sand mixture (GW-SW)
 3. Clean or dirty (GP-GM)
 4. Coarse or fine grained (GM-ML)
 5. Silt or clay (ML-CL)

 Study references: Earth Manual, pages 16-18, 387, 393, 397, 400

E. Classification of Undisturbed Samples
 Study references: Earth Manual, pages 385, 394, 395
 Unified Soil Classification System (Supplement to the Earth Manual)
FIELD INVESTIGATIONS - EXPLORATION PROCEDURES

A. Introduction

B. Exploration Methods

1. Accessible methods of exploration
 a. Trenching
 b. Cuts
 c. Test pits
 d. Accessible boring
 e. Accessible caissons
 f. Tunnels and drifts
 g. Blasting

2. Nonaccessible methods of exploration
 a. Auger boring (hand and power)
 b. Hollow-stem auger
 c. Enclosed flight auger
 d. Drive-tube boring
 e. Percussion (churn) drilling
 f. Jetting
 g. Wash boring
 h. Rotary drilling
 i. Continuous sampling

C. Other Indirect Methods (only mentioned)

Study reference: Earth Manual, Chapter II, pages 133-154
FIELD INVESTIGATIONS - SAMPLING MATERIALS

A. Introduction - Purpose

B. Disturbed Samples - Types, shipping containers, moisture-content determination and records

C. Sampling Procedure
 1. Sampling from accessible holes
 2. Sampling from nonaccessible holes
 a. Holes smaller than 8 inches
 b. Holes larger than 8 inches
 3. Sampling stockpiles

D. Logging and Data

E. Sample Size Requirements

F. Shipping Instructions

Study reference: Earth Manual, Designation E-1
CLASSIFICATION AND LOGGING LOGS OF
TEST PITS AND AUGER HOLES

A. Introduction
 1. Definition

B. Purpose of Log
 1. Structures
 2. Borrow areas

C. The Log Form
 1. Percentage by volume of oversize
 2. Natural density and moisture
 3. Importance of soil classification
 4. Description of soils in logs

D. Summary

FIELD INVESTIGATIONS - CANALS AND MISCELLANEOUS STRUCTURES - FOUNDATIONS AND MATERIALS

A. Introduction - Importance of Investigations

B. Planning Investigations

1. Review tentative plans for structures.

3. Review local conditions, features, and performance of similar construction.

4. Review previous investigation reports.

5. Degree of exploration varies with stage of investigation.
 a. Investigate most serious problems first.
 b. Use methods appropriate to furnishing the desired information.

6. Maps - Topography, geology and soil conditions, hydrology.

C. Stages of Investigation

1. Reconnaissance - Descriptive
 a. Properties based on visual classification
 b. General appraisal and evaluation of subsurface

2. Feasibility - Qualitative
 a. Limited exploration - properties determined by index tests.

3. Specifications - Quantitative and specific
 a. Engineering properties determined for various soil types.
 b. Sufficient exploration to establish conditions at all critical points.
4. Characteristics of subsurface developed in progressively greater detail as work proceeds.

D. Soil Components, Properties, and Characteristics

2. Gravel and sand - easy to compact, little affected by moisture, not subject to frost action. Well graded less pervious and more stable than poorly graded.

3. Silt - unstable with increase of moisture, tendency to become quick. Relatively impervious, difficult to compact, highly susceptible to frost heave, easily erodible, subject to piping.

4. Clay - cohesive strength increases with decrease in moisture. Low permeability, difficult to compact when wet, subject to expansion and shrinkage.

5. Organic matter - undesirable.

E. Engineering Use Chart - Relative desirability of typical soils for engineering purposes.

2. Structure backfill - desirability dependent upon backfill requirements.

 b. Pervious backfill -

 GW, GP, SW, SP <5 percent fines
 GW-GH, GW-GC, GP-GH, GP-GC <8 percent fines
 SW-SC and SM, require special consideration, suitability dependent on gradation and plasticity.
F. Surface Exploration - Familiarity with geologic landforms, soils associated with them, and potential problems.

