
DOCUMENT RESUME

ED 083 819 BM 011 542

AUTHOR Isaacs, GeraldiI.
TITLE Interdialect Translatability of the Basic Programming'

Language. 1

.

INSTITUTION American Coll: Testing Program, Iowa City, Iowa.
Research and Development Div.

SPONS AGENCY Office of Education (DREW) , Washington, D.C..
REPORT NO ACT-TB-11
PUB DATE Oct 72
GRANT OEG-0-72-0711
NOTE 18p.

EDRS PRICE Mr-$0.65 RC-93.29
DESCRIPTORS' *Computer Programs; Computer Science; *Language

Standardization; Programing; *Programing Languages;
State ofthe Art Reviews

IDENTIFIERS BASIC; Beginner's All Purpose Symbolic Instruction
Code; *Interdialect Translatability

ABSTRACT
r-A study was made of several dialects of the

Beginner's All-purpose Symbolic Instruction Code (BASIC). The purpose
was to determine if it 'was possible to identify a set of interactive
BASIC dialects in which translatability between different members of
the set would be high, if reasonable programing restrictions were
imppsed. It was first established that the four programing
capabilities of: 1) computational ability and precision, 2) execution
of a large-sized program, 3) accession to creation of external files,
and 4) generation of formatted output'were necessary if complex
projects were to be undertaken. It was found that translation of most
statements in BASIC was easily accomplished. Operands, relations,
names, strings, arrays, functions, input and branching were among
these. Difficulties were mainly encountered in file handling,
chaining or subroutine calling, and output formatting. Detailed
reports on the translatability of these elements have been compiled,
a roster of 21 fundamental rules for translatability provided and
three categories of dialects identified. These are; 1) BASIC dialects
missing one critical element, 2) dialects lacking only formatted
output capability, and 3) preferred dialects. Therefore, BASIC
translatability is a fact and can be performed easily if a few rules
are followed. (PB)

1

ED-..- .

I

ACT TECHNICAL BULLETIN NO. 1 1

INTERDIALECT TRANSLATABILITY OF THE

BASIC PROGRAMMING LANGUAGE

by

Gerald L. Isaacs

U.S. De PARTME NT OF HEALTH,
EDUCATION &WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS EWEN REPRO
DUCE° EXACTLY AS RECEIVED PROM
THE PERSON OR ORGANIZATION ORIGIN
*TINS IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

The Research and Development Division

The American College Testing Program

P. O. Box 168, Iowa City, Iowa 52240

October, 1972

FIRMED FliOM BEST AVAILABLE COPY

Interdialect Translatability of the

BASIC Programming Language

by

Gerald L. Isaacs

Introduction

The BASIC (Beginner's All-purpose Symbolic Instruction Code)

programming language is a mathematically-based conversational problem-

solving language. It has wide application in business, scientific,

and educational environments. It is powerful, efficient, flexible,

and has the precision necessary for most tasks. Also, its syntax

is simple and easy to learn. The BASIC programming language is simple

enough so that an inexperienced programmer can use it and has enough

power and flexibility so that the experienced programmer can write

his programs efficiently. BASIC was first developed under Professors

John G. Kemeny and Thomas E. Kurtz at Dartmouth College in 1963-1964.

Since then, BASIC has been transformed into more than twenty different

major dialects. Each of these transformations has added to or

modified the original language.

Due to the many differences among dialects of BASIC, unless care is

taken in the initial programming it is both time consuming and difficult

to readily translate a program from one dialect to another. However,

if a few rules are followed, it may be possible to translate within a

large set of dialects with a minimum of effort. In this paper we

investigate this possiblity in some detail.

The research reported herein was performed pursuant to Grant No.
OEG -O -72 -0711 with the Office of Education, U.S Department of Health,
Education, and Welfare. Contractors undertaking such projects under
Government sponsorship are encouraged to express freely their professional
judgment-in the conduct of the project. Points of view or opinions
stated do not, therefore, necessarily represent official Office of
Education position or policy.

2

The specific purpose of this study is to identify and investigate

in detail those BASIC dialects that would form a set in which

translatability would be high if reasonable programmin restrictions

are imposed. Only BASIC dialects that are interactive have been

studied. More than twenty BASIC dialects are examined in this study.

