This document is one of a series of manuals designed to provide enlisted men with background information that will be useful in preparing for advancement in rating and necessary in the proper performance of their duties. The manual serves as an aid for enlisted men who are preparing for advancement to Gunner's Mate Missiles 1 and C and covers the areas of missile handling and storing, missile launching systems; loading, unloading and dud-jettisoning; electricity and electronics; hydraulics in missile launching systems; pneumatic equipment and components; ammunition and magazines; ballistics, fire control and alignment; maintenance, adjusting, repair and overhauling; administration and supply; and safety. Illustrations, diagrams, and a subject index are included. (AG)
GUNNER'S MATE M 1 & C

NAVAL TRAINING COMMAND

RATE TRAINING MANUAL NAVTRA 10200-B

FILMED FROM BEST AVAILABLE COPY
PREFACE

This is one of a series of Rate Training Manuals designed to provide enlisted men with background information that will be useful in preparing for advancement in rating, and necessary in the proper performance of their duties. This course was written to serve as an aid for enlisted men of the U.S. Navy and the U.S. Naval Reserve who are preparing for advancement to Gunner's Mate Missiles 1 and C. Appropriate sections of the Manual of Qualifications for Advancement, NAVPERS 18068-C, were used as a guide in selecting the contents of this text.

This book was prepared by the Naval Training Publications Detachment, Washington, D.C. for the Chief of Naval Training. Special credit is given to the Naval Ordnance Systems Command, Washington, D.C.; the Naval Examining Center, and the Service School Command, U.S. Naval Training Center, Great Lakes, Illinois; for their assistance in technical review of this text.

Revised 1972

Stock Ordering No.
0502-051-0010

Published by
Naval Training Command

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON, D.C.: 1973
THE UNITED STATES NAVY

GUARDIAN OF OUR COUNTRY

The United States Navy is responsible for maintaining control of the sea and is a ready force on watch at home and overseas, capable of strong action to preserve the peace or of instant offensive action to win in war.

It is upon the maintenance of this control that our country's glorious future depends; the United States Navy exists to make it so.

WE SERVE WITH HONOR

Tradition, valor, and victory are the Navy's heritage from the past. To these may be added dedication, discipline, and vigilance as the watchwords of the present and the future.

At home or on distant stations we serve with pride, confident in the respect of our country, our shipmates, and our families.

Our responsibilities sober us; our adversities strengthen us.

Service to God and Country is our special privilege. We serve with honor.

THE FUTURE OF THE NAVY

The Navy will always employ new weapons, new techniques, and greater power to protect and defend the United States on the sea, under the sea, and in the air.

Now and in the future, control of the sea gives the United States her greatest advantage for the maintenance of peace and for victory in war.

Mobility, surprise, dispersal, and offensive power are the keynotes of the new Navy. The roots of the Navy lie in a strong belief in the future, in continued dedication to our tasks, and in reflection on our heritage from the past.

Never have our opportunities and our responsibilities been greater.
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aiming higher</td>
<td>1</td>
</tr>
<tr>
<td>2. Missile handling and stowing</td>
<td>16</td>
</tr>
<tr>
<td>3. Missile launching systems</td>
<td>51</td>
</tr>
<tr>
<td>4. Loading, unloading, and dud-jettisoning</td>
<td>82</td>
</tr>
<tr>
<td>5. Electricity and electronics</td>
<td>115</td>
</tr>
<tr>
<td>6. Hydraulics in missile launching systems</td>
<td>150</td>
</tr>
<tr>
<td>7. Pneumatic equipment and components</td>
<td>205</td>
</tr>
<tr>
<td>8. Ammunition and magazines</td>
<td>229</td>
</tr>
<tr>
<td>9. Ballistics, fire control, and alignment</td>
<td>253</td>
</tr>
<tr>
<td>10. Maintain, repair, adjust, test, overhaul</td>
<td>297</td>
</tr>
<tr>
<td>11. Administration and supply</td>
<td>325</td>
</tr>
<tr>
<td>12. Safety</td>
<td>357</td>
</tr>
<tr>
<td>INDEX</td>
<td>380</td>
</tr>
</tbody>
</table>
This rate training manual is designed to help you meet the occupational qualifications for advancement to Gunner’s Mate Missile First and Chief. Chapter 2 through 12 deal with the technical subject matter of the Gunner’s Mate Missile rating. The present chapter provides introductory information that will help you in working for advancement in rate. It is strongly recommended that you study this chapter carefully before beginning intensive study of the chapters that follow.

REWARDS AND RESPONSIBILITIES

Advancement in rate brings both increased rewards and increased responsibilities. The time to start looking ahead and considering the rewards and the responsibilities of advancement is right now, while you are preparing for advancement in rate or GMMC.

By this time, you are probably well aware of many of the advantages of advancement in rate—higher pay, greater prestige, more interesting and challenging work, and the satisfaction of getting ahead in your chosen career. By this time, also, you have probably discovered that one of the most enduring rewards of advancement is the personal satisfaction you find in developing your skills and increasing your knowledge.

The Navy also benefits by your advancement. Highly trained personnel are essential to the functioning of the Navy. By each advancement in rate you increase your value to the Navy in two ways. First, you become more valuable as a technical specialist in your own rating. And second, you become more valuable as a person who can supervise, lead, and train others and thus make far reaching and long lasting contributions to the Navy.

In large measure, the extent of your contribution to the Navy depends upon your willingness and ability to accept increasing responsibilities as you advance in rate. When you assumed the duties of a GMM3, you began to accept a certain amount of responsibility for the work of others. With each advancement in rate, you accept an increasing responsibility in military matters and in matters relating to the occupational requirements of the Gunner’s Mate M rate.

You will find that your responsibilities for military leadership are about the same as those of petty officers in other ratings since every petty officer is a military person as well as a technical specialist. Your responsibilities for technical leadership are special to your rating and are directly related to the nature of your work. Operating and maintaining the ship’s missile systems is a job of vital importance, and it’s a teamwork job; it requires a special kind of leadership ability that can be developed only by personnel who have a high degree of technical competence and a deep sense of personal responsibility.

Certain practical details that relate to your responsibilities for launching system administration, supervision, and training are discussed in chapter 11 of this training manual. At this point, let’s consider some of the broader aspects of your increasing responsibilities for military and technical leadership.

YOUR RESPONSIBILITIES WILL EXTEND BOTH UPWARD AND DOWNWARD. Both officers and enlisted personnel will expect you to translate the general orders given by officers...
into detailed, practical on-the-job language that can be understood and followed even by relatively inexperienced personnel. In dealing with your juniors, it is up to you to see that they perform their work properly. At the same time, you must be able to explain to officers any important needs or problems of the enlisted men.

YOU WILL HAVE REGULAR AND CONTINUING RESPONSIBILITIES FOR TRAINING. — Even if you are lucky enough to have a highly skilled and well trained missile launching force, you will still find that training is necessary. For example, you will always be responsible for training lower rated men for advancement in rate. Also, some of your best workers may be transferred and inexperienced or poorly trained personnel may be assigned to you. Or a particular job may call for skills that none of your personnel has. These and similar problems require you to be a training specialist who can conduct formal and informal training programs to qualify personnel for advancement and who can train individuals and groups in the effective execution of assigned tasks.

YOU WILL HAVE INCREASING RESPONSIBILITIES FOR WORKING WITH OTHERS. — As you advance to GMM 1 and then GMMC, you will find that many of your plans and decisions affect a large number of people, some of whom are not in your division, and some of whom are not even in the weapons department. It becomes increasingly important, therefore, to understand the duties and responsibilities of personnel in other ratings. Every petty officer in the Navy is a technical specialist in his own field. Learn as much as you can about the work of their ratings, and plan your own work so that it will fit in with the overall mission of the organization.

AS YOUR RESPONSIBILITIES INCREASE, YOUR ABILITY TO COMMUNICATE CLEARLY AND EFFECTIVELY MUST ALSO INCREASE. — The basic requirement for effective communication is a knowledge of your own language. Use correct language in speaking and in writing. Remember that the basic purpose of all communication is understanding. To lead, supervise, and train others, you must be able to speak and write in such a way that others can understand exactly what you mean.

A second requirement for effective communication in the Navy is a sound knowledge of the Navy way of saying things. Some Navy terms have been standardized for the purpose of ensuring efficient communication. When a situation calls for the use of standard Navy terminology, use it.

Still another requirement of effective communication is precision in the use of technical terms. A command of the technical language of the Gunner's Mate M rating will enable you to receive and convey information accurately and to exchange ideas with others. A person who does not understand the precise meaning of terms used in connection with the work of his own rating is at a disadvantage when he tries to read official publications relating to his work. He is also at a great disadvantage when he takes the written examinations for advancement in rate. Although it is always important for you to use technical terms correctly, it is particularly important when you are dealing with lower rated men; sloppiness in the use of technical terms is likely to be very confusing to an inexperienced man.

YOU WILL HAVE INCREASED RESPONSIBILITIES FOR KEEPING UP WITH NEW DEVELOPMENTS. — Practically everything in the Navy—policies, procedures, equipment, publications, systems—is subject to change and development. As a GMM1, and even more so as a GMMC, you must keep yourself informed about all changes and new developments that might affect your rating or your work. Some changes will be called directly to your attention, but others you will have to look for. Try to develop a special kind of alertness for new information. Keep up to date on all available sources of technical information. And, above all, keep an open mind on the subject of missile launchers and associated equipment. New types of missiles are constantly being designed and tested, and existing types of launching systems are subject to modification. If you look back over the history of missile launchers, you will find that a number of important changes have occurred, and other changes are being made constantly. New missiles have been introduced
and launching systems had to be designed or modified for them. Greater sophistication in missile guidance and control has required greater cooperation between GMMs and FTs. The addition of nuclear warheads to many of the missiles has increased the security problem and aggravated the safety problem. These changes are by no means the only ones that have occurred; they are noted here merely to indicate the variety of changes that can be expected in the field of missile systems and associated equipment.

THE GUNNER'S MATE

The Gunner’s Mate (GM) rate was first established in 1797. In May of 1864, General Order 37 established the pay grade of Chief Petty Officer. It was not until 1894, by General Order 409 that the pay grades of third class through first class petty officers were established. The GM at all rate levels became the “jack of all trades” in the ordnance field. As new gun systems were developed the need for special training and a system of shipboard billets became necessary. In July of 1903, General Order 137 established the rate's of Turret Captain first class and chief. From WWI to WWII the GM rate structure changed very little. During WWII two new rates were established; the Armourer and Powderman. The rate structure was changed again in 1947 to three new ratings: the GMM (mount), the GMA (armourer) and the GMT (turret). In 1948 all personnel in the Gunner’s Mate rating were combined into one general GM rate. Each member of the GM rating was assigned a job code number which reflected a specific type of weapon or weapon system and was used as a guide for shipboard assignments. In 1958 the pay grades of E-8 and E-9 were established for all Naval ratings. It was not until 1961 that the present GM rate structure was developed.

The Gunner’s Mate Missile Ratings

As aircraft performance (speed, maneuvering and altitude capabilities) increased the efficiency of gunfire against them decreased correspondingly. This situation lead to the development of a surface to air missile system which became operational in the fleet in 1955. In 1944 the Navy assigned development of a surface to air missile project to John Hopkins University. This project, known as “Bumblebee”, produced the Navy’s 3Ts; Terrier, Talos, and Tartar missiles.

The Terrier medium range surface to air missile became the Navy’s first operational missile system aboard the USS Boston (CA-59) in 1955. The first guided missile ship, the USS Gyatt (DDG-1), was equipped with GMLS Mk 8 and was used as a test frame for evaluating Terrier missiles and never became an operational unit of the fleet.

The long range Talos surface to air missile became the Navy’s second operational missile system aboard the USS Galveston late in 1958 and gave the fleet a missile nuclear weapon capability against aircraft.

The Tartar short range surface to air missile was the last of the 3Ts to become operational and was designed to be used aboard DDGs and DEGs.

As weaponry changed in types and complexity so did the Gunner’s Mate Rating. When guided missile systems were added to the fire power of the fleet, selected personnel of the general rating of Gunner’s Mate were given the responsibility of operating and maintaining the missile launching systems. As the missile system multiplied and became more sophisticated and the working knowledge of electricity and electronics became more extensive, the decision was made to separate the general service rating into three allied ratings. In 1961 the GM rating was split into three groups: the GMG (Guns), the GMT (Nuclear) and the GMM (Missile). Each group is now responsible for maintaining, operating, training and repairing the equipments of a specific type weapon system.

The Missile Gunner’s Mate is required to operate and perform organizational and intermediate maintenance on guided missile launching groups, and missile handling equipment; make detailed casualty analyses; inspect and repair electric, electronic, hydraulic, and mechanical systems and servosystems in missile launching systems; and supervise personnel in handling and stowing missiles and supervise wing and fin assemblymen in their duties. To obtain all the skills and technical background necessary for the maintenance, operation, and repair of guided missile launchers, the GMM must have an
extensive knowledge of hydraulics, be able to use a wide variety of tools and test equipment, and have a working knowledge of electricity and electronics as well as all explosives associated with a surface launched missile.

The separation of the ratings holds true up to and including E-7. At the E-8 and E-9 levels, the GMG and GMM requirements are combined. This means that the E-7 Gunner’s Mate M, to be advance to E-8, must be prepared to maintain the conventional weapons. An E-7 GMM, taking an examination for E-8 (GM), will be examined on qualifications expected of a GMG in addition to his own.

The GMM rating can be further subdivided into classes, each class being assigned a code number. The purpose of these codes is to assist in identifying personnel in a rating when a broad definition (such as GMM) is not sufficient to identify his special skill. These are called Navy Enlisted Classification (NEC) Codes. The codes are changed to suit the needs of the Navy. At the present time, all trainees are given NEC code numbers. Some codes are canceled and personnel in them are re-coded. For example, GM-0982 was canceled and replaced by GM-0986, Terrier, Mk 4/10. Men assigned that code are specially qualified in the Terrier missile system. A complete list of the codes is in the Manual of Navy Enlisted Classifications, NAVPERS 15105 (later revision).

CLASSIFICATION CODES

The NEC Coding system is designed to facilitate management control over enlisted skills by accurately identifying billets and personnel and to ensure maximum skill utilization in distribution and detailing. There are three types of NEC's.

1. **Entry Series.** These NEC’s identify aptitudes and qualifications not discernible from rates alone. They are used to code personnel who are not yet identified strikers or who are in training for change of rating or status. All USN or USNR paygrade E-2 and E-3 personnel, who are not designated strikers, are assigned a Rating Entry NEC of an appropriate rating within the normal path of advancement. Rating Conversion NEC’s parallel Rating Entry NEC’s but are assigned only to identify petty officers or identified strikers, who are assigned in-service training for change of rating or status under approved programs. The Entry Series NEC’s for our rating are

<table>
<thead>
<tr>
<th>Entry Title</th>
<th>Conversion NEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM-0950 Gunner's Mate (M)</td>
<td>GM-0899 Basic</td>
</tr>
</tbody>
</table>

2. **Rating Series.** These NEC’s are related to specific general and service source ratings. They are used to identify billet requirements which are not sufficiently identified by rates, and to identify the personnel who are qualified to be distributed and detailed to fill these requirements. The following is a list of the Rating Series NEC’s for our rating, showing source ratings, applicable courses, and a brief description of the jobs involved.

<table>
<thead>
<tr>
<th>Priority Number</th>
<th>NEC-0984 Terrier Missile and GMLS (MK 9) Maintenance Technician</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable Course: None</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: No new new assignment of this NEC will be made.

<table>
<thead>
<tr>
<th>Priority Number</th>
<th>NEC-0986 Terrier Missile and GMLS (MK 4/10) Maintenance Technician</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable Course: Terrier Guided Missile Launching System MK 10, Class C (A-121-0046)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority Number</th>
<th>NEC-0987 Tartar Missile and GMLS (MK 11) Maintenance Technician</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable Course: Tartar Guided Missile Launching System MK 11, Class C (A-121-0043)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority Number</th>
<th>NEC-9988 Tartar Missile and GMLS (MK 13/22) Maintenance Technician</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable Course: Tartar Guided Missile Launching System MK 13, (A-121-0044)</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1 — AIMING HIGHER

3 GM-0993 Improved Point Defense Launching System (MK 29 Mod 0) Technician
 Applicable Course: Under development

4 GM-0997 Talos Missile and GMLS (MK 7) Maintenance Technician
 Applicable Course: None
 Component NEC: GM-0998
 NOTE: This NEC is assigned to personnel after having satisfactorily demonstrated performance on GMLS MK7.

4 GM-0998 Talos Missile and GMLS (MK 12) Maintenance Technician
 Applicable Course: Talos Guided Missile Launching System MK 12, Class C (A-121-0042)

2 GM-0981 Ordnance Systems Technician
 Source Ratings: GMG, GMM
 Applicable Course: Ordnance Systems Technician, Class “C” (Number to be Assigned)
 Component NECs: Any one of: GM-0873, GM-0876, GM-0877, GM-0986, GM-0987, GM-0988, or GM-0988
 NOTES: (1) This NEC is assigned only to personnel in paygrades E-8 and E-9.
 (2) Satisfactory completion of applicable course is mandatory.

Administers the test, maintenance, and repair of Guided Missile Launching System, 5”/54 rapid fire Gun Mounts, and ASROC Launching System Mk 16 with primary concern for overall systems maintenance: Ensures that tests and interface with other component systems properly reflect readiness of sub-system, system and integrated weapons system; and supervises organization and administration of weapons department.

3. Special Series. These NEC's are not related to any particular rating. They are used to identify billet requirements which are not sufficiently identified by rates, and to identify the personnel who are qualified to be distributed and detailed to fill these requirements. Special Series NEC's may be assigned to personnel in any rating, provided they are otherwise eligible to receive the training involved. It is not practical to present all of the Special Series NEC's in this rate training manual.

Assignment Priorities

Each NEC has been assigned a priority number from 1 to 8, with priority 1 being the highest and 8 being the lowest. All Entry Series NEC's are priority 1, ensuring their assignment as primary NEC's. Because of personnel concerned (E-2 and E-3), they are always more significant than rates. All other NEC's are in consecutive priority sequence from 2 through 8. When a man is qualified for two or more NEC's, the priority number determines which NEC is primary and which is secondary. The priorities for each GMM's NEC are shown in the preceding paragraph. If a Gunner's Mate is qualified for an Ordnance System Technician (GM - 0981 NEC) and a Tartar Missile And GMLS Mk 13/22 Maintenance Technician (GM - 0988 NEC), he would be coded GM 0981/GM 0988. His primary NEC is priority 2 and his secondary NEC is priority 4. The fact that one NEC is priority 2 and another is priority 4 does not imply that the priority 2 skill is a higher level skill than the priority 4 skill. Priority numbers are based on the need to retain NEC identification in any given instance and this need varies for each rating.

TYPES OF ASSIGNMENTS

All ships that have surface to air missiles as armament or ammunition supply ships that carry surface to air missiles and shore activities where missiles are repaired, assembled, tested, and/or stored will have a GMM assigned for duty. Your duties naturally will vary according to your NEC and the type ship in which a Guided Missile Launching System (GMLS) is part of a Surface Missile System (SMS). Some large ships may
carry more than one GMI system and require a large number of GMM's. Smaller require fewer personnel. Since the number of GMMs varies according to a type ship, so does the rate level of each ship. The senior GMM aboard a large ship (DLG) could be a E-8 or E-9 where on a small ship (DDG) the senior GMM could be a E-6 or E-7. As a senior Gunner's Mate, your enlisted job code number is the primary factor in determining your assignability.

In training assignments ashore GMM's serve as instructors in the Gunner's Mate School Great Lakes, Ill.; as item writer's (E-9 Gunner's Mate) at Naval Examining Center, Great Lakes, Ill.; and as a writer of Rate Training Manuals and/or Correspondence Courses at the Naval Training Publication Detachment, Washington D.C., where texts such as this one are prepared. In fulfilling duties in training billets, the knowledge gained afloat will be put to use in preparing training material. Personnel selected for training billets are carefully chosen and are expected to be experts in specific missile systems.

In addition to training billets the GMM can be assigned duty ashore at Naval Weapons Stations where missiles are assembled and tested prior to shipboard loading.

The billets mentioned above comprise a portion of the billets ashore for GMMs. In some instances your primary duties will be military rather than technical or occupational although such assignments are seldom made for personnel in critical ratings.

This training manual includes information that is related to both the KNOWLEDGE FACTORS and the PRACTICAL FACTORS of the qualifications for advancement to GMM1 and GMMC. However, no training manual can take the place of actual on-the-job experience for developing skill in the practical factors. The training manual can help you understand some of the whys and wherefores, but you must combine knowledge with practical experience before you can develop the required skills. The Record of Practical Factors should be utilized in conjunction with this training manual whenever possible.

This training manual deals almost entirely with the missile launching systems and associated equipment installed on conventional surface ships. It does NOT contain information that is primarily related to supply ships, repair ships or tenders, or to submarines.

- Chapters 2 through 12 of this training manual deal with the occupational subject matter of the Gunner's Mate M rating. Before studying these chapters, study the table of contents and note the arrangement of information. Information can be organized and presented in many different ways. You will find it helpful to get an overall view of the organization of this training manual before you start to study it.

SCOPE OF THIS TRAINING MANUAL

Before studying any book, a good idea to know the purpose and the scope of the book. Here are some things you should know about this training manual:

- It is designed to give you information on the occupational qualifications for advancement to GMM1 and GMMC.
- It must be satisfactorily completed before you can advance to GMM1 or GMMC, whether you are in the regular Navy or in the Naval Reserve.
- It is NOT designed to give you information on the military requirements for advancement to PO1 or CPO. Rate Training Manuals that are specially prepared to give information on the military requirements are discussed in the section of this chapter that deals with sources of information.
- It is NOT designed to give you information that is related primarily to the qualifications for advancement to GMM3 and GMM2. Such information is given in Gunner's Mate M (Missiles) 3 & 2 NAVTRA 10199.

The occupational Gunner's Mate M (Missiles) qualifications that were used as a guide in the preparation of this training manual are those promulgated in the Manual of Qualifications for Advancement, NAVPERS 18068-C, Charge 1. Therefore, changes in the Gunner's Mate M (Missiles) qualifications occurring after this change may not be reflected in the information given in this training manual. Since your major purpose in studying this training manual is to meet the qualifications for advancement to GMM1 or GMMC, it is important for you to
Chapter 1—AIMING HIGHER

obtain and study a set of the most recent Gun
ner's Mate M qualifications.

Studying For The Test

Trying to read and study every manual or
publication related to Navy weapon systems is
an unrealistic and inefficient goal. There are
many OPs and OD's dealing with ordnance
equipments which are used by the GMMs during
maintenance and system upkeep. Each missile
house of each ship of different classes has a
different set of manuals which contain informa-
tion related only to a specific missile or missile
system. If every ship ordered all the OPs and
ODs for every surface missile system within the
fleet, there would be no room for missiles. The
GMM would be firing paper instead of missiles.
Since we all have a saturation point which cer-
tainly would be exceeded if we tried to study
everything, a pamphlet is produced yearly which
indicates which reference material is used as
sources for examination questions in writing an
advancement examination for all rate levels from
E-4 thru E-9. This pamphlet, NAVTRA 10052,
is available at your ! and E office.

BIBLIOGRAPHY FOR ADVANCEMENT
STUDY, NAVTRA 10052 SERIES.—The "Bibli-
ography" is the most important single item
when preparing for advancement. This pamphlet
is based on the Manual of Qualifications for
Advancement, NAVPERS 18068-C, and lists the
training manuals and other publications pre-
scribed for use by all personnel concerned with
advancement in rate training and writing ad-
vanced examinations. Thus, the Bibliography
provides a working list of material for enlisted
personnel to study in preparation for advance-
ment examinations, and this same list is used by
the item writer at the Naval Examining Center.
The first few pages of the pamphlet show the
military requirements references which apply to
all ratings. This part of the Bibliography is of
special importance at the E4/E5 levels, because
separate examinations on military subjects are
given locally at those rate levels.

Asterisks which appear throughout the listings
indicate the Rate Training Manuals whose man-
datory completion is specified by the Advance-
ment Manual or Correspondence Courses that
are mandatory. A manatory training manual
may be completed by (1) passing the appro-
priate enlisted correspondence course based on the
mandatory manual, (2) passing locally prepared
tests based on the information given in the man-
datory manual, or (3) in some cases, successfully
completing an appropriate Navy school. Note
that, as is pointed out in the Manual of Qualifi-
cations for Advancement, NAVPERS 18068-C,
all higher pay grades may be held responsible for
the material contained in publications listed for
lower rates in their paths of advancement.

RATE TRAINING MANUALS.—The rate
training and military training manuals are
written using the professional and military quals
from the Manual of Qualifications for Advance-
ment as a guide. With a few exceptions, suffi-
cient information is presented in these manuals
to cover most quals. Obviously some quals, such
as those on security, cannot be realistically
covered in a rate and military training manual.
These type of quals and others covered in basic
manuals, such as Blueprint Reading and
Sketching, are listed in the Bibliography by
chapter and/or article numbers so that personnel
taking advancement exams know exactly where
to look for information not covered in rate and
military training manuals.

Also, keep in mind that some of the test ques-
tions may be based on information contained in
the GMM 3/2 and Military Requirements 3/2
RTMs because you are also responsible for quals
of the lower rates. You can bet that there are
some E-5s and E-6s who wish they had given the
3/2 manuals a little more attention before the
last advancement exam.

The Advancement Examination

All of the GMM's Advancement Examinations
are written by an item writer at the Naval
Examining Center, Great Lakes, Illinois. The
item writer is responsible for constructing the
120 question professional section of the ex-
aminations, someone else usually writes the 30
military questions. The writer has a bank of
many items that have been used on previous examina-
tions, and he will use many of the items
from his bank when he constructs an examina-
tion. He will also write some new items.
The examination questions are grouped by subject matter into categories, or sections. There may be from 5 to 12 sections on a particular test. Each item is carefully checked and re-checked to make sure it is a valid item.

Unfortunately, there is an unavoidable delay built into the examination system since the Bibliography is printed and distributed about one year in advance. For example, the Bibliography for the 1973 exams was printed in the spring of 1972. As soon as the Bibliography is made available to him, the Master Chief at the Naval Examining Center, begins writing the exams for the following year. During this period of time many changes may be made to the reference publications listed in the Bibliography. These changes may invalidate some of the exam questions. However, this will not affect your examination grade.

On the day that you take the advancement exam, the Master Chief at the Naval Examining Center also takes that same test. For your benefit, he thoroughly checks every item on the examination to make sure none are outdated. Any outdated questions that he finds will not be considered when the test is graded. This has the same affect as counting all four answers correct, because the answer you pick for an outdated question is correct, no matter which one you select. Thus, you do not have to worry about test items that contain superseded information.

Two important restrictions are placed upon the item writer: First, his examination must cover all of the quals, as indicated by the Manual of Qualifications for Advancement, NAVPERS 18068-C, for the particular rate. He may also include questions that cover quals for lower rates within the GMM rating. In other words, when you take the GMMC exam you may have to answer questions that are based upon GMM 3 thru GMMC quals.

Second, his references are restricted to those listed in the Bibliography for Advancement Study, NAVTRA 10052, or the secondary references that are referred to by one of the references in the Bibliography. Lets say, for example, that somewhere in the GMM 3/2 Rate Training Manual, which is listed in the Bibliography, a reference is made to a publication which is not listed in the Bibliography, then that publication is also fair game.

GRADING THE EXAMINATION.—The Navywide Advancement Examination is graded by machine and the maximum score is 80 points. Figure 1-1 shows the bell shaped curve that is the basis for advancement examination grading.

After all of the answer sheets for a particular rate run through the machine, the average number of questions correct is assigned a score of 50 (in the middle of the curve). This means

![Graph showing the bell shaped curve for advancement examination grading.](image)
that the number of correct questions required to obtain a score of 50 will vary from test to test. Your test score then, is influenced by two factors: your own performance on the test and the performance of all of the other GMM's taking that same examination.

Once the test average (standard score 50) has been determined, the passing grade is established. Although special circumstances may require a different method of determining the passing grade, it is normally determined as follows:

- To pass the 3rd Class exam a striker must obtain a standard score of 48 (two points below the average). About 60% of all those taking the exam should pass.
- Passing the 2nd Class exam requires the man to obtain a standard score of 50 (the examination average). About one half of all those taking the exam should pass.
- To pass the 1st Class exam, a standard score to 52 (two points above average) is required. About 42% of all those taking the exam should pass.
- To pass the Chief's exam, a standard score of 54 (four points above the average) is required. About 34% of all those taking the exam should pass.

Let's say for example, that the average number of questions correct for a particular GMMC exam is 105. Then, 105 questions becomes the standard score of 50 points. For you to obtain a standard score of 54 (passing), you must answer correctly perhaps as many as 113 questions.

Notice that all along we have only talked about the total number of correct questions affecting your test score. Nothing has been said about having to pass each individual section of the exam. Many of us are led to believe that we must at least pass each section of the test. Not so. No numerical grade is even assigned to each section. For profile sheet purposes, a letter is assigned to each section to point out weak areas. This enables you to better prepare for the next exam. Of course, if you miss most of the questions in one section of the exam, it may pull your overall grade down below the passing score, but it is your overall grade that determines whether you pass or fail, not your performance on each individual section of the test. Thus, your test grade is determined by the total number of questions that you answer correctly and your relative standing among your peers—nothing else.

Multiple

The competitive advancement system, as outlined in the Advancement Manual, NAVPERS 15989, utilizes a combination of factors to accumulate a final multiple for each candidate. The factors, which recognize the candidates knowledge, performance, and seniority, contribute to the final multiple. All personnel in each applicable pay grade, for each rating in the Navy, who have passed the most recent Navy-wide advancement examination are arranged in order of their final multiple, from the highest to the lowest. Advancements are then authorized to fill vacancies on the basis of final multiple achieved.

The final multiple system was revised and became effective with the August 1972 Navy-wide Advancement Cycle. The factors and their associated maximum points comprising the competitive Navy-wide advancement final multiple are as follows:

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>MAXIMUM CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination Score</td>
<td>80</td>
</tr>
<tr>
<td>Performance (Evaluations)</td>
<td>50</td>
</tr>
<tr>
<td>Length of service (Years)</td>
<td>20</td>
</tr>
<tr>
<td>Service in Pay Grade</td>
<td></td>
</tr>
<tr>
<td>(Years x 2)</td>
<td>20</td>
</tr>
<tr>
<td>Medals and Awards</td>
<td>15</td>
</tr>
<tr>
<td>PNA Points</td>
<td>15</td>
</tr>
</tbody>
</table>

Two substantive changes have been made to the awards factor.

1. Unit commendations will no longer be creditable. Holders of the following awards, who have previously received multiple credit for these awards, may not claim further multiple credit.

 - Presidential Unit Citation
 - Navy Unit Commendation
 - Navy Meritorious Unit Commendation
2. A letter of commendation awarded to you will be creditable to the awards factor of final multiple. Generally, circumstances which would be the subject of a letter of commendation consist of noteworthy commendable accomplishments beyond the usual requirements of duty, or exceptional displays of energy, judgement, or initiative. You will be credited with one point for each letter of commendation in this category up to a maximum of two points provided:

 a. The letter of commendation is signed by a flag officer or officer senior to, and in the chain of command of, your commanding officer/officer in charge.

 b. The date of the letter is subsequent to 1 April 1971, and dated prior to the administration date of the Navy-wide examination for which credit is desired.

 c. The letter of commendation was awarded to you while in present pay grade, and you have maintained continuous active service in present pay grade subsequent to the date the commendation was delivered. Therefore, if your service in rate is interrupted by reduction or discharge and ensuing broken service, you will not receive credit for letters of commendation earned prior to the interruption. Also, you will only receive credit for letters of commendation earned while serving in the pay grade immediately below the grade for which you are being examined.

A new factor PNA (passed but not advanced) points, is now included in the final multiple of the competitive Navy-wide advancement system. In February 1972, the U.S. Naval Examining Center started assigning PNA points to all Navy-wide examination participants who passed the examination but were not authorized advancement due to quota limitations. These points are shown on your profile card which is updated during each examination cycle.

PNA points awarded as a result of previous advancement examination cycles (subsequent to February 1972) will be automatically credited to each individual’s final multiple, by the Naval Examining Center. These points will be creditable toward the individual’s most recent five of the last six Navy-wide advancement cycle. Accumulation of the PNA points for an individual candidate is limited to three (3) points (1.5 for exam score, 1.5 for performance) per advancement cycle to a maximum of 7.5 for exam score and 7.5 for performance mark for a total combined maximum of 15 points. In determining the cumulative total PNA points, “the most recent five” includes examinations failed or those where the results were assigned a BUPERS or command requested invalidation or other special category which warrants processing similar to a “fail.” The individual, of course, is not awarded PNA points when he fails the test. The “most recent five” does not, however, include examinations in which the individual did not participate (no show). Also excluded are those special categories where fairness to the individual dictates a processing similar to the “no show” category. The procedure used in processing a “no show” accounts for reemployment of the “last six Navy-wide advancement
cycles. This means that subsequent to the February 1974 advancement cycle, an individual who does not participate in one of the last six Navy-wide advancement cycles may still accumulate the maximum credit of 15 PNA points based upon the five examinations in which he participated. However, should the member fail to participate in two or more of the last six examinations, he cannot possibly accumulate the maximum points authorized for the PNA factor.

The award of PNA points to an individual is contingent upon his participation in an examination resulting in a passed but not advanced status. The crediting of PNA points to the individual’s final multiple requires that he participate in a subsequent examination for the examination rate for which the PNA points were awarded him. For example, let’s say a GM2 took the GM1 examination for the first time in August 1972. If he passed the test, then he would be awarded PNA points according to his relative standing in examination score and performance mark average. These points were not considered in his August 1972 final multiple, but they will be added to his multiple on the February 1973 examination. PNA credit is not authorized in cases where the individual’s examination rate is other than the rate which constitutes the correct path of advancement for his present rate. Therefore, anyone undergoing rating conversion may not retain PNA points awarded for the rate from which he is converting.

Figure 1-2 through 1-6 show Examination Profile Information sheets as they might be returned to a man who takes several advancement examinations without being advanced.

In figure 1-2, Petty Officer Appleton’s profile information reveals that he passed the examination (with a standard score between 60 and 69). Regrettably his overall final multiple was 2.11 below the minimum required for advancement to HT2 as a result of the Series 60 Navy-wide examination. The Series 60 examination was the regular February 1972 Navy-wide advancement cycle. Petty Officer Appleton has been awarded PNA points which will be creditable toward his final multiple in a future examination. The information on the projected PNA points line indicates that from this Series 60 (S60) examination, Petty Officer Appleton received an award of 1.0 PNA points for his relative standing on the written examination. Also, he received 1.5 NPA points for performance standing which, in his case, was within the top 25 percent performance-wise of those members who participated in the Series 60 examination for HT2.

Figure 1-3 reveals that Petty Officer Appleton maintained the recommendation of his commanding officer as is evidenced by his participation in the August 1972 (Series 61) Navy-wide examination for HT2. Again he passed the examination and ended up short of the minimum final multiple required for advancement, even with 2.5 PNA points (from the February 1972 exam) which are included in his final multiple of 130.02. The projected PNA points line now reveals that Petty Officer Appleton has been awarded 0.5 for his relative exam score and 1.0 for performance mark average in the way of PNA points from the August 1972 Navy-wide examination.

In figure 1-4, even with 4 PNA points from the February and August 1972 examinations which are now included in his final multiple of 131.52, Petty Officer Appleton is still shy on minimum multiple.

He has also received an additional award of 2.5 PNA points which will make him very competitive in the next Navy-wide examination.

As projected in figure 1-5 Petty Officer Appleton failed the Series 64, August 1973 examination. Petty Officer Appleton isn’t awarded any PNA points on the projected PNA points line for this examination. Remember! Performance PNA points also only go to those who pass the examination. Petty Officer Appleton still has the 6.5 PNA points awarded him for his participation in the Series 63, 61 and 60 examinations. Notice also that final and minimum multiples are not shown since these multiples are only displayed when the man passes the examination.

In figure 1-6 Petty Officer Appleton is back on track. He passed the Series 66, February 1974 HT2 exam. In addition to other multiple factors such as length of service and service in pay grade added to his final multiple score, Petty Officer Appleton has 6.5 PNA points included in his 132.32 final multiple for the S66 exam. If he had passed the S64 exam and picked
DEPARTMENT OF THE NAVY
NAVAL EXAMINING CENTER
GREAT LAKES, ILLINOIS

FROM: COMMANDING OFFICER
TO: APPLETON CRABBY 919-23-2473 HT3 HT2
60-FEB-72 1234-1236-11

SUBJ: EXAMINATION PROFILE INFORMATION

PROJECTED PNA PTS. S60-1.0/1.5

SERIES/DATE
APCDCAPC
60-FEB-72

1234-1236-11

THE INFORMATION PROVIDED BELOW IS A PROFILE OF YOUR RELATIVE STANDING WITH ALL OTHERS IN YOUR RATE IN EACH SUBJECT-MATTER SECTION. THE INFORMATION IS TO BE USED WITH THE SUBJECT-MATTER IDENTIFICATION SHEET FOR THE EXAMINATION SERIES INDICATED. STANDINGS ARE BASED ON OVER 90% RETURNS; NO SIGNIFICANT CHANGE WITH ALL RETURNS IN.

EXAMINATION STATUS

<table>
<thead>
<tr>
<th>EXAMINATION STATUS</th>
<th>YOUR FINAL MULTIPLE</th>
<th>MINIMUM MULTIPLE REQUIRED</th>
<th>SECTION</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td>127.52</td>
<td>129.63</td>
<td>STANDING</td>
<td></td>
<td>001</td>
</tr>
</tbody>
</table>

COPY TO SERVICE RECORD

<table>
<thead>
<tr>
<th>CODE INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (Superior) upper 10%</td>
</tr>
<tr>
<td>E (Excellent) upper 20%</td>
</tr>
<tr>
<td>HA (High Average) upper 40%</td>
</tr>
<tr>
<td>A (Average) middle</td>
</tr>
<tr>
<td>LA (Low Average) lower 40%</td>
</tr>
<tr>
<td>L (Low) lower 30%</td>
</tr>
<tr>
<td>P (Poor) lower 20%</td>
</tr>
<tr>
<td>VP (Very Poor) lower 10%</td>
</tr>
</tbody>
</table>

181.38-60

DEPARTMENT OF THE NAVY
NAVAL EXAMINING CENTER
GREAT LAKES, ILLINOIS

FROM: COMMANDING OFFICER
TO: APPLETON CRABBY 919-23-2473 HT3 HT2
61-AUG-72 1234-1236-11

SUBJ: EXAMINATION PROFILE INFORMATION

PROJECTED PNA PTS. S61-0.5/1.0 S60-2.5

SERIES/DATE
APCDCAPC
61-AUG-72

1234-1236-11

THE INFORMATION PROVIDED BELOW IS A PROFILE OF YOUR RELATIVE STANDING WITH ALL OTHERS IN YOUR RATE IN EACH SUBJECT-MATTER SECTION. THE INFORMATION IS TO BE USED WITH THE SUBJECT-MATTER IDENTIFICATION SHEET FOR THE EXAMINATION SERIES INDICATED. STANDINGS ARE BASED ON OVER 90% RETURNS; NO SIGNIFICANT CHANGE WITH ALL RETURNS IN.

EXAMINATION STATUS

<table>
<thead>
<tr>
<th>EXAMINATION STATUS</th>
<th>YOUR FINAL MULTIPLE</th>
<th>MINIMUM MULTIPLE REQUIRED</th>
<th>SECTION</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td>130.02</td>
<td>135.68</td>
<td>STANDING</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COPY TO SERVICE RECORD

<table>
<thead>
<tr>
<th>CODE INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (Superior) upper 10%</td>
</tr>
<tr>
<td>E (Excellent) upper 20%</td>
</tr>
<tr>
<td>HA (High Average) upper 40%</td>
</tr>
<tr>
<td>A (Average) middle</td>
</tr>
<tr>
<td>LA (Low Average) lower 40%</td>
</tr>
<tr>
<td>L (Low) lower 30%</td>
</tr>
<tr>
<td>P (Poor) lower 20%</td>
</tr>
<tr>
<td>VP (Very Poor) lower 10%</td>
</tr>
</tbody>
</table>

181.38-61

12
Chapter 1—AIMING HIGHER

DEPARTMENT OF THE NAVY
NAVAL EXAMINING CENTER
GREAT LAKES, ILLINOIS

FROM: COMMANDING OFFICER
TO: APPLETON CRABBY

SERIES DATE: 63-FEB-73
APC: 1234-1236-11

SUBJ: EXAMINATION PROFILE INFORMATION
PROJECTED PNA PTS.: S63-1.0/1.5 S61-1.5 S60-2.5

EXAMINATION STATUS

<table>
<thead>
<tr>
<th>FINAL MULTIPLE</th>
<th>MULTIPLE REQUIRED</th>
<th>SECTION</th>
<th>STANDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td></td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

COPY TO: CODE: 001
SERVICE RECORD: INTERPRETATION:

SERIES DATE: 64-AUG-73
APC: 1234-1236-11

SUBJ: EXAMINATION PROFILE INFORMATION
PROJECTED PNA PTS.: S64-FAIL S63-2.5 S61-1.5 S60-2.5

EXAMINATION STATUS

<table>
<thead>
<tr>
<th>FINAL MULTIPLE</th>
<th>MULTIPLE REQUIRED</th>
<th>SECTION</th>
<th>STANDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAIL</td>
<td></td>
<td>VP</td>
<td>P A HA</td>
</tr>
</tbody>
</table>

COPY TO: CODE: 001
SERVICE RECORD: INTERPRETATION:

Figure 1-4.—Exam Series 63 Profile Sheet.

Figure 1-5.—Exam Series 64 Profile Sheet.

13
Advancement Opportunities for Petty Officers

Making chief is not the end of the line as far as advancement is concerned. Proficiency pay, advancement to E-8 and E-9, advancement to Warrant Officer, and advancement to commissioned officer status are among the opportunities that are available to qualified petty officers. These special paths of advancement are open to personnel who have demonstrated outstanding occupational ability, the highest order of leadership and military responsibility, and unquestionable moral integrity.

Proficiency Pay

The Career Compensation Act of 1949, as amended, provides for the award of proficiency pay to designated enlisted personnel who possess special proficiency in a military skill. Proficiency pay is given in addition to your regular pay and allowances and any special or incentive pay to which you are entitled. Enlisted personnel in pay grades E-4 through E-9 are eligible for proficiency pay. Proficiency pay is allocated by ratings and NECs, with most awards being given in the ratings and NECs which are designated as critical. The eligibility requirements for proficiency pay are subject to change. In general, however, you must be recommended by your commanding officer, have a certain length of time on continuous active duty, and be career designated.

Advancement to E-8 and E-9

Chief petty officers may qualify for the advanced grades E-8 and E-9 which are now provided in the enlisted pay structure. These advanced grades provide for substantial increases in pay, together with increased responsibilities and additional prestige. The requirements for advancement to E-8 and E-9 are subject to change, but in general include a certain length of time in grade, a certain length of time in the naval service, a recommendation by the commanding officer, and a sufficiently high mark on the servicewide examination. The final selection for E-8 and E-9 is made by a regularly convened selection board.
Motivation

The Navy has taken great strides in improving its living standards. The food is better and even the pay has become reasonable. These factors fulfill a man's basic survival and security needs, but they are not motivating factors. We have to look elsewhere for factors that will motivate him. When we learn to recognize motivating factors and use them correctly, we will obtain better results and our subordinates will be happier in their jobs. We are all capable of performing "impossible" tasks if motivated properly.

No one has all of the answers to effective management. However, the highest degree of effectiveness is realized when management techniques are based upon the following list of assumptions:

1. People are not lazy, indifferent, uncooperative or uncreative. Work is as natural as play or rest.
2. Tight controls and threats of punishment are not the only means of getting men to work. Men will exercise self-direction and self-control toward objectives to which they are committed.
3. Every man must have a meaningful job. Without meaningful work he is bored and no use.
4. Man is a growing, learning animal who craves recognition.
5. Most men learn to accept and to seek responsibility.
6. The average man's intellectual potential is only partially utilized. Most are capable of a high degree of imagination, ingenuity, and creativity.
7. Man by his nature is gregarious. One of his basic urges is his desire to be an integral part of some group. He must feel that he is an important, contributing member of the group.

Do we, as managers, really consider the needs and desires of our subordinates? Most of us have our own preconceived ideas of what a person's needs are. We try to compare a subordinate's reaction, to various management techniques, to what we think our own reactions would be under similar circumstances. Thus, we set up a model subordinate, usually based upon ourselves, and we decide to manage according to our model's desires, and treat everyone the same—be consistent. This is entirely the wrong approach. In the first place, no two individuals are alike. We all react differently to different situations. Therefore, a good manager must know and understand his men and be flexible enough to adjust his management techniques according to the individual(s). Flexibility is a key to successful management.

Job assignments should be planned to challenge the ability of each individual. When a man masters one task, make his next one is just a little more difficult. Always keep in mind that for motivating purposes, succeeding is better than success. For example, operating a control panel during a missile firing exercise is a great challenge for a GMM striker, but once he becomes a proficient operator, his job should be changed to increase his interest. If not, he may become bored and his efficiency as a system operator may decrease. If it's not possible to change his job, explain the reasons why. Encourage competition between strikers by using a different striker on a control panel during a firing exercise. If a GMM striker is stationed outside of a missile launcher system during firing exercise, make sure that he also has an opportunity to try the job of a control panel operator. Each subordinate must be assigned some challenge no matter how large or small. Use any challenge you may think of to keep strikers interested. When a challenge is accepted by a striker, assignment of responsibility should follow. If a striker shows good leadership among other strikers, encourage him by asking opinions about daily evolutions in which they are involved and also encourage group opinions prior to and after training sessions or training exercises. Occasionally examine your management techniques and keep an open mind for new and useful methods. A good idea from a striker may make your job easier. Always listen to your "missile gang" and respect their opinions.
CHAPTER 2

MISSILE HANDLING AND STOWING

Early in your career as a GMM you learned to handle missiles from dockside to ship to stowage area, or from ship to ship. You became familiar with standard and special handling equipment, the operation of strikedown and strikeup machinery, and the equipment or tools needed for mating and checkout of the missile. General and special rules of safety as applied to missile handling were called to your attention many times, so you wouldn't forget them. You performed operational tests on the handling equipment; lubricated, disassembled, inspected, cleaned, and reassembled mechanical, electric, pneumatic, and hydraulic handling equipment.

As you advanced in rating, you not only had to know how to operate the handling equipment, but you trained others in the use of the equipment, as individuals or teams. If your missiles required wing and fin assembly, you were expected to train the teams to do the work with the speed and accuracy required for that weapon system.

If something went wrong with the electrical or electronic parts of the handling equipment, it was your responsibility as a GMM 2 to trace the trouble to its source with the use of test equipment and the aid of wiring diagrams.

What is left for the GMM 1 and C to learn regarding the handling and stowage of missiles and missile components? Planning of the work and supervision and teaching of lower rated men are important parts of your duties. To teach others, you have to have knowledge that is broader and deeper than that of those you teach. This knowledge is also necessary for intelligent planning of handling and stowage operations. From experience and study, you should know about different missiles and different ships. Your men may have had experience with only one or two types of missiles.

The lower rated men perform the routine preventive maintenance, and the simpler repairs. Adjustment, overhaul, and the more difficult repairs are the province of the GMM 1 and C. In addition to the ability to troubleshoot and repair the equipment, you must be able to plan and carry out a maintenance and repair program for the equipment.

Rules for stowage of supplies are the proper concern of the supply department or the supply officer, but the GMM must know and apply the special rules that apply to the stowage of guided missiles and their components. Because guided missiles contain explosives, the GMM needs to know the properties of explosives and the rules for handling and stowing the explosives safely. The GMM 1 and C sees to it that the weapons and their components receive the proper stowage, insisting on observance of safety regulations all through the process of handling and stowing.

LOADING AND STOWAGE PLANS

In this chapter, the loading operation discussed is that of putting the missile on the ship, whether from dockside or from another ship. Chapter 4 discusses the loading of missiles into the launcher for firing.

KNOWLEDGE REQUIRED FOR PLANNING WORK

Before you can plan a loading operation, you need to know a great deal, not only about the missile itself, but also about the ship, its handling equipment, and its stowage areas. How
Chapter 2—MISSILE HANDLING AND STOWING

much responsibility for planning will be yours depends on the size of the ship, the personnel of the ship, and other factors. On a small ship you may be the leading petty officer in the GMM rating; prepare yourself to accept responsibility.

About Your Ship

If you have been on your ship for some time, it is assumed that you have learned the location of strikedown hatches, missile elevators, missile stowage areas, and strikedown equipment. If, however, you have not had the opportunity to become acquainted with these details, you need to make an active effort to know your ship. When a loading operation is impending, you need to know whether the loading will be from dockside or from another ship. Missiles might be brought on deck by helicopter. This is information you must have in order to plan the handling of the missiles in getting them on the ship. Standard transfer at sea requires different handling equipment than transfer by helicopter.

Find out which of the stowage spaces are to be used for this particular load; then determine which elevator or strikedown equipment is best or most convenient to use.

STREAM—A method designed for transfer of missiles at sea is the missile/cargo STREAM transfer method, formerly known as FAST. Missile/cargo STREAM method maintains control in the movement of missile components from storage on the delivery ship through the intership transfer and through the strikedown operation on the combatant ship. Proper use of STREAM will ensure delivery of “go” missiles; will reduce alongside time, deck handling, and hazard to crew; and will increase heavy weather replenishment capability.

STREAM receivers installed in combatant ships are of two basic designs: the Tartar/Terrier receiver, and the Talos receiver. STREAM systems are installed on both the supply ship and the receiving ship. The system consists of three basic subdivisions: the strikeup/strikedown equipment on the delivery ship, the intership transfer equipment, and the strikeup/strikedown equipment on the combatant. Figure 2-1 illustrates the transfer of a missile by means of the STREAM method.

The basic principle of STREAM is to suspend a bare missile rigidly from a transfer-at-sea trolley and strongback, haul the loaded trolley between two ships on a tensioned highline, and capture the trolley at the combatant ship. The pickup arm of the elevator captures the trolley and missile, and after releasing the trolley, lowers the missile directly to the ship's strikedown elevator.

The three major components of the receiving unit are the receiving head, the elevator, and a kingpost. The receiving head catches and positions the transfer trolley and missile as it arrives on the highline from the sending ship. The elevator removes the missile from the trolley, then lowers it, and positions it on the strikedown elevator. The kingpost supports the receiving head, elevator, and rigging. On some ships the kingpost is installed in a fixed upright position; on others it is stowed when not in use.

The receiving units of the STREAM system are the responsibility of the GMMs. You need to know enough about it so that you know where to position your men to receive the missiles, and how to release the missile and position it on the ship's elevator or on the launcher (Tartar).

About the Weapon

The planner needs to know the number of weapons of each type to be taken aboard. If only one type of weapon is being received, the matter is greatly simplified. Handling requirements may vary widely for different weapons. You need to know the configuration of the weapon (stage of assembly in which it is received), the number of containers per weapon, the size and weight of each container (shape may be important, too), the places on the containers where attachments are to be made, and the special handling equipment to be used with each. How many men will you need for each type of weapon, and what will be their specific posts and duties? These are the things that you must find out before the loading operation begins.

Safety rules for handling of explosives are applicable to guided missiles, but there are some additional rules for handling of particular missiles. What are the rules for grounding of the missile components during handling and stowage? What are the temperature and moisture
limits of the explosive components? Do they have to be kept in the shade while waiting to be struck down?

Missiles with nuclear warheads may be delivered to the ship with the warhead installed in the missile, or the warhead and/or nuclear components may be in separate containers. Nuclear weapons in “birdcages” or other containers are the responsibility of the GMTs, but when the nuclear warhead is received installed in the missile, it is handled and stowed by GMMs. In that case, you need to know any special handling and stowage rules that apply. Consult the technical manual or OP for the missile.

Knowledge of Operation

Your experience in using handling equipment (during your years as a striker, a GMM 3, and then a GMM 2) is invaluable, and may be sufficient to enable you to manage the present situation with a high degree of efficiency. Again, it may not. A good planner does not just “hope” everything will work out all right; he checks beforehand. If there is equipment which you have not used before, find out how to operate it so you can show your men. Know the safety precautions that apply. Find out where each missile is to be stowed; this is especially necessary if you are fairly new on the ship. Considerable confusion can result, for example, if you discover after a missile has been brought down to the magazine that it belongs in a magazine at the other end of the ship. This can be particularly bad if the missiles are of the type in which the components are sent down in a specific sequence so that they will be in the correct order for assembly. If you are in charge of the handling operations, the blame for the confusion is yours. Careful preplanning prevents such mixups.

SCHEDULING OF WORK

On any ship, cooperation among divisions is necessary for a loading or offloading operation, even though the load consists entirely of missiles. The Boatswain’s Mates rig the lines and other cargo gear; the engineering department keeps the ship’s elevators in operating condition; when other material besides missiles is being loaded, the time for using certain of the ship’s gear has to be allotted. If missile loading is scheduled, let us say, for 1000, be ready with your men to swing into action, and do your work on schedule. Loading of explosives should be done in daylight hours if at all possible, and the ship’s plan for the loading will conform to this rule. Unexpected foul-ups can throw the plan off schedule. Plan your part of the work so there will not be such delays. Remember, however, that missile handling must not become a speed contest.

Usually you will have information several days in advance of the actual loading date. Have your men check the operation of the special handling equipment to be used with the missiles. If any of the equipment does not operate as it should, locate the cause of the trouble with the use of test equipment, wiring diagrams, hydraulic schematic, and trouble-shooting techniques, beginning with the simplest method. Then make the necessary repairs and adjustments. The checking of the ship’s cargo handling gear is the responsibility of the Boatswain’s Mates; but before you entrust any of your missile cargo to the gear, be sure it has been checked out for handling the weights required. It is the responsibility of you and your men to cycle the equipment for striking down the weapons, or the special gear for moving them to on-deck launchers. If the equipment does not operate properly, you must repair and adjust it so it will be ready to use on the day required. As a GMM 2 you have had some experience in locating the trouble spots in such equipment; now you must learn to make more difficult repairs on the equipment and adjust it to working condition.

SECURITY

In addition to the safety provisions that must be observed during handling of any explosives to prevent fire or explosions, provision must also be made for the security of the weapons against theft, damage, destruction, or access to enemies. Knowledge of the transfer of the weapons, of the type and number of weapons, of the design of the weapons, etc., is information that must be concealed from enemies. Access to nuclear warheads must be especially guarded against. The
commanding officer sets the security watch on the pier and on the ship. You learned about sentry and watch duties and security of classified documents in *Seaman, NAVTRA 10120-F*, in *Basic Military Requirements, NAVTRA 10054-C*, and in *Military Requirements for Petty Officer 3 & 2, NAVTRA 10056-C*. You can instruct your men in their duties when they are assigned to watch duty for security, fire watch, or other watch assignment, and ensure control of classified material.

Although the stenciled information on containers conceals any classified nature of the contents, the men handling the containers usually need to be aware of what they are handling so they will use adequate precautions. If the men who handle fuzes, for example, know that is what they are handling, they will be much more careful than if they don't know.

PLANNING SEQUENCE OF OPERATION

As soon as you know your working party assignment in the loading or unloading operation, think through the work sequence as you and your men are going to accomplish it. Roughly sketching in your plan of action on paper may be very helpful in filling in the details of the plan. Where are you going to spot your men? How are you going to manage the handling of the missile components so they will be placed in the correct order without delay or confusion? What checkouts are necessary before the missile components are struck below? How much assembly, if any, is to be performed before stowing the components? Have your men been trained for this work or will you have to schedule a practice session before the day of loading arrives? If such a session is necessary, check to be sure the men aren't already scheduled to be doing something else during the time you want them. Consult with the training officer of the division on this.

STOWAGE AREAS

Before the loading day arrives check the stowage areas that will be needed. All of them should be clean, with no material that shouldn't be there. The sprinkler systems must be in operating condition. Repair and adjust any parts that need it. Check all other firefighting systems or equipment in and adjacent to the magazines. Be sure the alarm systems are working. In addition to fire warning systems, continuous operation of a radiation detection device with an automatic alarm is required at shore stations and on submarines in spaces where nuclear missiles or weapons (or warheads) are stowed. In air-conditioned spaces, check to be sure the system is maintaining the space at the required temperature and humidity.

Some extra checkups are needed after a magazine has been painted. The areas for attaching ground wires should be clear of paint. Make sure that the holes in the sprinkler head valves and sprinkler pipes are not clogged with paint. Hooks, latches, pins, straps, and similar gear may be made inoperable by painting. Free all such fittings so they can be used. Check openings such as ventilation ducts and outlets to be sure they can be opened. Inspect tiedown, blocking and bracing gear, chocks, and other means for stowing and holding missiles and their components. Examine the movable parts of trolley conveyors, such as switches, portable tracks, and trolleys, and make sure they operate freely.

Much of the work of checking the magazines can be delegated to your men, but you must be sure the spaces are in the best condition possible. The simpler repairs may be done by lower rated men, but you need to approve the results. Make a checklist to be sure nothing is overlooked, and that the stowage areas and stowing equipment are ready to receive the cargo of missiles and components.

Radiation Monitoring and Protection

Formerly, all areas in which nuclear weapons or nuclear warheads were stowed or were worked on had to have permanently installed radiation detection equipment, and monitoring was continuous. At present, continuous monitoring for radioactivity is required only on submarines and at shore stations. Surface ships are allotted portable monitoring equipment for use in weapon spaces. Monitoring is required before entering a space containing one or more nuclear components if the space has been unoccupied for over 24 hours. Monitoring of the spaces is not required when no personnel are in the space.
Neither is it required during replenishment at sea and during strike down operations, or when weapons are transported on elevators or through passageways during an alert operation.

If there is an accident with a nuclear weapon or nuclear warhead, monitoring must be done immediately. The space in which the accident occurred must be closed off to prevent spread of contamination to other parts of the ship. Every effort should be made to move the weapon to a naturally ventilated place. All unnecessary personnel should be evacuated. If the space has access to the atmosphere, all such should be opened. The emergency ventilation EXHAUST should be opened, and after that, open the emergency ventilation AIR SUPPLY. Get out of the space as quickly as possible (the actions above should take very little time), and secure the space, then notify the appropriate personnel. The trained decontamination group, of which you may be a member, dressed in protective clothing, and each wearing an oxygen breathing mask (OBA), reenter the room and remove the source of contamination. The path to be followed must be cleared and the elevator ready.

Afterward, the elevator used and the path followed must be decontaminated.

The order in which the above actions are accomplished will differ with the location of the contamination, the severity of the radiation, and whether the radiation is detected immediately or upon preparing to enter a closed space. If the accident occurs on an open deck, the radiation will be carried away into the atmosphere; personnel need to be evacuated from the immediate

The T-290 portable air sampler is used to monitor the weapon space and the weapon. Instructions for operating it are given in Navy SWOP T290-2. As soon as they can be procured, the IC/T2-PA (fig. 2-7) or the battery operated IC/T2-PB will replace the T-290. Technical Manual for Tritium Air Monitor, Portable, Type IC/T2-PA NAVSHIPS 0969-000 6000, describes the new model, tells how to use it, and how to maintain it. The instrument is designed to detect tritium contamination in the air, but it is also sensitive to gamma radiation and to gaseous or particulate activity in the air. To use it, remove it and carry it by the carrying strap over the

Fig 2-2.—IC/T2-PA portable radiation monitoring instrument with accessories. (Carrying case, carrying strap, sniffing hose, power cord.)
The power cord supplied with it is 35 feet long, which allows monitoring of quite a wide area. Plug it into any 115-volt a-c 60-hertz single phase source, 3/4 ampere or greater. Air is drawn through the ion chamber of the monitor, the level of radioactivity is measured. The reading shows on the meter, and when the amount exceeds the normal setting, the alarm sounds. If you need to monitor a space without entering it, perhaps because of suspected high contamination, attach the "sniffing hose" to the instrument and insert it into the space.

The monitor is a delicate electronic instrument and should be handled with care, not dropped or abused in any way. If it becomes contaminated (with radiative particles) it must be decontaminated. Careful wiping of the outside with a cloth dampened with water and detergent will remove light contamination. Be careful not to get any water on the inside.

Permanently installed continuous monitoring units formerly used in nuclear weapons spaces have been ordered removed from surface ships according to NAVSHIPS instr 9650.5. Men who have been exposed to radiation must be sent to the medical department for evaluation. The effects of radiation are not noticeable, except in extreme cases as in a bomb explosion, so medical evaluation is necessary to detect and evaluate the exposure, and provide possible treatment.

The air samplers do not measure the amount of radiation, but detect if any is present. If there is a radiation leak, secure or safe the item you are working on, turn off the ventilation, get out of the magazine, and close the door. Hold your breath while doing this. Before reentering the contaminated space, don OBA or equivalent breathing apparatus, wear rubber gloves, and carry an operating T-290 or 1C-T2-PB or -PA, portable air monitor, or call the decontamination team to take care of the situation. The methods of decontamination described in your military requirements courses are applicable here, though on a smaller scale than after a nuclear attack.

The need for extreme care to avoid inhalation or ingestion of nuclear particles should be impressed on your men. Any detectable amount of tritium is potentially dangerous. Although the chances of a leak occurring in a nuclear weapon are small, the danger is ever present and you must teach your men how to act in case it happens. The reason for turning off the ventilation on shipboard is to prevent the spread of radioactive particles through the ventilation system. Where ventilation to the open air is possible (as at shore stations), activate ventilation systems and open windows.

The danger of unauthorized personnel gaining access to a nuclear weapon during an alarm incident makes it essential to secure the area quickly. Two technically trained men must enter the area as soon as possible to secure it.

Rules of Where to Stow

Most of our missiles are stowed completely assembled (except for wings, fins, etc.) in the magazine or ready service ring that is part of the missile launching system. The supplies of additional parts, such as extra electronic sections, warheads, or repair parts, have to be stowed in separate magazines and stowage compartments.

The ship's plans show the designated stowage for all the ammunition, missile, and missile components that are allotted to the ship. You should be familiar with these plans before attempting to stow the missiles and components. The magazine doors are also marked, so there should be no confusion about where to put the different explosive parts. Fuzes and detonators are stored only in the space designated for them, which must be away from other explosives, and specified distances away from electric or electronic apparatus, steam pipes, fires, etc. (Terrier fuzes are stowed in the warhead magazine.) Primers are stowed in the small arms magazine; flash signals belong in the pyrotechnic locker. The magazines for each launcher or launcher group are as nearby as possible (within safety requirements). It is part of your job to see that the missile components are stowed in the proper magazine.

If for some reason a magazine is not available when it is needed (it could be undergoing repairs, etc.), and some other place must be found to use instead, consult the "Chart of Permissible Stowages of Ammunition and Explosives," in OP 4, Volume 2, Ammunition Afloat, to determine the next best place for stowage. Study the
Chapter 2—MISSILE HANDLING AND STOWING

explanation of how to use the chart. You will not find missiles listed on this chart, but components such as boosters, JATO units, and primers are listed.

SUPPLY PRINCIPLES AND STOWAGE.—Some components have an expiration date marked on them, beyond which they are not to be used. When stowing such components, place the oldest ones nearest the front, so they will be used first. The oldest items should always be used first, even if they are not tagged with an expiration date. When a replenishment arrives, move old missile components so they will be most accessible and will be used first.

Standard supply items that you might need for repairs or replacement are stored by the supply department.

TERRIER MISSILE HANDLING AND STOWAGE

Terrier missile systems are operational on DLGs, CVAs, CAGs, CLGs, and CGNs. The number and the location of the launchers, the location of the magazines, assembly areas, and checkout areas are different for each ship. That is why you were reminded to check the location of the magazines, the hatches, and elevators to be used when preparing to load Terrier missiles on the ship.

SPECIAL PROBLEMS WITH TERRIER

Although the Terrier is not the largest nor the heaviest of our missiles, its size and weight make special handling equipment necessary (fig. 2-1). The extra length of the BT-3 booster makes special handling care essential in moving it to the mating area. A crack or strain in the propellant grain can cause missile failure through uneven burning when fired. In striking down boosters and missiles to the mating area, a booster must precede every missile through the strikingdown hatches, so they will be in the correct order of assembly. A set of complementary items must follow in order to make a complete missile. The order must be maintained throughout the strikingdown operation.

It might seem more efficient to transfer all items that require the same handling equipment before breaking out other equipment. However, the reason for requiring transfer of all parts of a missile is obvious when you give it some thought. Suppose you transferred all the missiles and boosters first because they required the same handling equipment. Should anything occur to break off the loading operation, such as a severe storm, or the appearance of an enemy, your ship might have all the missiles and boosters and the other ship all the complementary items, all equally useless when not put together. The rule, therefore, is that for every booster a missile must be transferred, followed by all the complementary parts needed to complete the missile.

Safety rules for handling high explosives and propellants must be observed during handling and strikingdown. Flash units are treated as pyrotechnic items; they must not be dropped and must not be brought into areas where they will be exposed to RF energy from radars or communication transmitters, or beams from operating missile radars.

INITIAL RECEIPT

Missile components may be received from dockside, from barges or lighters, or from another ship in transfer at sea. Replenishment by helicopter is also possible in some instances. The equipment used has to be adaptable to the method of transfer being used.

Handling Equipment Needed

On board the supply ship or at the supply depot, the assembled missiles and boosters are stowed in Containers Mk 199 and Mk 200, respectively. Before transfer to a combatant ship, they are removed from their containers and attached to handling dollies, also called transfer dollies (fig. 2-3). Sometimes a missile or booster and its dolly are sealed into a waterproof wrap, especially for transfer at sea. After the missiles and boosters have been struck below on the receiving ship, the dollies have to be returned to the supply ship (or depot).

Wherever the STREAM system is available, the unpackaged missile is attached to the strongback on the trolley, which carries the missile to the receiving ship. The missile and the booster are sent separately, to be mated on the receiving
ship. So many ships now have the STREAM system that you may never need to use the handing dolly.

Wings and fins are packed in reusable metal containers, which have to be returned. Other complementary items, such as warheads, exercise heads, fuses, warhead boosters, and code plugs, are transferred and stowed in their containers. They may be handled with skip boxes, or special handling cradles, but are never rolled or slid.

TRANSFER AT SEA.—For underway transfer from an ammunition ship (AE), both Modified housefall (fig. 2-4) or the burtoning method, and constant-tension highline rigging (fig. 2-5) are required if the STREAM system is not installed on both ships. The modified housefall rig may be used to land the boosters and missiles on the topside replenishment area, though a tensioned highline or burtoning are preferable. The highline is used to land the complementary items in their skip boxes on the aft deck. Boosters and missiles are received at specified landing areas for subsequent strike-down through the port and starboard strike-down hatches near the after end of the 02 level (on cruisers). The lines are tended by cable winches on the ammunition ship deck. As each missile or booster on its dolly is landed on deck, it is snaked over to the struckown elevator and is struck down. The empty dollies are returned to the ammunition ship by reversing the handling process. The only dolly with its load must be kept under control at all times. This precaution is especially necessary in rough seas.

Constant tension on the highlines wires is maintained by a winch on the ammunition ship or by a counterweight or ram tensioner. Loads are placed in a skip box hooked to a trolley block (fig. 2-5) on the wire highline. When the skip box is lowered to the ship's deck, the contents are removed, and the empty skip box is returned to the AE by the highline.
Chapter 2—MISSILE HANDLING AND STOWING

Figure 2-4.—Modified housefall transfer method.

Figure 2-5.—Constant tension highline transfer method.

33.199(94)B

33.199(94)C
The work of handling the lines and winch may all be done by the boatswain’s crew, but a trained and experienced GMM needs to be at hand to ensure that the explosive components will be handled with proper care. Skip boxes and dollies must be lowered gently to the deck. No smoking is permitted while any ammunition is being handled. The PO in charge should have all his men leave their smoking materials, including lights and matches, at a specific check point before coming to the loading area. Lead the way by putting yours there first.

TRANSFER FROM DOCKSIDE LIGHTER, OR BARGE.—A dockside or floating crane is used to transfer boosters and missiles on their transfer dollies. The complementary items may be carried aboard manually or landed aboard by crane. Subsequent handling is the same as in transfer at sea. While handling explosives on a pier or in a building, ship’s personnel are under the authority of the commanding officer of the ordnance facility.

Safety Precautions in Handling

Several safety precautions have been mentioned in connection with missile handling. The general precaution against rough handling is specific for various units and conditions. It might be called the “5-foot—1-foot” rule; it applies to all items containing explosives, propellants, and/or pyrotechnics. If dropped 5 feet or more while enclosed in a container or on a transfer dolly or cradle, such items must not be used to stowed, but must be returned to a depot. These items are missiles, boosters, warheads, sustainers, detonators, fuzes, S and A units, and flash signals. If dropped when not in their container, a drop of 1 foot or more is sufficient to require their return to a depot. If a loaded skip box is dropped to the deck a distance of 5 feet or more, all its contents must be returned to a depot. Do not permit loaded transfer dollies to bump bulkheads or railings or drop to the deck; use a steadying line if necessary.

Firefighting equipment should be readied on deck before beginning the handling operation.

Since the tragic fire on the USS Oriskany, the rules for handling of explosive items, especially pyrotechnics, have been reexamined. New, stricter and more comprehensive rules have been promulgated to help prevent such catastrophes in the future. Adding new rules, however, will not prevent accidents. Only strict adherence to the rules will achieve that. You not only need to observe that your men obey the rules, but you need to strive constantly to get your men to believe in the need for the rules.

When planning movement of missiles and components on deck, plot the movements to avoid RF radiation. The beams from radars and other electronic transmitting equipment can cause detonation of some components, and they are also harmful to people. The commanding officer will order inactivation of all possible radar and electronic equipment during ammunition handling, but usually some units have to be kept operating at all times. Flash units are very susceptible to detonation by RF radiation.

The RAD HAZ and HERO programs on the effects of radiation from electronic equipment are discussed in chapter 8.

In the magazines and stowage spaces or ready service rings, if you detect any odor of ether or nitroglycerine, report it immediately to the officer in charge. These fumes exude from double-base propellants, which are used in sustainers and boosters, and are highly combustible and also dangerous to inhale. Keep heat, sparks, and fire away from all explosive components. The Terrier warhead contains a considerable quantity of Composition B, which is a high explosive; observe the safety precautions for high explosives. Remember that a shock or blow can cause their detonation.

Strikedown

As the missile components are landed on the deck, your men must strike them below. On cruisers and destroyers, usually both port and starboard strikedown hatches are used. A transfer dolly with its missile or booster is placed on the closed hatch. The shipping band is removed from the booster at this time. When the dolly is in place over the hatch (fig. 2-6), the hatch is opened by the operator at the pushbutton station (fig. 2-7). A strikedown elevator rises beneath the dolly and latches onto the handling attachments on the missile or booster. The handling attachments are then manually released.
from the dolly and the elevator lowers the missile or booster through the hatch in response to pushbutton operation at the control panels. As soon as the load has cleared the hatch, the hatch door closes automatically. Wheel the empty dolly to the transfer line or crane for return to the supply ship.

A booster must precede a missile. From the strikedown elevator, the booster is moved to the loader rail by means of the checkout car (fig. 2-6), which is moved athwartship on rails. As soon as a missile is brought to the checkout area (by the same means), it is aligned on the rail with the booster and mated to it. The booster shoes must be engaged during alignment, and afterward for transfer to the magazine. Two or three men are required in the checkout area to manipulate the checkout car and mate the missile and booster. The table of the checkout car can be tilted and rotated as needed to align the missile with the booster. The mated missile and booster, called a round, is retracted along the loader rail to the assembly area. The checkout car is returned to carry the next unit. In the assembly area, the code plug is inserted and the sustainer on the BW-1 is mechanically armed; the sustainer arming switch of the BT-3 is set on CHECK. No operation is required with newer igniters. Any incompatible code plugs are removed and replaced by the appropriate ones for the ship's assigned guidance codes. The round is then ready to be moved to the ready service area and to be inserted in the proper tray of the ready service ring (fig. 2-8).

The step-by-step operation to be used in moving, aligning, and mating of the missile and booster is described in the OP for the launching system and the OP for the mk/mod missile on your ship. Study these and prepare a checksheet to be followed by yourself and/or your men when doing the work. The method of locking together (mating) the missile and booster varies with different mods, and the equipment of the launching system varies with the mark and mod of the system.

Before the rounds can be moved into the ready service rings, the ready service rings must be indexed so the correct round can be selected by pushbutton when it is wanted for firing or exercise. This is done by the panel operator setting the pushbuttons according to the plan. The actual arrangement of the weapons in the
Figure 2-7. Strikedown panel, GMLS Mk 9.
service ring is a tactical decision. A Terrier missile ship may carry one or two or even three types of Terrier missiles. The BW-1 type has a smaller booster, and therefore the service ring trays that are to hold BW-1 type missiles must have inserts added to them. This is considered a maintenance operation, which must be done before missiles are stowed. Make a sketch of the service rings and indicate the positions of the various weapons as planned. Then add the inserts to the trays indicated for BW-1 missiles. (There are very few BW-1 missiles left, and those are used for practice runs.)

The Assembler Panel (fig. 2-8) has a light for each tray, with colors and lettering to indicate what is loaded into the tray. The operator of the panel can select the weapon required by pushing the correct button for the tray wanted.

When the round is ready to put into the ready service rings, it can be done automatically or step-controlled. Step control requires operation of pushbuttons for each step. Automatic operation is initiated by pushbuttons on the EP-2 panel. The tray with the code designation of the round in the assembly area moves to the hoist position, the magazine doors open, and the hoist raises to the loader rail. The loader chain pawl moves the round from the loader rail onto the hoist. The hoist lowers the round into the ready service ring tray; the tray shifts the round free of the hoist; the booster shoes engage in the ready service ring structure and the magazine doors close. As each round in unloaded to the ready service ring, the lamp (on the control panel) associated with the tray goes out. The magazine for Terrier rounds is in the deckhouse (fig. 2-8) or below deck, depending on the ship installation. Each weapon must be identified by a serial number and recorded in a missile log for each missile on board. The number of the tray in which it is stored is not sufficient identification as it may be put into another similar tray when it is returned after having been taken out for checkout, maintenance, or exercise.
STRIKEDOWN OF ASROC MISSILES.—The Terrier Guided Missile Launching System Mk 10 Mods 7 and 8 stows both Terrier and Asroc missiles. It has three stowage mechanisms: Guided Missile Magazine Mk 5 Mod 12, Mod 13, and Mod 14, with ready service mechanisms, hoist mechanism, and magazine doors. Either of the two upper ready service mechanisms can store 20 Terrier missiles, or 10 Terrier and 10 Asroc missiles with adapters. The lower, or auxiliary, mechanism stows only Terrier missiles. The missile strikedown equipment is located in the strikedown and checkout area. The strikedown equipment is a NAVSHIPS installation; its operation is described in NAVSHIPS publications. Gunner’s Mate M (Missiles) 3&2, NAVTRA 10199-B contains an illustration of the Mod 7 launching system, showing Tersiers and Asrocs placed in the ready service rings. The Mod 8 is almost identical, but it has no tilting rail in its feeder system. The operational sequence of loading and unloading is the same in the two mods but because of the increased length of the loader rail in the Mod 8, it requires a longer time to complete its load and unload cycles.

Asroc rounds cannot be located next to each other in the ready service ring. Consequently, the table of assignments of missiles to the tray must be followed carefully. The actual arrangement of the missiles is a tactical decision. The number and type of missiles for loading usually is known in advance of the strikedown procedure.

Figure 2-9 shows Terrier and Asroc missiles, without the Asroc adapter. The adapters often are installed in the ready service rings at the time the system is installed. Placing the Asroc adapters in the trays of the ready service rings is not considered a part of the strikedown operation.

In addition to the adapter used with the Asroc missile because it is shorter than the Terrier, an insert is used with X or Z type Asroc missiles (practice missiles). It may be necessary to add or remove an insert.

In Asroc operations, strikedown is a step control and manual operation to load assembled missiles onto adapters and then to stow the loaded adapters on the ready service rings. In the strikedown and checkout area, a NAVSHIPS checkout car operates on rails athwartships to move the missile to positions for performing tests, checks, and adjustments. The Asroc missiles arrive on board assembled, so there is no mating process as with Terriers and Talos. An Asroc attached to an adapter rail is shown in the
Chapter 2—MISSILE HANDLING AND STOWING

text, Gunner's Mate M (Missiles) 3&2, NAVTRA 10199-B. A special Asroc adapter loader assembly is in the strikedown area for attaching the adapter to the missile before putting it on the loader. The Asroc missile is brought to the strikedown and checkout area on the strikedown car. It is aligned with the adapter by means of the adapter loading fixture, and latched into the adapter. The snubbers on the adapter are air-operated, and need to be unlocked with care to avoid casualties. Everyone must be clear of the snubbers before unlocking. After the missile is attached to the adapter, the strikedown-checkout car is stowed and the missile with adapter taken to the magazine via the loader.

STRIKEDOWN OF COMPLEMENTARY ITEMS.—The complementary items include wings, fins, after control surfaces, warheads, warhead boosters, fuzes, exercise heads, and miscellaneous missile spare parts.

The WINGS and FINS or BOOSTER FINS are hand carried away from the main deck landing area and stacked in their reusable containers in a convenient place until they can be unpacked. After unpacking, the containers are returned to the supply ship (or depot) and the wings and fins are stacked in the racks in the assembly area. If the number of personnel available is sufficient, all this should be done at the time of strikedown to avoid pile-up of material.

The WARHEADS or EXERCISE HEADS that are not assembled to Terrier missiles while they are stowed, are sent to the warhead magazine below decks. The strikedown elevators are used, but these must have special handling cradles temporarily installed. One at a time, each warhead (or exercise head) in its container is lowered to the checkout car. The car moves within range of an overhead bridge crane, which mounts a birail trolley hoist with an attached J-bar. The J-bar adapter is attached to the upper end of the container, and the container is lifted clear of the cradle and checkout car and placed on a dolly on the component parts hoist and lowered to the warhead magazine, where it is stowed. The checkout car with the cradle on it moves back up to its position under the strikedown elevator, ready for the next load.

The FUZES and WARHEAD BOOSTERS in their containers are stacked out of the way until completion of missile-booster strikedown. Then they are struck down to the warhead magazine by means of the missile component parts hoist. The fuzes are placed in fuze stowage racks in the warhead magazines; the warhead boosters and S and A devices have bins in the warhead magazine.

NONEXPLOSIVE complementary items, other than wings and fins, are stacked aside in their containers, and then struck down to the second platform and stowed in the missile component storeroom. Miscellaneous tools and parts are placed in this magazine. Normally, insert components are not stowed in the same compartment with explosive or flame-producing components. If lack of space makes mixed stowage necessary, specific approval must be obtained from the operational commander. Flammable material may not be stowed in any magazine.

DEPOT HANDLING AND STOWAGE

At depots, missile parts are received in sealed containers from the manufacturers. They are placed in receipt stowage, according to the type of component. Sustainers, boosters, and auxiliary power supply gas generators and igniters are placed in the smokeless power and projectile magazines. The warhead, destructor charge (if any), fuze booster, and the safety and arming (S & A) device are placed in a high explosive magazine. Flash signals are stored in the pyrotechnic magazine. Inert missile components are stored in the guided missile service unit checkout building.

On shipboard, the work of GMMs is focused on care and operation of the launching systems. Note, however, that one of your duals requires the E-7 to have a knowledge of methods of handling and stowing of missiles ashore. Few assignments of GMMs are made to ammunition depots, but Naval Weapons Stations require many GMMs.

The volumes of OP 5 are pertinent references: Volume 1, Ammunition and Explosives Ashore, Safety and Security for Handling, Storaging, Production and Shipping, Volume 2, Ammunition Ashore, Stowage Data and Volume 3, Ammunition Ashore, Advanced Bases. Volume 1 contains much information on the properties of
different explosives, and how they must be stored and handled because of these properties. Numerous sketches illustrate the quantity-distance requirements for different types of ammunition. On shipboard, the quantity-distance requirements cannot be followed because there simply isn't room enough to stowammunitions at the separate distances specified. At shore bases the requirements must be observed. The purpose of the requirement is to keep the quantity of ammunition per building small enough so that a fire or explosion in one building will not spread to adjacent buildings.

Guided missiles are considered a mass detonation hazard, but assembled missiles present several types of hazards. Therefore, regulations and instructions for storing, shipping, handling, and marking of guided missiles and their major components are not covered in OP 5. The OP for the particular missile must be consulted for the specific instructions. The hazard classification and storage requirements of some components are mentioned in OP 5. Solid propellant sustainers and boosters, without warheads, are classified as group 6 materials if so designated by NAVORDSYSCOM, and must be stored a minimum of 1800 feet from any inhabited dwelling, passenger railway, or public highway. Guided missile warheads are group 7, 9 or 10, unless classed otherwise by NAVORDSYSCOM. The distance requirement varies with the number stowed in the building, and the type of magazine. Other components are in other storage classifications. Fuze, for instance, are called group 8 materials, which must be stored in special magazines, earth-covered or with equivalent protection.

The rate training manual, Gunner's Mate M (Missiles) 3&2, NAVTRA 10199-B mentioned in several places that a defective component, or a missile, was to be returned to a depot for repair or destruction. OP 5, volume 1, contains a chapter of instructions on how to dispose of damage or dangerous explosives of different kinds. Some are burned; some are dumped in deep water. Maintenance and surveillance instructions are given for various small components such as fuzes, but missiles and boosters (except rocket boosters) are not covered. A missile is not destroyed except as a last resort if the missile cannot be made safe. A publication available from NAVORDSYSCOM is Safety Regulations for Guided Missile Propellants. Request specific instructions for each missile, in the event that destruction seems to be necessary.

Rules for shipping explosive components by truck and by railroad are not given for missile components or assembled missiles, but have to be interpreted for missile shipments. Many of the rules are applicable to transportation of any type of explosive. For example, passengers are not permitted on trucks carrying explosives. In addition to giving such general rules, OP 5 lists references you will need if you have to pack and/or ship missiles and missile components. With on-land shipments, you not only have to follow Navy regulations, but also state and interstate rules.

Security regulations, firefighting, lighting protection, static grounding, and industrial safety, health, and hygiene procedures given in OP 5 are applicable to missiles and missile components. Revisions to OP 5 added rules for quantity-distance storage of missile propellants according to their hazard classification. The application of the rules to Navy missiles containing liquid propellant (Talos, Bullpup) is described in the OPs for the missile.

The four routine missile operations at an ammunition depot are initial receipt, retest, loadout, and missile return processing. Many variations are possible in each of those operations. While initial receipt is defined as receipt of the missile components from the manufacturers, the components may be delivered by different methods of transportation (railroad car, truck, etc.). The containers are designed for particular missiles and their components; some handling equipment is designed for particular missiles and their components.

All components must pass inspection when unloaded, but the extent of testing varies. On shipboard, a booster is never tested. At a depot, the booster is unpacked, transported to the igniter test cell, where it is given an igniter squib check, then is repackaged. If it is to be shipped with a missile, it is placed in ready issue stowage until the missile is assembled and ready for shipment. If it is to be stored for some future time, it must be repackaged and sealed with desiccant.

Let us assume that you are going to assemble a missile to be sent to a ship for tactical use, or
ready issue. Assume that each package has been given on-receipt inspection, tests when applicable, and has been re-packaged, awaiting assembly. The booster remains in ready issue storage until the last, when it is to accompany the assembled missile, but not assembled to it. The sustainer is brought to the igniter test cell and is given a continuity test, then is repacked and taken to the assembly area. As each of the other components is inspected and checked out, it is brought to the assembly area to be assembled into the missile. Present type depots perform only pneumatic missile system tests (MST), which require a missile assembled without the warhead section, S&A device, and fuze booster. After the missile has successfully passed the initial MST and has been transported back to the assembly area, the nose section, the target detection device (TDD), and the tactical missile test spacer are removed to prepare the missile for tripak storage or for tactical assembly.

The tripak configuration for Terrier missiles consists of the electronic section, sustainer, and aft section assembled with dorsal fins and placed in a Mk 199 Mod 0 container (fig. 2-10). By the use of different blocking and bracing and cushioning materials, this container can be used for bipak storage (electronic section, aft section, nose section, and dorsal fins), or for a ready issue missile, or for sustainers, or for spare parts. Two handlift trucks Mk 40 Mod 0 are used to handle it on deck. A forklift truck may also be used. The tripak must be grounded and the sustainer arming device must be in SAFE position during all handling operations. The loaded container is closed with 20 latches on the container lid. Fresh desiccant is placed in the desiccant basket; the air release valve on the container is closed, the missile log and records are placed in the records receptacle on the end of the container, and security seals are placed on it and on

![Diagram of container Mk 199 Mod 0 with two sustainers and handling attachment](image-url)

Figure 2-10.—Container Mk 199 Mod 0, with two sustainers, and showing placement of handling attachment for lifting sustainer.
two of the latches. The container then is ready to be transported to storage.

When the missile is to be assembled for ready issue or tactical assembly, the warhead section, target detection device (TDD), and nose section are added to the already assembled tripak configuration. If a Mk 5 and 7 warhead is used, a fuze booster and an S&A device are required to complete the fuze section. All these contain high explosives and must be handled as such.

The assembled missile is shipped from the depot in a Mk 199 Mod 0 container; its booster is in container Mk 200 Mod 0, and the booster fins are in container Mk 205 Mod 0. They are moved from ready issue storage and loaded on trucks or railroad cars by means of handlift trucks or forklift trucks. The trucks or railway cars are moved to the loading dock, where the missiles are moved for ship loadout.

For loadout to an ammunition ship, the missiles are kept in their containers. If a combatant ship is loaded directly from the dock, the missiles and components are removed from their containers on the dock and transferred to the ship on a weapon component transfer dolly. On the ship, the missiles are struck down to the magazine and the dollies are returned to the dock.

Tests and Inspections

Few tests of missile components are made aboard ship by GMMs. Boosters, S&A units, fuzes and flash signals are never tested aboard ship.

Before Stowage

As the components are brought aboard, inspect them for visual damage. Check for external dents, cracks, or other obvious physical damage to the unit. Notice the expiration date if there is one on the unit. Set aside any units that are too old to be used. Boosters must not be armed. If you find one that is armed, notify the loading officer at once. Also call the officer if there is any odor of ether or nitroglycerine. Do not strike below any items on which you have found damage or defects. When the case of any explosive, propellant, or pyrotechnic item appears dented, cracked, or bent, or if it has been dropped 5 feet or more when in its container (1 foot if out of the container), return the unit to a depot.

If an S&A unit is found in an armed condition, store the unit, without the warhead or fuze booster, in an explosive locker; request disposition instructions from NAVORDSYSCOM Headquarters. DO NOT test or disassemble any S&A unit aboard ship, or make any attempt to repair one. This rule also applies to fuzes and flash signal units.

Rough handling may damage the coupling flanges on the fore and aft ends of the warhead; inspect for such damage. Check the central tube in the warhead for rust and for damage caused by the warhead lifting tool mandrel. There should be no exudate on the warhead. At replenishment the warhead is stowed in its container: this inspection is made when the warhead is unpacked.

Check to make sure that the booster arming socket is positioned at SAFE at all times until armed on the launcher.

On the sustainer the SAFE position is not for use on board ship. Make certain that the manual tool-controlled mechanical arming device on the BW-1 Mk 5 sustainer is in the ARMED position. The BT-3 Mk 7 arming device should be in the CHECK position at all times aboard ship except when the round is ready to load on the launcher. Do not disassemble, check, or tamper with any part of the sustainer units.

Checkout

As soon as possible after strikedown and stowage, the missiles must be given in initial checkout and servicing. At present, BT-3 missiles are checked upon receipt, after a 3-month interval, and at 6-month intervals thereafter. (This rule may be changed by NAVORDSYSCOM directive.) As a GMM 3 you learn to use the strikedown equipment for strikeup of the missile components to the checkout areas, and to unmate the missile and booster for the checkout tests. You learned to use the checkout handling equipment. To advance to GMM1 and C, you must be able to supervise and direct this work and to operate the control panels.

The checkout equipment consists of the guided missile test set (GMTS), the hydraulic...
fluid pumping unit, the air diffuser panel, and the gas pressure actuator assembly. Other ratings may have the responsibility for the checkout tests. If you need to perform the checkout tests, study the technical publications that give the full details of how to perform the checkout on Terrier missiles. OP 2329, Vol. 2, Terrier Guided Missile Mk 7 Mod 0 and Mk 8 Mod 0, describes field checkout procedures for BW-1 missiles, and OP 2512, Vol. 2, Guided Missile Complete Round Mk 1 Mod 0 and Mk 2 Mod 0 (Terrier BT-3), describes depot and checkout procedures for BT-3 missiles. OP 2898 covers BT-3A missile checkout, and OP 3051 is for the BT-3B missile, while OP 3043 is for HT-3 and HT-3A's. Check OP 0, Index of Ordance Publications, to be sure you have the latest revision of these instructions. Also, keep abreast of instructions and directives as they are issued.

The checkout equipment is in the checkout areas which are in the main deckhouse. The checkout areas are separated from the magazine by flametight magazine doors. Compressed air is supplied by the ship’s compressed air system at 4500 psi which can be reduced to 3250 psi with the aid of a reducer. A stream of such high pressure air can be fatal if directed at a person. A 500-psi nitrogen source is provided for the hydraulic fluid pumping unit. Figure 2-11 shows the checkout area portside, and depicts the checkout equipment and checkout station. The starboard checkout area is identical, but the test sets are used by both areas. The missile to be checked out is brought from the magazine by the reverse of the strikedown process, but in step-control only, not automatic. It is attached to the checkout car by means of a set of handling attachments. The blowout pipe and blowout pipe adapter are for the purpose of conducting away any dangerous gases in case of an accidental ignition. Connect the adapter to the missile (fig. 2-11). The booster is returned to the magazine while the missile is being given the checkout tests. The warhead, warhead booster, and fuze are placed in temporary storage lockers during maintenance on the missile. After successful completion of the tests, the booster is again mated to the missile and the complete round is stowed in the ready service ring. If the tests indicate NO GO, the round may be stored in the magazine to await repairs to the missile.

Figure 2-11.—Terrier missile checkout area on a cruiser.
When the booster is received above ship, the torque screw will be fully loosened and the adjustment nut will be fully tightened. This should again be the condition when missile and booster are separate for the checkout. When the missile is mated to the booster, the suitcase latch is closed, and the torque screw is tightened with 480 in-lb of torque. The clamp links should make contact with the ends of the pivot pin to ensure that the latch will not accidently spring open under torque conditions, and possibly cause injury to personnel. Do not release the latch without first removing all torque from the torque screw. Keep the missile supported on the checkout car during the entire time. Do not use the locking ring to pull the sections together.

The missile-booster release mechanism is illustrated in Gunner's Mate M (Missiles) 3&2, NAVTRA 10199-B, where the suitcase latch is shown fully closed and fully opened.

Only the men necessary to perform the tests are permitted in the checkout area during the tests. During the charging of the missile air flask, only one man is permitted in the area, and he must remain behind a protective shield (if there is one) during the charging and for 5 minutes afterward.

REVISED RULES FOR CHECKOUT.—The trend is toward reduction in the number and complexity of tests for missiles and their components, especially after they have been tested at a depot and assembled. The interval between inspections and test has been greatly increased. Some missiles such as Tartar and Terrier are under a No-test program. This program requires no shipboard testing of a number of designated missiles. There are missile service records for each missile aboard ship. There service records indicate either a test or No-test program for each missile. A great deal of dependence is placed on careful inspections, careful handling, and controlled stowage temperatures and humidity requirements for No-test missiles.

ASSEMBLY AND DISASSEMBLY

The mating of the missile to the booster before stowing of the round, and the unmating for the checkout tests, are assembly and disassembly processes already mentioned. Wings and fins are assembled to the round prior to loading onto the launcher. Any additional assembly or disassembly of the missile is usually done at a repair activity. Assembly or disassembly of the handling and launching equipment is done as part of the maintenance and overhaul program, and will be discussed in another chapter.

Maintenance procedures are discussed in later chapters, especially in chapter 10.

If the Mk 22 Mod 0 warhead section of the Terrier BT-3A missile is received in a warhead container, it must be unpacked, given receipt inspection, and given a monitor test before it is assembled into the missile, and the missile is mated to the booster before stowing in the magazine. Spare warheads are repackaged with desiccant and stored in the special warhead magazine.

Present practice is not to install the battery power supply until ordered by the commander. This practice may be changed in the future. In anticipation of such a change, OP 2898 gives the instructions for installing the battery power supply and giving it a monitor test before the complete missile round is stowed in the magazine on shipboard.

TALOS MISSILE HANDLING AND STOWAGE (GMLS MK 12)

The handling procedures for Talos missiles include:

1. Transfer to ship, at sea transfer, or dockside transfer, and depot or weapons station handling.
2. Strikedown of missiles, boosters, and complementary items
3. Checkout of missiles stowed in magazine and ready service areas
4. Ready service replenishment
5. Athwartship transfer

The methods of transfer are very similar to those for Terrier missiles. Areas of difference will be pointed out. An important difference between the Mk 7 and Mod 0 and Mk 12 Mod 0 Talos launching systems is the location of the magazines.
Chapter 2—MISSILE HANDLING AND STOWING

SHIPBOARD EQUIPMENT

Although some handling equipment is especially designed for the Talos missile, the method of use is very similar to that for Terrier handling equipment. The following shipboard equipment is used during transfer, strikedown, and prefiring operations.

1. Burtoning or automatic tension highline and highline gear
2. Strikedown elevators
3. Ready service cranes
4. Missile and booster carts (instead of checkout car)
5. Component handling hoist and associated gear
6. Warhead hoists
7. Component elevator and birail trolley hoists
8. Warhead magazine bridge crane
9. Receiving stand
10. Ready service magazine hoists
11. Ready service magazine trays
12. Magazine tray transfer mechanism.

Handling Equipment—Similarities and Differences

Missiles and boosters are received aboard ship, each in assembled condition, attached to the handling dollies by which they are transferred. Boosters and missiles are transferred by the constant-tension highline or burtoning, and other components are transferred by the housefall method. A floating crane is used for dockside transfer. New construction ships may have a Missile/Cargo Stream system installed for transfer at sea.

As with the Terrier, Talos missiles and boosters must be transferred and struck down in sequence so they will arrive at the mating area in correct order. The sequence differs on CLGs and GGs. (Talos missiles and boosters may be stowed unmated.) On CLG 4 and 5, the order of transfer and strikedown for other components is not specified. Transfer dollies, innerbody, and wing and fin containers must be returned to the supply ship or depot if you do not have storage space. Other components are stowed in their containers, which are disposable.

A CLG has two missile strikedown elevators, one each, port and starboard of the deckhouse, which are used simultaneously during replenishment. The strikedown operation is the same on A and B sides of the deckhouse. Strikedown on a CLG is described. Figure 2-12 shows the relative location of the areas used in strikedown and stowage.

Instead of a checkout car below the elevator, a missile cart or a booster cart is located on the elevator, and the missile or booster is attached to the cart. When the elevator has lowered, the cart can be rolled off onto tracks on the deck and moved to the station where it is needed for mating, stowage, or checkout. The carts differ principally in the method of securing and supporting the load.

Two warhead hoists travel on overhead birail tracks from the checkout areas in the deckhouse to the warhead strikedown hatch on the main deck. With adapters, the hoists are used to handle warheads, exercise heads, and innerbodies, which are stowed in the warhead magazine. These are the spares, which are not assembled in the round.

For the missiles and boosters that are to be mated into rounds, the after lenses, packaged and stored within the missile after section, must be removed prior to mating. The ready service crane is positioned over the mating station. The missile and the booster carts are brought on tracks to the mating area and are positioned. The missile cart is attached to the ram cylinder which produces the movements necessary for the mating, and the booster cart is secured to the handling track. After the missile and booster are mated, the ready service crane is used to raise the weapon, and the carts are returned. The operator at the pushbutton station opens a magazine door, positions the crane over the magazine, and raises the hoist containing an empty magazine tray. He then lowers the round into the tray, and orders the hoist to a level in the magazine for stowing the tray and missile. When this is done, the magazine door is closed. As a GMM2 you were required to be able to man all stations; as a GMM1 and C, you need to be able to train individuals and teams in the operation of the system. The operator at the pushbutton station must be constantly alert so the missile components will move smoothly to their destination in the proper magazine.
The location of many of the equipments used in transfer and strikedown of Talos missiles on a CLG may be seen in figure 2-13. Locate the missile strikedown elevator, ready service crane, power cart, check out fixture, warhead hoist, and overhead crane.

The spare innerbody, which contains the warhead when assembled for tactical use, or a dummy warhead for exercises, is brought aboard in a container. It is struck below from the 02 level by means of the warhead strikedown hatch. Then the bottom part of the container is removed and the innerbody, supported in the upper part of the container, is lowered in a vertical position to the second level by the component handling hoist. There it is placed on the receiving stand and secured to it. The container is returned to the 02 level. The receiving stand (there are two of them) is pneumatic-powered and has a built-in tilting mechanism so the innerbody can be rotated from vertical to horizontal position. The receiving stand moves inboard until it is adjacent to the elevator and from there the innerbody is moved by the birail trolley hoist to the component elevator, which lowers it to the warhead magazine. Within the warhead magazine, a bridge crane is used to move the innerbody into position over the stowage chock, where it is positioned and fastened down. The receiving stand must be in position before the innerbody is lowered.