1. Glacial areas
 a. Heterogeneous - any type of soil, in almost any form, and in any proportion.
 b. Hydraulic structures - suitable design precautions required.
 c. Light structures - no difficulty.
 d. Heavy structures - differential settlement.

2. Loessial areas
 a. Settlement upon wetting
 b. Piping
 c. Recompaction - reliable platform for footings
 d. Vertical slopes

3. Sand-dune areas
 a. Transmission towers - seeding or road oil.
 b. Piles to depth unaffected by any shifting of dunes.
 c. Runoff very low.
 d. Canals lined.

G. Subsurface Exploration - Identify soils in foundation, their extent (dimensions), and properties.

1. Point structures (small buildings, towers) - a single hole will often be sufficient.

2. Powerplants and pumping stations - special attention
 a. Vibrations and sensitivity to settlement.
 b. Detailed and thorough. Holes at plant corners, turbine locations, heavy bearing walls. Supplemented with additional borings.
3. Switchyards - settlement and uplift

4. Line structures (canals, laterals, drains, etc.)
 a. Spacing of holes dependent on subsurface.
 b. Canals - feasibility, 1-mile intervals
 - specifications, 2,000-foot intervals
 c. Minimum - 10 feet below invert grade, greater depths
 for questionable soils.

5. Borrow areas for canals - required excavation, adjacent
 borrow, distant borrow.

H. Exploration for Materials with Specific Properties

1. Usually not feasible to obtain material with ideal
 characteristics.

2. Volume substituted for quality; special processing may be
 more economical than longer hauls.

3. Impervious materials - blending of coarse material with
 impervious soil; erosion resistant and impervious.

I. Structure performance is dependent on investigation and infor-
 mation which is performed and provided.

Study assignment: Earth Manual, Chapter II
FIELD PERMEABILITY TEST (WELL PERMEAMETER METHOD)

A. Purpose is to obtain the permeability characteristics of the soil in place, particularly for the estimation of canal seepage.

B. The Well Permeameter Test consists of the measurement of the rate of water outflow (under constant head) from an uncased well augered in the soil to be tested.

C. The Detailed Test Procedure is presented in Designation E-19 (pages 546-562) of the Earth Manual.

D. The major precautions to be taken in conduction of the well permeameter test are:

1. Determine by exploration to a level about three times the well water depth the classification of the canal soils and location of the ground-water surface.

2. Avoid unnecessary disturbance (particularly compaction) of soil on the well sides and bottom.

3. Use clean sand for backfilling wells.

4. Use clean water for permeability test.

5. Continue test sufficiently long to reach an approximate steady state flow condition.

E. Canal Seepage Estimates

1. To compute seepage from an unlined canal based on well permeameter tests, use the following formula:

\[S = \frac{k(B + 2d)}{365CW_p} \]

where

\(S \) = seepage in cubic feet per square foot per day

\(k \) = coefficient of permeability in feet per year from the well permeameter test
B = canal water surface width in feet

d = canal water depth in feet

W_p = canal wetted perimeter in feet

C = seepage factor determined from well-permeameter and ponding tests. C = 1 for wind-deposited soils (dune sand and loess) and C = 3.5 for water-deposited soils.

F. The Shallow-well-type Field Permeability Test is for use in canal earth linings for construction control and evaluation purposes.

Study references: Earth Manual, Designations E-19 and E-36
FIELD INVESTIGATIONS - SAMPLING FOUNDATIONS

A. Introduction

B. Hand Methods
 1. Apparatus
 2. Methods

C. Mechanical Drilling Methods
 1. Apparatus
 2. Procedure - General
 3. Drilling fluids
 4. Denison-type sampler
 5. Pitcher sampler
 6. Thin-wall drive sampler
 7. Piston sampler
 8. Double-tube auger sampler
 9. Coro sampler
 10. Full-flo core barrel
 11. Triple-tube core barrel
 12. Field measurements and records

D. Shipment Precautions and Instructions

FIELD INVESTIGATIONS - EARTH DAM FOUNDATIONS

A. Introduction

B. Purpose of Investigations
 1. To determine foundation stability
 2. To determine foundation permeability
 3. To facilitate estimate of foundation treatment
 4. To avoid pitfalls during construction and operation

