This is a basic weather course describing Florida's weather and is designed to give the student the opportunity to study the phenomena which cause the more destructive disturbances in the atmosphere. The study includes the detection, growth, effects and possible alternation of storms. It is suggested that a student enrolled in this course would have completed a course in applied meteorology or on the atmosphere in order to avoid extra time spent on elementary concepts. State-adopted texts are listed as well as student textbooks and laboratory manuals and suggested teacher references. Sixteen performance objectives are suggested. The course outline presents thirteen major topics: (1) Physical Factors of the Lower Atmosphere; (2) Influence of Upper Atmospheric Conditions; (3) Synoptic Charts; (4) Air Masses; (5) Contact Between Air Masses; (6) Rainstorms; (7) Droughts; (8) Hail; (9) Thunder Storms; (10) Hurricanes; (11) Tornadoes; (12) Modification of Weather Conditions; and (13) Storms Which Do Not Affect Florida. Student- and teacher-directed experiments are suggested. Projects and reports are included, as well as discussion questions. A reference list of suggested books, manuals, government publications, and films is presented along with a master plan sheet. (Author/EB)
AUTHORIZED COURSE OF INSTRUCTION FOR THE

QUINMESTER PROGRAM

DADE COUNTY PUBLIC SCHOOLS

DIVISION OF INSTRUCTION 1971

VIOLENT FLORIDA WEATHER

5343.05
5311.31
5312.31
5313.32

SCIENCE

(Experimental)
VIOLENT FLORIDA WEATHER

5343.05
5311.31
5312.31
5313.32

SCIENCE
(Experimental)

Written by J. A. Espy, Jr.
for the
DIVISION OF INSTRUCTION
Dade County Public Schools
Miami, Florida
1972
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Description</td>
<td>1</td>
</tr>
<tr>
<td>Enrollment Guidelines</td>
<td>1</td>
</tr>
<tr>
<td>State Adopted Texts</td>
<td>2</td>
</tr>
<tr>
<td>Performance Objectives</td>
<td>2</td>
</tr>
<tr>
<td>Course Outline</td>
<td>3</td>
</tr>
<tr>
<td>Experiments</td>
<td>6</td>
</tr>
<tr>
<td>Projects</td>
<td>7</td>
</tr>
<tr>
<td>Reports</td>
<td>8</td>
</tr>
<tr>
<td>Films</td>
<td>9</td>
</tr>
<tr>
<td>Transparencies</td>
<td>10</td>
</tr>
<tr>
<td>Slides</td>
<td>10</td>
</tr>
<tr>
<td>Discussion Questions</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>Master Sheet</td>
<td>14</td>
</tr>
</tbody>
</table>
VIOLENT FLORIDA WEATHER

COURSE DESCRIPTION

"Violent Florida Weather" is a basic weather course designed to give the student the opportunity to study the phenomena which cause the more destructive disturbances in the atmosphere. The study will include the detection, growth, effects and possible alteration of storms.

ENROLLMENT GUIDELINES

This course should be offered during the Spring, Summer and Fall quinnesters. The possibility of the student being able to study current violent weather conditions is greatest at this time.

The student should have completed "Applied Meteorology" or "Atmosphere" in order that time spent on elementary concepts is kept to a minimum. However, this is not a requirement. The "C" student with an interest in meteorology should be encouraged to take this course. The use of weather instruments would make the exclusion of those students that have manifested undesirable laboratory and classroom behavior a necessity.

