DOCUMENT RESUME

ED 083 819 EM 011 542

AUTHOR Isaacs, Gerald, L.

TITLE Interdialect Translatability of the Basic Programmlng
_ Language.

INSTITUTION

SPONS AGERCY

American Coll. Testlng Program, Iowa Clty, Iowa.

.Research and Development Div.

Office of Education (DHEW), Washington, D C.

REFORT RO ACT-TB-11

PUB DATE oct 72

GRANT QEG-0-72-0711

NOTE 18p.

EDRS PRICE MP-$0.65 HC-$3.29

DESCRIPTORS’ *Computer Programs; Computer Scxence. *Language

' - Standardization; Programing; *Programing Languages;

State of -the Art Revieus

IDERTIFIERS BASIC; Beginmer's All Purpose Symbolic Imstruction
' Code; *Interdialect Translatability

ABSTRACT

. " "A study was made of several dialects of the
Beginner's All-=purpose Symbolic Imstruction Code (BASIC). The purpose
was to determine if it was possible to identify a set of interactive
BASIC dialects in which translatability between different meabers of
the set would be high, if reasomable programing restrictions were
imposed. It was first established that the four prOgramlng .
capabilities of: 1) computational ablllty and precision, 2) execution
of a large-sized program, 3} accession to creation of external files,
and 4) generation of formatted output were necessary if complex

- projects were to be undertaken. It was found that translation of most
statements in BASIC was easily accomplished. Operands, relations,
nanes, strimngs, arrays, functions, input and branching were among
these. Difficulties were mainly encountered im file handling,

- chaining or subroutine calling, and output formatting. Detailed
reports on the translatability of these elements have bgen compiled,
a roster of 21 fundamental rules for translatability provided and
three categories of dialects identified. These are: 1) BASIC dialects
missing one critical element, 2) dialects lacking only formatted
output capability, and 3) preferred dialects. Therefore, BASIC

translatability is a fact and can be perforaed easily 1f a few rules

“are followed. (PB)

Bo



ED G83819

c

T

TECHNTIUCATL BULLETTEHN N 0

INTERDIALECT TRANSLATABILITY OF THE

BASIC PROGRAMMING LANGUAGE

by

Gerald 1, Isaacs

US DEPARTMENT OF HEAL TH,
EDUCATION & WELFARE
NATIONAL INSTATUTE QF

. EDUCATION

THIS DOCUMENT HAS BEEN REFRD
OUCED EXACTLY AS RECEIVED FROM
THE PERSCN OR DRGANIZLTION ORIGIN
ATING IT POINTS OF vIEw OR QOPINIONS
STATED DO MOT NECESS5aRILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION QR POLICY

The Research and Development Division
The American College Testing Program
P. O. Box 168, Towa City, lowa 52240

October, 1972

FILMED FROM BEST AVAILABLE COPY



Interdialect Translatability of the
BASIC Programming Language
by

Gerald L. Isaucs

Introduction

The BASIC (Beginner's All-purﬁose Symbolic Instruction Codel
programming language is a mathematically-based conversational problem-
solving language. It has wide application in business, scientific,
and educational enviromments. It is powerful, efficient, flexible,
and has the precision necessary for most tasks. Also, its syntax

. is simple and easy to learn. The BASIC programming language is simple
enough so that an inexperienced programmer can use it and has enough
power and flexibility go that the experienced programmer can write
his programs efficiently. BASIC was first developed under Professors
John G, Kemeny and Thomas E. Kurtz at Dartmouth College in 1963-1964.
Since-then, BASIC has been transformed into more than twenty different
major dialects. Each of these transformations has added to or
modified the original language.

Due to the many differences among dialects of BASIC, unless care 1is
taken in the initial programming it is both time consuming and difficult
to readily translate a program from one dialect to another. However,
if a few rules are followed, it may be possible to translate within a
largé set of dialects with a minimum of effort. 1In this paper we

investigate this possiblity in some detail,

The research reported herein was performed pursuant to Grant No.
OEG-0-72-0711 with the Office of Fducation, U,S, Department of Health,
Education, and Welfare. Contractors undertaking such projects under
Govermment sponsorship are encouraged to express freely their professional
judgment in the conduct of the project. Points of view or opinions
astated do not, therefore, necessarily represent official Office of
Education position or policy.