C. Stages of Investigations
 1. Office investigations
 a. Review of previous investigations and report
 b. Aerial photographs
 c. Drill logs
 2. Field investigations
 a. Reconnaissance (descriptive)
 b. Feasibility (qualitative)
 c. Specifications (quantitative, specific)

D. Problem Areas
 1. Overburden
 a. Stability
 (1) Landslides
 (2) Compressible soils
 (3) Weak soils (low shear strength or low cohesion)
b. Permeability
 (1) Grain size and gradation
 (2) Physical state and type

c. Miscellaneous

2. Rock
 a. Stability
 (1) Thickness and dip of beds
 (2) Unstable seams and inter-beds
 (3) Faults
 (4) Weathering
 b. Permeability
 (1) Cavities
 (2) Joints and fractures
 (3) Soluble rocks
 (4) Weathering
 c. Miscellaneous

E. Design Features that Overcome Foundation Defects

1. Areas of instability
 a. Excavation
 b. Consolidation
 c. Embankment design
 d. Filters
 e. Drains and pressure-relief wells
2. Areas of excessive permeability
 a. Excavation
 b. Grout curtain
 c. Cutoff walls
 d. Blankets
 e. Drains and pressure-relief wells

F. Case History

Study reference: Earth Manual, Chapter II
FIELD INVESTIGATIONS - EARTH DAM MATERIALS

A. Why Earth Dam Materials Investigation?

1. Inventory of materials
 a. Locate deposits
 b. Identify deposits
 c. Determine quantity
 d. Significant features of occurrence
 e. Properties of soils

B. Investigation by Stages

1. Reconnaissance stage
 a. Descriptive data
 b. Investigate large area
 c. Visual classification
 d. Advantages and disadvantages

2. Feasibility stage
 a. Confirm and revise previous investigation
 b. Inventory
 c. Some exploration
 d. Describe material sources
 e. Estimate quantities
 f. Physical tests
 g. Recommendations for use
3. Specifications stage
 a. Review all previous work
 b. Extensive exploration
 c. Assure adequate material
 d. Specific and quantitative data
 e. Sample selection
 f. Detailed report

4. Construction stage
 a. Distribution of material in borrow area
 b. Moisture conditions
 c. Depth of cuts
 d. Material distribution in embankment

C. Design Considerations
 1. Permeability
 2. Stability
 3. Shrinkage and compression
 4. Piping and washing out of fines
 5. Economical utilization

D. Construction Considerations
 1. Accessibility
 2. Natural moisture
 3. Workability
E. Rock Material

1. Use of rock material

2. Riprap requirements
 a. Sound, dense, durable, angular, equidimensional, reasonably well graded

3. Investigation
 a. Similar use
 b. Joint spacing
 c. Economical production
 d. Blast test

F. Planning

1. Office
 a. Topographic maps
 b. Geologic maps
 c. Agriculture soil maps
 d. Aerial photos

2. Field
 a. Aid of geologist
 b. Surface indications
 c. Subsurface exploration
 d. Inspection test pits
 e. In-place moisture and density

G. Reports

1. Reconnaissance. - Letter or preliminary geologic report.

2. Feasibility. - Feasibility materials report.

INVENTORY carefully all construction materials to be considered as borrow areas.

plus

REPORT clearly and fully the significant features of occurrence and soil properties.

equals

ECONOMICAL and ADEQUATE design.