Some of the dialects are immediately transportable from one computer

In a manufacturer's line to another, e.g., the XEROX BASIC runs on the

Sigma 5,6, 7, 8, and 9. Also, several BASIC dialects are upward

compatible on computers in the same line, e.g., the BASIC dialect on

the Hewlett Packard 2000B will run on the 2000C, 2000E, and 2000P. For

most dialects, some translation must be done if a program written in the

BASIC of one computer is to be run on a second computer. This study

was motivated by the desire to produce readily translatable conversational

language interactive programs for computer-assisted data analysis and

decision Making in an educational environment. The conclusions of the

study will, however, apply quite generally since the aforementioned

applications are very demanding in terms of text handling capability,

computational power, and formatting.

Itipertant Programming Capabilities

There are four programming capabilities that should be present if a

project of any magnitude or complexity is to be undertaken. The first

of these is computational ability and precision. Of the more than twenty

dialects examined, all were 4,ound to provide at least six digits of

accuracy and to support the basic arithmetic operations plus exponentiation.

Some dialects provided, accuracy of up to 15 or 16 digits. Obviously,

dialects with only six digit accuracy will not be useful in many

scientific applications.; Also, there was a large discrepancy as to the

largest and smallest absolute number allowed. The smallest maximum

absolute number was approximately 10
38

while the largest minimum number

was approximately 10
-38

. For a translatable system, the questions of

accuracy and precision will need to be considered. carefully. A system

can only be translated to dialects that provide the needed accuracy.

A second necessary capability of any dialect is that it has

the ability to execute a program of the desired size. This may be

accomplished in several ways. One method involves mass partition size.

That is, a user is allowed as large a partition as is necessary for his

task and is swapped in and out of core with many other users. This method

may substantially add to cost and execution time. Further, when this

method is used, a system that uses a monitor to sequentially execute'

several programs is not very feasible, since all the programs and the

monitor must remain in core. In these circumstances, the. user would

load and execute each program independently. Such a procedure resulti.

in a tolerable inconvenience.

A Second.method that is used by many dialects is program chaining.

This method allows the user to fit a very large program into a small

partition by dividing the program into small segments and executing them

separately in logical succession. There are two kinds of program chaining.

The first calls for a complete overlay of the program in core, and the

second, a chaining in which the user may specify where the overlay may

begin.

The third methOd for accomplishing the execution of a large program

is through the use of external subroutine calls. In this procedure, the

user :calls a subroutine that is maintained as a separate file. After it

is executed, its core is released thus allowing additional portions of

the program to be called into core without destroying existing code.

There are some BASIC dialects such as IBM --CPS- BASIC, NCR-CENTURY -100-BASIC 1,

and DEC-PDP 8-BASIC (except EDUSYSTEM 25 and 50)-which only allow a

fixed area of core and doinot permit the user any of the above options

for increasing the size of the program to be executed. These dialects

are inadequate for most complicated systems.

The third capability that a BASIC dialect should have is the means

for accessing and creating external files. Three levels of file

capability are supported by the various BASIC dialects. One group of

dialects offer no file support, e.g., IM-CPS-BASIC (UNIV of IOWA),

DEC-PDF 8-BASIC (except EDUSYSTEM 25 and 50), and NCR-CENTURY 100-BASIC 1.

Presently, the NCR-CENTURY 200-BASIC has no file capability although it

is promisein the near future. A second group of dialects supports only

sequentially accessed files. The latter group includes IBM-ITF-BASIC,

IBM-CALL/OS-BASIC, HONEYWELL 200-BASIC, CDC 6000 -KiONOS -BASIC,

CDC 6000 - VERSION 2-BASIC, BURROUGHS -B5500 -BASIC, DEC-PDP 8 -.BASIC

(EDUSYSTEM 25 and 50), UNIVAC 1100 - BASIC, and MULTICOMP-BASICX. A third

group of dialects supports both sequential access and random access files.

4
Members of'this group are HP2000E-2000E-2600C-2000B-BASIC, HP3000-BASIC,

XDS-BASIC, GE MARK II-BASIC, LEASCO-RESPONSE /-BASIC, DARTMOUTH-BASIC,

DEC-PDP10-PDP 11-BASIC, and DATA GENERAL-BASIC. The urgency of the

need for random access files varies with the application. However, since

some type of file support is needed for nearly all applications, a

minimum of sequential access to files is almost a must.

External files are used to store data'that are too complicated and

time consuming to recompute.every time they are needed. Files also are

needed to pass data between chained segments of a system; if the whole

partition is overlaye. Also, files canbe used to store results of

computations so that the user may decrease the size of his program. In

view of this, the BASIC dialects mentioned-in the second and third'

groups of the previous paragraph are more adequate than the dialects in

the first group.