The specific purpose of thié study is to identify and investigate
in detail those BASIC dialects éhat would form 2 set in whiéh ‘
translatability would be high if reasonable programmié restrictions
are imposed. Only BASIC dialects that are interactive have been
studied, More than twenty BASIC dialec;a are examined in this study.
Some of the dialects are immediately transportable from one computéf
in a manufacturer's liﬁé to another, e.g., the XEROX ﬁASIC runs 6n the
Sigma 5, 6, 7, 8, and 9. Also, several BASIC dialects are upward
compatible on computers in the same line, e.g., thélBASIC dialect on
the Hewlett Packard ZOﬂOB will run on tﬁe‘ZOOOC, 2000E, and 2000F., TFor
most dialects, some translation must be done if a program written in the
BASIC of oné Eomputer is to be run on a gecond computer. This study
was motivated by the desire t6 produce readily translatable conversational
1anguage:in§eractive programs for computer-assisted data analysis aud
decisionLé;iing in-an educaéional eﬁviroﬁment. The conclusionsIOf the
study will, however, apply quite generally since tﬁé'aforementioned
applications are very demanding in terms of text handling capability,

computational power, and formatting.

Inmportant Prograrming Capabilities

There are four programming capabilities that should be present if a

- project of any magnitude or.ﬁomplexity is to be undertaken. The first

of these is computatiunal ability and preeision. Of the more than twenty

dialects examined, all were iound'to provide at least six digits of

LT

accuracy and to support the basic arithmetic operations plus exponentiation.

" Some dialects proﬁided.accuracy of up to 15 or 16 digits. Obviously,

dialects with only six digit accuracy will not be useful in many
geientific applications. Also, there was a large discrepancy as to the

largest and smallest absolute number allowed. The smallest maximum



gbsolute number was approximately 1038 while the largest minimum number
was approximately 10—38.‘ For a translatable systemr the questions‘of
accuracy and precision will need to be considered_cﬁrefully. A system
can only be.trgﬁsla;ed-fo dialects that provide the needé& ﬁccurﬁcy.
A second necessary ;apability of any dialect is that it has
the abiliky to execute 2 program of the desired size. This may be
aﬁcomplished in several wayﬁ. One method invelves mass partition size.
That is, a user is allowed as large a partition as 1is necessary for his
task and is swapped in and ou£ of coré with many other users. This method
Imay substantlally add to cost and execution timé. Further; when th;s
method is ﬁsed, a system that uses a monifor to sequéntially execute
several prog}ams 1g not very feasible, since all the programs and the
monitor must ramaiﬁ in core. In these circumstances, the user would
load and execute each program independently. Such a procedure results
in a tolerable in;onvenience.
A second method that is used by many dialects is program chaiiing!
“This Fethod allows the user to fit a very large program into.a small
partition by dividing the program into small segments and executing them
separately in logical succession. IThere are two kinds of program chaining.
The first cglls fof a complete overlay of the progfam in core, and the
second, a chaining in which thé user may specify where the overlay may
'begin.- |
The third method for accomplishing the execution of a large program
is througﬁ the use of external subroutine calls. Iﬁ this proceduré, the
user calls a gubroutine that is maintgined as a separate file, After 1tj
is executed, itg core is released thus allow}ﬁé additionél portions of

the program to be called into core without destroying existing code.

There are some BASIC dialects such as IBM-CPS~BASIC, NCR—CENTURY-}QO-BASIC 1,




kN

and DEC-PDP 8-BASIC (except EDUSYSTEM 25 and 50) which only allow 2
fixed ared of core and doinot permit-the user any ;f the gbove options
for increasing the gize oflthe prégram to be executed. Thesé dialects
are inadequate for most complicated systems. -