STATE ADOPTED TEXTS

Students' textbooks and laboratory manuals should include #14 and #26 from those listed under References if possible. The books necessary for the violent weather discussions are #3, #4, #6, #18 and #19. The teacher may find #11, #22 and #23 helpful in the instruction of this course.
PERFORMANCE OBJECTIVES

Students will be able to:

1. Operate and gather data from the basic weather station instruments.
2. Compute the dry and saturated adiabatic lapse rate.
3. Cite evidence for the modification of lower weather conditions by atmospheric conditions.
4. Identify the symbols used on a weather map.
5. Discover the possible relationship between temperature and barometric pressure.
6. Predict possible weather conditions for a 24-hour period using a weather map.
7. Plot a graph of temperature and barometric pressure for a 24-hour period.
8. Compare upper and lower atmospheric conditions and propose reasons why they are different.
9. Recognize air masses as to their origin and relate them to local weather conditions which they effect.
10. Differentiate between the weather conditions produced by the different kinds of fronts.
11. Relate weather conditions with the possible types of storms which may be produced.
12. Using weather maps and reports, predict the possible path of a hurricane.
13. Propose and defend reasons why hurricanes do not occur in the southern hemisphere of the Atlantic Ocean.
14. Discuss critically weather modification.
15. Describe the general paths of storms in Florida.
16. Describe the destructive actions of the storms studied.
I. Physical Factors of the Lower Atmosphere
 A. Pressure
 B. Wind direction and speed
 C. Precipitation
 D. Types of clouds and coverage
 E. Humidity
 F. Temperature
 G. Convection currents
 1. Saturated adiabatic lapse rates
 2. Dry adiabatic lapse rates
 H. Review of instrumentation and measurement
II. Influence of Upper Atmospheric Conditions
 A. Jet stream
 B. Effects on lower levels
III. Synoptic Charts
 A. Weather maps
 B. Isobars
 C. Isotherms
 D. Upper atmospheric conditions
IV. Air Masses
 A. Places of origin
 1. Polar maritime
 2. Polar continental
 3. Tropical maritime (Caribbean Low)
 4. Tropical continental
B. Pressure
 1. Cyclone
 2. Anticyclone

V. Contact Between Air Masses
 A. Frontal activity - normal
 B. Storm production

VI. The Rainstorm
 A. Conditions necessary for a rainstorm
 B. Rainstorm records

VII. Droughts
 A. Conditions necessary for drought
 B. Effects in South Florida

VIII. Hail
 A. Conditions necessary for hail
 B. Frequency in Florida
 C. Damage caused in Florida

IX. Thunder Storms
 A. Electrical nature of matter
 B. Conditions necessary for thunderstorms
 C. Danger and damages
 D. Protective measures

X. Hurricanes
 A. Physical characteristics
 B. Atmospheric conditions necessary for formation
 C. Destructive forces
 D. Protective measures
XI. Tornadoes
 A. Physical characteristics
 B. Atmospheric conditions necessary for tornadoes
 C. General paths of tornadoes
 D. Frequency and destruction in Florida
 E. Tornadoes formed over water

XII. Modification of Weather Conditions
 A. Atomic bomb
 B. Cloud seeding
 C. Others

XIII. Storms Which Do Not Affect Florida
 A. Blizzards and snowstorms
 B. Sleet and ice storms
EXPERIMENTS

1. Investigating Radiant Energy (p. 199, 7-1)
2. Investigating Land and Water Temperatures (p. 209, 7-2)
3. Investigating the Weather - Weather Watch (p. 232, 8-9)
4. Investigating Cumulus Cloud Formation (p. 242, 8-12)

5. Energy Exchanges by Atmospheric Circulation (p. 137, I-11)
6. Exchanges of Heat Energy on Land and Sea (p. 155, I-12)

8. The Atmosphere (p. 123)
9. Weather and Its Cause (p. 133)

10. Measuring Air Temperature (p. 139, E-40)
11. Measuring Humidity with a Sling Psychrometer (p. 143, E-41)
12. Measuring Dew-Point Temperature (p. 147, E-42)
13. Measuring Atmospheric Pressure (p. 149, E-43)
14. Conduction, Convection and Radiation of Heat (p. 151, E-44)
15. Cloud Droplets (p. 155, E-46)
16. Vertical Structure of Lower Atmosphere (p. 163, E-48)
17. Structure of the Earth's Atmosphere (p. 165, E-49)
18. Atmospheric Pressure and Winds (p. 167, E-50)
19. Drawing a Weather Map (p. 171, E-51)
20. Sizes of Cloud Droplets and Raindrops (p. 177, E-53)

Teacher directed experiments.