Different methods of stowing and securing warheads and innerbodies are used on different classes of ships.

Stowage Spaces

The spaces for stowing Talos missile components are very similar to those of the Terrier. If the ship has two sets of launchers, separate stowage facilities are provided for each. Replenishment is carried on simultaneously at both places. Whoever is in charge must make sure that the correct items are landed on the deck near the fore and aft strikedown elevators.

The essential difference in handling and strikedown between the Mk 12 launching system and the Mk 7 system (fig. 2-13) is that of location of the equipment and the stowage spaces.
On a ship with forward and aft (Mk 12 Mod 0 and/or Mk 12 Mod 1) launching system installations, there are four strikedown elevators, two for each installation. Gunner's Mate M (Missiles) 3&2, NAVTRA 10199-B has illustrations of the Mk 12 launching system, as does chapter 3 of this text.

The deckhouse of the Mk 12 launching system is divided into area 1 and area 2. Area 1 is the assembler area, where the missile wings and missile and booster fins are stowed at strikedown and assembled preparatory to firing. It also contains some of the panels of the Missile Launching System Control—the power panels, the launcher control panel, assembly panels, and relay panel. Area 2 is directly over the belowdecks magazines. The remainder of the control panels are located here, and the mating area for mating missiles and boosters is here. The missile-booster combination is lowered to the magazine on the magazine hoist through the magazine door. Figure 2-14 shows the general location of the areas with respect to each other.

The A and B sides of the launcher are served from the A and B sides of the magazine, called the Mk 7 Mod 0 and Mk 7 Mod 1 magazines. Each magazine has a loader trunk, which passes through both area 1 and area 2 of the deckhouse, moving the missile-booster combination to the launcher when loading.

Complete descriptions of strikedown operations on particular ships are given in NAVSHIPS publications. For example: NAVSHIPS 378-0351, Talos Handling and Stowage (Aboard USS Albany (CG-10), USS Chicago (CG-11), and USS Columbus (CG-12)). Figure 2-12 shows the location of the various parts and areas of the Mk 7 launching system.

The Talos Mk 12 launching system does not have a ready service ring, nor does it have a second magazine to stow unmated missiles as does the Mk 7 system. The mated rounds are
Figure 2-14.—Location of areas occupied by GMLS Mk 12, with relation to each other.

stowed in trays in the magazine. Any unmated spares must be placed in magazine spaces designed for them.

MAGAZINES.—In the Mk 7 Mod 0 launching system the missile and booster and booster magazines are in the deckhouse, but the warhead magazine and the components magazine are below decks, below the waterline of the ship. Each mating and checkout area (in the deckhouse) will hold one completely assembled weapon.

As you saw in figures 2-12, 2-13, and 2-14, the magazines may be located differently on different ships and for different missiles, and launching systems.

Blowout Patch or Vent.—Near the forward end of each magazine is a blowout plug or vent. Its purpose is to allow escape of gases in case of accidental ignition of the round, and thus prevent the terrific buildup of pressures that would otherwise result.

Wings, Fins, and Arming Plugs.—The wings and fins are removed from their containers and are stowed in racks in the wing and fin assembly area. Spare missile modules are stowed in the same area, as are the arming plugs (in locked boxes).

Batteries.—The missile batteries are of the nickel-cadmium type. The spare batteries are stored and charged or discharged in the missile battery shop, not in the ship's battery room. Some types of batteries are placed in locked storage and the key placed in the custody of the officer.

Antenna Lenses.—Missiles in ready service stowage have the antenna lenses assembled into them. They are removed during missile checkout and are stowed in a locker provided for them. This locker is also used to stow spare guidance, homing, and beacon antenna lenses.

Ready Service.—Missile-booster combinations that have been checked out are moved into the ready service spaces. They do not have the wings, fins, or arming plugs installed.

HANDLING AND STOWAGE AT DEPOTS

At a depot, the weapon components may be received directly from the manufacturers, packaged in separate containers. Fork-lift trucks and other trucks can be used for much of the handling and moving of components. Missile components are assembled to form missiles, and booster components are assembled into boosters. The missiles and boosters are then packaged for stowage at the depot or for shipment. The
components not assembled to form missiles and boosters (warheads, innerbodies, wings and fins, safing and arming plugs) are packaged separately. If not shipped to using activities, they are stored in different buildings. The buildings must meet the requirements set fourth in OP 5, Volume 1, Ammunition and Explosives Ashore for the stowage of ammunition of various kinds. You will need to check the condition of the buildings for compliance with the requirements. Nuclear warheads, for example, should be placed in air-conditioned buildings, with radiation and security alarms installed. They must be in buildings that can be adequately guarded.

If you have duty at a shore base, study OP 5 for the regulations that apply to the different explosive components of the weapons. OP 2540, Containers and Association Handling Equipment for Talos Missile Mk 11, Mod 3, 4, and 5; Description, Operation, and Maintenance (U), has the newest information on Talos containers and handling equipment.

As with Terrier missiles, most Talos missiles and components are handled at Naval Weapons Stations, of which there are six, rather than at depots.

TARTAR MISSILE HANDLING AND STOWAGE

Strikedown operation of Tartar missiles is the process of either onloading or offloading a missile. Onloading transfers a missile into the launching system; offloading transfers a missile out of the launching system. These operations involve not only launching system personnel and other crewmembers but also dockside crews, crewmembers of a second ship, or a helicopter crew.

The Tartar missile is brought aboard ship as a complete weapon. When transferred from dockside or from a barge, the missile is mounted in a transfer dolly. Instead of being struck below on an elevator as with Talos and Terrier, the missile is transferred from the transfer dolly to the launcher guide arm rail, figure 2-15. It is then struckdown (stowed) in a vertical position in the missile magazine beneath the launcher. When

Figure 2-15.—Transfer dolly aligned with Mk 13 GMLS.
handling Tartar missiles, particular care must be taken to avoid damage to the missile radome, to the target detection devices (TDD), and to the missile control surfaces.

When transferring Tartar missiles at sea by the Missile/Stream system, special deck handling equipment designed to contain and control the missile from sending ship to receiving ship has been installed on most Tartar missile ships. Deck handling is accomplished by either a Tartar Transfer Fixture, figure 2-16, or by Dolly/Loadbeam equipment Figure 2-17.

DECK HANDLING EQUIPMENT

The Tartar transfer fixture used on DEG’s is a hydraulically powered portable unit bolted to the weather deck and is capable of onloading or offloading a Tartar missile from the receiver unit to the launcher, Fig. 2-16.

The combination dolly/loadbeam fixture used on DDG’s is a track-guided, manually-powered handling system capable of onloading or offloading a missile from the receiver unit to the dolly, from the dolly to the loadbeam, and from the loadbeam to the launcher rail, fig. 2-17.

Strikedown Operation

For the launching system, strikedown operation begins with the crewmembers attaching the strikedown equipment consisting of a chain drive fixture, a deck control box, and a manual air control valve and air supply lines. The chain drive fixture is attached to the front of the launcher guide arm, figure 2-17, whenever a transfer dolly or combination dolly/loadbeam deck handling equipment is used. The purpose of the chain drive fixture is to move a missile from the deck handling equipment onto or off the launcher guide arm. The chain drive fixture is a pneumatically operated unit controlled by a manually operated control valve. A crewmember operates the pneumatic control valve which determines the direction of chain drive movement for either on load or off load operations.

A portable electrical control box (figure 2-18), called the deck control box, is plugged into the launcher control system and is operated by personnel on deck (missile handling area) to control the movements of the launcher when mating the launcher with the deck handling equipment during strikedown operations. The deck control box is a manually operated switching unit contained in a metal box which has two handles, indicating lamps, and toggle switches, a cable attached to one end of the control box is plugged into a receptacle on the launcher stand or bulkhead. For training and elevating the launcher to a strikedown position, an operator uses the toggle switches on the deck control box which connect fixed position synchros in the launcher control system to position the launcher to a fixed load position for either port or starboard strikedown operations. For transferring the missile between the launcher rail and missile magazine, and operator at the EP-2 panel (Launcher System Control Panel) operates switches in either the step load or step unload mode of operation on orders from the launcher captain. The launcher captain operates the deck control box and orders missile movement for onload or offload operations whenever the launcher is in a position to transfer a missile between the launcher rail and missile magazine. The launcher captain is in charge of all strikedown operations.

The chain drive fixture is not used with launchers that employ the Tartar transfer fixture shown in figure 2-16. A built-in rammer chain unit which is a component of the transfer fixture is used to move the missile from the deck handling equipment to the launcher guide arm and serves the same purpose as the chain drive fixture. The location of the strikedown equipment in relation to the launcher is illustrated in Chapter 7 of this text. Chapter 7 illustrates and describes how the pneumatic chain drive fixture is used to transfer the missile during strikedown operations.

Tartar Missile-No-test Program

A technical evaluation project for the Improved Tartar missiles indicated that those Tartar missiles not tested by ships were in better condition and had a higher success rate than those that were tested aboard ship. In view of the foregoing all activities concerned have suspended shipboard testing of Improved Tartar missiles and all Tartar missile spare parts and test equipment is being deleted from shipboard
allowance lists. Current NAVORD instructions limit shipboard testing of Tartar missiles to periodic external missile inspection. All missiles received aboard ship are now certified as reliable and require no test after being issued by a Naval Weapons Station.

It must be emphasized that the No-test concept places certified missiles in the magazine. They are to be fired, returned to a supply source, or jettisoned; the missiles are not to be taken apart, or repaired aboard a combatant ship.

Tartar Missile Safety Precautions

The Dual Thrust Rocket Motor (DTRM) is considered a class B explosive and should be handled accordingly. The DTRM produces an extremely hot exhaust blast and noxious gases. It is relatively safe when handled properly, but...
Figure 2-17.—Load beam and dolly.
sharp blow could crack the propellant grain resulting in an explosion when the missile is fired. If the DTRM is found to be armed, manually move the arming lever to the SAFE position and request disposition and instructions from NAVORDSYSCOM.

Personnel shall keep clear of the area aft of the missile (DTRM area) at all times.

Because the missile contains electro-explosive devices (EEDS), observation of currently prescribed Hazards of Electro-magnetic Radiation to Ordnance (HERO) safety precautions during handling is mandatory.

Take all possible steps to protect all missiles from extremes of temperature, humidity, vibrations, electrical or magnetic fields, and radiological exposure. Exposure to any of these conditions, when excessive, may require disposal of the missile.

Upon receipt of the missile, a visual inspection shall be made to ensure that no physical damage has occurred during handling. This inspection is to determine if all sections are free of rust and corrosion, that all covers, plugs, tape, and decals are in place and secure, and that safety devices are in the SAFE position. When any abnormal conditions are indicated, the defective missile shall not be struck down, but shall be returned to the replenishing source.

Interlocks and warning bells are built into the handling system as safety features and are not to be bypassed or disregarded at any time except...
under emergency conditions. In the event that such devices are disabled or bypassed, adequate warning signs shall be posted to indicate that such a condition exists. Also, all applicable safety precautions shall be posted at each operating station of the handling system. Regular handling drills employing dummy or training missiles shall be held to ensure safe operations and improved individual proficiency. During drills, the officer-in-charge and leading chief shall carefully observe all operations which might create hazardous conditions and shall take the necessary corrective steps to alleviate them.

NUCLEAR WEAPONS HANDLING AND STOWAGE

Nuclear weapons used by the Navy may be bombs, torpedoes, missiles, depth charges, and projectiles. Rules for peacetime operation of nuclear weapon systems issued by the Chief of Naval Operations, along with official Naval Ordnance System Command special weapons checklists, are mandatory directives which must be followed.

The operation of each type of nuclear weapon is described in the applicable Special Weapons Ordnance Publications (Navy SWOPS). Nuclear weapons will be handled and stored in accordance with Navy SWOP 50-1 and SWOP's of the 20 series. No ammunition assemblies or components shall be disassembled or modified unless authorized by applicable technical instructions. Detailed safety precautions and considerations are prescribed in Navy SWOP 50-1.

Missiles that have nuclear warheads are stowed in a ready service condition in the same missile magazine as those with conventional warheads and require no special handling or testing. The GMM that deals with any weapon must ensure that a proper storage condition is maintained. This ensures the reliability of the weapon and also guarantees personnel safety. As a leading GMM, it is essential that you have a thorough knowledge of the hazards concerned and the restrictions imposed on nuclear weapons. For this reason your main concern when dealing with a nuclear weapon is their security and protection.

Safeguarding Nuclear Weapons

Nuclear weapons require special protection because of their political and military importance, their destructiveness, and the attendant consequences of an unauthorized nuclear detonation. Procedures and responsibilities for the establishment of effective security measures are set forth in DOD directives and implemented by the using agencies. The Navy’s security program is outlined in OPNAV Instruction 05510.83B, Criteria and Standards for Safeguarding Nuclear Weapons. This instruction is the basis for determining the minimum necessary requirements for all nuclear weapons in Navy custody. It may be augmented by additional security measures as deemed necessary by local commanders.

This section outlines the basic requirements for safeguarding nuclear weapons in the Navy, and is not intended to include all of the local area commander’s requirements. It is your responsibility as a senior petty officer to keep informed of the security requirements of your activity.

Definitions

The definitions that follow are used throughout the Navy in conjunction with nuclear weapons. Navy SWOP 4-1 is the approved source for definitions other than those in OPNAVINST 05510.83B.

Access: Applied to nuclear weapons, access means physical proximity in such a manner as to allow the opportunity to cause a nuclear detonation. (Whenever the word access appears in the nuclear weapons program, only this meaning will apply.) Access should not be confused with entrance.

Technical Knowledge: That knowledge, however obtained, required to cause a nuclear detonation.

Critical Position: One in which the incumbent has (1) technical knowledge of nuclear weapons, and (2) access to nuclear weapons.

Limited Position: One in which the incumbent could acquire both knowledge and access.

Controlled Position: One in which the incumbent is performing duties physically associated with nuclear weapons, but does not require
Chapter 2—MISSILE HANDLING AND STOWING

technical knowledge of, nor access to, nuclear weapons.

Exclusion area: The designated area containing one or more nuclear weapons.

Limited Area: The designated area surrounding one or more exclusion areas.

Two-Man Rule

No other single area identifies more with the spirit and intent of the nuclear safety and security program than the two-man rule. All personnel working with nuclear weapons should read and understand this rule, which is explained in GMM 3&2, NAVTRA 10199.

Entry and Access Control

Entry control to limited and/or exclusion areas is formalized and maintained to ensure positive identification of personnel prior to admission. An exchange badge system, entry control rosters, visitor escorts, and a duress system are employed.

Unauthorized actions by persons with approved access to nuclear weapons is one of the threats to nuclear weapons. Therefore, entrance to exclusion areas containing nuclear weapons is restricted to properly cleared personnel who have a positive need for access, or to personnel who have to enter a space containing nuclear weapons during the course of their duties. Only persons authorized by the commanding officer can be admitted to exclusion areas. Limited area access may be authorized by the commanding officer’s designated representative.

When projects in a limited and/or exclusion area require the presence of personnel not cleared for normal entry, such persons are kept under constant escort by the security force or supplementary personnel. Their movements are limited to only those necessary for the performance of assigned tasks. A log of persons entering and leaving exclusion areas is kept and maintained locally for a period of at least 2 years.

In those spaces in which nuclear weapons are stored and manned by only two men, all openings and entrances to those spaces (other than those in use) must be locked and alarmed. The unlocked entrance(s) are guarded by an armed guard who also controls entrance to the spaces.

When transporting nuclear weapons from one area aboard ship to another, an appropriately armed guard accompanies the personnel loading, handling, or transporting the weapon.

Once working hours commence and the exclusion area is entered by two authorized persons, the responsibility for maintaining the two rule rests with the senior man present. No one individual is allowed to remain in the exclusion area alone.

SAFETY STANDARDS

Safety rules are issued for every nuclear weapon system. These rules are to be followed in peacetime and wartime, when possible. All safety rules are applied against the four safety standards.

All hands must take positive measures to prevent weapons involved in accidents or incidents, or jettisoned weapons, from producing a nuclear yield.

Also take positive measures to prevent deliberate arming, launching, firing, or releasing except upon lawful orders.

Positive measures must be taken to prevent inadvertent arming, launching, firing, or releasing, and provide adequate security.

Handling Precautions

The best handling equipment designed is only as good and as safe as the personnel who operate it. With nuclear weapons, it is imperative that you know the type material you are handling and its hazards; further, you must know the capabilities and limitations of the equipment you are using when handling the weapons.

When using hoisting equipment in handling nuclear weapons, it should never be loaded in excess of its rated capacity. No piece of handling equipment should be used for other than its intended purposes. When elevated loads are moved horizontally on a monorail, sudden stops or starts must be avoided. Remove any obstructions from the path of the load. Never raise weapons higher or let them remain suspended longer than is absolutely necessary to complete the required handling operation.
PERSONNEL

All personnel assigned to work with nuclear weapons must receive special training in the handling, storage, and accounting methods of nuclear weapons. Prior to such training they must possess at least a secret clearance based on a background investigation. Only properly cleared personnel who have need for access to spaces containing nuclear weapons will be allowed entry to these spaces. Only personnel of demonstrated reliability and stability as outlined in BUPERINST 5510.11A, Criteria and Standards for Personnel Assigned to Duties Involving Nuclear Weapons, will be assigned to this type duty.

Human Reliability Program

The human reliability program is aimed at all personnel who control, handle, have access to, or control access to nuclear weapons or nuclear weapons systems. The program covers selection, screening, and continuous evaluation of the personnel assigned to various nuclear duties. The program seeks to ensure that personnel coming under its purview are mentally and emotionally stable and reliable.

Alarm and Warning Systems

Numerous alarm and warning signals are installed on ships with nuclear weapon spaces. Some are audible alarms, such as bells and buzzers; others are warning lights. Some are connected to all parts of the ship, and others only to certain spaces. The nuclear weapons stowage spaces have warning signals for high temperature and security.

The operation of security alarms and warning signals can be mechanically operated switches or pushbuttons activated by the opening of access doors and/or hatches to nuclear weapons spaces. Alarm panels used for security alarm systems are located in ship's areas that normally are manned at sea and in port such as quarter deck areas and damage control central. When the alarm panels include entry into a nuclear weapons space, special security forces are alerted to safe-guard nuclear weapons and components.

Ventilation In Nuclear Weapons Spaces

On most ships with nuclear weapons spaces, the ventilation system for those spaces is not connected to the system that services other parts of the ship. The reason for this arrangement is that, in the event of a nuclear accident, radioactive particles will not be carried from nuclear weapons spaces through the ventilation system into other living or working spaces.

Circulation of air in nuclear weapon spaces is provided by distribution ducts and fans. Stale air is taken out through exhaust ducts. It is necessary to keep exhaust systems running at all times, even though areas are not occupied. The ventilation weather openings should be kept open as long as possible, even in rough weather, to permit ventilation with outside air.

HANDLING AND STOWAGE OF OTHER MISSILES

Missile magazines in aircraft carriers generally are located below the water line and within the ship's armor belt. For ease in handling of missile components, these magazines contain power operated handling equipment such as electrical, hydraulic, or pneumatic hoists, trolleys, etc. To provide adequate and continuous surveillance in magazines containing certain missiles, and to provide assurance that a specific hazard is not actively present, these magazines are equipped with special detection equipment.

Aboard most aircraft carriers the handling, stowage, and assembly of aircraft launched missiles is the responsibility of personnel in the Aviation Ordnancemen rate. Some carriers split this responsibility and utilize personnel in GMG and GMM rates for the maintenance of storage magazines and some missile handling equipment.

The movements of aircraft ammunition and explosives between the magazine areas and aircraft involve specific handling and assembling functions that are controlled by areas designed for a specific purpose. Two of these areas, the magazine or stowage area and the delivery assembly area, are of interest to personnel of the GMM rating assigned to the ship's armory aboard a carrier.
Chapter 2—MISSILE HANDLING AND STOWING

Handling Areas

The magazine, or stowage area, is the location with fixed installations designed for stowage of all the various types of aircraft ammunition.

The delivery assembly area is the location aboard carriers where the various components of ammunition are delivered for assembly into complete weapons for use on aircraft.

Since the assembly, testing, and arming of aircraft launched missiles are the duties of the Aviation Ordnanceman, the GMM assigned to the ship's armory has the primary duties of ensuring that all components of aircraft launched missiles are properly stowed and maintained in a state of readiness at all times. He may also be called upon to supply the various components of aircraft launched missiles to personnel in the delivery assembly area where the missiles are assembled for use or transfer to ready service areas. If you are charged with the responsibility of stowage magazines and the transfer of rocket and missile components, you should thoroughly familiarize yourself with the practical methods or safe handling and stowage of such items. Listed below are some safety precautions to be observed when handling rockets and guided missiles.

Firing temperature limits specified for each missile must be observed for safe operation. If a missile is exposed outside of temperature limits stenciled on the unit, it should be set aside and handled in accordance with current instructions.

Continued exposure to abnormal stowage temperatures which may cause the propellant to deteriorate, with attendant hazards of possible explosion when the rocket is fired.

Rough handling or blows which may break the propellant grain thus exposing too much surface to burning and leading to possible excessive pressure in the motor. Excessive pressures may cause the motor to explode when fired.

STANDARD MISSILE

Standard Missiles, RIM-66A, RIM-66B, and RIM-67A, are surface launched, supersonic guided missiles which may be used against surface or airborne targets. RIM-66A and RIM-66B are medium range (MR) missiles employed aboard guided missile ships having Tartar Fire Control Systems. RIM-67A is an extended range (ER) missile employed aboard guided missile ships having Terrier Fire Control Systems.

The MR missile is propelled by a solid fuel dual-thrust rocket motor (DTRM) which provides short duration high thrust for the initial or boost flight period, and long duration low thrust for the remainder of the propelled flight.

The ER missile is propelled from a launcher by a solid fuel booster rocket which provides short duration high thrust for a boost flight period. Separation of the booster results in ignition of a solid-fuel sustainer rocket which supplies long duration long thrust energy for the remainder of the flight.

Standard Missile Handling

The Standard MR missile and its components are shipped and stowed in the same type containers as the Tartar missile. The handling equipment and procedures for loadout, offload, underway replenishment, and stowage are identical for the Standard MR and Tartar missiles.

The Standard ER missile and its components are shipped and stowed in the same type containers as the Terrier missile. The handling equipment and procedures for loadout, offload, underway replenishment, and stowage are identical for the Standard ER and Terrier missile.

Special Handling Procedures for Standard

Power for the Standard Missile is supplied by a squib activated primary battery. This battery will generate gas, when activated, requiring the following special handling procedure whenever the battery is activated or a misfire occurs:

Allow approximately four hours for battery temperature to return to normal.

Inspect the battery vent port (forward of the dorsal fin) to determine if temperature has cooled sufficiently to work safely.

Clean up any vented electrolyte (potassium hydroxide, a caustic alkali). Do not allow the electrolyte to contact body or clothing. If it does, immediately flush the contaminated area with large quantities of vinegar and water or fresh water.
After cooling and cleanup, replace the missile battery vent port plug and return the missile to the magazine for future offloading.

If, during missile handling or firing exercises, black smoke appears from the battery vent port, the missile should be jettisoned immediately. Black smoke indicates a missile battery fire. The appearance of white steam from the missile vent port is due to the battery venting and should not be mistaken for a battery fire within the missile.

Make sure that the DTRM igniter arming level (Standard MIR) and the sustainer arming indicator (Standard ER) are in the SAFE position prior to and during handling operations.
CHAPTER 3

MISSILE LAUNCHING SYSTEMS

The last chapter dealt with the parts of the ship's missile system that were used in handling and storing the weapons. You already know a good deal about launching systems from study and experience. What additional information or skills must you gain to qualify as a GMM 1 and C? Look at the quals that apply to the missile launcher system.

Notice that most of the knowledge factors are placed at the GMM 3 level. In the practical factors, note that the GMM 3 must be able to make operational tests. To advance to GMM 2, you had to be able to man any station in the launching system on your ship, use special test equipment, interpret the test results, and record and report the results. You learned to inspect and disassemble, clean, lubricate, and reassemble many of the launching system components, and the missile handling and dud-jettisioning equipment.

Now you must be able to train individuals and teams in the operation of the launching systems on your ship. If there is more than one type of system on your ship, you have to train on ALL of them. You must learn to perform ALL tests of the equipment and to locate trouble in any part. Overhaul, repair, and adjustment of all mechanical, electrical, electronic, and hydraulic equipment in the missile launching systems are part of the job of the GMM 1 and C. As you are aware, that includes a large array of complicated equipment.

Not only must you be able to do all these different kinds of work, but you must be able to teach others, to plan programs for getting the work done, and to conduct classes to carry out the programs. Planning of work and supervision of men doing the work will be important parts of your job.

PREPARATION OF LAUNCHER FOR FIRING

Practice sessions in preparing a launcher for firing are necessary to develop coordination, speed, and skill in carrying out the steps in order. Rotate the men to different positions so each man can be come proficient in the different operations. This is cross-training, described in chapter 1. Shifting the men to different positions undoubtedly will slow down the team for the time being, but it is much more valuable training than training each man to become an expert at only one position. Each man should be able to take over any other position in an emergency.

The types of missile launchers and their major components were described in Gunner’s Mate M (Missiles) 3&2, NAVTRA 10199 and additional information is given in this course. The care and repair of launching systems are discussed in chapter 10, on maintenance. It is assumed that all checks and tests required after repair or maintenance have been performed and the launching system is ready for firing a missile. Tests and checkoffs to be performed in the process of preparing for a firing or firing exercise are given some attention in this chapter but are described more specifically in chapter 10. Alignment of missile batteries is covered in chapter 9.

Although different missile systems differ in the details of preparation of the launcher for firing, the general steps in the operation of the system are very similar. For the missile system these steps are:

1. Search radar detection
2. Fire control radar tracking
3. Missile launching
4. Guidance and target intercept
Your special concern is with the third step, but you need to have some knowledge of how the whole system operates, so the work will be coordinated. This knowledge will also help you in operating control stations. Figure 3-1 shows the main components at different stations of a Terrier weapons system on a DLG, and the flow of information and instructions among the components.

When a target is detected by the ship's search radars (or sonar), radar information concerning the target's range, azimuth, and height is supplied to the ship's Combat Information Center (CIC). The data is evaluated in CIC and the target (or targets) assigned to the Weapons Control Station (WCS). Further target evaluation is made by WCS and a director radar is assigned to track the target. If the target is considered to be an enemy, General Quarters is sounded and all men take their stations. Power is turned on to activate the system. The Launching System Captain activates the EP-1 power panel and takes his station at the EP-2 (Launcher Captain's) panel. Decisions as to the type of weapon to use and, if and/or, when to fire are made by the Antiaircraft Warfare Commander on the basis of information from CIC and WCS, and the decisions are relayed to the various control stations of the weapons system. The operators of the control panels push the buttons to set in operation the mechanisms to carry out the decisions.

NTDS/WDS

A newer and more advanced Terrier guided missile weapon system installed on the DLG's consists of Naval Tactical Data System/Weapon

Figure 3-1.—Terrier weapon system on a DLG; flow of information and directions.
Direction System (NTDS/WDS). The NTDS/WDS is a high speed digital data processing, display and communication system that provides for a more effective fleetwide defense against all types of enemy targets encountered at sea. Target information can be received from and transmitted to remotely located units of the fleet. NTDS/WDS is the primary source of target assignment and target tracking is accomplished using the NTDS/WDS displays. If a particular target is to be engaged, the WDS is assigned. The NTDS/WDS comprises data processing equipment, data display equipment, and data transmission and communication equipment which are located within the CIC area.

MANNING THE CONTROL PANELS

As a GMM 2 you had to be able to take over the operation of any of the launcher control panels; to advance to GMM 1 and C you should be able to supervise the panel operators and teach others the panel operation techniques. The number and types of panels vary with the system and the names may differ, but all systems have at least three types (table 3-1):

1. **Power panels**
2. System control or launcher captain’s panel
3. Test panels

Older systems have many small control panels for control of components of the system. In newer mods, the tendency is to enclose several panels in two or three large panels (table 3-1). This requires fewer operators but the operators must be alert to many things. The small individual panels are used mostly for unloading and maintenance.

The dud-jettisoning panel is associated with the launching system controls. It is discussed in the next chapter.

Power Panels

All launching systems have one or more power panels by which the system is connected to ship’s power. Some, such as the Mk 12 launching system, have separate power panels for the launcher and feeder components. All the electrical power is supplied from the ship’s electrical system, but the voltage has to be stepped down for many applications. The power panel contains circuit breakers, contactors, and overload relays for the launcher power drives, missile warmup, train and elevation motors, blower motors, and loaders and/or feeders.

In automatic operation, the power panels usually are activated from the launcher captain’s station. In step operation, which is used for strikedown for stowage, strikeup for checkout, unloading the launcher, or loading the launcher, some of the power panels are activated from other control stations.

Launcher Captain’s Panel

Figure 3-2 shows one type of launcher control panel. The launcher control panel will vary with the mark and mod of the launching system, the type of shipboard installation, and other factors, so it is not possible to tell you just which buttons to push. After you have turned on the power, set the EP-2 panel (EP-3 on the Mk 11 launching system) on STANDBY and watch and listen for signals that will indicate what to do next. An ALERT signal from the weapons control station will cause a flashing signal on all the launcher system panels and also will give an audible signal. When all the panel operators have set their panels on READY, the signal goes to the launcher captain’s panel; he then sets his panel on READY, and this signals WCS that all parts of his launcher system are ready.

Four types of orders are transmitted from the weapons control station to the launching system, and these go through the launcher captain’s panel:

1. Missile order—determines the type of round(s) to be loaded
2. Load select order—distinguishes between simultaneous operation of “A” and “B” sides or separate operation of either side
3. Loading order—distinguishes between hold, single, or continuous loading of the type missile ordered
4. Unloading order—distinguishes between “unload launcher” or “unload assembly area”
<table>
<thead>
<tr>
<th>PARTS OF LAUNCHING SYSTEM</th>
<th>TALOS</th>
<th>TERRIER</th>
<th>TARTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK 9 Mod 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. LAUNCHER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Stand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Carriage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Guide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Power drive, cruse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Power drive, elevation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Ignition assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Emergency Igniters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. LAUNCHER FEEDER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Magazine "A" side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Loader</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Assembler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Feeder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. SYSTEMS CONTROL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Power panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Launcher panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Amplifier panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Feeder panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Feeder power panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Loader panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Loader power panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Assembler panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Ready service panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. Power relay panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k. Relay control panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. Test panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m. Magazine control panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. Magazine loading indicator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o. Missile/patch indicator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p. Local control panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q. Ignit local control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. DUD JETTISON UNIT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1.—Launching Systems

94.118
Chapter 3—MISSILE LAUNCHING SYSTEMS

Figure 3-2.—Launcher control panel, EP-2, for Terrier weapon system Mk 10.
Pushing the correct buttons on the panels causes the launching system to load automatically the type of round ordered. A few manual operations are required, and these differ with the type of round. For example, the Terrier BT-3A(N) requires actuation of the warhead manual disabling safety switch. All Terrier rounds require installation of aerodynamic surfaces (wings and fins), followed by operation of the safety foot (or hand) switch by each assembler at his station.

MISSILE ORDER.—The type of round(s) to be loaded will be ordered by the WCS when the system is activated. Although verbal orders may be given in some systems, the order is usually indicated by signal lights on the EP-2 panel (EP-3 in Mk I systems). The operator of the EP-2 panel pushes the button that will cause the selected type round to be indexed to the loading position. If the order comes to HOLD, the round is held at the hoist position until the next order is received.

LOAD SELECTOR ORDER.—At the weapons control station the load select switch is set to either SINGLE or CONTINUOUS, the corresponding light signal on the EP-2 panel lights up, and the loading operation is started.

LOADING ORDER.—If the loading order is CONTINUOUS, the system will continue to select the same type of round, and hoist it to the loader rail each time the empty loader pawl returns to the load position. On SINGLE, one missile will be hoisted and loaded on the launcher. On HOLD, the launching system is held in READY condition, but no round is loaded.

UNLOADING ORDER.—When rounds are to be returned to the magazine, WCS will indicate UNLOAD LAUNCHER, or UNLOAD ASSEMBLY, which will cause a corresponding light on the EP-2 panel to be illuminated. The launcher captain will then initiate automatic unloading operations. (Not all systems can be unloaded automatically.)

The order for cessation of operation of the launching system is transmitted from the weapons control station to the launching system captain via telephone.

Look again at figure 3-2 and note the designations of the pushbuttons and lights. Some panels have a great many more buttons and lights than the model shown. The operator of the launcher captain's panel has to be alert to everything that is taking place in the launching system. He needs to know the system so he can picture in his mind's eye what is taking place on the launcher as each signal lights up or when he pushes a button in response to orders from the weapons control station. In automatic operation, the launcher slews to position in response to train and elevation orders from the computer in missile plot. In local operation, train and elevation orders have to be set in at the launcher captain's panel after receiving the computation from WCS. The firing key is on the Weapons Assignment Console (WAC) in the weapons control station. The WAC operator does not close the firing key until the launcher captain signals that all safety firing interlocks are closed. If a salvo is ordered, the second missile will be launched very soon after the first, following a similar program of orders.

Test Panels

One test panel is used for both port and starboard components of some systems, while other systems have separate test panels for port and starboard. The test panels are used only during launcher test operations and are unmanned during automatic loading operations. The test panel contains switches, synchros, and connections required to perform complete tests on the train and elevation systems. Auxiliary equipment connected to the EP-3 panel for testing include directors, signal generators, and oscillographs. This is not the test equipment used to test the weapon components; that equipment is in the missile checkout area.

The EP-3 panel of the Mk 13 launching system is used during local control of the launcher. At each panel, checklists should be posted for each type of procedure. Figure 3-3 shows part of a checklist posted at the EP-2 panel of a Mk 13 Mod 0 launching system. Use the checklist as a verification that all steps are performed in the correct sequence each time the launching system is operated.
Chapter 3—MISSILE LAUNCHING SYSTEMS

Other Control Panels

Instead of one power panel for all of the launching system, several mk/mods have separate power panels for parts of the launching system, such as feeder power panels (one for each side), loader power panels, assembler power panels, and power relay panels. Usually, each of these is activated from a control panel for that part of the launcher. Each control panel is manned by a captain, as feeder captain, assembler captain, or loader captain. Figure 3-4 shows an example of a feeder control panel. The one shown controls both the “A” and “B” sides. It contains switches for controlling the missile loading operations as directed by the weapons control station, and indicator lights for displaying the status of the loading operation. The operator of each feeder control panel activates the feeder power panel on his side of the launching system.

ASSEMBLER CONTROL PANELS.—Launching systems such as the Mk 9 have two assembler panels, one each for the “A” and “B” sides of the launcher. Each assembler control panel contains switches for operation of blast doors, magazine doors, stage 1 and 2 rammers, and indicator lights for displaying the status of the loading operation. They are operated by assembler captains. (On the Mk 12 launching system, blast doors cannot be operated from the assembler control panel but are controlled from the EP2 panel).

LOADER CONTROL PANELS.—Loader captains man these panels, and activate the loader power panels from them. The loader control panels contain switches for controlling the operation of the transfer car, for stowing or extracting missiles from cell racks (Mk 9 system), and for loading or unloading the rammer rail and strikedown rail. Light displays indicate the status of loading operations. Each cell rack is represented by a light which indicates whether the cell is loaded or empty, or is storing a dud, and also indicates the missile type.

MAGAZINE PANELS.—Several types of panels are associated with missile magazines on shipboard. The Mk 11 system has a magazine loading indicator and a magazine latch indicator panel. The Mk 12 has two magazine panels. The Mk 7 has two ready service panels. They all serve to control the operation of the missile magazine, bringing the missiles up to the launcher, or returning them to the magazine.

A system that has many control panels, each controlling a comparatively small part of the launching system, requires more men to operate the panels than a system that consolidates several panels into a large one. Each man has fewer pushbuttons that he is responsible for but coordination of effort is required between a greater number of men, and one man may be responsible for more than one panel.

MANNING OF OTHER STATIONS

Because much of the operation of a launching system is automatic, the number of men required is small. The number varies with the mark and mod of the system, the type of ship, the type of round, the type of warhead, and the type of operation (automatic, step control, or manual). The mark and mod of the launching system is related to the ship or class of ship on which it is used. The Mk 9 Terrier launching system is installed on CLG ships. The Mk 10 Mod 0 is placed on DLGs; Mods 1 and 2 are on CGNs, and Mods 3 and 4 are on CVAs. The Mk 10 Mods 7 and 8 are placed on DLG-26 and later ships. Future changes, revisions, and modifications will assign new marks and mods.

Checkout Area

Weapons that require mating of the missile and booster before stowage (Terrier, Talos) and unmating for checkout, require a minimum of two men in the checkout area during replenishment and checkout operations. The Tartar and Asroc arrive aboard completely assembled and are not disassembled for checkout. Asroc missiles that are to be stowed in the Terrier magazine must be attached to an adapter. This is done in the checkout area. In preparation for firing, the checkout area is not manned. The Tartar system does not have a checkout area.
Wing and Fin Assembly Areas

Weapons that require the assembly of wings and fins before loading on the launcher require the most men to prepare them for firing. A Talos launching system, either Mk 7 or Mk 12, requires 24 wing and fin assemblymen at their stations in the wing and fin assembly areas. An assembly captain is in charge of each assembly area. When a nuclear missile is being readied, he removes the green SAFE plug and inserts the red (or magenta) ARM plug.

Terrier missiles also require wing and fin assemblymen, but the number differs with the type of missile. The Terrier missile requires 12 to 14 wing and fin assemblymen for the Terrier BT-3. On the Terrier BT-3 and the HT-3, the tail control surfaces are folded (not removed) during stowage, and need only to be erected at assembly. The booster fins are installed during assembly.

On Tartar weapons, the fins also are folded. They are erected automatically when the missile is on the launcher in automatic operation, and by pushing the FIN OPENER pushbuttons on the launcher control panel in step operation. When the Tartar missile is to be returned to the magazine, the fins have to be folded manually while the missile is on the launcher.

WARNING: Before folding missile fins, turn the firing safety switch on the launcher control panel to SAFE. Then remove the switch handle and give it to the crew member going out to the launcher to fold the fins.

When the firing safety switch is set on SAFE, the launching system cannot be activated; removing the switch handle from the panel and placing it in the custody of the person working on the launcher prevents accidental activation.

DIFFERENCES IN LAUNCHING SYSTEMS

In the preceding pages, differences were brought out regarding the number and type of control panels, personnel needed, amount and type of assembly before loading, and some differences in the panels themselves. The steps in the operation of each station differ with the mark and mod of the equipment, the ship's installation, and other factors, so each station must have its own checkoff lists for the operator to follow. Table 3-1 brings together mark-mod information on the important components of launching systems in current use. Where two mods are listed for a component, it usually means that one mod is used on the starboard (right) side and the other on the port (left) side of the system.

Magazines

Most missile systems in present use have the mated or assembled rounds stowed in magazines in close proximity to the launchers, so the rounds can be transferred automatically from the magazine to the launcher. The magazines are unmanned in automatic and step operation. In case of power failure, manual operation is necessary. Manual operation is also used for maintenance, checking, and installation purposes. Handcranks are used instead of pushbuttons. When using handcranks, remember that the electric and hydraulic interlocks are ineffective. If the unit seems to bind or is difficult to move, stop cranking and investigate.

The magazines below decks, where spare parts and components are stowed, are serviced by hoists. Manpower is necessary to transfer these components to the hoist, and the components have to be assembled into a round in the check-out area before the round can be used, or placed in the launcher magazine. Spare nuclear warheads are stowed in security areas the same as for mated rounds. If a nuclear warhead must be assembled into a missile, or disassembled from it, GMMs do that work.

The only time personnel are permitted in a Tartar magazine is when it is inactivated, as during maintenance. No assembly is required on the missile, the checkout is done on the launcher arm, and the control panels are outside the missile magazine, adjacent to it.

SAFETY CHECKS TO BE MADE

Safety checks have to be made frequently in all systems, methods, types, or modes of operation, and areas of operation. Many safety devices are built into each system to safeguard the men working with it, and to prevent damage to the missiles, machinery, or ship. They were placed in
Chapter 3—MISSILE LAUNCHING SYSTEMS

At EP1 panel:

1. 440 Volts Power-On lights .. On
2. All circuit breakers ... ON
3. All switches ... ON
4. All Power-Available lights .. On
5. All Fuze-Blown lights ... Off

At EP2 panel:

1. Man station; plug headset into receptacle at right-hand side of panel.
2. SMZ4 (Telephone Selector switch) 10JP
3. SMW1 (Missile Warmup Selector switch) Required position
4. Warmup Status indication light On
5. Toggle switch in circular light pattern NORMAL
6. Report from Safety Observer "All Clear"
7. SMS1 (Control Selector switch) STEP
8. SMS2 (Operation Selector switch) OFF
9. SMF2 (Firing Safety switch) FIRE ENABLE
10. SMY1 (Train And Elevation Control switch) REMOTE
11. SMX4 (Loading Control switch) WEAPONS CONTROL
12. Ready Indications (3 lights) On
13. SMY2 (Launching System Warning switch) BELL
14. Open left-hand switch cover
15. Start motors by depressing START-RUN pushbuttons. (START-RUN pushbutton lights) On
16. All Motors CHECK FILTERS light Off
17. All Motors Run light .. On
18. Open right-hand switch cover
19. Check Step Control Switches. If necessary, use Step pushbuttons to obtain following light indications:
 a. Dud Jettison RETRACT light On
 b. Launcher Rail EXTEND light On
 c. Train Positioner EXTEND light On
 d. Elevation Positioner EXTEND light On
 e. Arming DISARM light .. On
 f. Fin Opener Cranks RETRACT light On
 g. Contactor And Fin Opener Cranks DEENGAGE light On
 h. Aft Motion Latch RETRACT light On
 i. Hoist TO MAGAZINE light On
 (Hoist TO INTERMEDIATE and TO LAUNCHER lights off)
 j. Blast Door CLOSE light .. On
 k. Ready Service Index CCW and CW lights On
21. SMS1 (Control Selector switch) AUTO
22. SMS2 (Operation Selector switch) LOAD
23. SMS3 (Ready switch) .. READY
24. SMS1 (Control Selector switch) OFF
25. SMS3 (Ready switch) .. STANDBY

Figure 3-3.—Checkoff list, activation procedures, Mk 13 Mod 0 launching system.
Figure 3-4.—Feeder control panel for Terrier Launching System Mk 9.
the system because they were found to be necessary; do not inactivate or bypass a safety device for any reason, and do not permit your men to do it. During preparation for firing, a safety observer must be stationed in a position where he can observe the work, including the men and machines or equipment involved. The safety observer must be an officer or a GMM 1 or C.

The checkoff lists posted at each station have the applicable safety precautions listed next to the operational steps to which they apply. The same safety precaution may be given several times on one list, each time it applies to a step in the operation to be performed. When you prepare a checkoff list, as you will be required to do, insert safety precautions in the same manner, next to each step to which they apply. Some of the technical manuals place the safety warnings throughout the text, wherever applicable, and also include a summary listing of all the safety precautions given in the book. Review this safety summary frequently.

Commanding officers may issue additional safety precautions. Observance of the safety precautions is mandatory. If you fail to enforce safety rules, you can be held responsible.

Types of Danger

Dangers may be classified according to the type of material or the object causing the danger, such as machinery, explosives, gases, liquids, irritants, pressure, fire, or electricity. A material that is dangerous in itself may be used only under prescribed conditions or circumstances. The caustic electrolyte in missile batteries, for example, will always burn the skin, so the problem is simple—don’t let any get on the skin. Safe use of other materials may require compliance with special conditions. Particular conditions necessary for each type of explosive used in missiles are described in Gunner's Mate M (Missiles) 3&2, NAVTRA 10199. You should know what types of explosives are used in the different parts of your missiles and the specific precautions for handling of each type. As all the explosives used in the missiles are enclosed by some form of container, there is little danger of skin contact with explosives that can cause dermatitis. The bulk and weight of the units present more of a problem in safe handling.

MACHINERY.—Before any machinery is set in operation, the area must be checked to be sure no one is in a place where he could be injured by moving machinery. The launcher captain must sound the warning bell before he pushes a button to activate any machinery, and the safety observer must warn away anyone he sees in the area. Grisly experience has shown the need for this caution before operating any powered machinery such as a missile launching system.

If the safety observer sees any violation of safety rules or any dangerous situation, it is his duty to correct the situation immediately. If you are operating the launcher captain's panel, it is up to you to turn off the power if so ordered or if you see a situation that requires quick stoppage of any part of the launcher system. Checking the launching system equipment and machinery for safe operating condition is part of routine maintenance performed by you and the men you supervise. The equipment is cycled without a load; any fault in the operation is corrected before the equipment is used with a load.

EXPLOSIVES.—The "safe-distance" lines are the equivalent of the safety training circle lines painted on the deck around each gun mount. Their purpose is to remind all personnel that the area is covered by movement of the launcher with loaded guide arms. Personnel inside these safety lines are in a danger area where they could be struck by the moving guide arms and/or missiles. Also present is the possibility of accidental ignition during assembly, mating, handling, struckown, or strikeup operations. Remind your men, if necessary, never to place themselves where they would be in the path of the blast if the missile or booster were ignited.

The smoking lamp must be out at all times in missile handling, test, checkout, and stowage areas. Whenever an exercise head is assembled into a missile, flash signal units (smokepot type) are installed. Flash signal units are not tested or checked aboard ship; a safety lanyard indicates that the flash unit is in the un armed condition. The lanyard is removed just before firing; do not remove it ahead of time. Flash signals must not be dropped and they may not be exposed to RF
Do not stand in front of a flash signal while working on an exercise head. A flash signal and the detonator in the S&A device can be set off by a radar beam, static electricity, or a spark. The S&A device is not tested, disassembled, or repaired aboard ship.

NUCLEAR DANGERS. With nuclear warheads assembled into missiles, there is always the POSSIBILITY of nuclear radiation. Probably the chief cause of nuclear incidents and accidents is careless handling—dropping a weapon with a nuclear warhead, or dropping the warhead itself. Prevention therefore means making sure that the weapon or component is securely fastened to the hoist, crane, trolley, or other lifting machinery.

“SAFE” POSITIONS OR DEVICES TO CHECK

Each launching system has numerous safety devices, some of them entirely automatic in operation. The position of some components or devices is checked on the control panels by means of lights or other signals. Because control panels may be widely separated and on different decks, telephone communications must be established between the panel operators, the safety observer, and the men at work in the different areas. A loudspeaker announcement and/or a warning bell should warn people away from the topside loading area before operation begins. Only the persons actually needed for the work are permitted to remain there. No persons are required within the launching system to operate it, and signs should be posted to keep personnel out of the assembly and checkout areas. If anything goes wrong with the launcher or other part of the system and someone has to work on any part to correct the fault, disable the component so no one can start it accidently. On the power panel, turn off the switch that activates the component, remove the handle of the switch and give it to the man who is going to do the repairs. Only when he is finished does he return the handle to the switch. The unit can then be activated again and its operation tried out. No one may enter a magazine while a loading or unloading operation is in process. If you are in charge at a control panel, check carefully before you push a button that starts the machinery moving. The operator at each control panel signals the launcher captain when his part of the system is ready.

The SAFE-FIRE switches must remain at Launcher Only (fig. 3-2) position throughout all the daily operational checkout. (On the control panel of the Mk 12 launching system, the switch is labeled SAFE, RUN, FIRE.) There are safety switches for the magazine, the loader, and the loader accumulator. Each of these switches has two positions, SAFE and RUN. When in the SAFE position, the handle can be removed, to be retained by the person doing the maintenance on the equipment until he has finished his work.

Before activating a launching system, after receiving the order to do so, the operator of the EP2 panel must receive the “All Clear report from the safety observer, who is stationed where he can overlook the whole launcher area. Lights on the operating panels indicate various conditions that need to be checked and corrected before proceeding. A light on the EP1 panel, labeled with a warning sign, indicates that there is a blown fuse that inactivates the magnetic door lock. This must be corrected at once. A monitor on the 115-volt power supply triggers an alarm if there is a grounded circuit.

The safe positions or devices on the missile rounds will be discussed later.

ELEVATION AND TRAINING CHECK

The firing cutout cams are designed for each installation of a launcher so the launcher cannot be trained where it could fire into any part of the ship. The installation is tested and checked at the shipyard and rechecked and tested after any change or modification of the launcher. The positioning of the launcher in response to train and elevation orders is checked each time the launcher is used during training, preparation for firing, or during and after maintenance work. The angle of train and elevation necessary for target intercept is calculated by the computers in the weapons control station from the data obtained by radar or sonar tracking of the target and the computations made in CIC. In automatic operation, the train and elevation synchro signals cause the launcher to slew to the position
ordered. In local control the launcher is moved to the computed train and elevation position at the launcher.

Train systems and elevation systems contain similar electric, hydraulic, and mechanical equipment. Each system receives and responds to order signals independently of the other. In normal operation, remote orders are supplied by the launcher computer. These signals determine the flight path of the missile during the “boost phase” of its flight.

The systems of different launchers are very similar in operation. The principles of operation are the same in all of them. Names and locations of units or components, details of wiring, push-buttons to operate, etc., can vary considerably, depending on the complexity and size of the system, the location of the launchers on the ship and in relation to the control components, and other factors.

The voltages used by train and elevation systems are dangerous, and may be fatal if contacted. If electrical trouble develops, consider all circuits dangerous until the trouble is located and corrected.

LAUNCHER PREPARATION STEPS IN DIFFERENT SYSTEMS

The steps in preparation of a launcher for firing of a particular launching system vary with the mode (surface-to-surface, surface-to-air, surface-to-underwater), the type ship on which it is installed, the type of missile (conventional warhead, nuclear warhead), the purpose of firing (intercept, destruction, etc.), and other factors. Preparation for an exercise firing may require a number of steps different than in preparation for a live shot. Considering all the possibilities of difference, a complete and exact list of steps in preparation for firing cannot be made to cover all situations. The checkoff list you prepare must be made to fit your launching system and must be complete in detail.

TERRIER LAUNCHING SYSTEM

As you can see from table 3-1, the Mk 9 Terrier launching system has more control and power panels than the Mk 10 system. The Mk 9 system has Power Panels EP-1A, EP-1B, EP-1C, and EP-1D, besides Amplifier Panels EP-8, EP-9, and EP-2A. The Mk 10 launching system has only the EP-1 power panel. A similar consolidation is effected for the control and test panels. Improvement in the other components of the Terrier launching system has resulted in modular changes and some mark changes. All Terrier systems use a Mk 5 launcher, with mods ranging from 0 to 8. The latest change modifies the launching system so it can be used for Terrier and Asroc missiles.

In the Mk 9 launching system, a transfer area located between the forward and aft magazine service areas contains two transfer cars. These are used to transfer rounds athwartship from storage cell racks to the first stage rammer rail. In the Mk 10 launching system, the ready service ring is rotated to bring the selected round in position to be raised by the hoist, instead of the hoist being brought to the round as in the Mk 9 system.

Mk 9 Launching System

The operating cycle of a launching system is meant to cover only that part of the overall launching system that is concerned with removing a missile from stowage and ultimately placing it on the launcher for firing. If the system is unmanned and deenergized, the first step is to man all stations and energize all power motors. Upon receiving the load order, the cycle begins. The following steps in the cycle take place. See figure 3-5.

1. Movement of the transfer car to a pre-selected rack and cell. The transfer car is a part of the loader. It runs athwartship on tracks.

2. An extractor beam can be raised or lowered on the car, to extract a round from a magazine cell or insert it into the magazine.

3. The transfer car and extractor beam deposit the round on the overhead rammer rail.

4. Lifting and securing the round on the overhead rammer rail.

5. Continuous grooves the length of the
rammer rail serve as tracks in which the booster slides. In the rail interior is a continuous lengthwise slot in which a continuous sprocket-driven rammer rail chain rides. This chain engages the after booster shoe by a rammer head pawl and transports the round to the assembly area through the magazine door assembly.

5. When a round is rammed into the assembly area, the first stage rammer head, which is part of a sprocket-driven chain, withdraws from the booster shoe and the second stage rammer head attaches.

6. Wings and fins are installed by the assemblymen in the assembly area. Missile support bands are removed, and are disposed of through chutes that convey them to the checkout area.

7. Second stage ramming. The second stage rammer, which also has a sprocket-driven chain, is generally similar to the first stage. Linkages and camming surfaces at the point where the first and second stage rammers interchange prevent interference in the ramming operations. On the second stage, a contractor on the rammer head mates with the warmup connector on the booster to provide warmup power during the second stage ramming to the launcher. Warmup power is applied continuously by the rammer until the round is received at the launcher.

The two stages have separate and independent hydraulic drives located in the overhead above the loader rails. Each drive is equipped with a power-off brake to hold moving parts stationary when the drive is not in operation. The electrohydraulic units (not shown in figure 3-5) also supply power for the blast and magazine door mechanisms.

In figure 3-5 you can see the tiers of cells in the magazine. Figure 3-6 illustrates the numbering system of the cells. A light (on the loader
Chapter 3—MISSILE LAUNCHING SYSTEMS

Figure 3-6.—Cell numbering system, Guided Missile Launching System Mk 9 Mod 0.

captain’s control panel) for each cell indicates the type of missile that is loaded in each cell, enabling the loader captain to select by push-button the type of missile ordered for the operation.

The two forward magazine racks have a continuous bank of flametight doors in their after ends, one for each cell, in effect forming a bulkhead. In the bulkhead, aft of the after magazine racks, are two magazine doors. These doors are automatically and hydraulically operated, and interlock so that under normal conditions they cannot be opened while the deckhouse blast doors are open. The blast doors each have two halves that open vertically. “A” and “B” blast doors may be operated independently or concurrently. Heating facilities prevent trouble with icing. Interlocking with other system functions ensures that the doors will effectively isolate the system’s interior while rounds are on the launcher, yet open during ramming of rounds to the launcher.

8. Placing and securing missile on launcher. As each assemblyman completes his work in assembling wings and fins to the missile, he moves out of the path of the missile and closes his safety switch. Only when all the men have closed their safety switches is the missile moved to the launcher. The spanner rail, a component of the second stage rammer, bridges the gap between the launcher guide rails and the fixed second stage rammer rail. The spanning rail rotates into position as the blast doors open, and latches to the launcher rails. Interlocks ensure

65
proper coordination. The launcher rails or "arms" contain the missile positioner, locating stop, safety latch, arming tool, warmup contactor, firing contacts, and associated electric-hydraulic systems. The arms hold the missile in position during warmup and launcher synchronization to the train and elevation orders. They also maintain the position of the missile after firing until sufficient thrust has been built up for proper takeoff.

The complete launching cycle has been divided into various cycle events and the unit cycles timed in seconds and fractions of seconds. This timing information is useful when checking to locate the cause of a slowdown in the launching operation. Figure 3-7 lists the launching steps in detail but without the time information. An electronic timer properly connected into the circuitry through test panels provided can be used to measure operating speed of the individual units. A stopwatch can also be used for timing a launching cycle, but is not as accurate as an electronic timer.

Mk 4 Launching System

The general arrangement of the magazine, ready service ring, and the wing and fin assembly area in relation to the launcher were shown in Gunner's Mate M (Missiles) 3&2, NAVTRA 10199. It is capable of handling BW and BW-1 Terrier missiles, which are now used as training and target missiles. Without the missiles stowed in the vertical position, the method of moving them to the launcher is different than with other launching systems in which the missiles are stowed in a horizontal position. There are only two ships with the Mk 4 system and both are now assigned to the inactive fleet.

Mk 10 Launching System

Mods of the Mk 10 launching system in current use are Mods 0 through 8. The dual mods 1 through 6 differ only in the adaptations necessary for use on opposite sides of the ship, or fore and aft location on the ship (fig. 3-8). Mod 0 is used on DLGs; Mods 1 and 2 on CLGs or CGNs; Mods 3 and 4 on CVAs or CVNs; mods 5 and 6 on DLGs class 16; and Mods 7 and 8 on DLGs class 26 and later.

A difference between the Mk 9 and Mk 10 launching systems that is immediately evident from the illustrations is the difference in the stowage arrangement of the missiles. In the Mk 10, instead of each missile being in a separate cell, each magazine contains a ready service ring that holds numerous missiles. The ready service ring is rotated (by push button at the launcher captain's panel) to bring the selected weapon to the loading or No. 1 position, from which it is raised to the assembly area by the hoist. The loader-positioner ramms the missile into engagement with the loader rail, the empty hoist lowers, and the magazine doors close. While the wings and fins are being assembled by the assemblymen, and warmup is applied to the missile, the ready service ring indexes another missile to the No. 1 position.

When the wings and fins are assembled, the twelve operators move to a safe area and depress foot switches, indicating that assembly is completed. This illuminates a light on the assembly captain's panel; he, in turn, operates a switch which indicates to the launcher captain that assembly is completed. If the missile is the correct one, it is brought to the launcher by the loader, which positions it on the guide rails. (If the missile is not the one ordered, a flashing indication appears on the EP4 (or EPS) panel; this situation must be corrected immediately.) Then the launcher aft-shoe latches extend, thereby transferring the missile from the loader pawls to the aft-shoe latches. The launcher contactors extend and continue warmup of the missile after the loader pawls retract. When the booster contactors are fully extended, the arming tools extend. After the loader pawls have retracted clear of the spanning rails, the spanning rails retract and the blast doors close. When both blast doors are closed, the train and elevation latches retract, and the launcher synchronizes with the remote order from the assigned director. The loader pawls and loader positioners move back to position, ready to receive the next weapon from the hoist. Before the launcher slews to the ordered train and elevation position, the panel operator must receive an all clear from the safety observer to be sure that no one is in the path of the launcher.

The firing safety switch is on the launcher captain's panel, and he operates it as ordered.
<table>
<thead>
<tr>
<th>WEAPONS CONTROL</th>
<th>STEPPING SWITCH SELECTS MISSILE TYPE.</th>
<th>TRAVERSE AND LIFT SIGNAL CIRCUITS ENERGIZED.</th>
<th>TRANSFER CAR MOVES TO SELECTED COLUMN.</th>
<th>LIFT RISES EXTRACTOR BEAM TO ALIGN TO CELL.</th>
<th>HEAD POSITIONING FORK RETRACTS.</th>
<th>ALIGNED CYLINDERS EXTEND (VERTICAL AND HORIZONTAL).</th>
<th>CELL DOORS OPEN.</th>
<th>SPANNER RAIL LOWERS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTRACTOR HEAD</td>
<td>EXTRACTOR HEAD EXTENDS.</td>
<td>EXTRACTOR HEAD RETRACTS.</td>
<td>EXTRACTOR HEAD STOP EXTENDS.</td>
<td>EXTRACTOR HEAD SDP EXTENDS.</td>
<td>SPANNER HEAD RISES.</td>
<td>CELL DOORS CLOSE.</td>
<td>STEPPING SWITCH STEPS TO NEXT SELECT.</td>
<td>EXTRACTOR HEAD MOVES AFT 3 INCHES.</td>
</tr>
<tr>
<td>LIFT RAISES TO TRANSFER LEVEL.</td>
<td>TRANSFER CAR MOVES TO COLUMN 6.</td>
<td>STAGE 1 RAMMER FLOATING RAILS RELEASE.</td>
<td>LIFT RAISES MISSILE TO STAGE 1 RAMMER RAIL.</td>
<td>EXTRACTOR HEAD CEILS TO RAMMER RAIL.</td>
<td>ALIGNED CYLINDERS EXTEND (HORIZONTAL).</td>
<td>LIFT LATCHES EXTEND.</td>
<td>HEAD POSITIONING FORK RETRACTS.</td>
<td>LUG RETAINING LATCHES OPEN.</td>
</tr>
<tr>
<td>LIFT LOWERS TO TIER D.</td>
<td>LUG RETAINING LATCHES CLOSE.</td>
<td>TRANSFER CAR MOVES FROM COLUMN 6 FOR NEXT SELECTION.</td>
<td>LATCHES 1 AND 3 RELEASE T-LUG.</td>
<td>MISSILE LATCHES IN FINISHING AREA LATCHES 2 AND 4.</td>
<td>MAGAZINE DOORS CLOSE (AFTER RAMMER RETRACTS 6 FEET).</td>
<td>MAGAZINE DOORS OPEN.</td>
<td>MISSILE LATCHES RETRACTS.</td>
<td>MISSILE LATCHES RETRACT.</td>
</tr>
<tr>
<td>STAGE 2 RAMMER LATCHES TO T-LUG.</td>
<td>PULL UP CONTACT PAD ENGAGES PULL UP START.</td>
<td>ASSEMBLE FINISHING AREA SAFETY SAFETY SWIICHES.</td>
<td>CLOSE PERSONNEL SAFETY LOCKS.</td>
<td>LAUNCHER TRAIN TO LOAD POSITION.</td>
<td>GUIDE ARM TO LOAD position.</td>
<td>TRAIN AND ELEVATION LATCHES EXTEND.</td>
<td>BLAST DOOR LOCKS RETRACT.</td>
<td>BLAST DOORS OPEN.</td>
</tr>
<tr>
<td>SPANNING RAIL LATCHES.</td>
<td>FINISHING AREA LATCHES 3 AND 4 EXTEND.</td>
<td>STAGE 2 RAMMER EXTENDS TO HOLD MISSILE.</td>
<td>POSITIONER SPREAD EXTENDS TO HOLD MISSILE.</td>
<td>BOOSTER ARMING TOOL EXTENDS.</td>
<td>STAGE 2 RAMMER RETRACTS.</td>
<td>STAGE 2 RAMMER RETRACTS.</td>
<td>STAGE 2 RAMMER RETRACTS.</td>
<td>STAGE 2 RAMMER RETRACTS.</td>
</tr>
<tr>
<td>TRAIN AND ELEVATION LATCHES RETRACT.</td>
<td>LAUNCHER TRAINS AND ELEVATES TO FIRING POSITION.</td>
<td>FIRING CIRCUIT CLOSES.</td>
<td>MISSILE POWER BUILDUP.</td>
<td>BOOSTER ARMING TOOL SPREAD RETRACTS.</td>
<td>"A" SIDE BOOSTER ARMING TOOL SPREAD RETRACTS.</td>
<td>"A" SIDE MISSILE ENGAGES LAUNCHER.</td>
<td>"A" SIDE MISSILE ENGAGES LAUNCHER.</td>
<td>"A" SIDE MISSILE ENGAGES LAUNCHER.</td>
</tr>
<tr>
<td>BOOSTER ARMING TOOL UNWINDS.</td>
<td>POSITIONER SPREAD RETRACTS.</td>
<td>"B" MISSILE POWER BUILDUP.</td>
<td>"B" MISSILE POWER BUILDUP.</td>
<td>"B" BOOSTER ARMING TOOL SPREAD RETRACTS.</td>
<td>"B" BOOSTER ARMING TOOL SPREAD RETRACTS.</td>
<td>"B" BOOTER ARMING TOOL SPREAD RETRACTS.</td>
<td>"B" BOOSTER ARMING TOOL SPREAD RETRACTS.</td>
<td>"B" BOOSTER ARMING TOOL SPREAD RETRACTS.</td>
</tr>
</tbody>
</table>
| LAUNCHER RETURNS TO LOAD ORDER. | LAUNCHER TRAINS AND ELEVATES LATCHES EXTEND. |}

Figure 3-7.—Operational flow diagram for Guided Missile Launching System Mk 9 Mod 0.
Figure 3-8.—Guided Missile Launching System Mk 10 Mods 1 and 2, for Terrier missiles.

from the weapons control station. If the weapons control operator has his load-selector switch on CONTINUOUS, the weapons are hoisted each time the loader returns to the assembly area, and the loading and firing sequence is repeated. If the load switch is on SINGLE, only one weapon will be loaded until further orders from the weapons control station.

MK 10 MODS 7 AND 8 LAUNCHING SYSTEMS.—The outstanding innovation in the Mods 7 and 8 is provision for stowing Asroc
missiles alternately with Terrier missiles in the Terrier ready service magazine. *Gunner's Mate M (Missiles)* 3d2, NAVTRA 1Q199, has several pictures of this arrangement and describes it. OP 3114 PMS/SMS is the OP for the Mod 7, and Mod 8.

Guided Missile Launching System Mk 10 Mod 8 is an aft installation aboard a DLG(N)35-class ship. The loading and firing operations are identical with the Mod 7 system. However, the Mod 8 has no tilting rail in its feeder system. The increased length of its loader rail causes the load and unload cycles to be somewhat longer than on a Mod 7 system. The absence of the tilting rail also affects step operation. There are no pushbutton switches for Tilting Rail RAISE and LOWER on the EP2 panel. But there is an 8-second delay before the blast doors open, which gives time for attaching the fins to the weapons in the assembly area. The ready service mechanisms are identical to those of the Mod 7, having two upper ones, each designed to hold twenty missiles, alternating Terrier and Asroc missiles, and one lower ring that holds Terrier missiles only.

TARTAR LAUNCHING SYSTEM

Launching systems used with Tartar missiles are the Mk 11 Mods 0, 1, and 2, Mk 13 Mods 0, 1, 2, and 3, and Mk 22 Mod 0. In all these systems, the magazine is a compact metal structure and the launcher is placed on top of it. As the missiles are stowed completely assembled, there is no need for an assembly room nor a transfer room. The Tartar missile launching system serves as the primary armament of the DDG. The Mk 13 Mod 3 is placed on CVAs, and the Mod 2 is designed for placement on converted DLs. Mods 1, 2, and 3 have flanges so they can be installed either entirely above deck or with the magazine partially below the deck.

The Mk 13 launching system has a single-arm launcher, in which the dud-jettison unit is integral with the launcher arm, a missile magazine, and missile launching system control equipment. The Mk 11 is a twin-rail launcher designed to handle two missiles simultaneously.

In automatic control, the launching system control initiates and controls the loading cycle, but the launcher is positioned and the missile is fired by the ship’s fire control system.

Mk 11 Launching System

The Mod 0 is in use on DDG-2 class ships, and Mods 1 and 2 are installed on CGs. Two panel designations on the Mk 11 system are different than in other systems and this may lead to confusion if you have become accustomed to other systems. On the Mk 11 the EP-2 panel is the loader control panel and the EP-3 is the launcher control panel. The Mod 0 has several relay control panels in special cabinets, RC1, RC2, RC3. Mods 1 and 2 place the relay controls in one panel, the Mk 205 relay control panel.

If the launcher is to be trained or elevated by local control, the operator of the launcher control panel uses the Mk 211 local control panel (EP-5) to train and elevate the launcher manually. The EP-5 panel also displays an error indication to assist the launcher captain in making the necessary corrections in training and elevation.

The Mk 11 system has other special indicating panels, the IP-1, IP-2 and the IP-5.

Magazine Loading Indicator Panel Mk 209 Mod 0 (IP-1), located above the loader control panel (EP-2), is an illuminated replica of the launcher, magazine, and magazine cover. It indicates the launcher position, the magazine cover and blast door positions in relation to the launcher, and indicates if cells are loaded or unloaded (fig. 3-9). The blast doors are represented by four colored discs in a clear plastic disc. The numbered discs in the illustration are the indicating lights for the individual missile cells. The four corner lights indicate the cell location of the magazine cover doors, whether the cell is in the inner or the outer circle of the magazine, if the warmup power is on, and if the missiles are latched or unlatched.

The **Missile Latch Indicator Panel (IP-2)** is located in the center of the missile magazine. It is used chiefly during missile replenishment and readying for sea. As the missile latches cannot be checked visually to be certain the missiles are secured in the magazine, the unlatched missiles are indicated on the panel. This is an unsafe condition and must be corrected, as the missiles could slide (vertically) in the magazine. Of course the launching system must be inactivated while anyone is down inside the magazine.
The Missile Mode Order and Compliance Panel (IP-5) displays the launcher mode order (flashing), compliance (steady), and type of missile (X, Y, or Z) in position under the A and B blast doors.

Mk 13 Mod 0 Launching System

The Mk 13 launching system follows the trend in combining several control panels into one. This system has three control panels: EP-1, power control; EP-2, launcher control; and EP-3, test panel. The local control panel is made a part of the EP-3 panel. In automatic operation, the launcher captain operates EP-2 panel; EP-1 and EP-3 are unmanned. The safety observer watches the launcher area and keeps the launcher captain informed on all phases of launcher operation.

The compact unit construction of this launching system makes it usable on a variety of ships. It may be mounted entirely above decks, or the magazine may be placed below deck level. The most noticeable difference between the Mk 11 and Mk 13 systems is the difference in the launchers—Mk 11 has two launcher arms and the Mk 13 has only one, figure 3-10. This, of course, eliminates all operational steps that involve loading or unloading, or jettisoning for a second side. The Mk 13 is an extremely high speed system. The steps in operation are very similar.
for the Mk 11 and Mk 13 systems. In automatic control there are four large steps:

1. Warmup
2. Loading
3. Assignment
4. Firing

Steps 3 and 4 are performed by remote control from the weapons control station.

WARNING: Do not energize the launching system until communications have been established between the safety observer and the launcher captain, and the safety observer has reported that the launcher area is all clear.

As soon as the launching system is activated after receiving the order from the weapons control station, warmup power is applied to four missiles in the magazine of the Mk 11 system, and in the Mk 13 system, to three missiles in sequence, not simultaneously (fig. 3-10). Missile Warmup Selector Switch SMW1 can be positioned to AUTO 1, AUTO 2 or AUTO 3. The position of SMW1 determines how many missiles are put on warmup in the magazine. For normal automatic operation, AUTO 3 is selected. As missiles are loaded, warmup is applied to succeeding missiles in the magazine. If for any reason, the first missile is not loaded within 14 minutes after start of warmup, this missile is automatically removed from warmup and another is placed on warmup. The warmup status light on the launcher control panel will turn red after 15 minutes. The circuit for the application of warmup power is established during strikedown; a warmup contactor enters a socket in each missile as it is placed in a cell in the ready service ring.

The operators at the control panels push the buttons in sequence according to the chart posted at each station and in response to orders from the weapons control station. In the Mk 13 system, the EP-2 panel operator takes care of all the pushbuttons, but on the Mk 11 system, the work must be coordinated between the EP-2 and EP-3 operators, who must also operate the EP-5, IP-1, and relay panels. The safety observer keeps in contact with the panel operators, so any part of the system can be stopped quickly if necessary.

If the load order (from the weapons control station) is for continuous loading, the launching system will continue to load missiles until the magazine is empty (of the type ordered), beginning with the outer ring of missiles (if the outer ring was initially selected) and, when those cells are empty, loading missiles from the inner ring. If the inner ring was initially selected, then when the inner ring is depleted, loading will automatically be shifted to the outer ring. Warmup is applied to the missiles automatically at the successive stations in the outer ring (fig. 3-10), and then in the inner ring (or in the opposite order if the inner ring was selected first). This assumes that every cell is loaded and there are no dud missiles among them. If the load order is for one missile, the launching system will stop after one missile has been loaded. With the Mk 11 system, a 2-missile salvo may be ordered.

As soon as the panel operator receives the load order, he indexes the magazine cover to the missile selected, and synchronizes the launcher to the loading position, for inner ring or outer ring position (Mk 11 only). If the missile selected is not at the hoist position, the ready service ring rotates clockwise to bring the missile to that position. After the minimum warmup time has been applied to the missile, hydraulic power is transferred to the hoist and the hoist rises to the intermediate position. As the missile is moved from station at the hoist position, the warmup contactor at the base of the missile breaks contact.

At the intermediate level, the hoist pawl engages the missile aft shoe, and the magazine retractable rail extends to complete the missile track to the spanning rail, which is attached to the blast door. Then the blast door opens, extending the spanning rail, the elevation positioner extends into the open blast door, and the hoist with the missile rises to the launcher. When the loader hoist completes its raise cycle, the launcher aft motion latch secures the missile to the guide arm and the hoist returns to the magazine. The launcher warmup contactor engages the missile and warmup is again applied. The fin openers engage the fins on the missile for opening. The train and elevation positioners retract and the blast door closes, retracting the spanning rail.

When the missile is in position on the launcher, the missile aft shoe contacts the forward motion latch and at the same time
Figure 3-10.—Types of Tartar launching systems: A. Mk 11 (two launcher arms); B. Mk 13 (one launcher arm).
actuates the rail-loaded indicator plunger. This plunger actuates the launcher-rail-loaded switch; this lights up an indicating light in the weapons control station and also on the launcher commander's panel. The weapons control station assigns a target to the launcher, at which time the missile fins are automatically extended. The launcher slew to the train and elevation positions ordered. The automatic tracking cutout system prevents the launcher from pointing into certain areas where a fired missile would be hazardous to the ship's structure. The cutout system opens the firing circuit when the launcher points into an area unsafe for missile firing (non-pointing zones). The launcher synchronized light on the launcher control panel and an indicator in the weapons control station show when the launcher guide and carriage are positioned so the missile can be launched in the proper flight attitude (azimuth and elevation). The blast door must remain closed and the fins on the missile must be unfolded before the ready-to-fire signal is given. These two operations can be going on while the launcher is moving in train and elevation to the ordered and corrected position. The FINS UNFOLDED light on the launcher control panel goes on when the fins are unfolded.

All these actions of the launching system components should have taken place in less than 6 seconds from the time minimum warmup elapsed in the magazine to launcher synchronization. A prefiring evaluation is made by the launcher captain and the weapons control officer. The firing safety switches must be closed at the launcher control panel and at the safety observer's position. The FIRING ZONE CLEAR light must be on (launcher control panel). Launcher warmup must have been applied after the fin opener was engaged, and the launcher was assigned. Time delay relays close after the minimum time has elapsed. The launcher warmup switch on the power panel must be on for the minimum number of seconds. The code set in the missile must correspond with the code of the assigned fire control system. The CODE SELECTED light on the launcher panel will go on if the codes match.

Only if all conditions are met, will the missile firing be ordered. The READY-TO-FIRE light will go on in the weapons control station and on the launcher control panel. The fin opener and contactor must be engaged at the time the firing key is pressed in the weapons control station. The circuit to the hot gas generator squibs (in the missile) leads through the launcher contactor. After the hot gas generator squibs have fired, the contactor and the fin opener cranks retract and all circuits through the contactor are broke.

Beneath the closed blast door, the hoist was lowered, and the ready service ring has indexed another missile to the hoist position. Warmup has been applied and the missile is ready to be loaded on the launcher. If only one missile was ordered, no further loading takes place.

This assumes that every valve, switch, etc., works perfectly. If any part fails to perform as expected, repairs must be made by the GMMs. As most of the smaller ships have only one launcher, a failure can be a critical matter. You need to become thoroughly familiar with the system on board so you can locate trouble quickly and remedy it. It is expected that application of the Planned Maintenance Subsystem will reduce such failures to a minimum.

MK 13 MODS 1, 2, AND 3.—A number of changes have been made to improve the performance of the Mk 13 launching system. The base structure of the magazine is completely redesigned. The water injectors (see ch. 8) have been extended below the bottom plates of the base structure. The missile restraint rings now have vertical mounting brackets and are made of heavier material. The magazine rail assembly in each cell now has a latch lock on the magazine rail latch to prevent the latch from being jarred open. The hoist assembly has changes in the hoist pawl unit, the curved track assembly, the retractable rails, and the retractable rail valve blocks. A hand-operated nitrogen-boost pump has been added to boost the ship-supply pressure for charging the jettison accumulator. It is mounted inside the stand assembly just below the center hatch (fig. 3-11).

Pressure-cut-out switch assemblies and their associated valves and orifices have been relocated from the safety relief valve to the tank cover of the header tank for the train and elevation drives, and the header tank of the magazine power supply.
The launcher guide, too, has some changes. These are changes in the forward motion latch and lock, the igniters, the fin openers, and the fin opener and contactor assemblies. A key-operated lock on the arming device permits the launcher captain to lock the arming device as a safety precaution during checkout of missiles on the guide arm. The forward motion stop latch has been changed from a movable stop to a fixed one. The igniters have been modified so they contact the missile only when the missile is armed. The changes in the fin opener and contactor assemblies are minor and do not change the operation of the assemblies. The fin opener housing is slightly smaller and shaped slightly differently than on the Mod 0.

The principal change in the train and elevation systems is the redesign of the electronic
servo control units. There are also some changes in the train and elevation drive motors, the servo and supercharge hydraulic systems, and in the receiver regulators.

Some of the changes were necessary because of the larger size of the Improved Tartar. The magazine was modified to allow stowage of a mixture of X, Y, or Z type Tartar missiles. The Missile Station Assignment Switches are on the inside of the EP2 panel. To assign the missiles to their stations in the magazine, the EP2 operator unlocks the missile type assignment switch cover and assigns each empty station to the missiles to be on-loaded. Loaded stations are not changed by the operator.

Mk 22 Launching System

Guided Missile Launching System Mk 22 is installed on small ships (DDGs) where space, weight, and other considerations require a smaller and lighter system than the Mk 13. The Mk 22 is an extremely compact single-arm launching system designed to stow, load, and fire Tartar missiles, and may be adapted for handling, loading, and firing other missiles. It is attached to the ship’s structure with a single mounting ring like that of the 5"/54 Gun Mount Mk 42. The missiles are stowed vertically in a single ready service ring, which is nonrotatable. The launcher rotates to the loading position over the selected cell. Figure 3-12 shows structural elements of the system in a cutaway view. The train/hoist and elevation power drives and their associated receiver-regulators and miscellaneous controls are supported on the launcher’s center column. The control panels are remotely located.

The launcher is bearing-mounted to the upper magazine section, and forms the top of the magazine. The launcher arm assembly provides the guide rail and latches which support and secure the missile, the fin erectors which unfold the missile tail fins, the launcher-to-missile electrical connector which feeds the prefire intelligence to the weapon, mechanical input to arm the rocket motor, and firing contacts to ignite the rocket motor. The rail guides the missile for the first 20 inches of travel, then retracts, moving away from the flight path. This gives extra clearance so that the missile will not strike the forward end of the guide under severe ship roll, wind, and other conditions. A dud-jettisoning device is provided in the guide arm to boost a faulty missile overboard if necessary.

Many of the components are the same as on the Mk 13 launching system. The guide arm in its entirety is interchangeable. A major difference is in the power drive. Both loading and training are tied to one power unit. The two operations cannot take place simultaneously. The elevation power drive is a separate unit.

The operational characteristics and controls are similar to the Mk 13, and personnel training does not present unique problems. At General Quarters, three crewmen are required: an operator at the main control panel, a safety observer, and an emergency repair technician.

Operation of the system is normally automatic, and the crew merely monitor the system. At LOAD order, the launcher automatically trains and elevates to the selected loading position, the magazine blast door opens, the hoist chain engages the missile from below and pushes it into position on the launcher. The fin erectors engage the missile fins (opening them if the launcher has been assigned a target) and at the same time the contractor makes electrical contact with the missile. The hoist chain is then retracted and the blast door closes. If the launcher has been assigned, it synchronizes in train and elevation with the computer signal. The missile may be fired any time after synchronization. An automatic warmup system ensures that enough missiles are kept on warmup to permit firing continuously but that any missile approaching a condition of excessive warmup will be taken out of sequence and allowed to cool. Indicators provide continuous information on orders received, status of launching system operations, number of missiles in the magazine, and missile warmup in the magazine.

Step control is used for system maintenance, exercise, strikedown, and missile checkout. Safety interlocks, firefighting installations, vents to limit magazine pressure, a plenum chamber under the missiles, and a water injection system are very similar to those in the Mk 13 Mod 0 system. If a missile should accidentally ignite in the magazine, the plenum chamber receives the
exhaust gases and conducts them to an elbow-shaped duct at the edge of the chamber, where the gases escape to the atmosphere.

TALOS LAUNCHING SYSTEM

The Talos launching systems are capable of firing Talos weapons with conventional warheads (Talos S) and also those with nuclear warheads (Talos W). Talos S missiles may be fired in salvos from the dual-armed launcher, or singly, but Talos W must always be fired singly. The unique destruct capabilities of the Talos W make salvos unnecessary. The preparation for firing procedure is different because of the difference in the warhead.

The original launching system for the Talos, the Mk 7 Mod 0 launching system, has undergone some changes to become the Mk 12 launching system. Refer to table 3-1 and note
which components have different mark numbers: launcher-feeder, magazines, assembler, feeder and control system. In the launcher and its components, there are only mod changes.

The Mk 7 and the Mk 12 launching systems both use a Mk 7 launcher.

Mk 7 Launching System

The early Talos launching systems were placed on converted CL-55 class cruisers. The entire system except for the launcher is enclosed in a deckhouse located on the after end of the ship. The deckhouse is divided into three compartments (fig. 2-13) by two athwartships bulkheads. The area nearest the launcher is the wing and fin assembly area. The ready service compartment, in the center, is where mated missiles are stowed, ready to be loaded on the launcher except for the wings and fins. The last compartment is the magazine where missiles are stowed, mated or unmounted. The magazine is not considered a part of the launching system, as transfer of missiles and boosters from it is not normally part of the launching system's operating cycle in loading weapons.

When preparing for an attack (real or simulated), an alert signal is sent throughout the weapon system from CIC or the weapons control station. This signals the various equipment operators to place their “equipment from STANDBY” to “READY” status. Alert bells sound in the ready-service compartment and in the wing and fin assembly area of the launching system. Power is turned on to operate the system. The feeder system is fully energized and set up for automatic operation. The launcher train and elevation control is set up for remote operation. At the launcher captain’s panel (EP-2) the Launcher Ready Switch is placed in the “READY” position and the Firing Safety Switch in the “FIRE” position.

As soon as the launching system is ready, the Launcher Station Ready switch lights up on the launcher director console in the weapons control station. The console operator then checks the number and type of missiles stowed in the ready service compartment, as indicated by numerals on his console, and double checks by sound-powered telephone to personnel on the launcher.

He counts numbers to agree. Then he places his warmup switches to ON. The operator of the feeder panel (EP-3) in the deckhouse places his Area 1 Warmup and Launcher Warmup switches in NORMAL or INTERNAL position.

The load order is received from the weapons control station, where the console operator pushes the button to start the selected rounds moving from the ready-service ring to the wing and fin assembly room. The wing and fin assemblymen attach the wings and fins, apply warmup power to the missile, and, on a nuclear missile, the assembly captain installs the missile arming plug. All this takes a few seconds. As soon as the missile is ready, the blast doors open, and the missile is rammed on the launcher rails. The blast doors close and the launcher is ready for assignment of the target. Safety interlocks prevent firing while the blast doors are open.

The operators of the ready service panels (EP-6 and EP-7) have to be alert to any delay in the loading or a change in loading orders. The ready service hoist can bring any selected round to the hoist position, but if the selected round is one or more stations away from the transfer station (hoist position), it takes longer. Only a few seconds are required to bring a missile to the transfer position. Suppose an “S” missile is wanted and there is an empty tray at the transfer station, ready to be hoisted to the loader rail and then rammed to the wing and fin assembly room.

Usually both rails are loaded simultaneously, but never with “W” missiles. Before anything can be done about loading a “W” missile, the weapons officer (or firer designated by him) must unlock the box in the weapons control station and position the “W Enable” switch to ON. Then launcher personnel are ordered by sound-powered telephone to remove the locked antiloding devices from the “W” missile booster slots (fig. 3-13), and to unlock the safe (in the wing and fin assembly room) containing the “W” arming plugs. Notice that the antiloding device is locked with a key. This key is kept in the custody of the weapons officer.
SAFE PLUG ON "W" TYPE MISSILE.
GREEN SAFE PLUG IS REPLACED BY RED ARM PLUG DURING WING AND FIN ASSEMBLY ("S" TYPE CONTAINS ARMING MECHANISM PROPER AND THIS STEP IS OMITTED IN WING AND FIN ASSEMBLY). TOP FORWARD BOOSTER SHOE A PAIR OF HOLES AT THE FRONT OF THIS SHOE ARE USED IN CONJUNCTION WITH THE LAUNCHER ARMING DEVICE TO ARM OR DISARM THE BOOSTER. THIS SHOE ALSO CONTAINS CONTACTS FOR ELECTRICALLY IGNITING THE BOOSTER ON THE LAUNCHER.

ELECTRICAL CONTAC TOR PAD PROVIDES A MEANS OF APPLYING EXTERNAL WARMUP ON LAUNCHER "W" ANTILADING DEVICE STATION 105 ON THE MISSILE PROVIDES A SUPPORT POINT IN THE READY SERVICE TRAY.

WINGS AND FINS ARE INSTALLED ON THE MISSILE AND BOOSTER IN WING AND FIN ASSEMBLY COMPARTMENT AREA 1 PRIOR TO LOADING ON LAUNCHER.

TOP SHOES ARE USED TO HANDLE MISSILE-BOOSTER COMBINATION ON LOADER AND TO LAUNCH WEAPON FROM LAUNCHER.

Figure 3-13.—Talos weapon in outline, showing locations of wings, fins, contactors, safe and arming plug, antilading device, and support points.

The Mk 7 launching system is similar to the Mk 12 launching system in many respects. The applications of basic principles of hydraulics and electricity are similar in both systems. The same mechanical and hydraulic aspects are found in both systems for the span track, the blast doors, and the loader (excluding the power drive). The area 1 accumulator is the same in both systems. On these topics, OP 3590 volumes 2 and 3, applies equally well to both systems.
In the Terrier and Tartar systems, except the Mk 22 Tartar system, ready service rings are mechanisms that can be rotated to bring the selected missile to the loading position. The Talos ready service rings are not really rings either in appearance or functionally. Each is actually a horizontal rectangular assembly containing 8 trays, arranged in two layers. Each tray can hold one missile with assembled booster. Two pairs of end hoists in each ring can raise or lower the end trays in each row. A pair of center hoists in each ring can hoist the center tray high enough so that shoes on the booster can engage the loader rail. The trays in the ring can be translated laterally. Thus trays in the bottom row can be shifted to the upper row; those in the upper row can be shifted to the center of the row and hoisted by the center hoists to transfer their missiles to the loader rail.

The ready service compartments hold a total of 16 missiles in the A and B sides and the magazine holds an additional 30 missiles, mated or unmated. The Mk 12 launching system has 26 missiles in each side of the magazine, a total of 52 missiles, all assembled (except for wings and fins). For effective operation, one tray support must be empty of trays. In both systems, the missile (in its tray) is raised by a hoist, operated by a hoist power drive. A tray transfer mechanism provides for transferring a tray from the tray support to the hoist or from the hoist to the tray support. The loader receives the missile-booster combination from the tray via the loader rail. In the Mk 7, each tray holds one missile; in the Mk 12, each tray support holds two trays and the tray support remains in position when a tray with its missile is hoisted.

Mk 12 Launching System

As pointed out earlier, the location of the magazines and the resultant changes in the launcher-feeder mechanisms is the biggest area of difference between the Mk 7 and the Mk 12 launching systems. How does this affect the sequence of operations in preparation for firing? Several of the launching system control panels (table 3-1) are the same mark and mod as in the Mk 7 launching system, which means they have the same circuits and pushbuttons, and therefore the same steps in operation. The Mk 12 does not have a ready service ring (fig. 3-14), and therefore has no need for ready service panels (EP-6 and EP-7 in the Mk 7 system). Panels EP-6 and EP-7 in the Mk 12 launching system are magazine control panels located on the mezzanine just above the magazines. The Mk 12 system has ten additional control panels located throughout the system; most of them are not manned in automatic operation. These provide for auxiliary and local control of the equipments for emergencies and also for checking equipment after maintenance or overhaul. They provide for extremely slow operation, not intended for tactical use. The number of men required for the launching crew is the same as for the Mk 7 system. No men are stationed in the magazine area below decks. In the Mk 12 launching system, all the missiles are stowed assembled into Magazines Mk 7 Mods 0 and 1; there is no additional magazine beyond this for unmated missiles as in the Mk 7 launching system.

As in the Mk 7 launching system, all orders come from the weapons control station; the operator at the EP-2 panel monitors his panel and operates the switches to comply with the orders. The order from the weapons control station causes a blinking light indicator on the EP-2 panel; turning the ordered switch changes the blinking light to a steady light. While the method of bringing the selected missile to the assembly area is different because of the magazine location and its design, the work of the men on the launching system is no different. There are only two manual operations, the attachment of the wings and fins, and the installation of the red arming plug on W type missiles. Operation checklists should be posted at each station in the launching system. The man (or men) at each station should follow the checklist to ensure that steps will be performed in proper sequence.

Safety switches in the wing and fin assembly area have been mentioned several times, sometimes as foot switches and sometimes as hand switches. In the Mk 7 launching system, each assemblyman has a foot switch which he presses when he has completed his assembly work and has stepped behind the safety screen. In the Mk 12 launching system, hand switches have replaced the foot switches. There is less likelihood of unintentional actuation of a hand switch. When the lights on the assembler panel
(EP-4 or EP-5) indicate that all the safety switches have been actuated, the assembler clamps arms the missile (if required) and lets it move on through the blast doors, which open 10 seconds after assembly begins. It takes 5 seconds for the blast doors to open; assembly of wings and fins has to be completed in 10 seconds.

STANDARD MISSILE LAUNCHING SYSTEM

The already installed Terrier and Tartar launching systems will be used to launch the Standard missile when it is placed in service on ships. Modifications will be made to the existing launching systems to accommodate the two types of Standard missiles, the medium range (MR) and the extended range (ER).

To make the Standard missiles compatible with existing shipboard systems, some minor modifications must be made. Actually, two comparisons must be made: (1) between Terrier missile systems and Standard (FR) missile systems; and (2) Tartar missile systems and
Standard (MR) systems. On some ships, either the Terrier or the Standard (ER) missile can be used, and on some Tartar ships, either the Tartar or the Standard (MR) missiles can be used.

Relatively minor changes to launching systems include: (1) Missile identification circuits, (2) Warmup time delay bypass circuits, (Standard missiles need No warmup), (3) Circuits to delay missile firing until its one shot batteries are ready for use (stabilized) and (4) a signal comparison network to identify the Standard missile illuminator frequencies.
CHAPTER 4
LOADING, UNLOADING, AND DUD-JETTISONING

The preceding course of this series and the preceding chapter of this course gave you an overview of guided missile launching systems. The control panels operated by GMMs were described. The functioning cycles in three types of operation—automatic, step, and emergency—were explained, and crew stations were illustrated.

LOADING is the process of bringing the round from the magazine, attaching any additional parts necessary (wings, fins, power supply, arming plug), and placing the complete missile on the launcher, ready for firing.

UNLOADING the missile consists of returning the round to the magazine or to a container for off-loading. Wings and fins have to be folded or removed, the arming plug and the thermal batteries removed, and the round stowed in the magazine, in the cell or tray designated for it (or packed in its container for shipment).

Since most of the work is done automatically by the launching system, and lower rated men do most of the assembling and disassembling, what does the GMM 1 or C do? He may operate a control panel, supervise the work of the assembly team, act as a safety observer, troubleshoot the equipment, and make the more difficult repairs, including overhaul and adjustment of equipments.

You need to become completely familiar with the system or systems you have on board, but you also need to know about other types of systems.

This chapter emphasizes the role of the GMM 1 and C in loading and unloading missiles, and goes into detail on the operation of the dud-jettisoning methods for the different missiles in use on Navy ships. The quals relating to dud-jettisoning are listed for lower grades, but you have the responsibility for supervising the activity. The decision to jettison a missile is made by higher authority.

TERRIER MISSILE SYSTEM

Each side of the Terrier launcher is serviced by a complete and independent loading system, and each of these systems is serviced by a corresponding handling system. Except for some minor differences, the operation of the two sides is identical. The installation on different ships accounts for other variations; the mark differences account for the greatest variations; mods changes may be simple ones. The changes required to accommodate the Asroc missile in the Mk 10 Mods 7 and 8, however, are more than minor although the principles of operation remain the same.

LOADING

The location of the loader in the Terrier launching system is pointed out in figure 2-8. Figure 3-8 points out the location of the loader power drive, and the loader rail view port. Table 3-1 shows that the Mk 8 loader has been used on Mk 9 and Mk 10 Terrier launching systems, with modifications. Ready service rings are identified in both of the above illustrations for the Mk 10 system. The comparable component in the Mk 9 system, the magazine cell rack, is shown in figure 3-5. The three ready service rings of the Mod 7 and Mod 8 were shown in the preceding course, Gunner’s Mate M (Missiles) 3 & 2, NAVTRA 10199.
Chapter 4—LOADING, UNLOADING, AND DUD-JETTISONING

The feeder includes the loader, the magazine and/or ready service rings, and the assembler, each with its components.

The sequence of steps in moving a round from the magazine to the launcher was given in chapter 3 for Mk 9 and Mk 10 launching systems. If you have had duty or a ship with Terrier capability these steps are familiar to you. If your experience has been with other missile systems, you will recognize the similarities. Now you need to know the launching system so well that you can explain it to lower-rated men, and can direct and supervise their work in the loading process. The only manual work involved (if everything is working OK) is the assembling of the wings and fins in the assembly room. If any part of the system fails to act automatically on signal, you need to know how to find the trouble and correct it. The multiplicity of parts in the launching system makes this a real challenge. If you look at the whole complex, it might seem too intricate to master, but if you remember it is made up of applications of simple machines, operated by hydraulic or pneumatic power, electricity, and electronics, you can understand it and unravel its problems.

Warn trainees and other nonoperating personnel in the launching system compartments not to touch controls. Only authorized personnel are permitted in the launching system compartments. NO ONE is permitted in the magazine area when the system is being operated. New and inexperienced personnel must not be permitted to work alone, but must be under direct and continued supervision of skilled and experienced personnel. All persons whose duties involve the operation of, or stationing on or near power-operated missile equipment, must be thoroughly familiar with the safety orders and precautions and operating instructions for that equipment. As a supervising petty officer, you must remind your men frequently of the safety rules and regulations and enforce them. Violation of safety precautions, willful or accidental, should be reported at once to the immediate superior. Safety devices should always be kept in good order and operative at all times.

The launcher captain monitors the launching system functions by watching the indicating lights on his panel during automatic operation. (The step control lights and switches on the EP2 panel are covered and are not in operation during automatic procedure.) He reports any malfunction of the equipment, by telephone, to the feeder system captain and the operator of Guided Missile Status Indicator Mk 81 Mod 0 in weapons control. Under emergency conditions, or during any malfunction, the launcher captain stops the launcher movement with the train and elevation operation selector switch or with the train and elevation motor switches.

Grounds are a major cause of casualties, responsible for damage both to personnel and ordnance equipment. Particular attention should be given to watertight integrity of water tight packing, stuffing tubes, covers on junction boxes, switches, and all types of exposed equipment, as well as equipment in areas where condensation can take place. Damage from moisture is a severe problem in tropical climates; frequent inspections are necessary to detect mildew or other signs of moisture. Other unintentional grounds may be due to abrasion of insulating material on wires, contact of exposed wires, or poorly made connections.

Grounding of explosive components, handling equipment, and containers during handling was described in chapter 2.

When acting as assembly captain, do not allow the assemblers to remove wings and fins from the racks until the missile has stopped in position in the assembly area. Wait until all the assemblymen have completed their wing and fin assembly, have stepped back to the clear area, and have pressed their safety switches. Then signal the launcher captain that the assembly area is ready. If a safety switch is inoperative, or malfunctions in any way, check to see that all the assemblymen are in the clear area after completing assembly; then signal the launcher captain "CLEAR BY-PASS." The safety switch used by the assemblymen is a foot switch on some mods, while a hand switch is provided on others; but each man has one at his place in the assembly area.

UNLOADING

With some launching systems, all unloading must be done in step control (LOCAL or MANUAL), but automatic unloading is possible with the Mk 10 launching system. The unload
order is sent by WCS and will indicate the side, A or B, or both, causing a blinking light to appear on the launcher captain’s panel. The missile may be in the assembly area or on the launchers when the unload order is given. The launcher captain positions the switches on his panel to conform to the unload orders, and this initiates the automatic unloading. The launcher synchronizes to load position and then proceeds through the unloading steps, the reverse of loading.

When the missile reaches the assembly area, the wings and fins must be removed and returned to the racks. During the unload operation, visually inspect to be sure the wings and fins are removed, the booster is unarmed, and the missile sustainer is in the SAFE position before returning the missile to the magazine area. A dud or misfired booster being returned to the magazine must not be removed from the wing and fin assembly area until the feeder system captain is notified that the booster and missile sustainer have been checked and reset to the UNARMED position.

The assembly area is the most dangerous section of the entire launching system during loading and unloading operations. It is the responsibility of the instructor (usually a GMM 1 or C) to ensure that all safety instructions are strictly adhered to. The trainees must not be permitted to operate the equipment, to position control switches, or to perform any other work on the system without direct and continuous supervision of the instructor. Although each trainee is responsible for his own safety, you, as a petty officer, must give frequent reminders of the safety precautions and be on constant watch to see that they are observed. When the feeder system is in operation, the assemblymen remain on the station with their foot switches depressed, except during actual assembly or disassembly of the wings and fins. The operator of the assembly captain’s panel must not give the READY signal until he is completely sure that every man has stepped back into the safe area and has his safety switch depressed. There is an emergency wing and fin assembly bypass switch on the panel, but this must NEVER be used except in case of a malfunctioning foot switch and during equipment checkout when personnel are clear of the assembly area.