.5

A fourth important capability for a BASIC dialect is its

conduciveness to' generating formatted output. This is accomplished by

means of the PRINT USING statement. This statement allows the user to

determine what,his output is going to look like. He may specify the

number of digits to be outputted, the mode of output, and the column(s)

in which theroutput is to appear. Also, the user may specify carriage

control e.g., number of spaces between lines. Most of these may also

be accomplished using a PRINT statement. This is much less efficient,

requires more programming, and cannot be accomplished in the case of

specifying the number of digits. The PRINT USING statement has different

syntax in almost every dialect. Therefore, it should be noted that if

the PRINT USING is used, it must be modified when translating from one,

'dialect to another. In some dialects the format to be followed is

specified in the PRINT USING statement itself, while in others the

format is in an IMAGE, FIELD, or format statement. Some dialects use

Fortran format for output, e.g., NULTICOMP- BASICk. Others use an

example output line with special characters denoting numeric output.

Not all systems have formatted output, e.g., HP2000E-BASIC, HP2000E-BASIC

DATA GENERAL-BASIC, CDC 6000-BASIC, and UNIVAC 1100-UBASIC, although

there is an extension of the UNIVAC 1100-BASIC which does have formatted

output capaqlity. It is felt that a system should have a capability

for formatted output. However, if it does not, the PRINT statement can-

provide many of the features of the PRINT USING command. Although the

results may not be usual:'* as appealing as with the-PRINT USING statement,

they provide a satisfactory alternative.

The translation of most statements in a BASIC dialect will be

trivial or no translation will be necessary. Operands, relations,

names, strings,' arrays, functions, input, and branching can_be translated

with little effort or.time. The three difficulties that will be

6

encountered are file handling, chaining or subroutine calling, and

output formatting. Since there is no exact standard for these.areas,

a knowledge of the statement formats in these areas can help to

minimize the expenditure of time and energy.

Comparison of Elements

Operations and Relations:

All BASIC dialects use the same symbols for addition+, subtraction -,

multiplication *,.and division /. However, there is no standard operator

for exponentiation. Different dialects use the following symbols:

**, 4, A . The most frequent symbol used for exponentiation is + .

.'If exponentiation can be avoided, translatability in operands is -7

achieved. The string operation of concatenation is not implemented on

all dialects. For those in which it is implemented, ampersand (&),

plus (+), comma (,) or CATS are used. A few of the dialects such as -Cl/

HP2000B, HP2000C0,15000E, HP2000P, HP3000, PDP 11, LEASCO, and the UNIVAC

1100 implement the logical operands of AND, OR,,and NOT. The PDP 11 and

UNIVAC 1100-BASIC dialects also support logical equivalence (EQV and

EQU, respectively) exclusive or (EOR and X0R, respectively),aud implication

(IMP). The logical relations symbols for less than (<), greater than

(>), not equal (<>)i less than or equal (<3.), mid equal (..) are standard

across all the BASIC dialects except for the UNIVAC 1100-UBASIC dialect:-

which uses LSS for less than, GRT for greaterthan, NEQ for not equal,

LEQ for lass than or expial, and EQU for equal. The logical relation

greater than or equal (>=0 is standard across all BASICdialects except

for Ote UNIVAC.1100 and HONEYWELL 200-BASIC.dialects_which.use the symbols_

GEQ and =a, respectively.

Names:

In the BASIC programming language there can be up to five types of

variable names. These are, numeric variable names, string variable names,

integer variable names, and user defined function names. A numeric

variable name should be either a letter or a letter followed by a single

digit. While the IBM-BASIC dialects allow the special characters of $,

@, and # to be used anywhere A letter may be used, and IBM-CPS-BASIC

allows a single letter or a letter followed by another letter or a

number, for reasons of translatability these conventions should not be

used. String variables are used in all BASIC'dialectsexcept the

NCR - CENTURY 100-BASIC 1 and PDP 8-BASIC (except EDUSYSTEM 25 and 50).

There are two conventions used for string-variable names. The

first is a letter followed by-a $. The second is a numeric name

followed by a $. For translatability the first convention, a letter

followed by a $, should be used. Integer- ariable names are only allowed

in the PDP 11-BASIC and 4P3000,-BASIC.and_should be.avoided. Array variable

names should be confined to a single letter that has notbeen used else-
-.

where. Some dialects allow any numeric name to be an array name and allow

the'same name to be both an array variable hime'and a numeric variable name.