21. Plotting the paths of tornadoes and hurricanes (past or simulated)
22. Forecast the weather for any city using the data presented on a weather map
23. Plotting the daily variations in temperature and atmosphere pressure
PROJECTS

1. Construct a wind producing device and demonstrate the effect of wind on different surfaces and shapes.

2. Cloud formations - pictoral account and analysis of cloud types during different weather conditions.

3. Cloud formations - pictoral account and analysis of cloud types associated with frontal weather.

4. Analysis of weather for an area during a two week period using the daily weather maps from the Weather Bureau and newspapers.

5. Construct and maintain a home weather station.

6. Construct a hurricane producing model and demonstrate the elements which could produce a hurricane.
REPORTS

1. Comparison of frontal weather and the tendency of fronts to produce violent weather during the four seasons.

2. Tornadoes in Florida: Their paths and property destruction.

4. A critical analysis of property and life losses from hurricanes and/or tornadoes during the past ten years.

5. The value of our modern hurricane detection machinery.

6. The production and destructiveness of waves by hurricanes.

7. Lightning: Its cause and effects.

10. The use of weather satellites in the detection and study of storms.

11. Violent storms in other parts of the world.
<table>
<thead>
<tr>
<th>Title</th>
<th>Producer</th>
<th>Time</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clouds</td>
<td>Almanac Films</td>
<td>10', BW</td>
<td>1-02129</td>
</tr>
<tr>
<td>2. Clouds Above</td>
<td>Bailey Films</td>
<td>9', C</td>
<td>1-02135</td>
</tr>
<tr>
<td>3. Earth, The: Its Atmosphere</td>
<td>Coronet</td>
<td>11', C</td>
<td>1-02134</td>
</tr>
<tr>
<td>4. Eyes in Outer Space</td>
<td>Walt Disney</td>
<td>27', C</td>
<td>1-30386</td>
</tr>
<tr>
<td>5. How Weather Is Forecast</td>
<td>Coronet</td>
<td>10', BW</td>
<td>1-02080</td>
</tr>
<tr>
<td>6. Hurricane Circuit</td>
<td>U W</td>
<td>23', BW</td>
<td>1-10991</td>
</tr>
<tr>
<td>10. Origin of Weather</td>
<td>Carousel</td>
<td>26', BW</td>
<td>1-30376</td>
</tr>
<tr>
<td>11. Origins of Weather</td>
<td>NFB - Canada</td>
<td>13', C</td>
<td>1-10994</td>
</tr>
<tr>
<td>12. Reading Weather Maps</td>
<td>Coronet</td>
<td>14', BW</td>
<td>1-10995</td>
</tr>
<tr>
<td>13. Story Behind Hurricanes, The</td>
<td>Pathe</td>
<td>6', BW</td>
<td>1-02100</td>
</tr>
<tr>
<td>14. U P In the Air: Exploring our Atmosphere</td>
<td>Grov-Jenn</td>
<td>12', C</td>
<td>1-04463</td>
</tr>
<tr>
<td>15. Weather: Air in Action (Temperature and Wind)</td>
<td>Cahill</td>
<td>8', C</td>
<td>1-02112</td>
</tr>
<tr>
<td>17. Weather Station, The</td>
<td>McGraw</td>
<td>11', BW</td>
<td>1-02119</td>
</tr>
<tr>
<td>18. Weather: Understanding Storms</td>
<td>Coronet</td>
<td>10', BW</td>
<td>1-02128</td>
</tr>
<tr>
<td>Title</td>
<td>Producer</td>
<td>Time</td>
<td>Number</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>19. What Makes Clouds</td>
<td>EBEC</td>
<td>19', C</td>
<td>1-11002</td>
</tr>
<tr>
<td>20. What Makes the Wind Blow</td>
<td>EBEC</td>
<td>16', C</td>
<td>1-10997</td>
</tr>
<tr>
<td>21. Winds and Their Causes</td>
<td>Coronet</td>
<td>10', BW</td>
<td>1-02113</td>
</tr>
</tbody>
</table>

TRANSPARENCIES

The following transparencies can be obtained from the Dade County Audiovisual Center.