The third capability that a BASIC dialect should have 1s the means

for accessing-and creating-external files. Three levels of file

capabilit; are supported by the various BASIC dialects. One group of
dialects offer no file SUPPQrt, e.g., IBM~CPS-BASIU (UNIV of IOWA),
DEC-PDF 8-BASIC (except EDUSYSTEM 25 and 50), and NCR-CENTURY 100-EASIC 1.
Presently, the NCR—CENTURY‘ZOD-BASIC has no file capability althouéh in
ié promised in the near:future- A.second group of dialects supports only
sequentiaily accessed files. Theof;tter group includes IBM-ITF-BASIC,
IBM-CALL/0S-BASIC, HONEYWELL 200-BASIC, CDC GOUU-KéDHOS—BASIC,

CDC 6000-VERSION 2-BASIC, BUERDUGHS-BSSUU-EASI&, DEC;PDP 8~BASIC
(EDUSYSTEM 25 and 50), UNIVAC 1100-BASIC, and HULTICOMP-BASiCX. A third
group of dialectg supports boéh‘sequential access and random access files.
Members of this group are HP2000F—2b00E—20000-206DB-BASIC; HPBOOO—BASIC?
XDS-~BASIC, GE MARK II-BASIC, LEASCO-RESPONSE T-RaSIC, DARTMOUTﬁ-BAéIC,
DEC~PDP 10-FDP 11-BASTC, and DATA GENERAL-BASIC. The urgency of the

need for random access files varies with the application. However, since

' some type of file support is needed for nearl} all applications, a

minimum of sequential access to files is almost a must.
External -files are used to store data that are too complicated and

time consﬁming to recompﬁte.every time they are ngedeg. Files also are

needed to pass data between chained segments of a system; if the wﬁole‘

’ partition_is overlayed} Also, files can be used to store results of

computations so that the user may decrease the size_bf kis program. In
view of this, the BASIC dialects mentioned in the second and third

groups of the previous-pa;ag:aph are more édequa;e than the dialects in

~the f;rqé group.

"o



A fourth important capability for a BASIC dialect is its

conduciveness to generating formatted output. This is accomplished by

nmeang 0f the PRINT USING statement. This Stgtement allows the user to
deeermene whatihis outpue“ielgoing £5 lock iiﬁe. ﬁe may specify-éhe
number of digits to be cutputted, the‘mode of‘output,-and the column(s)
in which theroutéut is to appear. Also, the user may speczfy carriage
cb’ﬁtrolT E.8., number of spaces between lines. Most of these may also
be accomplished using a PRINT statement. This is much less efficient,
requires more programﬁing, and cannot be aceomelished in the ease of
specifying the number of digite.‘ The PRINT USING statement has different
syntax in almost every dielece. Therefore, it should be noted that if
the PRINT USING is used; i; must be mOAified when translating from one,
e “dialect-to anothey. In some dialects the fermat to be fo;lowed is
specified in the PRINT USING statemeet itself, while in others the
format‘is in aﬁ IMA&E, FIELD, or format statement. Some dielects use
Fortran format for output, e,g., MULTICOMP-BASICXK. Others use an
example output lipe.with special characters denoting numeric output,
Not all systems have formatted output, e.g., HP2000B-BASIC, HPZDODE-BASiC
pATA GENERAL-BASIC, CDC 6000-BASIC, and UNIVAC 1100-UBASIc; although
there is an extension of the INIVAC 1100-BASIC which dees have formatted-
output capeﬁ%}ity. It is felt that a system should have a capabilitf -
for formatted output. ﬁowever, if it does.ﬁot, the PRINT sta:ement can ~
provide many of the features of the PRINT pySING command. Although the
results may not be usual’ f as appealing as with the PRINT USING statement,
they provide a satiefactory altexrnative,
The eranelation of most statemeﬁts_in a BASIC dialect.wiil be
. trivial or no translation will be neceseary. Operands, relaéions,

names, strings, arrays, funetione, input, and branching can, be translated

: with little effort or.tjme. The three difficultiee that will be




encountered are file handling, chaining or subroutine calling, and
output formatting. Since there is no exact standard for rhese. areas,
a knowledge of the statement formats in these areas can help to

‘minimize thHe expenditure of time and energy.

Comparison of Elements
- 0peratione and Relations:

All BASIC dialects use the same symbols for addition'+, subtraction 4;
multiplication *, .and divieion /. However, there is no etandard operator ’
for exponentiation. Different dialects use the following symbols: N
%% 4+, ~ . The most frequent symbol nSed for exponentiation is *t .