During continuous firing, there will be missiles in the assembly area as well as on the launchers. Before the missile to be unloaded from the launcher can be moved, the missile in the assembly area of that side has to be returned to the magazine. The launcher captain must be VERY SURE that there is no missile in the assembly area before he starts the unloading procedure. In automatic unloading, the launcher captain positions his unload assembly switch, the assemblymen remove the wings and fins, the assembly captain positions the assembly-ready switch on his panel to REMOVED, and the weapon is moved by the system mechanisms back to the magazine or ready service ring.

At the end of the firing, all missiles must be returned to the magazine before the system is deactivated.

An unloading cycle is necessary after every firing of an Asroc missile from a Terrier system because the adapter must be returned to the magazine tray.

Step Control Unloading

For checking or maintenance purposes, or in an emergency, the unloading operation may be carried out in step control. Step control is always used when moving the missile-booster combination from the ready service ring to the checkout area for routine care and maintenance or for repairing missiles previously struck down as duds. Step control must also be used for exercise and strikedown. The steps are initiated one at a time by use of the pushbuttons on the launcher captain’s panel. The launching equipment is always started in step control. Use the OP for your launching system, the drawings, and the checklist for the procedural steps and the designations of the switches to be activated. The lights and switches on the control panels are plainly numbered and labeled, but it smooths operation if you familiarize yourself with the panels so there is no long delay while you search the panel face for the right button or switch to operate next.

The indicating lights on the launcher captain’s panel show switch actuation. Each pushbutton contains two light bulbs, separated by a center divider. One bulb (or one-half of the pushbutton) corresponds to the A side and the other
to the B side of the launcher. When using the Step Control switches, depress the pushbutton and do not release it until the indicating light appears. To check for a faulty bulb, push the "Press to Test" pushbutton (Fig. 4-1) at the bottom of the EP2 step control panel. If the bulb tests "good," but still no light shows, investigate for the source of trouble.

Before beginning the unloading procedure, the launcher must be in the load position. The launcher contractor (which warms the missile while it is on the launcher), and the arming tool must be retracted before the blast doors are opened. Sound the loader warning horn to warn everyone away from the loader area. After the loader has moved the missile from the launcher back to the assembly area, close the blast doors. The men in the assembly area quickly remove the booster or motor fins and stow them in the racks provided for them. Other assemblymen fold the fins on the missile. Before the magazine door can be opened, fin removal must be completed. The assembler captain must check that the missile has been safed.

If only one type of missile is stowed in the ready service ring, any empty tray can be moved to the no. 1 position to receive the missile. If the ready service ring has more than one type of missile, the designated tray must be indexed to the no. 1 position. The designation of particular trays to specified missiles at replenishment was described in chapter 2. It is possible to change the assignment of trays if necessary; consult the OP for the procedure.

MALFUNCTIONS AND THEIR CORRECTION

The most common causes of malfunction (casualties), listed in the order they most frequently occur, are:

1. Personnel errors.
2. Improper switching conditions.
3. Power failure due to malfunctioning interlocks—switch not properly adjusted mechanically, fuse blown (short circuit), loose connection, dirty connection, improper grounding, broken lead (open circuit), faulty contacts.
4. Power failure due to malfunction of relays—loose connection, broken lead (open circuit), faulty contacts, coil failure, overload on system.
5. Mechanical failure—improper lubrication (rust or corrosion), working surfaces burred or scored, improper adjustments, equipment out of alignment (frequently caused by extreme shock or heavy weather conditions).
6. Hydraulic failure—oil supply insufficient, air in oil supply system, foreign matter in oil supply system, improper valve adjustment, scored valve or valve sleeve (foreign matter in system).
GUNNER’S MATE M 1 & C

It is hoped to eliminate (or greatly reduce) many common failures by conscientious application of the 3-M System. No hydraulic system, for example, should be without sufficient oil if a daily check is made. The greatest cause of trouble will probably continue to be no. 1, "Personnel Errors."

Troubleshooting

In spite of the best preventive maintenance, there will be some operational failures. The cause of the trouble may be hard to locate, so you have to trace it down. The ability to use schematics and wiring diagrams is essential.

Troubleshooting (casualty analysis) is a very important part of maintenance. Before starting any repairs of a system, determine which of the components is (are) faulty. It frequently happens that the person doing the troubleshooting finds the faulty component, replaces it, but fails to locate the origin of the trouble. The origin of the casualty must be located before replacing a component, otherwise the trouble will recur and the new component will be damaged.

Before performing any casualty analysis or repair work, you should be thoroughly familiar with the equipment, the sequence of operations, the control panels, manual and interlock switches, indicating lights, mechanical and hydraulic functions, and the relation of the control system to the weapons control station.

Troubleshooting is discussed in several chapters in connection with different types of components. It may require considerable persistence and patience or it may be quick and easy, but it should always be methodical and thorough.

DUD-JETTISONING

Jettisoning of missiles may be necessary in an emergency or if hazardous conditions exist, such as fire on deck in the vicinity of the launcher, or if the weapon is damaged by enemy action, or if it failed to fire and circumstances do not permit returning it to the magazine or the checkout area. DO NOT JETTISON A MISSILE WITH A NUCLEAR WARHEAD. The decision to jettison comes from the commanding officer via the weapons control station.

The dud-jettisoning unit (fig. 4-2) is associated with each launcher to permit the ejection of missile rounds from the launcher. Each unit consists of two ejectors and a control panel (fig. 4-3). The dud-jettison units are mounted in such a way that ejection can be performed at approximately 55° or 275° of train and at 3° of elevation. (The train and elevation are different on each ship.) The launcher automatically trains and elevates to bring the after end of the round in line with the dud-jettisoning ejector, and a pneumatic mechanism in the ejector elevates the piston in line with the round. The piston extends slowly, under low pressure air, until its mushroom-headed piston mates with the after end of the round, then extends rapidly with a short, powerful pneumatic stroke (3500 psi), forcing the round off the launcher and over the side.

The control panel for the dud-jettison unit is mounted in the deckhouse, and is operated by the launcher captain (or the port side assembler captain) upon orders from the WCS by sound-powered telephone. In the Mk 10 Mod 8 system, the control panel is adjacent to the A-side blast doors, within the aft compartment. When the ship’s roll exceeds 20°, jettisoning must be performed only on the downroll. A standard bubble type inclinometer with a 45° index scale is mounted next to the dud-jettison control panel to indicate ship’s roll.

The launcher captain initiates jettisoning by positioning the DUD-JETTISON switch at the EP-2 panel, which causes the launcher to synchronize automatically to the dud-jettison position.

The dud-jettisoning procedure may be applied to a dud missile, a misfired booster, or any other condition which necessitates a decision to jettison a weapon.

Operation

Whenever the firing key is depressed, the DUD and MISFIRE lamps light momentarily, until the missile has cleared the rails. However, if the missile is a dud, the DUD lamp continues to be lighted. The contractor fails to retract. The operator may try to fire the missile by placing
Chapter 4—LOADING, UNLOADING, AND DUD-JETTISONING

DUD-JETTISONING UNIT

Figure 4-2.—Dud-jettisoning unit Mk 108; cross section view. DLG Terrier installation.

the dud switch in the ON position. If this succeeds, the contactor retracts and the DUD lamp, the RAIL lamp, the WARMUP TIMER RAIL lamp, and the READY TO FIRE lamp all go out. When the arming tool unwinds, the READY lamp also goes out.

If attempts to fire the missile are unsuccessful, it may be returned to the magazine for later inspection and possible repair; its location is marked on the control panels. In some situations (emergency or combat), it may be necessary to jettison a dud missile; wait for the order to do so.

A DUD indication will also occur if the firing key released too quickly (before 1.5 seconds have elapsed). The booster firing relay will not be energized and as a result a dud missile is left on the launcher.

OPERATING THE DUD-JETTISON PANEL.
—Suppose jettisoning of a missile has been ordered. On a Mk 10 launching system the port side assembly captain mans the dud-jettison panel. He must have sound-powered telephone communication established. At the control panel (fig. 4-3) he opens the positioner air supply valve. This connects to low pressure air. Next, he rotates the positioner control lever to POSITION I for a BT-3 missile or POSITION II for a BW-1, for ejector side A or B, whichever side is to be used. When the ejector is in the raised position, rotate the jettison lever to CHARGE and hold the lever in this position until the air pressure meter reads 3500 psi. (Pressure requirements for your installation may be different.) A light (“Safe to Jettison”) on the control panel indicates when the ejector is fully raised to “Firing Position.”

WARNING: Do not cycle below the designated operating pressure.

Rotate the jettison lever to READY and wait for the command. Upon receiving the command to “Jettison,” check that the air pressure meter
reads in excess of 3400 psi and rotate the jettison lever to JETTISON. The head of the ejector is forced against the missile base by the air pressure and spring pressure from the spring side of the firing valve, and the missile is forced overboard from the launcher. Note that the air pressure drops rapidly. Lastly, rotate the positioner control lever to the STOW position. The dud-jettison unit must be lowered ALL the way before the launcher power brake can be released and the launcher trained and elevated for reloading.

There are differences in control panel switches and nomenclature, but the principles of operation are very similar. The steps in operation of the dud-jettison panel on your ship should be posted beside the panel. On some mods, a metal instruction plate is permanently fastened to the dud-jettison panel, directly in front of the operator. After the jettison operations are completed, the dud-jettison panel operator moves the lever of the Positioner Air Supply valve to CLOSED, and the launcher captain then returns control to the EP2 panel by
repositioning the switches to the desired position.

If the round is considered dangerous to the ship, the launcher captain positions his emergency enabling switch to ENABLE upon telephoned order from the WCS operator. The WCS operator then holds down the dud emergency firing switch until the round leaves the rail (RAIL LOADED light goes out). This is dud firing (not jettisoning), and is carried out in WCS without action by the launching system crew. This method of dud firing disables one side of the launching system. It is used only in case of real danger from the missile on the launcher. This method of dud firing disables one side of the launching system. It is used only in case of real danger from the missile on the launcher.

SAFETY RULES FOR DUD JETTISONING.

- Under emergency conditions or during any maloperation, the launcher captain must stop the launcher movement with the train and elevation operation selector switch or with the train and elevation motor switches.

 In case of booster misfire, do not permit personnel to approach the launcher for at least 10 minutes after the last attempt to fire, and the firing circuits have been known to be open. The time limit is at the discretion of the commanding officer and is not obligatory in time of action.

 The return of a dud or a misfired booster to the magazine, or dud jettisoning, should not be started until the firing safety plug in the EP-2 control panel has been removed.

 During all operations for disposal of misfires or dud, the launcher captain should remain at his control panel to guard the firing safety plug and to observe and make certain the launcher and the guide remain in a SAFE and UNLOAD position.

 Do not position the emergency enabling switch to ACTIVATION and ENABLE during firing, unless specifically ordered to do so by weapons control. Use caution as to the proper side and the position ordered.

 During unload operations, visually inspect to be sure that wings and fins are removed, booster is unarmed, and the missile sustainer is in the SAFE position before returning the missile to the magazine area.

A dud or a misfired booster being returned to the magazine must not be removed from the wing and fin assembly area until the launcher system captain is notified that the booster and the missile sustainer have been checked and reset to the UNARMED position.

WHAT TO DO WITH ASROC.—With the extensive missile tests and circuitry checkout required for Asroc missiles, it is not likely that an Asroc missile will have to be jettisoned, as duds will be discovered before the missile is placed on the launcher. If it is necessary to jettison an Asroc missile, the adapter rail is jettisoned with it. It is jettisoned in the same manner as a Terrier missile. If a dud results from loss of synchronization, it should be handled according to ship’s doctrine.

Is It a Dud or a Misfire?

Note the difference between a dud and a misfire. If the DUD lamp lights on the weapons assignment console (WAC) when the firing key is pressed, nothing happens to the missile—it does not transmit the electrical energy to set off any explosive components. Except under certain tactical situations, when the launcher has to be cleared quickly for firing, the dud missile can be returned to the magazine for later examination and repair. In a misfire, some part or parts of the explosive system were actuated when the missile firing key was depressed, but not enough to send the missile off the launcher. A misfire presents a dangerous situation. If the MISFIRE lamp lights at any time during the firing cycle, there are three alternatives: (1) emergency firing procedures may be used; (2) the launcher may be aimed in a safe direction for a waiting period prescribed by ship’s doctrine. If nothing happens, the missile may be returned to the magazine for later examination and repair; or (3) the round may be jettisoned.

A missile is considered to have misfired when its booster fails to fire after its electrical and hydraulic systems have been activated and the booster firing relay has been energized. When the firing key is depressed, the DUD lamp lights and the MISFIRE lamp flashes. When the missile fails to clear the rail, the MISFIRE lamp continues to flash and the DUD remains lighted.
You cannot tell whether the explosive train inside the missile will sputter and go out, or if it will burn and explode on the launcher, or if it will fire in a short time. All factors of the situation—known, calculated, and surmised—have to be considered in deciding whether to wait and see what happens or jettison the missile. In a battle situation, it may be necessary to fire a missile from the other side of the launcher while leaving the misfire on the first side. Several attempts may be made to fire the missile, by means of the emergency firing key. When the emergency enabling switch is at NORMAL, the emergency firing key can be held down as long as desired in an attempt to activate and fire the missile. If it is placed at ACTIVATION AND ENABLE, the booster firing transformer is energized through an alternate circuit and many of the normal firing relay contacts are bypassed. If the firing is successful, it shows the relays were at fault on the first try. If the missile cannot be fired by this method, most likely it will have to be jettisoned. Decision must be made in 24S.

The two emergency firing circuits in the Mk 10 Mod 7 launching system, EMERGENCY ACTIVATION AND ENABLE, and EMERGENCY ENABLE, are used only in the Terrier mode.

Malfunctioning of Dud-Jettisoning Units

The dud-jettisoning unit has been designed to provide maximum service with a minimum of maintenance. A major difficulty that may be experienced with dud-jettisoning units is that of ice forming in the valve passages. This is caused by rapid expansion of moist, compressed air. Any moisture traps in air lines should be drained regularly. Deicing lines port heated fluid to the cover door sections to prevent formation of ice during cold weather, permitting operation of the jettisoning unit in the most adverse weather conditions. The anti-icing system which also protects the launcher from icing.

MAINTENANCE.—Since the dud-jettisoning unit is intended for emergency use, it must be kept in operating condition, ready for instant use when needed. Check out the equipment at regular intervals by exercising each dud ejector (no missiles on launcher rails). Replace indicator lamp bulbs on the control panels when necessary. The outside of the panel should be cleaned periodically. Usually wiping with a dry cloth is enough; a damp, soapy cloth may be needed to remove grease spots or fingerprints. Wipe down the dud-jettisoning unit does not require lubrication. In particular, take care NOT to lubricate the firing piston head or stem.

WARNING: If it is necessary to disassemble any of the air lines, be sure the valve in the ship's high pressure line (4500 psi) is closed, and also the nearest shut-off valve in the 100-psi ship supply line. Bleeder valves in the ejector unit accumulators should be open. Tag all valves while working. Protect any open ends of pressure lines with suitable caps or plugs to prevent entry of dirt, moisture, or other foreign matter.

It may be necessary to replace a gasket on an ejector unit, or a defective limit switch. The need for a new gasket may be discovered when checking the air-charging chamber of the ejector for hydraulic fluid or moisture. To make the check, remove the drain plug from the lower end of the ejector assembly. If there is any drainage, wipe the drain port clean, check the gasket and plug for signs of deterioration, and replace if necessary. Wait at least 2 hours after a unit has been cycled before making the drainage check. Further disassembly of ejector units is not contemplated, short of battle damage.

Air filters and air breathers, of which there are six each in the Terrier jettisoning equipment, require regular inspection to see if they need cleaning. Cleaning is done by washing the filter or breather in solvent, rinsing in clear water, and drying with a stream of compressed air. Never direct compressed air at yourself or others; it can be fatal.

Before unscrewing a plug that holds a filter, be sure the manual shut-off valve on the jettison panel is closed and that the pneumatic lines leading to the ejector are vented (JETTISON AND OFF on panel). (See figure 4-3.) There are four of these plugs (and filters) on the face of the panel.

The sensitive switch assemblies, solenoid assembly, and dud-jettison synchro-transformer all need periodic inspection, and adjustment or replacement as required. The adjustment is
determined at installation and is not changed later, but units are brought back into adjustment if they vary from it. Two sensitive switch assemblies are located on each ejector. The four solenoid assemblies are all located in the jettison control panel. Any malfunctioning parts are replaced. The synchros are located within the EP2 panel. The synchro control transformers are adjusted or replaced. Instructions for this are given in OP 2350.

Manual switches are not repaired but are replaced if they do not function. (The foot-operated safety switches in the assembly area are an exception.) These include indicating push-button switch assemblies, pushbutton switch assemblies, toggle switch assemblies, and rotary switch assemblies used on control panels.

Maintenance of the electrical cables includes periodic checking of the cables, connectors, or other associated components. Measure the insulation resistance of power supply cables with a megger. A ground-detection indicator on the EP1 panel continuously monitors the control supply circuit. Disconnect this indicator before making a megger test of a cable in the system. If an insulation breakdown is indicated, trace it down and correct it. Then test again. If a cable is damaged so it requires replacement, get a spare cable of the same kind from spare parts stock and install it. Umbilical cables are always replaced, not repaired. Do not splice a cable except in an emergency. Attach identification markers to all cables. All terminal lugs should be crimped to their connectors.

TESTS.—Maintenance tests are conducted in cooperation with other ratings and all components of the missile system are tested. System readiness tests are performed every day; system maintenance tests are performed weekly or monthly. Use the OP for your weapons system when each test is performed. OP 2629, Volume 3, CLG (Terrier) Guided Missile and Anti-aircraft Weapon System, Maintenance Test Procedures (U.C), consists almost entirely of tables that list the tests to be made. The equipment to be used, the settings to make on the control panels, directors, computers, etc., and the response expected are all given in the tables. Step No. 29 is a test of the dud-firing circuits. Steps Nos. 27 and 28 are for misfire circuit testing. Referring to table 3.2, you find that steps 26, 27, 28, 29 and 30 must be performed weekly and must be conducted together and in sequence. Turning to step No. 2 in the table of test procedures, you find that the EP-3 panel on the launcher and the weapon assignment console in the weapons control station must be manned. The actions to take (buttons to push) and the desired response for each are listed. Sample log sheets are shown for recording performance of tests. If any failure is indicated on the EP-3 panel, obtain the circuit diagrams of the system, schematics, and the maintenance instructions for your equipment, trace the trouble to its source, and correct it. It may be only a burned-out signal light, or it may be some trouble very hard to locate. Check out the simplest or most obvious cause first. Work in cooperation with the men from the weapons control room to locate and correct the trouble.

Operation of the dud-jettisoning equipment is part of the regular training schedule. If any part fails to function as it should, it is up to you to locate and remedy the trouble with the aid of your men. If the air pressure does not build up enough to eject the missile, check the air lines and valves of the system. The publications custodian of your division has all the drawings, OPs, and other publications needed for the care and repair of the equipment aboard.

TALOS MISSILE SYSTEM

Talos, the largest of the Navy surface-to-air missiles, is stowed as a complete round in the magazine. The missile and booster are mated before stowing in the ready service compartment, but the wings and fins are added in the wing and fin assembly area when the missile is being moved to the launcher.

AUTOMATIC LOADING OPERATION

Normally the launcher rails are loaded simultaneously. This provides maximum fire power as well as backup in the event of a dud, misfire, failure to capture the missile in flight, or any other contingency rendering the fired missile useless. The load order comes from the Launcher Direction Console (LDC) in the
Weapons Control Station (WCS). It is an order to transfer missiles, selected according to type ordered, to the launcher rails. Initiation of the load orders on the LDC causes the center hoist mechanisms (Mk 7 system) to automatically lift the desired weapons to the load position. The missiles are raised by the magazine hoist (Mk 12 system), which rides on vertical rails, up to the main deck level, where the missile is received by the loader. The empty tray is returned to the magazine by the hoist. The magazine door closes after the hoist and tray have been returned. The magazine doors are operated by a hydraulic accumulator power drive. Power for the hoist operation is supplied by the hoist power drive, located on the machinery deck of the magazine. In both Mk 7 and Mk 12 systems, shoes on the booster engage the loader rail by which the missile is moved onward to the wing and fin assembly area.

In the wing and fin assembly area, warmup power is applied, the missile arming plug (W missile) is installed, and the wings and fins are attached. When the assembly operations are completed, the blast doors open and the missiles are rammed onto the launcher rails. Then the blast doors close and the launcher is ready for assignment to its first target. As missiles are used during combat, the initial setup of missiles in the ready service ring may become changed considerably. A tray that held a missile round at the beginning of operations may now be empty, or the reverse may be true. Monitoring of the ready service missile distribution by the operators of the ready service panels (EP-6 and EP-7) is of special importance. To prevent delay in loading, the operators need to index rounds to the hoist position, ready for the next load order without loss of time, indexing past one or more empty trays (or wrong type rounds) to get to the desired round. If there is a delay, the DELAY lamp lights on the LDC panel, indicating to the panel operator that the loading delay is not caused by a malfunction of any of the equipment. It also indicates whether the delay is on Rail A or B, and whether an S or a W missile is to be loaded.

As the missile passes through the launching system, lights on the LDC panel in the weapons control station, and on the launcher control panels, indicate to the panel operators the location of the missile and the stage of operation at all times.

While wings and fins are being assembled to weapons, the assembly captain checks the TWO SAFE lamps on the safing plug on a W missile. If ONE of them lights, he removes the safing plug and inserts the arming plug. If none of the SAFE lamps light he must obtain further instructions from the weapons officer.

As in Terrier systems, each assemblyman has a safety switch which he depresses when he has finished his part of the wing and fin assembly. All assembly switches must be depressed before the missile is loaded on the launcher rail. The Mk 7 launching system has hand switches in the assembly area; the Mk 12 system has hand switches.

The normal mode of loading is automatic. Only two manual operations are involved: attaching the wings and fins, and installing the arming plug in W missiles. As long as everything is operating normally, the panel operators merely monitor their panels. If anything goes wrong, however, you have to locate the trouble and correct it as quickly as possible. The OP for the launching system, for example, OP 3590 Guided Missile Launching System Mark 12 Mods 0 and 1, contains schematics for the circuits. The sequence of action is described in the accompanying text. These aids will help you pinpoint the area of failure. If the fault is in the hydraulic system, or in pneumatic components, refer to the OP.

Unloading

In the Mk 12 launching system, missiles may be moved automatically from the launcher to Area 2, above the magazines, or from Area 1 (wing and fin assembly area) to Area 2. The operations for bringing the missiles from Area 2 to the magazine are not automatic. Step control switches at EP-6 and EP-7 magazine panels are used to bring the missiles to the magazine and stow them. The missiles must be halted in Area 1 so the wings and fins can be removed and stowed in their racks. If a W missile is being returned to the magazine, the (magenta) arming plug must be removed and locked in its locked storage space, and a safing plug installed in its
place. The weapons officer has charge of the plugs; removal and insertion of the plugs must be done according to the checkoff list for this procedure. The antiloading devices, sometimes called handcuffs, are put back on the W missile booster shoes. These devices lock the booster shoes preventing the transfer from the magazine to the loader.

The safety switches in the assembly area are used in the same manner as in the loading operation. Each assembler steps behind his safety screen and actuates his safety switch as soon as he has finished removing the wing or fin. When all 12 switches are actuated, the next step in unloading can be initiated, that is, to return the missile to the ready service compartment. The man at the EP 6 (or EP 7) panel operates the pushbuttons for unloading. The man at the EP3 panel monitors the operation.

In the Mk 7 launching system, unloading cannot be done automatically, but is done in step mode. This is relatively slow.

Step Control

Step control is used for training, practice, and checkout. All or part of the loading cycle may be in step control. Talos missiles are not fired in step control. The sequence of actions of the launching system are the same as in automatic loading, but each step must be initiated by turning a switch or pushing a button on a control panel. The step control switches on the EP-2 panel are covered when not in use. Each switch has a light or a pair of lights to indicate the position of the component. The pairs of lights indicate the position of similar components on A and B sides of the launcher. The fourth letter in the light designation indicates the side. For example, amber indicator light DSAB1 indicates that the booster arming device on the B side is extended.

The launching system captain operates the step control switches on the EP-2 panel. He maintains telephone contact with the weapons control station and the officer in charge of the launching system. The operators of the magazine control panels, EP-6 (A-side) and EP-7 (B side) operate the equipment in compliance with phone orders from the officer in charge of the launching system or indicator light orders from the launching system captain. They sound the warning horn when activating magazine equipment, operate the magazine equipment, and, when unloading, strike down the booster-missile combinations.

TALOS DUD JETTISONING

The Talos launching system does not have dud-jettisoning equipment. The launcher is used if a dud must be ejected. The procedure with the Mk 7 and Mk 12 launching systems is essentially the same. If, after the firing key has been depressed at the console in the weapons control station, the missile does not fire and the DUD indicator lamp lights on the launcher control panel, the missile is considered a dud. Ordinarily, the wings and fins are removed and the missile is returned to stowage as a dud for subsequent repair. In a tactical situation, it may be necessary to clear the launcher quickly so as not to lose half the fire power of the launcher. In that case, the dud-firing switch (for A or B side, as appropriate) is closed until the DUD lamp goes out. The closing of the dud-firing switch bypasses the missile activation circuits in firing the booster squibs. Only single-rail firing is possible from a dud-firing key. Although there are no interlocks to prevent dud firing simultaneously by using both dud-firing keys, this should be avoided because an inactivated missile is aerodynamically unstable, and its flight path is highly unpredictable. Two missiles fired simultaneously might collide near the ship.

Mi fire

If the MISFIRE light goes on, it indicates that firing was initiated and the missile internal power switchover circuits were completed; the booster firing relay energized, but the weapon did not clear the rail. This light is always on momentarily after the firing key is pressed (in the WCS), but if the weapon does not clear the rail in the time limit prescribed by the delayed misfire relay, the MISFIRE light remains on. If firing circuit troubles are suspected, emergency firing can be attempted after the guidance circuits have been reset and the missile gyro's have been recaged. If a misfire is indicated again, the
missile should be treated as a potential “hangfire.” It is kept on the launcher rail for 30 minutes with both blast doors closed, and if nothing happens, it is returned to the ready service compartment and stowed as a dud. A missile already on the other rail may safely be fired, but do not reload for 30 minutes.

EMERGENCY FIRING.—Under emergency conditions, missile firing can take place from the emergency firing panel in WCS. Firing from this panel bypasses all system safety interlocks except those involving the blast doors, firing cut-out cams, and the firing safety switch. Unlike dud firing, the emergency firing sequence energizes the missile activation circuits, making the launched missile capable of normal flight. Determination of when to use emergency firing procedures should be based upon established ship doctrine and the tactical situation. When emergency firing is authorized, WCS notifies the EP-2 panel operator by sound-powered telephone to set the EMERG. FIRING ENABLE switches. WCS closes the emergency firing key when the EMERGENCY READY TO FIRE light goes on. The launcher may be damaged if the emergency firing key is pressed before this light is on. It goes out when the rail has been cleared by the missile and the firing key can be released. Only single-rail firing is possible in emergency firing.

EMERGENCY IGNITER.—If the missile is not fired by emergency firing, the use of an emergency igniter injector may be ordered. It was designed for combat use to dispose of a misfired missile and booster, and to fire a missile tactically with the hope that it might be a successful shot. The emergency igniter injector has been placed on all Mk 12 Mods 0 and 1 launching systems; later mods will have them installed with the launchers. Mk 7 launching systems have been modified to include them; figure 4-4A shows the igniter injector installed on each launcher arm, and figure 4-4B indicates the parts of the igniter injector. It is hydraulically operated and is remotely controlled through the launching system firing circuits. In its normally stowed position (fig. 4-4A), the injector is locked to the guide arm by a hydraulically operated latch (fig. 4-4B), out of the path of the missile blast. The emergency igniter cartridge (fig. 4-4B) contains an igniter which is a plastic cylinder about 4 inches in diameter and 8 inches long, filled with 1500 grams of boron-potassium nitrate pellets. This explosive provides sufficient ignition to the booster to develop full normal booster thrust. The cartridges containing the igniters are carried by the ship as ammunition components and are loaded into the injectors when their use is anticipated.

A test unit that simulates the emergency igniter and cartridge is kept in the injector at all times except when it is desired to use the emergency igniter cartridge. It is used for the periodic cycling of the injector mechanism, for checking the firing circuit, and for sealing the cartridge housing in the injector unit against the weather.

When the use of the emergency igniter injector is ordered, the launcher captain places the EMERG. FIRING ENABLE switch at EMERG. IGNITER position. The launcher then automatically positions at 30° elevation with respect to the deck (fig. 4-5A), the hydraulic latch on the guide arm is released, and the injector unit is rotated to LOAD position in line with the longitudinal axis of the booster. The hydraulic piston of the unit then extends and carries the igniter cartridge and igniter to the booster closure disc. The cartridge travel is stopped as its forward flange contacts the Styrofoam closure disc of the booster. The piston, continuing its travel, pushes the igniter out of the cartridge, punctures the center disc, and catapults the igniter inside the booster cavity aft of the booster grain (fig. 4-5B). The piston then retracts, carrying the empty igniter cartridge back into the ejector housing, and uncoils the umbilical ignition wire from the igniter in the booster (fig. 4-5C). The injector rotates back into its stowed position, and the igniter is then fired through the fire control panel (fig. 4-5D). The total cycle is completed in about 6 seconds.

WARNING: Do not operate launcher in local control with the emergency igniter extended.

WARNING: Do not operate upper blast door in local or manual control when the igniter is extended.
Chapter 4—LOADING, UNLOADING, AND DUD-JETTISONING

In addition to the system's indicating circuits, telephone communications should be used between WCS, the launcher captain's panel, and the safety observer.

If a Talos W Missile is a dud or misfire, notify the nuclear weapons officer at once and follow his instructions.

Once the missile battery is activated, its power is rapidly dissipated. If the missile cannot be fired within 5 minutes, it will be unstable and cannot be used for target intercept. The launcher must be trained into a safe area to fire the missile after depletion of its internal power.

The emergency igniter injector is reloaded manually by inserting a new cartridge. This should be done as soon as possible after firing, so the equipment is ready.

Remember that the emergency igniter injector is to be used only in a real emergency, such as imminent danger of the missile exploding on the launcher. Its use must be authorized, and authorization is given only if it appears that it is not possible to save the missile, to be repaired later.

ADJUSTMENT OF LAUNCHER TO MISSILES

Although there are some differences in size in Talos missiles Mk 11, Mods 0, 2, 3, and 4, the launching systems in use (Mk 7 and Mk 12) can handle any of the missiles without special adjustments or adapters. All mods of Talos missiles and boosters have been built to the same diameter. The length has been increased from 30 ft. 10 in. for the RIM-8A missile to 32 ft. 4 in. for the RIMBE missile. The booster weight has remained the same for all mods, 4425 lb, but the missile weight has been increased from 3145 lb to 3360 lb. A comparison of the components of the launching systems (Table 3-1) will show that many of the components are the same for the
Mk 7 and the Mk 12 launching systems, and some have only a mod change. The fewest changes are in the launcher and its components. The differences in the arrangement and operation of the magazine and ready service compartment have been pointed out. To take care of these differences, the controls also have to be changed, and it is in this area that you find many changes in detail although the principles applied are the same.

A comparison of the control panels listing for the Mk 7 and Mk 12 launching systems (table 3-1) shows that there is at least a mod change in every instance, and many are different mark numbers. That means that the wiring from the panels to the launching system components is changed from the Mk 7 system.

LOCATION AND DUTIES OF PERSONNEL

Location on shipboard will vary with the installation; we refer here to location in relation to the launching system. Where there are differences between the Mk 7 and the Mk 12 launching system, these will be pointed out. This does not include the men in Fire Control, Weapons Control Station, CIC, or other control rooms.

The officer in charge supervises the operation and testing of the system. His position is on a
platform near the EP2 panel. The launching system captain operates the EP2 panel. On the Mk 7 system, the EP3 panel is adjacent to the EP2 and is a control panel, but on the Mk 12 system, the EP3 is a test panel and is manned only during tests, also by the launcher captain. The test panel on the Mk 7 is the EP9. In both systems, the relay panel is the EP8, and it is not manned. The power panels, EP1A and EP1B, are energized at the beginning of operations, also by the launcher captain. The assembly captains’ panels, EP4 and EP5, are operated by the assembly captains, each on his side, in the wing and fin assembly area. The assembly captain is also responsible for arming or disarming a W missile, carefully following the checkoff list from the OP. Each assembly area (A and B) has 12 wing-and-fin assemblymen who attach the wings, missile fins, and booster fins.

The EP6 and EP7 panels are called Ready Service Panels on the Mk 7 system, and are monitored by operators during step control. In the Mk 12 system they are called Magazine Control panels and also are used for step control. The Mk 7 system does not have local control panels comparable to EP9, EP10, EP11, and EP12 of the Mk 12 system. They are used to operate the loader and the hoist power drives in local control. By using the local control panels, individual drives can be operated. An additional method of control, also controlled from the Local Control panels, is the Auxiliary Drive System, whose separate power drive is located next to the A side power drive. It is slow and it is used chiefly for maintenance purposes. Exercise control, a form of step control, is used while making tests.

Two feeder technicians should be stationed in the feeder system, ready to perform emergency repairs on the feeder.

TARTAR MISSILE SYSTEM

The steps in the operation of the Tartar launcher in bringing a missile from the magazine to the launcher arm were described in chapter 3. In automatic loading, no one is permitted in the magazine; no manual operations are needed in the magazine. This is true of all Tartar systems. There are no wings nor fins to be assembled; the TARTAR fins are erected automatically by launcher equipment. Figure 3-3 lists the activation procedures for the Mk 13 Mod 0 launching system; warmup of the missiles is shown in figure 3-10.

AUTOMATIC LOADING

The operational sequence in automatic loading with a Mk 13 launching system is as follows. The launcher guide arm is empty and the launcher is at LOAD position.

1. Missile warmup is applied automatically for a minimum of 24 seconds to the selected number of missiles (1, 2, or 3).

2. Ready service ring rotates. The ready service ring inner and outer magazine latches retract, the ready service ring positioner retracts, and the ready service ring indexes CW (clockwise) to place a missile at the hoist. The ready service ring positioner extends, and missile warmup is applied for a minimum of 24 seconds.

3. Hoist hydraulic control is selected. After the warmup period, hydraulic control is transferred from the ready service ring to the hoist.

4. Hoist raises to intermediate position. The raise latch retracts and the hoist raises to the intermediate position, where the hoist pawl contacts the missile aft shoe.

5. When the hoist is at the intermediate position, the magazine retractable rail extends to align the fixed magazine rail (track) with the magazine door span track (rail).

6. The blast door opens and extends a span track. The span track completes the missile track from the magazine retractable rail to the launcher rail.

7. The elevation positioner extends into the open blast door to secure and align the launcher in elevation (90°) during a load or unload cycle.

8. The hoist intermediate raise latch retracts and the hoist raises a missile to the launcher.

9. Aft motion latch extends. When the loaded hoist completes its raise cycle, the launcher aft motion latch extends to secure the missile on the guide arm. The warmup contactor on the launcher engages the missile (fig. 4-6) and warmup power is applied for a minimum of 1.8 seconds. The fin openers engage the fins for
unfolding. Mods 1, 2, and 3 have minor differences in the fin opener and housing.

10. Hoist lowers to magazine position. When the hoist is below the launcher, the train positioner retracts, freeing the launcher in train. The elevation positioner retracts into the launcher guide arm, clear of the blast door. (See figure 4, 7).

11. Blast door closes and retracts span track. The closed blast door provides a flameproof seal to the magazine.

A new loading cycle starts if continuous loading has been ordered by the weapons control station. Up on the launcher, a target is assigned and the launcher slews to the ordered train and elevation positions and the missile fins are unfolded. As soon as the blast door is closed, the missile may be armed and ignited, and the forward motion latch unlocked. When the missile is ignited, the contractor and the fin-opener cranks retract behind shields that protect them from missile blast. The forward motion latch holds the missile on the guide arm until thrust reaches 2330 pounds. Then the latch retracts, allowing free forward movement of the missile. When the missile has moved approximately 11 inches, the forward missile shoe contacts the rail retract trigger, causing the rail to retract. When the guide arm is empty, the fin-opener cranks reset in position for receiving another missile, the aft motion latch retracts, the forward motion latch extends and locks, the arming tool retracts, and the launcher returns to LOAD position. As the launcher returns to LOAD position – to either the inner or outer ring, depending on the position of the noist chain shifter – the launcher rail extends. The launcher is then ready to accept the next missile.
LAUNCHER STARTS TO TRAIN AND DEPRESS AS SOON AS THE TRAIN AND ELEVATION POSITIONERS HAVE RETRACTED (KCY1A ENERGIZED)

AFT MOTION LATCH ENGAGED

FIN OPENER AND CONTACTOR CRANKS ENGAGING

BLAST DOOR CLOSING

RETRACTABLE MAGAZINE RAIL (EXTENDED)

HOIST CHAIN PAWL BELOW LAUNCHER

STATION AT HOIST (STA. 1) EMPTY

Figure 4-7.—Mk 13 launching system: Missile on launcher, hoist lowered below launcher, and blast door closing.

AUTOMATIC UNLOADING

Unloading may be ordered if the tactical situation changes and the weapons control station decides to stow the missile, or if the missile is a dud or a misfire and WCS decides to stow the missile for future servicing. The steps in unloading depend on the location of the missile at the time the decision is made to stow the missile. In the first situation, the missile may be on the launcher or it may be on its way. It would continue to finish the load cycle in normal operation and could be considered as on the launcher. In the second and third situations it is on the launcher but the conditions are not the same. In the misfire, the arming device must be retracted; but the contactor and the fin-opener cranks do not have to be retracted, as they are already disengaged. In all situations the fins are manually folded after the fin cranks are disengaged. Folding the fins after the launcher has trained and elevated to the LOAD position may be difficult, but sometimes it is necessary to use that position. Remember the warning about danger from launcher movements. Place the firing safety switch on the EP-2 panel at SAFE (which breaks the power lines to the motors in the train, elevation, and launcher power units), remove the switch lever, manually fold the fins of the missile on the launcher, then return the switch lever to the panel and reposition the switch to close the motor circuits, and re-start the motors. Then depress the fins manually-folded switch, and automatic unloading resumes.

The missile has to be returned to the same ready-service ring from which it was taken. If the hoist chain positioner has been moved to the other ring, reposition it. In automatic unloading the chain shifter will automatically shift to the proper ring. The ready-service ring then rotates counterclockwise (CCW) to the empty cell position. Hydraulic control then shifts to the hoist, the blast door opens and extends the span track, and the hoist rises to intermediate position. The retractable rail extends when the hoist leaves the magazine. When the hoist reaches the launcher, the aft motion latch retracts and the hoist pawl engages the missile aft shoe. The hoist (with the missile) then retracts to the intermediate position. As soon as the hoist is below the launcher, the elevation positioner retracts into the guide arm, clear of the blast door, which then closes and retracts the span track. Beneath the blast door, the hoist moves from the intermediate position, where it separates the hoist pawl from the missile aft shoe, to the magazine.

During automatic load and unload, the associated step control circuits are required to be open. The Mk 11 launching system cannot be unloaded in automatic control.

STEP CONTROL

During step operations, the control selector switch on the EP-2 panel is on STEP.
breaks the automatic load and unload circuits, and prevents feedback into the automatic circuit. Step operation is used for all exercise operations and if the automatic mode malfunctions. (Parts of exercise circuits and step control circuits are not the same.)

Strikedown, off-loading, and checkout procedures are also done in step control. The same equipment is used in both stridedown and off-loading, but the procedures are reversed. The same switching conditions are used for both procedures. A slower speed is used during off-loading. Reducing the air pressure that drives the air motor on the launcher reduces the speed when transferring a missile from the launcher to the transfer dolly in off-loading. The pressure reduction prevents the chain from buckling when the chain engages the missile off the guide arm. The weight of the missile and the steep angle of unloading would move the missile at too great a speed if it were not slowed down.

Figure 4-8 is a schematic of step operation of fin openers and contactors on the Mk 13 launching system. The step control switches on the EP-2 panel are manually actuated after the system is placed in step control. The broken lines in the drawing represent unload and exercise circuits; the solid lines are load circuits.

TARTAR DUD JETTISONING

The dud-jettisoning equipment for the Mk 11 and the Mk 13 Tartar launching systems differ in a number of important details, so they will be treated separately.
Dud and Misfire Handling in the Mk 11 Launching System

The dud jettisoning unit, figure 4-9, jettisons defective missiles from the guide arms when the tactical situation requires it or if the missile is unsafe for return to the magazine. The dud jettisoning unit consists of two ejectors, one for each guide arm, and a dud jettisoning control valve panel. The ejectors align with the aft end of the...
missile on the launcher when the launcher is moved to either dud jettison position. The ejector spud extends hydraulically to contact the missile. Air pressure from the accumulator, in conjunction with hydraulic pressure, acts on the ejector piston to move the spud forward and force the missile off the guide arm and overboard. The dud jettisoning unit can be operated either automatically or manually.

To jettison a missile, the launcher is trained and elevated to either the “A” or “B” dud jettison position, where the applicable guide arm aligns with a dud ejector unit. A spud attached to the booster piston, extends to contact the missile, then ejects the missile at a sufficient velocity to clear the ship structure. The spud then retracts, and the launcher returns to a load position if missile firing is to be continued.

The dud ejector unit is controlled and operated by a combination of compressed air and hydraulic pressure. Pressurized hydraulic fluid controlled by pneumatic-hydraulic accumulators generates the fluid pressure. Low pressure air (100 psi) generates the hydraulic pressure to extend and retract the spud; high pressure air (2100 psi) generates the hydraulic pressure to eject the missile from the guide arm.

Dud and Misfire With the Mk 13 Launching System

The jettison device is identical in the Mk 13 Mods 0, 1, 2, and 3 except that in Mods 1 and 2 there is a nitrogen booster pump to aid in charging the jettison accumulator. It is mounted to the top of the inner structure inside the magazine assembly. It is manually operated.

The dud jettisoning device in the Mk 13 launching system is in the launcher rail (fig. 4-10). It is a nitrogen-actuated piston that applies force to the aft face of the forward missile shoe. The piston is hydraulically retracted after jettisoning. It is controlled locally from the launcher control panel. When switch SMYI (located on EP2 panel) is positioned to dud jettison local or remote and when the train positioner is retracted, the launcher will slew to a fixed dud jettison position. The difference between dud jettison local and dud jettison remote is that the fire control stable element is introduced into the launcher elevation control system to compensate for the ship’s pitch and roll when SMY1 is positioned to dud jettison remote. When the dud jettison push button is pressed, the jettison piston extends to jettison a missile. The following safety precautions apply during dud jettisoning.

WARNING: Make sure that communications have been established between the safety observer, and the launcher captain before jettisoning. Obtain permission from the weapons control station before jettisoning.

CAUTION: Do not attempt to jettison with less than 2000 psi nitrogen pressure.

Do not jettison when the ship is rolling excessively in the direction away from the anticipated path of the missile. Observe the inclinometer to determine the degree and direction of roll (local control only).

Operation of the jettisoning device consists of four steps: (1) positioning the launcher, (2) jettisoning, (3) retracting the piston, and (4) returning to a load position to resume launcher operations (re-extending the launcher rail).

The launcher must be positioned broadside, the launcher rail retracted, and the arming tool extended (forward motion latch lock retracted). In step control, the EP-2 operator initiates launcher rail retraction and extension of the arming device. If the control selector switch is on AUTO, these operations take place automatically. Setting the dud jettison remote switch energizes the jettison relay to retract the launcher rail, extend the arming tool, and re-lock the forward motion latch. The launcher moves to the jettison position, which is a 40° fixed-in-space position controlled by the stable element. In local control, the elevation position of the launcher guide is fixed relative to the deck of the ship. Observe the inclinometer near the EP-2 panel and do not jettison until the ship is on the downroll.

When the LAUNCHER SYNCHRONIZED light is on, depress the dud jettison-extend push button on the EP-2 panel. Since nitrogen pressure is always present inside the jettison piston, the piston creeps forward. As the piston creeps, the aft shoe of the missile forces the forward motion latch out of the way, and the dud jettison pawls engage the missile forward shoe.
After the piston jettisons the missile, the jettison pushbutton light goes on, showing that the piston is extended. The next step is to retract the piston by depressing the dud-jettison-retract pushbutton, and the retractable-rail-retract button. After that, loading operations can be resumed.

When the jettison device is exercised (operated when the guide is empty), it operates the same as when jettisoning except that the rate of travel of the piston is retarded while it is extending. If it were not retarded when not loaded with a missile, damage to the equipment would result. The throttle valve and the main check valve control the speed by restricting the passage of hydraulic fluid from the front side to the back of the jettisoning piston land. During jettisoning, the main check valve lifts, permitting...
the hydraulic fluid to flow to the back of the piston land and accelerating the piston to eject the missile. Two seals near the forward end of the piston spud prevent leakage of the nitrogen pressure, and thus prevent mixing of the hydraulic fluid and the nitrogen.

The OP for the equipment contains schematics, circuit diagrams, and detailed illustrations of the parts of the jettisoning equipment. In order to be able to make repairs and adjustments, you need to have a grasp of what happens inside the equipment when you push a certain button on the control panel. Study the OP for the system you have aboard. On the schematics, trace through the actions as they are described in the OP.

The nitrogen booster pump used with the jettison device of Launching Systems Mk 13 aids in charging the jettison accumulator. This pump is mounted to the top of the inner structure inside the magazine assembly. It is a manually operated pump (fig. 4-11) that boosts the pressure of the nitrogen supply system. When the jettison tank is to be recharged and the pressure is found to be low, run a temporary line from the discharge port of the nitrogen booster pump to the nitrogen-charging valve block for the jettison accumulator tank. The nitrogen line that connects to the adapter block (supply connection) is a permanent one. Opening the supply valve when the handle of the booster pump is in stow position permits nitrogen to flow until pressure stabilizes. If the pressure then is less than that required by the jettison device, turn the pump handle to the pressure (PRESS.) position. This permits nitrogen from the supply area

Figure 4-11.—Nitrogen booster pump assembly for jettison device.
to push against the piston head, forcing back
and permitting nitrogen to flow to the jettison
accumulator and increase the pressure. When the
piston is fully extended, move the pump handle
to the stow position. In this position, nitrogen
on the face of the piston escapes to the atmo-
sphere and nitrogen pressure on the back of the
piston forces it to its former position. Continue
stroking the piston by moving the handle as
above until the required pressure is reached. A
safety valve prevents excessive buildup of pres-
sure.

MAINTENANCE AND REPAIR OF JETTI-
SON DEVICE.—The nitrogen pressure in the
jettison accumulator tank should be checked
every week, and the tank recharged as necessary.
The nitrogen charging assembly, located in the
righthand yoke of the launcher guide, is reached
by opening the hinged access door with the
special tool provided.

WARNING: Before doing any work on the
launcher, remove the firing safety switch handle
from the EP-2 panel so the launcher cannot be
activated inadvertently.

The pressure required varies with the tempera-
ture and depends on whether the jettison piston
is retracted or extended. There should be a table
posted on the inside of the access door; but if
there isn't, refer to the table in the OP. If the
nitrogen pressure is normal (within 15 psi of re-
quired pressure), be sure all the valves are posi-
tioned for system operation and nitrogen plug is
firmly secured. Then close and secure the access
door and return the firing safety switch handle
to the EP-2 panel. However, if the pressure is
not within limits, proceed to charge or bleed the
tank to the required pressure. Follow the in-
struction in Navord PMS/SMS 2665 volume 2.

In addition to weekly checking of the pres-
sure, once every two weeks cycle the jettison
device to keep the lubricants distributed and to
detect (and correct) any malfunction. At the
same time check the jettison device for signs of
corrosion.

WARNING. If the nitrogen tank must be dis-
connected for repair work, first vent nitrogen to
the atmosphere by opening SV 4, SV3, SV2, and
SV1 (fig. 4-12). The HYDRAULIC FLUID LEVEL in the
jettison booster piston also must be checked
daily. This cannot be done with the launcher
system inactivated, so you do not remove the
safety switch handle. Instead, station a safety
man at the EP-2 panel to make sure that the
train and/or elevation power drives are not
started. The hydraulic booster assembly is
located in the nitrogen-charging valve block (fig.
4-12A), and is reached by the same access door
in the launcher guide. The hydraulic pressure
sight gage (fig. 4-12B) is marked with red lines
to indicate the recharging area. If the indicator
(rod end of the booster piston) can be seen in
the marked area, the fluid level is unsatisfactory
and recharging is necessary. Follow the instruc-
tions in the OP for the launching system. When
preparing a checksheet you need the correct
designation for each pushbutton, switch, and
valve to be used. In figure 4-12, valves SV1,
SV2, SV3, and SV4 are shown for the Mk 13
Mod 0 launching system.

MISFIRE.—If the rocket motor fails to ignit
when the missile-firing relay is energized, the
firing relay remains energized and gives a misfire
indication on the EP-2 panel, and in weapons
control. The misfire light remains on until the
missile is cleared from the rail, whether by dud-
jettisoning, emergency firing, or unloading. The
course of action will be determined by ship's
doctrine, and the situation. In practice session,
the missile is unloaded and stowed for repair, or,
if it is dangerous, it is jettisoned. Under combat
conditions the Dud/Emergency Firing Key may
be used to clear the rail quickly and with some
chance of a tactical launching resulting.

The Dud/Emergency Firing key is pressed in
weapons control. If the missile still does not fire,
another circuit energizes and starts contactor
retraction and missile arming. After a brief
delay, the rocket squibs fire, regardless of the
contactor position.

The daily operation of the equipment, using a
training missile, includes checking of Normal
firing and misfire, and Normal firing resulting in
a dud. Firing of a dud and emergency firing,
using the Dud/Emergency Firing key, are tested
weekly. In any testing of circuits, be sure that switch SMW2 on the EP1 panel is on EXERCISE, so that no missiles in the magazine will be put on warmup. Tartar Dud Jettisoning Slug Mk 1 Mod 0 is used to test the operability of the dud jettison device. Emergency firing is tested with a training missile in three phases: for normal firing conditions to simulate an attempted firing; with the training missile set for dud; and with the training missile set for dud but with the electrical contactor extended. The operator of the EP2 panel notes the sequence of action in each case by the lights on his panel. The correct sequence is given in the OP.

Timing tests are made at 3-month intervals. To test the timing of the jettison device, use a stop watch and record the time it takes for the jettison piston to retract. The allowable time is 20 seconds after depressing the Dud Jettison RETRACT pushbutton. No missile is on the guide arm for this test. The conditions of the test are simple; they are given in the OP.

Once a year the jettison device is serviced by draining any seepage of hydraulic fluid. The drain plug is at the base of the jettison cylinder. Before attempting to do this, the nitrogen in the accumulator tank must be vented to the atmosphere. This nitrogen is under 2400 psi pressure. Open Mil and SV2 (fig. 4-12) on the nitrogen-charging valve assembly. After cleaning up the seepage and replacing the drain plug, the accumulator must be recharged, the same as in daily maintenance procedures.

Use only compressed nitrogen gas to charge accumulator flask bladders. Never charge with oxygen or compressed air. A mixture of oxygen and hydraulic fluid is extremely explosive.

NOTE: Since nitrogen and oxygen are both furnished in metal cylinders, use extreme caution to avoid taking the wrong cylinder by mistake. An oxygen cylinder is green colored; a nitrogen cylinder is gray colored with one or two black bands near the top.

Mk 22 Launcher Dud-Jettison System

The dud-jettison device in the Mk 22 launching system is in its guide arm (it has only one). The complete description of its operation is given in OP 3115, volume 2, Guided Missile.
Launching System Mk 22 Mod 0; Magazine Launcher Miscellaneous Subsystems. If normal firing was ordered on an Auto-Load cycle and the missile does not leave the rail, a light on the EP2 panel gives a dud indication. If the missile firing relay energizes but the missile does not fire, a misfire indication appears on the EP2 panel. WCS must then decide whether to jettison the missile or return it to the magazine for later rework. If the decision is to jettison, the EP2 operator turns SMY1 to Remote Dud Jettison. The remote-jettison sequence automatically disengages the contactor and the fin-opener cranks, extends the arming device, and unlocks the forward motion latch, if these actions did not take place during the Auto-Load sequence as they should have. The retract-launcher-rail cycle then starts. When the Launcher Synchronized Light goes on, indicating that the launcher has trained and elevated to the jettison position, the EP2 operator pushes the JETTISON pushbutton and the jettison piston ejects the missile overboard. The aft motion latch retracts, and when the JETTISON light turns steady, the EP2 operator pushes the Jettison RETRACT button. While the jettison piston retracts, the operator returns switch SMY1 to REMOTE.

Loss of launcher synchronization breaks the firing circuit. If the period of loss is short, the firing sequence resumes from the point of interruption, but if synchronization is lost for some time, the missile may have to be fired as a dud or misfire. The internal power supply of the missile is reduced rapidly once it is activated, so if the missile is not fired quickly, its range may be greatly reduced. In each case, Weapons Control will decide how to dispose of the missile. If possible, the missile will be returned to the magazine, marked as a dud, to be repaired later. The emergency firing circuit has a power supply independent of the normal firing circuit; it is resorted to in a tactical situation when a dud or misfire missile must be disposed of. The Dud/Emergency key in the Weapons Control Station is closed in a second attempt to activate the APS squibs in the missile. If this does not clear the rail, the dud firing circuit switches to the emergency firing circuit. If the failure was in the contactor retract circuit, and the contactor did not retract, this method of firing will damage the contactor pad, and therefore it is used only as a last resort if the missile endangers the ship or its personnel.

Time intervals mentioned actually are very short. From the moment the Dud/Emergency Firing Key is pressed until the rocket motor ignites and launches the missile is less than two seconds.

LOADING ASROC MISSILES

Loading the Asroc missile from the magazine of the Terrier Mk 10 Mod 7 launching system is similar to loading Terrier missiles but has a few different steps. If the decision is made to use an Asroc weapon (torpedo or depth charge form), the ASROC MODE switch on the EP-2 panel is pushed upon orders from Weapons Control, to change the launching system to the Asroc mode of operation. Automatic control is used except for exercise, testing, or in an emergency. The indicating lights on the EP-2 panel show the steps taking place in the loading operation.

In the assembly area, motor fins are attached to the Asroc. The missile fin assemblymen assist the motor fin assemblymen, as there are no missile fins on the Asroc. The snubbers on the Asroc adapter rails have to be retracted and secured, after firing. The ready service ring tray does not shift from hoist to ring after bringing the missile to the assembly area, as it does with Terrier, because the adapter tray must first be returned to it, which is done after the Asroc is launched.

The type of Asroc missile must be visually identified when it arrives in the assembly area. If it is not the one ordered, it must be returned to the magazine and the correct one brought up. The circuit to identify the missile in the adapter is energized through the loader pawl warmup contactor. This causes the identification light to blink on the EP-4 or EP-5 panel and the operator can notify WCS and the EP-2 operator. When the Asroc is at assembly, the Asroc arming tool is energized. (There is another arming tool for Terrier.) If the missile is a Y-type, the Y stop keylock switch must be positioned to LOAD, or the blast doors will not open to permit loading the launcher. When the missile is on the launcher, the arming tool winds and retracts, and this opens the snubbers on the
GUNNER'S MATE M 1 & C

The missile battery is then activated, and the battery ignites the motor.

Although the Asroc does not have an APS (auxiliary hot-gas power generation system), the missile activation indication is supplied to the Asroc relay transmitter and is required by Asroc fire control before it supplies the Asroc missile-ready indication on the panel. However, as mentioned before, an Asroc failure on the launcher is very unlikely.

When enough thrust has developed, the Asroc travels the length of the adapter rail into ballistic flight. After firing, the adapter rail is then returned to the magazine tray in an unload sequence. When it arrives in the assembly area on its return trip, the snubbers must be closed manually (with the aid of special tools). A new umbilical cable will need to be inserted in the adapter, and this is done in the checkout area. This may be done later, depending on tactical circumstances.

Care of Cable Assemblies

The umbilical Cable Mk 10 provides the necessary electrical connection between the adapter and the Asroc missile. Each time an Asroc missile is launched from an adapter, the umbilical cable must be removed and replaced with a new cable. The replacement cables are supplied with the replacement missiles. The cables are enclosed in a dust cover (fig. 4-13). Do not remove the dust covers from Cable Mk 10 until just before installing the cable.

Remove the cable cover by loosening the locking studs (fig. 4-13A) with a snubber cam wrench. Lift the forward end of the cover upward, and slip the after end of the cover free of the cover retainer bar. Remove the expended cable by disconnecting the cable connectors at the after end and disengaging the missile retractor-connector from its support. The location of the cable is shown in figure 4-13B on the after handling shoe support. The new cable is placed in the trough of the after handling shoe support and the cable connectors are attached to the adapter wiring connectors.

Care of Cable Assemblies frequently are damaged while being connected or disconnected. The keyways must be properly aligned; proceed carefully when connecting the cable plug to the ISA (Ignition Separation Assembly) receptacle to avoid breaking or bending the receptacle pins. Lubricate the rubber ring on the receptacle and inspect the seating surfaces. Consult the OP or the SWOP for the correct lubricant. If the rubber ring has raised out of the groove, it prevents proper plug latching or positive electrical connection of the cable assembly. This work is done in the checkout area when loading an Asroc missile into the adapter before loading it into the magazine.

Loading Depth Charges

Before loading depth charges into the launcher, remove all four tapes so the depth charge will operate properly. The tapes, with lead foil barrier, are placed over the hydrostatic ports of the depth charge fuze to prevent entry of dirt, etc. The tape is not a safety device. The red streamers attached to the tape are merely a reminder to remove the tapes.

As the Rocket Thrown Depth Charge Mk 2 is shorter than the torpedo configuration and somewhat larger in diameter, the magazine trays have to be adjusted. Side and bottom snubbers in the adapter prevent lateral movement of the missile; a missile-restraining mechanism prevents fore-and-aft motion.

When the Asroc is fired, as the arming tool winds it triggers the release of the snubbers. It requires approximately 2000 pounds of thrust to cause the forward restraining latch to release. A positive stop on the launcher guide arm holds the adapter rail so it is not fired with the missile. The blast doors will not open for the Y-type missile until the Y stop key-lock switch is positioned to LOAD. When the missile is on the launcher and the missile type indications appear on the EP-2 panel and the attack console panel, the operator of the attack console panel immediately checks out the missile.

As the depth charge is larger in diameter than the torpedo configuration of Asroc, inserts are not needed in the adapter rail when the depth charge is to be loaded.

The steps in loading an Asroc into the adapter must be followed exactly. Be sure to stand clear of the snubbers when they are being unlocked before placing the missile on the adapter. In the
launch cycle, the snubbers are operated hydraulically, but they have to be released or closed with a special wrench when the Asroc is being loaded (or unloaded) into the adapter.

UNLOADING ASROC MISSILES

To return the Asroc to the magazine or to the assembly area, automatic unloading may be used. After each firing of an Asroc, the adapter must be unloaded before another missile can be brought up and placed on the launcher. If there are any weapons in the assembly area, they must be unloaded before a weapon or an adapter can be brought back from the launcher. The assemblymen must remove and store the fins or fold the fins of the weapons in the assembly area before giving the signal to return the missiles to the magazine. When the assembly area is clear, the EP-2 operator can proceed to return the missile (or the adapter) that is on the launcher guide arm.

Unloading the Asroc Torpedo

The Asroc with a torpedo warhead uses a torpedo exploder, which must be in the safe position when the missile is in the magazine, or the assembly area, and until it is to be fired. It must be returned to the safe position before it can be unloaded. Figure 4-14 shows one type of exploder. Follow the instructions in the OP for the exploder that is on your missile. It must be safed before the missile can be returned to the magazine or the check-out area.

Unloading Depth Charges

Before starting unloading operations for an Asroc Depth Charge, verify that the Safety Plug P1 is on the Launcher Captain’s control panel and is not inserted. It may be kept in the custody of the ASW officer or it may be locked in a dummy receptacle on the panel. The depth charge is disarmed by installing the thrust
neutralizer (fig. 4-15A) on the missile. Note that a special wrench is used. Do not tighten the screws too much, or the pins in the nozzle plate may be sheared off. The torque requirement is 100±25 foot pounds.

If the power supply (fig. 4-15B) is to be removed from the depth charge (and this is not always the policy), replace it with the blanking plate (fig. 4-15C) and seal which had been removed from it and placed in storage. If the depth charge is being returned to the ready service ring in the Mk 10 Mod 7 or 8 Terrier system, the only change involved is the removal of the fins as the missile halts in the assembly area.

If the missile is to be off-loaded, have the container placed in position on deck so the missile can be lowered into it with the trolley hoist, without striking or bumping the missile. Attach the container ground wire to the thrust
neutralizer (fig. 4-16) before disconnecting the hoist from the missile. The ground strap receptacle to which the wire is to be attached is on the neutralizer and should NOT be removed at any time. Secure the missile in its container so it cannot shift. As a GMM 1 or C you may be supervising and directing the work of unloading and packaging the missile or you may be operating the launcher captain’s panel.

ASROC DUDS AND MISFIRES

As described earlier in this chapter, an Asroc dud or misfire is handled by the Mk 10 Mod 7 or
GUNNER'S MATE M 1 & C

8 system in the same manner as a Terrier dud or misfire. The methods of safing the torpedo and the depth charge forms are different.

Depth Charge Mk 17

The missile configuration that carries the depth charge payload is designated as Rocket-Thrown Depth Charge Mk 2. If a dud or restrained firing occurs, notify the ASW officer. He will decide whether to return the missile to the magazine or to package it into a container and return it to a depot for repair. A dud is stowed, inspected and repaired later. You will check the missile and the warhead. The missiles in the other trays of the magazine may be used to continue the firing exercise (or in action). If a misfire signal shows on the launcher captain’s control panel and/or the attack console, you must safe the depth charge at once, before it is removed from the launcher. The nuclear weapons officer must decide, in accordance with rules established for these weapons, what to do with it. After the weapon has been safed, proceed with unloading according to the checklist, observing all the safety precautions. If the weapon is to be off-loaded you will need to have a missile container for it, and two Hand Lift Trucks Mk 41 or Mk 42. If your ship does not carry these, you have to store the missile, order the missile container, the hand trucks, and other needed material, and when these arrive, unload the missile into the container. You will need thrust neutralizers and ISA shorting plugs, but these are normally carried on the ship; check the supply and order replacements if necessary. The thrust neutralizer and shorting plug (fig. 4-15) were removed when the missile was stowed during replenishment. The blanking plate and power supply seal were placed in stores at the time they were removed when the depth charge was loaded into the magazine. These are drawn from stores and reused when the power supply is removed from the depth charge.

Few ships have GMTs aboard; you need to know how to safe the depth charge. Depth charge safing (disarming) consists of resetting the ARM/SAFE switch to the SAFE position and removing the power supply (fig. 4-15B). Use the checkoff list from SWOP W44.34.1 and follow it precisely.

Asroc Torpedo

There is no provision for jettisoning the Rocket-Thrown Torpedo Mk 3. If, upon attempting to fire the torpedo, the DUD light goes on, auxiliary firing may be tried, or the missile can be returned to the magazine to be inspected and repaired later. It might be unloaded into a container and returned to a depot for repair.

To remove the dud or misfire missile to a shipping container, follow the checkoff list for unloading.

Safing the Asroc for Unloading

Asroc torpedoes must be returned to a tender or depot every 6 to 12 months for maintenance procedures, and therefore must be unloaded from the cell. If a warshot torpedo has to be unloaded, the position of the torpedo exploder (fig. 4-14A) must be checked before the torpedo can be moved. (Torpedo exploders may also be installed in exercise heads to give an electrical “hit” signal.) The exploder bore rod must be in the cocked depressed position (fig. 4-14B); if it has moved (fig. 4-14C), it must be sterilized by...
turning the sterilizing switch (fig. 4-17). To reach the switch, break the foil seal in the top of the exploder, then turn the switch 90 degrees in either direction by using a screwdriver. This short circuits the exploder power supply. (The arming device is the part of the exploder that contains the explosive, and must be handled with great care. Spares are packaged and shipped separately, not assembled in the exploder.) All exploders must be considered armed if the bore rod has released. If you have to offload a war-shot torpedo and the bore rod on the exploder is

Figure 4-17.—Sterilizing Switch Mk 1 Mod 0: A. Sectional view; B. Unoperated; C. Operated (foil seal broken, switch turned).
released, sterilize the exploder before moving the torpedo. Once the sterilizing switch has been used, the exploder is useless for firing until a new sterilizing switch is installed (at overhaul). The exploder is removed from the torpedo after it is unloaded from the launcher.

Details of different mods of the exploder vary; Exploder Mk 19 Mod 12, for example (used with Asroc), does not have a floor switch, but has a ceiling switch and sterilizer switch. Some mods do not have the bore rod extension lever shown in figure 4-14C. The Mod 12 has a double-acting type of bore rod, with a bore rod latch to lock it in the cocked position.

On dummy training missiles, inspection of the exploder bore rod is not necessary, but operation of the depth charge Arm/Safe switch (when the missile is on the launcher) is required for training purposes. Removal and replacement of the thrust neutralizer is also practiced on dummy training missiles. You are not likely to have a dummy training missile on board a firing ship, but will have exercise torpedoes.

SUMMARY

Loading, used in this chapter to mean the placing of missiles on the launcher in preparation for firing, is described in automatic and in step control for each of the types of missiles currently used by the Navy. When everything works perfectly, loading of missiles (with the possible exception of Asroc) consists chiefly of pushing the right buttons in the right sequence. However, the GMM 1 and C must be prepared to locate and correct trouble in the intricate complex of the weapon system. The chapter points out differences between systems. Study the OP of the system you have aboard to acquire detailed knowledge of the mechanical, electrical, pneumatic, and hydraulic operating components of the system. Locating the trouble is a big step in the maintenance of a missile launching system.

The method of disposing of missiles that fail to fire is given with considerable detail for the different missile systems. A missile is too big and expensive an item to be discarded lightly; it must be saved and repaired if possible. (Repair of the missile is usually done at depots.)

At all times, safety rules must be remembered and enforced. You are expected to be ready to risk your life in battle, but do not throw away your life, or that of any of your men, by neglect of safety precautions.
CHAPTER 5

ELECTRICITY AND ELECTRONICS

INTRODUCTION

The preceding course and the basic courses, Basic Electricity, NAVTRA 10086 and Basic Electronics, NAVTRA 10087, have discussed the principles of electricity and electronics and explained how they apply to missile launching systems. The extensive application of electricity and electronics in missile systems make understanding of the principles and their applications a necessity for the GMM. Practically every part of a weapon system is operated or activated by electrical and electronic parts. The ET, FT, and other ratings are responsible for the care and maintenance of some parts of the weapon system, but there are numerous electric and electronic parts in the launching system whose maintenance is your responsibility.

A typical firing circuit and a power control circuit were described and illustrated in the preceding course. We explained the action of each component, so that you could trace the functioning on the drawings. Troubleshooting techniques as applied to circuits were explained and troubleshooting charts were presented. You were instructed in the use of various meters in testing and measuring electrical and electronic components. Now you should be able to teach others how to use those meters and testers. If there are some weak or fuzzy areas in your knowledge, go back and review. You cannot build advanced knowledge on a weak foundation.

This chapter will tell you more about applications of electrical and electronic components in the operation of missile systems to help you see how the principles are applied to these components. From these you should advance to the more complicated problems of adjustment, alignment, and troubleshooting of electrical and electronic equipment.

GMM AND ELECTRIC AND ELECTRONIC PARTS

All the electrical and electronic components used to operate and test the launching system are part of the GMM’s responsibility. While this is no small assignment, it does leave out (for other ratings to operate and service) a complicated assortment of equipment, such as radars and radar test sets, computers, weapon direction equipment, target detection equipment, and target tracking and missile tracking apparatus.

A review of the quals (Electricity and Electronics) show that nearly all the knowledge factors in these fields are required of the GMM 3 and 2. In the practical factors, the GMM 1 and C are expected to do the troubleshooting, casualty analysis, overhaul, repair, and adjustment on electrical and electronic components of the launching system. You have learned to use the test instruments for simple maintenance and repairs. Now you must learn to use the most sophisticated testers, and to locate electrical and electronic troubles and correct them. This is practical application of the principles you have learned.

CONTROL PANELS IN LAUNCHER SYSTEMS

Table 3-1, in chapter 3, lists the control panels by Mk and Mod numbers for all the missile launching systems currently used. As development of launching systems has advanced
from experimental stages, standardization has increased. This not only reduces production and maintenance costs, but simplifies training of personnel. There are still many differences in the control panels for the different systems, and there always will be some, but the similarities are greater. However, it is still far from “if you know one you know them all.” Review chapter 3. Similarities and differences in the missile launching systems were discussed in that chapter.

CONTROL PANELS OUTSIDE THE LAUNCHER SYSTEM

It is impossible to describe the operation of the launcher control panels without constant reference to the control panels in the weapons control station, CIC, and controls on the bridge. There is a constant flow of information and direction to and from the various components of the weapon system. (See fig. 3-1 in chapter 3.) Figure 5-1 shows typical location of components of a weapons system. Communication between components must keep open. In addition to indicating lights on panels, telephone communication between stations is used to relay reports or orders. An alternate system must be ready to take over in the event of failure or destruction of the other.

Many of the circuits in the launcher power panels are activated from control panels outside of the launching system. They are tested in cooperation with the operator of the panel sending the activating signals. When there is any failure, the GMM checks out the connection to his panel and works with the other operator to check out the whole circuit.

Training and elevation power drives are controlled by orders from the director, relayed through the launcher captain’s control panel. Load orders and firing orders are transmitted to the launchers through the weapons control station and the launcher control panel. There may be a breakdown anywhere along the system and the GMM must help to find the trouble and correct it.

CIRCUIT TESTING BY THE GMM

The preceding course, Gunner’s Mate M (Missiles) 3&2, NAVTRA 10199 contains a chapter on use of meters for testing, making electrical measurements, and troubleshooting circuits. Review any parts about which you are not clear. A solid understanding of the underlying principles is necessary before trying to understand complicated variations.

NOTE: The routine testing of ship’s weapons control circuit wiring makes use of 500-to 1000-volt meggers. These checks are performed periodically as a regular part of preventive maintenance procedures. Repeated high potential tests (over 300 volts peak) can damage synchros and other small rotating components. High potential tests involving these components should be limited to those required for qualification and acceptance at the time of manufacture. Synchros, servomotors, resolvers, tach-generators, etc., should be disconnected from the circuit when meger or ground tests are being conducted.

Missile system installations greatly increased the requirement for 400-hertz power supplies having varying degrees of voltage and frequency regulation. Missile ships have had to install 400-hertz generating plants to satisfy the demand. All missile ships have three separate 400-hertz power systems, each consisting of two or more motor generators. One is used for the ship’s service system; another supplies the continuous wave illuminators used with guidance radars, and the third the most closely regulated (voltage and frequency) 400-hertz system, is used on ships for missile systems.

Launcher electric motors are started and run under the power of a 440-volt 60-hertz ship’s power supply. The slipring assembly, on the launcher stand and carriage, provides continuous interconnection between on-launcher and off-launcher electrical connections while allowing unlimited train motion of the launcher. On the Talos launcher, the slipring (fig. 5-2) consists basically of a 440-volt collector ring assembly, a 115-volt collector ring assembly, and a fluid slipjoint. Each collector ring assembly has a rotating and a nonrotating section (fig. 5-3). The rotating sections mount collector brushes that are connected by cabling to circuits of on-launcher equipment. The nonrotating sections mount collector rings which are connected by cabling to the circuits of the off-launcher power and control components. The rings are engaged
by the brushes of the rotating sections to complete the electrical circuits. The four brushes contained in each brush ring are electrically connected to a terminal on the outer surface of the ring (fig. 5-3). The launcher cabling connects to the terminals of the assembled brush rings.

Close voltage and frequency regulation are necessary for use in the missile system. Voltage and frequency regulated equipment can now be provided in 30-, 60-, 100-, 200-, and 300-kw sizes, with voltage balance regulators supplied when necessary. Supplying the power needed for the missile system is in the province of the ship's engineering department.

While depending on the engineering department to supply the power in the voltage and frequency desired, you have tested circuits and tubes and have used schematic diagrams, block diagrams, voltage and resistance charts, and troubleshooting charts. Experience and study will help you improve your ability to interpret the results of the tests and trace a malfunction. It is possible to track down a malfunction by checking each part or component in the circuit—following the circuit diagram until you come to the defective part. But that may take hours of tedious work. A study of the problem may reveal a shortcut that will locate the trouble in much less time. While there is much to be said for patient, dogged, stick-to-it-iver-ess in a troubleshooting job, the application of brainpower to locate the trouble in short order is more commendable. You cannot do this with much success, however, if your knowledge of your weapon system is superficial.

Troubleshooting Control Panel Circuits

With the enormous amount of wiring and electrical components required in a weapons system, it is not surprising that a high proportion of the failures are in the electrical system.
Figure 5-2.—Slipring Mk 6 Mod 1, installed arrangement on stand and carriage of Mk 7 Mo-1 launcher (Talos).

The control and power relays of the Mk 10 Terrier launching system, for example, consist of more than 400 miniature rotary relays, 6 subminiature relays, 46 medium-size rotary relays, and 6 small-size rotary relays. These relays are in the EP1, EP2, EP4, and EP5 panels.

Conscientious application of the 3-M system is intended to reduce the incidence of failure. The MRCs give step-by-step detail of what to do for routine maintenance, but when any part of the equipment fails to perform as it should, you have to turn to the OPs for aid in troubleshooting. The OP also gives the frequency of tests, checks, inspections, and servicing of the different components. If the OP differs from the MRC in this, follow the MRC instructions.

Let's concentrate on the EP 1 panel, which is the basic distribution panel for all electrical power to the launching system. It contains switches, circuit breakers, fuses, relays, and
The launcher captain turns on the various circuits before he goes to the EP2 or launcher captain's panel, which he mans during operations. In figure 5-4 the items are identified by number. Lights in section no. 1 indicate that the 440-volt power has been turned on and is available on the panel. As the motors in the launching system are energized, lights in section 2 come on: (a) B-side magazine motor; (b) Train motor; (c) Elevation motor; and (d) A-side magazine motor. The circuit breakers for these motors are in section 3. Lights in section 4 indicate that the following motors are energized: (a) B-side loader motor; (b) Launcher rails motor; (c) Circulating system motor; and (d) A-side loader motor. Section 5 has the circuit breakers for these motors. The two lights in section 6 are for A- and B-side loader accumulator motors, and the circuit breakers for these are in section 7, with a third circuit breaker for the control system. When you activate the panel, you turn on all these switches and circuit breakers unless only one side of the launcher is to be used, and then you turn on only the circuit breakers and switches for that side.
Figure 5-4.—EP 1 panel, Terrier Mk 10 Mod 7 launching system.
Chapter 5—ELECTRICITY AND ELECTRONICS

Lights in section 11 indicate that power is available for the 120-volt warmup circuits and the light in section 13 indicates power available in the 115-volt control circuits. The On-Off switches for warmup supply circuits and control supply circuits are in section 14 and the fuses are in section 15. Each fuse block has two fuses and two fuse-blown indicating lights. Two extra fuses are in section 16, with screw-on watertight caps.

If light No. 8 is on, it indicates that the door interlock on the panel is inoperative. A magnetic latch on the door prevents opening it while the power is on. Before the door can be opened to make repairs, etc., the 440-volt power must be turned off and then the door handle (no. 9) can be turned to open the door. No. 10 is an emergency release for the magnetic door latch. No. 12 is a ground detection indicator. It monitors the 117-volt control supply circuits and triggers an alarm if there is a grounded circuit. Figure 5-5 shows in outline the EP1 functions.

PRELIMINARY ISOLATION.—Let's assume that you have turned on all the switches and circuit breakers on the EP1 panel to activate the system. You notice that a fuse-blown light for switch d in section 14 is on. This means that control supply circuit No. 3 for the B-side feeder is disabled in some way. You have to find where the trouble is. Check the fuse blown light first. You will need to look inside the panel. Before you can do that, you must disconnect the power supply; the panel door will not open while the power is on. Besides, you may not work on energized electrical equipment without an express order from the ship's commanding officer. Remember safety rules for working with electrical equipment: wear no rings, wristwatches, bracelets, or similar metal objects. Do not work with wet hands or wet clothing. Wear no loose or flapping clothing. Discharge any capacitors before touching them—they retain a charge after they are disconnected from their power source.

You may see the cause of the failure as soon as you look behind the panel door, but more than likely you will need to get the electrical drawings and trace the wiring until you find the trouble. The power distribution cables are numbered 0 to 99, and the wires are numbered 0 to 999. Loading control cables for the “A” side are numbered 200 to 299, and for the “B” side the numbers are 300 to 399. Wire and cable numbers are assigned in groups, with “A” or “B” added to indicate the side served by the wire or cable. For example, “WSA2022” means “Wire, single conductor, no. 2022 of the A-side loaded circuitry.” The cabling schematic also identifies the type and size of wire used in each application. The drawing explains the component type designations used, such as “WS” above, and the major assembly designations, such as “LB” for Loader, B-side, or “BA” for dud jettison, A side. All electrical and hydraulic

![Diagram of EP1 control panel functions](image-url)
components are identified by a combination of letters and numbers that indicate the kind of device or component, the identification of the major assembly of which it is a part, and identification of the specific component. These reference designations do not replace drawing, part, or stock numbers. They identify the part on the schematic. For example, KCLA1-1AB can be interpreted as follows:

KC—relay, control
LA—Loader, A side
1—No. 1 among the relays associated with the A-side of the loader.
1AB—the A and B contacts on the first wafer or section of the relay. It also indicates that the A and B contacts on the first section of the relay are wired in that circuit application.

To return to the EP-1 panel and your problem. If the trouble is only a faulty fuse, replace it. However, remove and replace fuses only when the associated circuit is completely deenergized. Use a fuse puller made of insulating material. Use a fuse of the same rated voltage and amperage capacity. Never short a fuse. After you have replaced the fuse, replace the fuse cover (if it has one), then energize the circuit. A fuse may explode when the circuit is energized.

When you have located the trouble that caused the fuse to blow, and have repaired it, reactivate the panel to check the work you have done.

Since the EP1 panel is connected directly to the ship's electrical system for its power supply, you need to work with the ship's electricians when there is a failure in any of the lines connected to the ship's power supply.

CIRCUIT TROUBLE AT THE EP2 PANEL.—Assume that you have turned on all the connections at the EP1 panel and power is available for all the circuits. You are now ready to take your position at the EP2 panel. You receive orders from Weapons Control regarding the mode of operation, the type of missiles to be used, single loading or continuous loading, and whether A-side or B-side or both are to be used. You are ready to activate the EP2 panel, through which electrical power is supplied to the different units of the launching system.

The magazine, which consists of the ready service ring, the load status recorder, the hoist mechanism, and the magazine doors, is operated by hydraulic power from Power Drive Mk 64. One power drive is located on the A side and the other on the B side. Individual controls for the units are on the EP2 panel. Circuit No. 2 for control supply furnishes the 117-volt a-c electricity to operate the motor that drives the pump to develop accumulator pressure. The start circuit for the magazine accumulator motor is controlled from the EP2 panel. When the contactor (KPA1 in fig. 5-6) is energized, it closes contacts which complete the 440-volt supply to the magazine accumulator motor (BPX1).

Normally there will be no trouble starting the magazine accumulator motor by depressing the START-RUN pushbutton switch SMX165A (fig. 5-6). However, a malfunction may occur at any time in such a complex equipment. It is important, therefore, to understand the motor start circuit and the relay elements it includes.

To complete the Start circuit, you position SMS1 (Control Selector Switch) at STEP, SMS2 (Operations Selector Switch) at OFF, and SMS3 (A-or B-Side Selector Switch) at A or A AND B for A-side operation, or B or A AND B for B-side operation. Control Selector Switch SMS1 must be positioned at STEP during activation in order to start the motors, and switch SMS 2 must be at OFF during that time to prevent system operation until activation is completed.

With these manual switches positioned, it is time to position the switches or relays for the components powered by the accumulator unit. The positioning latches, both clockwise and counterclockwise, for the ready service ring must be extended so the ready service ring will not start indexing before the system is ready. Both tray shift solenoids (LHDA1-LC1 and LHDA1-LC2) must be deenergized and the associated solenoid rocker arm must be at neutral to prevent indexing ahead of readiness. The normally closed (N.C.) contacts of these switches are wired into the Start circuit, so the switch elements are closed when not actuated. Hoist solenoid switches (LHHA1-S1101 and LHHA1-S1102) and magazine door solenoid switches (LHGA1-S1101 and LHGA1-S1102) perform the same function—prevent premature activation of the associated parts of the launching system.
Figure 5-6.—Start and Run circuits for accumulator system motor.
Relay elements KCHA1 and KCHA2 keep the hoist in either the latched up or latched down position so it will not be stopped in midcycle. The magazine door solenoid switches (LHGA1-S1101 and LHGA1-S1102) remain deenergized at this time so the doors will not open. Both overload relay elements (KPXA2) and (KPXA3) are closed because there is no overload in the 440-volt power supply to magazine motor BPXA1. The remaining elements between SMXA16A and the KPXA1 coil remain closed during the motor-state procedure. The Magazine Motor STOP switch (SMXA17) is spring-held in the closed position unless it is depressed to stop the motor. Also closed is LHXA1-S1101, the solenoid switch to dump magazine accumulator pressure if it becomes necessary. The solenoid LCI will not energize until the motor has been stopped.

Now, with all the manual switches properly positioned and the associated interlocks closed, you are ready to press the Magazine-Motor START-RUN button, SMXA16. This completes the 117-volt circuit to the coil of the motor contactor KPXA1.

When the contactor coil is energized, it closes contacts A, B, and C of relay KPXA1 in the 440-volt motor power circuit and contact D in the motor run circuit. The motor should start and begin driving the parallel piston pump.

Suppose the motor doesn’t run after you have pressed the start button. Maybe somebody forgot to push Magazine Safety Switch to RUN (SMZA12), a manual switch on the EP4 panel which must be positioned to RUN. If that is not the cause of the nonoperation, you will need to get the drawings for the system to trace down the cause of the failure. The schematic helps you picture the layout of the system, but you will need the electrical diagrams to make the proper corrections. Review the check list to make sure you did not omit any step in the activation. The checklists posted at the panel should be used every time the panel is activated.

COMPONENT ISOLATION.—Once the source of trouble has been isolated to a particular circuit, several aids and short-cuts are available for isolating the defective component. Three probable sources of trouble in circuits are an open relay coil, an open diode, or a shorted diode. When isolating troubles, first determine which coils of the relays are energized when a pushbutton is pressed. The drawing or the maintenance manual may have a listing of the coils of the relays for each circuit. Check each circuit systematically for opens, and for shorts. There is little likelihood of a shorted relay coil, but a diode wired across the coil of the relay may be shorted, and that would cause a fuse to blow as soon as the circuit to the relay is completed. Shorted diodes in other circuits may cause no such giveaway reaction but may permit current to pass through other diodes. Those are more difficult to locate. When the shorted diode is isolated from the associated circuitry, do not assume it is bad; its forward and backward resistance should be checked.

CHECKING RELAYS.—Relays suspected of faulty action may be checked with the relay test equipment mounted on the inner side of the EP2 panel front door (fig. 5-7), next to the door latch. Before testing relays, the pins should be examined to be sure that they are not bent. To straighten bent pins, firmly seat the relay in the pin straightener mounted in the top of the test panel (fig. 5-7). Terminal pins on a plug-in type of relay are shown in figure 5-8B. After any necessary straightening, insert the terminal pins into the test socket (fig. 5-7). The toggle switch SMZ19 applies (or removes) power to the coil of the relay being tested. SMZ19 also switches the circuitry of the test socket to permit testing of the normally open or normally closed internal circuits of the relay as desired. Selector switch SMZ18 permits checking the individual internal circuits of the relay, normally open or normally closed, as determined by the position of SMZ19. As each internal circuit of the relay is tested by positioning SMZ18, indicator light DSZ13 indicates whether the relay is operating properly.

INTERLOCK SWITCHES.—The switches on the control panels are chiefly manual switches of pushbutton, rotary, or toggle types. Numerous interlock switches are used throughout the launching system. They are actuated by mechanical motion or hydraulic pressure, and are used to monitor equipment functions. The design varies with the application, but usually consists of one or more switch elements.
mounted to an actuating device. They assume that related equipment is at a certain position or has performed a certain function, so that operation will be in sequence. For example, the hoist cannot raise a missile to the loader if the magazine doors are closed. The circuit energizing the solenoid which controls hoist raise operation contains an interlock that does not allow circuit completion until the magazine doors are open and secured. This interlock is a relay wired into the solenoid circuit. When the relay is energized the interlock is closed. The relay energizes when the associated interlock switch, mounted to the magazine door equipment, is actuated. This switch actuates when the magazine doors have fully opened and the door lock latch is engaged. Other interlock switches in the circuit assure that the loader is in position (retracted) above the magazine doors and that the tray shift on the ready service ring is positioned to hoist. Even the motor start circuit includes interlocks. They assure that powered equipment is not halted in midcycle.

When interlock switches malfunction, the entire switch assembly is removed and a replacement unit is installed. Before the replacement unit is installed, it should be checked electrically with the switch test device (special tool 1614018) to be sure that it functions properly.

The interlock switches of the Mk 10 Mod 0 launching system control are of two types. The majority of the switches are sensitive switch assemblies, and the rest are microswitches mounted in the solenoid housings and in the load status recorder assembly. The OP for the system has a listing of all the sensitive switches, the location of each, its function, the reference drawings, and instructions for adjustment, with an additional listing of solenoid interlock switches mounted on brackets and secured to the supporting frames of the primary solenoids in the switch housing (fig. 5-9). The assemblies are of right-hand and left-hand configuration, so when you are replacing one, be sure to get the correct one.

Before disconnecting any switch for replacement, be sure to mark down the connection of each lead so you can connect the leads of the replacement in exactly the same way. Use a soldering iron to remove the leads, and when attaching the new leads, solder them in place after placing the switch assembly in position and securing it lightly. Adjust the air gap (fig. 5-9) with the solenoids deenergized, according to the reference drawing for that switch. Tighten the locknuts after making adjustments.

LOAD STATUS RECORDER.—We mention the lead status recorder here as an example of a complex electromechanical assembly (fig. 5-10). One is located on each ready service ring, mounted on the outboard side of the truss. Its two basic sections are a relay board assembly and a switch and cam actuator assembly. It monitors the missile type and condition at all 20 stations in the ready service ring and sends this information to the control panels (EP2, and EP4 in the form of interlock switch and visual.
The proper operation of the load status recorder can be checked during the daily exercise of the launching system. Each time the ready service ring is indexed to another station, notice if the lights representing the stations in the ready service ring rotate in the same direction and amount. If there are empty trays or trays with dud rounds, the EMPTY and DUD indications can be checked. The checking must be done in Step operation, operating from the EP2 panel shows what the recorder tells; it is in the ready service ring at each station. Shipboard correction or adjustment of the electrical components should not be attempted; remove the defective unit, such as a triple switch or single switch element, return it for repair, and install a new unit. If the load status recorder malfunctions mechanically, order a replacement from the supply system.

The proper operation of the load status recorder can be checked during the daily exercise of the launching system. Each time the ready service ring is indexed to another station, notice if the lights representing the stations in the ready service ring rotate in the same direction and amount. If there are empty trays or trays with dud rounds, the EMPTY and DUD indications can be checked. The checking must be done in Step operation, operating from the EP2 panel shows what the recorder tells; it is in the ready service ring at each station. Shipboard correction or adjustment of the electrical components should not be attempted; remove the defective unit, such as a triple switch or single switch element, return it for repair, and install a new unit. If the load status recorder malfunctions mechanically, order a replacement from the supply system.

The proper operation of the load status recorder can be checked during the daily exercise of the launching system. Each time the ready service ring is indexed to another station, notice if the lights representing the stations in the ready service ring rotate in the same direction and amount. If there are empty trays or trays with dud rounds, the EMPTY and DUD indications can be checked. The checking must be done in Step operation, operating from the EP2 panel shows what the recorder tells; it is in the ready service ring at each station. Shipboard correction or adjustment of the electrical components should not be attempted; remove the defective unit, such as a triple switch or single switch element, return it for repair, and install a new unit. If the load status recorder malfunctions mechanically, order a replacement from the supply system.
For unload assembly, unload launcher, checkout, or strikedown, the EP4 (or EP5) panel must be used to rotate the ready service ring. The loading pattern was set into the load status recorder at the time the missiles were loaded, and if the recorder is operating properly, the lights on the control panels should read back the same as the loading pattern. The color of the light indicates the type of tray or round. Three amber lights inside each circle of lights (representing the ready service rings) indicate the meaning of the lights in the circular pattern as DUD, EMPTY, or LOADED. If you push the DUD button (of those three), the lights should go on for all the trays that hold dud missiles. If you push the EMPTY button, the lights representing trays that are empty should come on. If you activate the LOADED button, the lights for all the trays containing missiles should come on, the color indicating the type of missile in each. In each case, the light indications should agree with the loading pattern established at the time of loading, unless the tray assignment has been changed, or the missile has been unloaded.
SAFETY RULES

It is your duty as a supervising petty officer to instruct and remind your men of the safety rules and see that they obey them. The first class and CPO should conduct lessons on safety. Chapter 12 contains safety rules for electricity and electronics, as well as for other situations.

SERVOMECHANISMS

An apparatus that includes a servomotor (or servo for short) is often called a servomechanism. And what is a servomotor? It is a power-driven mechanism, commonly an electric motor, which supplements a primary control operated by a comparatively feeble force. The primary control may be a simple lever, an automatic device such as a photoelectric cell or a meter for measuring position, speed, voltage, etc., to whose variations the motor responds, so that it is used as a correctional or compensating device. A servo is a control device, a power amplifier, and a closed-loop system. Gunner's Mate M (Missiles) 3&2, NAVTRA 10199 described and illustrated the fundamentals of servomechanisms. They are used in all the power drives, and the principles apply to all of them—only the details of application vary in the different launching systems. Servos may be electrical, mechanical, electronic, hydraulic, or combinations of these, but all use the feedback principle. One or more power amplifiers are part of any servosystem. There must be an input and an output, and between these, an error detector and an error reducer. Each of these essential components may have many parts, so that even a simple schematic may seem like a complicated maze. Remembering the essential parts of a servo and the direction of the signals are helpful in tracing through the schematic.

Troubleshooting

Since the launchers must be trained and elevated every day as part of routine training and maintenance, any defects or failures in the servomechanisms of these systems will be evident. Servomechanisms are used in connection with so many parts of a missile launching system, no one application can be considered as typical. Their use in the training and elevating system is one of their most extensive applications. The receiver-regulators are described in the next chapter. The emphasis there is on the hydraulic of the system. Following are some suggestions for troubleshooting the electrical parts. But first review the four steps:

Step 1.—Observe the equipment's operation.
Step 2.—Make an internal visual check.
Step 3.—Localize the trouble to the faulty parts, using meters, electrical prints, and maintenance publications.
Step 4.—Replace or repair the defective part; test the system's operation afterward.

Electrical Prints

Locating components and tracing circuits is generally easier when using electrical prints than working on the wiring itself. Tracing the mass of wiring, terminal strips, and obscured test points is virtually eliminated when using the prints. The components are grouped in the prints in a more orderly manner. There are several types of circuit diagrams. Those most commonly found in your OPs and MRCs are wiring diagrams.

These diagrams are especially helpful in understanding the operation of the equipment. They show the parts of the circuit and how they are connected. They do not show how the parts look or how they are constructed—the components are illustrated by symbols.

SYMBOLS.—There are several publications containing lists of symbols, and from past experience you can probably identify many of them. As a first class or chief you must enlarge your knowledge in this field, beyond the basics required for the third class.

For the most part symbols are standard, but there are variations. For all their variations, symbols are really simplified sketches of the devices they stand for. If you are reasonably familiar with the devices they represent, you should have little trouble identifying the symbols in the schematics. Unusual or special ones are explained on the drawing.

STRAIGHT LINING.—As there are tricks in all trades, there is one in circuit tracing. It is called "straight lining."
Wiring diagrams and schematics are often a complicated maze of many circuits, accomplishing many functions. You must acquire the ability to disregard all circuits that are unnecessary to the one you are attempting to trace. The resulting circuit, depicted on one drawing, will show only the circuits necessary for one particular function. This important feature of circuit tracing is called straight lining.

Faulty Switches

The preceding course, Gunner's Mate M (Missiles) 3&2, NAVTRA 10199, traced for you a typical power control circuit and a typical firing circuit, and showed you how interlocking worked in the circuits, and how parts of the circuit operated in a definite sequence. When you are tracing a circuit to locate a casualty, remember to include the interlocking switches that can prevent activation along any part of the circuit. If a faulty switch is found, it should be replaced or adjusted. Be absolutely certain that a switch is faulty before replacing it. It may only need adjustment to operate properly. If a switch is replaced, it must be adjusted within the equipment. Adjustment of interlock switches requires familiarity with the function of the switch contacts in the associated control circuits. Study the applicable schematic wiring diagrams. The complete control circuit is shown in the applicable elementary wiring diagrams for the system control.

Interlock switches must be checked periodically to be sure they are actuating and deactuating properly. Check them electrically to make sure that they are making and breaking as required. When an interlock switch malfunctions because of mechanical wear or damage, replace the entire switch. The Mk 10 Mod 7 Terrier launching system uses eight types of interlock switches: (1) sensitive switch assembly, used throughout the system in standard solenoid assemblies and in loader-control solenoid assemblies; and (8) triple switch-element assembly, used in the load status recorder.

The maintenance instructions for the different switches usually are included in the OP with the instructions for the component to which each is attached or which it activates. The MRCs give the most up-to-date routine maintenance instructions for each component. Pull the appropriate MRC card for each day's maintenance work.

AMPLIFIERS

Amplification of signals is necessary in the launching system and in the missiles, as well as in the fire control system. In electronics and electrical engineering, vacuum tube amplifiers, transistors, and magnetic amplifiers are widely used. There are many types and arrangements of these, but the purpose of all is to increase the magnitude of a quantity. Amplifiers associated with electric and electronic components are arranged to reproduce in their output circuits a voltage or current greater in magnitude than that applied to their input circuits. Electron tube amplifiers may be grounded-cathode, grounded-grid, or grounded-plate (cathode follower) type. There may be a chain of amplifiers, called cascade or multistage amplifier.

The conventional electron tube amplifier is the grounded-cathode type, which has the cathode at ground potential at the operating frequency, and the input applied between the control grid and ground, and the output load connected between plate and ground.

The grounded-grid amplifier is an electron-tube circuit in which the control grid is at ground potential at the operating frequency, and the input applied between the control grid and ground, and the output load connected between plate and ground. The grid-to-plate impedance of the tube is in parallel with the load instead of acting as a feedback path.

A grounded plate amplifier has a large negative feedback and is often used as an impedance matching device. The plate is at ground potential at the operating frequency, with input applied between grid and ground, and output load connected between plate and ground.
The magnetic amplifier is rapidly becoming an important device in electrical and electronic equipment. Amplifiers of this type have many features which are desirable in missile systems. The advantages include (1) high efficiency (90%); (2) reliability (long life, freedom from maintenance, reduction of spare parts inventory); (3) ruggedness (shock and vibration resistance, overload capability, freedom from the effects of moisture); (4) stability; and (5) no warmup time. The magnetic amplifier has no moving parts and can be hermetically sealed within a case similar to the conventional dry type transformer.

The magnetic amplifier has a few disadvantages. For example, it cannot handle low-level signals (except for special applications); it is not useful at high frequencies; it has a time delay associated with magnetic effects; and the output waveform is not an exact reproduction of the input waveform.

The term “amplification” in general refers to the process of increasing the amplitude of the voltage, current, or power. The term “amplification factor” is the ratio of the output to the input. The input is the signal that controls the amount of available power delivered to the output.

Until comparatively recent times, magnetic control has had little application in missile electronic equipment since existing units were slow in response and were of excessive size and weight. But with the development of new and improved magnetic materials, there has been a parallel development of magnetic circuits for tubeless amplification; and many of these units are now employed in automatic pilots, static a-c voltage regulators, and in associated test equipment.

Magnetic amplifiers are devices which control the degree of magnetization in the core of a coil to control the current and voltage at the load or output. One of the oldest forms of magnetic amplifiers, the SATURABLE REACTOR, contains at least two coils wound on a common core made of magnetic material. A d-c control voltage is applied to one of the coils; and the resulting current serves to modify the reactance of the second winding by causing magnetic saturation of the common core. The second coil is a series element in the a-c load circuit so that current variations take place in the load in accordance with those made in the control voltage. In more complex magnetic amplifiers, the input, or control signal, may be either d-c or a properly phased a-c voltage.