Study reference: Earth Manual, Chapter II
ROCK MECHANICS - IN SITU TESTING

A. Introduction

1. Reasons for presenting subject to Earth Control and Investigation Course participants.

2. Reasons for conducting tests (basic type information we wish to obtain).

3. Projects where in situ tests have been conducted.

B. Types of Tests

1. Uniaxial deformation - explanation
 a. Slides
 b. Display flat jack

2. Radial jacking - explanation
 a. Slides
 b. Display flat jack

3. Direct shear - explanation
 a. Slides

4. Plate gouge - explanation
 a. Slides

C. Summary

D. Conclusions

E. Questions and allow students to examine displays.
A. Shotcrete Instrumentation at Hunter Tunnel
 1. Hunter Tunnel - Purpose and Description
 2. Shotcrete characteristics
 3. Instrumentation
 a. description
 b. installation
 c. data recording
 4. Results
 5. Conclusions
 6. Displays

B. Overcore Stress Relief Method
 1. Instrumentation
 a. Description
 b. Test procedures
 2. Examples of field test programs
 a. Tests in rock
 b. Tests in concrete dams
 3. Conclusions
 4. Displays
ROCK MECHANICS - FIELD INSTRUMENTATION - PART II

A. Introduction

1. Reasons for instrumentation
 a. Stability and safety
 b. Performance of supports

B. Types of instrumentation

1. Extensometers
 a. Multiple position
 (1) Slides
 (2) Application
 b. Single Position
 (1) Slides
 (2) Application
 c. Model displays

2. Meters
 a. Joint
 (1) Slides
 (2) Application
 (3) Model display

3. Hydraulic pressure cell
 a. Use with rock bolts
 b. Model display

C. Summary

D. Conclusions

E. Questions and examination of displays
CONVERSION FACTORS—BRITISH TO METRIC UNITS OF MEASUREMENT

The following conversion factors adopted by the Bureau of Reclamation are those published by the American Society for Testing and Materials (ASTM Metric Practice Guide, E 380-88) except that additional factors (*) commonly used in the Bureau have been added. Further discussion of definitions of quantities and units is given in the ASTM Metric Practice Guide.

The metric units and conversion factors adopted by the ASTM are based on the “International System of Units” (designated SI for Systems International d’Unites), fixed by the International Committee for Weights and Measures; this system is also known as the Giorgi or MKSA (meter-kilogram (mass)-second-ampere) system. This system has been adopted by the International Organization for Standardization in ISO Recommendation R-21.

The metric technical unit of force is the kilogram-force; this is the force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 9.80665 m/sec/sec, the standard acceleration of free fall toward the earth’s center for sea level at 45 deg latitude. The metric unit of force in SI units is the newton (N), which is defined as that force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 1 m/sec/sec. These units must be distinguished from the (inconstant) local weight of a body having a mass of 1 kg, that is, the weight of a body is that force with which a body is attracted to the earth and is equal to the mass of a body multiplied by the acceleration due to gravity. However, because it is general practice to use "pound" rather than the technically correct term “pound-force,” the term “kilogram” (or derived mass unit) has been used in this guide instead of “kilogram-force” in expressing the conversion factors for forces. The newton unit of force will find increasing use, and is essential in SI units.

Where approximate or nominal English units are used to express a value or range of values, the converted metric units in parentheses are also approximate or nominal. Where precise English units are used, the converted metric units are expressed as equally significant values.