" If exponentiation can be avoided, translatabllity in operands is =

achieved. The string operation of concatenation is not implemented on
all dialects. For those in which it is implemented, ampersand (&), -

_plus (+), conma (,) or CATS are used. A-few of the dialects such as *i:ig
-HPZDUDB, HPZOODC,&EB?DDDE, HP2000F, HP3000, PDP 11, LEASCD, and_the UNIVAC
1100 implement the loéical operands-of AND, OR, and NOT. The PDP 11 and
UNIVAC 1100-BASIC dialects also Support logicel equipalenee {EQV-end

EQU, respeetively) exclueive or {EOR and XOR, respectively) ,and iﬁplication
(IMf). The logical relations symbols for less thenliﬁ), greater than

), not‘equal_(<>);‘leés than or equal (<=), and equal (=) are standard
across all the BASIC dialects except for the UNIVAC llDD-UBASIC dialzct -
which ‘uses LSS for less than, GRI for greater than, NEQ for not equal,

LEQ for less than orlequal, and EQU for equal. The logical relation .

_ greater than or equal (>=) is standard across all BABIC dialects except

-

for the UNIVAC 1100 and BONFYWELL ZOD-BASIC dialects which use the symbola

CEQ and =>,_respectively.



Names: -

In the BASIC Prggramming language there can be up to five types of
yariable names, These are.numeric v%riable némes, string variable names,
intgger variable names, and user definéd function names. Alnumeric
‘variable name should be either a letter or a letter followed by a single

- ' igit. While the IBM-BASIC dialects allow the gpecial charactérg'of S,
@, and ¥ to‘be used anywhere a letter may be used, and IBM-CPS—BASIC
allows a single letter or a letter followe& by another letter or a
number, for reasons of translatability these conventions should not be
used. String varisbles are used in all BASIC dialects except the
NCR-CENTURY 100-BASIC 1 and PDP 8-BASIC (exggpt EDUSfSTEM 25 and 50),

There are two:;onventioné ﬁsed for string variable names. The
first ;s a letier ;ollowed by @ $. The second is a numeric name
followed by a $. For translé;ability the first convention, a letter

Y _ followed by a §, should be used. Intgger y;riable‘hames are only allowed
in the PDP 11-BASIC and }_;Pﬁooq-BA_src__a_gg‘ should be avoided. Array variable
names should be Ednfined to a'single letter that has not ‘been used else- .
where., Some dialects aliow any numeric name to be an array'name and allow
ﬁhe'samé name to be both an array variable hdme:;nd a numeric variable name.

- In the interes£ oflfranglatab%lity, array ua;iable names shﬁuld be confined

w toa single unique letter. U‘ser defined function names are standard in

all BASIE di'alects' except the NCR. 200~BASIC and PDP 11-BASIC. .There

~ are no user defined functions in the NCR 200 éialect. The PDP 11-BASIC
allows the user defined funétion to be FN folloéed by any numeric
v#riable nane., AllﬂothgrlaASIC d;alecgs limit a user defined function
to FN followed by_a single letter. The genefai convention of FN letter

should be used.




Strings* ‘ - R
: *“vx
All BASIC dialects for the DEC-PDP 8-BAS C, (except: EDUSYSTEM 25 and 50)

- and NCRrbENTURY 100—BASIC 1 have string handling capabilities. String
constants are enc;osed in quotes. In all BASIC dialects except IEM—CPS-B&&?@,