In the interest of translatability, array variable names should be confined

mo to a single unique letter. User defined function names are standard in

all BASIC dialects except the NCR.200-BASIC and PDP 11-BASIC. .There

are no user defined' functions' in the NCR 200 dialect. The PDP 11-BASIC

allows the user defined function to be FN followed by any numeric

variable name. All other BASIC dialects limit a user defined function

to FN followed by .a single letter. The general convention of FN letter

should be used.

Strings:

All BASIC dialects for the DEC-PDP 8 -BASIC {(except EDUSYSTEH 25 and 50)

and NCR-CENTURY 100-BASIC I have string handling capabilities. String

constants are enclosed in quotes. In all BASIC dialects except IBM-CPS-BASIC

'UNIVAC 1100-UBASIC and ThS- BASIC, double quotes (") may bi.1 used. In the

exceptions, single quotes (') are lased. Therefore, if translation is to

take place between_ dialects that use the different types* of string quotes,

a user must be sure to change all the quotes. Strings vary in length in

the BASIC dialects. The shortest string length is 6 characters and the .

longest string length is over 32,000 characters. There are Iwo groups

of dialects, those that allow a maximum of 6 to 22 characters and those

that allow string length greater than or equal to 72. The:dialects that

provide a string length less than or equal to 22 characters are DEC-PDP 8-

BASIC (EDUSYSTEM 25 and 50), BURROUGHS-B5500-BASIC, IBM-CPS-BASIC,

IBM -ITF- BASIC, EDS-BASIC, IBM-CALL/360-0S-BASIC, HONEYWELL 200-BASIC,

NCR-CENTURY 200-BASIC, and UCSD7B6700 -BASIC. Several, of the'BASIC dialects

provide string processing. functions from which substrings, positions-

and lengths may be obtained. It should be noted that these functions

are not translatable and should-not be used if the system is to be

translated. If string handling is not needed, then all BASIC dialects.

can be considered. But if along string (greater than 22) is needed,

then translatability is limited.

Arrays:

All BASIC dialects allow use of arrays to store data. An array

may have, at most, two dimensions in all BASIC dialects except CDC

6600-BASIC 2.0, CDC 6600-KRONOS-BASIC and the HONEYWELL 200-BASIC,

'7
which allow three dimensions. All BASIC dialects have some limit on

the number of elements. In IBM-CPS-BASIC the limit is 500 elements

per array. But in most BASIC dialects it is limited only by the amount

of core that is available. Arrays that do not appear in a dimension

(DIM) statement a're dimensioned ten, or ten by ten, or ten by ten by

ten depending upon use and system, in all dialects except PDP 8-BASIC,

and NCR-CENTURY 200-BASIC. In these exceptions, an array'must be -dimen-

sioned in order for it to be used. Depending upon. the dialect, arrays

start at zero or one. But in matrix (MAT) operations the zero elements

are ignored anyway. All BASIC dialects have the MAT operations addition,

subtraction, scaler multiplication, multiplication, transposition, and

inversion except the PDP 8-BASIC, NCR-CENTURY 200-BASIC, NCR-CENTURY 100 -

BASIC 1, and UCSD -B6700 -BASIC which'do not support MAT operations. Also,

there is an identity matrix (IDN), a matrix of .:11 ones (CON) and a zero

matrix (ZER) in all dialects that have the MAT commands. All dialects

that support the MAT commands also support a form of matrix input and

output. In addition, some support a file input and output for matrices.

Whether an array is translatable or not depends upon several factors,

including program size and partition size. The PDP 11-BASIC allows arrays

to reside on disc in what is called their virtual storage. But this is

the only dialect that supports a feature lite this.

Complex Variables:

Only the HP3000 -BASIC dialect allows the use of complex variables.

Therefore, this capability should be avoided.

Functions:

BASIC functions are divided into two types. The first type includes

all functions permanently resident in the system. 'All BASIC dialects

support the following system functions:

10

ABS Absolute value

ATN Arctangent

COS -Cosine

EXP Exponentiation

INT Largest integer

LOG Common logarithm

END Randomization

SGN Sign

SIN Sine

SQR. Square root

TAN Tangent (except IBM-CPS-BASIC).'

The preceding system functions can be used freely. The various,

dialects also support many other functions that should be avoided.