Table I

<table>
<thead>
<tr>
<th>QUANTITIES AND UNITS OF SPACE</th>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mil</td>
<td></td>
<td></td>
<td>Micron</td>
</tr>
<tr>
<td>Inches</td>
<td>25.4 (exactly)</td>
<td></td>
<td>Millimeters</td>
</tr>
<tr>
<td>Inches</td>
<td>25.4 (exactly)</td>
<td></td>
<td>Centimeters</td>
</tr>
<tr>
<td>Feet</td>
<td>30.48 (exactly)</td>
<td></td>
<td>Centimeters</td>
</tr>
<tr>
<td>Feet</td>
<td>0.0003048 (exactly)</td>
<td></td>
<td>Kilometers</td>
</tr>
<tr>
<td>Yards</td>
<td>0.9144 (exactly)</td>
<td></td>
<td>Meters</td>
</tr>
<tr>
<td>Miles (statute)</td>
<td>1.609344 (exactly)</td>
<td></td>
<td>Kilometers</td>
</tr>
<tr>
<td>AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square inches</td>
<td>6.4516 (exactly)</td>
<td></td>
<td>Square centimeters</td>
</tr>
<tr>
<td>Square feet</td>
<td>0.092903</td>
<td></td>
<td>Square meters</td>
</tr>
<tr>
<td>Square yards</td>
<td>0.836127</td>
<td></td>
<td>Square meters</td>
</tr>
<tr>
<td>Acres</td>
<td>0.000024</td>
<td></td>
<td>Hectares</td>
</tr>
<tr>
<td>Acres</td>
<td>0.00040489</td>
<td></td>
<td>Square meters</td>
</tr>
<tr>
<td>Acres</td>
<td>0.0040489</td>
<td></td>
<td>Square kilometers</td>
</tr>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubic inches</td>
<td>16.3871</td>
<td></td>
<td>Cubic centimeters</td>
</tr>
<tr>
<td>Cubic feet</td>
<td>0.0283168</td>
<td></td>
<td>Cubic meters</td>
</tr>
<tr>
<td>Cubic yards</td>
<td>0.764555</td>
<td></td>
<td>Cubic meters</td>
</tr>
<tr>
<td>CAPACITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid ounce (U.S.)</td>
<td>29.5737</td>
<td></td>
<td>Cubic centimeters</td>
</tr>
<tr>
<td>Fluid ounce (U.S.)</td>
<td>28.5720</td>
<td></td>
<td>Milliliters</td>
</tr>
<tr>
<td>Liquid pints (U.S.)</td>
<td>0.473179</td>
<td></td>
<td>Cubic decimeters</td>
</tr>
<tr>
<td>Liquid pints (U.S.)</td>
<td>0.473168</td>
<td></td>
<td>Liters</td>
</tr>
<tr>
<td>Quarts (U.S.)</td>
<td>0.946358</td>
<td></td>
<td>Cubic centimeters</td>
</tr>
<tr>
<td>Quarts (U.S.)</td>
<td>0.946331</td>
<td></td>
<td>Cubic centimeters</td>
</tr>
<tr>
<td>Gallons (U.S.)</td>
<td>3.78543</td>
<td></td>
<td>Cubic decimeters</td>
</tr>
<tr>
<td>Gallons (U.S.)</td>
<td>3.78533</td>
<td></td>
<td>Liters</td>
</tr>
<tr>
<td>Gallons (U.S.)</td>
<td>0.00378543</td>
<td></td>
<td>Cubic meters</td>
</tr>
<tr>
<td>Gallons (U.S.)</td>
<td>4.54609</td>
<td></td>
<td>Cubic decimeters</td>
</tr>
<tr>
<td>Gallons (U.S.)</td>
<td>4.5450</td>
<td></td>
<td>Liters</td>
</tr>
<tr>
<td>Gallons (U.S.)</td>
<td>28.316</td>
<td></td>
<td>Cubic meters</td>
</tr>
<tr>
<td>Gallons (U.S.)</td>
<td>1.2335</td>
<td></td>
<td>Cubic meters</td>
</tr>
<tr>
<td>Gallons (U.S.)</td>
<td>1.2336</td>
<td></td>
<td>Liters</td>
</tr>
</tbody>
</table>
Table II

Quantities and Units of Mechanics

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grains (1/7,000 lb)</td>
<td>64.75091</td>
<td>Milligrams</td>
</tr>
<tr>
<td>Troy ounces (480 grains)</td>
<td>31.1035</td>
<td>Grains</td>
</tr>
<tr>
<td>Ounces (dwt)</td>
<td>28.3495</td>
<td>Grains</td>
</tr>
<tr>
<td>Pounds (avdp)</td>
<td>0.453592</td>
<td>Kilograms</td>
</tr>
<tr>
<td>Short tons (2,000 lb)</td>
<td>907.185</td>
<td>Kilograms</td>
</tr>
<tr>
<td>Long tons (2,240 lb)</td>
<td>1,016.05</td>
<td>Kilograms</td>
</tr>
</tbody>
</table>

FORCE/AREA

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pounds per square inch</td>
<td>20.07007</td>
<td>Kilograms per square centimeter</td>
</tr>
<tr>
<td>Pounds per square foot</td>
<td>488.243</td>
<td>Kilograms per square meter</td>
</tr>
<tr>
<td>Pounds per cubic foot</td>
<td>16.0185</td>
<td>Kilograms per cubic meter</td>
</tr>
</tbody>
</table>