" UNIVAC 1100-UBASIC, éﬁd XDS-BASIC, double quotes (") may b uéed. In tﬁe
ex;eptions, gingle quoees (") are ;sed. Therefore, if translation is to
take place between dialects that use the different types of string quotes,
a user must be sure to cﬁange all the quotes. Stringe vary in lgﬁgth in
the BASIC dialects. The shortest stfing length is 6 characfers and the
longest string length is over 32,000 characters. There are WO groups
of dialects, those that allow a maximum of 6 to 22 characters and those
that gl;ow string length greater than or equal to ?2. Thefdialects that
provide a string length less than or equal to 22 cﬁaracters are DEC—PDP B-
BASIC (EDUSYSTEM 25 and 50), BURROUGHS-B5500—BASIC IBM—CPS-BASIC
IBM—ITF-BASIC XDS—BASIC IBM—CALLKSGD—OS-BASIC HONEYWELL ZUO-B&SIC,
NCR-CENTURY 200—3&510, and UCSD=-B6700~BASIC. - Several of the BASIC dialectsl
provide'string processing functions from which subst;ings; positions
and lengths may be obt?ined. It should be poted that-these functions
are gog tranglataﬁle and should not be-uséd if the systgm 1s to be
translated, If string handling is hot needed, then all BASIC diaiects.
can be cons;dered. But ifF;-long string (greater than 22) {5 needed,

then transiatability is limited.

Arrays:
All BASIC dialects allow uée'of-arrays_to store data.. An array |
‘may'have, at most, two dimensions in all BASIC dialects except CDC
~ 6600-BASIC 2.0, CﬁC 6600‘R30ﬂOS-BASIC and tﬁe ﬁ?ﬂEYﬂELL 200-BASIC,

s : T
which allow three‘dimensions.. All BASIC dialects have gome limit on




the number of elements. In IBM-CPS-BASIC the limit is 500 elements
per arfay. But in most BASIC dialects it is limited only by the amount

of core that is available. Arrays that do not appear in a dimension

. (DIM) statement are dimensioned ten, or ten by té&, or ten by ten by

ten depending upon use and system, in all dialects exbept PDP 8-BASIC,

and NCR-CENTURY 200~BASIC. In these exceptions, an array must be dimen-

-sioned in order for it to be used, Depending upon.the dialect, arruays

gtart at zero or one. But in matrix (MAT) operations the zero elements
are ignored anyway. All BASIC dialects have the MAT operations addition,
subtraction, scaler multiplication, multiplication, transposition, and
inversion except the PDP 8-BASIC, NCR-CENTURY ZDD-BASiC, NCR~CENTURY 100-
BASIC 1, andlUCSD-Bﬁ706-BASIC which' do not support MAT operations. Also,
there. ig an identity matrix (IDN),/a matrix of 11 oneé {CON) and a zero
matrix (ZFER) in all dialects that have the MAT commands.  All dialects
that suppbrt the MAT commands also support a form of matrix input and
output. In additi&n, some support a file input and output for matrices.,
Whethexr an array is translatable or not depends upon several factors,
including program size and pértition size. The PDP 11-BASIC allows arrays
to regide on disc in what 1s called thelr virtual storage. But this is

the only dialect that supports a feature 1like this.

Complex Variables:
Only the HP3000-BASIC dialect allows the use of complex variables.

Therefore, this capability should be avoided.

Functions:
BASIC functions are divided into two types. The first t¥pe includes

all functions permanently resident in the system. All BASIC dizlects

“support the following system functions:



ABS _ Absolute va-l,.ula,

ATN Arctangent l

cos . "Cosine

EXP - | Eiponentiation

INT ‘ Largest integer f
LOG ‘ Common 1ogafithm | “
RND Randomization *

SGN Sign

SIN Sine !

SQR. o Squaré root

TAN Tangent (except IBM~CPS-BASIC).

The preceding system functions can be used freely. The various
dlalects also sﬁpport mary other functions‘that should be avoiaed.

The second type of function is a user defimed function. These
functioné pass one or several argumenté dépending on the dialect. Aigo,
somefﬂialects allow multiple .line definitions. To be trﬁly tranélatable,
only single line definitions that pass at most one variagle should be
- used. All BASIC dialects.allow usér defined functions except for ﬁCR-
CENTURY 200-BASIC, !

Branching: ‘ - | I-k-

Theré are four types of statements used in BASIC for branchingi
purposes. The first type of branching statement ié the FOR étatement.
This loops contro{bbetween the FOR statement and its corresponding
NEXT statement until a counter reaches a limit. Thelfofmat thar is |
used 1’ all BASIC dialects is: - ’ }

FOR variable = initial valqé T6 limit STEP increment.