In addition to saturable reactors, there are numerous types of magnetic units in use, including voltage regulators, low- and high-frequency amplifiers, and servomotor controllers. The purpose of this discussion is to present the operating principles of these devices and to give representative examples of magnetic circuits employed in missile electrical equipment. To understand the theory of magnetic amplifiers, it is necessary that you understand the theory of magnetism and magnetic circuits. This information may be found in the Navy training course Basic Electricity, NAVTRA 10086. The basic principles of operation of magnetic amplifiers are also discussed in that text. The qual's require this knowledge at the B-4 level.

Magnetic amplifiers are not new; saturable-core control has been used as early as 1885. In the United States, saturable core devices have been used to control heavy electrical machinery since about 1900. Refinement and improvement have made magnetic amplifiers usable for more delicate and accurate controls. They are now used for gun and launcher servo systems; high-speed digital computers; and pulse-forming, memory, and scanning circuits in radio, radar, and sonar equipment. Development of reliable semiconductor rectifiers, magnetic-core material of high permeability, improved input and output devices, automatic means of winding toroidal cores, use of sealed, self-contained units, and new means of testing, matching, and grading have greatly expanded the use of magnetic amplifiers.

APPLICATIONS OF MAGNETIC AMPLIFIERS

The magnetic amplifier has found application in many different type circuits. These circuits may employ diodes, vacuum tubes, and transistors. Such circuits may be found in voltage regulators (d-c and i-c), servoamplifiers, and
audio amplifiers. The GMM will be mainly concerned with their application in servo systems and voltage regulators.

The application of magnetic amplifiers varies with the different launching systems. In the Mk 9 launching system, the EP8 and EP9 control panels house the amplifiers. They are located on the transfer cars, A side and B side. The transfer cars are operated by hydraulic power, but the amplifiers amplify the electrical signals that actuate the switches. The power panel is the voltage supply source for magnetic amplifiers in the system. There are magnetic amplifiers in the lift assembly and power drive unit, in the cell door and missile stop mechanism assembly, in the extractor assembly, subassemblies, and power drive. This transfer car is used to move a selected missile from its cell to the stage 1 rammer rail in a loading operation, or to move the missile to the checkout handling rail for a checkout or strikedown operation. In stow operation, the car will return the missile from the stage 1 rammer rail to a selected cell and it will also return a missile from the handling rail to a selected cell after completion of checkout or when arming the ship. In all these functions, magnetic amplifiers are used to amplify the signals. If the magnetic amplifier is out of adjustment, the transfer car movement will be slow or sluggish or it will hunt. You need the OP for the launching system for detailed steps in the adjustment of magnetic amplifiers.

APPLICATIONS IN SERVOMECHANISMS

One of the most frequent uses of magnetic amplifiers in electrical equipment is in servomechanism systems. In these applications, the magnetic units have the desirable features of long life, minimum need for servicing, and the ability to handle large amounts of power for energizing electric motors and other load actuating devices.

Motor Controller

Figure 5-11 shows a magnetic servocircuit which controls the voltages for both phases of a two-phase electric motor. The input signals for the magnetic amplifier are produced by a phase detector. These drive V1 and V2, which are connected as a cathode coupled paraphase amplifier working into two saturable reactors. Note that the magnetic amplifier is working with cathode tube amplifiers.

With zero input, both tubes (fig. 5-11) draw equal amounts of current in the plate circuits. These currents are insufficient to saturate the cores of the reactors; and therefore, the impedance of each load winding is very high and the resulting load currents of each load winding is very small. In this condition the circuit is a balanced bridge as indicated in part (B) of figure 5-11, and the motor does not rotate since in-phase voltages are applied to the motor windings.

When an input control signal is supplied from the phase detector, one of the tubes (depending upon the polarity and amplitude of the signal) goes into heavier conduction than the other. Under full conduction conditions, the reactor in one plate circuit then appears as a low impedance and the other reactor approaches the open-circuit condition. The bridge is then unbalanced; and capacitor C5 is effectively connected in series with one of the motor windings, where it causes a phase shift and the motor begins to rotate.
Assume, for example, that V1 (fig. 5-11) goes into heavy conduction and that V2 is at effective cut-off. The inductance of the secondary of T1 is then practically zero and motor winding W1 is connected across the a-c source. The inductance of the secondary of T2 is high so that the winding resembles an open circuit; and motor winding W2 is then connected across the a-c source through the phasing capacitor. The phase relations of the resulting currents cause the motor to rotate in a direction determined by which winding is connected in series with the capacitor. Upon reversal of the control signal, the conditions described also reverse: and W1 is placed in series with the capacitor so that the motor then turns in the opposite direction.

POWER SUPPLY REGULATOR

The equipment power supplies of missile systems must meet certain basic requirements which include ruggedness, long life, and freedom from excessive maintenance problems. To meet these requirements, the development of power supply equipment has resulted, in many cases, in the elimination of the electron tube as the chief cause of failure. The magnetic amplifier has been used to replace the complex arrangements usually necessary for good voltage regulations; and the solid-state power diode is often employed instead of the fragile vacuum tube. An example of a circuit with these components is shown in figure 5-12.

Magnetic Amplifier Control

The circuit is a conventional full-wave bridge rectifier utilizing a magnetic amplifier to control the output and also a Zener diode as a part of the regulating system. The Zener diode element is a solid-state equivalent of the gaseous regulator tube and maintains a constant voltage across the terminals regardless of variations of the current it conducts, within the specified operating range. In the schematic shown (fig. 5-12), the connection of the Zener diode is the reverse of that of an ordinary rectifying diode since in this example it is the inverse breakdown voltage characteristic which is employed for regulation.

Current flow (fig. 5-12) during one half cycle is through the load, choke L1, diode D3, the secondary of T1, and diode D1, then returning to ground through SR1 of the reactor. During the other half cycle, the current flows through the load, L1 SR2, D2, the secondary of T1, and D4 to ground. In addition to the load current, there is conduction through D5 and R3 and also through R2 and R1.

The control winding of the magnetic amplifier is energized by the voltage between the junction of R1 and R2 and the upper terminal of the Zener diode, D5. When the output voltage is of the proper value, the potential across the control winding (and therefore the current through it) sets the magnetic bias of the reactors at the operating point, which is well up on the magnetization curve to obtain a high percentage of the source voltage.

If the output voltage tends to rise, the voltage at point a remains constant due to the action of the Zener diode; but the voltage at point b increases. This causes a change in the current flowing in the control winding so that the bias point is shifted to a value that results in lower conduction in the load coils. As a result, the voltages across SR1 and SR2 are increased and the output voltage decreases.

When the output voltage tends to decrease, the potential at point b falls with respect to that at point a and the control current changes the bias to a point of higher conduction. This lowers the voltage drops across the a-c coils of the reactors and increases the value of the output. Capacitors C1 and C2, together with L1, are connected to form a pi-section filter which...
smooths the output to give a nearly pure d-c voltage. Resistor R2 is adjustable, being set to the value for optimum operating voltage in normal use. It also provides a means for making adjustments to compensate for any changes that occur in the circuit components.

A gas-filled regulator tube (VR-75) could be used in place of the Zener diode. The voltage regulation and operation would be the same, but a VR tube requires much higher power supply voltages.

ZENER DIODES.—If you looked in the index of any of the basic texts previously mentioned you would not find the word Zener listed. Zener effect and Zener diodes, however, are given some discussion in chapters 2 and 3 of Basic Electronics, NAVTRA 10087. Avalanche breakdown is sometimes called Zener effect, after the American physicist Clarence Zener, who made theoretical investigations of the problem of electrical breakdown of insulators. The breakdown mechanism in PN transistor junctions is not the same as in insulators but, in spite of this, the name Zener voltage is often given to breakdown voltage of junctions. The reverse voltage at which the current suddenly begins to make its sharp descent is called Zener breakdown voltage. The use of the word “breakdown” does not mean that the diode is destroyed, but rather that the normal negative reverse current increases suddenly and sharply. A typical Zener diode curve is shown in figure 5-13.

Zener diodes are used chiefly as regulation and reference elements. When a reverse voltage is applied, no current will be passed until there is a breakdown in the covalent bond of the atoms, causing a sharp increase in current flow in the reverse direction. If this happened in a regular PN junction diode, it would be considered defective, but Zener diodes are designed to be self-healing and can be used repeatedly without damage. The point of breakdown or avalanche is built into the diode and can be made to occur at various voltages. In figure 5-13, approximately 20 volts is applied.

PUSH-PULL.—A push-pull amplifier is a balanced amplifier. There are two identical signal branches connected so as to operate in phase opposition and with input and output connections each balanced to ground.

A paraphase amplifier is essentially a combination amplifier and phase inverter. It is sometimes used in place of transformers to operate push-pull circuits. Paraphase amplifiers are described in Basic Electronics, NAVTRA 10087.

Transistor Amplifiers

Transistor amplifiers may be used in place of electron tube amplifiers. A transistor amplifier must have three-element (two-junction) semiconductors, to amplify a signal, just as a three-element electron tube is needed for amplification. There are also three types of transistor amplifiers, according to which part is grounded: grounded emitter, grounded base, and grounded collector. The above text describes the theories and operating characteristics of vacuum tubes and of transistors. Transistors are designed to perform the same functions as vacuum tubes. As they are solid-state semiconductors, they are much less fragile than vacuum tubes. Of course, failure can be caused by misuse, such as current overloading, or application of too high a voltage. Faults in manufacturing, or flaws in the material can cause mechanical failure. Radiation affects them so they must be shield. Most failures are
caused by the effects of moisture on the surface. Hermetic sealing of the transistors by manufacturers is now the usual practice. Since transistors are so very small, a speck of dust falling across a junction can completely short-circuit it. A dust-free atmosphere is a practical necessity in a transistor-fabrication plant.

It is believed that transistors will far outlast vacuum tubes. At present no missile launching system has changed completely over to transistors, but one gun system has, so you can expect this change in the future. Magnetic amplifiers will continue to be used, alone and with transistors instead of vacuum tubes.

SERVOAMPLIFIER

The purpose of a servoamplifier is to control an output in a manner dictated by an input. Normally, the servosystem's signal input is at a low energy level and must be greatly increased to perform an appreciable amount of work. This is the job of the servoamplifier. The amplifier controls a large power source which is activated by a low-powered error signal. This is shown in figure 5-14A. Figure 5-14B shows a simple power control using a triode as the controlling element and a battery as the power reservoir.

There are just about as many different amplifiers as there are jobs for amplifiers to do. Each part of the amplifier is selected to do a particular part of the total job. You can't just look at a circuit and understand why everything is there. The best way to analyze an amplifier is to divide it into stages, coupling circuits, decoupling circuits, and biasing networks. In Basic Electronics, NAVTRA 10087 you studied each of these circuits—you know what they are supposed to do. Basic Electricity, NAVTRA 10086 tells you that servoamplifiers may be of the vacuum-tube type or the magnetic type, and combinations of these. Basic Electronics, has a chapter on the use of electron tubes for amplifying voltage and power, and another chapter on servosystems, including servoamplifiers.

Servoamplifiers can be broadly divided into functional stages. You have learned how the error signal is selected, and modulated or demodulated to suit the individual amplifier. The first stage or stages of amplification increase the voltage of the error signal. When the signal voltage is amplified a sufficient amount, it is used as the input to the power stage. Here the primary concern is current delivered at a steady voltage under load conditions. The push-pull type amplifier is extensively used in missile servosystems. A push-pull amplifier is preceded by a phase inverter or paraphase amplifier. The power stage may be one or more stages, depending on the power output needed.

In general, the higher the gain of the amplifier, the tighter the control and the more accurate the servosystem. An increase in the system gain will reduce the system velocity errors and increase the speed of response to inputs. An increase in system gain also reduces those steady-state errors resulting from restraining torques on the servo load. However, to obtain these advantages, the servosystem must pay a price in the form of a greater tendency toward instability. A linear servosystem is said to be stable if the response of the system to any discontinuous input does not exhibit sustained or growing oscillations. The highest gain that can be used is limited by consideration of stability.

Review of Use in Launching System

The preceding course, Gunner's Mate M (Missiles), 3&2, NAVTRA 10199, described and illustrated servosystems (with amplifiers) used to control error signals in launcher power drives. Amplifiers associated with ordnance actually do more than amplify. Some power drive amplifiers change the incoming a-c synchro signal to a d-c signal that can be used to control a servomotor. In amplifiers associated with ordnance equipment, the power supply normally is built into, and therefore is physically part of the amplifier. Many amplifiers in ordnance equipment have two rectifiers: one in the power supply to provide the required d-c voltages and the other to convert the a-c input signal to a d-c signal.

Examples of other amplifier functions include stabilizing, synchronizing, speed limiting, position limiting, and current limiting. Amplifiers associated with ordnance equipment are nearly always classed as power amplifiers. A voltage amplifying stage is used only if it is necessary to increase an input voltage. The number and type
of amplifier functions is determined to some extent by the type of output controlled by the amplifier.

Gain, Phase, and Balance Adjustments

In many servosystems the gain of the amplifier can be varied by an adjustment. The gain adjustment governs the amplitude or amount of the signal voltage applied to the amplifier or one of its stages. Normally, the highest gain possible, with the servosystem possessing a satisfactory degree of stability, is the most desirable.

In a-c servosystems another adjustment which can control the sensitivity of the system is the phase adjustment. The phase adjustment is used to shift the phase relationship between the signal voltage and a reference voltage. In an amplifier with phase shift control the grid signal is shifted in phase with reference to the plate voltage of a tube. The tube’s firing point is delayed or advanced, depending upon the phase shift of the grid signal. The phase shift can vary the firing time of the tube over the plate’s entire positive alternation.

A phase control is included in some servosystems using a-c motors. The two windings of the a-c servosystems using a-c motors. The two windings of the a-c servomotor should be energized by a-c voltages that are 90° apart. This phase adjustment is included in the system to compensate for any phase shift in the amplifier circuit. The adjustment may be located in the control amplifier, or, in the case of a split-phase motor, it may be in the uncontrolled winding.

Servosystems using push-pull amplifiers must be balanced so that when there is no signal input to the amplifier, its output will be zero, and the servomotor will stand still with no creep. The push-pull amplifier must ensure equal torque in both directions of the servomotor.

Gain, phase, and balance adjustments are often present in one amplifier. These adjustments tend to interact so that when one of them is changed, it may affect the others. Therefore, after making any one adjustment it is a good practice to check the other adjustments.

Magnetic Amplifiers Used as Servocontrol Amplifiers

A somewhat different type of servoamplifier used in launching equipment is the magnetic amplifier.

The servomotor used in conjunction with the magnetic amplifier shown in figure 5-15 is an a-c type. The uncontrolled phase may be connected in parallel with transformer T1 by utilizing a phase-shifting capacitor, or it may be connected to a different phase of a multiphase system. The controlled phase is energized by the magnetic amplifier, and its phase relationship is determined by the polarity of the d-c error voltage.

The magnetic amplifier consists of a transformer (T1) and two saturable reactors, each having three windings. Notice that the d-c bias current flows through a winding of each reactor and the windings are connected in series-aiding. This bias current is supplied by a d-c bias power source. The d-c error current also flows through
a winding in each reactor; however, these windings are connected in series-opposing.

The reactors, Z1 and Z2, are equally and partially saturated by the d-c bias current when no d-c error signal is applied. The reactance of Z1 and Z2 is now equal, resulting in points B and D being at equal potential. There is no current flow through the controlled-phase winding.

If an error signal is applied, causing the current to further saturate Z2, the reactance of its a-c winding is decreased. This current through Z1 will tend to cancel the effect of the d-c bias current and increase the reactance of its a-c winding. Within the operating limits of the circuit, the change in reactance is proportional to the amplitude of the error signal. Hence, point D is now effectively connected to point C, causing motor rotation. Reversing the polarity of the error signal will cause the direction of rotation to reverse.

The basic magnetic servoamplifier discussed above has a response delay equal to approximately 6 to 20 Hz. In some applications this delay would be excessive, creating too much error. However, this delay can be reduced to about one Hz. by using special push-pull circuits.

Polarized magnetic amplifiers can distinguish between control current polarities, but they can change only load current magnitude, not load current direction (polarity). Nearly all servo devices associated with ordnance equipment power devices require magnetic amplifiers with an output that varies in both polarity and magnitude. The push-pull (sometimes called bidirectional) magnetic amplifier meets those requirements. If control current is zero, load current also is zero. Likewise, if the control current increases in a positive direction, load current also increases in a positive direction.

Servoamplifiers in Launching Systems

The amplification of the train and elevation signals is an outstanding example of the use of servoamplifiers in launching systems. It was applied in the training and elevation of guns on gun mounts, and when missile launching systems were designed, the devices and methods were borrowed for this new application.

The small electrical input signals must be amplified into usable signals of sufficient magnitude to operate the electrohydraulic servovalves of the receiver-regulators. The amplification system is common to both power drives and consists of a dual channel magnetic amplifier, made up of four magnetic amplifier stages mounted on a common chassis, and a power supply. One channel of the amplifier services the train power drive and the other channel services the elevation power drive. In each channel, one magnetic amplifier stage is the primary system amplifier and the other is the velocity system servoamplifier.

The primary system servoamplifier receives position error voltage signal from the 1- and 36-speed synchro control transformers in the receiver-regulator. The amplifier also receives an unfiltered velocity signal from the rate generators in the remote, local, or dummy director. It mixes and amplifies these signals and uses the resultant output to operate the primary electrohydraulic servovalve. The input circuit of the primary amplifier limits the voltages to the magnetic amplifier stage control windings and provides automatic changeover from the 1-speed signal control to the 36-speed signal control when the launcher position error reduces to less than five degrees of correspondence with the order signal. It also receives an amplifier load supply voltage and a synchro offset voltage from the power supply. The train primary amplifier input circuit applies the offset voltage to the
output of the 1-speed synchro control transformer for stick-off purposes. The offset voltage is not applied to the elevation primary amplifier.

The velocity system servoamplifier receives a filtered velocity signal from the rate generators in the remote, local, or dummy director. The amplifier also receives an electrical feedback signal from the velocity and integration potentiometers of the receiver regulator. The velocity amplifier mixes and amplifies these signals and uses the resulting output to operate the velocity electrohydraulic servovalve. The input circuit of the velocity amplifier provides the gain control for the velocity input and voltage controls for the potentiometers; it mixes the velocity signal input with the potentiometer signals, and applies the resulting signal to the control windings of the magnetic amplifier stage.

The potentiometer voltage supply circuit provides a frequency-sensitive, regulated, and filtered voltage for the velocity and integration potentiometers of the receiver regulator. The regulated voltage supply prevents fluctuation of the integration and velocity system outputs and compensates for the varying line frequencies to stabilize the electric drive motor and B-end error of the power drive.

Repair, Replacement, or Adjustment

Unless specifically directed otherwise, defective amplifier units are removed as a unit and replaced. They may be returned to the vendor for repair. Only one adjustment is normally necessary on the power panel. VOLT ADJ should be set to give an output of 48.0 v at terminals 1 and 2 with all amplifier panels connected, and 115 v 400 hertz applied to the power panel inputs 28 and 29 (Mk 9 Mod 0 launching system).

Some adjustments made at the factory are not changed on shipboard. Hermetically sealed components are always replaced rather than repaired. Before replacing such a unit, double check all associated circuitry (resistors, wiring, etc.). When a defective component is replaced, adjust it and the channel in which it operates, following the instructions for your equipment.

All amplifier channel balance adjustments have been set at the factory. On installation, and weekly thereafter, the balance of both stages of amplification should be checked, using the meters installed in the amplifier panel.

Demodulators are balanced at the factory and no further adjustment should normally be necessary except on replacement, or in case the setting at balance adjustment is disturbed.

Rectifiers are very important components of magnetic amplifiers. Series rectifiers may be checked by the use of a cathode-ray oscilloscope. Whenever possible, the waveform across a rectifier suspected of being defective should be compared to waveforms observed across other rectifiers in the same circuit.

SYNCHROSYSTEMS

The preceding course, Gunner’s Mate M (Missiles) 3&2, NAVTRA 10199 described and illustrated uses of synchros and synchro data in missile launching systems, so we’ll just have a brief review.

Synchros are seldom used alone. They work in teams and when two or more synchros are interconnected to work together, they form a synchro system. Such a system may, depending on the types and arrangement of its components, be put to uses which vary from positioning a sensitive indicator to controlling the motors which move a launcher weighing many tons. If the synchro system provides a mechanical output which does the actual positioning, as in the case of the indicator, it is a torque system. If it provides an electrical output which is used only to control the power which does the mechanical work, it is a control system. Control synchros are usually part of a larger system called a servo (automatic control) system. In many cases, the same system is called upon to perform both torque and control functions.

The individual synchros which make up a torque system are designed to meet the demands placed on them by the mechanical load, which such a system is expected to handle. However, the comparatively small mechanical output of a torque synchro system is suitable only for very light loads. Even when not heavily loaded, a torque system is never entirely accurate. When larger amounts of torque, or a higher degree of accuracy, or both are required, torque synchro systems give way to control synchros used as
components of servosystems. Synchros control, and servos provide the torque. The distinguishing unit of any synchro control unit is the control transformer (CT).

Servosystems Using Synchros

A servo, servosystem, or a servomechanism (the three terms mean the same thing) is an automatic control device widely used in the Navy and distinguished by several special characteristics. There are many different types of servosystems, and not all of them use synchros. The purpose of servosystems in which control synchros are used is to supply larger amounts of power and a greater degree of accuracy than is possible with synchros alone. Another equally important characteristic of the servo is its ability to supply this power automatically, at the proper time, and to the degree regulated by the need at each particular moment. All that the system requires. To perform the specific task for which it is designed is an order defining the desired results. When such an order is received, the servo compares the desired results with the existing conditions, determines the requirements, and applies power accordingly, automatically correcting for any tendency toward error which may occur during the process. The result is always the same and that is the positioning of the launcher in accordance with input orders received from remote control stations.

To function in this manner a servosystem must meet five basic requirements:

1. It must be able to accept an input order defining the desired result, and translate this order into usable form.
2. It must feed back, from its output, data concerning the existing conditions over which it exercises control.
3. It must compare this data with the desired result expressed by the input order and generate an error signal proportional to any difference which this comparison shows.
4. It must, in response to such an error signal, issue the proper correcting order to change existing conditions to those required.
5. It must adequately carry out its own correcting order.

In functional terms the components normally found in a servosystem using synchros are identified as a data input device, a data output device, an amplifier, a power control device, a drive motor, and a feedback device.

Servo Terminology

In addition to those already mentioned, a number of specialized terms are used in connection with servosystems. The more common of these are defined here.

OPEN-CYCLE CONTROL of a servosystem means actuation of the servo solely by means of the input data, the feedback device being either removed or disabled. It should be clearly understood here that any mechanism must include a feedback provision to be classified as a servo; but in testing certain servo characteristics, an open-cycle control is often useful. Under such conditions the elements involved are frequently referred to as an open servoloop.

CLOSED-CYCLE CONTROL refers to normal actuation of the system by the difference between input and output data, with the feedback device operative.

CONTINUOUS CONTROL is used to describe uninterrupted operation of the servosystem on its load, regardless of the smallness of the error.

DEVIATION or error of a servo, is the difference between input and output.

ERROR SIGNAL or error voltage is the corrective signal developed in the system by a difference between input and output.

INSTRUMENT SERVOS and POWER SERVOS are designations used to classify servomechanisms according to their power output. An instrument servo is one rated at less than 100 watts maximum continuous output; a servo whose rating exceeds this amount is a power servo.

Classification of Servos by Use

A convenient classification of servosystems can be made in accordance with their use, the
most common of which are as position servos and velocity servos. The position servo is used to control the position of its load and is designed so that its output moves the load to the position indicated by the input. The velocity servo is used to move its load at a speed determined by the input to the system.

Many servosystems cannot be fitted into either category. For example, a third type of servo is used to control the acceleration rather than the velocity of its load. And special applications of the different types are used for calculating purposes, the servo making a desired computation from mechanical or electrical information and delivering the answer in the form of mechanical motion, an electrical signal, or both.

ZEROING SYNCHROS

If synchros are to work together properly in a system, it is essential that they be correctly connected and aligned in respect to each other and to the other devices, such as directors and launchers with which they are used. Needless to say, the best of ordnance equipment would be ineffective if the synchros in the data transmission circuits were misaligned electrically or mechanically. Since synchros are the heart of the transmission systems, it only stands to reason that they must be properly connected and aligned before any satisfactory firing can be expected.

Electrical zero is the reference point for alignment of all synchro units. The mechanical reference point for the units connected to the synchros depends upon the particular application of the synchro system. As a GMM on board ship, your primary concern with mechanical reference point will be the centerline of the ship for launcher train and the standard reference plane for launcher elevation. Remember that whatever the system, the electrical and mechanical reference points must be aligned with each other.

There are two ways in which this alignment can be accomplished. The most difficult way is to have two men, one at the transmitter and one at the receiver or control transformer, adjust the synchros while talking over sound powered telephones or some other communication device. The better way is to align all synchros to electrical zero. Units may be zeroed individually, and only one man is required to do this work. Another advantage of using electrical zero is that trouble in the system always shows up in the same way. For example, in a properly zeroed TX–RT system, a short circuit from S2 to S3 causes all receiver dials to stop at 60 degrees or 240 degrees.

In summary, zeroing a synchro means adjusting it mechanically so that it will work properly in a system in which all other synchros are zeroed. This mechanical adjustment is accomplished normally by physically turning the synchro rotor or stator. Synchro, Servo and Gyro Fundamentals, NAVTRA 10105, describes standard mounting hardware and gives simple methods for physically adjusting synchros to electrical zero. Additional information about synchros may also be obtained from Military Handbook MIL-HDBK-225(AS) Synchros Description and Operation (supersedes OP 1303).

Electrical Zero Conditions

For any given rotor position there is a definite set of stator voltages. One such rotor-position-stator-voltage condition can be established as an arbitrary reference point for all synchros which are electrically identical.

CONTROL TRANSFORMERS.—A synchro control transformer is zeroed if its rotor voltage is minimum when electrical zero voltages are applied to its stator. Turning the CT’s shaft slightly counterclockwise will produce a voltage between R1 and R2 which is in phase with the voltage between R1 and R2 of the synchro transmitters, CX or TX, supplying excitation to the CT stator. Electrical zero voltages, for stator only, are the same as for transmitters and receivers.

Zeroing Procedures

The procedure used for zeroing depends upon the facilities and tools available and how the synchros are connected in the system. Synchros may be zeroed by use of only a voltmeter synchro testers, or other synchros in the system.
When zeroing differentials and control transformers, it is helpful to have a source of 78 volts (10.2 volts for 26-volt units).

Regardless of the method used, there are two major steps in each zeroing procedure: first, the coarse (or approximate) setting, and second, the fine setting. Many units are marked in such a manner that the coarse setting may be approximated physically on standard units; an arrow is stamped on the frame and a line is marked on the shaft extension.

ZEROING A CONTROL TRANSFORMER USING AN A-C VOLTOMETER.—Using a voltmeter with a 0- to 250- and 0- to 5-volt scale, control transformers may be zeroed as follows:

1. Remove connections from control transformer and reconnect as shown in figure 5-16A.
2. Turn the rotor or stator to obtain minimum voltage reading.
3. Reconnect meter as shown in figure 5-16B, and adjust rotor or stator for minimum reading.
4. Clamp the control transformer in position and reconnect all leads for normal use.

Synchro testers of the type shown in figure 5-17 are used primarily for locating a defective synchro. They also provide a fairly accurate method of setting synchros on electrical zero.

To zero a synchro with the tester, connect the units as shown in figure 5-17 and turn the synchro until the tester dial reads 0 degrees. This is the approximate electrical zero position. Momentarily short S1 to S3 as shown. If either the synchro or tester dial moves, the synchro is not accurately zeroed, and should be shifted slightly until there is no movement when S1 and S3 are shorted.

NOTE: By exercising proper caution it is possible to perform all the preceding zeroing procedures using 115 volts where a source of 78 volts is not available. If 115 volts is applied instead of 78 volts, do not leave the synchro connected for more than 2 minutes or it will overheat and may be permanently damaged.

Summary

The described zeroing methods apply to all standard synchros and prestandard Navy synchros.

Before testing a new installation and before hunting trouble in an existing system, first be certain all units are zeroed. Also, be sure the device's mechanical position corresponding to electrical zero position is known before trying to zero the synchros. The mechanical reference position corresponding to electrical zero varies; therefore, it is suggested that the instruction books and other pertinent information be carefully read before attempting to zero a particular synchro system. The MRCs and the OP for the system should be studied, as there are likely to be some differences from the general instructions given in NAVTRA 10105. For example, OP 2665, volume 3, Guided Missile Launching System Mark 13 Mod 0, gives step-by-step instructions for replacement and adjustment procedures for train and elevation regulator CTs. If an operational check indicates that a synchro control transformer in the regulator is not operating properly, replace and adjust the synchro.
Chapter 5—ELECTRICITY AND ELECTRONICS

Note that you do not attempt to adjust the malfunctioning synchro; you remove that one and put in a new one, then adjust that. Two tests with a voltmeter are described for zeroing the synchro, and then the method of checking that the newly installed synchro is not 180 degrees out of phase. The power source used is 115-v, 400-hertz supplied from the launcher position generators to the S1 and S3 terminals through R1 and R2 terminals.

Figure 5-18 shows a train synchro gear assembly which points out the synchros and the dials. The elevation synchro gear assembly is very similar, but it has a sixth synchro which
supplies the coarse (2X) elevation error signals in a remote jettison operation. It is mounted on the bracket holding the indicating dials. All the synchros are held in position with capscrew held lugs, making alignment easier.

MAINTENANCE

Synchro units require careful handling at all times. NEVER force a synchro unit into place, NEVER drill holes in its frame, NEVER use pliers on the threaded shaft, and NEVER use force to mount a gear or dial on its shaft.

Two basic rules exist:

1. IF IT WORKS—LEAVE IT ALONE.
2. IF IT GOES BAD—REPLACE IT.

Synchros are no longer considered as repairable items. Replaced synchros should be disposed of in accordance with current instructions. Unless in an emergency with no replacement available, NEVER take a unit apart or try to lubricate it. The gearing (fig. 5-18) should be lubricated, using an atomizer, any time the cover of the receiver-regulator is removed, but do not lubricate switches, or the tachometer. Use the MRC for instructions.

TROUBLESHOOTING SYNCHRO SYSTEMS

Shipboard synchro troubleshooting is limited to determining whether the trouble is in the synchro or in the system connections; but if something is wrong with the unit, replace it. Generally, there are two major categories of troubles occurring in synchro systems. These are (1) those likely to occur in new installations, and (2) those likely to occur after the system has been in service a while.

All synchro casualties are not electrical, however, and do not require special equipment to uncover. One fairly common trouble affecting synchro operation is friction. Bearings must be especially clean, allowing the synchro rotor to turn freely. The slightest sticking will cause an error in route position, because there is little torque on the rotor when it is nearly in agreement with the incoming signal. Friction may also be caused by bent shafts and improper mounting of the synchro in the equipment. Early consideration should be given to the possibility of friction when troubleshooting faulty synchro operation. The synchros are not tested individually but are checked in the shipboard performance tests. If the test does not meet the standard requirements, then a search is made for the faulty component.

Adjustments

While adjustments are a vital part of maintenance, they are too numerous to be covered here. Instead, a word of caution: At the time of installation, your control equipment was adjusted by well qualified personnel using special tools and equipment. For this reason, adjustments should be undertaken only after qualified personnel have verified that an adjustment is necessary. A good habit to cultivate when making adjustments is to scribe gears at their original point of mesh, and count threads or teeth to the position of the new adjustment. These measures will prove most valuable when an adjustment is later found to be incorrect or unnecessary.

New Installations

In a newly installed system, the trouble probably is the result of improper zeroing or wrong connections. Make certain all units are zeroed correctly; then check the wiring. Do not trust the color coding of the wires. Best check them out with an ohmmeter. A major source of trouble is improper excitation. Remember, the entire system must be energized from the power source for proper operation.

Existing Installations

In systems which have been working, the most common trouble sources are:

Switches—shorts, opens, grounds, corrosion, wrong connections.

Nearby equipment—Water or oil leaking into synchro from other devices. If this is the trouble, correct it before installing a new synchro.
Terminal boards—Loose lugs, frayed wires, correction, and wrong connections.
Zeroing—Units improperly zeroed.
Wrong connections and improper zeroing in any system are usually the result of careless work or inadequate information. Do not rely on memory when removing or installing units. Refer to the applicable instruction book or standard plan. Tag unmarked leads or make a record of the connections. Someone else may need the information.

OSCILLOSCOPE, DUMMY DIRECTOR, AND DUAL TRACE RECORDER

The words oscilloscope and oscillograph are sometimes used interchangeably, but they do not represent the same equipment. An oscilloscope shows on a fluorescent screen the changes in a varying voltage. These changes show as wavy lines, and are not recorded. An oscillograph records the alternating-current wave forms or other electrical oscillations, using a pen (or pens) to mark the trace on graph paper. The trace can be studied and compared with previous traces on the same equipment, or traces on similar equipment as part of testing and troubleshooting procedures. Both forms of the instrument make use of cathode rays. The cathode ray oscilloscope was described in the preceding course, and its electrical-electronic operation explained.

OSCILLOGRAPHS

The use of Error Recorder Mk 12, or Mk 12 Mod 1, which is primarily an oscillograph, is described in chapter 10. It is used with the Asroc, Tartar, and Talos missile launchers; Mk 9
is used with Terrier systems in the missile plotting room to check the performance of the computer. Telemetric Data Recording Set AN/SKQ-1, located in the director control room, includes a direct reading oscillograph. A 20-pen Operations Recorder is located in the missile plotting room to record event signals from the two missile fire control systems. Operational faults in the missile system can be located by analysis of the tracings made by the error records.

Telemetric Data Receiving, Recording, and Scoring Set AN/SKQ-2 is used to receive and record telemetric signals from guided missiles in flight. It also can be used to provide 5-track oscillographic records of the missile preflight checkout.

Dummy Directors

The error recorder used by GMMs is used in connection with the dummy director, described in chapter 10.

The dummy director is a portable instrument designed to produce dynamic signals required to test launcher power drive performance. The Talos launching system uses two Mk I Mod 6 dummy directors, one for train and one for elevation tests. They are used in conjunction with the launcher test panel (EP3 panel of MLSC Mk 10 Mod 0). Other test equipment supplied with the Mk 7 Mod 1 launching system includes: (1) one frequency signal generator, (2) two limiter-And demodulator units, Model E, (3) a dual-channel oscillograph with chart paper, black ink, and spare pens, (4) a Triplett Model 630NA volt ohm-milliammeter or equivalent, with test leads, and (5) test instrumentation cabling. They are all used with the launcher test panel.

Missile Stimulator Section

Do not confuse the missile simulator (chapter 10) with the missile simulator section in the Guided Missile Test Set AN/DS'w-54(V), and later models. The missile simulator section provides simulated flight and guidance control signals to the missile, upon command of the program section. The following modules make up the missile stimulator: reference signal generator, integrator, FM generator, synchronizer, pulse delay, pulse signal generator, RF signal generator, function generator, and missile relay control. It is not used to test the launcher.

Dual Trace Recorder

Since the oscillograph has two channels, two different traces may be taken at the same time. This allows corresponding trace results to be compared to learn more about the launcher operation. Normally, three types of test traces are taken: B-end error traces, velocity traces, and position traces (fig. 5-19 A, B, C).

NOTE: Always calibrate the Brush oscillograph before recording any traces.

The voltages for the B-end error trace are obtained from the 36-speed synchro (in the receiver-regulator), geared to the B-end response. The synchro rotor is geared to rotate at 36-speed while the stator is electrically connected to the 36-speed synchro generator in the controlling test director. The rotor output voltage (a 400-hertz alternating voltage) indicates the error between the generating director and the B-end response shaft. The CT rotor output voltages are circuited through the control test panel to the limiter and demodulator unit and then to the oscillograph.

The B-end position trace voltages also are obtained from the 36-speed CT. Through the proper switching on the control test panel, the output voltage produced will indicate the B-end position, and not error. The position output voltage also goes through the limiter and demodulator unit, and is recorded by the oscillograph.

The B-end velocity trace voltages are obtained from the d-c tachometer generators located in the receiver-regulator. The tachometer generators are geared directly to the regulator B-end response input shafts and furnish a d-c voltage which is proportional to the B-end velocity. The tachometer output is circuited through test instrumentation to the oscillograph.

READING TEST TRACES.—Test traces are read like ordinary graph curves. They illustrate the error, position, or velocity of the launcher at the time the tests were made. Traces below the
Figure 5-19.—Oscillograph traces of launcher response: A. Sample error trace; B. Sample position trace; C. Sample velocity trace.
zero reference line are of the opposite phase from traces above the zero reference line. Be certain to check the following when reading test traces: (1) type of test being checked; (2) type of trace being used; (3) test conditions; (4) calibration on the left margin of the graph; and (5) the time allotted for each of the vertical graph divisions.

Use the calibration curve shown in figure 5-20 to determine the exact B-end positions when they are less than 5 degrees.

As the error and position trace voltages are generated by the 36-speed synchros, difficulty may arise in reading test traces if the error or position reading is greater than 2.5 degrees. The 36-speed synchro is geared to rotate 36 degrees for each 1-degree movement of the launcher. A launcher movement of 2.5 degrees therefore corresponds to 90 degrees rotation of the synchro. Since a synchro generates maximum output with a 90-degree rotor or stator displacement, the maximum trace indication occurs at an error or position displacement of 2.5 degrees. Error or position traces greater than 2.5 degrees require a special method of indication.

Since a complete revolution of a 36-speed synchro corresponds to 10 degrees of launcher movement, one complete cycle of a position or error trace corresponds to 10 degrees of launcher movement. For example, if the error or trace position consists of 6 1/2 cycles, the trace will measure 65 degrees of position or error (10 x 6.5).

CALIBRATION OF TRACE RECORDER.

The missile launching system control and its test panels may differ in switch arrangement, identification, and circuitry not only for different missile systems, but for different installations of the same missile system. You will need the elementary wiring diagrams to determine actual identification of switches and positions, and what each switch controls. Use only the special cables supplied for interconnections of test instruments and the test panels of the missile launching system control.

The oscillograph is calibrated during launcher testing procedures; and the before any launcher shipboard tests are made, the following general checkoffs must be performed.

1. Check the oil level at the main supply tank.
2. Check the oil level and all gear housings associated with the train and elevation power drives.
3. Lubricate the launcher components properly.
4. Charge the launcher accumulators properly.
5. Vent all hydraulic units properly.
6. Check the train warning bell operation.
7. Train the launcher through its maximum limits to verify free and unobstructed launcher train movements.
8. Elevate and depress the launcher guide arms to their maximum limits of travel to verify free and unrestricted guide arm movements.

On systems that have train and elevation air motors, those are used for items 7 and 8. Power drives are not activated for these checks.

CAUTION: Do not move the guide arms or start power drives unless it is known that the firing cutout mechanism is adjusted properly. Failure to do so may result in extensive damage to the firing cutout mechanism.

9. Load the launcher rails with standard inert missiles or equivalent unless specified otherwise for the individual test being performed.
10. Check general condition of test instrumentation and service as required. Use black ink in the oscillograph so that test traces can be reproduced clearly.

After all these preliminary checks are made, activate the launcher by switching on the EPI power panel, and start the train and elevation motors. The BP2 panel should be switched to STEP control, and control switched to the EP3 panel. The test cables are connected to the EP3 panel. Allow the train and elevation power drives to operate at least 30 minutes before making test traces.

Two different methods of calibration are used. Error and position traces are calibrated by one method and velocity traces are calibrated by a second method.

The error trace uses three possible calibration scales: a 10-minute full-scale calibration, a
20-minute full-scale calibration, and a 2.5-degree full-scale calibration.

The position trace is normally calibrated with only one scale, a 2.5-degree full-scale calibration.

The velocity trace uses one calibration scale for elevation and train tests. The train velocity trace is calibrated with a forty-degree-per-second full-scale calibration.

Allow the test equipment at least 10 minutes to warm up before attempting any calibration procedures. (Varies with different systems; check your OP and the MRC.)

Obtain the instructions for calibrating the oscillograph (error recorder) used with your missile launching system and proceed with the calibration. After you have completed the calibration of the oscillograph, it is ready to be used in testing the accuracy of the launcher. With the Talos system, these tests are numbered consecutively through test No. 51B. They are described in OP 3590 Guided Missile Launcher Mark 7 Mod 1, Description, Operation, and Maintenance. There are many similarities between the train and elevation tests, but each power drive must be tested separately. For example:

Elevation (Train) Accuracy Test

Test 1. Simple harmonic motion test.
Test 2. Static test.
Test 3. Five-degree-per-second constant velocity test.
Test 4. Ten-degree-per-second constant velocity test.
Test 5. Fifteen-degree-per-second constant velocity test.
Test 6. Elevation (train) velocity and acceleration test.
Tests 6A and 6B. Launcher elevation (train) synchronized indicator tests.

The train power drive requires an additional test in this series—25-degrees-per-second constant velocity test.

Other tests in this group of fifty-one are elevation (train) synchronizing tests, fixed displacement; elevation (train) harmonic motion synchronizing tests; elevation (train) synchro power failure tests; elevation (train) main power failure tests; elevation (train) return to load tests; and elevation (train) frequency response tests.

The error recorder is used to make traces in each of the tests, the maximum operating errors are calculated, and the traces are compared with typical traces. Copies of typical traces are included in the OP or OD. The traces made at installation of the launching system on the ship are kept aboard for comparison.

Elevation accuracy tests on shipboard include a simple harmonic motion test, a static operation test, and constant velocity tests. The same types of tests are made for train accuracy. Constant velocity and synchronizing tests are performed at different speeds and at different angles of train and elevation, each performed according to specific instructions in the OP.

These tests are performed annually unless circumstances require otherwise. A suspected malfunction may require certain tests to be performed more frequently. Operational tests may be needed to determine if the launcher follows order signals accurately, or to check some other function of the launcher. All the men who perform the test must be familiar with the equipment and the procedure. Although you follow the steps according to a checkoff list, studying the procedure beforehand will do much for a smooth operation. If you are the leading petty officer, you will check the work of the other men.

The launcher test equipment is stowed in the shipboard instrument storage cabinet when not in use.

SIMILARITIES AND DIFFERENCES

The principles explained in Basic Electricity, NAVTRA 10086 and Basic Electronics, NAVTRA 10087 apply to all the missile systems. The details of application of these principles in the different weapon systems must be left to the OPs and ODs for each system. If you have acquired a firm knowledge of the basic principles, you can understand the use of them in the system in your ship. If you are not so sure of your knowledge in some areas, make a careful re-study of any part you do not understand. Other petty officers can help you. The complicated network of electrical and electronic parts in a weapons system cannot be kept in
working order if you do not understand how it works. It is too sophisticated a system to main-
tain by guesswork.

SUMMARY

This chapter points out the uses of different electric and electronic devices in launching sys-
tems. It tells how they function and how you are to test them. The basic principles of servos, amplifiers, and synchros are applied to specific functions in the launching system.

Some of the newer electronic items that have been placed in launching systems were intro-
duced. As more use is made of transistors, printed circuits, and miniaturized units, you need to apply the knowledge of the principles to the particular uses. You will also need to develop skill in maintenance of these items.

While safety needs to be emphasized every day, and caution can never be relaxed around electrical equipment, the applicable safety reg-
lusions are placed in chapter 12.
INTRODUCTION

In the process of passing from striker to GMM 3 and then to GMM 2, you have learned the theory of hydraulics as applied to missile launching systems. You have learned how to operate the hydraulically powered handling equipment and missile launching machinery, and how to drain and refill the hydraulic systems. You know how to look for leaks, check pressure, check fluid level, charge accumulators, and disassemble, inspect, clean, and lubricate hydraulic equipment.

Every missile launching system in current use is operated in part by hydraulic power. The network of piping required to carry the oil, and the valves to direct, restrict, relieve, or shut off the flow afford numerous places for trouble to develop. Constant inspection and maintenance are necessary to keep the systems operating smoothly. You know from experience that the trouble spot is sometimes hard to locate. To advance to GMM 1 or GMMC, you need to become more expert in troubleshooting hydraulic systems and learn to test, adjust, repair, and overhaul them. Overhaul of the whole system is done at shipyards.

Hydraulic power drives have been used in the Navy for many years to train and elevate guns and when launchers were needed for rockets and missiles, power drives were adapted for them. The principal advantage of hydraulic power drives is their ability to move large loads smoothly and quickly. A disadvantage is the need for constant maintenance. Strict adherence to the instructions in the maintenance publications and the Maintenance Requirement Cards (MRCs) will help the equipment to retain its design characteristics of power, speed, and control, and will help to eliminate extensive repairs and costly replacement. Correct casualty analysis can be made only by someone with a thorough knowledge of how the equipment operates. When trouble develops, reach first for the OP—not for your wrench.

Hydraulic systems can actuate mechanisms almost instantaneously, with almost 100 percent efficiency; but leakage or foreign matter can make the whole system inoperative. Daily checks on leakage, and constant vigilance against entrance of foreign matter, are very important parts of hydraulic system maintenance.

You have learned many of the basic types of repairs, such as replacing pipes and pipe sections, fittings, gaskets, and valves; cleaning or replacing filters; venting the system of air; and replacing broken or defective mechanical parts. Now you need to learn how to adjust all parts of the hydraulic system, and to overhaul and repair any part. To qualify for GMM C you must be able to plan and supervise the repair and maintenance program. Since many parts of a launching system are operated by hydraulic power, many components are involved. There is not just one power drive unit to be maintained, but several, each with attached electrical, electronic, mechanical, and/or pneumatic components. You have to interpret the application of basic hydraulic principles in each system.

This chapter will expand on the information given in the preceding text, Gunner's Mate M (Missiles) 3 & 2, NAVTRA 10199 and will give information on the more technical aspects of maintenance and alignment. The safety factors will be mentioned briefly in connection with the work, but a more complete treatment will be
given in chapter 12. Emphasis will be given to your responsibility in planning, implementing, and supervising maintenance and repair work, in inspection of work done by others, and testing before and after work is done on equipment. Alignment of components of a launching system is a precise operation that requires both knowledge and skill. The information in this chapter will tie in with that of the preceding chapter.

HYDRAULIC POWER IN MISSILE SYSTEMS

Hydraulic power drives are used in missile systems to load and unload missiles from a magazine stowage area to the launcher guide arm, to position missile launchers in train and elevation for firing, to load and off load missiles from ship to ship or from ship to shore, and in some systems to jettison unwanted missiles. Hydraulics are also used in the missile themselves to control the missile flight attitude through movement of missile control surfaces (wings). This chapter will explain hydraulics in launching systems so we'll not discuss hydraulics in missiles. How hydraulic systems control the missiles flight path is explained in GMM 3&2, NT 10199.

HANDLING EQUIPMENT

The use of handling equipment in loading, strikedown, strikeup, and offloading was described in chapter 2, but little was said about the source of power for the equipments used. Figure 2-17 showed handlift trucks used to move the Asroc missile in its container. Two trucks are required. The Mk 41 has a hydraulically operated lifting arm, located at the front of the truck, to raise or lower the container. Closing the pressure-release valve and operating the hydraulic pump handle raises the lifting arm. It is lowered by opening the pressure-release valve. The Mk 42 uses a screw jack, operated by a ratchet wrench, to raise or lower the lifting arm. The Mk 41 handlift trucks are being replaced by the Mk 42.

Transfer dollies of different mods, but similar in construction and operation are used for transferring missiles. The framework and shock absorbers protect the missile against accidental impact, and the hydraulic or hydraulomechanical brakes make control positive. They are called "dead-man" brakes. Some dollies are designed for use with a particular missile, and others, such as Weapon Component Transfer Dolly Mk 6 Mod 0, are adaptable to several types (Terrier missile, Terrier booster, or Tartar, in this instance). This type of transfer dolly is used for transfer at sea, and to move the missile about on deck.

Other hydraulically operated handling equipment includes ready service cranes, transfer cranes, and hydraulic booms. The strikedown elevator and hatch in the Mk 10 launching system are hydraulically operated by the loader accumulator power drive. The ship's elevators also are operated by electrohydraulic power. Hydraulic fluid provides the "muscle" for much of the moving machinery aboard ship. The electrical system activates and controls the hydraulic system.

HYDRAULICS IN THE FEEDER SYSTEM

The feeder system of a typical missile launching system includes the magazine, loader (rammer), assembler, and strikedown equipment. Tartar missiles do not require assembly areas, and have no strikedown area for checkout or repair. Otherwise, we can consider Mk 10 (Terrier) as a typical launching system. What components are operated by hydraulic power?

The loader accumulator power units are located in the strikedown and checkout area and supply hydraulic power to:

1. Spanning rails and blast doors.
2. Retractable rails.
3. Floating rails on tracks.
4. Loader positioner.

Magazine Accumulator Power System

Each magazine accumulator power system has four accumulators, and supplies hydraulic fluid for operating:

1. Ready service drive motor.
2. Tray-shift mechanism.
3. Magazine hoist.
4. Magazine doors.

The ready service ring may be rotated in either direction by the hydraulic motor. The
GUNNER'S MATE M 1 & C

tray-shift mechanism, used to transfer a missile either from the ready service ring to the hoist, or the reverse, is moved by extending a hydraulically operated piston rod. The magazine doors are hydraulically opened upward, and may be locked open or closed by means of latches which are operated hydraulically. The hoist has a hydraulic drive unit with upper drive transmission, lower drive transmission, and drive shafts. The accumulator power supply system consists of an electric motor, piston pump, supply tank, header tank, control-valve block, and four accumulators.

The location of each of the power units varies somewhat with the mark and mod of the system, and the ships on which they are installed. The Mk 10 Mod 7 system is installed forward on the 01 level of DLG-26 class ships and it has three ready service rings instead of the usual two. Mods 3 and 4 are installed aft and athwartship from each other on CVA-63 class ships, which imposes a different placement of the ready service rings (and their power units).

It is not so much the location of the different units that you need to memorize, as the action and interaction of the different components in the system.

Magazines with two sides, A and B, which include all Talos and Terrier, have two magazine accumulator systems, one for each side, to supply power to the magazine components. Figure 6-1 shows the location of components in the Mk 10 Mod 7 system. The accumulator flasks, one of which is shown with the internal bladder and the poppet valve, are charged with nitrogen through nitrogen valves. The pressure required varies with the temperature; refer to the data chart on the charging valve block when checking the pressure. This is one of the daily maintenance procedures; use the MRC cards if you have them aboard, and if not, use OP 2351, vol. 1. Be sure you have the latest revision.

Checking the fluid level in the header tank is another daily maintenance job. The system must be shut down before you do this. Most header tanks have a sight gauge through which you can see the fluid level. Use the MRC (or the OP) for step-by-step instructions.

The electric motor to operate the pump (inside the supply tank) is coupled to the pump, through a mounting flange. The pump draws the hydraulic fluid through the intake screen and discharges the fluid under pressure to the valve block. From the valve block, the pressurized fluid is passed through the filter elements and the filter bypass valve to the unloading and starting valves. If the filters are clogged and the fluid must pass through the filter bypass valve, a light on the EP-2 panel comes on, showing that the filters must be replaced. In an emergency it is possible to continue operating the power drive when the filters are clogged, but in practice sessions you would stop the operation and replace the filters. For practice in servicing filters (fig. 6-3), remove the 12 filter elements from the multielement filter assembly, inspect the elements, replace them, and reassemble the unit. Follow the MRC instructions (or the OP). This assembly filters the pressure fluid passing from
Figure 6-1.—Guided Missile Magazine, Mk 10 Mod 7 launching system; location of magazine accumulator components.
the adapter block to the accumulator flask assembly. It is mounted on the side of the supply tank.

The pressure fluid passes around the unloading valve, which is operated by the control valve, and goes on to the starting valve. The check valve allows the fluid to go in only one direction. The control valve maintains the pressure between the set limits (for example, 1300 to 1500 psi), by control of the unloading valve, opening or closing it as needed to keep the pressure within limits. Excess pressure fluid is ported to the tank. Pressurized fluid passes through the check valve into the accumulator flasks, where
some is stored to maintain a steady pressure in the system.

The connection of the handpump to the system is also shown in figure 6-2.

TRAY SHIFT MECHANISM. The tray shift mechanism is located at the top of the ready service ring truss at station 1, the transfer station. Its operating power comes from the magazine accumulator power system. The saddles on the tray, which hold the missile, also are operated by hydraulic power from the same source. On Mk 10 Mods 7 and 8 systems, there is an inter-ring transfer system to transfer missiles from one ready service ring to another. Hydraulic power is received from the magazine accumulator power system via piping, controlled by selector valves, solenoid valves, check valves, pilot valves, and interlock valves, actuated by electrical signals. Figure 6-4 shows the valve block for the tray shift mechanism at station 1 (the transfer station). The operating cylinder with its piston and orifice rod does the actual positioning of the tray.

The detented solenoid LHDA1 (fig. 6-4) is attached to the side of the valve block. There are two switches, but only one is shown (SIDA2). Tray shift latch-operating valves UVDA5 and UVDA4 actuate the switches. Selector valves UVDA6 and UVDA7 can port the hydraulic fluid in either direction, depending on where the fluid enters. Solenoid valve UVDA2 controls the direction of fluid flow to pilot valve UVDA3, and connects by a plunger rod to LHDA1. The pilot valve controls the direction of operation of the latch-operating valves. UVDA9 and UVDA10 are simple plunger check valves that permit leakage to return to the tank. UVDA1 is
an interlock valve that prevents movement until the required conditions are met.

HOIST MECHANISMS.—The location of the hoist mechanisms was pointed out in figure 6-1. These, too, operate on hydraulic power from the magazine accumulator power system. The function of the hoist mechanism is to raise missiles from the ready service ring to the loader, or to return them during unloading. Figure 6-5 shows the mechanisms of the A-side hoist. The telescoping columns that raise or lower the missile are driven by chains and gearing. The hydraulic motor (B-end) drives the gearing. The upper drive is a gearbox driven by the intermediate drive shaft from the lower drive. The hoist heads contact the shoes (forward or aft) that support the missile round in the tray. The probe on the aft hoist head aligns the head with the loader trunk in the hoist-raised position. The head of the aft shoe hoist is more elaborate than the forward one.

The hydraulic control valve block is mounted on the wall of the lower transmission housing, and two detented solenoids are mounted on top of the valve block (fig. 6-5). It contains a metering valve to regulate the flow of oil, an orifice valve to control speed of the B-end by size of the orifice, a pressure-off valve to shunt pressure to the power-off brake, a selector valve to control direction of the B-end movement, a sequence selector valve to pull the appropriate latch in the hoist drive assembly, an interlock valve to prevent movement before all conditions are ready,
and two solenoid valves to control the flow of fluid to the sequence selector valve. The power-off brake is used during maintenance or installation or if the pressure falls below 900 psi (normal, 1500 psi).

MAGAZINE DOORS.—The location of the magazine doors in relation to the ready service.

Figure 6-5.—Hoist mechanism for “A” side, Mk 10 Mod 7 launching system.
rings was shown in figure 6-1. The safety latch assembly, which resembles a giant zipper, may be seen in figure 6-6. At the right-hand end, the safety latch actuating piston is shown, and below the door drive bracket assembly. The door drive bracket assembly includes all the components for operating the magazine doors: the switch, the door operating piston assembly, the latch control valve, the door-open and the door-closed latch, and the solenoid valve. There is a door-closed latch at each end of the doors. Electrical and hydraulic interlocks assure that the blast doors are closed and the hoist is down and latched before the doors can be opened, and that the hoist is down and latched before the doors can be closed. The hydraulic operation is through the piston assembly. It contains a directional valve and a metering valve in addition to the piston. The solenoid valve block assembly is attached to the piston block assembly. The latch control valve block is fastened behind the piston guide. The door-open latch valve block is fastened to one of the webs of the door drive bracket. The hydraulic fluid to operate these valves and pistons comes from the magazine accumulator power system.

The opening and closing of doors may seem like a minor item, but it is very important. The magazine doors are flametight and watertight. They must never be open when the blast doors are open. All the parts, valves, switches, pistons, etc., must act in sequence. Failure of any part can disrupt the whole series of actions. If that happens, you need to get out the hydraulic schematics and the electrical drawings and trace the cause of the failure. It might be a clogged valve or a broken switch, or the pressure in the magazine accumulator might be too low. You would shut down the magazine accumulator system while locating the trouble.

Figure 6-6.—Magazine door assembly.
Chapter 6—HYDRAULICS IN MISSILE LAUNCHING SYSTEMS

Loader Components

The loader, figure 6-7, consists of similar A-side and B-side assemblies that engage, support, and move missiles between the assembly area and the launcher, or between the assembly area and the strikedown/checkout area. Major components of the loader are the loader trunk, the tilting rail (in the Mod 5 system), the blast doors and spanning rail, the loader chain and pawl, the loader power drive. The loader has a loader horn that sounds when the system is in the unload launcher mode to warn personnel of impending movement of the missile back to the assembly area.

LOADER POWER DRIVES.—There are two accumulator-type power drives, one for the A-side and one for the B-side. Each power drive includes a tank to hold the hydraulic fluid, a motor-driven pump to develop hydraulic pressure, a series of valves to regulate system pressure, and two accumulator flasks to store energy, absorb hydraulic shocks, and prevent excessive pressure fluctuations. These components operate in the same manner as the magazine accumulator power system.

The accumulator power drive furnishes hydraulic power to operate the spanning rail, the blast door latches, the retractable rails, the floating track piston assemblies, the loader pawl positioner, the interlock valve block, the tilting rail, and the NAVSHIPS strikedown checkout gear.

A second power system, a combined A-end, B-end (CAB) power unit, is located near the aft end of the loader trunk. It develops hydraulic pressure and transforms it into rotary mechanical motion to drive the loader chain.

The CAB power drive also has a power-off brake assembly. This is used to halt moving equipment, to secure driven equipment against roll and pitch when the equipment is inactive, to halt and secure equipment if there is a power failure, and to provide a means of manual operation (by handcrank) for maintenance procedures, installation, or emergency operation. A small auxiliary gear pump, driven by the same electric motor that drives the A-end, supplies the necessary hydraulic pressure for the control mechanism that controls the A-end tilt plate, and therefore the speed and direction of rotation of the B-end. The auxiliary gear pump produces 400 to 500 psi servopressure to operate the control components of the CAB units, and delivers 100 psi (supercharge pressure) from another set of gears to replenish fluid losses from slippage and leakage.

LOADER TRUNK.—The loader trunk is made up of sections that are mounted to the overhead bulkhead. The number of sections varies with the mod of the system. The Mk 10 Mod 0 Terrier launching system has eight sections; Mods 5 and 7 have six loader trunk sections and tilting rail; Mod 8 has 12 sections. There are some differences in the trunk sections of different mods, but they are sometimes interchanged by making slight modifications. Figure 6-8 shows a trunk section made for the Mk 8 Mod 11 loader.

A number of the hydraulically operated components of the loader are mounted in the loader trunk sections. Only the control panels, the power drives, and the tilting rail control are not mounted in the loader trunk assembly. The cross-section view in figure 6-7 shows the channels or tracks in which the forward and after shoes and the chain can slide.

TILTING RAIL.—In mods that have a tilting rail, many of the moving or movable components of the loader are attached to or move in the tilting rail. Figure 6-9 shows the location of the important components on the tilting rail and the operating piston. The tilting rail takes the place of about four and half loader trunk sections in the assembly area. The trunnion supports are mounted in the ship's overhead over the magazine doors. The tilting rail receives the missile round from the hoist, moves it to the assembly area for wing and fin assembly, then tilts to the angle necessary to match the launcher load angle. The operating piston (fig. 6-9) is the unit that elevates or lowers it. Hydraulic power is obtained from the CAB power unit, which is connected at the power drive input. A hydraulic transfer pin (inside the trunnion) distributes the hydraulic fluid to the floating track piston assemblies, the positioner piston and interlock valve block, and the rail-loaded indicator assemblies, through the adapter block mounted on the trunnion (fig. 6-9) neatly.
Figure 6-7.—General arrangement of loader Mk 5 system.
buckles and folds the links of the chain to prepare the chain for stowage. Mods 1 and 13 of the Mk 8 loader do not have a chain stacker. The chain links are different in the different mods, and there are differences in the chain sprocket gear reduction and chain track housing. You need the OP for your launching system to study the operational details.

FLOATING TRACKS.—The location of the floating tracks may be seen in figures 6-7 and 6-9. In mods that do not have a tilting rail, the floating tracks are attached to the loader trunk in the same positions. The aft floating track assembly catches the aft booster shoe in its slide track, and the forward floating track assembly does the same for the forward booster shoe. They are piston operated by hydraulic fluid from the blast door power unit. The loader positioner moves the loading pawl forward about three inches, enough to slide the booster shoes out of the hoist head and into the floating track rails. The floating tracks hydraulically align the booster shoes with the track grooves of the fixed loader rail.

RETRACTABLE RAILS.—The retractable rails are used to allow the booster shoes to engage or disengage from the loader rail. They are used during strikedown and checkout (or strikeup) operations, when the rounds are raised or lowered from the loader rail.

When the retractable rail segments are open, they align with the tracks of the fixed loader rail to make a continuous track. The hydraulic controls for the retractable rails are mounted in the loader trunk. An interlock switch prevents operation of the loader when the rails are open. The valves are typical solenoid, pilot, directional, interlock, latch (open and close), and check valves. An operating piston and linkages transfer the movement to the movable parts of the rails.
SPANNING RAILS AND BLAST DOORS.—When extended, the spanning rails bridge the gap between the loader rail and the guide arm rail. The spanning rail is attached at one end to the loader rail and at the other to the blast doors. The power piston that operates the spanning rail and the blast doors is mounted in the loader trunk and the hydraulic fluid is supplied by the loader accumulator. The spanning rail opens the doors as it extends, and closes them as it retracts. The spanning rail and blast doors function automatically during automatic control in...
load or unload cycles, but they can also be operated in step control. The blast doors are closed except during the brief time while a missile is passing through, either on its way to the launcher, or returning for unloading. Interlocks keep the doors closed at all other times.

In the Talos launching system, rails attached to the magazine doors are called spanner rails. They allow the hoist to travel to or from the loader. They form an extension of the magazine hoist rails. The rails that bridge the gap between the loader rail and the launcher guide arm rails are called the span track.

In the Tartar launching systems, the rails attached to the blast doors are called spanning rails. Tartar launching systems do not have a loader system like Terrier and Talos launching systems. Missiles are carried from the magazine to the launcher guide arm by a rammer type roller chain hoist. In the Mk 11 system it is stowed in the launcher guide arm.

HYDRAULICALLY OPERATED LAUNCHER COMPONENTS

Although launchers contain parts that are not operated hydraulically, the interconnection with hydraulic power makes it impossible to consider them apart. All missile launching systems have a fixed stand—a steel weldment on the deck, which mounts the carriage. The carriage is rotatable horizontally, to position the launcher in train. Most of the launcher components are mounted in or on the carriage. It supports the trunnion tube which holds the guides (or guide).

Guide and Guide Arms

After a missile has been brought from the magazine by the hoist, and wings and fins have been assembled to it (Terrier and Talos missiles), it is placed on the launcher; to be more exact, on the launcher guide arm. Terrier and Talos launchers have two guide arms, as does the Tartar launcher in the Mk 11 system, but the Mk 13 and Mk 22 Tartar launching systems have only one guide on the launcher. The guide arm supports the missile during the last stage of weapon handling, arming the weapon and holding it until it is launched. It contains arming devices, aft shoe latch, launcher contactor, forward restraining latch, and firing contacts. The arming device arms the missile booster by extending and winding the arming tool by means of hydraulically operated pistons.

The aft shoe latch mechanism has a piston-operated latch and associated linkage. When the missile is positioned on the guide arm (by the loader), the latch is hydraulically extended against the aft booster shoe to keep the missile from moving to the rear. The aft shoe latch (fig. 6-10) may be called a positioner, a positioner spade, an aft lug latch, aft motion latch, or reverse motion latch. In some launchers the aft shoe latch is locked by a detent that is hydraulically interlocked to prevent accidental retraction of the latch due to ship’s motion and guide arm movements.

The forward restraining latch prevents forward movement of the missile, which might otherwise be caused by launcher depression or by ship’s motion. It also holds the fired missile on the launcher until the booster has developed enough thrust to overcome the force of gravity plus the force of the adjustable spring that is part of the restraining mechanism.

The launcher contactor is hydraulically extended to apply warmup power to the missile before it is fired. On the Tartar systems, the contactor extends from the rear of the launcher into the stern of the missile.

Two booster firing contacts and two ground contacts are located in the forward section of the guide arm, one of each on each side of the arming device. They provide a double firing circuit for the booster.

The hydraulic power to move the components in the guidé arm is provided by the guide arm accumulator power drive, located in the trunnion support or carriage (fig. 6-11). It supplies hydraulic fluid for both the A and B guide arm components.

Carriage-Mounted Hydraulic Parts

The parts described in the paragraphs under this heading apply specifically to the Terrier carriage mounting, but other systems employ similar ones. The location and some details may differ.
HYDRAULIC BREAKS.—The elevation brake is located on the reduction-gear housing, which is mounted to the upper center of the carriage below the trunnion tube. The train brake is mounted to the bottom of the carriage. Train and elevation brakes are hydraulically operated, spring-loaded, friction-disc type. During power-off conditions they remain set, preventing movement of the launcher.

TRAIN AND ELEVATION LATCHES.—The elevation latch is a hydraulically operated steel pin, located below the reduction-gear housing. When the latch is extended, it secures the launcher in the “Load” position. The train latch is mounted to the bottom of the carriage. It functions in the same way as the elevation latch.

The elevation latch-control valve block houses the solenoids and valves which control the elevation latch. It is located below the reduction gear housing. A hand pump, mounted to the left side of the carriage, provides a means of operating the guide arms and the components of the train and elevation latches during maintenance operations or during power failure.

REDUCTION GEAR ASSEMBLY.—The train reduction-gear assembly is located within a housing mounted to the bottom of the carriage. The gears transmit the output of the hydraulic motor, at the required speed, to the pinion gear. The elevation reduction-gear assembly, enclosed in a housing, is mounted to the upper center of the carriage, below the trunnion tube. The elevation pinion gear is meshed with the elevation arc gear and is driven by the reduction-gear assembly. The train drive pinion meshes with the training circle and causes the launcher carriage to rotate in train. The elevation drive pinion causes the elevation arc to rotate the trunnion tube which causes the guide arms to elevate or depress.
Chapter 6—HYDRAULICS IN MISSILE LAUNCHING SYSTEMS

Figure 6-11,—Guided Missile Launcher Mk 5 Mod 8.

POSITIONING VALVES.—The elevation positioning valve is located below the elevation arc, and the train positioning valve is mounted to the bottom of the carriage. These valves are spring loaded and mechanically operated to ensure that the launcher is in the proper position before porting fluid to extend the securing latches (train or elevation). They actuate interlock switches when the launcher is in the "Load" position.

BUFFERS.—A buffer is anything that serves to deaden a shock or bear the brunt of a collision. Buffers are also used to slow down movement to avoid a violent shock or stop. Ordnance equipment uses hydraulic and pneumatic buffers, as well as spring buffers. Train and elevation buffers are used to slow down the training or elevating movement of the launcher to prevent a jerking halt. The elevation and depression buffers, mounted on each side of the trunnion tube, buff the movements of the trunnion tube and thus prevent excessive stress on the missile when the guide arms reach the elevation or depression limits. An accumulator furnishes a supply of hydraulic fluid for buffer operation.

Accumulators

Accumulators in hydraulic systems permit the use of smaller pumps than would be required if no accumulator were present. The fluid stored
under pressure in the accumulator can assist fluids in motion to accomplish work when the demands of the hydraulic system require more fluid than the pump can supply. Accumulators may be used in hydraulic systems to supply fluid to compensate for leakage in closed or pressure-regulated circuits, as an emergency source of power for short periods, to operate secondary hydraulic systems, and as an auxiliary source of energy in intermittent duty systems.

Two basic types of accumulators are used in launching systems: bag and piston. The piston type is used with NAVSHIPS missile handling equipments and is shown in figure 6-12. The bag type was shown in figure 6-2 in the magazine accumulator system, and a cutaway view is shown in figure 6-13A.

Nitrogen is used to pressurize both types. The outside of the bag type is a metal shell; the bag, of neoprene, is inside, and contains the nitrogen. The bladder will fill approximately three-fourths of the inside area of the cylinder when the hydraulic pump forces oil into the flask. A spring-loaded poppet valve at the bottom of the flask prevents the bladder expanding down into the manifold if there is no hydraulic fluid in the flask.

The flask is mounted on a manifold (fig. 6-13A), and the valve block and gage (fig. 6-13B) are mounted nearby. The location of the gage and the type of nitrogen valve assembly will differ on accumulators of special ordnance systems. The nitrogen valve assembly (fig. 6-13B) controls the compressed nitrogen. It has one valve for each flask, a bleeder valve, a nitrogen fill cap, and a porous bronze filter. A pressure gage is mounted on top of the valve block.

PISTON ACCUMULATORS perform the same functions as the bag type, although constructed differently. The steel cylinder is divided into two chambers by a movable piston (fig. 6-1), one side for the hydraulic fluid, and the other for the nitrogen.

The cylinder head of the hydraulic fluid chamber has a manifold through which the flow of fluid is automatically controlled by a pilot valve, whether in charging or discharging the accumulator. The pilot valve (fig. 6-12) is actuated by the piston rod through a linkage operated by cams in a control housing. The housing includes a manually operated shutoff valve by which the accumulator pressure can be cut out of the power drive system when the drive is not in operation, or if the accumulator fails.

The facilities for admitting nitrogen under pressure are at the other end of the accumulator cylinder. These include a gas filling valve, gas charging inlet, and gas pressure gage. The arrangement of these may vary from that shown in figure 6-12.

ACCUMULATOR OPERATION.—An accumulator of either type is located in the hydraulic power system in such a way as to apply force in the pump discharge line, and to be charged with hydraulic fluid after loss of volume from the accumulator has occurred.

An accumulator valve block, containing a control valve and check valves, maintains the desired operating pressure in the accumulator by controlling the output of the hydraulic pump. The control valve is adjusted to limit the maximum pressure in the accumulator, and is designed to control the minimum pressure. (Typical accumulator pressure is 1300-1500 psi.) When the accumulator is being charged, fluid from the pump flows through check valve 1 (fig. 6-14), around the lower land of the control valve, and
Figure 6-13.—Hydraulic accumulators: A. Bag type accumulator, cutaway view; B. Nitrogen valve block assembly.
Figure 6-14.—Schematic, accumulator unit, charging cycle.

into the accumulator. When the accumulator becomes fully charged, the pump output is ported through check valve 2 to the tank.

The control valve has a spring and seat, a two-land plunger, and a piston. The piston is larger in diameter than the lower land of the plunger, against which it bears. A cross-port in the lower land of the plunger ensures equal pressure on each end of the lower land chamber. Accumulator pressure is always available at the bottom of the piston. As the charging cycle begins, the spring holds down the plunger and piston, and the hydraulic fluid passes into the accumulator. As the accumulator fills, the piston and the plunger are pushed upward, compressing the spring. When the spring is compressed enough, flow to the accumulator is blocked off and check valve 2 lifts and vents the pump output to the tank. When the accumulator pressure drops to the minimum set for it, the charging cycle is repeated.

Power Drives

As noted in the preceding paragraphs, each launching system has several power drives. To distinguish them, the location or use of the power drive is included as part of the name, as hoist power drive. The train and elevation power drives on the launcher are the ones most often referred to simply as the "power drives" of the launching system. They are two separate electro-hydraulic systems which control the movements of the launcher in train and elevation (fig. 6-15).

The function of the power drives is to make the launcher position correspond to the ordered positions (orders from fire control, under normal, automatic operation) with the least
possible error at all times. The design of the train and elevation power drives is very similar, but they are not interchangeable.

The electric power for the power drive is supplied from the ship's power supply through the power panel.

The power unit consists of an electric motor, an A-end hydraulic pump, an enclosed gear train, a stroke control assembly or control cylinder, a transfer valve, and the B-end motor. The receiver-regulator is located with these components, and is functionally a part of the power drive. How they operate together is described later in this chapter.

The train and elevation power drive controls of the GMLS Mk 13 are located off-mount but the power drives are mounted inside the stand in the inner structure. The magazine power drives are also located in the inner structure of the stand. The ready service ring is in the outer structure of the stand. The location of components of the train and elevation power drives of the Mk 13 launching system is shown in Gunner's Mate M (Missiles) 3 & 2, NAVTRA.
That text also illustrates a number of devices used in hydraulic systems, such as various types of valves, buffer, dashpot, filter, strainer, and gear pump. Differences in the number of power units used by the "one-armed" Mk 13 and the larger launching systems (Terrier and Talos) were also pointed out.

Train and Elevation Power Drives of Mk 22 Tartar System

The overriding difference between the Mk 22 and other missile launching systems is its small size. It handles Tartar and Improved Tartar missiles, but fewer of them than the Mk 11 and the Mk 13 launching systems. Compact arrangement of components necessitated some changes in placement of parts, and some combination of functions. The Train Power Drive Mk 67 Mod 0 also drives the hoist. It has a shift and clutch mechanism that enables it to drive the launcher or the hoist. In the mk 22, it is the launcher that moves to a position above the missile to be loaded; the ready service ring does not rotate. The elevation power drive elevates and depresses the launcher guide. The major components of the train/hoist and the elevation power drives are the same: an electric drive motor, a hydraulic system, a CAB unit, and a drive train. The hydraulic systems have the same type of auxiliary pump, auxiliary relief valve assembly; and accumulator assembly; they differ only in capacity. The train/hoist power drive has a speed reducer and a lubrication pump that are not duplicated in the elevation power drive. Both systems use a common supply tank and common header tank.

The main supply tank, which holds about 110 gallons of fluid, is integral with the skirt adapter assembly (fig. 6-16). This is not to be confused with the main tank of the launcher guide power unit, which is fastened on the under side of the base ring and protrudes above it. That tank holds only about 20 gallons of hydraulic fluid. The location of the launcher guide power unit is also shown in figure 6-16, as are other launcher components. The train/hoist and elevation header tank is mounted in the base ring adjacent to the train/hoist power-off brake. The header tank for the launcher guide power unit is in the front end of the guide arm. A header tank provides a head of fluid to prevent entrance of air into hydraulic lines, which would cause erratic behavior of the hydraulic components. It also serves as an expansion and heat dissipation chamber for returning fluids. A strainer in the return-flow pipe strains out solid particles to keep them from getting into the servo and supercharge systems.

The major components of the train and elevation power drives are: (1) electric drive motors, (2) hydraulic systems, (3) CAB units, and (4) drive trains.

ELECTRIC DRIVE MOTORS.—These provide mechanical inputs to the CAB units, auxiliary pumps, and the lubrication pump. They are mounted on the center column of the carriage (fig. 6-17). The motors are activated by switching on the EP-1 and EP-2 panels. The train lubrication pump is driven directly by the electric motor. It furnishes lubricant to the speed reducer. If the pump fails, the pressure in the discharge line drops. The lowered pressure, de-actuates the switch, stops the motor and prevents motor burnout. An excess of pressure in the CAB unit also will stop the electric motor by actuating a pressure-cutoff switch. When either the train/hoist motor or the elevation motor stops because of pressure cutout, the All Motors STOP light on the EP-2 panel starts blinking. This indicates to the operator why the motors have stopped, and warns him that he should look for the cause of the pressure buildup and correct it before restarting the motors.

HYDRAULIC SYSTEMS.—The main components are an auxiliary pump, an auxiliary-relief-valve assembly, and an accumulator assembly. The train/hoist and the elevation hydraulic systems are identical except in capacity. The train/hoist system is the larger one; it supplies power for operation of the train and the hoist systems. The pumps are of the type described in Fluid Powe, NAVPERS 16193- as gear pumps; they may have helical or spur gears or a combination. The pumps operate the power-off brake, the receiver-regulator, the CAB unit, and the main relief valve of the CAB unit. The train/hoist system also operates the hoist selector valve block assembly, and the hoist control assembly. The relief valve block contains filters.
Figure 6-16.—Guided Missile Launcher Mk 123, Mod 0 (Mk 22 Launching System for Tartar missile).
valves, switch-actuating pistons, switches, and a solenoid. The accumulators are of the flask type, containing a bladder charged with nitrogen, a manifold, and an accumulator charging valve assembly.

CAB UNITS.—The train/hoist and the elevation CAB units are of the same type but differ in size and output. They are mounted on the center column of the rotating structure (fig. 6-17). The A-end is an axial parallel-piston pump, driven by the electric motor. The B-end is an axial-piston motor; it converts the power from the hydraulic fluid to mechanical motion, transmitted through the drive shaft to train/hoist (or elevation) drive train to move the launcher in train or elevation or to raise or lower the hoist chain and associated components. The operation of CAB units is described in Fluid Power, NAVPERS 16193.
Chapter 6—HYDRAULICS IN MISSILE LAUNCHING SYSTEMS

DRIVE TRAINS.—The train/hoist drive train transmits mechanical movement of its B-end output shaft to either the drive pinion of the launcher carriage or the hoist drive shaft. The elevation drive train transmits the mechanical movement of its B-end output shaft to the elevation arc and, in turn, the launcher guide. For the most part, the components of both drive trains are contained within the base ring of the rotating structure. Some parts of the elevation drive train are in the launcher guide. The two drive trains are of different design but contain some similar components.

The train/hoist drive train uses a common gearbox and clutch to drive the rotating structure and the hoist chain. The main components are: (1) a B-end coupling, (2) a speed reducer and drive clutch assembly and associated retractable rail assembly, (3) a power-off brake, (4) a synchro attachment assembly, (5) a selector valve assembly, and (6) a train-positioner assembly. Several of these are pointed out in figure 6-15.

The elevation drive train main components are a vertical shaft and couplings, a gear box, a power-off brake, a horizontal shaft and couplings, and a gear reducer. They transmit the output of the elevation C:B unit to move the elevation arc and the launcher guide. Unlike launchers with two guide arms, where the elevation arc is mounted on the carriage between the two guide arms, the elevation arc in the Mk 22 is inside the righthand support trunnion. When the elevation arc is driven (by the elevation drive train), the launcher guide moves accordingly. Clockwise and counterclockwise movements of the elevation gear train elevate or depress the launcher guide. The elevation and depression buffer is a hydraulic safety device that prevents the launcher from moving beyond its design limits, figure 6-19. The buffer decelerates and stops the launcher guide as it moves beyond the 90 degrees elevation or -10 degrees depression. The elevation buffer piston is the shock absorbing component contacted when the launcher guide elevates beyond 90 degrees. The depression buffer piston is contacted when the launcher depresses beyond -10 degrees. They are of the same type, with compression springs seated in the piston recess and the other end in the sleeve.

HYDRAULIC SCHEMATICS

Chapter four shows the electrical circuits used in step operation of fin openers and contactors in the Mk 13 system. The hydraulic operation of the fin opener cranks and the contactor to the missile is actuated by the electrical system. When you are performing trouble analysis of a component, you also need the hydraulic schematic to trace the actions of the hydraulic parts. Figure 6-20 shows a hydraulic schematic of the fin opener assembly in Mk 22 and Mk 13 systems. Primary hydraulic control of the fin opener assembly originates with two solenoid operated valves UVU6 and UVU7. These two pilot valves initiate each of the four operations of the fin openers: (1) engage fin openers and contactor; (2) extend fin opener cranks; (3) retract fin opener cranks; and (4) disengage fin openers and contactors. Five valves and a piston in the control valve block operate and extend and retract latches, control the speed of the pivots, open and close various ports, and operate some of the interlock switches. The block is located on the launcher guide, between the fin opener shields.

The fin openers swing behind (engage) the missile as soon as it is hoisted onto the guide rail. This permits missile warpage to be resumed and missile to launcher interconnections to be completed almost immediately for the Weapons Control System. While the launcher is synchronizing to the remote order, the fin opener cranks reach their fully extended positions and activate the interlock switches SIU1, -3, -5, and -7, which complete the circuit to energize relay KCU1, which energizes relay KCU3A. This completes the circuit to solenoid LHU1-LC3, which then releases the detent of solenoids LHU1-LC-1, and -2, and allows pilot valve UVU6 to spring-return to neutral and port pressure fluid from the extend side of the fin opener cranks to the tank. This causes the cranks to retract.

The contactor extends at the same time that the fin opener housings rotate with the pivots. As the contactor mates with the receptacle on the missile, the force of engagement causes the sharp electrical pins of the contactor to puncture the seal that protects the missile contacts. This requires a pressure of 450 to 500 pounds. The contactor remains in position until the
Figure 6-18.—Elevation Drive: Mechanical Schematic.
order to fire is received.

This small sample of a hydraulic schematic shows how electric and hydraulic schematics must be considered together. The electric components start the action; the hydraulic components carry out the electrical orders.

Study the OP and follow through on hydraulic schematics so you will understand the flow of hydraulic power through the system and its translation into mechanical movement. This knowledge will be invaluable to you in troubleshooting the system.

ADJUSTMENT AND REPAIR OF HYDRAULIC SYSTEMS

To tell in detail how to adjust and repair hydraulic systems used in missile launching systems would require several large volumes. To work on any system, you need the drawings for that system as installed on your ship, and the applicable OPs and ODs. The types of valves used in the power drive or the ready-service ring may be the same as those in the power drive for the train or elevation system on the launcher, but their numbers or other designations and the locations would differ. In a general course like this, we cannot name the particular valve to adjust.

SHIPBOARD MAINTENANCE

Initial adjustments were made at the time of installation. Later adjustments aboard ship should be undertaken only after competent personnel have determined that adjustment is necessary. Brake valves, replenishing pump relief valves, and the control pressure pump are some components of a drive system that are adjusted whenever necessary.

Filters

The indicating lights on the control panels pinpoint some troubles, such as clogged filters.
Let us use as an example the power drive in the Mk 10 Mod 0 launching system for the Terrier. This is the power drive used to operate the ready-service ring, the tray shift mechanism, the magazine doors, and the magazine hoist mechanism. The oil filter assembly is mounted on the supply tank, above the electric drive motor. The assembly contains twelve micronic filter elements which filter out any foreign particles of 10-micron size or larger before the oil is pumped to the magazine components. When the filters become clogged and the filter bypass valve...
opens, a clogged-filter switch mechanism illuminates a light on the EP-2 panel, indicating that the filter needs charging. After the filters have been changed, the filter assembly is filled with oil through the filler plug on the filter, which forces out air that was in the filters and keeps air out of the system.

Some power drives use disposable, cartridge type filters. These require no maintenance except replacement of the cartridge, as in the system above. If the filter element has to be cleaned, follow the instructions for the type of filter and observe the safety precautions for the cleaning method and materials used.

Full-flow types filter all the oil that passes through the pumps. Such filters may have a relief valve to allow bypassing of the oil if the filter element is clogged. A bypass filter is one which filters only a portion of the oil passing through the pump. Figure 6-21 is an example of a bypass filter. More correctly, it is called a proportional flow filter. It consists of a cylinder containing a filter element made up of a number of packs of perforated paper discs. Spring action maintains a uniform pressure on each of the packs. Oil passes from the outside of the pack, where the foreign matter is deposited, to the center passage, and through the outlet at the head of the filter.

To clean this type of filter, lift the head, with the filter packs attached, from the body of the filter. Connect a low pressure air supply to the oil outlet of the system. This allows the air to blow back through the element. When a white foam appears along the entire length of the pack, it is clean.

If you remember to observe the rules for keeping contaminants out of hydraulic systems, the filters will seldom need cleaning. Keep the containers of hydraulic fluid tightly closed except when actually transferring the fluid. Strain the fluid into the hydraulic system, even though you are pouring from a freshly opened can. Keep all openings on the hydraulic system closed so water, dust, dirt, or any other contaminant cannot get in. Even with the greatest care, however, it is not possible to keep out every bit of foreign matter. Also, bits of metal wear off during operation of pumps, gears, valves, and other parts of the hydraulic system. Therefore, filters are installed at numerous places in the system to catch all those bits. The MRC's and the O's on maintenance tell you how often each filter is to be checked as a matter of routine. By regular frequent checking of filters, and replacement, you can greatly reduce the down time of hydraulic systems. Testing of samples of hydraulic fluid taken from the accumulator supply tanks detects deterioration of the fluid. Use the MRC instructions for obtaining the samples.

A typical micronic type filter unit is shown in figure 6-22. It consists of a single element filter assembly, a filter bypass valve, a switch valve, a filter clogged switch, and switch actuator. If the filter element starts to clog, it retards the flow of hydraulic fluid and causes a pressure differential on the opposite ends of switch valve UV-1 (fig. 6-22). When the pressure differential reaches a preset setting, the higher pressure at the input end of switch valve UV-1, causes the valve to shift to the right against the spring end of the valve which opens a pressure port to the switch actuator. When this occurs, a Filter Clogged light (red lamp) begins to blink on one
When the lamp blinks, the launcher captain at the EP-2 panel must determine the location of the clogged filter and take appropriate maintenance action according to ship’s doctrine. As long as the filter remains clogged and the pressure differential reaches a preset setting above that regulated by the filter bypass valve UV-2 and valve spring (fig. 6-22), the bypass valve will open and port hydraulic fluid around the filter element and flow directly into the system through one output port. The replaceable filter element is a treated cellulose paper formed in vertical convolutions which catch and hold dirt and other solid particles. (Some filter elements are made of other fibrous material or of metal discs and rods which can be cleaned and reused if a new filter element is not available, or it may be set aside to be cleaned later and placed in storage for reuse. They need to be thoroughly dry before reuse.)

Before you change a filter element, turn off the hydraulic system and release the system pressure.

WARNING: Be sure that system pressure is relieved before disassembling or removing hydraulic components. High system pressure can cause serious injury to personnel.

Arrange to catch hydraulic fluid that will spill from the bottom of the filter unit when the bowl is removed. Unscrew and remove the filter bowl, then pull the filter element off the head. Install a new or properly cleaned filter element and an O-ring, seating them firmly on the filter head. Examine the O-ring in the filter bowl; replace if it is faulty. Coat the exterior threads of the filter head with petrolatum and reassemble the filter bowl to the head. Install the safety wire. If the filter continues to clog, the hydraulic system may need to be drained, flushed, and refilled.

Valves

The daily and weekly operational checkouts may reveal need for adjusting one or more valves. Types of valves used in hydraulic systems are described and illustrated in Fluid Power, NAVTRA-16193 and some general instructions for installation and maintenance are given. See also the illustrations and descriptions in chapter 8 of this text, and in the preceding text, Gunner’s Mate M (Missiles) 3 & 2, NAVTRA 10199-Bc.

Numerous valves, simple and compound, are used in the hydraulic components of missile launching systems, and in the missiles. Note the number and variety of valves in that small segment of a launching system shown in figure 6-20. The same principles of operation apply to all, regardless of complexity, but the components and their method of assembly may differ. Whenever a valve has to be disassembled, be sure to get the drawing showing all the parts and the order of assembly. The automatic valves, such as regulators, relief valves, and safety valves, should not be disturbed except at overhaul, unless found faulty. Foreign matter in the valve seat, scoring and grooving of parts, or plugging of openings may cause the valve to stick or fail to close completely. The usual remedy for such conditions, as in fact for practically all serious valve troubles, is to dismantle the valve, thoroughly clean all parts, replace those that are damaged, and reassemble. You may have done this with the simpler valves,
or under supervision. Maintenance of compound relief valves is fundamentally the same as that of simpler types. You can generally tell that a compound relief valve is not functioning properly because it will overheat, and will operate sluggishly or erratically, or at the wrong pressure. The valve will usually clean itself if you start the pump and back off the adjustment screw on the pilot valve a little by turning it counterclockwise so that the pressure control spring responds to a lower pressure. The adjustment screw should never be removed completely while the system is under pressure. (Some instructions require complete release of system pressure before adjusting: check the instructions for your launching system.) After a flow of liquid has cleaned the valve, carefully reset the adjustment screw, using a pressure gage. The relief valve should be set to open at about 25 percent more than the maximum normal operating pressure.

CHECK VALVES require little attention over long periods of time. Leakage may be caused by a tiny particle or foreign matter between the checking device (ball, cone, or poppet) and its seat. It will be necessary to remove the valve and disassemble it completely for cleaning. Remember the warning about high pressure systems—shut off power and release the pressure before removing any part from the hydraulic system.

If no scratches are found on the valve seat or the checking device, wash all parts in clean hydraulic fluid of the same type as used in the system. Inspect the housing and the checking device for evidence of corrosion. A slightly rough surface can be smoothed by buffing. Replace the valve if there is corrosion or excessive roughness. A cone type check valve may have a tendency to lean to one side, in which case the movable part may dig into the soft aluminum body of the housing and stick there.

Remember that the arrow on the housing must point in the direction of the flow of liquid through the valve. Before removing a check valve from a line, mark the adjacent structure, indicating the direction in which the arrow points. When installing the check valve, grip the wrench flats of the check valve at the end to which the connecting tubing is being installed. Do not grip the opposite end. This will prevent the possibility of distorting the valve body, which would use the valve to leak.

When a valve has to be disassembled for cleaning and replacement of broken or worn parts, such as a broken spring, deteriorated O-ring, or scored valve plunger, it is important that the correct parts be used, and that they are assembled in the proper order. The MRC gives all the steps in order. The OP with the illustrated parts breakdown (IPB) identifies every part by name and stock number. A neat, orderly workbench is essential so parts can be laid out in order. A dust-free area helps in keeping dirt out of the valve when reassembling.

Through constant working parts may become worn, springs may be weakened or cracked, and O-ring and backup rings may become deteriorated. Vibrations can cause metal parts to crystallize and crack. However, keeping dirt, moisture, and air out of the hydraulic system is the best preventive of trouble. Daily inspections will detect leaks that can be corrected by simple tightening; daily checking of pressures and fluid levels can detect other troubles before they become major ones.

Valves are not disassembled as a routine maintenance procedure, they are disassembled only if they are not functioning properly.

Pumps

As a rule the pumps in hydraulic power drive systems require little maintenance other than proper lubrication and a clean hydraulic system to operate in. Signs of trouble are overheating, unusual noise, or failure to deliver the designed output. A frequent cause of noise is failure of oil to reach the pump. The oil level in the reservoir may be low, or there may be clogged lines or filters. Since the pump depends on the hydraulic fluid for lubrication, failure of the supply will soon cause the pump to heat up and will probably cause its parts to bind.

Another cause of abnormal noise is poor alignment between a pump and its driving mechanism. This condition will cause worn parts and possible leakage, reducing the pump's efficiency. Correcting the misalignment can be a major repair job, but the trouble will not correct itself—it will get worse.

Pounding or rattling noises in axial piston pumps may be unavoidable because of a partial vacuum produced in the active system during
GUNNER'S MATE M 1 & C

high speed operation or under heavy loads. The noise should stop when the load is reduced. If it does not, bleed air from the system at the vents.

Hydraulic systems which perform satisfactorily and show no evidence of sludge, corrosion, etc., should not be opened. Cover plates should be kept tightly secured, and should not be opened without good reason.

Use special care when you reassemble a rotary gear type pump. The rotors operate in a pump casing or body. End plates enclose the rotors on each side. When tightening the screws that hold the sections together, use only moderate force. Make them just tight enough to allow free movement of the rotor with no leakage.

The routine inspection, lubrication, checking of fluid level and pressure are tasks for the GMM 3 and GMM 2. They use the MRCs for instructions, and check off each job on the work schedule after completion. Your job is to supervise and check the work, and make sure it is done at the intervals scheduled, whether daily, weekly, or otherwise.

Motors

Hydraulic motors are activated by receiving fluid flow from the power pump. This fluid, under pressure, forces the motor pistons away from the flow source, thus resulting in a rotation of the motor drive shaft. The pressure buildup in the high pressure line between the pump and motor will be in direct proportion to the mechanical output or work required of the motor. The motor speed will vary directly with the amount of fluid pumped to the motor. The direction of rotation can be instantly reversed without damaging the motor. The direction of flow is controlled by a selector valve.

A fixed displacement hydraulic motor may be used with a variable displacement hydraulic pump. A radial piston motor is usually used with a radial piston pump, and an axial piston motor with an axial piston pump. See Fluid Power, NAVTRA -16193 for descriptions.

Hydraulic motors are self-lubricating; daily inspection for leakage is usually all the maintenance needed. If the motor must be removed for overhaul or corrective maintenance, be sure to plug all openings of connecting pipes so no dirt will get into the system. Use a lifting device to transfer the motor to the workbench. Figure 6-23 illustrates a typical hydraulic piston-type motor. Disassemble the parts carefully to avoid marring or scratching smooth surfaces. This is especially necessary where the fit must be exact to prevent oil leakage, as at oil seals. Follow the disassembly and reassembly instructions in the OP for the power system. The correct order makes the work easier, and is less likely to result in damage to parts by excessive use of force.

When removing the roller bearings, take care that the rollers do not fall out. As you remove each part, carefully place it on a cloth or paper-covered space in the order of removal. There are several small parts that can easily be lost. Do not throw away a part until you have a replacement part for it. You may need it for comparison, even though the stock number for the new part is the same as the old. A flaw or defect in a part may not be visible until after the part is cleaned. Inspect each part after you have cleaned it. Do not leave bare parts exposed any longer than necessary without the protection of a coat of oil. Rust can develop quickly and mar the polished surface of a precision-fitted part.

On some later models of B-end motors, a hydraulic equalizing valve is mounted on each side. These valves were set when the power drive was tested. If the motor is removed, or replaced, adjustment can be made so that exactly equal pressures can be developed in each B-end motor high pressure line. Gages can be mounted on the B-end motor when pressure tests are to be made. The snubber and fittings that accommodate the gage are located beside the equalizing valves.

Troubleshooting

When scheduled maintenance or system testing (DSOT) reveals a fault, system troubleshooting procedures begins. The use of troubleshooting charts and procedures contained in PMS/SMS system manuals (OPs) isolates the fault. After finding and isolating the fault, system manuals direct the maintenance personnel to the appropriate instructions for correcting the malfunctions. Corrective maintenance instructions consist of either Corrective Maintenance Cards (CMCs) or a volume of the system OPs for corrective maintenance. System OPs have
volumes which contain detailed instructions for the performance of nonscheduled maintenance within the capabilities of ship's personnel using shipboard facilities. These instructions are for the alignment, adjustment, repair, and replacement of parts and components. Other volumes contain detailed instructions for maintenance that require the facilities of a shipyard or depot. These instructions cover dismantling, repair, replacement, and alignment of major assemblies and subassemblies.

ADJUSTMENT AND REPAIR AT A NAVY YARD OR REPAIR TENDER

Given careful daily maintenance and inspection, hydraulic systems can be used for long periods of time without major repairs. Breakdowns can occur, however, in spite of the best care you can give. Size and weight of some components make repair aboard ship difficult or impossible; alignment of such components may require the facilities of a shipyard or a repair tender. Attempts by unskilled personnel to overhaul or repair components can result in serious damage to costly equipment, and possible personnel injury. Before disassembling any part, be sure you can put it together again, correctly, and understand how it should operate. The illustrated parts drawings are essential for the less experienced men, and help even the most experienced men to check themselves on reassembly.

Alignment of large components may require yard or tender facilities. Critical adjustments may need to be deferred yard or tender work. Train and elevation power drive units are not normally removed or installed by ship personnel. While it is possible for shipboard personnel to remove the train or elevation power unit, it is recommended that such removal be accomplished during major overhaul. If the power unit has to be removed before yard or tender facilities are available, it is better to remove it by disassembling than to try to remove it as a unit when adequate handling facilities are not available.
Realigning a launcher rail is a task of considerable proportions. Arrange for tender or yard assistance, if possible. Do not readjust the launcher rail unless it is absolutely necessary.

Removal of excessive backlash in train and elevation drives is best reserved for overhaul. Excessive backlash causes misalignment between the launcher and the weapons system; insufficient backlash causes binding and limiting.

Repair and overhaul of train and elevation gear boxes are tasks for tender and shipyard personnel. Although ship personnel can remove, disassemble, and reassemble the gear boxes, getting the proper alignment and backlash within the gear box, and properly aligning the gear box to the sector gear or training circle, would not be possible with the equipment normally available on board.

Lest these paragraphs give the impression that few adjustment and repair jobs are done aboard ship, look over the list of maintenance procedures for the system now assigned to you. There are several maintenance manuals that list the tests, repairs, alignments, adjustments, and servicing of a launching system that are done on shipboard. While this list includes such minor items as changing a light bulb, there are many complicated adjustments, such as interlock switch actuation adjustments.

RECEIVER-REGULATORS

Receiver-regulators are located on the launcher with the power drive units (figs. 6-11 and 6-18). The two control systems—train system and elevation system—consist of similar electric, hydraulic, and mechanical equipment. Each system receives its own order signals; the train system receives train order signals through its receiver-regulator, and the elevation system receives elevation order signals through the elevation receiver-regulator. During normal (automatic) operation, the train and elevation systems convert electrical signals received from a remotely located computer into hydraulic movements. These hydraulic movements control the velocity, acceleration, and position of the launcher carriage and the guides or guide arms.

Basically, the power drive consists of a CAB unit and a receiver-regulator. The CAB unit is composed of a B-end (hydraulic motor) and an A-end (hydraulic pump). The B-end converts fluid flow into mechanical motion. The output shaft of the B-end drives the launcher through reduction gears. Therefore the speed and direction of launcher movement is determined by the speed and direction of the B-end output.