The second type of function is a user defined function. These'

functions pass one or Several arguments depending on the dialect. Also,

some dialects allow multiple line definitions. To be truly translatable,

only single line definitions that pass at most one variable should be

used. All BASIC dialects.allow user defined functions except for NCR-

CENTURY 200-BAS/C.

Branching:

There are four types of statements used in BASIC for branching.

purposes. The first type of branching statement is the FOR statement.

This loops control between the FOR statement and its corresponding
P

NEXT Statement until a counter reaches a limit. The format that is

used iu all BASIC dialects is:

FOR variable initial value TO limit STEP increment.

NEXT variable

11

Initial value, increment and limit may be any expression in all BASIC

dialects except HP2000B and HP2000C where the initial value is a variable

or a constant. In all BASIC dialects the loop works in the following

manner:

1) The variable is set equal to the initial value.

2) Test if variable is searched or passed the limit.

a) Execute loop if limit has not been reached.

b) Exit loop if limit has been reached.

3) Add increment to'variable.

4) Go back to step 2.

In all BASIC dialects loops may be nested, but maximum nesting permitted

varies between dialects. If the user picks eight as the deepest loop that

can be nested, then the system will be translatable.

The second type of branching statement is the IF statement. There

are many forms of the IF statement in the BASIC dialects; but there is

one that holds across all dialects. That is:

IF expression logical operator expression THEN line number.

The third type of branching statement is the GOTO statement. There

are two forms of this statement, the simple GOTO and the computed GOTO.

The computed GOTO is not implemented in all dialects and should be

avoided. The simple GOTO is standard in all dialects as

GOTO line number.

The word GOTO may also be GO TO in some dialects but it is not clear

from the manuals which is accepted.

The fourth type of branching statement is the GOSUB statement.

Here there are also two forms, the simple GOSUB and the computed GOSUB.

12

The computed GOSUB is not universal and should be avoided. The simple

GOSUB has the following syntax

GOSUB line number.

Phis form is standard across all BASIC dialects.

Therefore, if the preceding forms of the branching statements are

used, the users' system will be translatable in terms of branching.

Input:

Ii the BASIC programming dialect there are two methods for accepting

input. The first method is the READ-DATA statement pair. These two

statements are completely translatable across all BASIC dialects. The

form of these two statements is:

READ var 1, var 2, ... var n

DATA constant, constant, ... constant.

The only restriction is that in the DATA GENERAL-BASIC, CDC 6000- KRONOS-

BASIC, CDC 6000-VERSION 2-BASIC, and the iv, 8-BASIC (except EDUSYSTEM

25 and 50) do not allow string variables or wrist:Rats in the READ or

DATA statements. The next read position in the data list can be reset

to the beginning using the RESTORE command in all BASIC dialects except

DARTMOUTH-BASIC which uses the RESET statement.

The second method for accepting input is via the INPUT statement.

In BASIC the INPUT statement accepts input from the users' terminal. The

INPUT statement has the following syntax:

INPUT var 1, var 2, ... var n.

This syntax is constant over all BASIC dialects for this statement.

Thus, these statements are easily translatable.

13

Files:

The least translatable of all the statements are the file handling

statements. Different dialects have different methods for handling files.

In some dialects the user allocates a file name with a FILE statement, a

FILES statement or an ASSIGN statement depending upon the dialect. Other

dialects implicitly do this in the OPEN or first access. Backspacing and

rewinding of files are allowed in a few dialects. Some dialects read

from files with an INPUT statement while others use a READ statement.

Also, PRINT and WRITE statements are used for writing into files in dif-

fernt dialects. Some dialects sense for end of file with an IF END

statement, others use a NODATA statement, while others use an ENDFILE

statement. File names are determined from dialect to dialect and even

from installation to installation within a dialect. Therefore, file

handling is not directly translatable and the program writer should

attend carefully to file input and file output statements when designing

translatable programs.

Miscellaneous:

There are several aspects of BASIC that do not fall into any of

the above categories. The first of these is the range on line numbers

across the different dialects. The maximum range found was from 0 to

99999999. However, all dialects except IBM-CPS-BASIC and the PDP 8-

BASIC accept line numbers from I to 9999. IBM-CPS-BASIC has a range

from 1 to 999 and PDP 8-BASIC has a range from 1 to 2046. Therefore,

one should use line numbers only from I to 9999 for translatability.