1. **Earth Science: Meteorology**
 Set 1
 Hubbard Sci.
 2-30119

2. **Meteorology**
 A. V. Center
 2-30025

3. **Weather: Cloud Formation**
 Drago
 2-00219

4. **Weather, The: Clouds**
 Toslen
 2-30161

5. **Weather, The: Front Formations**
 Toslen
 2-30162

6. **Winds, Currents and Explorations**
 EBEC
 2-30116

SLIDES

Available from Dade County Audiovisual Center.

1. **Clouds and Weather**
 5-70019

2. **Clouds, Lightning and Rainbows**
 5-30003
DISCUSSION QUESTIONS

1. Why do hurricanes not form in the southern hemisphere of the Atlantic Ocean?

2. Why has Miami missed the hurricanes' full force during the past five years?

3. Why are weather maps important?

4. Why are high level atmosphere conditions important to a complete understanding of weather?

5. Do our local weather conditions prevent tornadoes rather than cause them?

6. Will man be able to completely modify weather to suit his needs?

7. Why are weather reports important in projecting storms' paths?

8. Is Florida really hurricane prone?

9. Are the property and life losses from violent weather in Florida any greater than other states on the Gulf and Eastern coasts?

10. Is there any relationship between the heat at the equator and violent storms?
REFERENCES

Books and Laboratory Manuals

United States Government Publications

<table>
<thead>
<tr>
<th>Objective</th>
<th>Experiments</th>
<th>Student Text</th>
<th>Supplementary Reference</th>
<th>Films</th>
<th>Transparencies</th>
<th>Slides</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,9,10,11,12,13,14,15</td>
<td>#26, chap. 6,14</td>
<td>#26, chap. 27</td>
<td>5,8,13,17,20,27</td>
<td>5,21</td>
<td>1,2,4</td>
</tr>
<tr>
<td>2</td>
<td>16,17</td>
<td>#14, chap. 34</td>
<td>8,11,17,23</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>#14, chap. 35</td>
<td>#26, chap. 28</td>
<td>#1, pp. 752</td>
<td>#8,11,17,23</td>
<td>3,7,26,25</td>
</tr>
<tr>
<td>4</td>
<td>3,8,46</td>
<td>#14, chap. 32</td>
<td>#26, chap. 29</td>
<td>8,12,27</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8,9</td>
<td>#14, chap. 32</td>
<td>#26, chap. 29</td>
<td>5,11,23</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2,9,18</td>
<td>#14, chap. 29</td>
<td>#26, chap. 29</td>
<td>5,8,11,16,21,27</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>#14, chap. 32</td>
<td>#26, chap. 28</td>
<td>8,11,23</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>#14, chap. 36</td>
<td>#26, chap. 29</td>
<td>8,12,21,27</td>
<td>10,11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>#14, chap. 37</td>
<td>#26, chap. 29</td>
<td>3,8,11,17,20,27</td>
<td>8,9</td>
<td>3,5</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>#14, chap. 36</td>
<td>#26, chap. 30</td>
<td>4,6,8,10,18,23,27</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>#14, chap. 36</td>
<td>#26, chap. 30</td>
<td>4,6,8,10,18</td>
<td>6,17</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>#14, chap. 37</td>
<td>#26, chap. 30</td>
<td>4,6,8,10,18</td>
<td>6,8,9,17,22</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>#14, chap. 35</td>
<td>#26, chap. 30</td>
<td>3,4,6,10,18,19,20,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>23</td>
<td>#14, chap. 37</td>
<td>#26, chap. 30</td>
<td>3,4,6,10,11,18,19,20</td>
<td>8,9,17,20,22</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>#14, chap. 37</td>
<td>#26, chap. 30</td>
<td>3,4,6,8,10,18,19,20,23</td>
<td>8,9,17,20,22</td>
<td></td>
</tr>
</tbody>
</table>

14