The A-end is the hydraulic pump that supplies pressure fluid to the B-end. The fluid flow supplied by the A-end determines the speed of the B-end, while the direction of fluid flow from the A-end to the B-end governs the direction of the B-end rotation.

The A-end output is determined by two stroking pistons controlled by the receiver-regulator. These pistons "stroke" the A-end tilt plate, and thus regulate both the quantity and the direction of fluid flow from the A-end. The A-end is driven at a nearly constant speed by a unidirectional electric motor. The receiver-regulator controls the hydraulic fluid ported to the stroking pistons, and thereby regulates the CAB unit operation. The regulator components position the A-end tilt plate so the B-end output is in accordance with the electrical signal input order to the receiver-regulator. The position signals are sent from the computer to both the train and elevation systems. Synchro transmitters (CX) at the computer initiate the signal voltages; synchro receivers (CT) in the receiver-regulators receive the signals.

Figure 6-24 is a simple sketch of the synchro control system components, showing how they interact. A signal voltage (primary or position signal), transmitted by CX to CT, indicates the desired position of the launcher. The CT acts as a differential, combining the actual position of the driven equipment—indicated by the mechanical responses—with the ordered position. Two other systems, not discussed here, can control the tilt of the A-end plate and therefore the position of the launcher. A velocity system improves the synchronizing capabilities of the launcher; the integration system improves the accuracy of the launcher.

The CT output is a signal voltage proportional to the B-end error. The B-end error is the difference between the ordered position of the driven equipment (launcher) and its actual position. The CT output is transmitted to the amplifier, where it is amplified and sent back to the re-
receiver-regulator. There it drives an electrohydraulic servovalve which transforms the amplified electrical input into a proportional hydraulic movement, and moves the launcher to the position ordered. If the target is moving, the position of the launcher has to be corrected with each new signal from the computer.

To enable the launcher to be positioned more accurately, the train and elevation synchro control systems have CXs and CTs in pairs. Each pair consists of a coarse synchro called 1X (one-speed) and a fine synchro called 36X (36-speed). The CXs are located at the computer and the CTs are at the receiver-regulator. The rotor movement of the 1X coincides with the launcher movement, while the rotor of the 36X CT will move 36 degrees for every degree of launcher movement. As long as the system is on automatic operation, the launcher is moved in train and elevation on signal from the computer. In local operation, the launcher is moved by moving the train and elevation dials as ordered by the Weapons Control Station. (On some systems the dials cannot be changed manually.)

Figure 6-25 shows the train and elevation local control dials, 1-speed and 36-speed, on the EP-3 panel for the Mk 5 launcher (Terrier). The train and elevation error indicator meters (fig. 6-25) show how much adjustment is needed. The local control knobs, one for train and one for elevation, are used to make the adjustment. Behind the face of the EP-2 panel are the synchro con-
Figure 6-25.—Train and elevation dials, local control, X station, EP-3 panel, Launcher Mk 5 (Terrier).

control transmitters, tachometer generators, gear trains, and flywheels (one set for train and one for elevation) to transmit the motion to adjust the position of the launcher. For adjustments of less than 4.8 degrees, the 36-speed dial is used. For larger changes, the 1-speed dial is adjusted first to bring the launcher position to within 4 to 5 degrees of the ordered position. Then the fine adjustment is made with the 36-speed dial.

LOCAL control may be used to stow weapons, exercise the launcher (without loading a weapon), and to purge the hydraulic system of air during maintenance or in an emergency. LOCA control cannot be used for loading and firing. This simple statement points out the absolute necessity for keeping the system in perfect operating condition. The failure of one small part can inactivate the whole launching system. You must learn to repair hydraulic, electric, and mechanical parts of the system. The ability to locate the trouble quickly and surely is very valuable.

Synchro systems are discussed in the preceding chapter and also in the preceding course, Gunner's Mate M (Missiles) 3 & 2, NAVTRA 10199 and in Basic Electricity, NAVTRA 10086. These all emphasize the electrical aspects of the operation.

TARTAR RECEIVER-REGULATORS

The following description of Tartar receiver-regulators are those used with GMLS Mk 13 and Mk 22. The receiver-regulator is mounted less than 2 inches from the main supply tank. The heating and cooling of the hydraulic fluid tends to create a vacuum in the receiver-regulator cases, which causes air from the main supply tank to be sucked into the receiver-regulator cases. The air breather on the main supply tank allows salt or humid air to enter the tank. This air would cause damage if it reached the receiver-regulator parts. To prevent this, an expansion chamber with a quantity of inert gas is connected to the top of the main supply tank.
The receiver-regulator cases port through this chamber in such a way that only the inert gas can ever enter the receiver-regulator cases when a vacuum is created.

Remote train and elevation order signals originate in the missile fire control system. Order signals may also originate in the control transmitters within the launching system (EP-3 panel). These signals are used in the LOCAL control mode of operation, which is used primarily for daily workout or routine maintenance.

The receiver-regulators on the Mk 116 launcher of the Missile Launching System Mk 13 are different from preceding models in several ways. The Mk 116 launcher uses an amplifier (electronic servocontrol unit) which electrically performs many of the functions that were previously performed hydraulically by other types of receiver-regulators. A modified synchro system is used, with the B-end response positioning the synchro rotors. There is no rotary piston response. Only one modified electrohydraulic servovalve is used. Both chambers of the electrohydraulic servovalve plunger are utilized, and each chamber is directly connected to the A-end stroking piston. The two stroking pistons have equal areas for hydraulic pressure to act upon.

The A-end response is transmitted electrically by a potentiometer to the amplifier and mechanically to the limit stop and automatic tracking cutout systems. A modified limit stop system is used to mechanically return the electrohydraulic servovalve, and thus the A-end, to neutral.

The automatic tracking cutout system uses the limit stop system to stop the power drive. There are no hydraulic velocity and integration systems in the regulator. However, a velocity signal is electrically applied to the amplifier.

Guided Missile Launching System Mk 13 Mods 1, 2, and 3 use Launcher Mk 126 Mod 1, and a number of changes have been made in the associated equipment. The principal change in the train and elevation systems is the redesign of the electronic servocontrol units. Minor modifications have also been made in the train and elevation drive-motors, the servo and supercharge hydraulic systems, and the receiver-regulators.

The Mk 48 Mod 1 train receiver-regulator is the same as the Mk 48 Mod 0 receiver-regulator except for the synchro gear, the stroke response assembly, and the automatic-tracking-cutout valve block assemblies. The Mk 49 Mod 1 elevation receiver-regulator differs from the Mk 49 Mod 0 regulator in the same way.

The modified stroke response assembly includes an electrical connector to facilitate replacement of the stroke response potentiometer. A resistor has been added to the synchro gear assemblies, which is wired to the tachometer generator. The automatic tracking cutout valve block assembly has been mounted with rollers above and below the limit-stop actuating cam to prevent binding.

Some of the check valves that are on the auxiliary relief valve assembly in the Mk 13 Mod 0 have been relocated on the header tank cover in the Mods 1, 2, and 3.

The train and elevation auxiliary pumps in the Mk 13 Mods 1, 2, and 3 furnish supercharge pressure at approximately 150 psi instead of 100 psi as in the Mod 0. The servopressure remains the same, approximately 525 psi at 3 gallons per minute (gpm).

The only changes in the CAB units (hydraulic transmission) involve the safety relief valves. They are compound valves mounted on the valve plate, between the A-end pump and the B-end motor. The assembly consists of the valve block, six valves, and two orifices. The valves serve to limit maximum pressure buildup in the high pressure output line of the A-end pump and prevent cavitation by porting hydraulic fluid to the low-pressure (suction) line of the A-end pump. (This compensates for fluid lost through slippage and leakage.)

The train and elevation amplifiers are identical, and share a common power supply in a transistorized Electronic Servo Control Unit which is mounted in the EP-2 control panel. Thirteen printed circuit cards in a rack on top of the main chassis plug into 13 female receptacles in the back of the compartment. Each of the amplifiers (train and elevation) requires an identical set of six printed circuits, one card for each of six primary stages in the functioning of the amplifier.

Figure 6-26 is a block diagram of the six stages, each representing a printed circuit card, of an amplifier. The electronic servoamplifier is
Figure 6-26. Amplifier Circuit Cards, Functional Diagram.
Chapter 6 - HYDRAULICS IN MISSILE LAUNCHING SYSTEMS

one of the components of the servomechanism that keeps the launcher synchronized until the missile leaves the guide rail. The receiver-regulators are the error detectors in the system, comparing the remote orders (from the launcher computer in the fire control system) with the actual launcher position. The amplifier processes the error. The processed position error becomes the velocity required of the launcher to correct the position error. It is one of the inputs to the velocity controller, which detects any difference between the order velocity and the launcher velocity and makes it a control order to the stroking pistons. The electrical order comes from the electronic servomultiplier to the electrohydraulic servovalve, which converts the order into hydraulic orders and admits hydraulic pressure to the stroking pistons according to the orders. The CAB unit supplies the response information to complete the servoloop, sending position information to the receiver-regulators.

TERRIER RECEIVER-REGULATORS

The receiver-regulators are mounted to the center of the launcher carriage, directly above the CAB units. Servopressure at 400 psi is supplied to the receiver-regulator valves and pistons. There are two major servosystems in the receiver-regulators: the power drive and the velocity drive systems.

The signal for moving the launcher to the correct train and elevation position for dummy jettisoning comes from a fixed synchro in the EP-2 panel. There is a switch for each launcher arm, A and B. Air motors provide a means of training or elevating the launcher for maintenance.

Figure 6-27 shows a receiver-regulator with the cover removed, and some of the main components are named. It contains a multitude of components, here grouped into seven logical sections to simplify location and identification:

1. The main valve block (including the electrohydraulic servovalves).
2. The nonpointing zone valve block.
3. The limit stop assembly.
4. The B-end response.
5. The synchros and their accompanying gearing.
6. The rotary piston assembly.

Between the limit stop assembly and the elevation indicator dials are two B-end response gears. One of the B-end response gears drives the synchro gear assembly and the other gear drives the limit stop assembly. The B-end response shaft that drives the gears leads through an opening in the regulator base plate. The B-end tachometer is driven by the limit stop gearing.

The synchro gear assembly includes five visible synchros with the gearing immediately below them, and indicator dials. The dials are visible through the window in the cover of the receiver-regulator.

The A-end response shaft leads into the receiver-regulator through an opening in the base plate, and is not visible in figure 6-27. The rotary piston assembly is attached to the inboard side of the main valve block and lies below the rotary switch cam.

Except for minor differences, the train receiver-regulator is identical to the elevation regulator. The train rotary piston cam has a slightly different contour than the elevation rotary piston cam, but it operates similarly. The contour is different because of the different acceleration and velocity specifications in train.

The nonpointing zone components of the train and elevation receiver-regulators prevent the launcher guide arms from training or elevating into any part of the ship’s structure. The train limit stop does not have a gear and rack as does the elevation limit stop assembly, but contains a nonpointing zone cam. The cam may be halted by pistons in the nonpointing zone valve block. By means of the gear and rack, the power drive can elevate the launcher arm above the nonpointing zone.

The train B-end response assembly differs from the elevation B-end response assembly in design because of mounting position. The train B-end response is coupled to the train gear reduction.

Receiver-regulators used with early models of the Mk 5 launcher (also Mk 7 launchers for Talos) use torque motors and rotary valves instead of electrohydraulic servovalves. The torque motors are controlled by conventional tube
amplifiers instead of magnetic amplifiers. The function of the electrohydraulic servovalve is to convert an electrical signal from the train (or elevation) primary amplifier into a proportional hydraulic order. It does this with a minimum of friction and negligible time delay. Figure 6-28 is a cutaway view of an electrohydraulic servovalve. There are four ports in the base of the valve. One port supplies hydraulic fluid at 400 psi to the servovalve, one port leads to the tank, and a third port supplies control pressure from the servovalve to the rotary piston neutralizing valve. The fourth port is blocked off and not used.

The hydraulic pressure ordered by the electrical input is applied to the end of the servovalve plunger and positions it. The plunger position results in the output of control pressure, proportional to the electrical input, which is sent through the control port.

The force motor (fig. 6-28) consists of two permanent magnets, two pole pieces, two coils and a reed. One end of the reed is centered in the air gap between the two pole pieces and the other end is centered between two nozzles in the mixing chamber. The reed is the armature of the magnetic circuit and is polarity conscious. The force motor transforms the electrical input, a differential current, into a proportional force on the motor reed. The hydraulic amplifier converts the reed movements into corresponding differential pressures. The differential pressures cause the plunger to shift. A decreasing order signal causes a shift to the left; an increasing order signal causes a shift to the right.

Adjustment can be made on the adjustment...
Chapter 6—HYDRAULICS IN MISSILE LAUNCHING SYSTEMS

screw (fig. 6-28). The filters may need to be cleaned, or the whole valve may need to be disassembled, cleaned, and reassembled. Servovalves are used in several of the hydraulic systems, and you need to be able to maintain and repair them.

TALOS RECEIVER-REGULATORS

There are many similarities between the Mk 7 and the Mk 12 launching systems, and in many cases the equipments are identical. The basic principles of hydraulics and electricity apply to both systems. Equipments that are the same are the Area 1 accumulator, the mechanical and hydraulic aspects of the loader (except the power drive), and the mechanical and hydraulic aspects of the span track and the blast doors.

The receiver-regulators used with the Mk 7 Mod 0 and Mk 50 Mods 0 and 1 power drives make use of torque motors and rotary valves. On the Mod 2 power drives, electrohydraulic servovalves are used. The primary (position) and the velocity electrohydraulic servovalves for train and for elevation are in the receiver-regulators. Magnetic amplifiers are located on the EP2 panel. These amplify the train and elevation electrical signals so the signals are strong enough to tilt the A-end plate and start movement of the hydraulic fluid which will move the launcher in the direction and amount ordered.

Local train and elevation orders are transmitted by the local order synchro transmitters mounted in the internal director section of Test Panel Mk 203 Mod 0, the EP-3 panel. The transmitters are positioned by operation of the controls on the EP-3 panel to set the train and elevation indicator dials on the face of the panel to the positions ordered. There are fine and coarse

Figure 6-28.—Electrohydraulic servovalve. cutaway view.
GUNNER'S MATE M 1 & C

dials for train and elevation on the control panel and also on the receiver-regulators. Remote control is in the form of electrical signals from the fire control computer that processes the information from a radar antenna mount. Two channels of control signals are fed to the train and elevation drives. One is a position order and the other is a velocity order. The synchro transmitter in the computer transmits a position order to the IXCT in the receiver regulator of the launcher. The stator of this CT is geared to the B-end of the hydraulic transmission. If the launcher is not positioned at the same bearing as the transmitted order, a voltage is developed on the rotor of the CT to represent launcher position error (angular difference between actual launcher position and the ordered launcher position). This error voltage is placed on the input terminals of the magnetic amplifier in the EP-2 panel. The error signal, amplified, is sent back to the receiver regulator, which then applies tilt to the A-end of the hydraulic transmission. The amount of tilt of the A-end governs the speed of the B-end. A gear reduction unit reduces the speed before it is applied to the drive pinion to drive the carriage. As the carriage rotates to the ordered position, the error reduces until it is zero.

When the situation is continually changing, as when the radar is tracking a moving target, the launcher must keep moving to follow the error signal, which could make it rough. A smooth operation of the launcher is made possible by the use of the velocity channel as an additional means of stroking the A-end. The velocity order is also received from the computer. The signal is amplified in the EP-2 panel, and sent to the receiver regulator, which causes a proportional tilt in the A-end. The electrohydraulic servovalve is part of the receiver regulator. It converts the electrical signal into hydraulic actuation.

A third system for power drive control is the integration system. It differs from primary and velocity control in that it is initiated within the receiver regulator. It is used only when the launcher is within one degree of synchronization and it prevents the launcher from hunting back and forth over the synchronization point. The integration system detects a small primary-error through the displacement of primary stroke valve UVTD2 and responds to it by putting a movement on the stroke control lever through the velocity piston. Movement of UVTD2 acts on one end of a lever-arm linkage and the other end is pivot-mounted to a stationary point on the regulator valve block. As an example of how an integration signal is developed, a small increasing order through the primary system will be discussed.

The small downward displacement of UVTD2, figure 6-29 will cause a proportional downward displacement of integrator control valve UVTD7. UVTD7 supplies control pressure through neutralizing valve UVTD20 to the integration piston UCTD8. Any movement of UVTD7 from its neutral position will cause a pressure change in the chamber above, UCTD8. Due to the decrease in pressure at the top of UCTD8, the integration piston starts to move up. The final position of UCTD8 represents the volume of fluid that has flowed to or from UVTD7. This volume is a measure of the sum of the primary error for each unit of time that the error existed.

The movement of UCTD8 generates an electrical signal through RATD5, (fig. 6-29), the integration potentiometer. The integration signal is amplified by the velocity amplifier and applied to the primary system to the stroke control level through the velocity system. The velocity potentiometer develops a response signal through RATD4 to electrically cancel the integration signal.

The integration system is cut out when large error signals are applied to the power drive servosystem.

The train and elevation limit stop systems are located in the receiver regulators. Their function is to stop movement of the launcher and/or guide arms when moving into a fixed limit or nonpointing zone, or when a power failure occurs.

indicating equipment

The position of the launcher must be known to the man who presses the firing key, the man who must make the decision whether to fire, and the men who position the launcher. The information must be presented simultaneously to all of them. The indicating lights are on the
launcher captain's control panel, in the weapons control station, and on the bridge. Train and elevation position and order dials on the launcher captain's control panel indicate the actual train and elevation positions and the ordered positions. (These dials cannot be changed manually.) Launcher elevation is shown in minutes of elevation arc, and train is shown in degrees. When the observed position and the ordered position match, the launcher is in firing position and the TRAIN IN SYNC and ELEVATION IN SYNC lights illuminate. When all parts of the missile and the launcher are ready, the READY-TO-FIRE window on the panel lights up. The missile may not be fired until all lights show that everything is in readiness.

Within the weapons system are numerous equipments called indicators, all designed to supply information to the operators. The train position indicator and the elevation position indicator are two of these. All the panels in the launching system, manned and unmanned, are indicating panels. Numerous panels and consoles in the Weapons Direction System (WDS) provide indications of weapons system conditions to the operators. Among those of interest to the GMM are the Weapon Assignment Console (WAC), Director Assignment Console (DAC), Target Selection and Tracking Console, master control panel, casualty weapons direction panel, casualty firing panel, missile status indicator panel, and control indicator panel. Some of these are in the Combat Information Center (CIC) and some are in the Weapons Control Station (WCS). Intersystem communication between the Weapons Direction Equipment and
the guided missile launching system transmits orders to the control panels in the launching system and feedback from the launching system is transmitted back to the Weapons Control Station to indicate the carrying out of the order. For example, a load-select order is transmitted to the EP-2 panel as a light indication that shifts from flashing to steady when the EP-2 panel operator positions the A or B Selector switch to match the position ordered. This switch continuously feeds back an indication of the switch position to Weapons Control. Information on missile status (Armed/Safe, or Unsafe) is sent through the EP-2 panel to Weapons Control. Firing status is transmitted to Weapons Control as Missile Ready, Missile Firing, Dud, etc.

What happens if the launcher and missile are in readiness, but one or more of the necessary indicator lights are not on? The actual cause of this failure may be merely a burnedout light bulb on the panel, but you don't actually know what is wrong until you check and find the trouble. Know-how acquired through daily checkouts should help you locate the trouble quickly and surely. In a combat situation, loss of even a short time can be critical. Your knowledge of launching system checkout can be the saving factor.

In addition to automatic equipment, sound-powered telephone circuits provide rapid interchange of information between missile system stations. These circuits are independent of electrical power from ship supply and can therefore continue to function when other systems fail.

TESTING AND MAINTENANCE

Each system has some provision for continuing operation if part of the system is inactivated by casualty. In the Terrier system it is called casualty mode of operation. Duplicate control panels and consoles are ready to be placed in operation in emergency, and ways of bypassing some controls are provided. The OP for the system describes casualty operation of the Terrier system.

Other missile systems have an auxiliary mode or emergency mode. In the Tartar system, Step control can be used for emergency if the automatic circuitry is inoperative. Manual operation is used for maintenance, checking, and installation, as well as for emergency. The Talos system has auxiliary mode in step control. The purpose of these "extra" methods of firing is not to avoid making repairs on the system, but for use in an emergency in a combat situation. Train your men in the use of them so they will know what can be used in an emergency. Manual operation is strictly for maintenance, repair, and exercise.

SHIPBOARD RECEIVER-REGULATOR ADJUSTMENTS

The components of receiver-regulators are not fragile, but adjustments are precise and delicate, and therefore maintenance must be performed with care by trained, competent men. Improper care and maintenance procedures can destroy critical adjustments which require extensive realignment. Misalignment or binding of the various mechanisms can cause erratic launcher movement. The real cause of the trouble may be difficult to locate, so make a careful study of the problem before attempting to make any adjustment or repair.

Shipboard maintenance of receiver regulators includes replacement and adjustment of electrohydraulic servovalves, velocity and integration potentiometers, and input synchro control transformers. One man operates the panel while another performs adjustments. Telephone communication between them is essential.

To replace an electrohydraulic servovalve, deactivate the system and dump fluid pressure from the regulator by draining the system to the level of the main supply tank. Then loosen the capscrews which secure the servovalve to the top of the main valve block in the receiver-regulator, and disconnect the cable plug. Replace with a new servovalve, tighten the capscrews, and reconnect the cable plug. A dowel pin in the base of the servovalve assures that the valve is positioned correctly.

After the servovalve is positioned, it is ready for adjustment. The servovalve spool position is adjusted by means of the adjustment setscrew (fig. 6-28). To adjust the primary electrohydraulic servovalves, energize the primary system but leave the velocity system deenergized. Adjust
the primary electrohydraulic servovalve for zero difference current. Use the adjustment setscrew to adjust the valve spool. The difference current can be checked at the amplifier test points (fig. 6-30, 10A and 10B on the test points). Be sure the meter switch is turned to TRAIN PRIMARY when testing the train servovalve, and to ELEV PRIMARY when testing the elevation servovalve.

The adjustment of the velocity electrohydraulic servovalves is made in a similar manner. Activate the velocity system but not the primary system. Make sure the velocity potentiometer is adjusted to zero volts from the amplifier test point 8B to ground. With the setscrew (fig. 6-28) adjust the servovalve spool to zero difference current at velocity test points 10A and 10B (fig. 6-30). Turn the meter switch to TRAIN VELOCITY and the train test switch to 10 when checking the train velocity valve. To check the difference current on the elevation velocity servovalve, be sure to turn the meter switch to ELEVATION VELOCITY and the elevation test switch to 10.

When an operational check shows faulty operation of a potentiometer, it should be replaced and adjusted. There are four potentiometers in the amplifier assembly shown in figure 6-30, two integration potentiometers, and two for train and elevation velocity. A volt meter is needed to make the adjustment of the potentiometer arm to zero volts before beginning removal or testing of any part. Deenergize the velocity system. Follow the instructions in the OP for your weapon system.

The position of the launcher, compared to the position indicated on the receiver-regulator dials, must be checked at regular intervals. If there is any difference between the actual position of the launcher and the dial indication, adjustment must be made to the vernier on the regulator B-end responsible shaft. If the B-end vernier is adjusted, the launcher load order synchros will also require adjustment. Refer to your OP for the methods of doing this. Shut off power to the system when replacing any parts. Careful readjustment is necessary whenever a new part is placed in the system.

Figure 6-30.—Front panel of amplifier.
MAINTENANCE OF RECEIVER-REGULATORS

Quarterly, or after each 360 hours of operation, secure the launcher in train and elevation, and remove the housing cover of the receiver-regulator (train and elevation receiver-regulators receive the same maintenance). With the lubricant specified for your equipment, lubricate the rotary piston switch bearings, pivots, and rollers; A-end stroke response switch arm, bearings, pivots, and rollers; main valve block bearings, adjustable gears, and pinions; blind zone cutout gearing bearings, pivots, and rollers; blind zone cutout gearing brake block linkage and bearings; and all synchro gearing and bearings except those located within the synchros.

Remove the fluid power transmission fitting protective cap on the A-end stroke response and lubricate the fitting with a hand gun containing the prescribed fluid mixture. Check and refill, or add the specified corrosion inhibitor if required, at the synchro gearing assembly level.

Plan to adjust the power drive interlock switches at the same time, so the receiver-regulator covers do not have to be removed oftener than necessary. Most of the interlock switches are adjusted at the receiver-regulator. When possible, interlock switches are adjusted with the power off. Turn off power at the power panel.

Switch actuation is checked by a continuity indication at the nearest terminal. Switch lead termination between switches is sometimes common so that one lead must be disconnected. Because of the complexity of the wiring, the disconnected lead should be tagged and, after adjustment, reconnected immediately.

Communication must be established between the manual operator and the person or persons performing the switch adjustment. You will need to have the drawings showing the location of the switches for your power drive system, the OP, and a check sheet listing each switch so you can record your tests. Some of the interlocking switches can be checked with the power off and a 1.5-volt test lamp connected to the switch terminals in the regulator.

Train and elevation blind zones are fixed on the individual installations and are permanently recorded. You need a copy of the record when checking the stop positions of the launcher in train and elevation. Compare the train and elevation stop positions with the recorded limits. The air drive motor is used to move the launcher slowly in train and elevation for testing. Listen for the click of the solenoid that indicates actuation, and record the B-end position at that time. Use the OP for complete instructions.

Adjustment of the various interlock switches of the train and elevation power drives requires familiarity with the operation of the associated control circuitry and the actuating mechanisms. Equipment required includes a continuity checker with a self-contained power supply and a regulated and adjustable hydraulic fluid supply with a pressure gage.

Some special tools are used in adjustment and maintenance of parts of receiver-regulators. The correct tools make the work easier; they are a necessity for exacting adjustments. Follow through on the care of the tools. See that they are put back in their proper places, in undamaged condition. If a tool becomes damaged during use, do not put it back on the tool rack or in the tool kit, but recondition it or replace it.

WARNING: Make sure that power to the power drive system is shut off prior to removing receiver-regulator covers or auxiliary relief and brake control valve switch and solenoid housings for switch adjustments, unless switch adjustment requires power operation. Remove the safety switch handles from the power and control panels. Keep all panel doors and solenoid housing covers secured at all times except when being serviced. Do not position any SOLENOID by hand unless specifically ordered to do so.

Maintain the schedule of lubrication setup for your equipment and use the lubricants specified on the lubrication chart. An atomizer is used where very light lubrication is needed yet all parts must be reached by the oil. Do not over-lubricate or use the wrong type of lubricant.

Equipment adjustments should be made only when actually required. When switches, relays, solenoids, etc., malfunction, do not attempt to repair them. Replace the faulty unit with a functional one, replace and tighten all screws, nuts, etc., and then test-operate to be sure it functions
Chapter 6—HYDRAULICS IN MISSILE LAUNCHING SYSTEMS

properly in place. Make adjustments then if necessary, following OP instructions.

TROUBLE ANALYSIS

The response (or lack of it) of the launcher to signals from the weapons control station or the control panel is an indication of the condition of the system. In the daily exercise of the launcher, watch for any erratic movement. Trace the cause, and make the necessary adjustment or repair. Then test the adjustment or repair by again operating the launcher. Leakage in the hydraulic system can be located by visual inspection. Noisy operation may be due to lack of circulating hydraulic oil, either because of insufficient oil or blockage of the supply. Air in the hydraulic system also causes noisy operation. Overheating of any part is usually due to lack of lubrication. The remedies for these troubles are fairly simple.

When the launcher makes erratic response to the order signal, the trouble may be more difficult to locate and adjust. If the launcher will move in only one direction, look for trouble in the valves in the B-end and A-end. An improperly adjusted pilot valve in the A-end may permit the launcher to override the control signal. If the launcher moves several degrees beyond the ordered position (or stops before reaching the ordered position), the synchros are not properly adjusted to null. If the launcher is slow in responding to the control signal, the control pump filters may be clogged, the torque motor coils may be improperly adjusted, the oil level may be too low, the control pressure relief valve may be improperly set, the B-end relief valves may be improperly set, or there may be a defective part.

WARNING: Make sure that power to the power drive system is shut off before removing receiver-regulator covers or making any adjustments.

MISSILE CONTROL COMPONENTS AND SYSTEMS

Guidance and control are sometimes spoken as if they were one and the same. They are two parts of the problem of getting the missile to the selected target after it is fired. The main reason for controlling a missile in flight is to gain increased accuracy for missiles with extended ranges.

A missile guidance system keeps the missile on the proper flight path from launcher to target, in accordance with signals received from a control point. The missile control system keeps the missile in the proper flight attitude. Together, the guidance and control components of any guided missile determine the proper flight path to hit the target, and control the missile so that it follows this determined path. Missiles accomplish this “path control” by the processes of tracking, computing, directing and steering. The first three processes of path control are performed by the guidance system, steering is done by the control system.

GMM 3&2, NT 10199, described the external control surfaces of guided missiles such as wings and fins; and explained the effects of natural forces acting upon them and how the missile compensates for them. The remainder of this chapter explains the characteristics of some of the numerous mechanical, hydraulic, and pneumatic systems used to control the steering components to maintain a stable missile flight. We will deal with the general principles, rather than the actual design of any specific missile.

Types of Control Systems

Missile control signals may come from inside the missile, from an outside source, or from both. Regardless of which method of control is used, some source of power must be produced to control the steering surfaces of the missile. This power is initially produced within the missile by hot gases, compressed or high pressure air, or by electrical means. The power is transmitted from the supply source to the movable steering controls by pneumatic, electrical, or mechanical means, or by using a hydraulic transfer system in conjunction with the sources mentioned above.

Before getting into the details of specific types of control, let us first take a general look at several possible controllers and compare some of their advantages and disadvantages.
A pneumatic system which depends on tanks of compressed air is obviously limited in range. Since air or any other gas is compressible, the movement of a pneumatic actuator is slow due to the time it takes to compress the air in the actuator to a pressure sufficient to move it. Hydraulic fluid is practically incompressible and will produce a faster reaction on an actuator, especially when the actuator must move against large forces. Thus, large, high speed missiles (Talos) are controlled by hydraulic actuators.

Very few missiles have been designed which do not have some part of their control systems operating by electricity. The use of an all electric control system would place all the equipment, except the propulsion unit, within the electrical field. This would simplify manufacture, assembly, and maintenance. Also, it would be easier to transmit information or power to all parts of the missile by wires, rather than by hydraulic or pneumatic tubing.

An all mechanical control system in a missile is not very probable. In an all mechanical system, error information would be transferred from a mechanical sensor by some mechanical means such as a gear train, cable, rotating or sliding shaft, or chain linkage. This linkage would then connect to the correcting devices such as control surfaces.

The major disadvantages of a mechanical control system are that too much power would be required to move the necessary (and heavy) gear trains and linkages, and the installation of an all mechanical system would be extremely difficult in the small spaces of a missile.

To gain advantages and offset disadvantages of the different types of control, combinations are used, such as pneumatic-electric, hydraulic-electric, hydraulic-mechanical, or others.

Missile Control Servosystem

A missile control subsystem is a servomechanism. A servomechanism takes an order and carries it out. In carrying out the order, it determines the type and amount of difference between what should be done and what is being done. Having determined this difference, the servomechanism then goes ahead to change what is being done to what should be done. To perform these functions, a servomechanism must be able to:

1. Accept an order which defines the result desired.
2. Evaluate the existing conditions.
3. Compare the desired result with the existing conditions, obtaining a difference between the two.
4. Issue an order based on the difference so as to change the existing conditions to the desired result.
5. Carry out the order.

For a servomechanism to meet the requirements just stated, it must be made up of two systems—an error detecting system and a controlling system. The load, which is actually the output of the servo, can be considered part of the controller.

By means of servosystems, some property of a load is made to conform to a desired condition. The property under control is usually the position, the rate of rotation, or the acceleration of the load. The system may be composed of electrical, mechanical, hydraulic, pneumatic, or thermal units, or of various combinations of these units. The load device may be any one of an unlimited variety; a missile control surface, the output shaft of an electric motor, and a radar tracking antenna are a few typical examples.

Discontinuous and Continuous Control

The simplest form of control can be illustrated by the elementary circuit shown in figure 6-31A. The circuit contains a source of power, a switch, or controlling device; and an unspecified load. The elements are connected in series. When the switch is closed, energy flows to the load and performs useful work; when the switch is opened, the energy source is disconnected from the load. Thus, the flow of energy is either zero or a finite value determined by the resistance of the circuit. Operation of this general type is called DISCONTINUOUS CONTROL.

In figure 6-31B, the circuit is modified by substitution of a rheostat for the switch; and the circuit now provides CONTINUOUS CON-
Chapter 6—HYDRAULICS IN MISSILE LAUNCHING SYSTEMS

TROL. By displacing the rheostat contact, the circuit resistance is varied continuously over a limited range of values. The energy expended in the load is then varied over a corresponding range rather than by intermittent, or on-off action as in discontinuous control. Both these simple examples represent a fundamental property of control systems in general: the energy required to control the system is small compared with the quantity of energy delivered to the load.

![Figure 6-31](https://example.com/figure631.png)

Figure 6-31.—Elementary control circuit: A. Discontinuous control; B. Continuous control.

Open- and Closed-Loop Servosystems

In the examples given above, the power source is controlled directly by manual adjustment of a switch or of a rheostat. In more complicated servosystems, control signals are applied to the power device by the action of an electrical or a mechanical device rather than by manual means.

Automatic servosystems can be divided into two basic types: open-loop and closed-loop systems. The essential features of each are indicated by the block diagrams in figure 6-32.

In both systems, an input signal must be applied which represents in some way the desired condition of the load.

In the open-loop system shown in figure 6-32A, the input signal is applied to a controller. The controller positions the load in accordance with the input. The characteristic property of open-loop operation is that the action of the controller is entirely independent of the output.

The operation of the closed-loop system (fig. 6-32B) involves the use of followup. The output as well as the input determines the action of the controller. The system contains the open-loop components plus two elements which are added to provide the followup function. The output position is measured and a followup signal proportional to the output is fed back for comparison with the input value. The resultant is a signal which is proportional to the difference between input and output. Thus, the system operation is dependent on input and output rather than on input alone.

![Figure 6-32](https://example.com/figure632.png)

Figure 6-32.—Basic types of automatic servosystems: A. Open-loop; B. Closed-loop.

Of the two basic types, closed-loop control (also called followup control) is by far the more widely used, particularly in applications where speed and precision of control are required. The superior accuracy of the closed-loop system results from the followup function which is not present in open-loop systems. The closed-loop device goes into operation automatically to correct any discrepancy between the desired output and the actual load position, responding to random disturbances of the load as well as to changes in the input signal.

Controllable Factors

The missile control system is actually a closed-loop servomechanism in itself. It is able to detect roll, pitch, and yaw, and it is able to
position the movable control surfaces in accordance with this attitude information. It is very important that you understand that the control surfaces are not positioned on the basis of attitude information alone. It is again pointed out that movement information, guidance signals, and control surface position information are continuously analyzed in the computer network. The correction signals are continuously generated on the basis of all this information.

Overall Operation

Before studying the individual components of the missile control system, let us take a brief look at the operation of the system as a whole. Figure 6-33 shows the basic missile control system in block diagram form. Free gyroscopes provide physical (spatial) references from which missile attitude can be determined. For any particular missile attitude, free gyro signals are sent from the gyroscopes to the computer network of the missile.

These signals are proportional to the amount of roll, pitch, and yaw at any given instant. After these signals have been compared with other information (for example, guidance signals), correction signals result. The correction signals are orders to the controller to position the control surfaces. The purpose of the amplifier is to build the weak correction signals up to sufficient strength to cause actuation of the controller. As in any closed-loop servosystem, followup information plays an important role. A followup mechanism continuously measures the positions of the control surfaces and relays signals back to the computer network.

EXTERNAL FOLLOWUP—In addition to the internal followup which is actually measured by a mechanism, we can think of the missile's movement detecting devices as providing an external followup feature. The fact that the gyroscopes continuously detect changing missile attitude introduces the idea of external follow-

Figure 6-33. Basic missile control system.
Components of Missile Control Systems

Figure 6-33 have named parts of a missile control system and some of the components have been discussed. The components may be grouped according to their functions. They cannot be strictly compartmentalized as they must work together and there is overlapping. Devices for detecting missile movement may be called error-sensing devices. The amount and direction of error must be measured by a fixed standard; reference devices provide the signal for comparison. Correction-computing devices compute the amount and direction of correction needed and correction devices carry out the orders to correct any deviation. Power output devices amplify the error signal, but the prime purpose is to build up a small computer output signal to a value great enough to operate the controls. The use of feedback loops provides for smooth operation of the controls.

Do not confuse the missile control system with the weapons control system. The weapons direction system and the fire control systems and their related components comprise the weapons control system. These shipboard equipments control all weapons aboard, including guns, missiles, and torpedoes. The missile control systems are in the missile, and may receive direction from shipboard equipment.

CONTROLLER AND ACTUATOR UNITS

A controller unit in a missile control system responds to an error signal from a sensor. There are several types of controller units, and each type has some feature that makes it better suited for use in a particular missile system.

Solenoids

A solenoid consists of a coil of wire wound around a nonmagnetic hollow tube; a moveable soft-iron core is placed in the tube. When a magnetic field is created around the coil by current flow through the winding, the core will center itself in the coil. This makes the solenoid useful in remote control applications since the core can be mechanically connected to valve mechanisms, switch arms, and other regulating devices. Two solenoids can be arranged to give double action in certain applications.

Transfer Valves

Figure 6-34 shows an application in which two solenoids are used to operate a hydraulic transfer valve. The object is to move the actuator which is mechanically linked to a control surface or comparable device. The pressurized hydraulic fluid, after it leaves the accumulator, is applied to the transfer valve shown in figure 6-34B. The valve is automatically operated by the response of the solenoids to electrical signals generated by the missile computer network.

If solenoid #1 in the figure is energized, it will cause the valve spool to move to the left. This will permit pressurized fluid to be ported to the...
right-hand side of the actuator and cause its movement to the left. If solenoid #2 is energized, the valve spool will move to the right, causing actuator movement to the right in the same manner. When neither coil is energized, the valve is closed (fig. 6-34A).

The transfer valve just described has one disadvantage in that it operates in an on-off manner. This means that it provides positive movement of the control surfaces, either full up or full down, full right or full left. A finer control is usually more desirable in missile systems. The servovalve (fig. 6-35) provides this control. With neither of the windings energized (or a balanced current flowing through both), the magnetic reed is centered as shown (fig. 6-35). In this condition, high pressure hydraulic fluid from the input line cannot pass to the actuator since the center land of the spool valve blocks the inlet port. The pressurized fluid flows through the alternate routes, through the two restrictors (fixed orifice), passes through the two nozzles, and returns to the sump without caus-}

right-hand side of the actuator and cause its movement to the left. If solenoid #2 is energized, the valve spool will move to the right, causing actuator movement to the right in the same manner. When neither coil is energized, the valve is closed (fig. 6-34A).

The transfer valve just described has one disadvantage in that it operates in an on-off manner. This means that it provides positive movement of the control surfaces, either full up or full down, full right or full left. A finer control is usually more desirable in missile systems. The servovalve (fig. 6-35) provides this control. With neither of the windings energized (or a balanced current flowing through both), the magnetic reed is centered as shown (fig. 6-35). In this condition, high pressure hydraulic fluid from the input line cannot pass to the actuator since the center land of the spool valve blocks the inlet port. The pressurized fluid flows through the alternate routes, through the two restrictors (fixed orifice), passes through the two nozzles, and returns to the sump without caus-

ing any movement of the actuator. If the right-hand solenoid is energized, the magnetic reed will move to the right, blocking off the flow of high pressure fluid through the right-hand nozzle. Pressure will build up in the right pressure chamber. This will move the valve to the left. In moving left, the center land will open the high pressure inlet and permit fluid flow directly to the right-hand side of the actuator. At the same time, the left-hand land of the spool will open the low pressure return line and permit flow to the sump from the left-hand side of the actuator. This process will cause actuator movement to the left. By energizing the left-hand solenoid, the reed will move to the left, and the entire process will be reversed, the actuator then being moved to the right. The actuator can be used to physically position a control surface.

Relays

Relays are used for remote control of heavy-current circuits. The relay coil may be designed to operate on very small signal values, such as the output of a sensor. The relay contacts can be designed to carry heavy currents.

Figure 6-36A shows a relay designed for controlling heavy load currents. When the coil is energized, the armature is pulled down against the core. This action pulls the moving contact against the stationary contact, and closes the high current circuit. The relay contacts will stay closed as long as the magnetic pull of the coil is strong enough to overcome the pull of the spring.

The relay just described has a fixed core. However, some relays resemble a solenoid in that part of the core is a moveable plunger. The moving contacts are attached to the plunger, but are electrically insulated from it.

Figure 6-36B shows a form of relay that can be used in a pneumatic control system. Two air pressure lines are connected to the air input ports. The relay operates when its arm is displaced by air pressure. A modified design of this type relay might be used in a hydraulic-electric system, in which case the diaphragm would be moved by hydraulic fluid pressure.

The actuator unit is the device that converts the error detected by the sensor into mechanical motion to operate the appropriate control.
device that will correct the error or compensate for it. The actuator must be able to respond rapidly, with a minimum time lag between detection of error and movement of the flight control surfaces or other control device. At the same time, it must produce an output proportional to the error signal and powerful enough to handle the load. Figure 6-34B shows a double-acting piston-type hydraulic actuator in which hydraulic fluid under pressure can be applied to either side of the piston. The piston is mechanically connected to the load.

PRINCIPAL TYPES

Actuating units use one or more of three energy transfer methods: hydraulic, pneumatic, or electrical. Each of these has certain advantages, as well as certain design problems, mentioned earlier in this chapter. Control devices make use of more than one method of energy transfer but are classified according to the major one used. Combinations are hydraulic-electric, and pneumatic-electric. Mechanical linkages are used to some extent by all of them.

Hydraulic Actuators

Pascal’s Law states that whenever a pressure is applied to a confined liquid, that pressure is transferred undiminished in all directions throughout the liquid, regardless of the shape of the confining system.

This principle has been used for years in such familiar applications as hydraulic door stops, hydraulic lifts at automobile service stations, hydraulic brakes, and automatic transmissions.

Generally, hydraulic transfer units are quite simple in design and construction. One advantage of a hydraulic system is that it eliminates complex gear, lever, and pulley arrangements. Also, the reaction time of a hydraulic system is relatively short, because there is little slack or lost motion. A hydraulic system does, however, have a slight efficiency loss due to friction.

HYDRAULIC-ELECTRIC CONTROL DEVICES—The hydraulic-electric method of actuating movable control surfaces has been used more than any other type of system. As previously mentioned, the most important advantages of this type of system are the high speed of response and the large forces available when using hydraulic actuators.
You have studied several of the components shown in the simplified block diagram of a hydraulic-electric controller (fig. 6-37). This system is comprised of (1) a RESERVOIR which contains the supply of hydraulic fluid, (2) a MOTOR and a PUMP to move the fluid through the system, (3) a RELIEF VALVE to prevent excessive pressures in the system, (4) an ACCUMULATOR which acts as an auxiliary storage space for fluid under pressure and as a damping mechanism which smooths out pressure surges within the system, and (5) a TRANSFER VALVE which controls the flow of fluid to the actuator.

Most of these components of the system have been covered in the preceding pages. The theory of hydraulic piston displacement is explained in Fluid Power, NAVTRA-16193—and hydraulic pumps are also illustrated and explained. Pumps used in missile systems generally fall into two categories—gear and piston. They are usually driven by an electric motor within the missile.

Electric Actuators

The electric actuators used to control the deflection of control surfaces are replacing many of the hydraulic systems now used in some missiles. Figure 6-38 shows a mechanical schematic of an actuator used in the Standard Missile. The missile has four actuators and, since the operation of each is identical, only one will be discussed.

Figure 6-37.—Basic hydraulic controller.

Figure 6-38.—(U) Electric Tail Actuator, Mechanical Schematic Diagram.
The drive motor (fig. 6-38) runs continually (after missile activation) in the same direction so that the drive motor output gear, and the CW and CCW clutch input gears rotate in the direction indicated by the arrows. Either clutch output gear rotates in the direction of the corresponding clutch input gear when the clutch is engaged; either clutch output gear is free to turn in either direction when the corresponding clutch is disengaged. Since only one clutch can be engaged at a given time, one of the clutch output gears is always free to turn in either direction. Either clutch is engaged when the corresponding pushrod is advanced forward into the clutch by the torque motor in response to the output of the missile control system.

Prior to the missile control system activation, the torque motor receives no input from the system, consequently both clutches are disengaged and neither clutch output gear rotates. After system activation, one of the two coils in the torque motor is energized, (depending on the signal output from the control system) resulting in the engagement of one of the clutches. When the CW clutch is engaged, the CW output gear rotates in the direction of the CW clutch input gear rotation, and drives the worm input gear to cause CW rotation of the control surface. When the CCW clutch is engaged, the control surface rotates CCW.

Mechanical Linkage.

We have discussed the various control systems, but have not discussed in detail the mechanical means of linking the flight control surfaces to the actuator. In addition to providing a coupling means, the linkage may also be used to amplify either the force applied or the speed of movement.

A mechanical linkage between an actuator and a load is shown in figure 6-39A. The distance d on the drawing represents the distance from the control surface shaft to the point where the force is applied. The control surface moves because force exerted by the piston is applied at a distance from the axis of rotation, and thus produces a torque. Other mechanical linkages may consist of an arrangement of gears, levers, or cables (fig. 6-39B).

A number of mechanical systems may be grouped together to form a combination system.
This system uses levers, cables, pulleys, and a hydraulic actuator. However, a system using this kind of control is not suited for high speed missiles.

SUMMARY

This chapter explained the hydraulic systems used in some missiles and missile launchers. The hydraulic principles are the same in all of them; in application of the principles they differ only in details. Each hydraulic power drive has an A-end pump and a B-end motor; some systems use a radial piston type, and other systems use axial piston types or parallel piston types. All are started by an electric motor, which may vary in size, manufacture, and other details.

Methods of maintenance and repair of filters, valves, pumps, and motors common to all the system are given. Within the limitations of the facilities available, a GMM 1 or C should be able to repair and maintain most parts of a hydraulic system. The size rather than the complexity of the component may be the determining factor. With an understanding of how the parts work together and the aid of parts lists and illustrations, checkoff lists, MRCs, and maintenance OPs and ODs, the GMM 1 or C can adjust and repair the most complex parts and train his men in the maintenance of the system. Although the present day trend is to replace malfunctioning units with new ones, avoiding time-consuming disassembly and repair, the new unit must operate correctly when in place. It may require delicate adjustment after installation. To do this you need to know how it operates, so you can understand how to adjust it.

Since so much of the launching system is dependent on the interaction of electric and hydraulic components, testing of the system operation will be discussed further in a later chapter.
CHAPTER 7

PNEUMATIC EQUIPMENT AND COMPONENTS

Air, pressurized and unpressurized, is used in many ways in connection with guided missile systems—in the missiles themselves, in the control system, in the launching system, and in tools and equipment. The effects of air on missile flight were discussed as part of the fire control story in the preceding course. As a GMM 3 and GMM 2 you learned the types of missile air frame construction, characteristics of various missile configurations, and influence of missile shapes, wings, and fins on the effects of the air stream, wind, air pockets, etc. This information will not be discussed further here: refresh your memory when necessary by reviewing the preceding course in this series, Gunner's Mate M (Missiles) 3&2, NAVTRA 10199.

The use of pressurized air in the launching system, and handling equipment will be covered in this chapter. The dud-jettisoning equipment, described in chapter 4, is one example of a pneumatic component that you have learned to operate, test functionally, disassemble, inspect, clean, and lubricate. Your knowledge of this component must now be expanded to include overhaul, repair and adjustment of the equipment, and planning and supervising the maintenance and repair program for the equipment.

The parts of equipments that are pneumatic are intricately connected to electrical and hydraulic components, so it is difficult to discuss the pneumatic features separately.

Compressed air is supplied to various systems by high pressure, medium pressure, or low pressure air compressors in the ship's engineering department. Compressed air outlets are located in the spaces where needed, such as checkout and repair spaces. Low pressure is 150 PSI or less; medium pressure is 150 to 1000 PSI; pressures above 1000 PSI are classed as high pressure. Reducing valves reduce higher pressure to a lower pressure for a specific system. Compressed air has many uses aboard a modern Navy ship, such as for operating pneumatic tools and handling equipment, charging and firing torpedoes, operating the dud-jettisoning unit, and other parts of the missile launching system. On most ships the air is dried. If you require dry compressed air, as for blowing out or drying out electrical components, check to be sure that the air at the outlet is dried. Use only rubber or insulating hose in portable air lines for blowing out electrical equipment. Also, pressure must be low, not over 30 PSI on motors and generators up to 50 horsepower or 50 kilowatts.

PNEUMATIC COMPONENTS USED WITH AND/OR IN MISSILE SYSTEMS

In the descriptions of the weapons systems in this course and in the preceding course, mention has been made of various pneumatic components. Of these, the dud-jettison unit was described and illustrated with the most detail.

TOOLS

The tools operated by compressed air are old friends of yours from your Seaman days. Your chief concern with them is to see that your men use them properly and observe safety precautions. Be sure the tools are returned in good condition to their proper place. Any defects in a tool should be corrected before it is placed on
the tool board, or in a locker or other storage place. Tools and Their Uses, NAVTRA 10085, describes and illustrates the pneumatic hand-tools commonly used in the Navy, and gives the safety precautions to observe when using them. Even at low pressures, an air hose should never be pointed at anyone. The pressurized air can do serious bodily harm. Two air hoses on automatic rewind reels are conveniently located just inside each access door in the space where the missiles are unpacked.

Pneumatic Wrenches (Decanning Tools)

Wherever missile components are received in packaged form, usually in gasketed metal barrels or cans, special tools are provided for opening or for closing the cans. It is important to prevent damage to the sealing edge of the cans so they can be re-used for protected packaging of components. Even though the component being repackaged is a damaged, malfunctioning, or nonfunctioning part being returned to a depot for repair, it is important to protect it by proper packaging, which in most cases means placing it in a gasket-sealed metal can with desiccant, and cushioning or blocking material. A portable pneumatic impact wrench used for installing or removing nuts and bolts is described and illustrated in Tools and Their Uses, NAVTRA 10085. Use only the equipment and tools authorized for the job; consult the OP and/or the MRC.

AIR DRIVEN HANDLING EQUIPMENT

Power for operating missile handling equipment may be electric, hydraulic, pneumatic, or a combination such as electrohydraulic. Chapter 2 mentions some pneumatic-powered equipment used during replenishment. The power used varies with the ship installation more often than with the type of missile handled. Some typical air-operated equipments are described. On all components of an air system, the inlet and outlet parts of all valves and air motors must be plugged or covered until installed and during repairs. It is important that dirt, metal chips, filings, and other extraneous material be kept from getting into the system. Under no circumstances should water be allowed to enter into the system. All tubing and flexible hose must be clean and free from scale or other foreign matter.

Whenever equipment appears to be malfunctioning, it should be shut down and the cause investigated. Before dismantling any part of the air system, make sure that the part is shut off from pressure; allow trapped pressure to escape gradually. Keep grease and oil off air hoses and outlets.

Bi-Rail Trolley Hoists

Cruisers of the CG-10 class have three pneumatically operated bi-rail trolley hoists (one forward and two aft in the Talos launching systems), and CGN-9 class ships have two of them. Bi-rail trolley hoists provide for athwartship transfer of Talos innerbodies at the second deck between the receiving stand and the elevator, and in the warhead magazine. While in the hoist, the innerbody can be rotated 360 degrees in azimuth and located in any azimuth position.

Bridge Cranes

The trolley hoists travel on air-driven bi-rail overhead bridge cranes. The trolley hoist can be moved onto the bi-rail section of the bridge crane and secured. When not in motion, the bridge crane and trolley hoist will automatically lock in position.

Receiving Stands

Two pneumatic-powered receiving stands are provided on the second deck of CG-10 and CGN-9 class cruisers for each of the Talos launching systems. The stands hold the innerbody or the warhead during transfer to the mating area. They move athwartship between the strikedown hatch and birail trolley hoist. The innerbody is supported in the receiving stand ring assembly and can be tilted or rotated to the position necessary for mating to the missile, from vertical to horizontal. Handling adapters are provided for handling warheads.

Telescoping Warhead Hoists

On CGN-9 and CG-10 class ships, two telescoping warhead hoists in the forward and after
deckhouses travel on overhead bi-rail tracks from the checkout area to the warhead strike-down hatch on the main deck. They are air-operated, telescopic guided, vertical lifting and lowering, trolley-type devices. The telescopic guides stabilize the hoist and prevent swinging with the ship’s motion. The load can be rotated from the horizontal to the vertical position. Adapters make it usable for handling standard and exercise heads and tactical or exercise inner-bodies. It is used for removing or installing inner-bodies and warheads, specifically for hoisting and lowering Talos components. The hoist in the magazine for spare Talos components also uses telescopic guides for stabilization against ship’s motion.

Similar equipment is used on DLGs and other ships. Figure 7-1 shows use of handling equipment for a Terrier warhead on a CVA. The warhead is received in its container at one of the aircraft elevator receiving areas, and is moved by forklift truck across the hangar deck and positioned in front of either the port or starboard bridge crane. The outer container is removed and the warhead, in its inner container, is attached to the bridge crane with the aid of an adapter, and is lowered to the strike-down area, where it is secured to the tilt table. The tilt table is turned to the vertical position and the container is lifted off (with the hoist), so the warhead can be inspected before it is placed in warhead stowage. After the warhead has passed inspection, it is returned to the container and sealed, and taken to the warhead magazine, where it is secured against movement.

Chain Drive Fixture

An air-driven chain drive fixture with a manual air control valve, and a strike down hand control box, is used for strike down and for offloading Tartar missiles. The chain drive fixture is used with GMLS Mk 13 and Mk 22. Figure 7-2 shows the missile handling equipment attached to a launcher. The launcher captain, using local control operation, positions the launcher to a convenient position to attach the missile handling equipment.

The chain fixture is attached manually to the front of the launcher when preparing for strike-down or offloading. When the latch lever (fig. 7-3) is pushed, the quick release pins can be inserted to attach the fixture to the launcher guide. The latch engages a block on top of the retractable rail. The chain drive fixture is easier to install if the launcher guide arm is depressed in LOCAL TEST.

Inside the fixture housing, or attached to it, are a chain, an air motor, a chain drive sprocket and gears, a pressure regulator, and an air throttle valve (fig. 7-3). The strike-down chain pulls the missile onto the launcher guide during strike-down, or controls the missile during off-loading. There are four cams in the chain which actuate linkages to the throttle valve and interlock switch S1N2. The stop cam stops the air motor (through linkage to the air throttle valve) when the chain is fully retracted. The air motor shaft drives a simple gear train which drives the chain drive sprocket.

The PRESSURE REGULATOR reduces air pressure in the extend cycle of the chain. It is mounted in parallel with a check valve in the air line between the throttle valve and the air motor (fig. 7-3). The regulator is factory adjusted to a static pressure of 20-22 PSI, which must not be changed.

The AIR THROTTLE VALVE regulates the speed of the air motor and determines its direction of rotation. Two inlets are connected to the manual control valve (fig. 7-2) and one to the ship's air supply. Two outlets connect to the air motor and two others port exhaust air to the atmosphere. Cams on the chain shift the valve through linkages to open or close air inlets or outlets and thus control the speed of the air motor and chain.

The MANUAL CONTROL VALVE (fig. 7-2) ports air pressure to the air throttle valve to shift it to retract or extend the strike-down chain. The position of the control handle on the manual control valve for “retract” or “extend” has to be determined by trial (for each ship installation) and then marked. When not in operation, the plunger is centered to “neutral” by a double-acting spring.

The HAND CONTROL BOX (fig. 7-2) positions the launcher in train and elevation for strike-down, checkout, or missile component removal. It is operated by the launcher captain and enables him to be on deck where he can
Figure 7-1.—Decanning a Terrier warhead: A. Warhead in container attached to bridge crane; B. Warhead in inner container secured to tilt table in checkout area; C. Preparing handling equipment to raise container off warhead; D. Upper part of container removed, J-bar attached; E. Warhead held by J-bar in horizontal position for receipt inspection (aft end).
have a full view of the launcher and the operations. To position the launcher for mounting the strikedown gear and chain drive fixture, the EP2 panel operator and the launcher captain follow the procedure as for checkout operation. The launcher is trained to a convenient position by local control, and the guide is lowered to zero degrees elevation. The Firing Safety switch handle must be removed from the EP2 panel before anyone is permitted to begin mounting the strikedown gear to the launcher. This is to make certain that the launcher cannot be started while someone is working on it. When the fixture is attached and air line hoses connected (two hoses between the throttle valve and the manual control valve, one between the throttle valve and the ship's supply "Y", and another between the manual control valve and the ship's
supply "Y"), then the Firing Safety switch handle can be returned to the EP-2 panel and the system reactivated.

Consult the publication for the Mk 13 launching system, OP 2665, for complete description of the steps in strikedown, offloading, checkout, and deactivation. OP 3115 is the publication to consult regarding the Mk 22 Tartar system.

PNEUMATIC COMPONENTS OF LAUNCHING SYSTEMS

In addition to the handling equipments described above, and the dud-jettisoning units described in a previous chapter, pressurized air is used in several other parts of the launching system: in the missiles, the test equipment, and the control systems. Frequently, electric and hydraulic components are closely related to the air-powered parts to actuate and control a system.

Train and Elevation Air Drive Motor

Air motors have been mentioned in connection with the missile component handling crane, monorail overhead air hoist, receiving stands, deck fixtures, and chain drive fixture. They are also used to train and elevate missile launchers in manual control. The air drive motors used on the Mk 10 launching system are described below. In case of a power loss, the air motors may be used in conjunction with handpumps and handcranks to perform essential operations with the launching system. For example, the loader chain can be retracted by use of a handcrank. A handpump can be used to furnish hydraulic fluid directly to a component inactivated by a power loss. The blast doors, for example, can be closed by this means in an emergency.

Manually controlled air motors are attached to the power-off brakes of the train and elevation systems. If manual operation is to be used,
Chapter 7—PNEUMATIC EQUIPMENT AND COMPONENTS

The power for the side (A-side or B-side) is turned off at the EP-1 panel. Figure 7-4 shows the location of the air drive motor in relation to the power-off brake. The location is similar for train and elevation systems. The air motor drive is used during power failure or during installation and maintenance procedures.

When the air motors are to be used, the power system must be off, either through power failure or turned off. The air motors drive the associated gear reduction. The air pressure to operate the air motors is supplied from the ship's air lines, using 100 PSI. No electrical control is used. An air control valve assembly (fig. 7-5) controls the flow of air to the train and elevation air motors. The assembly is fastened to the left side of the base ring, above the train power-off brake (fig. 7-4). The valve assembly has two identical sections (fig. 7-6); one section controls the elevation air motor, and the other the train air motor.

CAUTION: When operating the launcher with the air motors, normal safety interlocks are bypassed. Use extreme caution; specifically, never move the launcher if the blast doors are open, and never open or close the blast doors by use of the handpump if the launcher has been moved off the stow position with the air motors.

The train section of the train control valve assembly (fig. 7-5) consists principally of a control handle, air control valve, and check valve. The control handle, employed as a first class lever, operates the air control valve. If the handle is moved up and down, air is ported through one of the two outlet ports to the train air motor. The outlet port through which the air is supplied determines the direction of rotation of the air motor.

The air control valve is linked to the control handle at the upper end. The lower end of the valve is attached to a bottle spring that holds the valve at neutral until displaced by the control handle. With the valve at neutral, the two output ports of the train air motor are closed. The check valve prevents passage of air from the supply source to the center chamber of the control valve unless the check valve plunger is unseated.

When the control handle is moved, it forces the train control valve plunger off neutral which unseats the train check valve plunger and allows air to flow through the central chamber of one of the two outlet ports of the air motor.

The elevation air motor operates in the same way as the train air motor.

Before using either the train or elevation air motors, be sure train and elevation latches are retracted. In manual operation, they are retracted by use of the handpump, and power drives must be off.

Figure 7-4.—Train system, general arrangement of components.
If lubrication is scheduled, follow instructions in system OP's and MR cards and review safety precautions for manual operation. When you are making use of the air motors, you will also use the handpumps for hydraulic actuation of components, and handcranks for mechanical actuation. Be sure automatic power is off in each case.

Although we have illustrated and discussed the use of air motors only in the Terrier Mk 10 launching systems, similar air motors are used in the Talos and some Tartar launching systems. For manual operation of train and elevation power drives in the Mk 13 Tartar system, a handcrank is attached to the splined end of the worm shaft of the power-off brake assembly.

Asroc Loading Fixture

Before Asroc missiles can be loaded into the Mk 10 Mods 7 and 8 launching systems, they must be placed in adapters. The loading fixture has three major components: the stowing mechanism, the drive assembly, and the chain assembly (fig. 7-7). The stowing mechanism is mounted to the loader trunk in the strikedown-checkout area. It consists of two mounting brackets, a worm, a gear quadrant, four supporting arms, and an extended-retracted latch mechanism. A special handcrank is needed to crank the fixture down from stowed position. The latch mechanism serves to lock the latch pin on the drive in either the drive-retracted or the drive-extended position, and to actuate the interlock switch SINB6 or SINB7 to indicate in the loader electrical circuits either the retracted or the extended position of the drive assembly. The latch handle has two positions, LATCHED and UNLATCHED. It is positioned manually.

The loading fixture drive assembly is mounted on the chain stowage housing (fig. 7-7). It consists of a manual control valve, an interlock valve (not shown in fig. 7-7), a throttling valve, an air motor, a speed reducer and chain drive sprocket assembly, a chain stowage housing, and chain-retracted interlock switch SINB8.

The manual control valve (fig. 7-7) is a three-position valve spring-loaded to OFF, EXTEND, and RETRACT. The throttling valve is a three-land, three-position valve. It is initially shifted

![Figure 7-5.—Air control valve assembly.](image)
by air pressure. It is returned to neutral and held there by spring-loaded linkages. The reversible air motor drives the chain drive sprocket through a worm and worm gear speed reducer.

The J-shaped chain stowage housing (fig. 7-7) serves as a mounting base for the drive assembly. The retracting chain is drawn into the housing by the drive sprocket, and as it passes around the sprocket section it enters the stacking section where the chain is folded link-on-link to stow it. The chain assembly is a rammer-type roller chain and pawl.

The loading valve is between the manual air control valve and the air motor in the pneumatic circuit (fig. 7-8). The chain-extended cam or the chain-retracted can return it to neutral after it is activated by the air motor. The loading fixture pawl is pivoted to the end of the chain. The interlock valve is in the pneumatic circuit between the ship's air supply and the control valve. It is actuated by a cam that is shifted when the Asroc adapter contacts it.

LOADING THE ADAPTER.—The first step is to crank the loading fixture to the loading position, called No. 1 Stop position, and to extend the pawl cam pins. This is done manually.

Next, bring an empty Asroc adapter to the struckdown area. Be sure it is the proper type of adapter (fitted for torpedo or for depth charge). When the empty adapter rests in position on the loading fixture, the system is shut down to protect personnel working in the area. The snubbers on the adapter are in closed position, the arming tool socket and safety key mechanism is at reset position, the restraining latch is set at LATCHED, and the adapter contains no umbilical cable.

To prepare the adapter to receive the missile, the snubbers must be opened. The restraining latch and snubber release is turned to UN-LOCKED with a special wrench. Torsion bars open the snubbers when the latch is released; personnel must stand clear of snubbers, as they open quickly and forcefully. The restraining
GUNNER'S MATE M 1 & C

Figure 7-7.—Adapter loading fixture assembly (for Asroc).

- latch pawls are then retracted out of the way of the aft shoe of the Asroc. The cover over the U-shaped channel of the cantilever beam of the adapter is removed, and the umbilical cable is strung in the channel, the connectors are plugged in, and the cover is replaced. Then the Asroc missile is placed under the adapter and aligned to engage the shoes with the adapter and the fixture pawls. The strikedown car is then moved to the stowed position and secured.

The Asroc is now moved to its final position on the adapter by the fixture chain, powered by the air motor. Position the manual control valve (fig. 7-8) to EXTEND. This opens a port to the left side of the throttling valve so air pressure (ship's air supply at 100 PSI) passes through the left chamber of the throttling valve to the air motor. The pressure buildup opens the port to furnish a greater volume of air to the motor.

When the Asroc aft shoe nears its position behind the pawls of the restraining latch, the chain-extended cam on the fixture chain actuates the roller on the throttle valve actuator and shifts the throttling valve to neutral. This cuts the air supply to the air motor, decelerating it. When the Asroc aft shoe contacts the stop block on the Asroc adapter, the air motor is forced to stop, and the operator releases the manual control valve to OFF.

The Asroc is secured in the adapter by resetting and locking the restraining latch, pumping (with a hydraulic handpump) the snubbers closed and locking them, and plugging the connector into the socket in the missile. The fixture chain and pawl are retracted by use of the air motor, the reverse of extending. When the chain and pawl are retracted, the fixture is ready to load another adapter or, if no more missiles are to be loaded, to be stowed. The Asroc, attached to the adapter, is struck down to the magazine.

Always remove the special tool (pump handle, cam wrench, or other tool) after using it, before proceeding with the next step.

If Asroc missiles are to be off-loaded, they are separated from their adapters with the aid of the loading fixture.
Ejectors and Dud-Jettisoning Equipment

Chapter 4 described and illustrated methods of jettisoning dud missiles in Tartar, Terrier, and Talos systems. In the Terrier/Asroc system, Mk 10 Mods 7 and 8, the same jettisoning equipment is used for all types of missiles loaded. The three main components of the jettison unit are the A-side ejector, the B-side ejector, and the control panel. A manually operated shut-off valve on the panel shuts off the 4500-PSI air supply to the jettison controls. The positioner air supply valve admits (or shuts off) air at 100 PSI from the ship’s air supply to the A and B positioner control valves. The 4500-PSI air supply is used to charge the air chamber (fig. 7-9) and to operate the firing valve. The air pressure gage is usually set at 3500 PSI, and the panel operator cuts off the air supply when this pressure is reached. He does this by moving the operating lever of the Charge and Fire Control valve to the READY position. (Although there are some differences in control panels for different systems, the one shown in figure 4-3 is typical, and can be referred to for location of parts.) The B ejector controls are on the right-hand side of the panel, and duplicate controls are on the left-hand side for the A ejector. Each side had four indicating lights, a positioner control valve, a charge and fire control valve, and a pressure gage. The shutoff valve and the positioner air supply valve control both sides.

OPERATING THE DUD-JETTISONING EQUIPMENT.—Figure 7-9 shows the location of some of the valves and other components on the
Figure 7.9. Dud Jettison Ejector.
cylinder weldment that are actuated when you move levers on the control panel. The dud jettison order synchros, of which there are eight for each unit, are mounted in a housing in the EP-2 panel. The rotors of the dud jettison order synchros are adjusted and fixed at predetermined positions so they train and elevate the launchers to preset dud-jettison positions when the launcher captain turns the switch to DUD JETTISON on the EP-2 panel. The dud jettison normal relay (KCB1) and associated electrical circuitry must be energized before the ejector will move to position I. (Position II is not used with Mk 10 Mod 7 launching system.) Position II was used for small booster missiles (BW-1) which have been phased out.

When the operator stationed at the dud jettison panel is signalled that everything is ready at the EP-2 panel, he executes the steps listed on the instruction plate on his panel. First, he turns the Positioner Air Supply Valve to OPEN, which directs 100 PSI air to the Positioner Control Valves. Since only Position I is to be used, the Positioner Control Valve (in the upper right-hand corner of the panel) is turned to POSITION I. The dump valves (fig. 7-9) then port 100 PSI air pressure to the rear of the ejector sleeve which causes the sleeve to move forward about 24 inches. Meanwhile, 4500 PSI air is going to the Charge and Fire Control valve, which you set at CHARGE. Air is ported to the firing safety valve (not shown), the charging valve (fig. 7-9), and both ends of the firing valve which is in the forward assembly.

When the indicating needle on the pressure gage reaches the stationary needle (which was preset), move the lever of the Charge and Fire Control Valve to READY. This shuts off the 4500-PSI air supply so the pressure will not go higher.

Check all the indicating lights on the panel and the pressure gage to be sure everything is in readiness, and observe the inclinometer which is adjacent to the control panel. If the roll of the ship is more than 20 degrees, the weapon must be ejected only on the downroll in the direction the weapon is pointing.

Now move the Charge and Fire Control lever to JETTISON AND OFF. The lines to the firing safety valve, the charging valve, and the spring-loaded end of the firing valve are vented to atmosphere. Charging pressure is vented from the firing valve to the check valve and the shuttle valve in the forward valve assembly. This supplies air to both forward and rear ends of the ejector piston and to the plungers and the check valve in the rear valve assembly. As the piston moves forward, the pan at the front contacts the booster. The resistance causes an immediate pressure buildup behind the piston, which causes the control valve in the rear valve assembly to open and send air behind the piston to force the missile overboard. The rate of piston movement is controlled by orifices and the position of the control valve. In practice sessions, when you are not using a missile, the control valve assures that the piston will move at about the same rate as if loaded.

Anti-Icing Systems

Anti-icing systems keep vital areas of the launching system ice-free during freezing conditions. The anti-icing fluid is circulated by a motor independent of the rest of the launching system. Air bladders in the heat exchanger tank (fig. 7-10) maintain a constant head of pressure on the anti-icing fluid, compensating for expansion and contraction of the fluid under varying temperature conditions.

The heat exchanger tank and components shown in figure 7-10 is of the type used in the Mk 10 launching system, and a similar one is used in the Talos launching system, while that shown in figure 7-11 is used in the Mk 13 launching system. The principles of operation are the same. The same special tool, air-charger and-gaging assembly, is used to check the air pressure in each bladder and to charge it to the correct amount. The frequency of checking and charging the air bladders will depend a great deal on the temperatures in which the ship is operating.

USE OF SHIP’S AIR SUPPLY

The source of compressed air used in the equipments described is the ship’s compressed air supply. The succeeding paragraphs describe the use of compressed air in equipments and systems that you will use, other than the missile launching systems.
Ship's air supply is used for testing and servicing missiles, and for the launching systems. Each missile must be checked as soon as possible after being brought aboard. The pneumatic tests are only a part of the tests used on the missile and the launching system. A great many of the tests are electrical to check the transmission of signals. The ship's compressed air supply lines are the source of compressed air used for all the tests of missiles as well as of launching system components. However, at present, no pneumatic tests of missile components are performed aboard ship. Air is used for charging air bladders, though compressed nitrogen is used for accumulators. Keep safety rules in mind when using compressed air and see that your men observe the rules.

THERMO-PNEUMATIC CONTROL SYSTEMS

A thermo-pneumatic control system is designed to actuate a magazine's fire suppression system in response to either a rapid rate of rise in temperature or a slow rise to a fixed temperature in a protected space. The automatic thermo-pneumatic system is installed as an adjunct to a hydraulic control wet or dry type magazine sprinkling system or an independent carbon dioxide (CO₂) system. Some missile magazines also use a water injection system containing a compression tank which supplies fresh water under air pressure as part of a fire suppression system. The procedures for testing, operating, and maintaining magazine fire suppression systems are explained in GMM 3/2, NT 10199, and chapter 8 of this text.

Pneumatic Components

The pneumatic operated components of a CO₂ system are heat sensing devices and pneumatic control heads. For a sprinkling system, they are heat sensing devices and pneumatic release pilot (PRP) valve.

The heat sensing devices detect temperature increases and transmit pneumatic pressure changes to a PRP valve or CO₂ pneumatic control heads.

A pneumatic control head reacts to pneumatic pressure from a heat sensing device by opening a discharge head and releasing liquid CO₂ from a supply cylinder. A control head consists of an air chamber and a diaphragm. When pressure in the control head chamber increases, the diaphragm expands and trips a lever that releases a trigger mechanism which activates the CO₂ fire suppression system.

The PRP valve, figure 7-12, connects pneumatically to a heat sensing device. In addition to a diaphragm, the PRP valve contains a lever, a spring mechanism, and a compensating vent. The diaphragm expands in response to sudden pressure changes and moves a lever to release a spring mechanism which opens the PRP valve. Salt water from the ship's firemain flows through the PRP valve and opens the sprinkling system main control valve which admits firemain supply water to sprinkle the magazine. The compensating vent functions to leak-off normal temperature fluctuations within the pneumatic piping system and heat sensing device to prevent inadvertent tripping to the PRP valve. The compensating vent is calibrated and adjusted at the
factory. No adjustments should be undertaken by ship's force.

Pneumatic Control Circuits

The majority of systems installed on board ships consist of separate “rate of rise” and “fixed temperature” circuits. The “rate of rise” circuit uses a Heat Actuated Device (HAD) as sensing devices, and the “fixed temperature” circuit uses Fixed Temperature Units (FTU’s) as sensing devices. A recent modification to some of the pneumatic control systems has been the replacement of HAD’s and FTU’s—by Heat Sensing Devices (HSD’s). The HSD combines the functions of the HAD and the FTU.

The “rate of rise” circuit is the primary circuit in most control systems. The operation of the “rate of rise” circuit is based on the following principles:

(a) Air expands when heated.

(b) Pressure is created when air expands in a closed system.

(c) Pressure can be converted to mechanical energy.

A differential pressure of a least 8 ounces per square inch across the release diaphragm is necessary to trip the PRP valve. A heat sensing device creates pneumatic pressure in two ways. First, a rapid temperature increase in a missile magazine heats and expands air in a bellows to increase air pressure. Second, a fusible slug melts and releases a spring which collapses the bellows producing a sudden increase in pressure in the pneumatic lines leading to the PRP valve or the CO₂ control heads. The pressure is converted to mechanical action by the expansion of a diaphragm. When the diaphragm expands, it releases a spring mechanism which opens a valve in the sprinkling system or shifts a plunger in the CO₂ system, thus activating a magazine’s fire suppression system. Figure 7-13 shows the pneumatic control components of a CO₂ system.
Charging Flasks, Bladders, and Accumulators

Figure 7-14 shows the charging and gaging assembly used for air-charging and gaging the anti-icing bladders in the Mk 10 launching system. The bladder pressure for the anti-icing system on the Mk 10 launching system is 10 PSI. Check the requirement for the system you have aboard. The pressure should be checked monthly.

Compressed air is also used in the compression tank for the water injection system in the Mk 11 and Mk 13 launching systems described in the next chapter.

Accumulators in the hydraulic system of the missiles and the launchers are pressurized with nitrogen. When the missile is mated in the checkout area, the pressure in the accumulators must be checked and more nitrogen added if necessary.

PNEUMATICS IN MISSILES

The 3-T missiles (Terrier, Talos, and Tartar) all use air taken in through the missile nose to operate parts of the missile internal system. Figure 7-15 shows a cutaway view of the nose section of a Terrier BT-3 missile. The probe shield is a protective covering to prevent entrance of dust and moisture. The shield is blown away by air pressure against its face when the missile is launched. The nose orifice admits air to the transducer. The gas pressure transducer is a variable-reluctance device that senses total air pressure (static pressure plus pressure caused by missile velocity) and converts it to a voltage which regulates the servo gain in the roll and
Chapter 7—PNEUMATIC EQUIPMENT AND COMPONENTS

CHARGING AND GAGING ASSEMBLY (1530228)
FOR AIR-CHARGING AND GAGING OF ANTI-ICING BLADDERS

GAS CHARGING ASSEMBLY (1367770 OR 2120990)
FOR CHARGING ACCUMULATOR FLASKS WITH NITROGEN

Figure 7-14.—Charging assemblies: A. Charging and gaging assembly for anti-icing bladders; B. Nitrogen charging assembly.

Figure 7-15.—Nose section of Terrier BT-3 missile; cutaway view.
steering systems to compensate for changes in the control surface effectiveness caused by changes in missile velocity and altitude. The potentiometers associated with the gas pressure transducer are located in the signal control package. Changes in the ram and static air pressure are signalled to the signal control package to affect changes in the missile attitude.

The Terrier HT-3 missile has similar parts with slightly different names. The nose section is called the radome section, and it has a ram pressure probe that supplies the pressure transducer with ram air pressure. The transducer, in turn, supplies an electrical output that drives the servometer. As the servometer turns, it positions the ganged potentiometers as a function of missile ram pressure. The potentiometers act as fractional multipliers for various signals in the guidance computer so that the steering system gain is correctly controlled for variations in air density and missile velocity. The same technique is used in Tartar missiles.

The Talos missile has a more extensive air intake system because it must also take in air for operation of the ramjet engine in the propulsion system. An air-turbine-driven fuel pump delivers fuel from the tank. Ram air enters the diffuser, which is an annular passageway (leading to the combustor) where the supersonic low pressure air is converted to a low-velocity, high-pressure airstream. In the combustor, fuel is sprayed into the airstream and the air/fuel mixture is ignited by a spark ignition unit (spark plug). The hot exhaust gases develop thrust in passing through the exit nozzle to speed the missile on its way.

As in the other missiles, the control surfaces (wings, fins) are moved by hydraulic power. But hydraulic pressure is developed by the ram air turbine. Before the missile is in flight and the ram air turbine is operating, hydraulic pressure is built up by a high-pressure nitrogen pressurization system.

OVERHAUL, REPAIR, TESTING, AND ADJUSTMENT

The GMM 1 must be able to test, overhaul, repair, and adjust the pneumatic components of missile handling and dud-jettisoning equipment; the GMM C must be able to plan, implement, and supervise the maintenance and repair program for the pneumatic equipment. The Naval Ordnance Systems Command has contracted for technical services to assist naval personnel in the proper assembly, installation, inspection, test, repair, servicing, modification, maintenance, and operation of guided missiles, missile targets, and associated special test and handling equipment (NAVORD INST. 4350.5A). However, for fleet self-sufficiency and to conserve funds, GMMs are expected to be able to take care of their weapon systems and request help only in unusual circumstances.

WARNING: Always deenergize equipment before attempting any repairs. Exhaust air from lines or pipes in or to the equipment.

In any pneumatic system, loss of air pressure is the most common failure. Checking with the pressure gage can give you proof of the loss of pressure; slow or weak action is a symptom of pressure loss.

CAUTION: Plug all lines, openings, and connections during disassembly and assembly so no dirt, dust, water, or other foreign matter can get into the system.

Plan the job before attempting any overhaul. This planning should include obtaining the proper tools, checking availability of repair parts, study of the equipment and illustrations, review of safety measures pertinent to the type of machinery involved, and allocation of sufficient personnel to complete the overhaul in the allotted repair time. A well planned project will result in better, quicker, and safer results.

AIR MOTORS

Whenever any repair or maintenance is required on the train or elevation system of a launcher, the air motors are used for moving the launcher. They are also used if the automatic system for operating the launchers is disabled. Air motors, therefore, must be kept in operating condition by proper maintenance, repair, and overhaul. Solenoid-operated control valves, which have identical components in
Chapter 7—PNEUMATIC EQUIPMENT AND COMPONENTS

Hydraulic or pneumatic control, must actuate on signal. All O-rings and gaskets should be replaced with new ones whenever the valve is overhauled. The caution to “remove gaskets carefully,” is intended chiefly as a caution against scratching or gouging the seat for the gasket. Take the valve to a dirt-free area to disassemble, clean, replace parts, and reassemble. Do not use waste for cleaning; use clean, lint-free rags. Be sure to secure all power to the launcher before removing any parts.

WARNING: Position the main power circuit breaker and the train and elevation air drive motor manual control valves at OFF. Place warning tags on these controls.

To remove the air drive motor, disconnect two air lines. Plug lines to prevent entrance of dirt or foreign particles.

Air motors used in Talos, Tartar, and Terrier launching systems are of similar construction. Obtain and study the maintenance instructions for those on your equipment before attempting repair work on them.

Assembly is the reverse of disassembly. Do not disassemble any more than necessary. Careful alignment and snug fit are important; frequent disassembly tends to destroy these. If replacement of the head gaskets or the rear gasket is necessary, scribe the cylinder and cylinder-to-rear housing for alignment on reassembly. Make alignment scribe marks on the head, distributor, and drive shaft before disassembling these parts from the head. These scribe marks are important because rotation of the distributor by 180 degrees changes motor rotation to the opposite direction.

Use new gaskets and new cover plate screws when reassembling, and replace any pitted or worn balls, and worn oil seal.

AIR LUBRICATORS

Air lubricators (fig. 7-16) are of the Micro Fog type which convert the oil to a vapor which is carried along with the air to give internal lubrication to the air drive motors. One lubricator supplies oil vapor to the train and elevation air drive motors; the other supplies the guide pneumatic cylinders. Do not disturb the factory adjustment of the lubricators unless you are positive a malfunction is caused by lubricator maladjustment. The oil level may be seen through a sight glass on the lubricators; if the level falls to the lower third, replenish the oil (check NAVORD drawing for correct type). Remember to secure all power to the launcher before doing this.

The air-driven chain drive fixture used with the Mk 13 launching system for strikedown, described earlier in this chapter, also has an air lubricator in the air supply line to the air motor, air throttle valve, and manual air control valve components. Although not always mentioned, other air motors also have air lubricators to supply air that lubricates.

The air lubricators, which provide a fine mist of oil to the air motors, sometimes need cleaning or adjustment. Check the fluid level monthly and replenish with the proper grade of oil if the level falls to the lower third of the sight glass on the lubricator. Check the applicable drawing for your equipment. For example, NAVORD Dwg 1600594 (for Guided Missile Launcher Mk 5 Mod 3) directs that train and elevation air motors need to have their reservoirs filled after 4 hours of operation.

Symptoms of maladjustment are:

1. Oil accumulation in the guide (or near the lubricators).
2. Noisy air drive.
3. Sticking pneumatic cylinders causing jerky piston operation, binding, or slamming.
4. Loss of power in air drive motors.
5. Lubricator has to be filled too often.
6. Lubricator needs no oil after extended launcher operation.

Each air lubricator has an oil teed adjusting screw (fig. 7-16) by which you can adjust the drip to 8 to 10 drops per minute (this varies for lubricators in different systems). The position of the plate under the sight feed dome should be checked; remove the clamp ring and the sight feed dome. The bottom horizontal plate in the sight cavity should have the cast arrow pointing to position B for full air flow to the air motor and the lubricators. Adjust the plate with a
screwdriver if it is not in position B. Type “B” lubricators have a bypass screw for adjusting the air flow (fig. 7-16B).

Operate the equipment to check the success of the adjustment. Several adjustments may be necessary before you achieve good results. Although air lubricators are of rather simple construction, adjustments must be made with care. They are NAVSHIP equipment if installed on ship’s air lines.

Air control valves may require adjustment or overhaul. Any time a control valve is disassembled, all O-ring and backup seals should be replaced.

PNEUMATIC TEST SET TS-1165/DSM

Pneumatic Test Set TS-1165/DSM is used for depot testing of the BT-3 and BT-3A Terrier missiles. Figure 7-17A shows the exterior of the test set and figure 7-17B shows the pneumatic circuit. Depot MSTs are performed with regulated air to operate the auxiliary power supply turbines. The air is furnished through the TS-1165/DSM. Aboard ship, the MST is performed with external hydraulic power, supplied by the HD-259/DSM pumping unit. External electrical power is furnished by the Guided Missile Test Missile Test Set AN/DSM-54(V)C2. Both depot and shipboard checkouts use pneumatic pressure to actuate the missile ram pressure system. On shipboard, a gas pressure actuator is used (fig. 7-18), but a pneumatic test is not conducted.

The pneumatic test set weighs 200 pounds and is housed in an aluminum cabinet 24 inches square and 27 inches high. On the top panel are five gages and three indicator lamps for monitoring operation. The meter indicators and light on the front panel (fig. 7-17A) are part of the automatic safety mechanisms. They are mounted on an individual chassis and may be removed easily for servicing. All controls except one manual shutoff valve for each channel (fig. 7-17B) are electrically operated. The test set can be operated from the panel or from a remote source. If can be controlled automatically by the use of the program tape of the AN/DSM-54(V)C2.

Ensure that all air lines and electrical connectors are securely attached to the proper ports and connectors at the top of the pneumatic test set, including a hydraulic pressure switch. Apply pressure from an external source of clean, dry air, either a compressor or a tank (600 to 1000 PSI).

WARNING: Make SURE that output hoses are SECURELY connected and ends tied down to prevent whipping.

The pneumatic test set accepts high pressure air and directs it through tubing into one of two separate channels which supply pneumatic power to the turbohydraulic and turboelectric systems of the BT-3 or BT-3A Terrier. The two channels can be used simultaneously and controlled independently. The principal elements of each channel are the manual valve for complete shutoff and a dome type regulator with high flow capability (fig. 7-17B). The controlling pressure applied to the dome is passed through a low-volume regulator capable of precise control. The dome is exposed to continuous compensation in either increasing or decreasing direction at a level preset manually prior to test operations.

When the turboelectric supply channel is opened by means of the manual control, pressurized air is applied to the pilot regulator and to the principal dome regulator; however, the valve in the latter remains closed as long as there is no pressure in the dome. The pilot regulator stabilizes the pressure but is prevented from influencing the dome by a solenoid shutoff valve. Air flow will begin when the solenoid is energized. The regulated air of the pilot valve will then enter the dome and establish a large flow through this channel at an outlet pressure determined by the preset conditions of the pilot valve. Flow will continue to the limit of the source and variations of input pressure and external demand will be compensated so that the output pressure will remain constant, within working limits. A pressure gage connected into the channel continuously monitors the output pressure, and a temperature gage indicates the temperature of the regulated air.

Deenergizing the solenoid valve between the pilot regulator and the dome stops the air flow between them but does not stop the flow through the main channel, as a certain amount
of air is trapped in the dome. Another solenoid valve must be opened to permit the dome to release the trapped air. A check valve senses the reduced pressure and simultaneously dumps any retained air from the output tube unless it has already been dissipated. The exhaust vent is open at all times except when a regulated flow is required. The vent closes and the line from the pilot regulator to the dome opens when both solenoids are energized.

The second channel (turbohydraulic supply) functions the same way but has an additional pilot regulator and solenoid (fig. 7-17B), so two preset dome pressure levels are available, electrically selected by means of the solenoid valves.

The only pneumatic element common to both channels is a pressure gage indicating the source pressure.

Note (fig. 7-17B) the capped ports for calibration, one in the main supply line and one in each channel. Calibration of the test set is necessary each time before use. Follow the instructions supplied with the test set, or in the applicable OP.

Figure 7-16.—Air lubricators, cutaway view; types A and B.
WARNING: All depot MSTs are performed on missiles with a live sustainer. This necessitates that the missile be grounded at all times. Observe all safety precautions.

For a pneumatic MST, the missile is assembled without the warhead section, S & A device, and fuze booster. A tactical test spacer (fig. 7-18A) is used in place of the warhead section, and a station test cable is used to connect the TDI and the electronic section. Present type depots perform only pneumatic MSTs. The sustainer is not electrically or mechanically armed but is propulsive with the sustainer igniter squibs electrically grounded. There is no electrical connection between the test equipment and the sustainer igniter squibs.

All-up type depots, which have special steel-lined, reinforced concrete test cells where the missile is tested, perform electronic MSTs on completely assembled missiles with live sustainer, warhead, S & A device, and fuze booster.

Testing Aboard Ship

Pneumatic Test Set TS-1165/DSM is not used aboard ship to test missiles. Note its absence in figure 7-18B. However, Guided Missile Test Set AN/DSM-54(V)C2 is used, as at depots, to program the electronic test. The test set is connected to some pneumatic lines as well as to cabling, but no pneumatic test is performed.

On shipboard, checkout is performed with the missile completely assembled, with a warhead, S & A device, and fuze booster installed. The missile is brought to the checkout area on the checkout car (fig. 7-18B), the booster is removed from it and is returned to the magazine for the duration of the test. The missile, on the checkout car, is moved to the blowout port and connected to it with the blowout pipe adapter.

The connections for missile testing aboard ship are sketched in figure 7-18B. The need for the blowout pipe has been discussed in previous chapters. The nose probe shield is removed from
Figure 7-18.—Missile Systems Test. A. Typical shipboard MST station installation; B. Typical depot MST station installation (present type).
the nose section of the Terrier for attachment of the gas pressure actuator air hose. To expose the missile test receptacle so the test receptacle cable can be attached, remove the forward end cover from dorsal fin No. 1, and then remove the test receptacle cover. A removal tool is required for this.

Full information on the equipment, pneumatic lines, and cables used at the individual shipboard test stations may be found in NAVORD OP 3119, Terrier Guided Missile Test Stations. Chapter 10 also gives some instructions for conducting the MST aboard ship, but the OP is needed for complete step-by-step procedures.

At the end of the test, the Missile Test Set gives a GO or NO-GO indication of the missile flight readiness. If the test is NO-GO, Fault Location Lamps will illuminate on the test set, indicating the package which was found faulty during the test. With the aid of the fault location chart, it will usually be possible to determine the trouble.

After a successful test (GO indication), the missile can be restored to its previous condition by disconnecting all test connections, removing the TDD and nose section (to be reinstalled prior to flight), removal of the exercise head, if used, and reinstallation of the warhead, replacing the S & A device. Then the booster can be brought back for re-mating to the missile, and the round can be returned to the magazine.

If the test gives a NO-GO indication, fault isolation and troubleshooting procedures must be followed. There are different procedures for depot and for shipboard fault isolation. There are 13 FAULT LOCATION lamps on the test set. If any of the tests on a package fails, the associated lamp light. The lamps are interlocked so there will not be multiple lamps illuminated for the same fault. If several lamps light, it is almost always an indication that there were several failures.

A missile package or component that has been found defective should be replaced with an identical spare component. After replacement, the MST should be repeated to verify missile flight-readiness. Severe damage to missiles will result if the MST rules are not observed between tests. The troubleshooting between tests must be held to a definite minimum. The use of pressurized air is restricted to 6 minutes at low pressure (150 PSI) or 1 minute at high pressure (450 PSI) on aft section hydraulics. Other minimums are established for application of electrical power.

REPAIRS ABOARD SHIP

The pneumatic equipment used with missile launching systems is repaired on board ship to the extent of the ability of the men aboard and the repair parts available. Test sets, used by the FTs for testing the missile, may have to be returned to a depot or facility for repair and adjustment.

SUMMARY

Pressurized air is used to some extent in all the missile launching systems studied, but hydraulic and electric power are used to a greater extent. The air drive motors and air lubricators described are used in the Terrier and Talos systems for training and elevating launchers when there is a power failure, and also for maintenance and repair work. On Tartar launching systems, a pneumatic hand drive can be attached to the manual drive mechanism for moving the launcher.

The kind and number of handling equipments that are air operated vary with the installation. Some typical ones are described and illustrated. You are expected to maintain the ship's equipment that you use, but major repairs and overhaul are performed by other rates.

The pneumatic machinery that is part of the launching system, such as the receiving stand used with the Talos, and the chain drive fixture attached for loading the Tartar, are your responsibility. You must be able to maintain them in operating condition.

The use of Pneumatic Test Set TS-1165/DSM in checkout of Terrier missiles at depots, and shipboard testing without it were discussed. GMMs usually do not conduct the checkout alone, but should be prepared to do so.
CHAPTER 8

AMMUNITION AND MAGAZINES

INTRODUCTION

The preceding course in this series, Gunner's Mate M (Missiles) 3 & 2, NAVTRA 10199 gave you basic information on explosives—their nature, history, classification, characteristics, and service use, along with some definitions of terms used in relation to explosives. Nearly every part of a missile round contains one or more types of explosives, selected to produce the desired effect. A fuze must contain sensitive explosives, yet not so sensitive that it cannot be handled (carefully) with safety. Boosters contain propellant charges that produce a steady thrust. Warheads contain high explosives for quick and devastating detonation.

The use of a special pyrotechnic item—the flash signal on exerc: heads—and the purpose of self-destruct devices in missiles, were explained briefly in the above text.

The payload of a missile is in the warhead. The above text also described the different types of warheads that might be used in missiles. Advantages of certain types were given. Advances in the construction of shaped charges have increased their destructiveness. The continuous-rod type of warhead is used in some Terrier, Talos, and Tartar missile warheads.

Nuclear warheads can be used in certain mods of Terrier and Talos missiles. Details of nuclear warhead construction are beyond the security classification of this course, but information on the destructive effects of nuclear weapons is available in unclassified publications. You are not required to know the scientific explanation of how nuclear reactions occur, but because some missiles are stowed with the nuclear warhead installed, you should know how to handle and stow them so there won’t be an accidental reaction. A nuclear warhead also contains a considerable quantity of conventional explosives, usually several kinds which include both fast-burning and slow-burning propellants and high explosives. The safety rules for explosives therefore apply also to nuclear missiles.

All the current missiles fired from shipboard launching systems use solid propellants of the fast-burning type for boosters. Slow-burning propellants are used for the sustainers, which continue to accelerate the missiles after booster burnout. The Tartar has both the booster and sustainer in a single-stage dual-thrust rocket motor (DTRM). The Talos is the only one with a liquid fuel sustainer. It has a ramjet engine that uses JP-5 jet fuel (kerosene). The ramjet engine takes over after the booster has burned out and dropped off.

This chapter will go into more detail on the tests and inspections to be made of missiles and missile components before stowage, during stowage, and just before use. Since GMMs are now responsible for the nuclear warheads installed in their missiles, your duties and responsibilities with regard to the nuclear components will be expanded upon. You will have more responsibility for reports on tests, condition of missiles and missile components, and accounting for quantities on hand or parts needed. This chapter will give you information on reports needed.

On shipboard, your missile stowage spaces are well regulated and protected. At shore stations, the situation may be far different, especially at advanced bases. Your quals require you to know how to stow missiles at shore bases. Chapter 2 gave you some information on the subject of
stowage at shore bases, and chapter 11 will tell you where to find additional information. This chapter makes only brief references to the subject. OPS, Volume 1, Ammunition and Explosives Ashore, is a compendium of rules for depot or other shore station ammunition regulations. Be sure to study the latest revision.

SAFETY OBLIGATIONS

Supervisory personnel are responsible for ensuring that all safety precautions related to handling, stowage, and use of all types of ammunition and explosive ordnance with which a vessel is supplied are strictly observed in all handling and stowage areas under their cognizance.

Explosives are intended to be destructive. While some are more dangerous than others, all explosives must be treated with respect. Since familiarity with any work, no matter how dangerous, is apt to lead to carelessness, all personnel who supervise work in connection with the inspection and use of explosives shall:

1. Exercise the utmost care that all regulations and instructions are observed.
2. Carefully instruct those under them and frequently warn them of the necessity of using the utmost care in the performance of their work. No relaxation of vigilance should be permitted.
3. Explain to their subordinates the characteristics of the ammunition, explosives, and other dangerous materials; the equipment, the precautions to be observed; and the hazards of fire, explosion, and other catastrophes which the safety precautions are intended to prevent.

Supervisors are required to maintain high standards of good housekeeping in ordnance spaces. Everything that is not in its place or is not in the safest condition increases the probability of an accident. All ammunition, missiles and their complementary items shall be protected from extremes of temperature, humidity, vibration, electromagnetic or magnetic fields, and radiological exposure. Observe the permissible maximum stowage temperatures for all ordnance as prescribed by NAVORDSYSCOM. Moisture and heat may cause some explosives to deteriorate and become dangerous.

In each weapon space where missiles are stored or handled or where missile equipment is operated, such safety orders as apply should be posted in conspicuous places. Conditions not covered by these safety instructions may arise which, in the opinion of the supervisor, may render missile stowage or missile handling unsafe. The supervisor may at any time use such additional safety instructions as he may deem necessary.

RF RADIATION

The most sensitive explosives are used in fuzes and igniters. Electric igniters, VT fuzes, detonators, and electrically fired rocket motors must be protected from radiofrequency emissions. None of these units may be exposed within 10 feet of any operating electronic transmitting equipment, including antennas and antenna leads. The minimum distance varies with the power output of the transmitters. Warning signs are required to be posted at the foot of all ladders or other access to all towers, masts, and superstructures which are subjected to hazardous levels of radiation, and also in the radio transmitter room. If the transmitting apparatus is part of authorized test equipment, or is part of the weapons system, follow the special instructions concerning its operation.

Naval Ordnance Systems Command carries on the Hazards of Electromagnetic Radiation to Ordnance (HERO) program to promote the safety of our weapons against rf radiation. The broader program, under the direction of the Chief of Naval Operations, has the code name RAD HAZ. It investigates the effects of electromagnetic radiation on ordnance, personnel, and volatile flammable materials. Protection of personnel against such radiation is now required on all ships. RF radiation causes damage to body tissue, which becomes heated by absorbing wave energy. The damage may be done before you feel any sensation of heat. The harmful effects may result from irradiation of the whole body, of the eyes, or of the reproductive organs. Eye damage is the most frequently noted health hazard. Do not permit your men to work where they can be harmed by rf radiation.