Unless either of the two above exceptions are to be used.

14

Another feature is comments or remarks; these can be fully trans-

latable if the syntax is:

REM message.

Some dialects zero all variables before they are used, but this

should not be taken for granted across all the dialects.

Also, certain dialects such as PDP 11-BASIC, and the HONEYWELL 200 -

BASIC allow multiple statements on a single line. This feature should

not be used.

The keyword LET should not be dropped from assignment statements

since many of the dialects require it. Also, only one variable should

be assigned at a time. The format appears as:

LET var = expression.

The following three statements:

STOP

END

RETURN

are completely translatable when used in the above syntax. Some dialects

allow a comment to follow. This should be avoided for reasons of trans-

latability.

Summary of Rules for Translatability

1) Avoid the use of exponentiation if possible or use t in all dialects

where it ,is permitted.

2) Do not use logical arithmetic (OR, AND, NOT, etc.).

3) Use the following logical relations:

permitted.

< >, <> <= and wheneveritt

15

4) Use a single letter or a letter followed by a number for a numeric

variable name.

5) Use a single letter followed by a $ for string variable names.

6) Use a unique letter for an array variable name.

7) Use FN followed by a single letter for a user defined function name.

8) Use double quotes (") whenever possible.

9) Decide on what length strings are going to be allowed and translate

your system within the group your string length specifies.

JO) Avoid string handling system functions.

11) Use at most two dimension arrays.

12) Start arrays at 1.

13) Take advantage of the NAT command where applicable.

14) Only the system functions listed should be used.

15) Use only single line user defined functions.

16) Nest loops at most eight deep.

17) Limit the following statements to the listed format.

FOR variable = variable TO expression STEP expression

NEXT variable

IF expression-operator-expression THEN line number

GOTO line #

GOSUB line #

READ var 1, ...

DATA constant 1, ...

INPUT vat 1, ...

STOP

END

RETURN

16

RESTORE

REM message

LET var m. expression

18) Do not use multiple statements on a single line.

19) Line numbers should run from 1 to 9999.

20) Do not expect the system to zero all variables.

21) Avoid integer and complex variables.

Translatable BASIC Dialects

Most of the problems in translating one dialect to another are a

matter of changing a keyword or format. These changes can be made to

the whole program at one time using the edit features of the system.

There are two features that must be changed or at least checked very

closely. These are the file handling and formatted output capabilities.

These are not difficult changes to make, but must be considered care--

fully.

It was found that the dialects studied fell into three categories.

The first of these categories contains those dialects that are missing

a critical element. These are:

DEC-PDP 8-BASIC (except EDUSYSTEM 25 and 50) no files, no

. capacity for chaining, etc.

IBM-CPS-BASIC (UNIV of,IONA) no file capability.

!

NCR-CENTURY 100-BASIC. no files, no capacity for chaining, etc.

NCR - CENTURY' 200-BASIC no file capability at this time.

The second category contains those dialects that only do not have

formatted output capability.

BURROUGHS-35500-BASIC.

CDC 6600-BASIC 2.0

CDC 6600-KRONOS-BASIC

DATA GENERAL - BASIC:

17

DEC-PDF 8-BASIC (EDUSYSTEM 25 and 50)

HP 2000E -BASIC

HP2000E-BASIC

UCSD-B6700-BASIC (University of California, San Diego)

UNIVAC 1100-UBASIC (Mankato State College)

Also included in this category are those dialects that issue mass

storage in place of chaining or external subroutine capability.

IBM-CALL/OS-360-BASIC

IBM-ITF-BASIC

The third category contains those dialects which are preferred.

DARTMOUTH-BASIC

DEC-PDP I0 -BASIC

DEC -PDP 11-BASIC

GE MARK /I-BASIC

HONEYWELL 200 -BASIC

HP 2000C- -BASIC

HP2000E-BASIC

HP3000-BASIC

LEASCC-BAS/C

MULTICbMP-BASICX (UNIV. OF MASS., AMHERST, CDC-3600)

XDX-BASIC

Therefore, following the recommended translatability rules, a user should

be able to obtain a system that is translatable with a minimum of effort

and time within the third category and translatable with greater difficulty

and expense in the second category.

The information provided above is a synopsis of several extensive

charts comparing the above dialects. These charts are available from

the author. All information was obtained from manufacturers manuals

and is subject to change. It can clearly be seen that BASIC translat-

ability is a fact and can be performed easily if a few rules are followed.