MASS/VOLUME (DENSITY)

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ounces per cubic inch</td>
<td>1.27078</td>
<td>Grains per cubic centimeter</td>
</tr>
<tr>
<td>Pounds per cubic foot</td>
<td>119.626</td>
<td>Grains per liter</td>
</tr>
<tr>
<td>Pounds per cubic yard</td>
<td>58.779</td>
<td>Grains per liter</td>
</tr>
</tbody>
</table>

MASS/CAPACITY

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ounces per gallon (U.S.)</td>
<td>7.4803</td>
<td>Grains per liter</td>
</tr>
<tr>
<td>Ounces per gallon (UK)</td>
<td>6.2362</td>
<td>Grains per liter</td>
</tr>
</tbody>
</table>

BENDING MOMENT OR TORQUE

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch-pounds</td>
<td>0.01152</td>
<td>Foot-pounds</td>
</tr>
</tbody>
</table>

VELOCITY

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet per second</td>
<td>0.3048</td>
<td>Meters per second</td>
</tr>
<tr>
<td>Feet per second</td>
<td>0.3048</td>
<td>Meters per second</td>
</tr>
</tbody>
</table>

ACCELERATION

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet per second²</td>
<td>0.03048</td>
<td>Meters per second²</td>
</tr>
</tbody>
</table>

FLOW

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic feet per second</td>
<td>0.028317</td>
<td>Cubic meters per second</td>
</tr>
<tr>
<td>Cubic feet per minute</td>
<td>0.4719</td>
<td>Liters per second</td>
</tr>
<tr>
<td>Gallons (U.S.) per minute</td>
<td>0.06309</td>
<td>Liters per second</td>
</tr>
</tbody>
</table>

WORK AND ENERGY

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>British thermal units (Btu)</td>
<td>0.252</td>
<td>Kilogram calories</td>
</tr>
<tr>
<td>British thermal units (Btu)</td>
<td>1.05506</td>
<td>Joules</td>
</tr>
<tr>
<td>Foot-pounds</td>
<td>1.35562</td>
<td>Joules per gram</td>
</tr>
</tbody>
</table>

POWER

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsepower</td>
<td>745.700</td>
<td>Watts</td>
</tr>
<tr>
<td>Btu per hour</td>
<td>0.23007</td>
<td>Watts</td>
</tr>
</tbody>
</table>

HEAT TRANSFER

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Btu/hr ft² degree F (k, thermal conductivity)</td>
<td>1.44</td>
<td>Milliwatts/cm degree C</td>
</tr>
<tr>
<td>Btu/hr ft² degree F (k, thermal conductivity)</td>
<td>0.0124</td>
<td>Kg cal/hr m degree C</td>
</tr>
<tr>
<td>Btu/hr ft² degree F (C, thermal conductance)</td>
<td>7.468</td>
<td>Kilograms per square meter degree C</td>
</tr>
<tr>
<td>Btu/hr ft² degree F (C, C, thermal conductance)</td>
<td>0.562</td>
<td>Milliwatts/cm² degree C</td>
</tr>
<tr>
<td>Btu/hr ft² degree F (R, thermal resistence)</td>
<td>1.761</td>
<td>Degree C²/milliwatt</td>
</tr>
<tr>
<td>Btu/lb degree F (c, heat capacity)</td>
<td>4.1868</td>
<td>J/g degree C</td>
</tr>
<tr>
<td>Btu/°F degree F</td>
<td>1.003</td>
<td>Cal/g degree C</td>
</tr>
<tr>
<td>Btu/hr ft² (thermal diffusivity)</td>
<td>0.2581</td>
<td>C²/sec</td>
</tr>
<tr>
<td>Btu/hr ft² (thermal diffusivity)</td>
<td>0.00930</td>
<td>M²/°F</td>
</tr>
</tbody>
</table>