Technical Manual, Radio Frequency Hazards to Ordnance, Personnel, and Fuel, OP 3565, is the official HERO publication. It prescribes the operating procedures and precautions to avoid rf
radiation damage to ordnance, personnel, and fuels. This manual supersedes all previous publications on rf hazards, and parts of manuals or publications dealing with this hazard, including NAVSHIPS and NAVORD publications. Many tests were conducted to determine for each weapon and/or component if it was HERO Safe, HERO Unsafe, or HERO Susceptible ordnance. The situation also makes a difference. RF radiation is most likely to damage ordnance during assembly, disassembly, loading or unloading, and handling in rf electromagnetic fields. The rf energy may enter through a hole or crack in the ordnance item, through firing leads, wires, contact with metal of tools or handling equipment, or exposed wires or contacts. A wooden or a plastic container is no protection against rf energy. Metal enclosures serve as a shield.

The technical manual cited above contains lists of explosive items and missile components that are HERO Safe, HERO Susceptible, and HERO Unsafe. However, items that are HERO Safe when completely assembled may be HERO Unsafe when tests are being conducted that require additional electrical connections, or when being assembled or disassembled, or when in a disassembled condition. Any time there are exposed wire leads from electroexplosive devices such as squibs, primers, and blasting caps, or unshielded flash signals, igniters, tracking flares, etc., there is a HERO Unsafe condition. Unshielded rocket motors, warheads, and exercise heads are HERO Unsafe. HERO Unsafe ordnance must not be permitted on flight or weather decks at any time. Testing, assembly, and disassembly of ordnance should be done below decks if at all possible. When it must be done on deck, be sure that all radiation equipment is secured.

Each ship should prepare a HERO Bill based on the information contained in OP 3565, just as each ship has a FIRE Bill. This would coordinate radar and radio control with the work being done in the ordnance department. Preparing the bill is the responsibility of the Commanding Officer who may designate a HERO officer. The great increase in the use of electronic equipment and the increase in transmitter output powers has brought an equivalent increase in the amount of radiation. The use of guidance radars brings more radiation to deck areas. It is only in recent years that the hazards have been investigated. The cause of many formerly unexplained explosions and duds was revealed to be from electromagnetic radiation.

SAFETY CHECKS

Before handling any component containing explosives, inspect the safety device to be sure it is in the SAFE position. If it is not, the unit must be made safe by experienced personnel. In most instances, the “experienced personnel” means you.

Be sure the airframe of the missile is well grounded electrically at all times. Check the grounding when the missile or a component is on the elevator, transfer cart, or other handling equipment during replenishment, stowage, inspection, mating, or unmating. The checkoff sheets for each operation list grounding as one of the steps (remember this when you prepare checkoff sheets); check each ground for correctness and firmness of attachment before you let your men proceed with the operation.

Be sure that the rocket motor case is grounded during all handling operations. Before connecting igniters in rocket motors, check firing leads for stray or induced voltages and for static charges. Inspect the igniter to see that the case and safety switch are not damaged. Any damage on these items is cause for rejection.

SPECIAL DANGERS OF DIFFERENT EXPLOSIVES

Black powder has been called the most dangerous of all explosives. It must be protected against heat, moisture, sparks, rf radiation, and friction. Only very small quantities are used in modern naval ordnance—in fuzes, igniters, tracking flares, and primers. Largest quantities are contained in impulse charges.

The cast propellants used, in rocket motors and sustainers must be protected against heat, moisture, and physical damage from dropping, abrading, etc. A crack in the cast propellant can cause failure of the missile because it prevents continuity of the burning rate. Powdered or crumbled propellant is more dangerous than the undamaged material. Dragging boxes over smokeless powder grains or broken propellant
on concrete decks or docks has caused fires. Powder grains that have fallen into cracks and crevices are believed to have been the cause of many fires. The explosive ordnance disposal (EOD) team should be called immediately if powder is spilled or more propellant is broken. Work must be suspended until the spilled or broken explosive has been collected and placed in water-filled containers. Report all accidents or incidents to NAVORDSYCOM according to NAVORDINST 8025.1 (latest revision).

Some of the high explosives used in warheads look very much like harmless chunks of clay or pieces of rock. Scraping, striking, or dropping them can cause them to explode. Some high explosives cause dermatitis when handled with bare hands; some give off poisonous gas when they burn; one type leaves a white, powdery residue that is poisonous; and another type leaves a residue that is explosive if moved even a little. A drop of as little as 5 inches can cause PETN to explode; TETRYL has a drop sensitivity of 12 inches. These are high explosives used in warheads. The EOD team is trained in procedures to follow in emergencies with explosives; untrained personnel should not move damaged explosives.

TNT is now seldom used alone, but it is a major ingredient in several of the high explosives. Heat and sunlight deteriorate and darken it, and cause an exudation that is extremely dangerous if mixed with or absorbed by organic matter, such as wood. Any explosive containing TNT must not be stored on wood or linoleum decks. The exudate may appear as an oil liquid, or it may be sticky and viscous. It may collect in detonator wells on a warhead. Exudates must be removed as soon as observed at inspection.

TNT is practically insoluble in water; the exudates can be washed off with hot water, this is the preferred method to be used. NEVER use steel scrapers, soap, lye, or other alkaline solutions to remove exudate. Even a small amount of caustic soda or potash will sensitize the TNT and cause it to explode if heated to 160° F. Carbon tetrachloride, acetone, alcohol, and trichloroethylene will dissolve exudate. The first named should not be used because of its toxic fumes; the third named could cause further exudation after a period of time; the last named is the solvent most likely to be available to you. Be sure to have adequate ventilation when using any solvent.

Missile boosters are usually propellants, which tend to burn rather than detonate, though they may detonate if confined during burning. Propellants, jet thrust units, flash powders, and pyrotechnic powders all belong to this fire hazard class.

A rocket motor that has been dropped must not be fired. It must be returned to the depot, or disposed of according to instructions in the OP or instructions from the commanding officer.

Never use any power tools on the rocket motor. Never apply heat to the motor, or to any of its associated components.

In case of a rocket motor misfire, wait at least 30 minutes, and make sure the firing circuits are open, before you approach the rocket.

Missiles not expended in live runs must be safed at the first opportunity in accordance with the instructions for the missile.

The tracking flares used on exercise heads contain black powder and magnesium, or a mixture of barium nitrate and aluminum. The dangers of black powder have already been mentioned. The magnesium powder is a fire and explosion hazard. In the air, a spark can cause an explosion. In contact with water, magnesium powder can burn violently. Metal fume fever is caused by magnesium oxide. If particles of magnesium get into a wound in the skin, gas gangrene may result. Because of all these hazards, tracking flares and flash signals must be handled with great care. They must be stored in the pyrotechnic locker. Moisture must be kept away from them, as well as heat and sparks. Rough handling, or movement in storage must be avoided. Check all missile electrical connections for NO-VOLTAGE before installation of the flash signal charge in the missile. Figure 8-1 shows a cross sectional view of a flash signal kit.

The self-destruct charge contains Composition B and Tetryl, both of them high explosives, contacted by two explosive leads. The explosive leads are detonated by an electric primer. The primer leads must be shorted at all times until just before firing. Handle and store these charges as high explosives. Always check the visual indicators for SAFE condition of the unit prior to installation.
NUCLEAR WARHEAD WEAPONS

With the exception of the nuclear hazard, there is little difference between the safety aspects of nuclear weapons and conventional weapons. These are the hazards of high explosives, propellants, detonators, igniters, flash signals, self-destruct devices, arming devices, mechanical and electrical hazards. These components surround the warhead or are attached to it.

The hazard of radioactivity is always present where there is a nuclear warhead. However, the hazard is minimal because of the many safeguards included in the nuclear warhead. Improper handling can, of course, increase the hazard. As long as the seal of the nuclear container remains unbroken, the radioactive material does not escape. However, if by some mishap, the seal of the nuclear container is broken and finely powdered radioactive material escapes into the air, personnel must immediately evacuate the area. Decontamination teams wearing OBAs are sent to decontaminate the area. The radioactive particles do the most damage inside the body, and they are very easily inhaled or ingested. These tiny particles spread rapidly through the air, and get into all crevices and crevices and settle on everything. If the accident happens while the missile is on the launcher, above decks, much of the radioactive material will be carried away into the atmosphere, but if it occurs in the magazine or other space below decks, the ventilation system would quickly carry the contamination to other parts of the ship. That is why the instructions tell you to hold your breath, turn off the ventilation system, get out of the space, and close it.

If two sub-critical masses of active material from nuclear warheads are brought too close together (less than 3 feet), the entire mass can go critical, and personnel in the vicinity will receive massive does of radiation. When the active material is in the warhead and the warhead is in the missile, the necessary 3-foot spacing is automatically provided.

The greatest danger is probably that of accidental detonation of the explosives in the warhead, which could result in a partial nuclear detonation. (It is believed that an accidental full-scale nuclear detonation is an impossibility.) Even if only one detonator is exploded, some nuclear material may be spread in the vicinity of the detonation. Therefore, extreme care must be
used not to activate any fuzing or firing device. Take care not to subject detonators to undue bending or twisting, and NEVER drop them. The nuclear material may burn, spreading contamination in the immediate vicinity. In a nuclear accident, the radiation resulting is the same as from a nuclear warshot. In a partial detonation, the noticeable effect may be so slight (just a puff) that it is overlooked, but the deadly radiation is present just the same. Any personnel in the area must report to the medical department. One of the insidious things about nuclear radiation is the fact that you cannot feel it (except massive doses that are quickly fatal). You cannot see it, taste it, smell it, and its deadly results may be long in developing. Though the men may protest that they feel fine, see to it that all the men who were in the area are monitored and report to the medical department. Since there no longer is a requirement for continuous monitoring of weapons spaces on shipboard, the monitoring done by the medical department forms the only record of the radiation.

INSPECTION AND TEST OF EXPLOSIVE COMPONENTS

The testing of explosive components aboard ship is naturally very limited. Explosive items never tested on shipboard are S&A units, fuzes, flash units or tracers, and boosters. The electrical circuits are tested for continuity, but great care must be used to make all connections correctly and not actuate any explosive. The men of the Fire Control Technician (FT) rating are responsible for most of the testing of components of the missile, as well as the functional testing of the weapons system. An FTC acts as the coordinator of weapons system tests. The GMMs position and prepare the missiles for testing. They install or remove adaption kits, arming and fuzing devices, and replace defective or malfunctioning components or modules. They must know the methods of testing missile propellants, boosters, and sustainers. (Note: Boosters are not tested aboard ship.)

INSPECTION

The inspections to be made upon receipt of the missiles and missile components at replenishment were discussed in chapter 2. Missiles are delivered to the firing ship in assembled condition; inspect of the components was performed at the facility that assembled the missile. If the missile is delivered in a container, you inspect it only for evidence of damage from rough handling or water. After unpackaging for stowage (or if it is received in the unpackaged state), you can inspect the exterior more closely for evidence of rough handling, water damage, mildew or other fungus growth, and broken or missing parts. Parts that are unpackaged before stowing, such as wing and fin assemblies, are inspected when unpackaged. Check the position of safety switches to make sure the missile is not armed. Check the humidity indicator if there is one. If the humidity is too high (the OP for the component lists the humidity limits and heat limits), unpack the component and inspect for damage. Heat damage is seldom visible; the missile's record provides the evidence of overexposure to heat and cold. Dispose of damaged components as directed by your officer. If the component is still usable, repackage it with fresh desiccant and packaging materials as necessary. Packaging to make a waterproof container must be done according to precise packaging instructions and with the prescribed materials.

Damaged explosives must be disposed of in accordance with orders. Some have to be packaged carefully and sent back to the facility; others are thrown overboard. Call your officer to decide what is to be done. The quals require a GMMC to know enough about the explosive components to recognize dangerous changes and know what should be done in each condition. See OP 4, Vol. 2, Ammunition Afloat, for general rules on disposition of explosives, and the applicable missile OP for specific rules.

Nuclear Warhead Inspection

When a nuclear warhead is received aboard in a container, it is given receipt inspection. The outer container is removed before transfer to the checkout area, where the inner container is removed. Remove the records from the outer container. Inspect the seals, and if there is evidence of tampering, notify the security officer. Check the humidity indicator on the package. If it shows humidity in excess of 40
Chapter 8—AMMUNITION AND MAGAZINES

percent, a thorough check must be made (after you have finished unpacking the warhead) for mildew or other fungus or other evidence of moisture damage. Fungus growth or corrosion can be removed; it is not a cause for rejection of the warhead. Superficial scratches or abrasions on the warhead are not a cause for rejection, but dents or deformation are.

WARNING: If the safety switch actuator is in the ARMED position, rotate it back to SAFE with a large screwdriver. Submit an incident report to NAVORDSYSCOM.

The Battery Power Supply may come packaged separately and may be stowed that way, or an administrative decision may be made to install it in the warhead. A monitor test follows battery installation. The warhead may be placed in temporary storage until it is installed in the missile, or it may be placed in the warhead magazine, encased in the inner container.

When performing any work involving a nuclear warhead, obey the 2-man rule—always have two qualified men present. They must be familiar with the Navy SWOPS that spell out the details of caring for nuclear weapons. Great care must always be used not to bump or drop the warhead. That means all handling equipment must be in safe operating condition, and that you have enough men to do the work safely. Check the operation of the handling equipment before using it.

Storage inspection and monitor tests of stowed nuclear warhead or warheads assembled into the missile are performed according to the Navy SWOP for the missile. For example, Navy SWOP W45.21-1 gives the instructions for Terrier missiles. The frequency of inspection varies for the different warheads the Navy has; but all are given a receipt inspection, an inspection when removed from a missile, and another prior to being offloaded. A defective power supply battery may be removed but no other disassembly of the warhead on shipboard is authorized.

DISPOSAL OF EXPLOSIVES

As has been mentioned several times, you do not jettison a missile unless it is absolutely necessary for the safety of the ship and men. If it is a dud, you return it to the magazine until you can return it to a depot for refurbishing. In case of a misfire in which the APS are expended, the aft section of the missile must be replaced. This is done at a depot. To prevent damage to the roll free gyro, it must be recaged. After waiting the required time (minimum of 15 minutes for Terrier) after the misfire, apply external power for at least one minute to ensure caging of the gyro. Return the missile to the magazine as a dud. Enter the facts in the missile log—that a misfire occurred, that the APS were expended on the launcher, and the condition of the gyro caging mechanism. Shipboard replacement of the APS components is not permitted. Shipboard replacement of aft section components is limited to those items for which spares are provided.

Boosters and Sustainers

Rust and corrosion may be removed from boosters and sustainers with fine sandpaper; but emery cloth or a wire brush should never be used, as they cause static electricity that could fire the igniter. If a booster or a sustainer is dropped, set it aside and notify NAVORDSYSCOM and ask for instructions for its disposition. Boosters and sustainers should be grounded at all times during handling, maintenance, assembly, and disassembly.

Should any indication of abnormal deterioration of boosters or sustainers be noted (such as exudate or excessive corrosion), notify NAVORDSYSCOM promptly.

Other Explosive Missile Components

Other explosive components of missiles are igniters, self-destruct components, safe and arming devices, fuze booster, flash signal charge, APS igniter, APS gas generator, and the warhead. Do not try to clean corrosion from an igniter because static electricity could ignite it. Do not disassemble it. Do not stow it in the vicinity of electrical discharge or radio wave radiations. If an arming device does not function properly, make no attempt to repair it but notify NAVORDSYSCOM of the malfunction.
GUNNER'S MATE M 1 & C

Any S & A device that has been dropped 5 feet or more (when packaged), or is suspected of having been dropped, should be repacked and instruction for disposition requested from NAVORDSYSOM. Any unit found in the armed condition must be disposed of in accordance with established procedures and a full report of the incident sent to NAVORDSYSOM, and the S & A log sheet forwarded to Naval Ordnance Laboratory, Corona, California.

The fuze booster screws on to the aft end of the S & A device. Do not attempt to clean it and do not test or disassemble it; inspect it for visual damage.

The flash signal used in exercise heads is a pyrotechnic item and must be handled and stowed as such. The destructor charge and the APS igniter are high explosives, and the APS gas generator is classed as a fire hazard. The gases produced are toxic and may be explosive if confined.

MISSILE COMPONENT IDENTIFICATION

Navy guided missiles, as with other ammunition, are classified as service (tactical) missiles and nonservice missiles. Tactical missiles, or rounds, are fully functional and fully explosive loaded rounds. Nonservice missiles may be further segregated into practice (exercise) rounds, training (training or inert operational) rounds, and dummy (dummy or shape) rounds. Each type of nonservice missile carries an identifying ammunition color code.

The external surfaces of all Navy guided missiles (service rounds), except radomes and antenna items, are painted white. White has no identification color coding significance when used on guided missiles. Three significant color coding colors—yellow, brown, and blue—are used on guided missiles and their components. The three colors are applied to the external surface of guided missiles to indicate explosive hazards and uses.

Color Code Interpretation

Yellow identifies high explosives and indicates the presence of an explosive which is either:

(a) sufficient to cause the ammunition to function as a high explosive, or
(b) particularly hazardous to the user.

Brown identifies rocket motors and indicates the presence of an explosive which is either:

(a) sufficient to cause the ammunition to function as a low explosive, or,
(b) particularly hazardous to user.

Light Blue identifies ammunition used for training or firing practice. Blue painted items may have a yellow or brown band painted on them to indicate explosive hazards or may be an overall blue color without bands indicating a training item that is nonexplosive loaded. Any missile with external surfaces painted all blue is a fully inert training item.

Light Green identifies smoke or marker ammunition.

Missile and Component Markings

Guided missiles that contain compressed gas components fitted with an explosive squib are classified, for the purpose of explosive color coding, as being particularly hazardous to the user and are so indicated by a brown band on the component and on the external surface of the missile section in which the gas flask is contained. Figure 8-2 illustrates color coding for a typical missile configuration.

Guided missile warheads and their associated fuze mechanisms may be loaded and configured for service (tactical) or nonservice use. Some large surface-to-air missiles have more than one explosive type warhead while practice warheads for all missiles may be inert loaded with an in-flight destructor charge installed or completely nonexplosive loaded. Service tactical warheads for all missiles are painted overall white. Training heads may be either overall white or blue. A high explosive warhead painted overall white has a solid yellow band no greater than three inches wide painted around the warhead.

Warheads fitted with pyrotechnic components to indicate fuze activation are painted with a one inch light green band adjacent to a one inch brown or yellow band, figure 8-2. Training war
heads with an explosive destructor charge installed are marked with the symbol COMPB in yellow letters as illustrated in figure 8-2.

Miscellaneous Explosive Devices

Miscellaneous missile explosive devices encompass all independent explosive or pyrotechnic devices that are not components of the missile fuze and warhead or the propellant units and igniters. Items specifically included under this grouping are: in-flight destructor charges, safe arming devices, auxiliary power units, and arming and firing devices. These devices follow the ammunition color coding requirements. Explosive components containing high explosive or having sufficient explosive to function as a high explosive are painted yellow overall or with a yellow band. Explosive components containing explosive amounts sufficient to cause the explosive to function as low explosive or deemed to be particularly hazardous to the user are painted brown or with a brown band.

Training items nonexplosively loaded are painted blue overall or with a blue band.
Practice items may be explosively loaded and have a yellow or brown band painted over the blue overall back ground color, figure 8-2. Anti-submarine rockets (ASROC) used with some Terrier weapon systems are painted gray overall and carry the same ammunition color code specified for guided missiles. Blue is used as an overall color for totally inert training and handling ASROC weapons. Guided missile and rocket designations and ammunition color coding for missile and rocket components are explained and illustrated in Identification of Ammunition, OP 2238.

TESTING

As mentioned before, you do not test propellants, boosters, fuzeing and firing units, or sustainers aboard ship. No tests are authorized for these munitions aboard ship. While components are in storage, periodic inspections are made to ensure that the containers are preserving the contents effectively, and that the component has not exceeded its storage life. Storage life of assembled ASROC missiles, for example, is 30 months. Periodically, stored ASROC missiles must be returned to an AD or ASW facility for inspection and replenishment of components. The missile is considered to be in a packaged and preserved condition when stored either in a container or in the launcher magazine. The ASROC Depth Charge, with its nuclear warhead, is also stored in the launcher magazine. Any testing or inspection is done according to the Navy SWOP 44.341, whose classification is higher than that of this publication.

MISSILE MAGAZINES

Surface-to-air guided missiles Terrier, Tartar, Talos and Standard are ready service complete rounds of ammunition. The complete missile represents a mixture of mechanical, electrical, and electronic equipment hazards plus hazards due to several different explosive components. Because of the nature of guided missiles, requirements for their stowage aboard ship differ from the conventional ammunition magazine requirements. Surface launched missile magazines are usually located above the ship's water line. Missile magazines are constructed so that each missile is segregated from one another in cells or trays for easy handling and maximum protection against fire and shock. Missile magazines contain the necessary electric, hydraulic, and pneumatic power operated equipment to stow, select, and deliver a missile from the magazine to the launcher rail for firing. The location and general arrangement of the various types of missile magazines differ with the type of missile and the type of ship in which the missile system is installed. In some missile magazines, restraining gear is provided to prevent movement of an inadvertently ignited missile motor while the missile is stowed in a cell. Special care is taken with the magazine vent systems to ensure that magazine pressures do not build up to a dangerous level if a missile rocket motor is accidentally ignited. A plenum chamber and vent is provided in Tartar magazines and a relief port for Terrier and Talos magazines which vents the exhaust gases from an accidentally ignited missile to the atmosphere.

In some missile magazines flame barriers are installed between each cell to make them a separate, enclosed compartment open only at the top through which a missile passes during loading and unloading. Figure 8-3 shows this type arrangement used in a Tartar magazine of a Mk 11 GMLS. Missile magazines also contain firefighting equipment which frequently consists of built in sprinkler systems, water injection systems, carbon dioxide (CO2) systems, portable dry powder extinguishers, or a combination of these systems.

Missile magazine access doors, frame tight blast doors, and compartment doors should be kept closed at all times except when they must be open to permit passage of missiles, missile components, or personnel. Special emphasis is placed on this requirement during periods of weapon assembly, disassembly, system testing, system firing, or other operations involving missile movements. The same precautions observed in magazine areas must also be observed in all areas of a missile system where weapons are handled or tested.

Explosive and Flammable Components

Combustive missile components are classified under three major categories as follows:
Figure 8-3. Guided missile magazine.
1. Class “A” is the maximum hazard category which includes items that explode violently when contacted by sparks or flame, or when subject to excessive heat or shock. Items such as the missile warhead and fuze booster are considered Class “A” explosives. All Class “A” explosive components must be handled carefully to prevent their being dropped or otherwise damaged by shock. They must also be protected from intense heat and sparks.

2. Class B is the Flammable Hazard category which includes items that are subject to rapid combustion rather than detonation. The hazards created by Class B explosives are fire, heat, and noxious gases. Missile components such as flash signals, auxiliary power supply, rocket motors and igniters are examples of Class “B” hazards.

3. Class C is the Minimum Hazard category which includes items containing only limited quantities of explosive/flammable materials and are therefore considered insufficiently hazardous to be classified as Class A or B. A typical example of a Class C items are the APS igniter and S and A device.

Missile Component Stowage

Wings, fins, warheads, fuze boosters, fuzes, exercise heads and missile spare parts for Terrier and Talos missiles are stowed in appropriate sections of the missilehouse. The wings and fins are placed in the racks in the launching system assembly area. Warheads, fuze booster, fuzes, and exercise heads are stowed in racks, bins, and stalls inside the warhead magazine. Nonexplosive complementary components (except wings and fins) are stowed in the missile component store-

Magazine Safety Precautions

Specific safety precautions relating to shipboard stowage of guided missiles are presented in launcher system OPs and in Chapter 4 of OP 4, Vol 2. Listed below are some of the general safety precautions applicable to all missile magazine areas.

1. All magazines shall be kept scrupulously clean and dry at all times. Nothing shall be stored in magazines except missile rounds and the necessary magazine equipment. It is imperative that no oily rags, waste, or other foreign material susceptible to spontaneous combustion be stowed in the magazines.

2. To minimize environmental hazards, the missile magazine is temperature and humidity controlled. It is imperative that the temperature and humidity control systems operate at all times. Inspect missile magazines daily to verify that proper humidity and temperature exist.

3. Personnel must remove all matches, lighters, or any other fire making or spark making devices from their persons before entering a magazine space.

4. Blowout discs and hatches are provided as safety measures to relieve pressure in the magazine in case of rocket motor ignition. The discs and hatches should be inspected periodically to make sure they are operable. They should be clearly marked to show their locations. Personnel should stand clear of the hatch area and the area directly beneath the hoods where the discs are ejected.

5. In the event of accidental ignition of a booster or sustainer in the magazine, stand clear of the magazine until exhaust gases have been completely vented. The gases are toxic and lethal if inhaled in sufficient amounts. A minimum waiting period of 10 minutes after burnout is recommended before approaching the area without wearing special equipment.

6. Precautions should be taken to ensure that heat detectors as well as the sprinkler and CO₂ heads are not covered, damaged, or subjected to any environment that might falsely activate them or impair their utility. Because of the suffocation hazard represented by CO₂ in a closed area, all personnel should disable the CO₂ system before entering a magazine area.

7. If a magazine has been flooded with carbon dioxide, allow 15 minutes for all burning substances to cool down below their ignition temperatures, then thoroughly ventilate the area for an addition 15 minutes to make certain that all portions of the magazine area contain only fresh air. If it is necessary to enter the installation before it is thoroughly ventilated, use a fresh air mask or other type of self contained breathing apparatus.
Chapter 8—AMMUNITION AND MAGAZINES

ORGANIZATION AND ADMINISTRATION OF SAFETY PROGRAMS

In accordance with the Navy policy of conserving manpower and material, all naval activities are required to conduct effective and continuous accident prevention programs. The organization and administration of a safety program applicable to a missile system is the responsibility of the leading gunner's mate within the system. The safety program must be in accordance with local instructions and based on information contained in United States Navy Ordnance Safety Precautions, OP 3347. Adopt work methods which do not expose personnel unnecessarily to injury or occupational health hazards. Post instructions on appropriate safety precautions in appropriate places. Review these signs and instructions frequently and do not allow them to become rusty, faded, or covered with dirt or dust. Appropriate safety posters and signs may be obtained through the ship's supply department. Give the new men assigned to a missile system safety indoctrination as soon as they report for duty. A supervisor of a missile system should delegate authority to his subordinate petty officers to assist him in training and monitoring a safety program. A supervisor should also include a follow up program which inquires as quickly and as thoroughly as possible into circumstances of accidents and reports of unsafe practices and takes proper action or makes recommendations. When new safety directives and precautions are issued, it is the responsibility of the supervisor to correctly interpret their application to his men.

Magazine Firefighting Equipment

GMM 3/2, NT 10199, describes the types of missile magazine firefighting equipment presently installed on board Naval ships. Since fire and explosions are the chief dangers in a magazine where missiles and their explosive components are stowed, prevention of conditions that can cause fire and explosions and the means of fighting fire if it occurs are included in every missile magazine. During the daily inspection of missile magazines examine them carefully for cleanliness, ventilation, temperature, and the general condition of the missiles stowed in the magazine. The temperature and the moisture content of the magazine's atmosphere must be constantly watched. Temperatures are read daily and the maximum and minimum readings recorded in a magazine temperature record book. A magazine sprinkling system has to be inspected and tested monthly. Magazine flooding control systems, quenching systems and installed missile handling equipment must also be inspected for security, safety, and operation periodically.

Missile Magazine Hazards

Most missile magazines contain automatically controlled missile handling equipments which can be hazardous to personnel if safety precautions are not observed. Hazards from moving equipment within the magazine areas can be eliminated by removing or positioning safety switches from a controlling station which stops all equipments within a magazine area. Other hazard such as a suffocation hazard from a CO₂ firefighting system can also be safed by securing valves which feed the system.

Safety instructions posted near the entrance of magazines are very effective if they are easily understood and can easily be complied with. Some standard safety warnings such as: “Suffocation Hazard Secure CO₂ System Before Entering Magazine Areas” and “Danger To Prevent Magazine Motor Activation, Remove Safety Switches From Control Panels” point out the potential danger but do not give instructions about the methods of eliminating the dangers. Where safety methods are not fully explained, the launcher supervisor should instruct all personnel who have access to magazine spaces the proper procedures taken before entering these spaces.

Additional instructions may be posted near the warning signs (figure 8-4) which give information on the location and actions taken to safe a magazine area. Instructions can be made up to read as follows: Suffocation Hazard. Before entering magazine area close the two shut-off valves that serve the carbon dioxide (CO₂)
Figure 8-4.—Additional safety instructions.

system. These valves are located outside the launching system structure in compartment 3-75-4-L. They are normally locked in the open position, accordingly, unlock and close both valves and lock in closed position before entering magazine area.

Safety During Tests and Maintenance

In missile magazines that have both CO₂ and sprinkling systems installed, the control units used to activate these systems could be the same type. An example illustrated and explained in GMM 3&2, NT 10199, is the magazine firefighting system used with the Mk 13 GMLS. In this system two control circuits, one for CO₂ and the other for sprinkling systems, are activated by identical heat sensing devices.

A common hazard of a heat sensing device is its method of operation. It is activated by a fusible slug which melts at a predetermined temperature. This action causes a mechanical action to take place which activates either the CO₂ system or the sprinkling system. If a heat sensing device is located too near an operating electric motor or hydraulic unit, the fusible slug could melt from the excessive heat emitted from the units and accidentally activate one of the systems. Because of this hazard, the slugs are checked periodically to ensure their condition. Fusible slugs come in many types which melt at different temperatures. In the Mk 13 GMLS two types are used, one which melts at 174°F for the sprinkling circuit and one which melts at 158°F for the CO₂ circuit. Since all heat sensing devices are identical (except for their fusible slugs), extreme caution must be observed when conducting maintenance on these units. If an inspection reveals that a slug must be replaced, a maintenance requirement card (MRC) will explain all the steps necessary to perform this task and also lists the safety precautions related to the task. A launcher supervisor should research the MR card to ensure that the required actions listed include all additional safety requirements for entering a magazine area. The supervisor should also ensure that all safety instructions are understood by the personnel performing the task. Most MR cards include a statement to observe all standard safety precautions. A standard safety precaution is one that pertains to all types of magazines and is not listed as a specific instruction on the MR card for the maintenance action being performed. An example of a standard magazine safety precaution would be to ensure that no matches, or other flame producing apparatus, are taken into the magazine while it contains explosives. In cases where similarity of systems may cause confusion, the launcher supervisor must take all the necessary additional precautions to ensure personnel safety even though they are not listed on a MR card.

Installing Fusible Slug

Before installing a fusible slug in the heat sensing device of a sprinkling or carbon dioxide system, both systems should be secured regardless of which system is being maintained. When a damaged fusible slug is removed from a heat sensing device, it releases a compressed spring that forces a bellows to collapse. This action causes a sudden pressure change in the heat sensing device. The pressure change causes a mechanical action to take place which actuates either a control head of a CO₂ system or a PRP valve for the sprinkling system, (both systems are explained and illustrated in GMM 3&2, NT 10199). To prevent accidental activation of either system, they both must be secured prior to removing a fusible slug from any heat sensing device.

To secure the carbon dioxide system, disconnect the control heads from the supply cylinders and close off all valves that serve the carbon dioxide system. Also secure all firemain water
pressure valves that serve the sprinkling system and install a sprinkling-system test casting into the sprinkling system salt water control valve. When either a PRP valve or a CO₂ control head is activated, its position is shown by an indicator on either unit, see figure 8-5. An activated condition of a PRP valve is shown as the trip position, and for the CO₂ control head, a released position. The position of the control mechanisms is a very important factor when performing a maintenance action. In normal operation the position indicator on a CO₂ control head will move when the bellows of a heat sensing device collapses to produce a sudden pressure increase in the pneumatic lines leading to the CO₂ control heads. The pressure differential causes a diaphragm mechanism to trip an actuating lever which releases a compressed spring. The spring shifts a plunger in the control head mechanism and opens a pilot seat in the cylinder valve, figure 8-6. Liquid carbon dioxide flows through the pilot seat to the upper chamber of the discharge heads, forcing the piston down and opening the control cylinder valve. Opening the cylinder valve releases liquid carbon dioxide from the supply cylinders through shut off valves and into the magazine area where a gaseous snow is produced which quickly reduces temperature and extinguishes fires. During maintenance, the closing off of the shutoff valves prevents carbon dioxide from entering the magazine.

Even though all known precautions are taken, there is still a possibility that a condition could exist which might cause accidental activation of either system. When a new fusible slug is installed in a sensing device as shown in figure 8-7, the bellows must be expanded by a special tool. This tool, called a pull rod, is attached to a section called the collet. When the pull rod is pulled out, the bellows attached to the collet is reset in a position to collapse when a fusible slug melts. The fusible slug holds the extended collet in place, and the collet holds the reset bellows. Resetting the bellows does not automatically reset the tripping mechanism of either the CO₂ control head or the PRP valve, they must be reset manually.

Before reactivating the CO₂ system, check to see if the visual indicator on the control heads is
in the SET position, figure 8-5. To reset the tripping mechanism on the control head, turn the stem on the visual indicator clockwise with a screwdriver from the released position to the SET position. Slight resistance will be met just before the stem locks.
Before reactivating the sprinkling system, check to see if the visual indicator on the PRP valve is in the SET position. To reset the tripping mechanism of a PRP valve, use a special key to turn the reset mechanism on the front of the valve clockwise from the TRIP position to the SET position, figure 8-5.

OTHER PROTECTIVE DEVICES

All means used to maintain the missiles in the best condition help to prevent accidents. The air-conditioning and ventilation systems installed in the magazine certainly may be considered protective devices in this sense. The heavy construction of the magazines gives protection against blast and fire from accidental ignition of a missile. The blast doors on the magazine provide protection against the blast and exhaust when a missile is fired from the launcher; safety switches prevent firing of the missile until the blast door is closed. Flametight doors are installed between Terrier and Talos magazines and the assembly rooms so the blast and flame from an accidental ignition in the magazine cannot spread to the assembly area. There is no assembly or wing and fin assembly area in the Tartar magazine, but there is a flametight hatch in the base of the magazine to keep flame and blast from getting into parts of the ship beneath the magazine.

As previously stated in chapter 7 of this text, a blowout pipe is connected to a Terrier missile in the checkout area during missile testing aboard ship. The missile, secured in the checkout stand (car), is positioned in front of the blowout pipe. A blowout pipe adapter is securely attached to both the missile and bulkhead to which the blowout pipe is attached, figure 8-8. If there is an accidental ignition of a missile sustainer motor during checkout, the blowout pipe adapter performs the major function of restraining the missile. The blowout pipe has a water cooling system which injects water into the pipe through a ring around the adapter. Water injection is done automatically by means of a pressure probe downstream in the pipe if missile ignition should occur. With proper operation of the cooling system, the blowout pipe will safely vector the exhaust gas flow to atmosphere.

There are several alarm systems installed in missile magazines which warn personnel of danger to themselves and also alert them to take preventive or corrective action to protect the missiles stowed in magazines. A high temperature alarm, for example, lets personnel know that the magazine is too warm, either because the air conditioning is not operating, or a possible fire. When alarm systems are activated, personnel must investigate and correct the problem before any damage is done to the missiles. There are other types of alarm systems used in a missile magazine which indicate either CO2 or sprinkling system activation, a radiation hazard, a security violation, and other alarm systems which warn personnel when handling equipment is activated or when missiles are being moved. Missile magazine alarm systems are explained in GMM 3/2, NT 10199.

Plenum Chambers

All Tartar missile magazines have a plenum chamber arrangement which carries off gases and exhaust fumes from an accidentally ignited missile in the magazine. The plenum chamber is in the base of the magazine, beneath the missile. Each cell of a Tartar magazine has a blow-in plate assembly which gives way under pressure when a rocket motor is accidentally ignited and permits high pressure exhaust gases to escape to the atmosphere through the plenum ducts. Figure 8-9 shows a magazine base structure of a Tartar missile magazine used with the Mk 22 GMLS. All missile magazines also have some type of blowout plate which gives way and vents high pressure exhaust that escapes upward in a magazine.

Magazine Anti-Icing System

A major difference between a standard shipboard magazine and a missile magazine is the location aboard ship. Most standard magazines are located below deck and are not subject to outside weather conditions. Missile magazines, because of their function, are located adjacent to or below their launchers. In some GMLS, missiles such as Tartar are loaded directly from their magazine onto launcher guide arms for firing. Others, such as Talos and Terrier must pass through an assembly area prior to loading.
onto the launcher guide arm. Both systems have a type of blast door or magazine door between the launcher and the missile stowage area which must be opened for loading and closed during firing. These doors and other exposed areas of a launcher and magazine must have an anti-icing system to prevent ice from accumulating on exterior surfaces during cold weather operations. Heated anti-icing fluid pumped through a closed piping system warms designated areas to keep them free of ice which could interfere with missile loading operations or prevent the function of a safety device. Some of the areas of a Tartar system serviced by an anti-icing system are shown in figure 8-10. These areas—the blast door, blowout plates, magazine cover, and magazine base ring—are considered necessary for both safety and system operation. Since the magazine areas of Talos and Terrier are located within the ship's structure, they have no openings requiring passage of missiles onto a weather deck area. Only the blast doors from the assembly area to the launcher guide arm require anti-icing systems.

The location of the components for an anti-icing system vary with the type of missile system in which it is installed. All anti-icing systems contain a heat exchanger, a motor driven pump, steam supply lines, valves, and manifolds and supply lines to distribute the
heated fluid. The heat exchanger is a tank which heats and stores the anti-icing fluid which is made up of a 1 to 1 mixture of distilled water and ethylene glycol. The motor driven centrifugal pump circulates the heated fluid through the system. Fluid in the system is heated by ship’s stream in the heat exchanger and recirculated throughout the system by a network of piping and flexible hoses. A temperature control unit (thermostat) is installed on the heater tank and is set at a temperature which is adequate to prevent icing.

Ventilating System

A missile magazine ventilating system cools the missiles stored in cells or racks with air provided by a ship’s air conditioning system. Air enters and leaves the magazine area through vents and circulates throughout the magazine to maintain the proper stowage temperature. The humidity at which missiles and their components are stored is a very important factor and if not properly controlled, may cause serious deterioration of some types of explosives and also cause rust, corrosion, and fungus growth on both exterior and interior components of a missile. Air conditioning systems are adjusted automatically to maintain the optimum moisture content of the air within a magazine area.

Missile components that are packed in shipping containers contain a quantity of desiccant and are packaged in sealed moisture proof paper or sealed in a pressurized container and have a humidity indicator placed where it can be read without opening the container. When a missile is assembled into a complete round, the components that make up the round are no longer kept dry by a desiccant unit. For this reason the humidity of the air within a magazine...
MAGAZINE INSPECTION RECORDS AND REPORTS

The missile magazines that are part of the missile launching system are in use every day for some part of the training, maintenance, and repair operations. The magazines can be inspected during the course of daily work. Before anyone enters the launcher magazine, be sure to inactivate it and remove the switch handle from the control panel so no one can activate any of its machinery while someone is within.

On the missiles look for leakage of hydraulic oil, lubricants, or rocket fuel, and report leakages for repair.

Daily inspection trips must be scheduled to the magazines for spare components, as these are not opened except to obtain a spare component. The magazines are kept locked. Teach your men what to look for when they inspect the magazine. Every day inspect the general condition of the magazine—cleanliness, ventilation, dryness, (note any signs of dampness or “sweating”), lighting, presence of unauthorized tools and gear, temperature, presence of any odors indicating decomposition of explosives, escape of gases, or other indication of anything amiss. Find the source of any odor and remedy the trouble. You may need the assistance of the Explosive Ordnance Disposal Team. With modern, air-conditioned magazines, explosives usually remain in good condition for a long time.

Detonators, of course, should not be in the same magazine with rocket boosters, propellants, etc., unless they are in an assembled warhead in a missile. Little pools of exudate may form in detonator wells, from which they must be removed with the greatest care. This exudate is extremely sensitive, and removal should not be delayed. A sample of the exudate must be sent for analysis. See OP 4, Volume 2, Ammunition Afloat, for instruction.

Notice the condition of the containers. There must be no open or damaged containers, no spilled powder or broken propellant grains, and no dust, dirt, trash, or combustible materials about. Containers should be neatly stacked and
fastened down so there is no shifting, slipping, or rolling about. Remove damaged containers to another compartment for repair.

If there are windows or ventilation openings, be sure that sun and rain are kept out and that the screening is intact. In an air conditioned magazine, the ventilation openings are secured except for blow-out purposes during General Quarters, or for emergency use. Be sure the lights are working and that there are no shorts to cause sparks. The door must be flammertight: if it is even slightly sprung, have it repaired at once. The fire extinguishers, firehose, and water buckets should be in ready condition, neatly placed in convenient locations.

A checkoff sheet listing all the items to be checked in the magazine area is a practical necessity. Depending on how often the weapons officer wants the report turned in, it may contain spaces for the daily checking for a week or for a month.

Magazine temperature records and magazine logs are maintained by each command for every magazine and ready service locker aboard ship and selected magazines ashore. On shore stations a representative number of magazines in each group, containing representative quantities of each type of explosive material, are inspected each day with different magazines within the respective groups being inspected on successive work days until all magazines have been inspected. Frequency of inspections ashore may be varied on the basis of prevailing outside temperatures. The date and hour of each inspection shall be noted and recorded in a magazine inspection log over the signature of the person who makes the inspection. Substandard or abnormal conditions shall be reported promptly to the supervisor in charge for correction and the conditions observed noted in the log. Whenever abnormal conditions in magazines or missiles are discovered and recorded, the facts shall be reported in person to the commanding officer or command duty officer and further relayed to ensure that all personnel concerned are officially notified so that the necessary corrective action may be initiated promptly.

Inventory Record of Small Arms and Pyrotechnics

Small arms are issued to you and your men for guard duty, and must be strictly accounted for on an individual basis. You will not have stores of small arms in your care, nor will you have stocks of small arms ammunition. These will be issued to you as required, and you are accountable for them. NAVORDINST 8370.1 gives the instructions for reporting lost, stolen, and recovered small arms. A letter report is required in each instance.

The special pyrotechnic items on missiles, the tracking flares and flash units, are issued to each ship in the quantity designated by the ship's COSAL. The quantity is determined by the number and kinds of missiles on the ship and the mission of the ship. If a lengthy training cruise is scheduled for the ship, more pyrotechnic items will be needed than for a tactical mission. When the ship was loaded and outfitted, the quantity of each item had to be checked against the COSAL, and the amount entered on the ammunition inventory. When any item is used, it must be deleted from the inventory. The number of
items in the pyrotechnic locker should always match the number listed in the inventory.

Other Navy pyrotechnic items that are not used on missiles are not part of your inventory, but you must know how to stow them and how to use them correctly and safely. Containers of pyrotechnic items that show signs of dampness or moisture must be opened. If there is evidence of moisture on the pyrotechnics, a report must be made to NAVORDSYSCOM, and instructions requested for disposition of the damaged articles, which must be segregated from all other items.

Gunner's Mate M (Missiles) 3&2, NAVTRA 10199, contains material on pyrotechnics with illustrations and diagrams to supplement the text. Ammunition Afloat, OP 4, vol. 2, gives the official rules for care and maintenance, surveillance, stowage, and disposal of various types of pyrotechnics. Be sure to get the latest revision of this volume; rules have been made more precise and stringent because of recent disasters caused by mishandling of pyrotechnics.

Ammunition Records and Reports

Due to ammunition's essentiality to naval operations, and because of its high cost and other unique logistic characteristics, ammunition status is under careful and continuous study at the highest echelons of the defense establishment, as well as by operational and logistics commanders. It is vital that an accurate and prompt method of reporting ammunition stock status be available to commanders of naval forces. For this reason commanding officers of ships and shore activities are responsible for submitting reports regarding all receipts, transfers, expenditures, and quantities of all ammunition components within their command.

A quarterly ammunition report is made to Navy Ships Parts Control Center (SPCC), Mechanicsburg, Pennsylvania, so that an accurate inventory of assets and expenditures of expendable ordnance items throughout the Naval service can be maintained. A quarterly ammunition report includes all conventional expendable ordnance material, including gun-type, bombs, rockets, ASW weapons, guided missiles, military chemicals, mines, torpedoes, demolition and pyrotechnic materials assigned a four digit NALC (Navy Ammunition Logistics Code) in accordance with NAVORD OD 16135, and excludes nuclear ordnance. The frequency of ammunition assets and expenditures report made to fleet commanders and other command authority is outlined in COMSERVLANTINST 8015.1 (Series) and COMSERVPACINST 8015.5 (Series) as appropriate. Most ships report monthly to Commander Service Forces Atlantic or Pacific who will in turn report to SPCC. These reports, when processed by SPCC, provide Naval Ordnance Systems Command with information concerning expenditure rates, ammunition availability, and facts from which fleet requirements can be determined.

There are numerous other reports that have to be made periodically concerning ammunition afloat and ashore. These reports include complete ammunition identification data, including lot number, mark, and modification numbers and NAL codes of all ammunition and components. Some of the information required in these reports are:

1. Available stowage space of the activity.
2. Types and numbers of missiles used for training.
3. Performance of ordnance equipment.
4. Performance of pyrotechnics and other ammunition components used.

Reports on Missiles

Ships reporting complete rounds of surface to air missiles in accordance with OD 16135 must in addition to reporting receipts, issues, and expenditures include reclassifications and reconfigurations due to installation of alternate or exercise missile components. Some missiles can be reclassified from a service round to an exercise round by exchanging a missile warhead for an exercise head. A missile's NALC code number will change when the missile is fitted with an exercise head. OD 16135 lists a Terrier missile with a warhead as NALC-1600, and a Terrier missile with an exercise head as NALC 1601. If a missile is received aboard as a service missile and previously reported with a NALC 1600 number indicating a warhead shot and is reconfigured as an exercise round, the missile is then reported with a NALC 1601 number indicating an exercise shot. The warhead removed from the
service missile must also be reported with its own NALC identification. In addition activities reporting surface to air missiles or boosters must include a serial number for each missile or booster being reported.

Emergency (message) Expenditure Reports are made according to instructions promulgated by the fleet commander, area commander, or other authority. NAVORDINST 8025.1 “Accidents and incidents involving nonnuclear explosive ordnance, materials, and devices; report of, "establishes regulations that apply to all ships and stations regarding such reports. (See chapter 11.) It defines and differentiates between an explosive accident and an explosive incident. When a nuclear component is involved, special reports are made and special rules apply (OPNAVINST 8110.16C or later revision).

LIMITATIONS IMPOSED BY NUCLEAR WARHEADS

If you have missiles or depth charges with nuclear warheads, the storage conditions must meet the requirements for the nuclear component. For specific information on the temperature and humidity limitations for certain nuclear weapons, general information on storage requirements for nuclear components, and the storage limitations of the missiles and depth charges you have aboard, consult the Navy SWOPs for those weapons. The classified publications custodian in your division has charge of those publications. Navy SWOP 35-49 gives the instructions for preparing report form NAVORD 8110/10, “Nuclear Weapons Information Report,” and NAVORD Form 8110/11, “Nuclear Weapons Inspection Summary;” while Navy SWOP 5-8 tells about NAVORD Form 8110/14, “Special Weapons Unsatisfactory Report.” Until the new forms are available, Navy activities may use NAVORD Form 2795 (6-60) to report material discrepancies. If the material is in dangerous condition, Emergency URs are sent to the Naval Ammunition Depot, McAlester, Okla. 74501, plus copies to NAVORDSYSCOM, ORD-0822, Washington, D.C. 20360.

Items received in damaged condition are reported on DD Form 6, “Report of Damaged or Improper Shipment.”

The Inspection Summary is sent each month the other reports are sent when there are changes to report.

Missiles containing war reserve nuclear warheads are never loaded on the launcher except when actual firing is anticipated. Dummy, practice, or exercise warheads are used for all other purposes (training, maintenance, checkout, exercise). Dummy warheads have merely the outward appearance of the real thing. A mockup not only has the outside appearance, but it can be assembled and disassembled. A training warhead is an elaborate mockup. There are six categories, according to the extent each uses live or dummy components.

Training weapons are of several categories, depending on the completeness of the weapon. If you are going to use it only for practice in putting a missile into the magazine and bringing it up to the launcher, the size, weight, and conformation of a real missile are all that are needed.

All Navy and Marine activities having custody of training weapons, component assemblies, or test and handling equipment associated with nuclear ordnance must make semiannual reports. NAVORD Form 8110/2, “Modernization Status Report, Training Weapons and Test and Handling Equipment,” is the report form to be used for this. It is explained in Navy SWOP 40-13.

SUMMARY

Missiles, to be of any value in defensive war, must be completely assembled and ready to go on very brief notice. This assemblage of extremely dangerous and powerful components makes necessary meticulous adherence to safety rules and highly effective firefighting and protective systems. You are expected to have learned the qualities of different explosives as a GMM 3 and 2. Now you are expected to supervise the handling of explosive components and assembled missiles, and to enforce the safety regulations.

Considerable attention is given to the types of protection included in the magazines and other parts of the launching system. You not only must know how to operate these systems, but you must be able to repair them, test them, and keep them operating efficiently.
The problems created by having missiles with nuclear warheads in the same magazine with missiles with conventional explosives is not treated to any extent because of security classification.

As soon as you know what weapons you have aboard, find out the special precautions that apply. You and your men have to handle and stow the assembled missiles that contain the nuclear warheads. You therefore must know what to do in emergencies, and you must know all special rules for handling and stowage, such as humidity and temperature limits, and what to do in case of an accident or incident. One of the most frequent criticisms found in reports of investigations of explosive accidents or incidents is that no one seemed to know just what to do and precious time was lost in getting organized to take effective action. This indicates strongly that more organized drill is necessary so someone is ready to take the lead and the men know just what to do.
CHAPTER 9

BALLISTICS, FIRE CONTROL, AND ALIGNMENT

INTRODUCTION

If you looked up the definition of ballistics in the older dictionary—not very old, at that—you would find that missiles are not included in the definition. A 1958 definition of ballistics says that it is “the science which studies the laws governing the motion of projectiles shot from artillery or firearms, or (ballistics of bombs) of bombs dropped from aircraft.” Later definitions include missiles.

The science of ballistics studies the effects of various factors on the speed, course, range, and other behavior of the projectile, bomb, or missile. The factors include initial velocity, force of gravity, atmospheric conditions (wind, moisture, clouds, etc.), earth's rotation, earth's curvature, and drift. Ever since the invention of guns, men have studied how to use them with greater accuracy. The pioneer hunter learned from trial and error how to allow for the wind and how to “lead” his target. The scientific principles as they apply to projectiles shot from guns were formulated and applied long before the era of guided missiles. In Gunner’s Mate M (Missiles) 3&2, NAVTRA 10199, you learned how ballistic principles apply to guided missiles. The effects of gravity, air density, wind, coriolis effect, stabilization (of the ship and the missile), trunnion tilt, and parallax on the trajectory of a guided missile were explained and illustrated. The missile design is planned to take advantage of these effects as much as possible, or to offset their disadvantages.

The principles of missile flight as affected by missile aerodynamics also were explained in the preceding course. The density of air decreases as the altitude increases. This reduces the air pressure and the drag on the missile passing through it. The layers of the atmosphere were defined as the troposphere, the stratosphere, and the ionosphere. The ionosphere begins about 25 miles above the surface of the earth. The air particles in it are ionized by the ultraviolet rays from the sun and to a less extent by the charged particles from the sun. The low air density at this height makes increases in speed possible; the effects of ionization on missile electronic systems and nuclear material are still being studied.

Most long-range missile flights will be made in the stratosphere, which extends between the troposphere (the layer of air next to the earth’s surface) and the ionosphere. The constant temperature and lack of winds are advantageous to missile flight, but the low temperature and the lack of oxygen are disadvantageous. By carrying out flights in the stratosphere, the advantages of low drag, high speed, low fuel consumption, and greater range are obtained. The shape of the missile and the shape and arrangement of the fins are designed to take advantage of the lift of air, and also to provide stability to the missile. Fixed fins contribute primarily to stability; control is achieved by movable fins. Design and arrangement of fins differ for subsonic and supersonic missiles.

The speed of missiles is often stated as a Mach number, which represents the ratio of the speed of the missile to the speed of sound in the surrounding atmosphere. At subsonic speeds, the Mach number is less than one, as 0.80; at supersonic speeds it is greater than one, as 1:31. Talos and Terrier have a speed in the range of Mach 2.5; Tartar speed in Mach 2; Asroc speed is Mach 1.
All the principles of missile flight are important in missile fire control. You need the background knowledge given you in the preceding course, and barely touched on here, to help you understand how the weapons system operates and enable you to see why certain things must be done in certain ways in the operation and maintenance of the system.

EQUIPMENT OF A MISSILE WEAPONS SYSTEM

A missile weapons system consists of a weapons direction system, one or more fire control systems, the launching system, and the missiles. The weapons direction system and the fire control systems and their related equipments comprise the weapons control system. The system described in this section is installed aboard the DLG-9 class frigates. It consists of a weapons direction system, two Terrier missile fire control systems (Mk 76), a Mk 10 guided missile launching system, and BT and HT missiles. However, for the sake of clarity and to conserve space, we have generally limited our discussion to one fire control system. On the basis of their fundamentals of operation, fire control systems may be divided into two main classes: linear rate and relative rate. Figure 9-1 illustrates the equipments in the groups of equipments, and the two basic methods of solving the fire control problem.

LINEAR RATE SYSTEMS

Linear rate systems are used for both surface and air targets, for gun and missile systems. Linear rate systems measure changes in target position in knots, like the surface fire control systems used in main battery installations. Because it has both magnitude and direction, relative target motion is a VECTOR quantity. And, like any vector, it can be separated into two or more components.

In figure 9-1B (1) relative target motion has been separated into three components. The component along the line of sight is range rate (dR). The component at right angles to the LOS in a horizontal plane is the linear bearing rate (RdBs). And the component at right angles to the LOS in a vertical plane is the linear elevation rate (RdE).

The director measures target range, bearing, and elevation, and transmits their values to the computer. The computer solves the vector problem and calculates the future position of the target at the end of the missile's time of flight, allowing for the effect of relative motion during the time the missile is in the air. It then determines from the predicted target position how the missile launcher must be positioned for the missile to hit the target, allowing for wind, gravity, drift, and initial missile velocity.

The computer solves the problem continuously and continuous orders are sent to the guns or missiles. The rates are calculated in the computer from three groups of inputs:

1. Ship motion inputs of own ship's course and speed.
2. Target motion inputs of target course and speed; in an AA problem, target speed is resolved into two components-horizontal speed and rate of climb (vertical speed).
3. Target position inputs of target elevation, bearing, and range.

Three rates are computed relative to the LOS: in the LOS (range), across it in the horizontal plane (bearing), and perpendicular to it in the vertical plane (elevation). These rates are based on the position of the LOS at the instant of their computation. The velocity of the LOS is not used directly to determine the rates. This is a disadvantage of the system. However, when aided tracking is used by the director, the velocity of the LOS furnishes a check on rate accuracy. (The linear rates are converted to angular rates for aided tracking.) The calculated linear rates correspond to the computer's coordinate system.

Relative Rate

Many publications use the term relative rate rather than angular rate. For our purposes the two terms have the same meaning.

There are many different types of relative rate directors used in the Navy. One common feature is that they use gyros to measure the angular tracking rate.
The lead-computing sight determines changes in target position by measuring the angular velocity of the line of sight. (If you keep your finger pointed at a moving airplane, the rate at which your arm and finger move to follow the plane’s flight is a rough measure of the angular velocity of your line of sight.) Angular rate systems measure this angular velocity, and correct for time of flight and curvature of trajectory.

As the director operator keeps his sights on the target, and introduces range, the equipment automatically computes the elevation and bearing lead angles required to compensate for target motion. The launchers are then automatically and continuously moved through these angles.

Figure 9-1B (2) shows how this method works. Here the target is flying a circular course about the gun, so that elevation is the only problem we need to worry about. (The same procedure would be used if the plane were flying in a horizontal circular course.)

The range is such that the time of flight to any position on the target course is three seconds, and the target is changing its elevation at the rate of 5° per second. During the three seconds of projectile flight, the target elevation will increase by 15°. If the gun is fired at this future position (that is, with a 15° lead angle), the times of flight of the projectile and target will be equal, and the projectile will strike the target.

The major difference then, between the linear rate and angular rate systems, is that the former measures components of target motion linearly in three planes, and the latter measures the angular velocity of the line of sight, to predict changes in target position.

SEARCH RADAR S

Outside the weapons system but supplying the target data needed for its use are the search radars (fig. 9-1). The search radars look for and detect targets on the surface of the sea, and in the air. These radars keep a large volume of space about the ship under constant surveillance, and they stand watch in all kinds of weather. Their beams can penetrate fog, rain, snow, and the dark of night, as they constantly sweep the sky and earth’s surface in their search for the enemy. When a target is found, the radars measure its position with respect to own ship or some other reference point. To determine a target’s position, we must know its range, bearing, and, in the case of an air target, its elevation. Search radars can usually give all three of these coordinates, but some radars specialize. Some radars are designed to search for aircraft and others for objects on the surface of the sea. Air search radars are used primarily to detect aircraft and missiles. Surface search radars are used mostly for detecting targets on the surface of the sea. Most of the low-flying aircraft are detected by surface search radars. FC radars can pick out prominent shore targets such as a tower, a high mountain peak, or protruding rocks.

In the typical weapons systems shown in figure 9-1, there are three search radars: the AN/SPS-10, AN/SPS-39, and AN/SPS-37. Working together as a group of detecting equipments, these three radar sets can cover all the sky and surface about a ship.

AN/SPS-10

The AN/SPS-10 is a surface search radar. It detects surface targets in excess of 15 miles. The radar transmits a beam that looks like a fan set edgewise on the surface of the sea. The beam is rotated continuously through 360 degrees. The spread of the fan is about 22 degrees, and therefore the radar can pick up air targets. But its primary purpose is to detect targets on the surface and to keep them under constant observation.

You can classify the AN/SPS-10 as a two-coordinate radar. It can measure only the range and bearing of targets. To find the position of any object on a plane (and that is what the surface of the earth or sea is usually considered to be), all you need is range and bearing. But to find the position of an object in the air you must have three pieces of information—range, bearing, and elevation.

AN/SPS-39

Radar Set AN/SPS-39 is an air search radar; it can measure the elevation, as well as range and
Figure 9-1.—Typical missile weapons system. A. Components of the system, by groups; B. Using the components to solve the fire control problem; (1) Linear rate method; (2) Relative (angular) rate method.
bearing, of air targets. The set can pick up aircraft at an altitude in excess of 35,000 feet out to a range in excess of 100 miles. This radar transmits a narrow, pencil-shaped beam and scans it up and down as the antenna rotates.

AN/SPS-37

Compared with gun weapons systems, missile weapons systems are petty "slow on the draw." It takes almost a minute to select and then load missiles on a launcher. Even the trigger action is slow. Once the firing key is closed, it takes slightly over a second for a missile to leave the launcher. So the more warning a ship has of the approach of an enemy, the more time there is to prepare the missile battery for action. Another radar, the AN/SPS-37, gives this advance preparation time. It is a long range radar. Like the AN/SPS-10, it has a fan beam and can measure only the range and bearing of air and surface targets.

IDENTIFICATION OF FRIEND OR FOE (IFF).—Look at the top of the AN/SPS-37’s antenna (figure 9-1). The small antenna you see there is for the Identification of Friend or Foe (IFF) equipment. In modern warfare the identification of friend or enemy is very important. A missile cannot tell an enemy target from a friendly one. Therefore, we must make sure that we launch a weapon at a curious or unaware friend. How can we identify a target that may be several hundred miles from our ship? The answer is: IFF equipment. The equipment consists of two major units—a challenging unit and a transponder. The challenging unit is aboard ship and electronically asks the question, "Are you a friend or foe?" The transponder is located on board friendly ships and aircraft and answers the question put by the challenging unit. The challenging unit sends out a pulse of low-power radio energy toward the target. If the target is friendly it will transmit back a series of coded pulses. If there is no answer to the challenge, the target is classified as hostile.

Target Designation Transmitter (TDT)

Optical device called target designation transmitters (fig. 9-1) are used as supplementary target detection equipment. Their use is limited to short-range, visible targets. The speed of missiles and jet aircraft is so great that such targets must be engaged while they are still well beyond the range of our present optical instruments.

Summary on Search Radars

To summarize, you can see that search radars, in conjunction with IFF equipment, search for targets, find them, and then identify them. As a hunter, you perform these same basic functions when you hunt for game. Your eyes probe the underbrush and other parts of the landscape in search of prey. When you sight some animal or bird, you fix your eyes on it and measure its position with respect to you, and then you identify it "Is this animal or bird in season?" you ask yourself. If it is, you raise your gun and prepare to fire; if it is not, you resume your search for legal game.

A basic idea to keep in mind is that the equipments in a weapons system simply extend man's senses and capabilities. Radar extends his vision by hundreds of miles and gives him the added capability of seeing in the dark, and in other conditions of poor visibility. The IFF equipment enables him to tell whether a target is friendly or not.

Target echoes and IFF pulses are sent from the radars through a radar switchboard to consoles in the weapons control system. Target position and range information follow a similar path. In figure 9-1, all this information is labeled "search radar target data."

GMLS CAPABILITIES

Guided missile launching systems are capable of stowing, selecting, loading, and launching missiles which can be used against air, surface, shore, and underwater targets. The 3Ts, (Terrier, Talos, and Tartar) are the three missile systems now found aboard ships. These systems have undergone many changes since their inception. A Standard missile has been developed which will be employed with either the Terrier (Standard extended range (ER) missile) or the Tartar (Standard medium range (MR) missile) missile systems. The ASROC missile has also been adapted for use with some Terrier systems.
A brief description of the capabilities of the three missile system follows.

A Terrier/ASROC GMLS system provides the fleet with a tactical air, shore, surface, and underwater defense. The Terrier missile used for air, surface, and shore defense can maintain a firing rate of two missiles every 30 seconds when launched from a dual arm launcher. When the launcher is in the ASW mode of operation, two ASROC missiles can be loaded simultaneously. They can only be fired singly with the B side firing first and can maintain a firing rate of approximately 80 seconds.

The Terrier missile is a guided weapon with a solid fuel rocket motor and sustainer. The missile uses either a beamriding (BT) or a semiactive homing (HT) guidance system.

The ASROC missile is a solid fuel, rocket propelled ballistic weapon with either a torpedo or a depth charge configuration. Both weapons are fired from the same dual arm missile launcher in which a Terrier weapon is launched in quick succession (a salvo) and an ASROC weapon launched singly. To make an ASROC missile compatible with a Terrier launching system, the ASROC missile must be equipped with an adapter rail mechanism so that the ASROC can be handled by the same equipment as the Terrier missiles. Both missiles have the capability of carrying either a conventional or nuclear warhead.

A Tartar/Standard GMLS provides the fleet with a tactical weapon for use against air and surface targets. Tartar/Standard missiles are launched from either a single or dual arm launcher with a load-to-fire rate of approximately 8 seconds for Tartar missiles and 10 seconds for Standard missiles.

The Tartar/Standard (MR) missiles are supersonic surface to air missiles with a solid fuel dual thrust rocket motor. They are guided by a semiactive homing system.

A Talos GMLS provides the fleet with a tactical weapon for use against air targets. The Talos missile booster combination is a ramjet propelled supersonic missile with a solid propellant rocket booster. The missile uses a beam riding control system during midcourse flight and a homing guidance system during the terminal phase of flight. Talos can carry either a nuclear warhead or a conventional warhead.

Modes of Operation

Based on information received from a ship’s weapon system, a GMLS controls the movements and performance of each missile selected prior to missile firing. Target selection determines the missile type, whether a single or multi missile firing is desirable, and when to load a missile onto the launcher guide arm for firing. Missiles within a launching system can be assigned a code letter according to their purpose and design. An X, Y, or Z select code circuit can be used to identify each type of missile within a system. Missiles can be coded by their configuration, (whether they are used against surface, air or under water targets,) and also by the type of warheads they employ against a target. The coding circuit will provide a selected missile with the initial flight guidance prior to launch. The type of target selected, which would be the most threatening target, determines the mode of operation of a launcher system and also determines the type of target data received by a system. Figure 9-2 shows the flow and processing of target data through a Terrier weapons system and the inputs to the launching system. Most weapon systems operate in three basic modes of operation: surface, underwater, and air.

Surface and Shore Targets

During surface operations in a Terrier weapon system, the controlling Missile Fire Control System (MFCS) tracks the target in range and bearing while the radar guidance beam is programmed to a small elevation angle above the target. The MFCS receives designation orders, acquires targets, and tracks surface targets. Target tracking data from the fire control director, missile performance characteristics, and own ship’s motion are computed to generate launcher train and elevation orders for an optimum firing position. When the launcher is assigned to a MFCS, it trains and elevates to synchronize to a computed position which aims the Terrier missile toward the correct capture point depending on the type of missile selected. The fire control systems computer continuously corrects the launcher aim point as the ship and target maneuver.
Figure 9-2.—Flow and Processing of Target Data Through Terrier Weapons System.
For a shore target, a Terrier missile system follows a procedure similar to engagement of surface targets but the targets are not tracked. The missile is launched at a preselected point, and the missile warhead is detonated at a preselected height above the target. During shore firing operations, the MFCS radar director remains fixed in bearing as the ship holds a steady course. When launched, the missile follows the guidance beam toward the shore target, and the MFCS computer programs the beam down to the burst height as the missile-to-target range decreases to zero. Figure 9-3 illustrates a surface and shore fire control problem.

Underwater Targets

When underwater targets are encountered and identified as hostile, the ship's Underwater Battery Fire Control System (UBFCS) orders the Terrier missile system into an Antisubmarine Warfare (ASW) operation. When targets are to be engaged by ASROC missiles, the UBFCS controls the attack problem and the Weapon Direction System (WDS) implements the order for the launcher to shift to an ASROC mode. The UBFCS continues tracking the underwater target and continuously corrects the launcher aim point as the target and ship maneuver. When all indications are correct and the ASROC missile is launched, UBFCS designates a position in space where the Gun Fire Control System (GFC) radar can acquire the ASROC missile and track it to its water entry point. This information is used by the UBFCS to evaluate the probable success of the firing. If the missile has a torpedo payload, a parachute deploys which slows the payload to a safe water entry velocity. The parachute detaches from the payload upon water impact. The torpedo sinks to a preset initial search depth and starts on a target search program. If the missile has a depth charge payload, the payload continues its trajectory to the water entry point and detonates at a preset depth.

Airbone Targets

Since GMLS are the ship's primary defense against air targets, we will discuss in some detail the components used during antiaircraft operations starting with a ship's weapons control system.

THE WEAPONS CONTROL SYSTEM

A weapons control system is comprised of two major subsystems: (1) a Weapons Direction System, and (2) one or more Fire Control Systems. The weapons control system contains equipment that makes decisions on its own or aids officers in making appropriate decisions. Information about targets is visually displayed and stored, and this displayed and stored information provides the basis for decision making. Commands are transmitted between equipments in the weapons control system and to units in other systems. Information is passed back and forth between equipments and individuals over data transmission circuits that are a part of the weapons control system. Computing equipment calculates lead angles which are sent to the launcher to aim it in the proper direction. Also, orders are sent to the missiles before they are launched. After the missiles are in flight, information is sent to them to direct their flight to the target.

The Weapons Control System serves the gun batteries as well as the missile batteries. A gun battery consists of a group of gun mounts of similar size, ballistic characteristics, and ammunition requirements. A missile battery has two or more missile launchers. Traditionally, the largest caliber of guns on board is the main battery, but the term "main battery" may mean the weapon of the greatest potential effect, and therefore the missile battery may be the main battery.

Weapons Direction System

The typical missile weapons system shown in figure 9-1 includes Weapons Direction Equipment Mk 3. The WDS is made up of two groups of equipment: (1) Weapons Direction Equipment (WDE), and (2) related (ancillary or auxiliary) equipment.

WEAPONS DIRECTION EQUIPMENT.—This term is the one in current use. The same equipment has been called Designation Equipment.
Figure 9-3. (U) Basic Fire Control Problem, Y Surface and Shore Modes.
Chapter 9—BALLISTICS, FIRE CONTROL, AND ALIGNMENT

(DE) or Target Designation Equipment (TDE), and you will find these terms still in use. In the system illustrated in figure 9-1, it is called Designation Equipment Mk 9. It consists primarily of three Target Selection and Tracking Consoles (TSTC), a Director Assignment Console (DAC), a Weapons Assignment Console (WAC), and a Guided Missile Status Indicator. The last two equipments are especially of interest to you because they originate many of the instructions sent to the launching system. They also receive much information in return.

The WDE, as a whole, selects targets from the video and target position information supplied by the search radars. This target information is electronically displayed on cathode-ray tubes in the various consoles. Selected search radar targets are manually tracked to determine course and speed. The WDE provides for the assignment of missile fire control radars to track the most threatening of these targets. Equipment is provided to assign the launcher to one of the missile fire control computers. Other equipment is used to let the launching system know what type of Terrier missile is to be launched. Also, a firing key is provided in the Designation Equipment to start the launching process. In short, the Designation Equipment coordinates and monitors the activities of the entire missile weapons system.

Target Selection and Tracking Console (TSTC).—The three TSTCs in our typical weapons system (fig. 9-1) can all be used for selecting and tracking targets. One TSTC is located in the Combat Information Center (CIC), and is normally used to select targets for tracking. The other two consoles are part of the Weapons Control Station, and they track the selected by the TSTC in CIC. All the consoles are wired in parallel; therefore, both functions (selection and tracking) can be performed by any console or combination of consoles. In figure 9-1 you can see the general outlines of a TSTC. Figure 9-4 shows the panel face.

The principal indicator on each console is a Planned Position Indicator (PPI). You studied this radar indicator in Basic Electronics, NAVTRA 10087 so we won't describe how it works. The cathode-ray tube displays the bearing and range of every target detected by a selected search radar. A control on each console can select a particular search radar to use as a target data source. The normal source is the AN/SPS-39.

The personnel in CIC and Weapons Control need this picture to evaluate the combat situation. Evaluation is concerned with answering the following questions:

1. What does the target intend to do? Is he going to make a run on the ship or simply stay at long range and observe?
2. How threatening to our ship's safety is the target? If it becomes obvious that his intent is to attack, how much time does our ship have to launch a counterattack? This raises another question.
3. What weapon shall the ship use to counter an attack?
4. What kind of weapons does the target carry?

Many other factors are involved in evaluating a target situation, but these sample questions should give you some idea of what the term "evaluate" means. The target selection and tracking consoles aid in the evaluation process by determining which targets to track, and then keeping them tracked. Each target assigned its own tracking and storage channel. The channels are lettered A through F. When a target has been selected for tracking and has been assigned a channel, the appropriate letter is electronically painted on the PPI-scope. Look at figure 9-5A. It shows a view of the air and sea space around your ship as seen from a position directly above it. Figure 9-5B is the TSTC display scope and it shows a symbolic reproduction of the actual combat picture. As the real targets maneuver, their electronic counterparts (blips) follow the same motions. Search radar target tracking consists of making the letter symbol associated with a target continuously follow the target blip. The operator uses the pantograph (fig. 9-4) as you would a gun sight. He lines up the pantograph ring sight with a target—let's say target A. Then he presses a button to measure the position of target A. This position information is put into a computer. The operator keeps his sight over the target for several seconds while he continually presses the tracking button. Meanwhile, the
computer associated with target A is calculating the target’s speed and course. When the computer has the correct course and speed of target A, the letter symbol, which is driven by the computer, will follow the target blip without the operator of the console moving the pantograph. Target position, course, speed, and elevation are stored in the A channel computer for use by the TSTC and the DAC operators.

Search radar targets are tracked with the aid of pantograph arms, one on each TSTC. You can see a general outline of the arm in figure 9-5B. The arm is essentially a link between the search radars and the weapons control system. We can illustrate this point by showing, in a brief and general explanation, what happens when we start the WDE tracking process. You should have a general idea of what is going on in Weapons Control so you can understand how you fit into the “big picture.”

The weapons officer tells the operator of the tracking TSTC which target to follow. The operator places the pantograph arm, which has a ring sight, over the selected target blip. He then presses various buttons which open up a tracking channel. Assume that channel A is selected (for
target A). Target position and rate information are placed in the channel computer and storage unit, and stored. Also, if information about the height (elevation) of the target is available, this information is put into storage.

Let's follow this target through the weapons control system as the information passes from equipment to another. We have already described the first leg where a selected target was passed from a search radar to tracking and storage channel A via the pantograph arm on one of the TSTCs. Target range, bearing, course, and speed are now stored in the A channel of the WDE Data Storage Unit (shown as a large box in fig. 9-1). Coming out of this unit is a line marked “Target A position, speed, and course.
data. The line ends at another piece of equipment in the WDE called the Director Assignment Console.

Director Assignment Console (DAC).—The Director Assignment Console (fig. 9-6) is located in the Weapons Control Station and is used to display target fire control information. Despite the console's name, its primary purpose is to assign a missile or gun fire control system rather than only a director to a particular target. The console contains two cathode-ray tube displays (fig. 9-6). The tube on the left shows the bearing and range of each target being tracked by the target selection and tracking console operators. Pushbutton controls are used by the console operator to assign fire control systems to targets and for releasing the systems after the targets are destroyed or if some other target becomes more threatening. Indicator lamps show the status of the fire control systems. For example, the track light shows that a fire control system is already tracking target A; the FCS NON-OP light indicates that its associated fire control system has a casualty in it and is therefore inoperative; the IND light indicates that some other designation source, such as a Target Designation Transmitter, is designating to a fire control system.

The multipurpose display on the right of the panel face (fig. 9-6) shows the target elevation and speed of any targets that are in tracking channels. This target information is determined by the tracking channel computers in the WDE target data storage unit (fig. 9-1). The DAC operator can tell from the information displayed on the multipurpose plot (vertical line) how much time he has to assign a director to a target before the target reaches a range at which it can release its weapons. He can also determine from display how long a fire control system will be busy tracking a target and guiding a missile to it (horizontal line).

You can get a closeup view of the DAC displays in figure 9-7. You can learn quite a bit about a target by looking at these displays. The PPI tells us that target A is bearing 025°, and is about 75,000 yards from the ship. Missile fire control director 4 (symbolized by the numeral 4) is positioned at bearing 258° and its radar range measuring unit is sitting at 35,000 yards. As director 4 changes its train position, the numeral 4 will move correspondingly. Now figure out where director 5 is positioned in bearing and range. Notice the target course line extending from target A toward the center of the scope. The course line indicates that target A is heading for the ship.

The multipurpose display indicates how fast target A is traveling. It is making about 750 knots, and is flying at 35,000 feet. The multipurpose display also provides information about the length of time a director will be used to track and control missiles during the engagement.

According to the display in figure 9-7 target A is in position to launch an attack against the ship. Since he is within missile range (or soon will be), and beyond gun range, the DAC operator assigns a missile fire control system to engage the enemy. Assume that FCS 5 is busy controlling a missile salvo against another target. This means that all units in FCS 5 are at work; therefore, FCS 4 must be assigned to this target. The DAC operator assigns FCS 4 to target A by pressing appropriate control switches on the console. A selector switch in the missile FC switchboard automatically turns, connecting target A position information (as determined by the channel A tracking computer and storage unit) to the missile fire control computer in FCS 4.

The missile fire control computer (fig. 9-1) associated with director 4 changes the target A position information from tracking channel A into synchro signals that are proportional to the range, bearing, and elevation of target A. These target A position signals are then sent to the director's range, bearing, and elevation servos. The director slews onto the target, searches for it, and when it has found the target, begins to track it. Now the director and its radar accurately measure target A's position and range, and send this information down to the fire control computer. At about this time, the fire control system signals the DAC that it is tracking target A (the FCS 4 track light comes on), and the tracking channel A lights on the TSTC and DAC begin to flash, indicating that target A is being tracked by FCS 4.

The TSTC operator disconnects tracking channel A from the fire control system because
there is no further need for it since the fire control system now has the target.

So far in this discussion, target A has been detected by a search radar, identified as a hostile target, selected out of a group of three targets, tracked by the TSTC operator to get a rough idea of the target's position and motion, passed on to a fire control system which then picked up target A. As the director and its radar track the target, they continuously and precisely measure target A's position and range. This very accurate information is sent to the computer, which predicts where the target will be some time in the future. The computer also makes up launcher train and elevation orders as well as information for use by the missile when it is in
flight. We'll talk more about the fire control system later. But for the present, let us return to target A and take a look at the next step in its progress toward destruction.

Since our typical missile weapons systems has only one launching system, it must be shared with the two missile fire control systems. The operator of the next equipment we will discuss, the Weapons Assignment Console, has control of connecting the launcher with a selected fire control system, in this case, FCS 4.

Weapons Assignment Console (WAC).—Each of the PPI displays on the Weapons Assignment Console (WAC) presents target position information from a fire control system assigned to track a target. The PPI-scope on the left in figure 9-8 shows the target being tracked by radar set and director 4; the indicator on the right shows information about the target being tracked by system No. 5. A summary of conditions at the launching system also appears on the console. The last step in the evaluation process takes place at the WAC. The WAC operator makes a final evaluation of the target in terms of: (1) Is the direction of the missile launcher clear of obstructions, such as the ship's superstructure? (2) Is the target within the range and altitude capability of Terrier type missiles? (3) Is the launcher synchronized with the computer order signals?

Each PPI (fig. 9-9) is a plot of range against bearing, with own-ship position at the center. The small circle at the center of the scope represents the minimum effective range of the missile. There is no point in firing a missile at a target within this range; you won't hit it.

Launcher clearance lines represent the unclear area (because of ship superstructure or equipment) for the launcher, where it may not be trained (or elevated) for firing. Notice the tiny circle near the inside edge of the bearing scale at about 028°, at right PPI. This circle represents the position of the launcher. As the launcher trains, the circle moves to a position corresponding to launcher bearing. If the launcher were positioned between the V-shaped clearance
Figure 9-8.—Panel face of Weapons Assignment Console (WAC).
lines, launching a missile would be prevented by the firing cutout cam and the automatic tracking cutout system.

To assign the launcher to one of the fire control systems, the operator of the console presses the appropriate pushbutton marked "ASSIGN LAUNCHER" (fig. 9-8). If the launcher is prepared for remote operation, it automatically synchronizes with the train and elevation orders transmitted from the assigned missile fire control computer. As soon as the launcher is synchronized with the order signals, the light labeled "SYNC" comes on.

When the fire control system has been assigned by the DAC operator to track a target, and the radar is automatically tracking the target, additional indications appear on the PPI display as shown in figure 9-9. An outer contour circle appears on the scope of interest. The outer contour represents the maximum capabilities of the Terrier missile; the inner contour circle represents the minimum area, which is too close to the ship for the missile to strike. A square appears for FCS 4 and a cross for FCS 5. These geometrical figures represent target position at the time a missile would intercept it, if the missile were fired now. Notice that the square is outside the outer contour circle in the illustration. The WAC operator can see from the display that the missile is not capable of hitting this particular target because it is beyond the capabilities of the missile. If the target is headed toward the ship, firing the missile can be delayed until the target is within range; the computer will calculate the time accurately and speedily.

Two columns of lamps at the center of the WAC, just above the two display scopes (fig. 9-8), indicate missile status for the A and B rails of the launcher. These lamps are lighted by events that happen at the launcher. For instance, the RAIL LOADED lamp comes on when a missile is on the associated launcher rail. The SYNC lamp lights when the launcher is synchronized with the launcher train and elevation orders.

Figure 9-9.—Weapons assignment console (WAC) combat picture.
from the missile fire control computer. The
READY TO FIRE lamp indicates that firing
circuit interlocks are closed, the rail is loaded,
the blast doors are closed, the firing zone is
clear, the contactor is extended, the launcher is
synchronized with computer orders, and the
missile has received at least 20 seconds of
warmup power and is ready to be fired. The
weapons control officer makes the decision to
fire when the READY TO FIRE lamp is on, and
tells the WAC operator to close the firing key.

The MISSILE FIRED lamp is lighted after the
missile has left the rail; this lamp remains on
until both missiles have been fired, or the
launcher has been released from the fire control
system to which it was assigned.

The MISFIRE lamp is lighted when an
attempt is made to fire a missile, the firing cur-
rent flows though the booster squib, but the
booster propellant does not ignite. A misfire is a
dangerous failure. The DUD lamp lights when an
attempt is made to fire but the firing current
fails to flow through the booster squibs. Below
each DUD lamp is an EMERG (emergency) lamp
and a DUD FIRING switch, When the DUD
FIRING switch is operated, it bypasses the nor-
mal firing circuits to the missile and connects
firing current directly to the booster squibs. The
FMERG lamp indicates that emergency firing
circuits are energized.

The missile status information described
above is also displayed on the Launcher Captain’s
panel (EP2). See figure 9-10.

Now let’s shift our attention to the group of
five lamps that are above each PPI (fig. 9-8). The
group on the left is associated with FCS 4 and
the group on the right with FCS 5. When the
director receives an assignment, the lamp at the
top of the group lights. The TRACK lamp lights
when the director starts to track an assigned tar-
get. The SALVO IN FLIGHT lamp is lighted
during the time interval between launch and tar-
get intercept. When the DAC operator orders
another salvo fired at the same target, the FIRE
AGAIN lamp flashes. When two salvos have been
fired at a target, the SALVO LOCKOUT 3RD
lamp lights, which indicates that the director is
not available for another assignment until the
salvos already in flight have reached their target.

The fire control systems can control a maximum
of three missiles (one or two salvos). Therefore,
a third salvo (one or two missiles) cannot be
fired.

At the lower left-hand corner of the main
panel (fig. 9-8) are two pushbuttons and one
lamp. The ASSIGN LAUNCHER pushbutton is
used to assign the launcher to FCS 4. The AS-
SIGN (ASGD) lamp, along with the pushbutton,
lights to indicate that connection has been made
between fire control system and the launcher.
Also, on the EP2 panel (fig. 9-10) in the launch-
system, the LAUNCHER ASSIGNED lamp
lights. As soon as two missiles have been fired
and the firing key is released, assignment of the
launcher to the fire control system is canceled
automatically. When only one missile is fired in
the first salvo, launcher assignment is not can-
celled. If the WAC operator decides not to fire at
a target after the launcher has been assigned, he
may break the assignment by manually pressing
the CANCEL pushbutton. When the assignment
is canceled, the ASGD lamp goes out and so
does the corresponding lamp on the EP2 panel.

The rectangular shaped panel at the bottom
of the main display panel (fig. 9-8) is called the
control-indicator auxiliary. It contains switches
that send orders to the launching system con-
cerning missile handling and firing. With the ex-
ception of the DELAY knob, you are familiar
with all the functions in the launching system
that are ordered by the controls on this panel.

The position of the LOAD SELECT switch
indicates to the launching system personnel
which launcher rails are to be loaded. You can
see in figure 9-8 that the order is to load both A
and B arms of the launcher. The LOAD A & B
light just above the load select switch is burning,
and this indicates that the launcher captain has
acknowledged the order.

LOADING ORDER switches send orders to
the launching system personnel to load the rails
once, continuously, or not at all. The lamp asso-
ciated with the operated switch shows the
WAC operator that his order has been received
and acknowledged. It does not mean, as you
know, that the load order has been carried out.
If you will look up at the main display panel,
you can see that the B rail is loaded but the A
rail is empty at this time. The RAIL LOADED
lights are lit when the missiles are actually on
the launcher and their shoes make contact with
the interlock switches. This is positive proof
Figure 9-10.—Launcher captain's panel (EP2), Mk 190 Mod 1.
that they are on the launcher and in firing position. No human opinion enters into the picture.

The SALVO SELECT switch selects the rail or rails from which a missile is to be fired. When the switch is put in the position shown in figure 9-8, the missile officer wants a single missile fired at the target. He does not particularly care whether it leaves the A or the B rail. But he wants to make sure that one of them goes. If the A rail missile is ready first, and it normally is, that's fine. But if you get a NO-GO on the missile intended for rail A, then you load rail B. The salvo select switch (fig. 9-8) is positioned so a missile can be launched from the A arm only, the B arm only, or from the A and B arms (in succession, not simultaneously).

Operation of the DELAY control sends a synchro signal to the missile fire control computer to advance the fire control problem solution by whatever delay is selected. The term “delay” refers to the loading time of the launching system. If the approximate loading time of your system is forty seconds and you want to see what the fire control problem will look like 40 seconds from now, you turn the DELAY knob to 40 seconds. The computer uses this information to advance the present fire control problem by 40 seconds. Information about this future problem is sent back to the PPI-scope and the future position symbol will move to the position where the target will be 40 seconds from now. Being able to look into the future helps the WAC operator to evaluate more effectively.

Missiles must be warmed up before they are launched. For Terrier missiles the minimum warmup time is 20 seconds. When MISSILE WARMUP switches are placed at the FULL position, warmup power is applied to the missile through the launcher-to-missile contactor, which mates with the warmup pad on the booster, and the FULL lamps light. Switches may be left in this position for a maximum of 15 minutes. If the missile is not fired during this period, the LOW lamps flash. This indicates that the operator should place the switches in the LOW position, which removes warmup power from the missiles so they can cool off.

When the DAC operator assigns a target to a fire control system, the BUSY lamp for the FCS (indicated by the FCS number) lights up on the WAC. Figure 9-8 shows that both fire control systems have been assigned a target. The lamp remains lighted until the assignment is canceled. The operator can tell if the fire control radar is automatically tracking the designated target because the TRACK lamp lights.

When the missile clears the launcher rail, the missile FC computer is notified by a SALVO IN FLIGHT signal from the launching system. The computer transmits the salvo-in-flight signal to the WAC SALVO IN FLIGHT lamp, which then lights. It remains on until the missile intercepts the target, or until its flight time runs out. In case the DAC operator orders a second salvo to be fired against the same target, the FIRE AGAIN lamp begins flashing. When the second salvo is fired, the FIRE AGAIN lamp goes out, and the SALVO IN FLIGHT and the SALVO LOCKOUT 3RD lamps light. Interlock circuits prevent firing a third salvo and the lighted lamp shows that the lockout circuitry is working properly; the third salvo is automatically locked out, and overload of the missile system is prevented.

The TURN ORDERED lamp, before the SYNC lamp, is lighted from the pilot house when the captain or officer of the deck orders a change in ship's course. It is important that the WAC operator know of a proposed course change since it changes the area of launcher clearance. When the TURN ORDERED lamp lights, the operator can see what course change has been ordered by changing the SHIPS HEADING switch from PRESENT to either ORDERED position. All presentations on the WAC rotate to the proposed course. Target position may then be observed in relation to the new clear area.

Guided Missile Status Indicator.—Another unit in the Weapons Direction Equipment (fig. 9-1) that is closely associated with the launching system is the guided missile status indicator. Figure 9-11 shows the indicator's panel face. The indicator is mounted on a bulkhead in the Weapons Control Station. The primary function of the indicator is to order the type of missile to be loaded and to indicate the type and status of the missiles which have been selected for loading. Having ordered a particular type of missile, the indicator provides a means for checking that the launching system has selected the right type
for loading, and, by watching lights, the WAC operator (who is usually the missile officer) can watch the progress of selected missiles as they pass from the magazine to the launcher arm during the loading process. At any time, he can tell where each missile is in the launching system. Also, the unit can provide signals to the fire control switchboard to order special modes of missile director operation.

As you read the next few paragraphs, refer to figure 9-11. There are two MISSILE SELECT switches on the lower part of the panel, one for rail A and one for rail B. The switches have three positions and provide for ordering any of three types of missiles—BT, HT, or BT(N). To order a BT-3 missile, the switch for the desired rail is turned to the BT position. This sends a signal to the ready-service ring and it rotates to bring the nearest BT round to the load position. For BT-3A(N) or HT-3 missiles, the switch is set to the BTN-or HT position, respectively. A spring-loaded stop prevents accidental selection of a BT-(N) missile.

Directly above each switch are three columns of lamps which indicate missile status for each rail. Each vertical set of three lamps indicates a missile type. Each row of lamps shows the location of the missile during the loading process.
For example, if rail A is to be loaded with a BT missile, the switch is turned to that position. The three lamps above left are all marked BT. The lamp in the bottom row indicates the type of missile selected; the lamp in the middle row indicates that loading has started and the missile has reached the assembly area. When the lamp lights in the top row it indicates that the missile is on the launcher rail. Thus, the progress of the missile through the launching system can be followed from the Weapons Control Station.

The FCS MODE switch on the right hand side of the panel indicates to be fire control system when the missile fire control systems are to be used in a special type of operation. The switch has seven positions: BOTH 1-DIR SURF, 1-DIR SHORE, 2-DIR SHORE, NORM, 2-DIR SURF, 1-DIR SURF FCS 4, 1-DIR SURF FCS 5. For normal antiaircraft operation, the switch is left at NORM position. To engage a surface target, the switch is set at SURF, and for beach bombardment, at SHORE, the position depending on whether one or two directors are to be used.

The lights and switches below the MODE switches are used to control the intensity of panel lighting and lamps, and to turn on the panel power.

GUIDED MISSILE FIRE CONTROL SYSTEM MK 76

Included in our representative missile weapon system are two missile fire control systems (no. 4 and no. 5). Each system consists of a Radar Set AN/SPG-55 (Fire Control Technicians pronounce it “speegee fifty-five.”) and one Computer Mk 119. Since the systems are physically and functionally identical, we will describe only one system—number 4.

Radar Set AN/SPG-55

In general, the principal purpose of the Radar Set AN/SPG-55 (fig. 9-1) is to introduce into the computer the target’s position and rate of motion in terms of range, bearing, and elevation (in the case of air targets), and to control the flight of the missiles. To do all these, the radar set must be able to search (acquire), and to track targets. The radar must have the ability to control all types of Terrier missiles. This presents a challenge to the radar set because, as you know, some Terriers are beam-riding missiles and others are semi-active homing missiles. However, the AN/SPG-55 can handle all Terrier types, but not simultaneously.

The radar has four radar transmitter: (1) track, (2) capture (3) guidance, and (4) an illumination transmitter. It also has two antennas: a main antenna (the large one in fig. 9-1), and the small capture antenna (fig. 9-12).

TRACK TRANSMITTER.—The track transmitter generates a very narrow beam which is used to search for, acquire, and then to track a target (fig. 9-12). Earlier you learn that the radar set is assigned (designated) a selected target by the DAC operator. Initially the targets were picked up by the search radars. There may be two, or many targets. The search radars measured their range and bearing, and, depending on the radar, the elevation. The search radar target information is fairly accurate, but it is not accurate enough to solve the fire control problem. Fire control radars are precise measuring devices. Target range and bearing measured by a fire control radar are extremely accurate. But these radars suffer from lack of power. They can detect targets only at relatively short ranges. Search radars are much more powerful than fire control radars.

To measure angles accurately, the track beam must be narrow. When the radar has the designated target in the track beam, and set automatically starts to follow the target and to measure its range and position. This information is transmitted over synchro circuits to the fire control computer.

CAPTURE TRANSMITTER.—The capture transmitter produces a wide, cone-shaped beam (fig. 9-12) for controlling the first moments of controlled flight of the beam-riding Terrier missiles. The capture beam is transmitted from the small antenna you see alongside the main antenna in figure 9-1. The capture problem and beam-riding guidance techniques were discussed in the preceding course. Gunner’s Mate M (Missiles) 3 & 2, NAVTRA 10199, so we will not dwell on these subjects here. The basic capture holds for both Talos and Terrier beam rides. You might keep in mind that Talos beam riders
are launched into a stationary capture beam from a momentarily stationary launcher. Then the beam is moved. Terrier beam riders are launched on the fly, so to speak. Both the capture beam and the missile launcher are moving at the moment of missile launch.

GUIDANCE TRANSMITTER.—The guidance transmitter also generates a cone-shaped beam (fig. 9-10) but it is much smaller than the capture beam. The small guidance beam enables the missile to fly a tighter course to the target. The large capture beam ensures that the radar set grabs the missile. Once the radar set has the missile in its electromagnetic grip, the missile puts itself into the small guidance beam and follows this beam to the target. The track, capture, and guidance beams are all coincident. Where one beam goes, they all go. As the track beam follows the target, the capture and guidance beams are dragged along.

ILLUMINATOR TRANSMITTER.—The flight sequence of the HT-3 missile is different from that of the beam-rider Terrier. Homing Terriers carry a small radar receiver which picks up radar energy reflected from the target and homes in on this energy. The illuminator transmitter on the AN/SPG-55 generates a very narrow beam of radar energy. This beam is smaller than the tracking beam (fig. 9-12). After booster drop-off, and after the missile’s guidance system is cut in, the homing missile seeker head receives
The computer is the “brains” of a fire control system; the Mk 119 is no exception. It makes the calculations that point the launcher in the right direction to put a beam-riding missile in the capture beam or to place a homing missile on its proper course. In other words, the computer solves the fire control problem. The solutions take the form of continuous outputs which control the movements of the launcher in train and elevation and introduce preflight information into beam-riding and homing missiles before they are launched. The lead angle information is called launcher orders; the missile preflight information is called missile orders.

There is a direct tie-in between the launching system and the missile fire control computers just as there is between the launching system and the Weapons Assignment Console in the Weapons Direction Equipment. Therefore, we need to consider the functions of Computer Mk 119. The reason for this emphasis on computer function is that many of the outputs of the computer flow through your launcher circuitry. You should know where the data comes from and the important part it plays in the operation of the missile system as a whole. Another reason is that you are expected to test computer outputs where they enter your launching system and also to see if the outputs get into the “birds.” Remember that the outputs pass through the launcher-to-missile contactor.

LAUNCHER ORDERS.—There are two sections in the computer that generate launcher orders: the HT section and the BT section. The HT launcher order section determines the train and elevation angles which aim the launcher at a point in space so that the missile can intercept the target. The HT missile is not guided during the boosted phase of its flight. Consequently, the missile trajectory is affected by the forces of gravity and wind. Several other forces affect the missile’s flight path at launch. As the missile leaves the launcher, its angular velocity will impart some motion to the missile, and a part of the straight line (linear) motion of the launcher will be added to the missile’s motion. Corrections for all these ballistic factors are made in the HT launcher order section. Also, an additional elevation spot is added to the launcher elevation order so the missile will fly an up-and-over trajectory. The increased elevation spot is intended to put the missile above its intended target so it can swoop down on it. The beam-riding launcher order does not have this increased elevation spot because the beam-riding trajectory is along the line of sight. The beam-riding launcher section generates launcher orders that aim the launcher so the missile can intercept the capture beam. The orders contain corrections for wind, gravity, and the effects of launcher angular and linear motion on the missile.

Either homing or beam-riding launcher orders are fed from the computer to the missile through the launching system circuits. Switches in the fire control switchboard determine which set of launcher orders is passed on to the launcher.

MISSILE ORDERS.—While missiles are on the launcher, waiting to be fired, they receive preflight orders which are stored in the missile for later use in flight. BT missiles receive two orders: proximity fuze setting (sometimes referred to as fuze time delay), and launcher cross traverse (often called missile roll order).

BT Missile Orders.—Figure 9-13 shows the general path of BT missile orders. They originate in the missile fire control computer and flow through the missile fire control switchboard to the launching system. Within the launching system, they flow through the launching system control circuits to the launcher-top round contactor (fig. 9-13) into the booster, and finally end up in the missile itself.

FUZE DELAY TIME determines when the warhead will detonate. This preflight order sets the proximity fuze (in the warhead) so it will detonate at a distance from the target calculated to get maximum destructive effect. The best distance to get maximum destructive effect from the warhead depends principally on the target size. Large targets, because the proximity fuze will detect them earlier (the large target has more reflecting area for electromagnetic waves),
HT Missile orders.—Figure 9-16 shows the general path of HT missile orders. Preflight orders for the HT missiles are:

(1) Sweep selector signal
(2) N orders
(3) Seeker head orders
(4) Launcher cross traverse (roll order) orders

Like BT missile orders, the missile fire control computer is the common source of these preflight orders. All of these orders follow the same general path described for BT missile orders.

Sweep Selector Signal.—The HT missile looks for the target in much the same way that you would look for a program on the radio if you did not know on what station it was. You would probably start sweeping the tuning knob from one end of the dial to the other while you listened for some identifying sound from the program. The HT missile seeker (fig. 9-15B) uses similar search technique. The seeker circuits (called a speed gate) sweep a narrow band of doppler frequencies (fig. 9-17) that represent a narrow range of target speeds. To shorten the search time, the missile fire control computer determines where in the speed range the seeker should look. This sweep selector information is sent from the fire control computer to the missile before it is launched. Essentially, the sweep selector signal tells the missile receiver circuits to look for the target doppler signal on the low end of the dial or the high end, depending on target speed. The doppler frequency of a particular target, once acquired, should change very little unless the target executes violent evasive maneuvers which would change the missile-target range rate.

The Tartar missile also uses this method of seeking the target.

N Order.—For maximum maneuverability, the missile is aimed and launched in such an attitude that it ascends to a high altitude and then plunges downward to intercept the target. This is sometimes called a hyperbolic trajectory. (No guided missile in current use follows a hyperbolic trajectory.) At target acquisition, however, the missile would normally perform a sharp turning maneuver and proceed in a straight line to intercept the target (fig. 9-18). Such a maneuver
Chapter 9—BALLISTICS, FIRE CONTROL, AND ALIGNMENT

Figure 9-14.—Effectiveness of warhead detonation: Above without fuze delay time; Below fuze delay time (T5) brings missile nearer target.