NEXT variable



11

Initial value, increment and limit may be any expression in all BASIC

dialects except HP2000B and HP2000C where the initial value i3 a variable

or a constant. In all BASIC dialects the loop works in the following

manner:
1)
2)

3

_4)

The variatle is set equal to the iaitial value.
Test if variable is searched or passed the limit.
a) Execute loop if limit has not been reached.
b) Exit loop if limit has been reached.

Add increment to variable.

Go back to step 2.

In all BASIC dialects loops may be nested, but maximum nesting ﬁermitted

varies between dialects. If the user picks eight as the deepest loop that

can bYe nested, then the system will be tramslatable.

The second type of branching statement is the IF statement. There

are many forms of the IF statement in the BASIC dialects; but there is

one that holds across all dialects. That is:

IF exprzcssion logical operator -expression THEN line number.

The third type of branching statement is the GOTO statement. There

are two forms of this statement, the simple GOTO and the computed GOTO.

The computed GOTO is not implemented in all dialects and should be

avoided. The simple GOTO is standard in all dialects as:

GOTO line number.

The word GOTO may also be GO TO in some dialects but it %5 not clear

from the manuals which is accepted.

The fourth type of branching statement is the GOSUB statement.

Here there are also two forms, the simple GOSUB and the computed GOSUB.



12

The computed GOSUB is not universal and should be avoided. The simple
GOSUB has the following syntax
GOSUB line number.
I'his form is standard across all BASIC dialects.
Therefore, if the preceding forms of the branching statements are

used, the users' system will be translatable in terms of branching.

Input:

Iu the BASIC programming dialect there are two methods for accepting
input. The first methodlis the READ-DATA statement pair. These two
statements are completely translatable across all BASIC dialects. The
form of these two statements is:

READ var 1, var 2, .., var n

DATA. constant, constant, ... constant.
The only restriction is that in the DATA GENERAL-BASIC, CDC 6000=-KRONOS-
BASIC, CDC 6000-VERSION 2-BASIC, and the PDP B-BASIC (except EDUSYSTEM
25 and 50) do not allow string variables or qﬂpgtants in the READ or
DATA statements. The next read position ip the data list can be reset
to the beginning using the RESTORE command in all BASIC dialects except
DARTMOUTH=-BASIC which uses the RESET statement.

The second method for accepting inmput is via the INPUT statement.

In BASIC the INPUT statement accepts input from the users' terminal. The
INPUT statement has the following syntax:

INPUT var 1, var 2, ... var n.
This syntax is constant over all BASIC dialects for this statement.

Thus, these statements are easily translatable,



A

13

Files:
The least translatable of all the statements are the file handling

statements. Different dialects have different methods for handling files,

In some dialects the user allocates a file name with a FILE statement, a
FILES statement or an ASSIGN statement depending upon the dialect. Other
dialects implicitly do this in the OPEN or first access. Backspacing and
rewinding of files are allowed in a few dialects. Some dlalects read
from files with an INPUT statement while others use a READ statement.
Also, PRINT and WRITE statemenis are used for writing into files in dif-
ferant dialects. Some dialects gense for end of file with an IF END
statement, others use a NODATA statement, while others use an ENDFILE
statement. File names are determined from dizlect to dialect and even
from installaticn to installation within a dialect. Therefore, file
hand;ing is not directly translatable and the program writer should

attend carefully to file input and file output statements when designing

translatable programs.

Miscellanecus:

There are several aspects of BASIC that do not fall into any of
the above categories. The first of éhese is thé range on line numbers
across the different dlalects. The maximum range found was from O to
99999999, However, all dialects except IBM-CPS-~BASIC and the PDP 8-
BASIC accept line numbers from }1 to 9999. IBM-CPS-BASIC has a range
from 1 to 999 and PDP 8-BASIC has & range from ! to 2046. Therefore,
one should use line numbers only from 1 to 9999 for tramslatability.

Unless either of the two above exceptions are to be used.



14

Another feature is comments Oor remarks; these can be fully trans-

latable if the syntax is:
REM message.

Some dialects zero all varilables before they are used, bur this
should not be taken for granted across all the dialects.

Also, certain dialects such as PDP 11-BASIC, and the HONEYWELL 200-
BASIC allow multiple statements on a single line. Tnis feature should
not be used.