WATER VAPOR TRANSMISSION

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains/hr ft² (water vapor)</td>
<td>16.7</td>
<td>Grams/24 hr m²</td>
</tr>
</tbody>
</table>

Table II - Continued

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER AND ENERGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>British thermal units (Btu)</td>
<td>0.252</td>
<td>Kilogram calories</td>
</tr>
<tr>
<td>British thermal units (Btu)</td>
<td>1.05506</td>
<td>Joules</td>
</tr>
<tr>
<td>Foot-pounds</td>
<td>1.35562</td>
<td>Joules per gram</td>
</tr>
</tbody>
</table>

POWER

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsepower</td>
<td>745.700</td>
<td>Watts</td>
</tr>
<tr>
<td>Btu per hour</td>
<td>0.23007</td>
<td>Watts</td>
</tr>
</tbody>
</table>

HEAT TRANSFER

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Btu/hr ft² degree F (k, thermal conductivity)</td>
<td>1.44</td>
<td>Milliwatts/cm degree C</td>
</tr>
<tr>
<td>Btu/hr ft² degree F (k, thermal conductivity)</td>
<td>0.0124</td>
<td>Kg cal/hr m degree C</td>
</tr>
<tr>
<td>Btu/hr ft² degree F (C, thermal conductance)</td>
<td>7.468</td>
<td>Kilograms per square meter degree C</td>
</tr>
<tr>
<td>Btu/hr ft² degree F (C, C, thermal conductance)</td>
<td>0.562</td>
<td>Milliwatts/cm² degree C</td>
</tr>
<tr>
<td>Btu/hr ft² degree F (R, thermal resistence)</td>
<td>1.761</td>
<td>Degree C²/milliwatt</td>
</tr>
<tr>
<td>Btu/lb degree F (c, heat capacity)</td>
<td>4.1868</td>
<td>J/g degree C</td>
</tr>
<tr>
<td>Btu/°F degree F</td>
<td>1.003</td>
<td>Cal/g degree C</td>
</tr>
<tr>
<td>Btu/hr ft² (thermal diffusivity)</td>
<td>0.2581</td>
<td>C²/sec</td>
</tr>
<tr>
<td>Btu/hr ft² (thermal diffusivity)</td>
<td>0.00930</td>
<td>M²/°F</td>
</tr>
</tbody>
</table>

WATER VAPOR TRANSMISSION

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains/hr ft² (water vapor)</td>
<td>16.7</td>
<td>Grams/24 hr m²</td>
</tr>
</tbody>
</table>

OTHER QUANTITIES AND UNITS

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic feet per square foot per day (ampere)</td>
<td>4.0488</td>
<td>Liters per square meter per day</td>
</tr>
<tr>
<td>Pound-seconds per square foot (viscosity)</td>
<td>4.8824</td>
<td>Kilogram second per square meter</td>
</tr>
<tr>
<td>Square feet per second (viscosity)</td>
<td>0.08203</td>
<td>Square meters per second</td>
</tr>
<tr>
<td>Fahrenheit degrees (change)</td>
<td>5/9 exactly</td>
<td>Celsius or Kelvin degrees (change)</td>
</tr>
<tr>
<td>Volts per mill</td>
<td>0.03037</td>
<td>Kilovolts per millimeter</td>
</tr>
<tr>
<td>Lumens per square foot (foot-candles)</td>
<td>10.764</td>
<td>Lumens per square meter</td>
</tr>
<tr>
<td>Ohm-circular miles per foot</td>
<td>0.001687</td>
<td>Ohm-square millimeters per meter</td>
</tr>
<tr>
<td>Milecandles per cubic foot</td>
<td>-35.3147</td>
<td>Milliarcseconds per cubic meter</td>
</tr>
<tr>
<td>Milliamps per square foot</td>
<td>10.764</td>
<td>Milliamps per square meter</td>
</tr>
<tr>
<td>Gallons per square yard</td>
<td>4.527219</td>
<td>Liters per square meter</td>
</tr>
<tr>
<td>Pounds per inch</td>
<td>0.17858</td>
<td>Kilograms per centimeter</td>
</tr>
</tbody>
</table>