Figure 9-15.—Missile roll order (cross-traverse): A. Terrier BT missile; B. Terrier HT missile.
Figure 9-16.—HT missile preflight orders.

would cause a large loss in the velocity because of extreme control surface aerodynamic drag, and further loss of velocity because a large portion of the missile flight would occur in the denser air (with increased drag) of lower altitudes. So, to prevent straight-line intercept at target acquisition, the missile is made to turn gradually (fig. 9-18), toward the direction of target interception, thereby greatly conserving the boost velocity for the terminal phase of the missile flight and thus increasing the kill probability. The amount of turn required of the missile is calculated by the computer on shipboard and transmitted to the missile’s guidance and control system, where it is stored until the homing phase. This type of missile maneuver is also called proportional navigation, a type of homing guidance.

The rate at which the missile turns toward the intercept point for a given error signal from the seeker head is determined by a function called the variable navigation order, N.

Seeker Head Orders.—The homing Terrier missile is launched toward a point in space so it can intercept the target. The fire control computer predicts where the target will be with respect to the missile at booster burnout. This information is transmitted to and stored in the missile while it is on the launcher (fig. 9-19). The target position information is used later to position the seeker on the target. From launch until booster separation, the missile follows a ballistic trajectory. Except for maintaining the control surfaces streamlined, the missile steering system is inactive during the boost phase. Before launch and until a short time after booster separation, the seeker head is aligned with the fore and aft axis of the missile (fig. 9-15B). At booster separation, the missile is roll stabilized, for the missile must know which way is UP so it can determine the position of the target. Before launch, vertical reference information is put into the missile gyro system. Before the missile is launched, the fire control computer “tells” the missile where to look at booster dropoff. This prelaunch order is called seeker head order.

Missile Roll Orders.—Proper operation of the HT missile steering system depends on the correct missile roll attitude relative to the vertical position of the missile’s roll gyro. (See part B of fig. 9-15). The vertical position of the roll gyro is established just before the missile is launched. Like the BT missile (or any guided missile for that matter), the HT missile must know which way is up if it is to be properly guided. The missile is launched in the correct flight attitude, but ship’s motion is imparted to the missile at launch. So, while on the launcher, the missile is supplied with synchro information indicating roll error due to ship roll and pitch. At launch, the missile stores the existing roll error for later use. After booster separation, the roll stabilization system in the missile establishes and maintains correct roll attitude. The stored roll error signal causes the missile to rotate to the correct roll position.

Missile roll orders originate in the missile fire control computers and flow to the missile fire control switchboard. Automatic switching connects the launcher roll order circuits to either of the computers, depending on which fire control system your launcher is assigned to. Missile roll orders flow through the roll order switch and out the switchboard, then through the ship’s wiring and-connection boxes which are between the missile computer room and the launching
Figure 9-17.—Sweep selection signal, used for homing missiles.

Figure 9-18.—N order to missile.
The launching system control circuits connect the missile roll order to the launcher, through the launcher-to-round contactor and booster pad, and then to the missile roll corrector. Figure 9-20 shows a one-function diagram of a missile roll order.

One of the many tests in the Daily System Operability Test (DSOT) is to check for missile roll order. If the missile on test is not receiving the missile roll order (shown on the appropriate dial), you have to locate the point of trouble. Ask the Fire Control Technician in the missile computer room if roll order signals are coming out of the switchboard (fig. 9-20). If they are, then you know the problem is in the circuits for which you are responsible, and you have to break out your one-function diagrams and begin troubleshooting.

The Director

As indicated in figure 9-1, there may be more than one director in the missile fire control system. A target is assigned to the director by the operator of the Director Assignment Console (DAC), and the director then begins tracking that target. When it has acquired the target, it goes into automatic tracking. It operates the TRACKING MODE switch, and this places the computer in the TRACKING mode. As soon as the computer has reached a solution, the symbols for target present position, target course line, point of intercept circle, outer range limit ellipse, and launcher bearing circle appear on the display scope of the WAC (fig. 9-9).

When the DAC operator is assured that the director is tracking the target satisfactorily, he releases the channel, and can assign it to another target if necessary. The launcher orders, missile roll orders, radar-phasing orders, and display data are now all valid. As soon as the WAC operator determines that range, clearance, and missile capability data are favorable, he assigns a launcher to the fire control system. The fire control switchboard connects the launcher to the computer. The computer determines the time to intercept for the weapons control system. The LAUNCHER ASSIGNED lamp lights on the
Chapter 9—BALLISTICS, FIRE CONTROL, AND ALIGNMENT

Figure 9-20.—One-function diagram of missile roll order for missile on A arm of launcher.

WAC, and at the director the CODE SELECT and ASSIGNED lamps light, and the warning bell sounds on the radar test set.

The code select circuits are enabled, the launcher slews to comply with the computer orders, and the missile receives correct roll orders and the DIRECTOR SELECTED signal, setting the missile code for the director selected. The launcher is now synchronized and ready to fire as soon as the weapons-control officer gives the word and the WAC operator presses the firing key.

The director is also called the radar set. A gun director may contain a radar and/or optics for tracking and ranging. A missile director depends on the radar for tracking and is unmanned, though there is an operator in the radar control room, chiefly to monitor the equipment. The radar not only tracks the target, continuously transmitting target position to the computer, but it also transmits beams to control the missile (beam-riding or semiactive homing, or combination) and to guide it to its target.

The part of the director or radar set that is above deck is called the antenna group (fig. 9-21) and consists of a pedestal on which are mounted the antenna and the electrical and mechanical components required to stabilize and position the antenna. Inside the mechanical structure are the transmitting, receiving, and associated microwave circuits, and the gyroscopes needed to space-stabilize the antenna. The control and power group of the radar set is located belowdecks in the radar room.

Missile fire power is closely related to director activity. A missile director must stay on a target throughout missile flight to provide the necessary guidance. The assigned target time (director activity) of each director depends upon target range, therefore a ship’s missile target handling capacity depends upon the amount of missile directors for each missile system installed.

Stable Element

Stabilization of missiles in flight has been mentioned several times in the discussion of missile orders, missile roll orders, and seeker head orders. All gun and missile systems must have means to correct for ship’s roll and pitch; gyroscopes or stable elements are used by the ship, the missiles, and the fire control systems. The radar set shown in figure 9-21 uses Computer Mk 118 Mod 0 and associated stable elements. The gyros in the mechanical structure of the antenna group space-stabilize the antenna to compensate for the roll and pitch of the ship. Several installations of gun fire systems have Stable Element Mk 6 Mod 1 in the gunnery plotting room, and a Stable Element Control Panel, used to start and to monitor the stable element, in the missile plotting room. Under
Figure 9-21.—Fire Control System Mk 74: Radar AN/SPG-51C, Director Mk 73, and radar room with consoles.

certain conditions, target assignment and target position data may be transferred between the missile system and the gunnery system. The stable element measures the level and crosslevel angles caused by the variation in the position of the deck of the ship with respect to the horizontal. These angles are used to keep the line of sight of the director positioned automatically on the target while the ship rolls and pitches.

The principles of gyros and their use in missiles were described in the preceding course, Gunner's Mate M (Missiles) 3&2, NAVTRA 10199. Because the spin axis of a gyro is fixed in space, the gyro can provide stabilized reference planes from which various angles, lines, and motions in the fire control problem can be measured. The gyro in the stable element measures the amount of roll and pitch of the ship and sends correction angles to the computer.

A gyro that measures the rate of change is called a rate gyro. A single-degree-of-freedom gyro is used extensively in fire control systems both as a computing device and a stabilizing device. It can detect and measure an angular rate of change of position of an object. In fire control, we are most concerned with the angular rate of change of position of the target. The director-radar tracks the target, measuring the target's position and changes of position. The term relative rate is sometimes used instead of angular rate. The speed of the target plus change of trajectory due to ballistic factors must be measured to determine target position at a given moment.

ALIGNING THE MISSILE BATTERIES

Alignment may be considered as of two types—alignment of all parts of a component so it functions correctly and smoothly, and alignment of all the components of a weapons system so they function properly as a whole system. Most of the paragraphs and sections on alignment that you find scattered through OPs are of the first type—how to adjust and align the parts of a component. If the weapons system has been manufactured and installed properly, and it is functioning as intended, it is best not to tamper with it. Adjustments may need to be made to correct for wear or damage.

The alignment of all the components of a guided missile weapons system is done originally by the shipbuilder. Refinements and readjustments may be necessary as the system is “worn in.” Some of these realignments are made on the shakedown cruise.

SOURCES OF ALIGNMENT INFORMATION

The basic text on alignment is OP 762 (Second Revision) Alignment of Ordnance Installations Aboard Ship. Although gun battery alignment is explained in the most detail, the basic principles and techniques of battery alignment are applicable to missile battery alignment.
Many of the procedures can be carried out only at a shipyard, but ship's personnel must work with shipyard personnel to do the job. On shipboard, the men from several ratings must cooperate to check the alignment of the missile systems and to make any adjustments. The quals require the GMM 1 & C to assist the fire control officer in the alignment of missile batteries. You learned about fire control principles in the course for GMM 3 & 2.

OP 2456, Battery Alignment, has a separate volume for each type of ship. For example, volume 8 is Battery Alignment, DLG Type Ships. The description of procedures is written for guns, but the same methods are used for missile systems. ODs give specific instructions and drawings for each installation; these usually describe procedures to be used during installation of the weapons system and alignment after completion of installation and before the ship is seaborne. All information on the installation and alignment is kept on board to be used for reference when realigning or adjusting. The Publications Requirement List names all the publications that should be aboard. OD 17425, for example, lists all the publications placed on guided missile frigates, DLG 26 class. From this list you can select the publications you need to study to do your part in aligning the weapons system. The ODs are revised from time to time, so be sure you have the latest one.

Alignment and adjustment of the components of a weapons system must be made with exercising care. Before attempting to do any of this work, make a check list that you can follow, and make yourself thoroughly familiar with the procedures to be followed. Since you will not be operating alone, work it out with the men who will be at different stations.

SYSTEM ALIGNMENT

Alignment work done while the ship is afloat consists principally of tests and adjustments required for keeping the weapon system in readiness to deliver with the maximum effectiveness. Realignment is necessary because the ship's hull is a flexible structure and is subject to small but significant changes in shape when it leaves the drydock. These changes in hull shape can cause appreciable changes in the alignment of a battery. The details of the alignment procedures afloat are considerably different from drydock alignment because the ship is in motion and the instruments and references on shore cannot be used.

System alignment requires orienting and adjusting the several components to each other so they function properly as a whole. No alignment work should ever be undertaken without first making careful tests to make certain that adjustment is necessary. Before changing any adjustment, make a careful analysis to determine alignment errors and calculate the adjustments necessary. An incorrect or unnecessary adjustment can cause serious trouble in the system.

Shipyard Alignment

Before any alignment can be done on a new ship, a reference frame must be established. First, a reference point is selected from which measurements are made. Then a reference direction and a reference plane are selected. These three references are the reference frame (fig. 9-22). Directions are expressed with respect to the reference frame. The horizontal plane is the one most commonly used, and the ship's deck is nominally the horizontal plane. When the ship is afloat, the deck cannot be used as the horizontal reference plane because of the constant movement of the ship. Bench marks are set and tram readings are made while the ship is in drydock, and these are used as references when the ship is afloat.

During the construction of a ship, one or more base plates (fig. 9-23) are installed within the hull of the ship. These plates are referenced to a similar plate mounted on a fixed ground installation. The plates are leveled as accurately as possible before the ship is launched. An imaginary base plane is figured from the averaged readings taken from the base plates. The fire control reference plane is parallel to the construction base plane and is the reference from which all system elements are aligned. A vertical plane perpendicular to the fire control reference plane and lying along the ship's centerline is the zero train reference for all system elements.

Zero train position is established during original alignment in drydock.
After battery alignment in train, comes alignment in elevation. The purpose of alignment in elevation is to set all elements so that when they are positioned in elevation with their pointing lines parallel to the reference plane (vertical parallax zero), the elevating dials of the elements will read zero and the elevation synchros will be at electrical zero.

So that guns and launchers can be realigned to the same position, bench marks and tram readings are provided.

Bench Mark.—For purposes of checking director's zero train at sea, a bench mark and bench-mark reading are established. The bench mark usually is a small brass plate with crosslines etched on it. This plate (fig. 9-23) is welded to a secure part of the ship within vision of the director's sights. After zero director train has been established and the dials set, train the director and put the crosswires of the boresight or telescope on the bench mark, and read the train angle-read dials. This is the bench-mark reading which should be recorded, and which will remain the same until such time as new drydock data are obtained. The same telescope must be used for obtaining all settings and readings. The launcher is trained to position its rails parallel to the zero train reference plane and the train indicators are adjusted to the indicated zero train. Then the launcher is elevated to position its rails parallel to its roller path plane and all elevation indicators are adjusted to indicate zero elevation. The maximum amount of deviation permitted for each element is shown in figure 9-23.

Tram Readings.—A reference point for each turret, mount, or launcher must be established to check the accuracy of launcher or gun train dials at sea. The original tram readings are taken after zero mount or launcher train has been established and the dials set. However, unlike bench-mark readings, which never change, tram readings will change each time response is broken and any alignment correction is made to the mount or launcher. New tram readings must be taken and recorded after making any alignment correction between mount or launcher and director.

Shipboard Alignment Requirement

The alignment requirements for a weapons system include internal alignment of each of the components and system alignment of the different components or elements with each other.
Figure 9-23—Mechanical Foundation Tolerances.

Chapter 9—BALLISTICS, FIRE CONTROL, AND ALIGNMENT
The internal alignment of an ordnance element is established at manufacture. A high degree of machining and fitting structural parts assures good internal alignment. If any basic alignment is necessary because of faulty manufacture, overhaul at a navy yard usually is necessary. Each director should be internally aligned with the ship’s references (fig. 9-22). All parts of the weapons system are aligned to the reference while the ship is being outfitted or in dry dock, and the whole system is tested. When the ship is afloat, the operation of the system must be rechecked. If there are serious distortions, the ship is returned to the shipyard for adjustments.

The launchers and guns must be aligned to the directors in train and elevation.

Alignment work done while the ship is afloat consists principally of tests and adjustments required for keeping the ship’s ordnance equipment in readiness to deliver fire of maximum effectiveness.

We will not describe all the procedures of battery alignment that apply to the many different types of ships. However, if you understand the following procedures, which are based chiefly on procedures given for the Tartar system on DDG-2 class ships, you shouldn’t have much difficulty on any other type of ship.

On DDG-2 class ships, Gun Fire Control System Mk 68 is aligned first, and Missile Fire Control System Mk 74 is aligned to it. The Gun Fire Control Director Mk 68 is the reference director and the Missile Fire Control Director Mk 73 is aligned to it in train and elevation. Director Mk 68 is used to determine the alignment condition of all rotating elements with the exception of the missile launcher and the gyrocompass, which are aligned to Director Mk 73. The work of aligning the directors is not done by GMMs, but that work must be completed before the launchers can be aligned. Your alignment checks should be done soon after the directors have been aligned.

We should mention here a preliminary check which must be made before any alignment afloat work is undertaken. This is the transmission check. Synchro and dial errors corrected at this point will keep you from compounding the errors, or introducing errors to correct for errors in the ensuing alignment procedures. (Of course, these errors, even if initially undetected, would be revealed before you completed your alignment work. But by then you would be faced with the task of redoing one or more of the alignment phases.)

Do not proceed with synchro alignment unless the preliminary check shows a misalignment. If the synchro is close to zero, make only the fine adjustment. Be sure to use a power source of correct frequency and voltage since damage will result otherwise. Do not keep the synchro units energized any longer than necessary. If a synchro feels hot when touched, deenergize it and allow it to cool.

ALIGNMENT OF LAUNCHER

Precise alignment of the launcher requires extreme accuracy in the performance of alignment checks and adjustments. The manual train and elevation features of the Mk 11 launching system make checking very difficult when there is motion of the ship. It is suggested that the checks be made with the ship moored to a pier or at anchor in a calm sea. If the safety warnings are heeded, the checks and tests can be made without damage to the equipment or injury to personnel.

When ready to proceed with launcher and gyrocompass alignment, man the launcher and the gyrocompass, and establish telephone communications on the JCT phone circuit.

Alignment in Train

The train alignment check provided an accurate method or determining the degree of parallelism between the zero train lines of all elements of the system. When the director is trained to any point and the launcher dial pointers are matched with zero settings, the director and launcher lines of sight are parallel in train. Since the ship is now afloat, it is unpractical to use multiple targets to obtain parallelism between the launcher and director. However, if the lines of sight of both director and launcher are aligned on a target at infinite range, for all practical purposes they will be parallel. This method, commonly called "shooting the moon,” is the most accurate method of train alignment afloat. It is also called alignment on a celestial body.
Chapter 9—BALLISTICS, FIRE CONTROL, AND ALIGNMENT

When train alignment is performed simultaneously for several equipments, the train dial readings from all stations should be transmitted to a central station (such as the missile plotting room) for systematic recording. The recorders at the individual elements should cross check all readings to eliminate possible errors in recording the readings. Rotation of the earth and ship motion may cause the line of sight to drift from the target, but this drift is not detrimental as long as the line of sight is on the target when the reading is taken.

Install Boresight Telescope Mk 75 (modified) in Launcher Mk 8 (fig. 9-24) on the stationary guide, and insert a T-lug in the front guide of the B-rail. The T-lug prevents the front guide from tripping, and thus prevents personnel injury. Install the peep sight on the forward end of the guide arm.

Be sure the launcher is not energized when it is being manned for alignment and test purposes. Clear all unnecessary personnel from the area. An observer is stationed inside the launcher to read the train and elevation dials.

BENCH MARKING THE LAUNCHER.—The boresight operator should have the bench mark in his field of vision. The launcher is manually trained until the vertical crosshair of the borescope coincides with the vertical index on the bench mark. This should be done several times, training to the right and to the left of the bench mark to check on the first alignment. Do the same for elevation.

CORRECTING TRAIN ALIGNMENT ERRORS.—Before attempting to correct the error of equipments, carefully analyze the results of the train alignment check. Generally, a small deviation from zero (say, 2°) is acceptable. A careful analysis of the launching system is required to determine whether the misalignment is caused by the components of the launching system or those of the fire control system. Misalignment within the launching system may cause serious casualties in the equipment. To isolate the cause of any misalignment, check the operation of the launching equipment to the fixed mechanical positions of STOW, DUD JET A, DUD JET B, LOAD, and TRANSFER. If the launching system operates correctly in those positions in train and elevation, the trouble is in the fire control system. Emergency adjustment can be made at the computer. Afterward, a transmission check must be made between the computer and the launcher. The launcher train dials should indicate launcher train order plus the correction applied. The results should be recorded in the Battery Alignment Log.

To correct the train dial, which is in the train receiver-regulator under the launcher shield, deenergize the launcher. Locate the adjustable (vernier) coupling on the B-end response shaft of the receiver-regulator, loosen the lock screw of the coupling, and adjust the coupling to correct the train response dials by the amount of the TRAIN dial error. In other words, make the train dial reading equal director train dial reading when both are on target and in manual operation. Tighten the lock screw on the adjustable coupling and recheck according to the previously described procedure. Continue to make adjustments until the error is within the allowable tolerance.

Elevation Alignment

The launcher is aligned in elevation to the director. It is elevated in manual control to bring its rails into position parallel to its roller path.
plane (at a point of known inclination) within 3' of arc. All elevation indicators are adjusted to indicate zero elevation.

The Mk 75 boresight telescope is installed on the stationary guide as for train alignment (fig. 9-24). The T-lug is inserted in the front guide of the launcher B rail. The peepsight assembly is installed on the forward end of the guide arm at a point about 5/8 inch from the rear of the front guide.

The launcher must not be energized for alignment or test: set the safety switch on the EP3 panel to SAFE and remove the handle. The train and elevation securing pins are released by turning the clamp screws, using handcranks. When the securing pins are fully retracted, they are locked in that position with the clamp screws. The train and elevation latches also have to be released, and hydraulic pressure is needed for that. Energize the launcher elevation motor and retract the latches by depressing the latch retract buttons. Then deenergize the launcher. Hydraulic pressure is maintained by use of the hydraulic hand pump.

The launcher is then moved manually with the aid of a large crescent wrench. When the line of sight through the boresight is parallel to the director line of sight, release the hand drive. The man at the elevation receiver inside the launcher shield gives the elevation readings as the launcher is being moved. When the man at the director calls "mark," the dials should be at zero.

ELEVATION HORIZON CHECK.—The elevation horizon check provides an accurate method of determining elevation alignment errors between elements under normal operating conditions and a method of determining the relative inclination between the roller paths of the reference and nonreference elements while the ship is afloat. The aft missile director (no. 3, fig. 9-23) is used as the reference element for the Mk 11 Tartar missile launcher and the Mk 19 gyrocompass.

The horizon check is conducted by comparing the dial readings at the director and at the launcher as they are aimed at a series of points on the horizon. The ship should be underway, on a steady course, with a ship's speed of between 5 and 10 knots. A clear, clam day with a well-defined horizon is necessary.

The borescope should be installed in the launcher as for train and elevation check. All stations participating in the check should be manned.

Since the various elements of the missile battery are installed at different heights about the waterline, the dip angles of the elements will differ. The dip angle is the angle by which the line of sight of an element must be depressed before the horizonal to place the line of sight on the horizon. Figure 9-25 illustrates dip angles and dip differences. The dip angle is given in minutes and the height (H) is the height in feet of the element optics above the waterline at mean ship draft. The angle is computed by the formula:

\[
dip \text{ angle} = 0.98\sqrt{H}
\]

Before the elevation horizon check is begun, record the dip angle of each element.

The director is trained to a suitable bearing and depressed to below 0° elevation. Each element that is being checked is trained to the same bearing and then depressed to the horizon. Then the director is positioned so the line of sight is on the horizon. As the line of sight approaches the horizon, the operator calls "Standby," to alert the operators at the other stations. When the line of sight is exactly on the horizon, he calls out "Mark." The operators of the elements being checked correct their elevation until the line of sight is exactly on the horizon. When all are aligned, the elevation dial readings are recorded.

These readings are taken throughout the full arc of launcher train, with readings at every 15° of bearing. All data are recorded on worksheets and the information is then plotted on graph paper for analysis.

There should always be a difference between the launcher and director elevation reading due to the difference in height of these elements aboard ship. The director, being higher, must always depress further to sight on the horizon than the launcher. This angle of depression onto the horizon is called "dip angle." The difference between dip angle of the director and dip angle
of the launcher is called "dip difference." When the launcher and director are properly aligned in elevation, the zero axis of the horizon check curve should be above the zero axis of the graph by the amount of dip difference. If the zero axis of the horizon check curve fails at any other point on the graph, an elevation alignment error exists. This error is positive (high) when the zero axis of the curve is above the value of the dip difference, and negative (low) when below the value of dip difference.

To compute dip angle and dip difference, consult ship's plans to obtain the height of the elements above the waterline. Enter table 9-1 at this height to obtain the dip angle to horizon. Subtract the dip angle of the launcher from the dip angle of the reference director. The difference is dip difference. It should be constant at all bearings.

All elevation readings are in minutes. On those elements having response dials graduated in degrees and minutes, the dial reading must be transposed to minutes, with 2000' representing zero elevation.

Generally, an error of ±3' is acceptable. Small errors may be the result of incorrect readings. For this and other reasons, it is better policy to do no adjusting of the dials unless large errors are found, after several readings have been taken that definitely indicate that adjustment is needed.

Since most missile system elements do not have roller path tilt correctors or leveling rings, no adjustments can be made to correct for errors in roller path tilt aboard ship. When roller path tilt errors are found to be excessive, correction is accomplished at a shipyard.

FIRING STOP MECHANISMS

It's hard to overemphasize the importance of checking the firing stop mechanisms after making the original alignment, after doing any work or repair on the launchers that would disturb the firing stop mechanism, or in the course of routine checkups. Every casualty from ships firing into their own superstructures testifies to the seriousness of ANY misalignment of the firing stop mechanisms. Equally important: In EVERY case these casualties could have been prevented. They resulted from negligence on the part of the ship's personnel; or cams were cut improperly and in some cases misaligned; or the firing stop mechanisms were inoperative through lack of preventive maintenance.

As you remember, firing stop mechanisms are designed to interrupt electrical firing circuits and firing mechanism linkages whenever guns and launchers are trained or elevated to a position where firing the guns or launchers would endanger personnel or damage the ship. They should not be confused with the depression stop cams that are used occasionally to limit the movement of some guns and launchers to a safe zone of fire, or with train or elevation limit stops. Firing stop mechanisms do NOT interface with the free movement of the gun or launcher.

The Naval Ordnance Systems Command has issued definite instructions for the guidance of

<table>
<thead>
<tr>
<th>Height, ft</th>
<th>Dip Angle</th>
<th>Height, ft</th>
<th>Dip Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>42</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>58</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>46</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>06</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>48</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>02</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>09</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>42</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>48</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>54</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>00</td>
<td>5</td>
</tr>
</tbody>
</table>
the personnel responsible for plotting, cutting, installing, and checking firing cutout cams and mechanisms. These regulations apply strictly in all cases. In addition, special instructions govern particular installations.

The computations for the missile's trajectory and for the necessary safety clearances relative to the ship's structures and equipments are complicated and extensive. A high degree of precision and skill are required to make these computations, and to prepare and install the cutout cams in the launchers. The computations are now done with the electronic computers at the Naval Weapons Laboratory, and the cutout data prepared for the requesting ship. NWL also prepares the cutout cams and assists in installing and adjusting the cams. This was formerly done by the shipbuilding activities. OD 16581, "Method for Determining Pointing and Firing Cutout Zones for Shipboard Guided Missile Launching Systems," is the instruction followed.

When a new cam is installed, it is essential that the two train reference points be reestablished. These are the train B-end stopped position and the nonpointing zone cam arrested position. The nonpointing zone switches must be rest accordingly. NWL personnel will assist you in this.

The firing interrupter cams are plotted, scribed, and cut during the final stages of the initial installation or overhaul period and after all installation and alterations to the topside, superstructure, masts, and rigging are completed.

New firing interrupter switch operating cams must be scribed, cut, and installed whenever changes in the topside arrangement of the ship affect existing areas of fire.

Procedures for scribing and matching the firing interrupter cams are given in the applicable OD.

Performance of the cams should be checked before each firing, monthly, and whenever new cams are installed.

The Tartar system actually has four interrelated systems to ensure safe operation of the launcher. These are the (1 and 2) limit-stop system for train and elevation; (3) the automatic-pointing-cutout system; and (4) the automatic-firing-cutout system. The nonfiring zones are identical with the nonpointing zones. The train and elevation systems are physically and mechanically separate but are electrically connected through the automatic-pointing-cutout system and the automatic-firing-cutout system. The components of these systems—cams, levers, switches, brakes, etc.—are in the train and elevation receiver regulators. The pointing cutout system prevents movement of the launcher into zones in which firing would be hazardous. The firing cutout system opens the
firing circuits so the missile cannot fire when the launcher is in a nonpointing zone or the strike-down gear is attached to the launcher.

The train and elevation limit-stops restrict launcher movement under certain conditions. When activated, the limit-stop system neutralizes the associated power drive, thus limiting the movement of the launcher. The limit-stop cam controls the deceleration rate of the launcher power drive. Train and elevation require different rates of deceleration, and consequently their cams differ in contour. The actuating cams are identical. When the launcher approaches a nonpointing zone, they start the limit-stop system.

CAM ALIGNMENT

An adjustment screw is secured to the bottom of each limit-stop cam. To aid in alignment, scribe lines are scored into the cams. The position-plus-lead cam stacks, which indicate to the automatic-pointing-cutout and automatic-firing-cutout systems, have a vernier that permits simultaneous adjustment of all the cams in the stack, and each cam can be adjusted to a vernier in its base.

Firing interrupter cams, limit-stop cams, and associated shafts, switches, and components are present by the manufacturer and the installing activity. These cams do not require routine adjustment. They should be checked periodically and should be reset only if they are not within plus or minus 1° of actual launcher settings.

When the launcher is operated in TEST, the firing cutout system is checked. You will need checkout sheets for your system to indicate which lights will activate on the test panel for each condition.

RADAR ALIGNMENT

All elements of the guided missile battery are aligned in the same manner as a conventional weapons battery. There is, however, one additional step that must be accomplished before commencing the battery physical alignment. That is the alignment of the radar reference beam and the optical boresight telescope of the antenna. This is accomplished by use of a tower approximately 100 feet high and at least 1300 feet from the ship, on which is located an optical target and a tunable radar transmitter.

In some missile systems, the radar beam is used as the reference for this alignment. The radar beam is trained and elevated to the tunable transmitter and electrically aligned. The boresight telescope is then adjusted to the optical target and locked in place. In other missile systems the boresight telescope is the reference. The boresight telescope is trained and elevated to the optical target on the tower and then the radar beam is aligned to the tunable transmitter. This is the most critical alignment because in both cases the boresight telescope, after aligning, becomes the only reference line of sight for the director.

The above is drydock alignment, performed by shipyard personnel, perhaps assisted by FTs. When the ship is afloat, the radar reference beam is again checked (by FTs). While at the pier, the shore towers are used. At sea, all guided missile ships will use bow and/or stern towers, installed in accordance with current NAVORD instructions. Each tower will contain an optical boresight target, a capture antenna, and a track and guidance antenna.

In discussing the alignment of guided missile radar systems, we talked about the alignment of the reference beam to the boresight telescope. But there is more to guided missile radar beam alignment (collimation) than that. In some of our guided missile radar systems we have as many as four different radar beams: track, capture, guidance, and illumination. These must all be collimated to their own zero positions (beam zero indication) and to the reference beam. In some guided missile radar systems the guidance beam is used as the reference beam while in others the track beam is used. Whatever beam is used, the problem is the same; all the other beams must be collimated to the reference beam. The role of the GMM in aligning the radars to the missile is to prepare the missile for testing, and to cooperate with the FTs who conduct the tests.

SONAR-TO-RADAR ALIGNMENT CHECKOUT

The sonar alignment check is performed to assure that the AN/SQS-23 sonar is accurate to
the degree required by the ASROC weapon system. This check is accomplished by comparing sonar range and bearing with radar range and bearing of a surface target or a snorkeling submarine.

This check should be made monthly or whenever a target ship is available. Because the complete checkout requires considerable time, the entire check may be divided into sections so that at least one section of the check can be accomplished when a target ship is available. A different section of the check should be made each time. Fewer than the recommended bearing readings may be taken for each run when scheduled operations do not allow sufficient time for the complete check.

Selection of a fire control director to be used in this alignment check varies from one class of ship to another. In general, however, the director nearest the sonar transducer should be used. If the horizontal distance between the selected director and the sonar transducer exceeds 20 yards, compensation must be made for horizontal parallax.

The sonar alignment check consists of simultaneous sonar and radar determination of range and relative bearing of a target ship while both the target ship and own ship are on a parallel course at the same speed and at a predetermined range.

It is best to perform dial alignment in calm weather and sea conditions, with good visibility, while the ship is (1) underway in company with another ship to serve as a target at selected ranges, (2) anchored in quiet water, (3) moored to a buoy, or (4) tied up to a dock. A celestial body may also be used as a target.

General Requirements

Certain general requirements must be met before conducting the sonar alignment check.

1. The selected fire control director foundation must be in alignment with the first foundation machined, as specified in sections S78-1-f of General Specifications for Ships of the United States Navy.
3. The sonar foundation must be in alignment with the first foundation machined in accordance with standard alignment procedures.
4. An operating area of open water at least 5 miles square with the least 40 to 50 fathom depth must be available (for submerged targets).
5. A surface (or submarine) target must be provided.
6. One man must be at each of the following stations to perform the tasks indicated.
 a. One man at the selected fire control director to optically sight the director on the target ship.
 b. One man at the radar console to operate the radar and to read target range and relative bearing.
 c. One man at the pelorus to make visual relative bearing checks of the target.
 d. One man at the sonar indicator to act as data-taking coordinator and to receive and record data.
 e. One man at the sonar indicator to operate the sonar and to read target range and relative bearing.
 f. One man (ASW or sonar officer) to act as overall sonar alignment coordinate (in direct communications with the bridge).

Note that none of these stations is operated by a GMM. Your part in the alignment is that of aligning the launcher to the fire control director and other parts of the system before alignment to the sonar is begun.

WARNING: While equipment is energized, stay away from the front of the radar antenna.

FINAL ALIGNMENT ADJUSTMENT PROCEDURES

The success of missile flight will depend to a great extent upon the mechanical and electrical alignment of the system. Since guided missiles are used at relatively long ranges, the accuracy with which target angles and range are measured becomes increasingly important. A pointing error of 1/2 a mil at 30,000 yards will result in a miss distance of 45 feet at the target. The same
pointing error at a range of 90,000 yards will result in a miss distance of 135 feet at the target.

If any error corrections were made to train or to elevation receiver-regulator dials, new alignment readings must be established. Obtain the detailed instructions for your launching system and follow them with care.

Upon completion of the train check and the horizon check, the elements of the system are rechecked on their respective benchmarks and new dial readings are recorded in the ship’s battery alignment and smooth fire control logs.

Although both of the above tests can and should be conducted by ship’s force, it is well to remember that any adjustment to either the train or elevation response requires an adjustment also to the load, stow, dud jettison, and transfer position synchros and cams. These adjustments are extremely critical and difficult to make. So before any adjusting is done to the system by ship’s force it would be wise to ask for technical assistance from a repair facility.

FINAL OPERATIONAL CHECK

Modern ordnance installations are operated almost exclusively in automatic control, except under certain special conditions or in emergencies. Therefore, it is particularly important for an installation to be aligned accurately for automatic operation. If the alignment methods described in this chapter are employed so that the dials of each element are aligned accurately with the pointing line and the synchros are aligned with the dials, a good alignment should be obtained. However, it is advisable to check the results under conditions which approximate those under which the equipment will be operated.

Perform the check with the installation in automatic control, and with the parallax equipment functioning. A boresight telescope will be necessary.

If possible, select various targets at different bearings and at ranges which will be approximately equal to mean battle range for the equipment. For antiaircraft installations, try to use air targets which are at an elevation angle near 45°. The target should produce a slow bearing rate, so that accurate tracking is not difficult.

Train and elevate the director to track a target as accurately as possible, particularly in train. If the director trainer cannot stay on the target continuously, he should inform the operators at the weapons by telephone when he is on, by calling “Mark.” The operator at each weapon observes the target through the sight telescope or the boresight, and makes a note of any train error present when the director is on the target. This is done for targets at various bearings, some moving to the right and some moving to the left. In this check, some small error is to be expected because there is always some lag and lost motion in the followup servomechanisms. However, the error observed when tracking to the left should be essentially equal to that observed when tracking to the right, and should be in the opposite direction. If the errors do not change direction when the direction of tracking is changed, or if they are considerably larger for one tracking direction than the other, a misalignment is indicated. This can be corrected by adjusting the train synchros; but before any adjustment is changed, a careful analysis should be made to be certain that the error is not caused by some other factor. For example, a misalignment of the sight telescope could cause an error. This should be corrected by boresighting the telescope—not by adjusting the synchros. In this case, adjusting the synchros would bring the sight telescope on, but would result in firing errors. If, after careful analysis, an adjustment is made to the synchros, a check should be made to see whether or not a corresponding adjustment must be made to the dials or any other part of the equipment.

SUMMARY

To operate and maintain launching systems effectively, you must know the relationship of the missile and the launching system to each other. Just as important, you must know their relationship to the rest of the weapon system. This “need to know” about the relationship of each part of a weapon system to the other parts of the system is clearly demonstrated by the Daily System Operability Test (DSOT). This daily test is designed to check the overall readiness and effectiveness of the entire weapon system. The DSOT will reveal almost any kind
of trouble that may arise, especially in the interchange of information between systems and equipments in the weapon system. Although the entire test requires only about thirty minutes, the men of the associated ratings in each sub-system monitor the test, standing ready to find and correct the cause of any failure.

You can see that every component in a weapon system is linked directly or indirectly to the others and so are the operators and maintainers of the equipments. You must think and act in terms of the weapon system as a whole. What you do and what your equipment does affect the operation of the system as a unit.

Alignment of the Tartar system is given more coverage here than other systems. Although there are many areas of similarity, the alignment of each weapon system is specific for the ship on which it is installed. Data for your installation must be used when making any adjustments or alignments. The admonition stands: Don't tamper with it if it is working all right.
CHAPTER 10

MAINTAIN, REPAIR, ADJUST, TEST, OVERHAUL

If all the subjects listed in the title of this chapter were discussed only in this chapter, it would comprise about ninety percent of the book. The programs in each of these phases are the topics of this chapter. The administration of the programs is covered in the succeeding chapter.

The preceding course, which you have completed, defined preventive and corrective maintenance and maintenance levels—organizational maintenance (on shipboard), intermediate maintenance (tender), and depot or yard maintenance. Organizational maintenance includes operational and technical maintenance.

Operational maintenance consists of on-the-job inspection, cleaning, servicing, lubrication, adjustment, and preservation of components and assemblies. It also includes the replacement of minor parts when this does not require special skills, or necessitate alignment or adjustment as a result of the replacement.

Technical maintenance is limited normally to replacing unserviceable parts, assemblies, and subassemblies, followed by aligning, testing, and adjusting the equipment.

Tender/yard or depot maintenance involves major overhaul or complete rebuilding of the principal subassemblies, assemblies, or the total equipment.

In performing any type of maintenance, a GMM must have knowledge and skills of two types: First, he must have specific information relating to the particular equipment he is to maintain or repair. Second, he must possess and use certain general skills and knowledge which apply to many kinds of equipment.

The specific information required consists of detailed step-by-step procedures approved for a specific piece of equipment. This information is almost always found in classified publications prepared by the Naval Ordnance Systems Command or by a vendor of the equipment under contract to NAVORDSYSCOM.

You have acquired the general maintenance skills and information in progressing to your present rate. The procedures generally follow the practical factors which you must complete as part of your qualifications for advancement in rating. Procedures in soldering, use of basic handtools, performance of basic electrical measurements with devices such as voltmeters, ammeters, and ohmmeters, are examples of some of the general skills in maintenance.

Now that you are preparing for GMM 1 or GMM C, you must be prepared to teach the basic skills to lower rated men and at the same time, increase your knowledge and skill so you can take care of advanced work on the weapons system. You need to learn more about the overall and continuing plan of maintenance and the administration of the plan.

The technical duties include the maintenance of specialized test equipment as well as the assembly, adjustment, maintenance, and testing of missile launching components. The manuals written for each missile system and for each series of test equipments provide the equipment details and the approved procedures for repair and maintenance.

NAVORDSYSCOM PROGRAM FOR MAINTENANCE OF WEAPON SYSTEMS

Planned maintenance for a ship’s weapon system has progressed from the division level to a Navy wide Planned Maintenance System.
GUNNER'S MATE M 1 & C

(PMS). The PM system includes all components of a ship's weapon system and provides a scheduled maintenance program which detail all necessary tests, cleaning, inspection, and lubrication of specific types of ordnance equipment for a specific type of ship. The procedures for a maintenance program for a GMLS are performed at the departmental organizational level and are a part of a PMS for a Surface Missile System (SMS). The PMS/SMS concept involves Daily System Operability Tests (DSOT) and supplemental system tests and maintenance procedures. The system tests determine the overall operability of a system whereas scheduled maintenance is performed on individual equipments of a system to detect possible trouble areas and to maintain a high degree of readiness. General guidelines for implementing PMS are contained in OPNAV 43P2, Maintenance and Material Management (3M) Manual.

Daily System Operability Tests (DSOTs) are used to give the weapons system a quick run-through each day. If any part does not function as it should, corrective maintenance is applied. The schedules of routine maintenance established for each equipment are performed on the days assigned to each according to the plan. By conscientious performance of scheduled maintenance, minor difficulties can be discovered and corrected before they become serious. No comparative figures are available at present, but it is anticipated that the 3-M system will reduce the number of breakdowns and the amount of downtime for missile systems.

The 3-M system does for the entire weapons system what earlier systems of maintenance did for components of weapons and for weapons. *Military Requirements for PO 1 & C, NAVTRA 10057* contains a chapter that discusses the 3-M system from the standpoint of the responsibility of a PO 1 and C, that is, the managerial aspects of 3-M.

RESPONSIBILITIES OF GMM IN THE MAINTENANCE PLAN*

A study of the quals on maintenance shows that the GMM 1 must be able to “overhaul, repair, and adjust, . . . , test and adjust, . . . , perform authorized maintenance, . . . , record system performance,” while the GMM C must be able to “Plan, implement, and supervise the maintenance and repair program.” Two exceptions to this division of responsibility are concerned with the indicator and receiver-regulator equipment in the power drive system. In those systems, it is the chief who must test, adjust, overhaul, and repair. Note that nearly all the “Knowledge Factors” are on the GMM 3 and 2 level, with the exception of principles of receiver-regulators, functions of fire control systems and equipment, and administrative and supply procedures.

The GMM 1 is expected to have knowledge of basic layout geometry for drawings and sketches, to be able to prepare freehand sketches, and to read and interpret diagrams and service instructions. The preceding course explained in some detail the use of different types of ordnance drawings in your work. Drawings of electrical, electronic, mechanical, and hydraulic systems are included. No additional requirements are stated for the GMM C he needs to be able to teach the use of drawings and sketches and their interpretation.

The decision whether to repair or replace a component often has to be made by you. This requires a knowledge of the equipment that is both detailed and broad in scope. Knowledge of the supplies or replacements available is indispensable. Before discarding any part, be sure there is a replacement aboard.

The success of any planned maintenance program depends to a very large extent on cooperation at the working level. Help your men to understand how their day-by-day work of lubrication, cleaning, and similar routine upkeep helps to prevent costly and time-consuming breakdowns and the consequent hard repair work.

The work of the PO 1 and C in administering the 3-M system of maintenance and the Maintenance Data Collection System (MDCS) are described in *Military Requirements for PO 1 and C, NAVTRA 10057*. Planning the daily work of maintenance by his men (and himself) to carry out the ship's plan is the responsibility of the GMM 1 and C.

STEPS IN MAINTENANCE PROCEDURE

Maintenance procedures include visual inspection, tests, lubrication, equipment operation,
performance tests, and cleaning parts. Preventive maintenance involves four major types of activity:

1. Periodic cleaning
2. Periodic lubrication
3. Periodic inspection
4. Periodic performance checks

Corrective maintenance is generally performed in three phases: (1) troubleshooting, (2) removal and replacement of parts, and (3) alignment and adjustment. There may be overlapping between corrective and preventive maintenance; there is no sharp dividing line.

VISUAL INSPECTION

All components, including explosives, receive frequent visual inspection. Although it is of limited value in detecting some types of weapons system troubles, it is the first method used in trying to find the source of trouble or potential trouble. Do not let it become a casual inspection. Normal ship vibration will cause screws and lugs to work loose; a good visual inspection will locate loosened ones. Loose terminal lugs and screws are a common source of trouble. Loose mounting bolts can be the cause of misalignment.

Cables should be inspected for looseness or damage at places where they enter equipment or at any other point in the cable run. Cables showing signs of damage or abuse should be either rerouted or protected. Particular attention should be given to the coaxial cable, which is easily damaged by dents or sharp bends.

Look for signs of overheating and faulty insulation. When these signs appear, the equipment may be blackened around the area of overheating. Check the condition of tubes and tube sockets. Sometimes the shock of gunfire loosens tubes in the sockets. The light bulbs on control panels may be loosened by vibration.

Inspect junction boxes and other unit covers to see that they are properly dogged down. Tighten all retaining bolts and dogs evenly and firmly, alternating between diametrically opposite bolts or dogs.

Visual inspection discovers leaks in hydraulic tanks, and other components. The efficient operation of any hydraulic system depends to a great extent on the effectiveness of the seals in keeping air and dirt out of the system and keeping the fluid in it. Fluid leakage can be discovered by visual inspection, though the accumulation of leaked fluid may be some distance from the leak and you have to trace it to its source. Do not "sell short" this simplest of troubleshooting methods; it can save much time and testing in locating troubles with your equipment.

CLEANING OF PARTS

One of the most important rules of preventive maintenance is "Keep it clean," and you have been reminded of this many times in your Navy career. Many of the equipments are highly machined and have close tolerances. Dirt, dust, or other foreign substances can cause the equipment to operate erratically. Grit can cause excessive wear of parts of a mechanism and can make it inaccurate. Moisture can cause corrosion, and this can cause inaccuracies in operation. Excessive grease or the wrong kind can hamper operation.

Scheduling of routine cleaning is part of your responsibility. In the 3-M as in previous systems of maintenance, the intervals of cleaning are based on normal conditions. If you have a situation other than normal, such as an extreme amount of dust, more frequent cleaning may be necessary. Prepare your daily and weekly schedules in accordance with the 3-M system and modify it to take care of any special situations on your ship. As each job is completed, check it off.

As supervisor and instructor of the men doing the cleaning of equipment, be sure that all safety precautions are observed. With any kind of solvent cleaner, ventilation is necessary to carry away fumes. Heat, fire, and sparks must be kept away from solvent cleaners. The Navy has tested many types of cleaners to find the best in effectiveness AND safety. Use the ones recommended in the OP for the equipment. Use the cleaners as sparingly as possible. Aside from cost savings, there are several reasons for this. Fumes will be less, reducing the health hazard; danger of fire is lessened; the solvent will not run into parts...
where it can do damage, as in electrical parts and skin exposure is lessened, reducing the hazard of dermatitis. Because cleaners are used so frequently, the tendency to become careless with them needs to be held in check. The occurrence of a fatality from solvent fumes has heightened the stress on the need for ventilation when using solvents. Close the container of solvent when it is not in use, even though you must open it again in a few minutes. It is very easy for a container to be knocked over (as in the case of the fatality mentioned); besides, evaporation is continuous while the cover is off. A small amount of solvent on a clean, lintless cloth is the best way for cleaning small or delicate parts. Federal Specification P-D-680 Type I or O-T-634, Type II are the solvents most commonly used on mechanical parts to remove oil and grease (and dust, etc. embedded in it). Alcohol is used for cleaning cork and rubber parts. Always check the OP for the right type of cleaner to be used. OD 3000 describes the different types of solvents and cleaning compounds.

LUBRICATION

You know the importance of lubrication in the maintenance of all equipment. You are acquainted with lubrication charts and have used them in your maintenance work. As a GMM I and C you will prepare checkoff schedules from lubrication charts, OPs, on-mount instructions, or other sources, and supervise the work of lubrication. The types of lubricants and types of lubricating tools were discussed in the preceding course of this series, and in OD 3000.

The parts of the launching system especially subject to corrosion are those that are entirely above deck and constantly exposed to sea spray and water. Maintain the paint on all painted surfaces and a protective coating of lubrication on unpainted surfaces. Flush, clean, and relubricate any bearing surfaces that have been flooded with salt water. Be sure to use the correct lubricant for the part being lubricated and for the weather conditions. Some cold weather lubricants must be used very sparingly to avoid “freezing” of parts. The lubrication charts, which have a NAVORD drawing number, show all points requiring lubrication, give access locations, designate the required lubricants, and tell you how often to lubricate at each point.

Caution against overlubrication is especially important where electrical components are concerned. Oil and grease must be kept off insulation of cables, and other electrical parts. They cause switches and solenoids to malfunction, and will ruin motor armatures.

An excess of lubricant in gear housings can be a source of trouble. When the oil heats up during operation of the unit, it expands, and it may seep out and into parts where it will cause damage. Always check the oil level during maintenance, and do not add oil above the indicated oil level.

Other cautions in regard to lubrication are concerned with cleanliness. If there is dirt, lint, or gummy substance at the area to be lubricated, clean the area before adding fresh lubricant. When grease-lubricated bearings or bearing surfaces are disassembled, all the old grease must be removed and the bearings and housing washed with solvent before fresh grease is applied. The lubricating tool (grease gun, grease pump, oiler, etc.) also must be clean. Wipe it clean before using it and also wipe the point of application on the unit being lubricated. Before opening an enclosed unit, especially one that is gasketted to keep out dust and moisture, wipe the outside of the container. Do the work in a clean area, and place clean parts on a clean cloth or paper. Just a few grains of grit in a delicate instrument can be ruinous.

Maybe you already are observing all these cautions; see that the cautions are observed by the men who are helping you and are learning from you.

Several grease guns should be available for use by your group so each one can be used for a different type of grease. If you have only one grease gun, you have to clean it thoroughly every time you have to use a different type of grease. Do not mix different types of lubricants. To reach some parts for lubrication, such as all parts of the training circle of the launcher, the train drive pinion, and elevation drive pinion,
the launcher must be moved from its stowed position. Take great care to avoid injury to personnel. The air motor is used to move the launcher and the trunnion tube. NEVER use automatic movement to train or elevate the launcher during servicing, or to move the trunnion tube. Be sure to return the trunnion tube and launcher to stow position, using the air motor, after completing the maintenance work.

Hydraulic systems need checking of fluid level at different points in the system. On some components, such as the ASROC adapter buffer used with the Terrier launching system, the fluid level may be noted through a viewing indicator. Hoist the adapter to the loader rail to inspect. If the level is too high, loosen the plug at the bottom of the reservoir and drain enough fluid to bring it down to the required level. A dip-stick inserted through the fill port is used to check the hydraulic fluid level in sumps. The fluid level in the train buffer should be maintained at the height of the filler plug. Oil level plugs mark the filling level on train and elevation gear boxes and hydraulic brakes. ALL hydraulic fluid MUST be strained into the hydraulic system through a 10-micron filter, even though it is being poured from a freshly opened can. Call upon your experience to impress on your men that the need for such care is not mere fussiness. You know the trouble just a little dirt in the hydraulic system can cause.

TESTS

It is hardly an exaggeration to say that at any given moment, some part of a weapons system is undergoing test. The processes of maintenance, testing, repairing, and operational checkout are continuous. The formal planned maintenance programs, from the Satterwhite system, then PRISM and IMP, and now the 3-M system, all were established to prevent forgetting some components in the maintenance and test programs. Other ratings perform some of the tests—on the missile itself, on the fire control system, and the weapons direction equipment. The ship's maintenance plan for the weapons system includes all of them. When you plan the assignments of your work week, you must coordinate the jobs with those in other units of the weapons system, and avoid interference in the performance of the work. The FTs test the missile and you and your men test the launching system. On some missiles you will prepare the battery for installation. On any missile system, you and your men will move the missile into position where the FTs can conduct the tests on it. Cooperation in planning and performance are essential for successful testing of a system. An understanding of the relationship among the parts of the system and the place of each in the whole is needed for intelligent cooperation.

The types of tests and frequency of tests are subject to change. The analysis of results with the 3-M system will reveal need for greater frequency of some tests and less testing in other cases. Always check the latest MRC.

Daily Tests

Some tests and maintenance work must be performed every day. We'll use the Tartar system as an example. Daily preventive maintenance and a daily operational checkout are required for the Tartar system. A more comprehensive weekly operational checkout, plus monthly preventive maintenance, and pre-firing and post-firing checkouts are required. Each day, in addition to the inspection for leaks, etc., checking of pressure, cleaning, and lubrication, certain tests must be made. Daily operation of the launching system perfects the training of the crew and also keeps the lubricants distributed on all bearing surfaces. A Tartar training missile is used. A safety watch is posted topside near the launcher and the EP-2 control panel is manned. The system is cycled three or four times in Step control and then in Automatic. The EXERCISE switch on the EP-1 panel is set so the missiles do not receive actual warmup; the system then acts as if the missiles were on warmup.

The launcher captain stationed at the EP-2 control panel watches the cycling of the launching system. If any part does not perform in the cycle, it is rechecked in Step control. The action may be too slow, or it may not take place at all. Then a careful check must be made to locate the cause of the trouble. You may need to get the wiring diagrams.

Part of the daily testing is testing the firing circuits. Four tests are involved: (1) normal firing and misfire; (2) normal firing resulting in a
GUNNER'S MATE M I & C

dud; (3) firing of a dud; and (4) emergency firing. During practice operation, tests 1 and 2 are performed daily; tests 3 and 4 are performed periodically.

The Tartar training missile is hoisted onto the launcher. Be sure the EXERCISE switch is set on the EP-1 panel during the entire checking of the firing circuits. The checking is done in cooperation with Weapons Control. Each man should have a checklist that tells him the things to do (buttons to push) at his station, and indicating lights to observe for each step.

Weekly Tests

A weekly schedule for testing, checking, servicing, and lubricating launcher components is listed on maintenance index page for a designated GMLS and contains a list of all Maintenance Requirements Cards (MRCs) applicable to the system. Each MRC contains step-by-step instructions for performing the weekly task and, where applicable, shows a lubrication chart for the component scheduled for maintenance. A lubrication chart shows the points requiring lubrication, the frequency of lubrication, and the type of lubrication. If the recommended lubricant is not available, a tested substitute with the same characteristics may be used. Substitute oils and lubricants are listed in OD 3000. Local environmental conditions may require the use of special lubricants such as cold-weather lubricant. Always cycle the equipment after lubrication. This distributes the lubricant and forces out any excess. Clean up any excess, and clean up your grease guns and other applicators after use, before you stow them.

HYDRAULIC CHECKS.—Checking hydraulic fluid levels can be a daily or weekly maintenance requirement. Fluid levels may be checked by a sight gage or a dip stick. Most header tanks have some type of sight gage for quick easy fluid checking where main supply tanks contain a dip stick mechanism. In most GMLS a main supply tank contains an oil fill and drain valve while most header tanks contain only a fill valve or fill cap.

CHECKING ACCUMULATOR PRESSURE.—In most missile jettison systems air and/or nitrogen pressures are checked daily. In other accumulator assemblies weekly checking is the rule. The correct pressure of each nitrogen accumulator system varies with the ambient temperature. A table of temperature-pressure requirements may be mounted near a nitrogen accumulator charging assembly. This table lists the required nitrogen pressure for a given temperature recorded on a centigrade thermometer attached to the nitrogen charging valve block assembly. If a table is not attached to the charging assembly, a temperature pressure tabulation chart will be included on the MRC for the system being maintained. If a launching system has been in operation prior to a maintenance requirement, wait about 2 hours before checking an accumulator system. The waiting period should allow the system to cool so that thermometer gage readings represent normal ambient temperatures.

Checking Fire Protection Systems

All missile magazines have either a salt water or a oil operated hydraulic sprinkling system actuated by an automatic (thermo-pneumatic) control system. Sprinkling systems are tested monthly to ensure proper operation. Tartar missile magazines also have a water injection system which is used to diffuse the exhaust flame resulting from rocket motor ignition in the magazine. Water injection systems are not tested but are checked periodically to ensure that the fresh water and air pressure used within the system are at their required levels. Built in carbon dioxide systems installed in missile magazines are tested in accordance with current ship's policy.

Monthly Tests

Certain tests and checks of the weapons system are regularly scheduled to be performed once a month (or every 30 days). The Terrier missile must be checked at 3-month intervals for the first three checks, and every 6 months thereafter (current regulations; subject to change). The battery of the Talos missile must be removed each month and replaced with a new or reconditioned battery. The battery is not tested before removal; experience indicates that the
battery is likely to need changing and we want to be absolutely sure the missile has a good power source.

A number of the monthly tests are checks on the operation of related parts of the weapons system, with the GMM 1 and C cooperating. You may be placed at the Launcher Captain's Control Panel to observe and report the indications at your panel. Monthly tests on the Mk 13 system repeat the daily and weekly tests, but with additional procedures. The lubricating job includes many additional places to lubricate. Testing the sprinkling system adds several procedures, including airtesting of pneumatic lines for tightness and operability of the heat sensing devices, airtesting for unobstructed flow between the sprinkling control valve and the sprinkling heads, flushing the associated fire mains, cleaning the salt water strainers and the drain hole, giving the system an operational test, and checking the operation of all the valves. Review chapter 8 for these operations.

Testing the carbon dioxide system in the magazine was described in chapter 8. The monthly testing includes inspection to discover any breaks in the tubing or other leakage. The supply piping is air-tested for tightness, and the operation of the system activation alarms are tested. The supply of CO₂ is cut off during the tests by disconnecting the control and discharge heads and capping the connections to the supply tanks. These are precautions to prevent the escape of CO₂ while working in the launching system. Compressed air is used to test the operation of the system, connecting the ship's air supply to the carbon dioxide lines with an adapter. If the air pressure gage shows even a slight drop in pressure, the leak must be found and repaired. A drop in pressure could prevent the operation of the alarm system when it is needed to warn of a fire.

The control heads are checked with the use of a pneumatic handpump and an air gage. Remember the warnings about the suffocation danger from CO₂, and see that the supply cannot be turned on accidentally. Connect or disconnect lines, control heads, and discharge heads in the order given on the MRC or your check sheet so there is no outflow of carbon dioxide at any time while anyone is working in the launching system.

Other monthly checks and maintenance procedures include cleaning of the steam strainer and fluid strainer and checking the bladder pressure in the anti-icing system, and checking the operation of interlock switches. Solenoid switch operation is checked quarterly. Among the interlock switches that are tested (whether for actuation or continuity) are numerous sensitive switches, single-element switches, paired switch elements, micro switches, and rotary switches. The table of interlock switch actuation adjustments for the Mk 13 launching system consists of 22 pages in the OP. The switches must be actuated and checked in the correct sequence; you can see that check sheets are a necessity for checking and adjustment of the interlock switches.

Some interlock switches require quarterly checking or adjustment; ship policy decides the adjustment period for others. This is likely to be the case when part of the system is under NAVSHIP'S control, as in sprinkling systems.

Periodic Tests

Some tests are scheduled to be made every 3 months, or every 6 months, or yearly. Refer to the OP for your missile system for a listing and description. Other tests are listed as "unscheduled." They are made when there are indications that maintenance or testing is needed. Your experience and judgment are needed to decide. "Clean hydraulic filters," is an example of a periodic or unscheduled job. Noisy or erratic operation of hydraulic components may be an indication that the filters need cleaning, so you schedule the job to be done as soon as possible (immediately).

WARNING: Be sure that system pressure is relieved before disassembling or removing hydraulic components. High system pressure can cause serious injury to personnel.

Quarterly Tests

A series of tests that is usually scheduled to be performed quarterly is timing of operations. For the launching system to operate properly, the components must act within the time limits set for each, a matter of seconds. A stop watch
is needed for testing certain operations. An electric timer is used at the EP-2 panel. On the Tartar Mk 13 launching system, use a 60-second, 115-volt, a-c timer with a special, self-contained 24-volt, d-c rectifier. You will need the wiring diagram to make the proper connections. Each timing operation is repeated two or three times and the time is recorded. If the average is not within the limits needed for that action, you must search for the cause of the trouble and correct it. The tests are conducted with all the motors running (except where indicated otherwise) in STEP control, Figure 10-1 illustrates a test circuit used to time the operation of a Tartar system. Timing relay KCZ2 is connected into the circuit being tested by two excitation leads. The contacts of KCZ2 control the start and stop action of the timing mechanism. The following are some of the timing tests made on a Tartar launching system; similar tests are made on other GMLS.

1. Check and record the time that it takes to index between stations on both inner and outer rings of the ready service ring.
2. Check and record the time that it takes to extend and retract both the inner and outer hoist retractable rails.
3. Check and record the time that it takes to open and close the blast door.
4. Check and record the time that it takes to raise and lower the hoist chain under the designated conditions with the chain shifter at either the inner or outer ring (depending on which ring the Tartar training missile is stowed in).
5. Check and record the time that it takes to extend and retract the electrical contactor and fin opener housings.
6. Check and record the time that it takes to extend and retract the fin opener cranks.
7. Check and record the time it takes to arm and disarm a Tartar training missile.
8. Check and record the time it takes to extend the launcher retractable rail when it is empty.
9. Using a stop watch, check and record the time that it takes to retract the jettison piston (test circuitry and electric timer not used).
10. Check and record the time it takes to load a missile (1) from the initiation of a single load order until the fins are unfolded and the fin opener cranks are retracted, (2) from the initiation of a single load order until the next missile in the magazine is ready to hoist, (3) from activation of the system to AUTO until the launcher is loaded and synchronized to the load order, and (4) from activation of the system in AUTO until the launcher is loaded, synchronized, and ignition of a simulated missile is indicated.
11. Check and record the time that it takes to unload a missile from the launcher.
12. Check and record the effective time delays imposed by the time delay relays that are mounted within the EP-1 and EP-2 panels. In addition to the electric timer and a stop watch, a jumper is needed. Figure 10-2 shows how to wire up a time delay relay for testing purposes.

All these tests require careful attention to detail—connecting to the right circuit, exact time, particular sequence of steps, and careful recordkeeping. They cannot be done hurriedly. Schedule them for a time when they are not likely to be interrupted.

LAUNCHER SHIPBOARD PERFORMANCE TEST

Launcher performance tests determine whether launcher equipment functions satisfactorily under various operating conditions.
Chapter 10—MAINTAIN, REPAIR, ADJUST, TEST, OVERHAUL

Most launcher performance tests are conducted quarterly, but an existing condition (a suspected malfunction) may require that certain performance tests be conducted more frequently. Regardless of the frequency of performance tests, personnel conducting these tests must be familiar with both the testing procedures and the test equipment used. The test equipment is used to control and record the performance of the launcher power drives while they are being controlled by the launcher test panel. The responses that are recorded represent instantaneously the error position and velocity of the power drive unit under test. Most shipboard launcher systems have a test panel (EP3 Panel) which contains all the necessary test receptacles and test jacks for connecting the different test cables, leads, and jumpers to the test equipment required for a given performance test. Switches, pushbuttons, and control knobs used to control the launcher test equipment are located on the face of the test panel. A local director (internal director) is mounted within the test panel which enables the launcher to be positioned in train and elevation in local control or in a test mode of operation. A dummy director (external director), an error recorder, two limiter and demodulator units, and a frequency generator are used in conjunction with the EP-3 test panel when conducting launcher performance tests.

Some of the older GMLS do not have an EP3 test panel. These systems have separate local control panels, test panel, and system simulator panels for testing launcher components.

DUMMY DIRECTOR AND ERROR RECORDER

Dummy directors and error recorders are used for routine shipboard dynamic testing of synchro controlled follow up systems such as train and elevation power drives for missile launchers. Their purposes are to simulate a command synchro signal, normally sent to the missile launcher power drive servosystem by the missile fire control system, and to record the error between the selected input signal and the actual output response of the power drive servosystem under test. The information obtained is used for analysis of a launcher's electro-hydraulic control system and launcher power drives.

Dummy directors have been in use for many years, beginning with Mk 1. The one presently used with the Tartar and Terrier missile systems is the Mk 6 Mods 0 and 1. Figure 10-3 shows the control panel of the Mod 0. It was designed primarily for shipboard testing of guided missile launching systems. It does not replace test equipment used for laboratory, factory, shipyard, and installation tests. The records of installation tests are retained on board the ship, and the first record made with the dummy director and error recorder aboard the ship is kept for comparison with subsequent tests by the same test equipment. Each major unit of a ship's weapon system controlled by a synchro system and positioned by an electro-hydraulic power drive has a separate weapon system publication (OD) which lists all the individual shipboard tests conducted at the time of initial installation. Each major unit, a launcher, a gun mount, a rocket launcher, etc, is subject to a complete set of performance tests as detailed in an Installation Test Instruction OD for each unit installed. The results of all tests are recorded or added as
an appendix in a shipboard copy of the OD for future reference.

Any information obtained from a routine shipboard performance test could result in detection of a significant performance deterioration of a launcher component and can warn of impending failure which could result in the need for corrective maintenance, repair, or overhaul.

Dummy Director Mk 6

Dummy Director Mk 6 Mod 0 weights 78 pounds. It is housed in a portable, aluminum case approximately 19 inches long, 16 inches wide, and 12 inches high. It requires 1-ampere, 115-volt, 400-hertz a-c power for operation, and it accommodates either 400-hertz or 60-hertz synchro signals. All power is supplied from the launching system test panel via cable stored in the case. An auxiliary power conversion unit is required for 60 to 400 hertz conversion if the system to be tested is limited to 60-hertz power supply. The principal components of the dummy director are:

1. A main servodrive, with transistor and potentiometer control. It drives two synchro transmitters for 1- and 36-speed order signals, together with a 36-speed synchro control transformer for error detection purposes. It also drives a d-c tachometer for generation of a signal velocity order required for certain power drives.

2. An auxiliary servodrive, with similar transistor and potentiometer control, for generation
Chapter 10—MAINTAIN, REPAIR, ADJUST, TEST, OVERHAUL

of oscillating signals for simple harmonic motion control of the main servodrive for frequency generation.

All manual controls, indicators, and connectors are located on the control panel (fig. 10-3) for the following operations. These tests are made for train and for elevation.

MANUAL OPERATION.—During manual operation, the servodrives are disengaged from the synchro gear train, which permits the operator to position the output synchro rotors to any selected angle from where the particular test may begin. The manually set output signal is stationary, enabling the power drive under test to synchronize with the dummy director output. DO NOT, under any conditions, turn the knob on the 1X dial by hand.

CONSTANT VELOCITY OPERATION.—Constant velocity test signals are used to drive the unit under test at a constant speed. The velocity may be adjusted from 0 to 100 degrees per second in either direction. An oscillograph is used to make the test traces. (See chapter 5.)

SIMPLE HARMONIC MOTION OPERATION.—Simple harmonic motion test signals provide a sinusoidal input signal to the power drive under test. The sinusoidal signal causes the driven unit to oscillate about a present reference point, which is adjustable through 360 degrees. The period of oscillation is adjustable from 4.5 to 18 seconds, and the amplitude of the oscillation is adjustable to a maximum of 60 degrees at a period of 9 seconds and longer and up to 10 degrees at a period of 2 seconds.

FREQUENCY GENERATION OPERATION.—Frequency generation operation of the dummy director produces a sinusoidal signal of 0 to 12 minutes amplitude which is superimposed on the 36-speed synchro output signal. During frequency generation operation, the output command synchro transmitters of the dummy director are positioned automatically at a 10-degree electrical zero position. The frequency of the frequency generation signal is usable from approximately 0 hertz to 18,000 hertz.

The frequency generator components are mounted to the frequency generator chassis, which has a removable cover. A connecting cable is provided for connecting the generator to the EP-3 panel. Open and closed views of the frequency generator are shown in figure 10-4. It is used to test the frequency generator are shown in figure 10-4. It is used to test the frequency response characteristics of the launcher train and elevation systems.

Dummy Director Mk 1

The launcher power drives for the Talos launching system are tested with Dummy Director Mk 1 Mod 6. Two portable units are used, one to test the elevation power drive and the other for the train drive. The dummy director produces 1- and 36-speed, 400-hertz synchro signals for position orders and a 1-volt-per-degree-per-second (open circuit at 1-speed) velocity order proportional to the velocity of the generated signal. The dummy directors are plugged into the rear of the control test panel to activate them. For a detailed description of the unit, refer to OD 17398, Operating Instruction for Dummy Director Mk 1 Mod 6.

Error Recorder For Talos System

A dual channel oscillograph is used to record error traces of the Talos weapon system. Three types of error traces are taken with it: B-end error traces, velocity traces, and position traces. Two different traces can be taken at the same time. This allows corresponding trace results to be compared. Calibrate the oscillograph before using it; follow the instructions in the OP on maintenance and testing of the launcher system.

Some error traces were shown in chapter 5, along with some instructions on reading test traces, and description of an oscillograph.

Error Recorder Mk 12 Mods 0 and 1

Error Recorder Mk 12 Mods 0 and 1 (fig. 10-5) is housed in a portable, aluminum case approximately 21 inches long, 15 inches wide, and 21 inches high. It weighs 76 pounds. It requires 1.6-ampere, 115-volt, 6-hertz a-c power which is normally supplied from the launching
The principal component of the error recorder is a modified commercial Brush Instrument Company Recorder Mark III, which provides the immediately visible, permanent chart recordings on two channels. It includes integral amplifiers for a pen deflection of 1-mm per 10-millivolts of input signal, up to 100 hertz. Simple adjustment and chart speed controls are located on the front panel (fig. 10-5), which also permit convenient change of chart paper. In addition to the two chart-recording pens, the recorder includes two event-marker pens, individually operated through remote control circuits. The recorder may also be used for time recordings of various launching system sequence operations.

The error recorder must be calibrated to zero position in relation to launcher zero train and elevation, and requires a warmup time of 15 minutes to provide an accurate error trace. (The time requirement may vary with the model; observe the requirement stated in your instructions.) An error trace may be recorded of the launcher velocity, acceleration and deceleration, and ability of the launcher to follow static, constant velocity, or simple harmonic motion signals. These traces can be compared to those at installation.

The error recorder is connected by cable to the dummy director when in use, and the dummy director is connected to the launcher EP-3 control panel. The receptacles for connecting the dummy director, the two limiter and demodulator units, and frequency generator to the EP-3 control panel are on the lower part of the EP-3 panel, adjacent to the test jacks.

All required cabling for electrical interconnection of test instrumentation and connection of instrumentation to the test panel EP3 of missile launching systems control is provided with the test equipment. The special cables are designed with proper conductors, length, insulation, and connectors for optimum performance of equipment. Only the approved cabling should be used in the test instrumentation set up. Figure 10-6 illustrates the setup between the test panel EP3 and the test equipment used with a Talos missile launcher system. Only one dummy director is used at any one time, either for train or for elevation system testing.
Types of Tests and Test Procedures

Launcher systems having scheduled performance tests should have an associated Maintenance Requirements Card (MRC) for each power drive unit within the system, which explains the step-by-step procedure and also illustrates for reference purposes a sample trace of each test conducted.

In the Talos GMLS a performance test of the launcher train power drive is conducted quarterly and requires four hours to perform. The MRC consists of 38 pages with nine tests conducted in sequence. The tests listed on the
NOTE: USE CABLES -2092980 FOR READING TRAIN B-TACH AND B-CT OR ELEVATION B-TACH AND B-CT SIGNALS

Figure 10-6.—Launcher Test Equipment Set Up.
Chapter 10—MAINTAIN, REPAIR, ADJUST, TEST, OVERHAUL

MR card accomplish the following: (1) check amplifier balance, (2) test train power drive accuracy, (3) record train power drive velocity and acceleration rates, (4) check launcher synchronizing time, (5) calculate launcher travel distance and maximum deceleration rate between synchro and main power failure points and actual launcher stop points. The sequence in which the launcher train power drive is tested and some of the sample test traces are shown in figure 10-7.

MISSILE SIMULATOR

The use of simulators for training in all phases of missile handling, launcher operation, firing, and securing has been developed to a high degree. A missile simulator combines in one piece of equipment the functions of the several equipment attached to the test panel EP3 in a missile launching system. The Tartar missile simulator is placed in the training missile, as is the Terrier simulator. Since you will be training lower rated men in the operation of the launching system, you need to become familiar with the operation of the missile simulator you have aboard ship. Missile Simulator SM-161/DSM, used to check the Tartar missile launching system aboard ship, is installed in the Tartar Training missile (TSAM), occupying the space normally occupied by the auxiliary power supply (APS). The missile simulator test panel is located just under the missile skin and is accessible by a hinged cover. All electrical connections from the launcher to the missile simulator are made through the DTRM firing contacts on the skin of the DTRM, and through the missile-to-launcher contactor on the aft end of the tail cone. The missile simulator furnishes electrical loads equivalent to those in a tactical missile and provides indicators and test jacks as a means of checking the launcher firing control circuits.

Guided Missile Simulator SM-75A/DSM is used in Terrier Guided Missile Training Round Mk 14 Mod 0 (BT-3) or Mk 18 Mod 0 (BW-1). Guided Missile Simulator SM-159B/DSM is also used with those training rounds and, in addition, is used with Training Round Mk 43 Mod 0 (BT-3A/F/), BT-3B/F/), Mk 44 Mod 0 (BT-3A/N/), BT-3B/N/), or Mk 45 Mod 0 (HT-3) (HT-3A). The simulator provides the electrical responses and loads equivalent to the missiles, thus allowing realistic loading and firing drills.

Operational Cycle

Operation of the missile simulator is through the launcher control console. The operator at the launcher control console operates the push-buttons and switches in the sequence required for the test being made, and the man at the simulator test panel watches the indicating lights that show if the proper response is taking place. He has a checklist, of course, and maintains communication with the console operator.

There are many possible combinations of situations that can be set into the simulator. The operator of the control panel operates the switches manually.

Before attempting to teach with the simulator, have clearly in your mind the steps you will take and what will happen each time. Since the orders must come from the attack console, coordinate your lesson with the men who will send the orders to your launching system. Manual operations are required at both stations. The men who are being trained are stationed at the control panels in the same manner as for an actual firing. The indicator lights show what has been simulated. The abbreviations used on the face of the launcher panel and missile simulator are explained in the OP, as are the code symbols used to indicate weapon system units and fire control symbols.

Maintenance of Simulator

It is part of your job to keep the simulator in operating condition. As long as the simulator operates satisfactorily, do not open it for cleaning and inspection. Lubrication is usually performed at the factory, and is not required on shipboard under normal conditions. Periodically clean and inspect the exterior only. Panel lamps may require replacement. If the simulator becomes inoperative, inspect the interior for security of the switches on the front panels, for loose or damaged connectors, broken or loose switch washer wire connections, evidence of overheating, excessive wear, or corrosion of electrical parts, cracked or damaged O-rings, and damaged wiring. Before opening the unit, be fairly certain
PROCEDURE (continued)

<table>
<thead>
<tr>
<th>Test Sequence</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check magnetic amplifier balance</td>
</tr>
<tr>
<td>2</td>
<td>Train accuracy</td>
</tr>
<tr>
<td>a</td>
<td>Simple harmonic motion</td>
</tr>
<tr>
<td>b</td>
<td>Static condition</td>
</tr>
<tr>
<td>c</td>
<td>Constant velocity</td>
</tr>
<tr>
<td>3</td>
<td>Train velocity and acceleration rates</td>
</tr>
<tr>
<td>4</td>
<td>Synchronized indicator checks</td>
</tr>
<tr>
<td>a</td>
<td>Static error</td>
</tr>
<tr>
<td>b</td>
<td>Time delay</td>
</tr>
<tr>
<td>c</td>
<td>Synchronizing time to static signal of 5°, 10°, 20°, 45°, 90°</td>
</tr>
<tr>
<td>5</td>
<td>Synchronizing to harmonic motion</td>
</tr>
<tr>
<td>a</td>
<td>60°</td>
</tr>
<tr>
<td>b</td>
<td>90° right train</td>
</tr>
<tr>
<td>c</td>
<td>120°</td>
</tr>
<tr>
<td>d</td>
<td>90° left train</td>
</tr>
<tr>
<td>6</td>
<td>Return to load</td>
</tr>
<tr>
<td>7</td>
<td>Synchro power failure</td>
</tr>
<tr>
<td>8</td>
<td>Main power failure</td>
</tr>
<tr>
<td>9</td>
<td>Frequency response</td>
</tr>
</tbody>
</table>

Train Power Drive Test Relationship Summary

DATE 15 May 1969

Figure 10-7.—Test sequence and sample traces.
that the trouble is in the simulator. Failure of lamps and dials on the attack console, the simulator panel, and the LCCP are the most common indications of malfunctions.

WARNING: Do not attempt repair of a simulator panel until the panel has been deenergized.

Before removing any part, make a sketch of its position and wire connections to ensure its correct replacement. All wires have marked sleeves at each terminal end. The dummy steering power section is removed from the trainer missile before inspecting or cleaning the internal components of the simulator. A soft, clean cloth and a brush are used for cleaning the interior of the simulator. After cleaning and correcting any obvious faults, such as a loose wire, return the simulator to the dummy missile.

When the cause of the trouble is not obvious, make resistance checks of the circuits in the simulator. All power is removed from the missile simulator and the missile is disconnected from the launcher. A Simpson 260 or similar multimeter and a General Radio 1800A a-c vacuum tube voltmeter are used. Use the access jacks on the front of the simulator panel.

Use troubleshooting charts or wiring diagrams of the simulator. When you have located the remedy in the appropriate chart, follow the instructions for repair, adjustment, and/or replacement. Repairs other than those described in the OP should be done at an authorized repair station. Synchro alignment, for example, is done at a repair depot.

During the dynamic testing of the simulator, it is in the trainer missile on the launcher and is receiving stimulus voltages from the weapons system. A correct voltage reading on the front panel of the simulator indicates that the simulator and the weapons system are functioning properly in the test. The voltages for each test point are listed in the OP.

Corrective maintenance must be done by persons familiar with the theory of operation and the method of operation of the simulator.

Weapon Electrical Simulator

The simulator used with the Talos GMLS simulates the electrical functions of an S or a W type Talos missile. The primary purpose of the simulator is to allow realistic warmup, power changeover, and firing drills by providing electrical circuits that furnish responses equivalent to those of an operational missile. It also serves as a test unit for checking the operation of the launcher warmup and firing circuits. In addition, the simulator gives all rail loaded indications at launcher Areas 1 and 2, it latches to the guide arm, and it engages the loader in the same manner as a missile. Forward and aft shoes, figure 10-8, similar to those on an operational missile, permit the simulator to be attached to the loader or launcher rail.

When the simulator is attached to the rail, the electrical warmup contactor in Area 1, or at the launcher, can be extended and mated with the contact pad on top of weapon simulator, figure 10-8. This pad is identical to the contact pad on a service missile. The contactor conducts warm-up power as well as all input and output signals to and from the simulator, except for booster-squib voltages. Booster-squib ignition voltages are provided by two sets of contacts mounted on the forward simulator shoes, figure 10-8.

During warmup, power change-over, and firing phases of a drill, circuits within the simulator simulate or monitor the operation of missile warmup, power changeover, and firing circuits. Indicator lights on the front panel display sequence and indications of voltages. A warmup load simulator, an accessory unit of the weapon simulator, can be used to simulate the loads that an operational missile would normally impose on the launcher during firing. In addition to indicator lights, the front panel of the weapon simulator contains all the necessary switches and plug in jacks necessary for a weapons electrical simulation test.

TRAINING MISSILES

The use of a trainer missile provides several kinds of training in addition to checking out shipboard launching systems. This includes training of missile handling crews in assembly techniques, packaging and transfer operations, checkout methods, launcher loading, and operation of the launcher firing sequence. The trainer is stowed in the missile magazine along with the other missiles; when it is to be used for checkout, it is brought up and loaded on the launcher.
The trainer missile is used with a code test fixture and RF oscillator to check the operation of the code comparator and associated weapon control ready-to-fire indicating circuits. The conductors from the code test fixture and the RF oscillator are connected to the simulator test panel in the trainer missile. The RF oscillator is ship's equipment, but the code test fixture is constructed from materials at hand. Figure 10-9 shows a schematic of a code select circuit. In the Tartar systems the missiles are checked out on the launcher, and therefore it is necessary to have the launcher trained and elevated to a position that is most convenient for the operator of the simulator panel.

WARNING: Be sure all personnel are cleared from the launcher area before energizing launcher circuits. A safety observer must be on deck, and in communication with the launcher control station.

Study the description of circuit action in the OP with the drawings before you. This type of follow-through will be very helpful in trouble-shooting.

Training Missiles Used With Simulators

Training missiles with dummy simulators or no simulators at all are used for practice in
handling of missiles; but when any circuitry is involved, a real simulator must be connected. The simulator is electrically connected to the trainer via booster and missile power receptacles, shown on the left end of the simulator in figure 10-10.

Two Terrier training rounds and two Asroc training rounds are provided for each Mk 10 Mod 7 or 8 launching system. The guided missile simulator used in these training rounds is described in OP 2258, Guided Missile Simulator. OP 2905, Guided missile Simulators SM-75A/DSM and SM-159B/DSM, gives the instructions for use of the simulators for the Terrier missiles stowed in the Mk 10 Mods launching systems. There are variations in them to accommodate the different Terrier missile types, and changes have been made to improve the simulators, so be sure you have the latest revision of the OP.

The launching system is cycled through all its operations, using a training missile in place of an active missile. For testing the firing circuits, a Terrier training missile with the simulator installed is used, loaded on the launcher rail. It is tested for normal firing, A- and B-side, misfire, and dud firing. The launcher electrical contactor is mated to the trainer electrical contactor. During the warmup, power changeover, and firing phases of the training drill, circuits in the simulator represent or monitor the missile operations. All the input and output signals, except the booster squib ignition voltages, are conducted through the electrical contactor. Figure 10-10 shows the panel face of the Simulator SM-159B/DSM and its location on the missile when it is on the launcher. Automatic control is used for training drills; the observer of the simulator panel has a dangerous position because of launcher movement, and he must be constantly alert. All other personnel must be cleared from the launcher area.

The steps of operation will vary with the missile being tested and type of firing being simulated. Follow the steps exactly as given in the OP or the check sheets for the test you are making.

SONAR SIMULATOR

The primary target detection unit of the Asroc Weapon System is Sonar Detecting-Ranging Set AN/SQS-26. The sonar detects and tracks submarine targets and provides target location data to the fire control group. For training use, a target must be simulated. Sonar Target Signal Simulator SM-170/SQS-26 is used to supply a signal similar to a submarine target. It simulates course, speed, depth, range, and own-ship course. Simulated sonar echoes are transmitted from a maneuverable artificial target. The operation of this equipment is not the responsibility of the GMM. The Sonarmen check out the sonar target signal simulator, but the GMMs check the Asroc weapons that they have in the Mk 10 launching system. The Asroc training missiles are made to resemble the rocket-thrown torpedo and the rocket-thrown depth charge forms. All forms of Asroc are used for ASW, and must therefore be checked out with the aid of sonarmen. The sonar target signal simulator is Unit 5 in Fire Control System Mk 114 Mods 9 and 12. The operator of this panel sets the problem. He sets in the target bearing, course, range, and speed, and own ship’s speed. Other fire control units proceed to solve the
problem and transmit orders to the missile and the launching system. The GMMs man the launcher panels. When the decision is made to fire either a torpedo or a depth charge, the correct form of training missile is brought up from the magazine by the launcher captain, and is loaded on the launcher arm.

TESTING THE MISSILE

Although maintenance of the missiles consists largely of removing a defective component or part and replacing it with a new one, frequent checking and testing of missiles is necessary to detect any faulty component. The development
of replaceable modules was one step in the reduction of missile testing aboard ship. The missile NO-TEST-aboard-ship programs are working toward the elimination of missile checkouts aboard tactical ships. The Tartar program has been completed and missile shipboard checkout equipment is being removed. The Terrier program is being worked on at present. The Guided Missile Surveillance Program monitors, measures, identifies, and interprets factors that influence missile readiness and reliability. The Missile Systems Test Monitoring Program utilizes analog data to validate missile checkout results. These data are analyzed to detect missile problems that may not be recognized or detected by missile checkout equipment. Some missiles aboard tactical ships were found to be in a failure condition that had not been disclosed by shipboard tests. These programs are carried on by the Naval Fleet Missile Systems Analysis and Evaluation Group with headquarters at Corona, Calif.

Until the NO-TEST program is perfected, missiles will be tested aboard ship to a limited degree.

Missile Systems Test (MST)

Several mods of Guided Missile Test Sets (GMTS) are in use. AN/DSM-60 (TATTE) is used to test the Talos; AN/DSM-54(V) is used with the Terrier; and the AN/DSM-55 and AN/DSM-55(V)B are used with the Tartar. Each of these has type modifications. These sets are connected to the missile by the GMM, but the tests of the missile may be conducted by Fire Control Technicians. At depots a pneumatic test set, the TS-1165/DSM, is also used with Terrier and Tartar missiles, but on shipboard only the electronic system is checked. External hydraulic power is used, supplied by the HD-259/DSM hydraulic pumping unit.

The AN/DSM-54(V) consists of four functional sections: (1) program section, (2) missile stimulator section, (3) evaluation and indication section, and (4) power supply section.

The Guided Missile Test Set applies a series of tape-controlled electrical stimuli to activate the missile guidance system. Missile functions and conditions simulated include warmup, launch, boost phase guidance, search, target acquisition, and intercept. Selected steering signals are applied to the missile. Missile responses to these signals are monitored at various points in the missile and compared to the tolerance limits within the missile test set. At the end of the test the GMTS will show a green GO light if the missile is functionally flight-ready, and a red NO-GO light if it is not. One or more FAULT LOCATION lights will indicate the location of the trouble when the missile tests NO-GO.

If the light is red, continue the tests to pinpoint the trouble and correct it if you can. If the light is green, the GMMs return the missile to the magazine.

Because of different test requirements, different punched program tapes are installed in the missile test sets: for depot or for shipboard tests, for tactical missiles, for missiles with an exercise head, for testing the forward assembly only, and other specific conditions. The missile systems test is performed in approximately three minutes.

Before the test set is connected to the missile, the set performs an automatic check of its own evaluation and interlock circuitry, as well as the critical power supply voltages. The result of this self-check is displayed by indicator lights on the control panel, which show whether the test set is in condition for conducting the missile test. The self-test is initiated by pressing the OPERATE button on the test set. If any of the ready lights do not go on, the self-test has failed.

When making the external connections of the test set to the missile, make sure that the missile is grounded at all times. Set the sustainer igniter arming mechanism to CHECK. After the completion of the test and after the GYRO CAGED lamp is illuminated, place the sustainer igniter arming mechanism on SAFE, and remove the connections from the missile.

WARNING: The test set will not remove power from the missile unless the gyro is caged.

The tests are performed on completely assembled missiles except for the warhead section, S&A device, and fuze booster. During tests, a warhead spacer is used in place of the warhead section between the forward end of the electronic section and the after end of the Target Detection Device (TDD). (On shipboard, the
missile is tested completely assembled. The only preparation needed is separation of the missile and booster before attaching cables and hoses.) A through cable for connecting the TDD and the electronic section is provided as part of the station installation to supply S&A launch-latch bypass and for powering the TDD and missile nose sections.

SIMILARITIES AND DIFFERENCES IN TEST SETS.—The AN/DSM-54 and AN/DSM-55 test sets are fully enclosed and housed in an aluminum enclosure. The -54 sets (fig. 10-11) weight approximately 266 pounds and the -55 sets about 275 pounds. They are placed in the checkout area but can be moved if necessary. The hydraulic pumping unit, HD-259/DSM, is placed nearby. The AN/DSM-60 (TATTE) test set, used for testing the Talos missile, includes four cabinets of equipment, each of which contains several subassemblies. These cabinets and the auxiliary equipment are installed in the missile checkout area (fig. 10-12). The -60 test set is a composite of the -18, -18A, -18B, and -18C capabilities.

All of them require a power supply, an altitude simulator, a telemetric data recording set, meters and tools. Special tools and maintenance equipment are supplied with each set for servicing the module.

WARNING: When power is on, high voltages are present in the GMTS. Use caution when performing inspection, adjustments, voltage measurements, and maintenance. High voltage (300 v-d-c) is present at test points. Do not service or adjust alone. Another person capable of rendering aid should be present.

PREPARATION FOR MISSILE CHECKOUT

Figure 7-18A illustrates the test set AN/DSM-54(V) connected for depot testing, and figure 7-18B shows it ready for shipboard testing. Configuration 2 (C2) of the test set is shown in these illustrations.

Terrier

The AN/DSM-54(V) is adaptable for testing any of the current Terrier missiles. Each set can be changed quickly to test any of the Terrier missiles and to operate on either X band or C band frequency.

NOTE: If the same 400-hertz voltage source is used for both the AN/DSM-54(V) and the HD-259/DSM, it is necessary to start the HD-259 first in order to prevent damage to the DSM-54(V).

After the equipment has been warmed up for at least 30 minutes, check all power supplies of the AN/DSM-54(V) for proper operation. If the power supplies are operating properly, check and, if necessary, adjust the missile stimulator section of the AN/DSM-54(V). Radar Test Set AN/SPM-9 is used to check Pulsed Radio Frequency, Frequency Modulation, Amplitude Modulation, Radio Frequency, Pulse Width, Pulse Coding, and R-F Power Out. The function generator section of the DSM-54 set is adjusted
for proper output of Roll (both LO and HIGH), Rate (LO and HIGH), and Acceleration. These adjustments are critical and require a highly accurate differential voltmeter. They may be made by other ratings, but you need to know how.

The test results are recorded by either Telemetric Data Recording Set AN/SKH-1 or Telemetric Data Receiving, Recording, and Scoring Set AN/SKQ-1. These sets record on special photosensitive paper housed in the magazine of the oscillograph. The photosensitive paper is developed under fluorescent light. The developed recording may be analyzed and annotated. Future recordings are compared with it.

To prepare the HD-259/DSM, check the level the hydraulic fluid in the reservoir, as indicated in the sight glass on its front panel (fig. 10-13). If the level is low (below MIN), fill the reservoir to the proper level. Check the condition of the hydraulic lines running to the missile. Connect the supply lines to the return line by use of an adapter, and connect the unit to a source of 115-volt, 3-phase 400-hertz power.

Set the BYPASS valves to the OPEN position. Set the VALVE switch to the CLOSED position and the OSCILLATOR switch to the OFF position. Turn the MOTOR switch to ON. Note whether the motor starts and the indicator lights illuminate. The supply pressure gage should read about 100 psi.

Then close the supply bypass valve. Check to see that the supply pressure gage reads approximately 1000 psi, and that the temperature reading is normal. Place the return bypass in its closed position; the return pressure gage should read about 125 psi.

When all these conditions are met, the unit is ready to be connected to the missile for automatic test. During the missile test, the unit is remotely controlled by the AN/DSM-54(V).

Tartar

The basic test philosophy of the DSM-54 test set applies also to the DSM-55(V)—to perform a test, as nearly automatic as possible, to assure that the Tartar will function as it should. Three
modes of operation are provided in the DSM-55(V): a missile systems test (MST) for use on the assembled missile, an electronic ("E") test for use on the electronic section by itself, and a manual mode which permits the operator to test any missile response at will.

There are five stages in the operating sequence of the test set: (1) before use, (2) standby, (3) during use, (4) after-use, and (5) “secure.” In the “before use” stage, the operator makes at least one pretest checkout every 24 hours of operation. The drop cables need not be attached to the missile, but the operator should assure that all test set circuitry is functioning, that the tape (in the test set) advances smoothly, that power supply voltages are available, and that all indicator lamps are functioning properly. The test set is ready to operate when all the indicator lamps and the READY lamp illuminate.

With the main circuit breaker on, depressing the POWER ON button places the test set on “standby.” This allows all filament and plate voltages to come up to required levels. A 30-minute warmup is sufficient. The blower cooling the klystron should operate at all times to avoid damage to the klystron. Turn off the power immediately if the klystron blower is not operating. The blower that cools the chassis should begin operating immediately if the ambient temperature is over 35°F.

After the test, the set is returned to STANDBY by pressing the reset button. To secure the test set, place the main circuit breaker in the OFF position. This removes all power from the test set and the missile.

PREPARATION FOR USE (PRETEST CHECKOUT).—Follow the steps below to check the test set before it is to be used to test a missile.

1. Make sure that all captive screws on the control panel are tight.
2. Check all drop cables for proper connection to transition boxes.
3. Assure that no cables are connected to a missile.
4. Place Missile Circuit Breaker in OFF position.
5. Place Main Circuit Breaker in ON position.
6. Depress POWER ON button. See that the klystron blower starts immediately, and that the blower cooling the chassis starts when the ambient temperature is over 35°F.
7. See that the POWER light is on. The tape index light should be on. If it is not, press the reset button and wait for the tape to rewind. At index, the lamp will go on.
8. Allow 30 minutes for the system to warm up.
9. See that all fuse lamps are out. If one is on, it means that the fuse is open and must be replaced. Spare fuses are available on the back of the microwave access door.
10. Set test function switch to MST.
11. Press the OPERATE button. During the next 15 seconds, the self-test will be run and the ready lamp should light along with all the active fault locator lamps.
12. Press the TEST START button. All lamps except “power” and “test in progress” should go out.
13. The “test-in-progress” lamp will remain lit during an MST. The test will be completed in about 4 minutes. The “test-in-progress” lamp will then go out, and the tape will rewind.

14. Four minutes are required to rewind the tape. At the end of that time, the tape index lamp will illuminate.

15. See that the NO-GO and “Aft Mating” lamps come on. Since no missile was connected, an overall NO-GO should result at this point.

16. Press the reset button.

17. The pretest is now complete. If no missiles are to be tested with the next few hours, press the POWER OFF button.

There is no shipboard testing of Tartar missiles. All testing equipment for Tartar missiles has been removed from ships. Tartar GMLS are in a No-Test program which requires only missile stowage maintenance prior to missile firing. (Test set DSM 55 is used at shore stations only.)

Talos

Like the Terrier, Talos missiles should be given initial checkout and servicing as soon as possible after replenishment. Thereafter, checkout is accomplished periodically. Initial mating of the missile and booster includes installing the antenna lenses, matching the missile codes with those of the guidance radars, connecting the explosive lead to the warhead-booster assembly or electrically connecting the thermal-battery assembly. This routine is also followed in emergency operations, instead of the complete missile checkout.

PREPARATION OF THE TALOS MISSILE FOR CHECKOUT.—Preparatory steps for Talos missile routine checkout are as follows:

1. Select the round to be tested, remove it from the magazine, and transfer it to the checkout area.

2. By means of the ready service crane, transfer the round to the missile and booster dollies, and secure the round to the dollies.

3. Unmate the booster from the missile and return the booster to the magazine.

4. Remove the missile antenna lenses.

TALOS MISSILE CHECKOUT.—Talos missile checkout is accomplished by conducting a Tactical Missile Test (TMT), using the equipment previously described, and following instructions for the use of these equipments as contained in the applicable OPs. In general, the following steps are necessary.

1. Disconnect the flexible explosive lead (in Guided Missile Mk 11 Mod 2) or disconnect the thermal-battery assembly (in Guided Missile Mk 11 Mod 4).

2. Check the nitrogen pressure in the inner-body assembly if the missile is Mk 11 Mod 4.

3. Make surveillance checks for fuel and hydraulic fluid leaks.

4. Match the codes and radio frequency to the guidance radars.

5. Conduct a “GO”, “NO-GO” tactical missile test.

6. Perform missile maintenance as necessary.

7. Service the missile as necessary.

8. Test the innerbody assembly (if missile is Mk 11 Mod 4) by means of NAVORD Adapter Receptacle supplied with Test Set AK T-3074.

9. Reconnect the flexible explosive lead (in Mk 11 Mod 2) or reconnect the thermal-battery assembly (in Mk 11 Mod 4).

The TMT is also called the missile Operability Test (MOT), in fact, this term is replacing the earlier one.

When the above steps are completed, the missile and booster are remated in the checkout station, the antenna lenses are reinstalled, and the round is returned to the magazine. Subsequent to the initial checkout described above, periodic checkouts will be the same, except that it will not be necessary to again match the codes and radio frequency to the guidance radars unless the radar’s code and frequency have been changed. If the TMT indicates NO-GO for the Talos and the fault has been indicated by means of the monitoring panel, replacement or adjustment of faulty components and modules should be accomplished.

Repair of missiles and boosters is limited to replacement of readily replaceable components, such as electronic packages, inner-body assemblies, booster shoes, and other items which do not require extensive disassembly operations,
GUNNER’S MATE M 1 & C

servicing, and adjustment procedures. The original versions of missile incorporate the large size electronics packaging which require the assistance of handling equipment. Since the checkout compartments each stow one set of replaceable spare parts, the units may be taken from these areas and replaced during lull periods.

When the test is completed, reconnect the flexible explosive lead (Mk 11 Mod 2) or the thermal battery assembly (Mk 11 Mod 4). Remote the missile and booster in the checkout area, reinstall the antenna lenses, and return the round to the magazine. After the initial test, step 4 can be omitted unless the radars’ code and frequency have been changed.

In the test equipment checkout and missile warmup period, the test set runs through two self-check sequences. The results of the tests are indicated in GO/NO GO fashion on the test panels. If any element covered by the test is found faulty, a TATTE failure lookout command stops the test.

The self-check portion of the overall test is at the beginning of the test tape, or a special tape may be provided which contains only the self-check portion. With the special tape, the self-check of the test equipment can be performed without doing the missile operability test (MOT).

OP 2900 (Volume 3), Guided Missile Test Set AN/DSM-60, Operation and Maintenance (U: C), contains the complete instructions for the use of the technicians who conduct the missile tests. If you need to help with the tests refer to that text.

OWN SHIP’S MAINTENANCE PROGRAM

The development of planned systems for maintenance of ordnance and ship’s equipment was discussed in the preceding course and in earlier chapters of this text, and also in your military requirements courses. Each ship develops its own Current Ships Maintenance Project (CSMP) file which is used for planning and coordinating the ship’s maintenance workload. The CSMP file is made up of deferred action report form 4790/2K for those maintenance actions which have been deferred because of a requirement for technical skills or special equipment not available on board ship. This information is also used for analyzing maintenance and logistic support problems; and, in addition, the CSMP makes it possible to record and report the need to delay an accomplishment of a required maintenance and can indicate the principal reason for the delay. The 3-M System of maintenance and material management, its purpose, organization, and procedures for shipboard use and the forms which make up the CSMP are explained in chapter 11 of this text.

SLOW-RUN-THROUGH (SRT)

Because all parts of the missile system must work together, testing of the complete system must be done before it is put into use, and at intervals thereafter. Shipbuilders and naval shipyards are given general and detailed specifications for installing the equipment and for checkout procedures after installation. The systems test after installation on shipboard is called the slow-run-through (SRT). Detail requirements for the SRT are established by the NAVSHIPSYSCOM. The SRT must demonstrate the satisfactory operation of the complete shipboard weapons installation, including supporting and auxiliary subsystems.