The keyword LET should not be d;opped from assignment gtatements
since many of the dialects require it. Also, only one variable should

be assigned at a time. The format appears as:
LET wvar = expression.

The following three gtatements:
STOP
END

RETURN

are completely translatable when used in the above syntax. Some dialects
allow a comment to follow. This should be avoided for reasons of trans-

latability.

Summary of Rulee for Translatability
1) Avold the uge of expomertiation if possible or use + in all dialects
where it -1s permitted.
2) Lo not use logical arithmetic (OR, AND, NOT, etec.).
3) Use the following logical relatioms: <, >, <>, = <=  and >= whenever

permitted.




15

' 4) Use a single letter or a letter followed by a number for a numeric
variable name.
5) Use a single letter followed by a § for string variable names.
6) Use a unique letter for an array variable name.
7} Use FN followed by a single letter for a user defined function name.
8) Use doubles quotes (") whenever possible,
9) Decide on what length stfings are going to be allowed and translate

your system within the group your string length specifies.

10) Avoid string handling system functions.
11) Use at most two dimension arrays.
12} ©Start arrays at 1.
13} Take advantage of the MAT command where applicable.
14) Only the system functions listed should be used.
15) Use only single line user defined functions.
16) Nest loops at most eight deep.
17y Limit the following statements to the listed format.
FOR variable = varliable T0 expression STEP expression ‘
NEXT variable
IF expression-operator-expression THEN line number
GOTO line #
GOSUB line #
READ var 1, ...
DATA constant 1, ...
INPUT var 1, ...
STOP
END

RETURN




16

RESTORE

REM message

LET var = expression
18) Do not use multiple statements cn a single line.
19) Line numbers should run from 1 to 9999,
20) Do not expect the system to zero all variables.

21) Avoid integer ard complex variables.

Translatable BASIC Dialects
Most of the problems in translating one dialect to another are a
matter of changing a keyword or format. These changes can be made to
the whole program at one time using the edit features of thé system.
There are two features that must be changed or at least checked very
closely. These are the file handling and formatted output capabilities.
These are not difficult changes to make, but must be considered care- -
fully.
It was fognd that the dialects studied fell into three categories.

The firat of these categories contains those dialects that are missing
a critical element. These aré:

DEC~PDP 8-BASIC (except EDUSYSTEM 25 and 50) no files, no

capacity for chaining, gtc;

- IEM~CPS~BASIC (UNLV of -IOWA) no file capability.
NCR~CENTURY 100—BASI%_ EL files, no capacity‘for chaining, etc.’
NCR~CENTURY 200-BASIC no file capability at this time.
The second cateéory contains those dialects that only do not have
formatted ougput capability.

BURROUGHS-B5500~BASIC

CDC 6600-BASIC 2.0

CDC 6600-KRONOS-BASIC

3 DATA GENERAL~BASIC - e

ERIC | —~




17

DEC~PDP 8-BASIC (EDUSYSTEM 25 and 50)

HP2000B~BASIC
HP2000E-BASIC

UCSD-B6700-BASIC (University of California, San Diego)
UNIVAC 1100-UBASIC (Mankato State College)
Also included in this category are those dialects that issue mass

storage in place of chaining or external subroutine capability.

IBM~CALL/0S-360-BASIC

IBM-ITF-BASIC |
The third category contains those dialects vhich are preferred.

DARTMﬁUTH-BASIC

DEC-PDP 10-BASIC

DEC-PDP 11-BASIC

GE MARK II-BASIC

HONEYWELL 200-BASIC

HP2000C~BASIC

HP2000F-BASIC

HP 3000-BASIC

LEASC(- BASIC

MULTIC,MP~BASICX (UNIV. OF MASS., AMHERST, CDC-3600)

XDX~BASTC
Therefore, following the recornended translatability rules, a userlshould

. be able to obtain a system that is translatable with a minimum of effort
and time within the third category and translatable with greater difficulty
and expense in the second category.
The information provided above is a synopsis of several extensive

charts comparing the above dialects. These charts are available from
the author. All information was obtained from manufacturers manuals

and is subject to change. It can clearly be seen that BASIC translat~

ability is a fact and can be performed easily if a few rules are followed.