An SRT may also be necessary after a ship has undergone overhaul or conversion and after new or major alteration to the weapons system. Sometimes it is necessary after a minor alteration because of alignment problems. In that case the necessity for an SRT is determined by the type commander, NAVSHIPSYSCOM, and the shipyard. Any deficiencies revealed during the SRT must be corrected by the installing activity. The ship’s personnel assist in conducting the SRT.

Testing of advanced ASW system installations, surface-to-surface, and surface-to-air missile installations begins with replenishment-at-sea and proceeds through all phases of strike-down, stowage, checkout, disassembly, servicing, checkout servicing, assembly, handling, and simulated launch. For ASW systems (Asroc), an actual or simulated sonar contact is introduced into the overall weapon system and checked through the underwater fire control system. On other systems, an actual or simulated output
from the ship's search radars is introduced into the overall missile system and checked through the weapons direction equipment, the missile fire control system, and the ready service feeder and launcher system. The feeder and launcher systems thereby receive orders that result in a missile being rammed on the launcher and the launcher trained and elevated to the position indicated by the initial input. Each magazine, launcher feeder, checkout, and strikedown system must be tested.

In addition to testing the weapons system, all supporting services and auxiliary subsystems must be tested. These include all associated lighting, air conditioning, humidity control, security alarms, sprinkling, damage control facilities, air sampler alarms, communications, and other utilities contributing to the effectiveness of the weapons system installation. Accurate time cycles must be recorded for parts of the system where speed is part of the operational effectiveness.

When an SRT is being conducted on your ship, as a petty officer you will be assigned responsibility for checking the operation of parts of the ship’s equipment and keeping the records of the operation. As a GMM 1 or C you will supervise the operation of parts of the launching system and the recording of results of the tests. The response of the launcher to train and elevation orders must be noted with care, and adjustment made if necessary. The correctness of the firing cutout cam is demonstrated by the launcher movement; the cam must prevent launcher movement into an area where the ship’s structure or personnel would be endangered.

Since there are differences in each installation, detailed instructions are prepared for each ship. From these instructions the tasks are apportioned among the ship’s and contractor’s personnel.

ORDALTS

Of course you know what ORDALT is—you have worked with them a number of years in your Navy career. They are NAVORD authorized alterations to ordnance equipment, made to improve the existing ordnance. Many of the changes are made to improve the safety features of the equipment; others are changes to increase the accuracy or reliability of the equipment. Some are required and must be performed before the equipment is used again. Others are optional and may or may not be performed before the equipment is used again. SHIPALTS are of NAVSHIPS cognizance and may be associated either with ORDALTS or alterations to equipment belonging to the NAVSHIPSYSCOM, but supervised by the weapons department. NAVALTS are handled as ORDALTS or SHIPALTS, as appropriate.

The program for accomplishing ORDALTS is described in the next chapter. The most essential changes must be made first; priority is assigned by the ship’s Ordnance Accomplishment Requirement (OAR).

An ORDALT Instruction states the specific conditions of applicability of the ORDALT and the method by which it is to be accomplished. If it affects only a few units, the serial numbers of the equipments affected are given. All necessary drawings, sketches, etc., are included as part of the instructions. ORDALT kits should be ordered through normal supply channels. Authorization for accomplishment of ORDALTS on nonexpendable ordnance in accordance with NAVORD INSTRUCTION 8000.2, “Nonexpendable ordnance.”

After the alteration has been made on the equipment, the ORDALT number must be stamped on the ORDALT plate on the equipment, if it has one. If it does not have an ORDALT plate, order one from Supply, inscribe the number of the completed ORDALT, and attach it to the equipment, if permissible. Guided missiles and torpedoes are examples of ordnance where it is not permissible to attach ORDALT plates.

As a GMM 1 and C you have more responsibility for getting the ORDALT promptly and precisely accomplished. Authorization for ORDALT accomplishment is by a specific work directive (letter, project order, allotment, etc.), and the current ORDALT are listed by number, name, and brief description in NAVORD ORDALT 00, in numerical order. Cancelled, completed, superseded, or disapproved OrdAlts are listed by number only. Keep informed on what changes are required for your equipment so you can plan to get the work accomplished on schedule. In some activities delay in
ORDALT accomplishment has seriously hindered and hampered the ship's mission. This is especially true when the ORDALT is intended to remove a safety hazard and the equipment may not be used until the ORDALT is performed.

Many of the ORDALT that apply to guided missile systems contain classified information and therefore are held by the publications custodian. Maintain the required security status when using them.

An ORDALT is not necessarily a complicated, lengthy alteration; some require only a few minutes to complete. The important thing is to schedule them for a definite time so they will be done at that time and not forgotten.

OVERHAUL

Thequals require you to be able to overhaul mechanical, electrical, electronic, hydraulic, and pneumatic systems of the missile launching system.

That seems to include just about everything, and at first glance appears a well-high impossible requirement. However, the overhaul must be within the ship's capability as well as yours. Before you undertake an overhaul job, be sure you have the necessary equipment and facilities. Usually the OP for the equipment will state definitely whether it can be repaired or overhauled aboard ship. Many electronic components are replaced rather than repaired aboard ship, and spares are carried in supply. In your daily practice session with the equipment you learn to make many repairs and adjustments, but in a combat situation it may be impractical to attempt repair of a sophisticated electronic unit.

The forms to be used in requesting and in reporting overhaul actions are discussed in the next chapter.

SUMMARY

This chapter covers the bare bones of the testing and maintenance program for the launching system, the missiles, and the operation of the weapons system. The systematic routine testing, inspection, and maintenance are discussed first for the launching system. The operability tests can be performed only with the assistance of other ratings. The system must be kept in operating condition, and therefore the Daily Systems Operability Test (DSOT) is necessary.

The missile must also be checked out frequently. The explosive components of course cannot be tested, but the reaction of the missile's electric, electronic, hydraulic, pneumatic, and mechanical parts to signals or commands are tested regularly with the aid of FTs. Although plans are being worked out so that missiles will not have to be tested aboard ship, shipboard testing of missiles will be continued according to schedule until such time as the NO-TEST system is ready.
CHAPTER 11

ADMINISTRATION AND SUPPLY

To be an effective petty officer you must have a certain amount of administrative ability. Some of this may be natural aptitude, but much can be learned. Administrative ability is an important part of leadership. It includes the arts of organization, management, and human relations. A good administrator can grasp the overall plan, fill in details of the plan, determine his place in it, and carry out his part of it with the help of his men. A course which you have completed, Military Requirements for Petty Officer 3 & 2, NAVTRA 10056 discusses at some length the qualities you need to become a leader. More emphasis is placed on the planning responsibilities of the petty officer in Military Requirements for Petty Officer 1 & C, NAVTRA 10057. It devotes a whole chapter to administrative duties, and in related chapters discusses them in particular areas or fields. Keeping records and making reports are important parts of those duties.

This chapter deals almost entirely with the paperwork required in the performance of your administrative duties in regard to maintenance, repair, supplies to perform the maintenance and repair, reports on performance of the weapons system, reports on tests on tests made, planning of work, and recordkeeping. The automatic data equipment must have data put into it before it can do any computing. Your reports and records furnish the necessary data.

ADMINISTRATIVE REQUIREMENTS

In every chapter, something has been said about the role of the GMM 1 and GMM C as a supervisor, teacher, planner, and executive or administrator. The quals require you to “Plan, implement, and supervise;” “Coordinate and direct;” “Organize and administer;” “Implement plans;” “Prepare plans,” etc. To perform adequately as a GM 1 and GMM C, you must have wide practical and technical knowledge of the equipments used in your rate, and experience in performing the physical work involved in operation and maintenance of the launching system. This background must be teamed with the ability to see the overall picture or plan, and the ability to direct the activities of the men to achieve the objective of the plan. You have to be able to interpret directives, rules, forms, plans, and instructions, and explain them clearly to the men.

The GMM 1 and GMM C has the responsibility for many of the reports required of the weapons department. As a GMM 3 and GMM 2, you have filled out many of the simpler forms, such as those used in recording magazine inspections, maintenance performed, and other data cards. You need to check these for accuracy and completeness when your men prepare them.

The reports must be accurate and must be promptly made and promptly sent. Computers cannot come up with the correct answers if the inputs are wrong. Your reports are the input.

In addition to knowing the requirements for your launching system and the missiles, you also need to have some acquaintance with the supply system. You need to know how and where to order parts, what you can order, and what to do with the replaced parts.

Your quals require you to know the regulations concerning accountability and procurement, maintenance, stowage, and transmission of classified records, reports, and publications. Since much of the written material in your department is classified, you need to institute a
Personal qualifications related to administrative ability are discussed in chapter 1 of this text and in your military requirements text.

STANDARD NAVY MAINTENANCE AND MATERIAL MANAGEMENT SYSTEM

Each shipboard Guided Missile Weapon System maintenance program is part of the Standard Navy Maintenance and Material Management (3-M) Planned Maintenance System for Surface Missile Systems (PMS/SMS). SMS documentation, in conjunction with OPNAV 43P2 (3-M) Manual and the associated equipment publications for a specific system, constitutes the basis for an effective PMS/SMS maintenance program. The ship's Weapon System publications for a type of weapon system installed aboard on a specific class ship describe the relationship of the system/equipment documentation to OPNAV 43P2 and amplify instructions for implementing shipboard management procedures in consonance with the 3-M Planned Maintenance System.

OPNAV 43P2 is the authority and basic guide governing maintenance management within the Cruiser-Destroyer Force. It provides management with information required for efficient and economical utilization of all available resources. Technical details necessary for making repairs to SMS equipments are not included in OPNAV 43P2. OPNAV 43P2 delineates those procedures required for implementation of the PMS system and the Maintenance Data Collection System (MDCS).

The 3-M system encompasses all maintenance and material functions performed on ships and aircraft of the operating forces. These functions are performed within two levels of maintenance which are defined as (1) organizational maintenance at the ship level and (2) intermediate maintenance performed in tenders, repair ships, and all repair activities ashore except for shipyards and overhaul and repair (O&R) facilities. Uniform procedures and systems are applied to the following functions performed within the operating forces.

1. Maintenance planning, scheduling, and control procedures.
2. Maintenance production and material usage data reporting.
3. Supply accounting and budgetary support systems and procedures.

The primary objective of the 3-M system is to improve material readiness of the fleet through improvements in management and material functions. To attain this objective, the 3-M system employs three basic functional subdivisions which include the Planned Maintenance Subsystem (PMS), the Maintenance and Material Data Collection Subsystem (MDCS) and the Manhour Accounting System. All of these subdivisions are explained in detail in Military Requirements For PO 3&2, NAVTRA 10056, and Military Requirements For PO 1&C, NAVTRA 10057.

PLANNED MAINTENANCE FOR SURFACE MISSILE SYSTEMS

The PMS/SMS maintenance program was initiated by the Navy Ordnance Systems Command to improve fleet maintenance documentation for surface missile systems and for the individual equipments of these missile systems. The concept underlying PMS/SMS arose from a background of fleet operational experience with surface missile systems and the difficulties encountered in their operation and maintenance. Early attempts to alleviate these difficulties led to the development of a daily system test designed to determine overall system operability in the normal modes of operation. Through developmental experience with this test, it became apparent that all system functional circuits could not be checked by a single daily test. By examining functional circuits within the system, and by determining the importance of each circuit to system operation, system versus equipment level maintenance requirements could be established.

Integrated Testing

While it is recognized that improvements in hardware design can now and will in the future improve reliability and decrease down time, a
more immediate gain can be realized through improvements in testing and trouble-shooting techniques. PMS/SMS was devised to ensure optimum missile system material readiness through an integrated, test-based maintenance program. One of the key points in the PMS/SMS maintenance program is the establishment of a management plan for missile system maintenance. The required frequency of each system test, equipment test, and servicing procedure for the missile weapon system has been established. Different type surface missile ships are now able to integrate system level operational/maintenance tests with individual equipment level tests and servicing procedures.

PMS/SMS Maintenance Management

A Planned Maintenance System (PMS) is directed toward preventive, rather than corrective maintenance. PMS maintenance documentation is developed by critically examining all routine preventive maintenance tasks so as to determine actual maintenance requirements deemed necessary, who should perform the tasks, and the proper periodicity of accomplishment. When all of these questions are answered, a specific maintenance procedure is developed for a specific component of a system and placed on a Maintenance Requirement Card (MRC). MRCs prescribe minimum maintenance requirements capable of accomplishment by shipboard personnel, which will maintain equipment operation within design standards and meet established readiness criteria.

A PMS/SMS maintenance system in addition to routine preventive maintenance include system operational tests supported by fault isolation documentation and special corrective maintenance procedures. System/equipment level tests and corrective maintenance servicing procedures are found on MR cards in the same manner as for PMS. Corrective alignment/adjustment and or repair/replacement procedures are performed only when a problem has been isolated as a result of system or equipment maintenance test failure. Within PMS/SMS, a test is defined as a standard procedure to determine if the current operational status of a specific system (equipment) function is within the desired tolerance limitation characteristics. When fault indications are observed during the test process, test related fault directories and or data reduction analysis procedures are used to ensure a logical follow through from the system equipment fault indication to the most appropriate troubleshooting document. The relationship of system level to equipment level documentation used in implementing an integrated maintenance program for PMS/SMS is outlined in specific technical PMS/SMS manuals.

Equipment OPs

A PMS/SMS equipment Ordnance Publication (OP) contains all the technical information pertaining to major components of a shipboard surface missile system. These publications consist of five volumes: (Volume 1) describes the major component (a launcher, a radar, a director) and explains the operating functions; (Volume 2) gives detailed instructions for performing scheduled maintenance actions; (Volume 3) provides the necessary documents for trouble isolation; (Volume 4) provides the necessary instructions for corrective maintenance actions; and (Volume 5) includes a complete indexed listing of parts for identification and replacement purposes and a list of special tools and accessories. Detailed instructions on the use of the contents in this publication are provided as necessary in the introduction of each chapter. Volume 2 and Volume 4 of most equipment OPs have been deleted from the manual structure and have been superseded by the PMS/SMS MRC cards and PMS/SMS Corrective Maintenance Card (CMC) sets. These two volumes should not be eliminated from the manual structure until adequate scheduled and corrective maintenance card coverage is instituted in shipboard launcher spaces and applicable corrective maintenance material has been installed in the group work spaces in accordance with implementation instructions contained in the SMS corrective maintenance manual. Premature destruction of these two volumes could result in inadequate documentation aboard ship for equipment maintenance, therefore launcher supervisors shall ensure that scheduled and corrective maintenance card coverage is adequate and that the
card sets are satisfactorily distributed to all launcher spaces.

System OPs

A PMS/SMS system OP describes the physical, functional, operational, and maintenance aspects of a specific Guided Missile Weapon System onboard a specific type ship. An example of a system OP is NAVORD OP 3472 (PMS/SMS) for Tartar Guided Missile Weapon System DDG 2 through 24 class ships. System OPs are used by personnel responsible for operation and maintenance of a weapon system and by personnel concerned with training personnel. System OPs have eight volumes: Volume 1 is entitled Description and Operation. Volume 2 describes general and specific safety precautions to be observed for ensuring the safety of personnel responsible for the operation and maintenance of a weapon system. Volume 3 describes the weapon system General Quarters (GQ) duty stations and recommended personnel assignments and operating procedures within these stations under normal and casualty conditions. Volume 4 contains a functional description of a weapon system with emphasis on analyses of major system functions involved in Fire Control System (FCS) assignment, target tracking, computations of missile orders, and evaluations of Daily System Operability Tests (DSOT). Volume 5 explains system PMS as applicable to a specific system ensuring an adequate frequency of system tests to verify continued satisfactory performance of the system. Volume 6 explains Weapon System Maintenance Tests, test fault directory, and other essential data to ensure effective testing and isolation of malfunctions to a specific functional area of a system. Volume 7 contains troubleshooting and alignment documentation necessary to quickly isolate malfunctions and misalignments to a particular equipment or circuit within the equipment. Appropriate descriptions and references are provided to ensure effective use of all troubleshooting and battery alignment material. Volume 8 contains System Functional Diagrams (SFDs) and sketches which functionally present the system interconnecting circuits for weapons control, fire control, missile firing and system support equipment.

MAINTENANCE LEVEL RESPONSIBILITIES

The Navy has prescribed three levels of maintenance accomplishment: (1) organizational (ship), (2) intermediate (tender/repair facilities), and (3) depot (Navy/civilian shipyards). The authority for conducting maintenance management within the respective areas of their responsibility belongs to each CO, squadron commander, and force commander.

Organizational maintenance applies to maintenance functions normally performed on a day-to-day basis by an operating ship. System or equipment maintenance within each department aboard ship is generally accomplished by personnel assigned to that particular department. Organizational level work can generally be grouped into the following categories:

1. Scheduled testing
2. Preventive maintenance
3. Corrective maintenance
4. Equipment modifications through installation of applicable SHIPALTS, ORDALTS, field changes and so forth.
5. Necessary record keeping and submittal of records peculiar to organizational level maintenance.

Intermediate maintenance applies to maintenance functions normally performed by tenders. The primary purpose of the intermediate level maintenance activity is to support and supplement the work of organizational maintenance activities as follows:

1. Repair and test of components and items requiring shop/equipment facilities and/or skills not available in organizational level activities.
2. Installation of SHIPALTS and field changes beyond the capability of organizational level activities.
3. Record keeping and reporting peculiar to intermediate level maintenance.

Depot maintenance applies to the maintenance functions performed by shipyards and other shore activities (installation of ORDALTS). The technical aspects and quality of depot level
Chapter 11—ADMINISTRATION AND SUPPLY

maintenance is under management control of the cognizant systems commander.

Lowest Level Maintenance

Determination of types of maintenance performed at each level is governed primarily by the availability and distribution of maintenance personnel, equipment, parts, and facilities. It is a common function to ensure that the distribution of equipment and facilities is continually reviewed for the purpose of increasing the amount of maintenance activities that can be performed at the lowest level consistent with available personnel skills and an acceptable quality of work.

PMS/SMS Tools and Documentation

In addition to the maintenance documentation previously defined, PMS/SMS also requires the use of special tools and documentation for maintenance accomplishment. These include OPNAV 43P2, OPNAV 43P1, cycle schedules, quarterly schedules, weekly schedules, maintenance requirement cards, and associated hardware. A chapter on the 3-M system is contained in Military Requirements for PO 3&2 (NAVTRA 10056-C) and discusses the principal components of the system and illustrates the various forms required for carrying out and recording maintenance actions. Complete details of the entire 3-M system are contained in the 3-M manual, OPNAV 43P2.

Work Center Manual

The work center manual (43P1) is that portion of the master PMS manual (43P2) which contain the Maintenance Index Pages (MIPs) applicable to a specific maintenance group. It is designed to provide ready reference within the maintenance group and is used by the maintenance group supervisor in preparing his weekly schedule.

Scheduling Maintenance

Each ship has a long range schedule which includes all the maintenance work to be done between overhauls. It is displayed on a schedule display board, and consists of the Cycle Schedule and two quarterly schedule forms (the current quarter and the succeeding quarter). Maintenance requirements are scheduled by weeks and are determined from the Cycle Schedule. There are spaces for each maintenance group (gunnery, etc.). The quarterly schedule is prepared by the department head, the division officers, and the maintenance group supervisors. The latter prepares the weekly schedule from it, in which he assigns specific jobs to personnel by name. The weekly schedule is posted in the work area of the maintenance group. The printed form, OPNAV Form 4700-6, is made of plastic and is written on with a pencil. It is cleaned with a soft rubber eraser and is used over and over.

The numbers in the daily columns are the maintenance requirement numbers that appear at the top of the maintenance requirement cards. The man who is assigned to do the work pulls the MRCs from the set as he needs them to perform each job. As each job is finished, he places an X on the weekly schedule after the number of the completed job. Any work that is not completed at the end of the week is circled and is rescheduled for the next week or another time. The petty officer who is the maintenance group supervisor reschedules all the circled items. He also fills in the column on "Outstanding repairs," in which he explains why some work was not or could not be completed. Possible reasons are lack of qualified men, shortage of repair parts, etc. At the end of each week he also updates the quarterly schedule by marking on it the jobs that were completed during the week, and circling those that were not completed. At the end of the quarter, the quarterly schedule is filed in the maintenance records. Your officer prepares the quarterly schedules from the cycle schedule and the Planned Maintenance Subsystem Manual, and you assist him. The schedules are posted (quarterly schedule and subsequent quarterly schedule); and unfinished jobs are transferred to the schedule for the subsequent quarter. The PO also supervises, assists, and teaches the men as they do the maintenance work; and he checks the completed work. Do not "gun deck," the records, and do not give your O.K. to unacceptable work.
The Ship Armament Inventory List (SAIL) is a reporting system which furnishes NAVORD and all commands concerned with a master armament configuration listing of installed shipboard nonexpandable ordnance equipment together with pertinent Ordnance Alterations (ORDALTS) status. SAIL is produced on data processing equipment and includes the ordnance equipment listed in the Ordnance Systems Patterns portion of Index of Alterations to Ordnance Equipment (ORDALT OO). The SAIL program supersedes the formerly used Ordnance Inventory/Ordalt Status Listing, which it greatly resembles.

Each ship has on board two copies of SAIL supplies by NAVORDSYSCOM. A sample copy of SAIL is shown in figure 11-1. Prior to a scheduled overhaul availability, this list should be reviewed and all changes in armament and ORDALT completion status that have taken place since the last printing of the listing should be annotated on one copy of the list. This corrected copy should be marked “PRIOR TO OVERHAUL REPORT” and submitted to reach NAVORDSYSCOM (ORD 041B3) on the first of that month 7 months prior to a scheduled yard overhaul. After submitting these corrections, NO corrections to the SAIL should be forwarded until completion of the yard availability. Complete instructions for correctly annotating SAIL can be found in NAVORD INST 8000.1.

SAIL Distribution.

a. The Naval Ordnance Systems Command normally will distribute copies of SAIL to:

- Naval Shipyard/SUPSHIPS/INDMAN (as appropriate)
- Ship/Station/Command
- ESO
- SPCC
- NAVWPNSERVO
- Type commander
- NAVPLANTREP
- NSMSES (SMS ships only)
- NUWRES (ASW ships only)

b. The SAILS distribution schedule will be as follows:

<table>
<thead>
<tr>
<th>EVENT</th>
<th>Date of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Conversion</td>
<td>12 months prior</td>
</tr>
<tr>
<td>Regular Overhaul (ROH)</td>
<td>6 months prior to commencement</td>
</tr>
<tr>
<td>Post Shakedown Availability</td>
<td>2 months after completion</td>
</tr>
<tr>
<td>Significant Change</td>
<td>2 months after receipt of report</td>
</tr>
</tbody>
</table>

Within 10 days following completion of shipyard overhaul, the ship shall annotate the SAIL to indicate all corrections, additions, and deletions, mark the report “OVERHAUL COMPLETION REPORT”, and forward one copy to NAVORDSYSCOM. Upon receipt of this verified and corrected copy, NAVORDSYSCOM processes the corrections, and a new revised SAIL is distributed as indicated above.

Any changes in reportable ordnance equipment installed aboard, or the accomplished of an ORDALT which takes place at times other than as specified above, should be reported when occurring using Ship Armament Inventory List (SAIL) Change Report, NAVORD Form 8000/2 figure 11-2. This report is required because NOSC NAVORDSYSTEM must have, at all times, an up-to-date listing of inventory and ORDALT status for each ship. No revised SAILS are produced, except as provided above, unless NAVORDSYSCOM considers that the changes are of such significance as to render the latest SAIL obsolete.

For purpose of current reference, ships and activities should keep their latest copy of SAIL marked up to date and destroy the previous one.

OAR PROGRAM

The ORDALT Accomplishment Requirement (OAR) is a list issued by NAVORDSYSCOM on NAVORD Form 8000/3 (figure 11-3) about 6
<table>
<thead>
<tr>
<th>CAN</th>
<th>SYS/EQ HONOMENCLATURE</th>
<th>CODE MARK</th>
<th>WDD</th>
<th>SERIAL P LOC</th>
<th>EIC</th>
<th>APL</th>
<th>LD/5K</th>
<th>Dig NO</th>
<th>FSN</th>
<th>ORDER DATA</th>
<th>COMPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>070</td>
<td>TELESCOPE</td>
<td>8185</td>
<td>100</td>
<td>1</td>
<td>51</td>
<td>G11K700 49401989</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>080</td>
<td></td>
</tr>
<tr>
<td>090</td>
<td>DYNAMIC TESTER</td>
<td>2595</td>
<td>2</td>
<td>3</td>
<td>54</td>
<td>G1R3000 49402520</td>
<td>232450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>ERROR RECORDER</td>
<td>3095</td>
<td>7</td>
<td>1</td>
<td>92</td>
<td>G1R000 49402010</td>
<td>LC41236A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>TEST SET</td>
<td>8195</td>
<td>346</td>
<td>3</td>
<td>147</td>
<td>494027117</td>
<td>02-01</td>
<td>2438177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>930</td>
<td></td>
<td>612</td>
<td>14</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>930</td>
<td></td>
</tr>
<tr>
<td>930</td>
<td></td>
</tr>
<tr>
<td>930</td>
<td></td>
</tr>
<tr>
<td>930</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>MISCELLANEOUS CONTROL</td>
<td>678</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>BEARING/RANGE INDICA</td>
<td>1645</td>
<td>7</td>
<td>4</td>
<td>165</td>
<td>JY41000 49402156</td>
<td>LC272560</td>
<td></td>
<td>02-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1020</td>
<td>DUMMY DIRECTOR</td>
<td>2585</td>
<td>3</td>
<td>8</td>
<td>132</td>
<td>JY41000 49402156</td>
<td>LC272560</td>
<td></td>
<td>02-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1030</td>
<td>ERROR RECORDER</td>
<td>3095</td>
<td>6</td>
<td>5</td>
<td>173</td>
<td>49400502</td>
<td>49400104</td>
<td>LC281226</td>
<td>02-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1040</td>
<td>INDICATOR PANEL</td>
<td>4925</td>
<td>5</td>
<td>29</td>
<td>653</td>
<td>49400502</td>
<td>49400104</td>
<td>LC281226</td>
<td>02-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td></td>
</tr>
</tbody>
</table>

TOTALS:
- **SYSTEMS:** 10
- **EQUIP:** 69
- **ORDALTS:** 125
- **COMPLETE:** 96
- **INCOMPLETE:** 29
- **ITEMS:** 204

Figure 11-1.—Ship Armament Inventory List (SAIL).
months prior to overhaul of a ship. It lists all outstanding ORDALTS for the ship is order of priority of accomplishment and shows the estimated man-hours for accomplishment of each ORDALT, and the total estimated cost for the ship. The ship receives one copy, which must be given a thorough review and a report then submitted within two weeks to NAVORD NAVSHIP the overhauling activity, and SPCC. This report must list all the ORDALTS completed after the “Prior to Overhaul” SAIL was submitted, all ORDALTS that should be on the OAR list but are not, all ORDALTS that are on the OAR list but are not applicable, and a list of all applicable ORDALT material on board. Upon receipt of this report, and appropriate offices will amend the OAR, requisition material, and plan to accomplish as much of the required ORDALT work as is possible within the limitations of time and available funds.

Further details on OAR can be found in NAVORD INST 8000.2 and 8000.6.

SHIPYARD AND TENDER AVAILABILITY

The preceding chapter described the weapon system CSMP. The petty officers of the division prepare and maintain the records so they are ready for the engineering department and the commanding officer when they prepare the work requests for the whole ship and submit them for review for yard or tender availability.

Within ten days after completion of overhaul, the shipyard, or overhauling activity, submits a report to NAVORD and NAVSHIP of the ORDALTS they have accomplished and the total cost. A revised SAIL, reflecting this report and the ship’s annotated SAIL “OVERHAUL COMPLETION REPORT”, is then issued by NAVORD and sent to the ship.
The records must be as complete and up to date as you can make them. If you forget to record an item that needs to be repaired at a navy yard, there won’t be another chance for 2 years or more. However, essential repairs, that is, repairs necessary for the safe and reliable operation of the ship to carry out her military mission, will be taken care of.

Work Requests

Each division must write up its work requests in time to be included in the ship’s repair or overhaul requests. The petty officers in each division are most familiar with the repair, alteration, and overhaul needs and therefore are the logical ones to prepare the requests. It may not be possible to include all your requests in the ship’s scheduled repair and overhaul time, or your request may be returned with the notation that you and your men should perform the work aboard ship.

OPNAV Form 4790/2K (Work Request Form) is used to request assistance to complete a maintenance action. Work requests are prepared from the information contained on the shipboard copy of a deferred action form which makes up the department CSMP. Procedures for preparing internal Work Requests are outlined in the 3-M Manual, OPNAV 43P2. Appropriate blocks on four sheets of form 4790/2K are filled in to record the need for outside assistance.

Table: OrdAlt Accomplishment Requirement (OAR), NAVORD Form 8000/3

<table>
<thead>
<tr>
<th>Item</th>
<th>Item No.</th>
<th>System</th>
<th>Nomenclature</th>
<th>Type</th>
<th>Unit</th>
<th>Approx.</th>
<th>מצוי</th>
<th>Type</th>
<th>Approx.</th>
<th>Man Hours</th>
<th>Ind.</th>
<th>Approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5233</td>
<td>Guided Missile Launching System</td>
<td>10 0-1</td>
<td>23 0-1</td>
<td>Dual-Action Interlock</td>
<td>100 0</td>
<td>10 0</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above is a part of the ORDALT Accomplishment Requirement (OAR) form, NAVORD Form 8000/3, which is used to track and report the accomplishment of administration and supply tasks.
Variations, however, from this standard number of copies may be required by certain repair activities. OPNAV Form 4790/2K is a single sheet, multipurpose form printed on NCR (no carbon required) paper. The 4790/2K is used to report certain completed maintenance actions, deferred maintenance actions and the requirement for maintenance assistance (Work Request). Form 4790/2K differs only in the required information appropriate for each type of maintenance action. Each maintenance action requires a different type of maintenance action code system to be recorded in data element block on form 4790/2K. Special instructions for documentation of 4790/2K are contained in 43P2. Three Maintenance Action blocks (Comp, Defer, Work Req) located in the upper right corner of 4790/2K, are used to designate the purpose of the form.

Supplemental Form 4790/2L

OPNAV Form 4790/2L provides a supplemental form for voluntary submission of maintenance-related comments, questions or information which cannot be accommodated by the 4790/2K. If drawings or sketches are required for a work request, form 4790/2L is used to record the required drawings and sketches and all other additional data about blueprints, technical manuals, plans, etc., required to accomplish the work request. When using 4790/2L for overflow information about a work request, be sure to check appropriate continuation sheet block and that the ship's job control number is the same as the one used on the work request form 4790/2K. Form 4790/2L is also used as a DMCS feedback form for voluntary submission of maintenance-related information. Voluntary submittal of maintainer's observations and remarks is encouraged. Those who are willing to take the time and trouble to document such information can provide valuable assistance to the commands responsible for more effective support of fleet equipment.

The information furnished on 4790/2L might assist technical, supply, or other support personnel in understanding or evaluating a maintenance problem related to a routine maintenance action. Such information may be submitted in the form of sketches, narrative comment above previous maintenance experiences, or about operational circumstances surrounding a required maintenance action or a previously reported equipment failure. Form 4790/2L is also used as a MDCS feedback form for reporting certain special maintenance data. The mandatory use of 4790/2L will be initiated only after review and approval of a special maintenance plan by the Chief of Naval Material. Form 4790/2L is fully described and discussed in the 3-M Manual 43P2.

Technical Assistance

Assistance for field services may be obtained when technical difficulties are beyond the repair capabilities of a ship. Certain field activities of the Navy have technical personnel assigned to them and some Service Forces have system engineering specialists assigned directly to Force Commanders. These engineers are specialists in particular equipments which makes their availability limited. Emergency request for technical assistance may be made by message or telephone to the nearest activity having a specialist but a written request for assistance must follow. Maintenance assistance received from MOTU, Tech Rep or NOSSO contact personnel or other activity which does not normally require documentation of maintenance actions will be documented on a single sheet of form 4790/2K and submitted as a work request. The document is originated by the requesting work center in accordance with procedures outlined in OPNAV 43P2.

The objective of NAVORDSYSCOM is to ensure that all ordnance units attain the maximum degree of self reliance in operation, utilization, and maintenance. Special assistance is provided to fleet personnel who serve these objectives by providing special assistance through different levels of maintenance assistance by Contact Service Engineers (Tech Rep), Mobile Technical Units (MOTUS) and Naval Ordnance System Support Office (NAVORDSYSUPPOS).

Contact Service Engineers are specially trained contractor engineers and technicians trained to handle specific equipments. These personnel are available on an "as required" basis either by special assignment to activities or service commands, or by a specific request to NAVORDSYSCOM. Special Ordnance and Type Com-
mander (TYCOM) instructions are issued periodically to cover these services.

Mobile Technical Units (MOTUs) are specifically selected and trained groups of military personnel assigned to and made available by Commander Service Force Pacific and his counterpart, Service Force Atlantic. These groups normally are made available for assistance in the maintenance of newly installed equipment, but may be called upon in an emergency. There are other forms of external assistance given to ships when requested, such as contractor representative personnel assigned by NOSSO for special projects.

Once the assistance has been rendered, or it has been found that the equipment cannot be repaired or deficiencies in its operation can not be eliminated without extensive work and time, a maintenance action report (4790/2K) is prepared and used by the ship as a reference to prepare job requests when the ship is assigned an upkeep or yard availability. Requests for technical assistance during regular overhaul to augment the technical capability of an activity will be specifically directed to NAVORDSYSUPPO Atlantic or Pacific in accordance with NAVORD INST 4350.4. In the event of an emergency request, the appropriate NAVORDSYSUPPO will be advised, by telephone or message, of the scope and nature of the request. Listed below are the major services provided by NOSSO organizations.

1. Liaison, single point of contact for ordnance
2. Fleet support engineering
3. Tech assists (MOTU Backup)
4. Pre-deployment reviews (PDR)
5. Configuration (Verifications and up date)
6. Special assist teams
 a. Technical (system and or equipment)
 b. Torpedo
 c. Logistics
 d. Test equipment
 e. Publications (tech data and documentation)
7. Ordnance technical training support
8. Tests and trails on new construction/modernized surface ships.

ASSISTANCE TEAMS

Navy Ship Missile System Engineering Station (NSMSES) provides a program of timely and competent assistance to the commanding officer of each guided missile ship in achievement of a stable level of weapon system operational readiness on a continuing basis. The Ship Qualification Trials (SQT) are conducted in order that surface missile/UNREP systems may be adequately checked out and proofed after completion of new construction, conversion, or overhaul and prior to overseas deployment. A Ships Qualification Assistance Team (SQAT) is provided by NSMSES to assist a ship's crew in achieving or demonstrating a set of program objectives for a given surface missile/UNREP system during a SQT period. A SQAT team will normally report to the ship's commanding officer after completion of fitting-out of new construction and upon completion of conversion/overhaul for other ships. The primary objective of SQAT is to demonstrate weapon system performance as operated and maintained by ship's personnel. Assistance is provided to each ship in direct support of this objective as follows:

(1) A test program to demonstrate, on a step-by-step basis, the operability and capability of the weapon system(s) in the at-sea environment and the competence of the ship's force to maintain and operate them.

(2) A team to assist and instruct the ship's force in the conduct of the test program. The conduct of system maintenance tests, including the Daily System Operability Test (DSOT), must conform to the PMS/SMS discipline.

(3) Training materials, documentation, logistic support and special technical assistance required in support of the test program.

During a SQT period the leading GMM of a system has the responsibility of following all of the training requirements provided by a SQAT team. He also helps in the identification of system problems and the collection of technical information required for corrective action. NSMESESINST 8820.1B lists the sequence of events for an orderly accomplishment of the
SQT program and indicates action responsibility for each event. The listed objectives of the SQT program may be varied as required to meet the constraints imposed by each ship's material, personnel, logistics, and operational situation.

Prior to a SQT period each GMM in charge of a missile launcher should look over the checklist contained in 8820.1B for the SQT program to ensure that all maintenance and training requirements have been accomplished. One of the maintenance management requirements for SQT is to ensure that each launcher has an updated MRC deck and if not, a Feedback Report (OPNAV 4790/7A) has been submitted. The SQT period for each ship is scheduled by the ship's operational commander and terminates upon satisfactory completion of a SQT program. A Modified Ships Qualification Trial (MSQT) or a SQT is conducted on a yearly basis and schedule arrangements are made between NSMSES and the operational commander prior to overseas deployment if no conversion or overhaul maintenance has been conducted within a yearly period.

FEEDBACK REPORT

The Planned Maintenance Subsystem (PMS) feedback report is utilized to submit recommended modifications and revisions to PMS documentation and to request certain additional or replacement software and hardware. In addition, PMS feedback form OPNAV 4790/7A may be used to suggest changes to technical manuals and to report or inquire about other matters in connection with PMS. This form provides a direct line of communication, via TYCOM, between the maintenance man and the Navy Material Command. When using this form, check the appropriate box in the discrepancy section and write out a description of the discrepancy, giving as much detail as possible. Instructions for making out the form are found in 3-M Manual, OPNAV 43P2.

RECORDS OF MATERIAL USAGE AND JOB DATA

In addition to the maintenance action information collected on the OPNAV Forms 4790/2K and 4790/2L, the MDCS requires certain specific information pertaining to the availability and usage of parts and material. This information is collected on two basic Supply System documents, NAVSUP Form 1250 and DD Form 1348, which are completed as appropriate for each maintenance action.

Accurate documentation of material usage and cost data on various maintenance transactions requires the joint effort of maintenance and supply personnel. The maintenance man will initiate documentation for transactions involving requests for material from supply, returning material to supply and reporting "usage only" for items obtained outside the normal supply channels. The Single Line Item Requisition System Document, DD Form 1348, will be used by ships having mechanical (automated) supply records or nonmechanized ships which use DD 1348 as an internal issue document. In nonmechanized ships the Single Line Item Consumption/Management Document, NAVSUP Form 1250 is used. These forms will be completed by supply department personnel from information provided by maintenance personnel either verbally or in skeletonized format on the applicable document.

Supply personnel are expected to assist maintenance personnel whenever difficult or unusual documentation problems arise. The same applies to issues of materials which do not directly involve a maintenance action (minor consumables) and are not reported in the MDC system. These forms are explained and illustrated in Military Requirements for PO 3&2, NAVTRA 10056.

SUPPLIES FOR MAINTENANCE AND REPAIR

The fact that there are supplies on your own ship and on tender/repair ships has been mentioned several times. Here we will give a rundown on the supply system, beginning with top agency.

RESPONSIBILITY OF THE GMM

You have dealt with supplies in one capacity or another since you first joined the Navy. As you advance in your rating, you will take a more
active part in assisting your division officer and the supply officer in estimating material needs and planning for replenishment. A review of the supply chapter in Military Requirements for Petty Officer 3 & 2, NAVTRA 10056 and study of the supply chapter in Military Requirements for Petty Officer 1 & C, NAVTRA 10057, should be helpful. A word of caution is in order here. The spread of automation in many phases of supply, the consolidation of all armed forces supply systems into one Defense Supply Agency (DSA), and cost reduction programs all work together to cause rapid changes in the supply system. Members of the supply department can help you keep abreast of the changes as they affect you. Navy Training Courses are revised every two or three years, but the supply system changes cannot wait that long; the supply department receives the directives on the changes as they occur.

SOURCES OF SUPPLY

The original source of supply is of course the manufacturer of the item, but you seldom have direct contact with the original source. Supplies are purchased in huge quantities and stockpiled at various locations where they will be more readily available to the ultimate users.

Defense Supply Agency (DSA)

The consolidation of supply and service functions between and among the military departments was begun several years ago. The DSA acts as the centralized policy making and monitoring agency sitting on top of the whole single manager concept. It has been assigned management and operational control of a number of defense supply agencies and centers. Supply agencies will be transferred to DSA as the consolidation is carried forward.

DSA publications and directives, under the overall policies of the Secretary of Defense, provide information and direction to all defense agencies that receive support from, or supply support to DSA. These publications include catalogs, stock lists, price lists, manuals, handbooks, and information bulletins. The numbering system, along with other information on these publications, is given in SECNAVIST 5215.13A.

Having one supply system for all defense agencies is expected to save the government many millions of dollars each year. As a taxpayer, that should interest you. As a PO you have a part in implementing the system. Learn enough about it so you can order supplies intelligently. Every incorrect or ambiguous order causes extra correspondence, incorrect shipments, aggravating delays, confusion, and annoyance; and it piles up costs. Even more important, repair of weapons and weapon components is delayed, which could be critical.

Ship’s Parts Control Center

The statement that all supply activities are consolidated under DSA does not mean that all supply depots except one are being abolished. Supplies must be located in a number of areas so they are available quickly. This is a matter of logistics. Logistics is the art of having what you need, where and when you need it. It is the function of the overall supply system which supports the using activity with the necessary equipment and parts.

The supply of ordnance material is coordinated through the Ship’s Parts Control Center (SPCC), Mechanicsburg, Pa. This office is operated under management control of NAVSUP. The Electronics Supply Office (ESO), Great Lakes, Illinois, is the inventory control point for electronic materials. SPCC and ESO are responsible for control inventories, procurement, and distribution. They also maintain records, catalogs (NAVORD lists), and stock levels, and regulate the flow of material throughout the Navy distribution system, but do not maintain stocks of repair parts and equipments. The limited application of guided missiles and related test and handling equipment does not justify the positioning of spare parts throughout the distributive system to the same extent as other ordnance material. For the same reason, range and depth of guided missile material has generally been restricted to cover specific program requirements.

At the present time, there has been no obligation established for “Not-carried” items, and such demands are to be forwarded to the Ship’s Parts Control Center, Mechanicsburg, Pa.
Inventory Control Points

NAVORD material cognizance assignments are reviewed each year and cognizance of standardized items is transferred to Inventory Control Points (ICPs) by the Stock Coordination Review Group. The Aviation Supply Office (ASO) has cognizance of "2V" material; the Electronics Supply Office (ESO) has control of electronics equipments for the Navy.

Guided Missile Material Responsibility

The Naval Ordnance Systems Command has primary responsibilities for guided missiles within the Navy. NAVSHIPS is responsible for jointly developing, with NAVORDSYSCOM, system installation design. In addition, NAVSHIPS is responsible for specific portions of the system. Naval Supply Systems Command (NAVSUPSYSCOM) and Naval Material Common (NAVMATCOM) obtain the materials and place them at the various supply depots, from which they may be obtained by the operating units.

Guided Missile Support Facilities

The Navy Ordnance Systems Command is establishing guided missile support facilities at various coastal and tidewater depots. These facilities are being provided with the necessary special test equipment and skilled personnel to assemble, check out, modify, maintain, and prepare for issue various NAVORDSYSCOM guided missile material, scheduled for service use. This material includes requirements for the U.S. Marine Corps, as well as for the fleet and naval air stations. In addition, these facilities will support ammunition type components such as warheads, fuzes, and rocket motors for Sparrow and Bullpup missiles. Guided missile facilities at depots, unlike conventional ammunition facilities, require considerable special-purpose electronic and hydraulic test equipment, and special tools and handling equipment. These guided missile support facilities are specially designed to maintain substantial numbers of specific types of guided missiles in a ready-for-issue condition or ship allowances, fleet training, and NAVORDSYSCOM evaluation. The facilities also have capabilities for off-loading fleet missile in conjunction with vessel shipyard overhauls, for accomplishing minor maintenance, and for performing ORDALTS on missiles in stock.

The primary distribution points for guided missile material in the ordnance segment of the Navy supply system are NSC Norfolk, Va., for all ordnance guided missile material on the East Coast, and OSD, NSC Oakland, Calif., for all ordnance guided missile material on the West Coast.

BUDGETING AND FUNDING

Each of the Services is responsible for its own budget estimates. They submit their estimates of their needs and these are reviewed jointly by the Bureau of the Budget and the Department of Defense. Each Service must be prepared to justify, with facts and figures, every item in its budget. The information on which budget estimates are based must be submitted by the using agencies of each Service.

Your Part in Budgeting and Funding

The paragraph above describes very sketchily the top level activities in budgeting and funding. Although you play no direct part in the budgeting and funding process, you do have a part at the ship's (or activity's) division level. The cost of operating your division is included in the final estimate. Economical use of materials can reduce costs a surprising amount; excellent care of material helps to keep expenses down. The budget has to include replacement costs of equipment. You are aware that careless use can ruin a piece of expensive electronic equipment in almost no time. Carelessness or ignorance can destroy in a flash a weapon costing many thousands of dollars, or even a million dollars. The cost must be covered by the budget allowances and is paid for by taxes, yours as well as others.

At each level of the organization, an estimate of the operating requirements is necessary. Your reports furnish the needed information to the division officer so he can estimate the needs of
his division. The assignment of weapon capabilities is made by high-level planning groups. You cannot guess what the requirements will be. But you can keep down the day-to-day operating costs in your division, and the sometimes startling costs of carelessness and ignorance in weapon handling, maintenance, etc.

COSAL AND WHAT IT MEANS

The Coordinated Shipboard Allowance List (COSAL) was explained and illustrated in your Military Requirements text, cited above. As a GMM in the Weapons Department the part of the COSAL that concerns your work is the section that lists the guided missile launching systems and the tools and repair parts allowed for their maintenance. The type and quantity of repair parts allotted a ship was determined by studies of requirements in the past. Each ship has a COSAL prepared just for it and the ship is stocked accordingly.

The parts of the COSAL prepared by Ship's Parts Control Center (SPCC) cover hull, mechanical, electrical, and ordnance equipment. The Electronics Supply Office (ESO) prepares the part on electronics equipment; Aviation Supply Office (ASO) deals with aviation equipment, and Naval Ship Engineering Center (NavShips) prepares the COSAL for portable communication, radio, and sonar equipment, and electronic and electric test equipment allowance.

The stock numbers given in COSAL listings are Federal Stock Numbers (FSNs). The Federal Supply Classification system and the numbering system were explained in Military Requirements for Petty Officer 3 & 2, NAVTRA 10056. Review it to refresh your memory.

The COSAL does not include ship's store stocks, resale clothing, bulk fuels, subsistence items, expendable ordnance, or repair parts for aircraft. These items are covered by separate outfitting and load lists.

Ordnance Segment of COSAL

The ordnance segment of the COSAL is an allowance list of ordnance equipments, equipment, and supporting repair parts and other materials, tailored to the individual ship. As each active ship with ordnance installations undergoes overhaul, it is supplied with a new ordnance segment of the COSAL. All active fleet, new construction, and major conversion ships with installed armament receive an ordnance segment of the COSAL. Only the items listed will be placed on board, in the quantity listed.

The ordnance section of the COSAL is made up of an introduction and three separate parts. The introduction is prepared by the Ship's Parts Control Center (SPCC) and gives complete information on the use of the COSAL. Study this introduction carefully before using the COSAL.

Allowance requirements for nuclear weapons, guided missiles, and certain FBM equipments are included in special supplements to the COSAL. The supplement consists of an index of all major training items, test and handling equipment, tools, and consumables within the nuclear weapons program; an Allowance Parts List (APL) of all authorized repair parts within the equivalent war reserve weapons or components and test equipment listed in the index (above); and a stock number sequence list of authorized onboard allowances for all equipments and repair parts listed. The supply department does not have cognizance over war reserve nuclear components; the weapons officer must take the responsibility for those. The tools, test equipment, etc., are obtained through the supply department.

The page numbers of the ordnance part of the COSAL are preceded by Z.

Sections A and B of the index cross-reference each other. Knowing how to use the index is an important part of knowing how to use the COSAL to locate an item. Practice is the best way to become familiar with using the index.

Records and Reports for COSAL

The COSAL does not generate any additional reports or records but simplifies your record keeping. It gives you the Federal Stock Number for most of the items you have to order, and saves much looking up of those numbers. It lists the items your ship is allotted, so you will not order something you may not have. For example, you might like to study the OPs for the Talos, but if your ship does not have Talos capabilities, the books will not be sent to you. When you need a repair part, the COSAL gives
you the correct stock number for ordering it, so you will get the correct part. It gives you the correct name for the part and tells where it is used, which gives you another method of checking that you are ordering the right part. If the supply department on the ship has it in stock, the COSAL also gives you that information.

The COSAL for each ship is prepared by the Inventory Control Point (ICP), which also stocks the ship with the listed equipments and repair parts, either at outfitting of a new or a converted ship or just before overhaul. Minor revisions to the COSAL are made as pen-and-ink changes on the ship's copy. More extensive revisions or additions are distributed as changes.

How to Order Supplies According to COSAL

Part I of the COSAL lists your equipment and its major components, and gives the component identification numbers (application code). The identification number acts as a page number for a more complete breakdown of the components in Part II.

Part II is the Allowance Parts List of repair parts needed to support the items in Part I. The Federal Stock Number for each item is given in Part II.

Part III of the COSAL is the final authorized on-board allowance quantity of a repair part. This part of the COSAL is of more use to the storekeeper than to you. It is here that the total allowance of parts which may be common not only to the ordnance section of the COSAL but other departments as well, are added together. That is, your section of the COSAL may permit you an allowance of three particular limit switches. The engineer's COSAL may show their allowance to be six of the same switches. Part III of the COSAL will show a total of nine of these switches, giving their applications.

Procurement of Material

Procurement is the act of getting or obtaining something. As a rule your supply officer will procure the material for you, provided you furnish him with the necessary information. The COSAL tells you what material is authorized. You must know what forms to use and the procedure for initiating procurement action.

Material may be procured by: (1) requisition, (2) purchase, (3) transfer, and (4) manufacture.

The requisition method is the one you will use most often. Use NAVSUP Form 1250 or DD 1348 to obtain your supplies and repair parts from the ship's storeroom. A supply of the forms is usually kept in the weapons office. While you are in the weapons office, check the COSAL to find out if the part you want is stocked, and copy the Federal Stock Number on the form. If it is customary on your ship to list the price, look it up and enter it on the form.

When you have filled in the information on supply form, take it to your department head for his signature, then take it to the storekeeper. The storekeeper will double-check your information, and if the item requested is in stock, he will issue it to you. He retains the form as authorization for the supply department to requisition the same item from supply ashore to bring the ship's allowance up to full condition again.

It is good practice to maintain a file in the weapons office of all material requisitioned from supply. Record the request or requisition numbers. These numbers are assigned by the supply department and entered on the supply form. The number is especially helpful when tracing a part that was requisitioned from an activity other than your ship, such as a shore activity. The requisition number is necessary to start a tracer through the supply system to locate your material if it is unnecessarily long in coming.

If you are unable to determine the Federal Stock Number of a repair part that you need, use NAVSUP Form 302 to requisition it, and give all the descriptive information that you can. This information will include nomenclature, identification taken from the nameplate, drawings, or any source that will help identify the item.

The 302 form is shown in PO 3/2 NAVTRA 10056.

When you have used a repair part that was stocked in your department, do not put off ordering a replacement for the part.

In-Exess Requisitions

Sometimes it is necessary to request material
above the quantity shown for the item on the COSAL. Your department must give reasons sufficient to justify the need in excess of the allowance and the supply department prepares the in-excess requisition.

In-excess requisitions are required for all of the following materials:

1. Equipage not on the ship's COSAL.
2. Equipage on the COSAL but requested in greater quantities than allowed.
4. Repair parts not listed with quantities on the ship's allowance, for which a requirement can be justified.

Approval of an in-excess requisition does not constitute a change of or addition to the COSAL. If replacement of the in-excess articles is required, additional approval is required.

Issuing Procedures

Procedures for issuing supplies vary on different ships. Approval by the man maintaining the Departmental Budget Record may be required on some ships. Clearance with the supply department is required before proceeding to the stockroom with the approved requisition form. Be sure that each man drawing material is instructed to check that each item is received in correct quantity and the price is listed correctly for the material actually received.

Disposition of Repair Items

In the basic repair cycle of the distribution system, all items fall within two general classifications. These classifications are “Expendable” and “Nonexpendable” items. The expendable items are disposed of in accordance with applicable current instructions. The nonexpendable items, which are classified by Material Control Codes G, H, Q (formerly “X” fraction code), on the allowance list are rated as repairable. The user returns them to the supply system when he requisitions replacements. Vessels operating outside the continental United States will normally off-load such failed components at the first opportunity. Once back in the supply system, these failed or damaged items are reported to SPCC as available for repair.

The primary distribution points have a list of items requiring fast repair. These items are returned to the contractor or a qualified repair center immediately upon being turned in. Repairable items not appearing on this list will be accumulated at the distribution point pending disposition instructions from SPCC.

STUDIES TO IMPROVE REPAIR SUPPLIES

The Planned Maintenance Subsystem is providing means to correct failings in the supply system for repair parts. Military Essentiality Coding (MEC) is a method of determining just what repair parts are likely to be required. Some equipments and components on shipboard are more essential than others for the performance of the ship’s mission. The failure of a search radar, for example, is more serious than the failure of laundry equipment (in relation to the ship’s mission). MEC assigns code numbers that indicate the criticality of the equipment. Computerized analysis of all reports reveals how essential each repair part is, how many parts will be needed in stock, and other data on supply. Study is continuing on MEC to summarize data from reports and thus reveal actual needs for repair parts and avoid overstocking or understocking. You can help in this program by supplying information regarding items needed or not needed.

The MEC on the Allowance Parts List (APL) and on the Stock Number Sequence List (SNSL) uses codes 1 and 3. Code 1 is given to parts whose failure would have a major effect on the dependence/operation of the component. Code 3 is assigned to parts whose failure would have little effect on the dependence/operation of the component.

The MEC is given in the COSAL Index as V—Vital, or NV—Nonvital. Equipment is classed as V if its failure could reduce the ship’s capability to perform its mission. If the ship’s mission would not be adversely affected, the equipment is classed as NV.
SOURCES OF ORDNANCE IDENTIFICATION

In addition to the COSAL, there are several other places to search when trying to identify an item (which may be an old model not given in new lists, or for other reason is difficult to identify exactly).

One of the most important sources of identification is the information on nameplates. This may include the manufacturer’s name, make or model number, size, voltage, and the like. Identification publications such as manufacturers’ technical manuals may help you in identifying an item.

The 2-digit cognizance symbol that precedes the Federal Stock Number indicates the command, agency, or office that has control over the supply and distribution of the material. Two-digit dual cognizance symbols replace the former one-letter symbols used.

Cognizance symbols are assigned to different groups of material. Cognizance symbol “2J” material includes, among other things, guided missile launchers (less airborne), torpedo launchers, rocket launchers, selected fire control and optical equipments under the design control of NAVORDSYSCOM, and other major ordnance equipment.

Cognizance symbols “2T”, “4T”, and “8T” are expendable ordnance and include missiles; signals, underwater sound; related inert and explosive components, and selected support or test equipments for the above items. Torpedoes; mines, and underwater ordnance are “6T”.

The condition of ordnance material is also designated by code letters which are used in stock recording and reporting procedure for the ammunition segment of the ordnance supply system. A numeric code was formerly used. The changeover calls for the use of a new Ammunition Class X, new alphabetic condition codes, and MILSTRIP routing identifiers to be used in place of station reporting numbers (e.g., N35 for SPCC, N24 for 4T NAVORDSYSCOM, etc.). The new designation Ammunition Class W identifies items for which end action disposal has been authorized.

Illustrated Parts Breakdown of Ordnance Equipment (IPB) is a publication prepared by SPCC. Each IPB is published for one particular type or piece of equipment, and describes and illustrates the relationship of all assemblies and parts comprising the equipment. IPB 0000 is an index of all IPBs.

NMDL

The Navy Management Data List (NMDL) provides information necessary for good management of the item. It is not practical to include such items as price, unit of issue, and cognizance symbol in the Federal Supply Catalog or in the COSAL since these items are subject to frequent change. Therefore, these items, along with other information, are listed in the NMDL. Basically, you will use this publication to determine the price, unit of issue, cognizance symbol, and material control code (if applicable) for FSNs you have located in the COSAL. All Navy-interest FSNs are listed in the NMDL.

You will continue to use the SPCC Ammunition Index of Navy Ammunition, Navy Stock List of Forms and Publications, and certain ICP specialized supplements.

The NMDL is expected to eliminate a great deal of searching for correct stock numbers to identify items, and to simplify requisitioning. It will extend the utility of the COSAL by providing updated stock numbers and reference numbers.

Other Supply References

General purpose items are described and illustrated in the Illustrated Shipboard Shopping Guide (ISSG).

Part numbers are cross-referenced in the Master Cross-Reference List (MCRL). Another publication that is frequently used with the MCRL is the Federal Supply Code for Manufacturers. It consists of two volumes and lists all commercial firms manufacturing material for DOD. Each manufacturer is identified by a 5-digit number. One volume lists the manufacturers in alphabetic order and identifies them to the code number. The other volume is a numerical listing by code number, and identifies the manufacturer. Frequently, different parts manufactured by different manufacturers will be identified by the same part number. When this
occurs, the FSCM helps you identify and obtain the correct part. If you have any question on supply, the answer can probably be found in the NAVSUP Manual, and someone in the supply department will know about it or can find it.

Ordering Publications

Cognizance symbol “I” designates printed material such as standardized forms, handbooks, instructions, and training publications. They are listed in NAVSUP Publication 2002, “Navy Stock List of Formers and Publications, Cognizance Symbol I.” The initial commissioning allowance is sent without requisitioning. Other recommended publications, classified as Category II, may be requisitioned from Forms & Publications Stock Point, U.S. Naval Supply Center, Norfolk, Virginia, or Oakland, California.

Except where indicated otherwise, order OPs and changes from the Naval Supply Depot, Philadelphia, Pa. Use a MILSTRIP form. Changes are automatically supplied, but if you are missing any, write, “include changes 1, 2, and 3” in the “Remarks” section of MILSTRIP on which you order the OP by stock number.

Whoever is appointed the publications custodian has the responsibility for ordering publications that are needed and keeping changes inserted. He also is responsible for the security of the publications.

HOW TO PREPARE REQUISITIONS

The uses of NAVSUP Form 1250 and NAVSUP Form 302 were discussed earlier, and you have studied about them in Military Requirements for Petty Officer 3 & 2, NAVTRA 10056. These forms are used for procuring items from the supply department aboard ship. The use of data processing equipment has brought into use the requisitioning procedure called MILSTRIP.

Military Standard Requisitioning and Issue Procedures

MILSTRIP is a procedure used to requisition all items of general stores and repair parts. It uses codes for a large part of the information on the card form. MILSTRIP has been extended to include all items of supply except supplies specifically excluded.

NAVSTRIP was an interim method used by the Navy during the development of the MILSTRIP procedures. The same form DD Form 1348, was used. This may be a single-page form, or 4-part, or 6-part form. Supply personnel usually complete the forms but you need to give the information for the parts to be requisitioned. Your military requirements texts discuss the use of the form in connection with supply and with the 3-M system.

PRIORITY SYSTEM

The Uniform Material Movement and Issue Priority System (UMMIPS) forms an integral and essential part of supply support functions by providing a common basis for determining the relative importance of material movement and issue transactions. Priority designators are from 01 (highest) for the most important through 15 (lowest) for the least important. Figure 11-4 shows the two elements that are required to assign a priority designator to any request. The first of these elements is the force/activity designator (F/AD). An F/AD is assigned to each ship by higher authority (normally by or via TYCOM). Its purpose is to rate the ship according to its military or mission importance. The second element, Urgency of Need Designator (UND) is explained on figure 11-4.

When you are requisitioning material, you merely tell the supply officer when you need the material. The supply officer will then assign a tentative priority code. When the assigned priorities are 01 through 03, the commanding officer must personally review the requisition. All other priorities may be reviewed by someone assigned in writing by the commanding officer.

WEAPONS DEPARTMENT REPORTS

OPNAVINST 5214.1C contains a consolidated list of required recurring reports from operating forces of the Navy, to Navy headquarters organizations. These reports are made by ship’s department heads via commanding officers from information received from petty
Priority Designators and Standard Delivery Dates

<table>
<thead>
<tr>
<th>Urgency of need designator (condensed description)</th>
<th>Force/activity designator</th>
<th>Supply Activity Processing Time</th>
<th>PLUS Standard delivery time for delivery to:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Designator A</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>Emergency material requirements for primary weapons and equipment for immediate use without which the force/activity concerned is unable to perform its mission, To eliminate a work stoppage at intermediate maintenance activities on primary weapons or equipment of customers.</td>
<td>3 days</td>
<td>4 days</td>
<td>4 days</td>
<td>4 days</td>
</tr>
<tr>
<td>Designator B</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>Immediate material requirements for immediate use or for known requirements in the immediate future, the lack of which impairs the operational capability of the force/activity concerned, Preclude anticipated work stoppage on mission essential equipment, Replace allowance list material required to support mission essential equipment.</td>
<td>4 days</td>
<td>4 days</td>
<td>4 days</td>
<td>4 days</td>
</tr>
<tr>
<td>Designator C</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>Material requirements to meet scheduled deployments. Material needed to repair/replace administrative or collateral equipment or systems not immediately essential to operational mission, Material required for scheduled maintenance or material required for routine stock replenishment.</td>
<td>13 days</td>
<td>38 days</td>
<td>43 days</td>
<td>53 days</td>
</tr>
</tbody>
</table>

Standard Delivery Date is obtained by adding the supply activity processing time AND standard delivery time to the requisition date.

Figure 11-4.—Priority Designators and Standard Delivery Dates.

officers of different divisions of a ship. The information necessary for these reports comes from equipment logs, missile logs, supply records and the ship's CSMP. An example of a required report is the SMS Firing Report which is submitted after each test firing of guided missiles against surface or air targets. A firing report is sent within four working days following the firing to U.S. Navy Fleet Missile Systems Analysis and Evaluation Group (FMSAEG), Corona, California.

Missile Firing Report

For each surface-launched missile firing-test, ships have been required to prepare a one-page firing report NAVORD form 8821/8. To collect data for the form, most ships have devised observer data sheets. Since similar data are contained in both the firing report and data sheets, a new report form is now provided which combines the two into one report. Report symbols assigned to the reporting requirements are NAVORD 8810-6, Surface-Launched Missile Firing Reports and NAVORD 8810, Electromagnetic Interference (EMI) Report. The data required on firing reports are of extreme importance to the Naval Ordnance System Command Headquarters (NAVORD), and the information provided by the Fleet will be under constant review to ensure that the maximum degree of missile system performance is achieved. To be
successful in this endeavor, the reporting and evaluating of data must be a joint effort. The information supplied to a department head by leading petty officers must be accurate and up-to-date. The firing reports which may be filled in by hand consist of three separate forms, depending upon the type missile fired. The Talos system used form 8810/6A, the Point Defense system uses form 8810/6B and the Terrier/Tartar/Standard systems use form 8810/6C. All data indicating performance of the weapon system during the missile firing, including film, magnetic tapes, paper records, operations recorder, target plots, and logs for the expended missile and their components are sent with the missile firing reports. Instructions for completion of forms 8810/6 are contained in NAVORDINST 8810.7. Weapons exercises, conducted aboard ship for training purposes, checking out the weapons system, and qualifying and grading the ship and an operating unit, are described in FXP-3 series (Ship Exercises). When your ship is preparing to engage in firing exercises, make yourself familiar with the plan and your place in it. Team work and cooperation are essential to successful performance in firing exercises.

Commanding Officer's Narrative Report (CONAR)

Despite the large amounts of statistical data accumulated from the MDC system, there remains a vital need for the comprehensive assessment of the surface missile systems and associated equipment as an integrated part of a ship's defense capability. The Commanding Officer's Narrative Report provides an opportunity to comment on the missile system as a whole, and to make such recommendations as desired for improved operation of the system. Problems of quality control or poor design of parts, suggestions for better utilization of equipment or manpower, and changes in test design should be reported routinely on the PMS feedback report, OPNAV 4790/7A, or, if desired, in a Narrative Report. To the extent that this report is used to define problems, it is an "exception" report intended to uncover problems of more than a routine nature. It may be used to evaluate, compare, or to simply report problems encountered. The CO Narrative Report is submitted to Naval Ships Missile System Engineering Station (NAVSHIPMISYSENGSTA) within 15 working days after each calendar quarter. A guide for preparing the CONAR report is contained in NAVORDINST 8810.5.

A CO Narrative Report is divided into sections covering equipment which effect a guided missile or a SMS weapon system operational capability. A section of this report is used to facilitate the exchange of information among missile systems which may have the same or similar problems. This section can be used by missile launcher system personnel as a reference to solve a maintenance problem. Each problem area of a missile system is divided into separate sections which explain the casualty, the findings, the remedy, and the probably cause. Since most types of missile weapon systems installed aboard a particular class of ship are physically and the functionally the same, the remedy of a casualty of one ship could also be the remedy of a casualty of a ship in the same class. For this reason all inputs related to casualties and maintenance problems for a given launcher system should originate from a missile launcher system petty officer whose knowledge and personal judgement are essential for improving and maintaining surface missile launching systems.

Upon receipt of a CONAR, the missile system engineering station takes the following actions:

1. Distributes copies of CONAR to prescribed NAVORD activities.
2. Enters in-service engineering problems into the Deficiency Corrective Action Program (DCAP) system in accordance with SMSINST 8810.1A.
3. Reviews those areas of responsibility of the CONAR and provide a CONAR reply wherein those problems, other than in-service engineering problems, are discussed, indicating action intended, when appropriate. Problems relating to personnel are referred to the Bureau of Naval Personnel for possible comment.

DCAP

The DCAP is the vehicle for monitoring and controlling the actions necessary to respond to
feedback information received from fleet and shore activities. All data elements and information reported via the formalized 3-M reporting system and by CONAR from all sources are processed to establish the in-service engineering responsibilities and authority necessary to solve and correct a problem. The CONAR provides the primary periodic feedback channel for all SMS problems and deficiencies. Acknowledgment of all reported problems and deficiencies is vital to the success of the CONAR and will be continued; however, DCAP reporting will be restricted to progress on in-service engineering problems only. The DCAP system will:

1. Provide one central clearing house for SMS in-service engineering problems and establish communication channels for the expeditious flow of problem information.

2. Provide continually updated information on the status of in-service engineering problems and provide follow-up action. Problems will not be terminated until the final solution has been accomplished in all affected ships or stations, incorporated into production as required, and all technical data and records have been made.

3. Inform all levels of management, through a series of reports, of all SMS in-service engineering problems, actions planned or underway, and interim or final solutions. An in-service engineering problem is concerned with all engineering actions that are required to ensure the SMS equipments continue to be suitable for their intended service use. In-service engineering does not include within its scope actions which would significantly alter specified operational or performance characteristics, which would alter the configuration or interface requirements, or which would compromise the reliability or safety of SMS equipments.

GUIDED MISSILE SERVICE RECORD

Once a missile had been received at the firing activity, all tests and work done on the missile (a complete history of the missile) must be conscientiously recorded on the Guided Missile Service Record (GMSR), NAVORD Form 8800/2 (NAVORDINST 8800.1). It is not used to report missile equipment failures. Missile test results are reported on this form.

This record is usually prepared in triplicate by printing with a ballpoint pen. This eliminates the need for transcribing to other forms. All servicing operations as well as the results of periodic and preflight tests, including firing of guided missiles, are recorded on this form.

The original is submitted monthly to Naval Fleet Missile Systems Analysis and Evaluation Group, Corona, California. The first copy is placed in the missile log and the second copy is placed in a file aboard ship for future reference. The second copy is retained aboard ship even after the missile has been fired and the missile log sent to Corona. No report is required for periods when no servicing to testing was done.

The information on the GMSR is coded and automatically processed after it is received at Corona, and the results summarized. The summaries may be used in connection with factory acceptance and rework information, waivers and deviations, quality evaluation laboratory data, and flight performance data to:

1. Predict potential failures.
2. Identify factors adversely affecting reliability and serviceability.
3. Determine the quality level of guided missiles in stockpile.
4. Recommend to the Naval Ordnance Systems Command:
 a. Improvement in the design or production and quality control procedures for guided missiles.
 b. Appropriate action to correct material defects, dispose of defective material, and revise handling, storing, servicing, and firing procedures.

The importance of the GMSR and its numerous uses makes completeness and accuracy of reporting essential. Whether you or POs of another rating will have prime responsibility for the report depends on the local situation.

In Terrier systems which have ASROC capabilities, an additional log is used for identification and transactions of ASROC weapons. NAVORD form 8540/3 is used to record all information about ASROC weapons and includes mark, modification and serial numbers, and ammunition lot numbers (if required) for each component that makes up an assembled...
weapon. Each ASROC is identified by an assembly identification number (AIN) for either a Rocket Thrown Torpedo (RTT) or Depth Charge (RTDC). When a missile is expended by firing, the log is sent to NWS, Seal Beach, California.

SMS EQUIPMENT STATUS LOG

All ships of the operating fleets equipped with surface missile systems shall complete the original and one copy of the Nonexpendable SMS Equipment Status Log, NAVORD Form 8810/2, figure 11-5, for each equipment listed in NAVORDINST 8810.3B. The originals of each week's data shall be forwarded within seven working days after completion to NWS, Seal Beach, Corona, California. The log may be filled in by hand. The yellow copy of 8810/2 will be retained by the ship as its equipment rough log; no other log is required. The information recorded on 8810/2 shall not repeat any maintenance action details that are normally reported on maintenance action forms 4790/2K. Use as many 8810/2 forms as necessary to record all information for a seven-day period. Continue entries for the next day on the same sheet if space is available. Make at least one entry at the beginning of every day. This entry should show at least the date, time, and code in appropriate columns (fig. 11-5). A final daily entry should show at least the date, time, status code, and signature of the person completing the form. Procedures for completing 8810/2 are explained in NAVORDINST 8810.2A. The security classification of 8810/2 when filled in will depend upon the content in the Remarks section. If there are no classified remarks, then the form is unclassified and does not need to be marked. Examples of entries which may or may not classify 8810/2 are:

a. Statement that a missile was fired is unclassified.
b. Statement of a missile firing with results of firing is Confidential
c. Specific missile frequencies are Secret.
d. Routine operations of the equipment, such as DSOTs, tracking operations, loading operations, or system testing are unclassified.

For the appropriate downgrading statement when 8810/2 is classified, see Navy Security Manual 5510.1C.

NUCLEAR REPORTS AND INSPECTIONS

All nuclear material is subject to the control of Defense Nuclear Agency (DNA). Personnel assigned to work with nuclear weapons must receive special training in the handling, stowage, and accounting methods peculiar to nuclear weapons. Prior to such training they must possess at least a Secret clearance based on a background investigation. If you work in a GMLS that has nuclear weapons, a series of special publications is issued by the Joint Atomic Weapon Publications System and are used as reference publications for maintenance, tests, storage requirements, and identifications of all nuclear weapons used by all services. In addition a series of Navy Special Weapons Ordnance Publications (SWOPs) for Navy nuclear weapons and their related equipments for each type nuclear weapon used with shipboard GMLS is also issued. The SWOPs take precedence over all other technical publications where conflicting information is present. Since all the procedures in SWOPs are mandatory, it is important that all shipboard activities expedite the processing and routing of message/speed-letter changes, interim and permanent changes to SWOPs to ensure prompt updating of affected publications. Each type of nuclear weapon and its related components and their test equipments are assigned a separate publication number series applicable to the Navy's Nuclear Weapon Program. For example SWOP 30.19 series is applicable to Talos and SWOP 45.21 series is applicable to Terrier. The requirements for the SWOP documents are determined by the individual commands in accordance with their nuclear weapons capabilities. An Index to Joint Atomic Weapons Publications used for multiple service purposes is listed in SWOP 0-1; a Navy supplement SWOP 0-1B lists all publications applicable for Navy use only.

Chapter 8 of this text mentioned some of the reports required for nuclear material. All nuclear weapons, handling equipments, and record and reports are subject to special inspection in accordance with OPNAVINST 05040.6 (series).
The type of inspection required for any activity having nuclear capabilities depends upon the type installation and type weapons.

Navy Technical Proficiency Inspection (NTPI)

This inspection is performed once a year by Navy inspectors. The inspection teams are sent aboard ship from Nuclear Weapons Training Centers. Instructions are issued by fleet commanders; these differ for east and west coast fleets. The NTPI determines the capabilities of the Navy activities for storing, testing, assembling, maintaining, handling, and loading nuclear weapons or nuclear missiles. When the NTPI team is to come aboard, obtain the current instruction and study it so you will know what is expected of you and your men.

Inspectors are provided from the Nuclear
Weapons Training Centers, Atlantic or Pacific, by the appropriate fleet training commands for all fleet inspections. The inspectors are usually officers and chiefs who are skilled in nuclear weapons handling. When practicable, NTPIs of fleet units are conducted in conjunction with, and as part of, operational readiness inspections (ORI) or other major readiness exercises.

NTPIs are graded in accordance with applicable directives of fleet commanders in chief and NAVORD/NAVCOM. Inspection reports are made in accordance with applicable directives of fleet commanders and NAVORD and include all the inspector’s comments, recommendations and discrepancies noted. They are appended to the chief inspector’s report.

NTPI Guides

With the vast numbers of different nuclear capable units operating in the fleet today and their many levels of responsibilities, it is apparent that some sort of guide should be made available delineating the items that are to be inspected. Therefore, a guide for each of the many different types of activities is published and used in the conducting of inspections. The action required for items listed in the guide is governed by the requirements of the governing directives (SWOPs, OPs, Inst, etc.), in force at the time of the inspection, rather than the working or apparent intent of the item. Although the guide is comprehensive, inspections are not limited to only those items listed in the guide. This is particularly true for items concerning new requirements not in existence at the time the guide was published. Consult your NTPI guide often to make sure you have not overlooked any items. Although the scope of coverage of an NTPI differs for almost every activity, all matters directly related to the processing, handling, testing, inspecting, maintaining and storing of nuclear weapons, and all matters and procedures involved in the administration of a nuclear unit are included in every NTPI. Following are some of the items checked by an NTPI.

Housekeeping—Is the area clean, free from tripping or slipping hazards; the lighting sufficient, the noise level low, fire equipment inspected and maintained periodically, first aid and decontamination facilities properly identified and readily available?

Safety Precautions—Are they posted and are personnel familiar with them?

Emergency Equipment—Is it readily available, properly stowed, and in good condition?

Check Sheets—Are they up to date and do they include all manual changes and contain all applicable notes, cautions, and warnings?

Tool Safety and Discipline—Are all tools clean, in good condition, and used properly?

Two-Man Rule—Is the two-man rule enforced, with personnel who are equally knowledgeable with respect to the task being performed?

Use of Toxic and Hazardous Liquids or Materials—Are containers labeled properly for identification? Are they stowed properly?

Test and Handling Equipment—Records and labeling are checked for proper calibration, maintenance, and repair.

Is the personnel reliability program being implemented? Are the records of such personnel maintained properly and are medical and supervisory personnel provided observation of such personnel?

Is the intrusion alarm system being operated and maintained in accordance with existing instructions?

Local Instructions of the activity being inspected are carefully read and checked for current information and accuracy. Are personnel aware of them and are they being adhered to? Many discrepancies are noted in this area when these instructions are not reviewed and updated periodically.

Are Navy SWOPs, OPs, and ODs, maintained up to date in accordance with current allowance lists? Are subcustody procedures in effect sufficient to allow a rapid complete inventory?

Is the emergency destruction bill current and are personnel assignments reviewed to insure accuracy? Is the emergency recall bill exercised periodically?

Are personnel allowances adequate in view of the responsibilities and workload imposed?

Does the pass and badge system comply with current directives?

Are reports properly submitted?

Accident/Incident Drills—Are performed by the inspected organization and observed by the NTPI team. Accident/incident drills demonstrate initial procedures performed by local station personnel with the aid of the local EOD team, if
one is available. These drills are designed to check:

- Medical, fire fighting, guard force, and EOD procedures.
- On-scene survivors and on-scene commander's procedures.
- Hot line procedures.
- EOD equipment

Completion Inspection Report

At the completion of the NTPI, a rough draft report is prepared. A copy of this report is given to the activity and a critique is conducted. All discrepancies and comments are read to the technicians and supervisors and they are given an opportunity to dispute them. The final smooth report is issued about 2 weeks later, after a thorough check for accuracy and veracity. This report is submitted to the appropriate activities in the chain of command.

Upon completion of the inspection, the Commander, Naval Ordnance Systems Command makes a report directly to the Chief of Naval Operations, with a copy to the Fleet Commander in Chief, certifying the readiness of the facility. This report contains the following information:

- A statement that all safety (nuclear and explosive) technical and security criteria have been met, or a statement listing the deviations from those criteria with the justification for waiver;
- A statement as to whether the facility is ready to perform its assigned mission.

NUCLEAR WEAPONS ACCEPTANCE INSPECTION

A nuclear weapons acceptance inspection (NWAI) is conducted on all prospective Navy nuclear weapons activities by Navy inspectors. This inspection determines the readiness of the activity to perform technical, administrative, and logistical procedures directly related to their nuclear weapons capabilities. This could be a newly constructed ship, a ship just recently operational after an extended yard period during which a large number of personnel were transferred, or a newly constructed shore site.

Each activity is inspected for each of its capabilities and must receive a grade of satisfactory before it is considered operational for any capability. A regularly scheduled NTPI can serve as a NWAI for an operational activity achieving a new capability in addition to those it already holds.

TECHNICAL STANDARDIZATION INSPECTION (TSI)

This inspection is performed by personnel from Field Command, Defense Nuclear Agency (DNA). The schedule of inspections is published, so you will be aware of the approximate date when your activity will be inspected. During the TSI, you and your men will be expected to assemble a nuclear warhead into a missile under the observance of the inspection team. In addition to judging your capability in the handling and care of missiles with nuclear warheads, all the records, reports, publications, training programs, and team organizations will be inspected. As a guide to the inspectors, DNA Technical Letter 25-1 lists the points to be inspected. This list can also be a valuable guide to you for checking yourself and for training your men.

The TSI also determines the status of maintenance of your nuclear missiles.

PERSONNEL REPORTS

As you advance in your rating, your responsibilities increase not only in care and operation of equipment, but toward personnel of your group. Many of these responsibilities are defined in Military requirements for Petty Officer 1 & C, NAVPERS 10057. Group and individual training records, drill records; and records of instruction are described and illustrated. All these are records that you must keep when you are placed in charge of men. Their chances for advancement could hinge on the accuracy and completeness of your reports and records. Do not fail to enter on the record every test or qualification passed by a man. The best way to be sure it is done is to make the entry at the time, not later, "when you have more time." It is too easy to forget things that are put off. Also, do not give a man a passing mark if he does not actually qualify. The lives of many men may depend on the knowledge and skill of one; require your men to KNOW their jobs.
Personnel Injuries

Any time a man sustains a personal injury, a report must be made. The medical department prepares the medical report, but the weapons department must explain the circumstances that caused the injury. If a casualty is caused by an explosive accident or incident, it is reported according to the message format given in NAVORDINST 8025.1 shown in figure 11-6. The same format is used for reporting explosive accidents and incidents without personnel casualties. The messages may be supplemented with written descriptions, photographs, diagrams, etc. The purpose is to determine by what means the accident could have been avoided and to issue instructions to correct the conditions that caused the accident or incident. In item 9 (fig. 11-6), note the attention given to electromagnetic radiation. Analysis of reports supplied much of the information included in OP 3565, Technical Manual Radio Frequency Hazards to Ordnance, Personnel, and Fuel.

Supervisor’s Report of Injury, NAVEXOS Form 180, is an administrative report about any type of injury sustained by military personnel. The information given on these reports is analyzed by the Coordinator of Safety Programs to discover the causes and frequency of different types of accidents.

SECURITY

Commanding officers are responsible for establishing security orientation, education, and training programs for all personnel assigned. OPNAVINST 5510.1 (series) provided the necessary minimum requirements for implementing these programs.

The central aim of the security education program is to make all personnel “security-minded”. To achieve this, a continuing training program must be in use at all levels of the command, with emphasis by the senior petty officers to their subordinates.

Effective security also requires that the handling, accountability, procurement, stowage and transmission of classified records, reports, and publications be managed in an efficient manner. Good classification management practices are important in obtaining effective security control. If security needs are to be met, constant attention must be given to the way in which classified material is handled. With confidential and secret publications and material in daily use in a GML system, the responsibility for safeguarding classified material lies with each person who handles the material. In addition to this general responsibility each leading petty officer should establish organizational responsibilities for the control of classified material. A simple effective control system can provide a readily available accurate accounting system for classified documents. A guide for handling and control of classified material is OPNAVINST 5510.49 (series).

A petty officer can be designated as the custodian of classified publications within a missile system. His duties would be to keep a record of all classified publications assigned to that missile system so that every copy of each classified publication is accounted for without fail. The accounting procedures can be kept simple by eliminating unnecessary procedures so that the custodian can concentrate on the essential aspects of the accounting process at all stages in the handling of classified publications. In a missile system handling a very small quantity of classified material, you may find that a card or log book system is sufficient for effective control procedures.

With a card or log book system of accounting, each piece of classified material to be controlled is recorded on a card or log book. When a publication is issued, the person receiving the item should sign for it and, when returned, the custodian should record the date the item was returned and sign the control accounting form (card or log book) which is retained and used as an inventory file for classified material. When material is checked out for study purposes, a time limit should be set so that an up-to-date inventory can be maintained; this prevents a wild scramble when an inventory report is required for an inspection. Material used for study purposes are sometimes passed from one person to another without concern for safeguarding. A quarterly verification of a custodian’s records, made by a leading petty officer, will assist the custodian by giving adequate attention to the essential aspects of control. Security-mindedness
MESSAGE FORMAT

From: (Activity Submitting Report)

To: COMNAVORDSYSCOM

SPCC Mechanicsburg

Info: CNO (Include CNO and designate OP-98 and OP-41D in message text for all accidents, incidents and malfunctions other than minor malfunctions)

NAVORDSYSUPPOLANT/PAC (As appropriate on all ORD Items)

NAVSAFECEN NORVA

CHAIN OF COMMAND (As appropriate - include service force cdr)

COMNAVAIRSYSCOM (On accidents, incidents involving NAVAIR Items at non-aviation activities)

Appropriate Information Addresses from enclosure (2)

Report, (Report Symbol NAVMAT 8020-2) (Insert Explosive Accident, Explosive Incident, Ordnance Malfunction, or Defective Ordnance, as appropriate, on subject line).

1. Complete Nomenclature of item including MK and Mod and Logistic (DOD) Code or Federal Stock Number.

2. Complete Round Lot Number or serial No. (Include lot numbers of major components, i.e., fuze, powder charge, motor, etc., as applicable).

3. Description of occurrence including date, time, and place of the occurrence, launching or firing equipment and conditions of firing, launching, etc.

4. Number and extent of casualties (Specify military, civilian, contractor or other).

5. Descriptions of damage to equipment or property (Government or private).

6. Number involved out of total fired or being processed during the run, exercise or batch.

7. Weight of explosive involved - actual or estimated.

8. Number of rounds remaining on hand from the lot involved (Include whether malfunctioned round or remaining fragments are available).

9. Describe any exposure to climatic or electromagnetic environmental conditions, if applicable.

10. Comments, as appropriate, (Include cause, known or probable, effect on launcher or gun capability, adequacy of operating instructions and safety precautions, local action being taken to preclude recurrence, request for assistance, recommendations, etc.)

11. Statement whether or not investigation will be conducted in accordance with the JAG Manual.

Figure 11-6.—Message format.
by leading petty officers is impressed upon all personnel when constant attention is given to the way classified material is handled.

Security Orientation, Education, and Training Program

The security orientation, education, and training program of each GML system must include all personnel entrusted with classified information regardless of their position, rank, or grade. Persons being assigned to duties requiring access to classified information, prior to being granted access, must be indoctrinated on the security aspects and responsibilities of their assignment. A security training program should be designed to include the following:

1. Familiarize all personnel with the security requirements with which they have to comply for proper performance of their duties and assignments.

2. Remind all personnel of their responsibility for assuring that classified information is effectively safeguarded at all times.

3. Ensure willing, conscientious compliance with security regulations, procedures, and practices.

4. Advise all personnel of the hazards of disclosure of classified information to persons not authorized to receive it. Classified information can slip into conversations through carelessness.

5. Bring to the attention of all personnel the disciplinary action, outlined in OPNAV 5510.1 series, that may result from violation of security regulations.

Periodic briefings must be held by all commands for personnel having access to classified information. These briefings should include special emphasis on the subjects discussed in chapter 3 of the Security Manual, OPNAVINST 5510.1. The Security Manual also provides the necessary information for debriefing personnel who have had their security access to classified information terminated.

INVENTORIES AND SURVEYS

The supply officer is required to maintain a Controlled Equipage Custody Card (NAVSUP 306) for each item of controlled equipment aboard. He prepares these cards in duplicate, turning over the copy to the responsible department head and maintaining the original in his safe. The allowance quantity shown on the copy signed by the weapons officer pertains to equipage used by the weapons department only. Controlled equipage for a GML system consists of selected items which require increased management control afloat due to their high cost, their vulnerability to pilferage, or their essentiality to the ship's mission.

On some missile ships the weapons officer may delegate the leading petty officer of a GML system as custodian of the controlled equipage within his launcher system. The custodian may be required to sign a subcustody card which is a duplicate of the 306 form signed by the weapons officer. On ships that have more than one GML system controlled equipage, such as test equipment, usually have serial numbers assigned which are used as a means of identification and should be entered on the subcustody cards. When controlled equipage passes from one launcher system to another or from one petty officer to another, the new custodian should sign a copy of the custody card. A record is also kept on a custody card for all non-signature items issued to a department and serve as accountability cards for inventory and expenditure purposes.

All items of controlled equipage must be inventoried during March of each year. Inventories are also required when the ship is commissioned, inactivated, or reactivated; any upon relief of the head of department for those items in the department concerned.

In those instances when it is not feasible to stow missile system components in supply department spaces, the supply officer must be authorized by the commanding officer to stow such material in spaces belonging to the weapons department. When this type stowage is authorized, the weapons officer designates in writing a custodian whose major responsibility is to report to the supply department an accurate record of issues of all items under his custody so that the supply department can take prompt replenishment actions. It is required that a quarterly inventory be made of material stowed in weapons spaces. The inventory of such items is to be con-
ducted jointly by the custodian and a supply department representative.

SURVEY OF ORDNANCE MATERIAL

In official Navy publications a survey is regarded as a means of establishing the reason for deterioration or loss of government property.

If material is missing, a survey is a means of finding what happened to it. If material is damaged, a survey will uncover how the damage occurred, who was responsible, and what should now be done with the material. The end result of a survey is to provide a method of expending the surveyed material from the books.

Anyone who is aware of a material condition that requires a survey may initiate action. Survey requests are normally started by the head of the department having custody of the material in question.

The originator requests a survey in ROUGH on a Survey Request Report and Expenditure form. The request must include the following:

1. Description and condition of the material.
2. Cause of loss, damage, etc.
3. Responsibility for cause or condition (if it can be determined).
4. Recommended disposition of material and action to be taken in regard to cause and responsibility.

As the initial request is forwarded via the department head and the supply officer, additional helpful information is added.

The purpose of this initial request is to provide all the data available to assist the commanding officer (or his delegate) in determining the type of survey, if any, to be ordered.

The type of survey to be conducted may be either FORMAL or INFORMAL.

Formal Survey

A formal survey is required at all times when it appears that responsibility for lost or damaged material may be placed on a person or persons in the naval service.

In most cases, a formal survey is conducted by one officer. However in the case of surveying equipage where custodial signature is required, and when so directed by the CO, a survey board of three officers (no one of whom is from the department having control of the material) conducts the survey.

The following members may not serve on a survey board:

1. Commanding officer
2. Officer on whose records the material being surveyed is carried, for example, the Weapons Officer
3. Officer who is charged with the physical custody of the material being surveyed, for example, the Missile Officer.

When controlled equipage is surveyed, it must be recorded on the custody record card 306. Failure to do so may mean that the expenditure will not be posted to the cards (306), and the custodian will be held accountable for material that is long gone.

Informal Survey

As a rule, the information survey is held for routine matters where it appears that no disciplinary action is required. The distinguishing feature of the informal survey is that the CO appoints the head of department having custody of the material to be surveyed as the surveying officer.

After the findings have been made by the surveying officer, board, or head of department, a full report is submitted to the commanding officer for review. The supply officer and/or appropriate department head takes the final action in expending the material from the books.

Ordnance repair parts worn out or damaged in use are not surveyed when replaced by a new part, except upon order of the CO or higher authority. Repair parts lost or damaged in storage are surveyed when a notation of the survey must be included on the request for replacement. NAVORDSYSCOM requires formal survey for ordnance equipage requiring custody signature, when such equipage is missing, damaged, or worn beyond economical repair.

Repair kits are listed as one-line items and are replaced by complete kits, even though not all items in the kit were used up.
Some unserviceable items must be repaired by the manufacturers under the warranty provisions of their contract. The handling of such items and other repairable items is described in SPCC Field Instruction P4440.83. Many of the items discussed in this instruction are part of the Terrier/Tartar/Talos systems. Refer to this instruction for information regarding the disposition of any parts of those weapon systems.

Inspection

Material being inventoried or surveyed must be inspected. It will not suffice to copy from the custody cards or a previous inventory—you must sight each item and determine its condition. You may have men assisting you in the work but you are responsible for the accuracy of the report you turn in.

Costs

Every department aboard ship is given a budget for each quarter, representing the money available to procure the materials it needs. Careful management of supplies is a major part of keeping within your budget. Wastefulness uses up the funds without increasing the fighting effectiveness of the Navy.

You may be required to keep some of the budget records for the department. There is no standardized form for the budget record, but it should show the cost of the materials requisitioned, with each requisition number and the date. Be sure the materials were actually received and the requisition was not canceled or modified.

MANAGEMENT OF ORDNANCE STOWAGE AREA

The chapter on handling and stowing of missiles repeated several times the admonition about stowing of explosive components of missiles and nonexplosive items. Where to stow the assembled missiles is no problem—you know they must be placed in the magazines that are a part of the launching system, where they are locked in position.

MISSILES

Every missile received above is identified on the bill of lading or shipping document by name, mark, mod, lot number, serial number, manufacturer's name or initials, and/or other identifying information. Each missile received must have the information concerning it entered on the missile log. After it has been loaded into the missile magazine, the location of the missile is marked on the log and the type identification is inserted on the launcher panel. Prior to loading, you have checked the launcher magazine for operability of equipment, temperature control, humidity control, firefighting equipment, and general cleanliness.

Only qualified men may be assigned to operate the handling equipment and the launching system for transferring the missiles to the magazines. Safety personnel are placed at strategic locations to enforce safety regulations. Due to the many hazards connected with the handling of ammunition and missiles, no factor may be overlooked in setting up the organization for replenishment and carrying out the work. The petty officer in immediate charge of the handling and stowing operations must be thoroughly familiar with the operations. He must brief his men on the safety regulations and instruct them in what they must do. It is the duty of the leading petty officers to be with the men under their supervision, and to ensure that all safety precautions and procedures are strictly observed.

The guided missile officer is responsible for maintaining the allowance, accounting, stowage, safety, and custody of all classified components and publications of guided missiles. He initiates the requisitions for guided missiles, repair parts, tools, and handling and test equipment as established by the COSAL.

The commanding officer of the ship is responsible for the care, surveillance, testing, inspection, and overhaul of ammunition. During regular yard overhaul, he may request overhaul and inspection of the ship's ammunition supply. Guided missiles are overhauled at specified installations. Missiles must be returned to depots at specified intervals, current instructions for the missiles you have aboard tell you when and where to ship your missiles for this periodic
inspection and overhaul.

When missile components are stowed in ship's magazines, they require the same care as ammunition.

ORDNANCE MATERIALS

Missile ordnance materials include rocket motors, igniters, fuzes, warheads, and in some cases, boosters or auxiliary rockets. All of these units are potentially dangerous; each unit must be handled in accordance with the procedures authorized for it. The precautions in chapter 12 are in addition to the detailed directions given in the manuals for particular missiles.

All safety devices in ordnance units must be used exactly as designated. These devices must be kept in order and operative at all times. Changes, modifications, or additions to ordnance items may be made only upon explicit direction from the bureau concerned. No explosive assemblies may be used in any way or in any appliance except those designated by the proper authority.

SUMMARY

Standard reporting forms are discussed but emphasis is placed on the use of new reporting forms which can be processed by machines. It is essential to consider the operation of a weapon system as a unit, for no single part can serve as a means of defense. The GMM must coordinate his work with other ratings that specialize in other parts of the weapons system. Training plans must include all personnel who work with any part of the weapon system, and plans of the different departments and divisions must dovetail nicely. Your training sessions on components of the launching system prepare your men to do their share in the operation of the weapon system.

The day-to-day condition of the weapon system components and the work done to keep them in operating condition require a reporting system from which the facts can be quickly extracted and summarized for conclusions. The use of data processing machines will make the facts quickly available to the planning echelons of the Navy and the Defense Department. At the same time, the amount of work required to write the reports at the petty officer level will be reduced. Reports will still be required from the POs at frequent intervals on every phase of work, but the method of reporting will be simplified as much as possible for machine pickoff.

This chapter brings together the story of how you are supplied with missiles and spare parts to maintain them. The entire supply system is undergoing extensive change. You must keep abreast of these changes, not as a professional supply man, but sufficiently so you can order supplies intelligently.

One of the important areas of endeavor is that of reducing costs. This is not to be achieved by having fewer missiles and therefore less firepower, but by less waste in the use of expendable supplies and better maintenance of non-expendable ordnance. It cannot be relegated to one corner of the ship's system; the idea of cost reduction must permeate all areas and phases.

Carefully kept inventory lists are a necessity. They show not only what you have on hand but what has been used, and thus are a valuable source of information in planning future supply allocations.
CHAPTER 12

SAFETY

This chapter is a summation of safety rules concerning mechanical, electrical and electronic, hydraulic, and pneumatic equipment; and explosives, radiation, gases, vapors, chemicals, and fire safety precautions. Some of these rules and warnings have been given in applicable chapters of this book, but they can bear repetition.

All your life you have been reminded to be careful, and have been cautioned about accidents that may happen if you do not heed the warning. No doubt you have ignored some of the warnings, but as you matured you came to realize the necessity for safety rules. An infraction that might cause only a minor mishap at one time could result in a disaster another time. The chance is not worth the risk. If you are reckless about your own safety, you have no right to endanger others.

A PO 1 or C has a responsibility for impressing on lower rated men the need for the safety rules, and he must be firm in enforcing them. Frequent reminders should be given even at the risk of nagging. Nearly all accidents are caused by an infraction of safety rules, whether through ignorance of the rules, or carelessness, or recklessness. The Military Requirements necessitate a knowledge of safety rules at all levels; but at E-6 or E-7 levels, for which you are trying, supervision and teaching are also required. The GMM quals expect you to interpret safety instructions and directives, to carry on a safety program in your area, and to enforce the rules. Don’t forget that a good example is the first step.

ACCIDENT PREVENTION PROGRAMS

The overall directives for safety programs are issued by OPNAV or other high level authority. Interpretation of the directives takes the form of specific instructions and directives. The application takes place on shipboard and at shore stations. You have responsibility to interpret the directives to your men, to promote the program, and to enforce rules. Safety posters, magazines, films, and other educational materials are supplied by the Navy to help get across the safety program.

NAVORDSYSCOM is increasing its efforts to achieve the goal of reduction in accidents. The measures that must be taken are:

1. Plan every job operation with adequate safety precautions and instructions.
2. Assure that supervisors, when issuing work assignments, provide specific instructions on safe working practices and procedures directly related to hazards and risks incident to the assigned job.
3. Include supervisory indoctrination and specialist training to make sure that well-developed safety training is included in each such program in accordance with approved training procedures.
4. Review activity programs for employee development in safety.
5. Continue to emphasize accident prevention through activity and poster publicity. Material is available from the Commander, Naval Ordnance Systems Command Headquarters.

Personnel failure was determined to be the chief cause of accidents, whether through unawareness of the safety precautions required for the assigned task or indifference toward hazards and risks normal to the job. Past experience indicates that accidents can be significantly

357
reduced by thorough instruction in safe working conditions and procedures, and giving information regarding the hazards and risks of the job.

Young people, who have the most to lose by accidents, are normally the most reckless. You have to keep reminding them of the hazards and the possible consequences to themselves and their shipmates.

SAFETY AROUND MACHINERY

Probably the first safety precaution given you dealt with mechanical things such as moving machinery, ladders, a swinging boom, and similar objects. The first rate training manual that you studied, Seaman, NAVTRA 10120, contains many safety rules that apply to working with and around machinery. Each text on military requirements reviews the rules and adds others. At the time you were striking for E-3 you were expected to remember those rules and apply them. Now that you are trying for E-6 or E-7, you have supervisory responsibility. The primary objective of the Navy supervisor is to operate with maximum efficiency and safety. Accidents reduce efficiency and increase costs. Practice with training aids that can be manipulated is suggested as a prime means in learning how to handle machinery with safety. A picture showing how the equipment operates helps to orient the learner to what happens when the machine works, but operating a model fixes the motion in mind. When you are planning a lesson on safe operation of equipment, use every means available to impress the lessons on the senses. Many films and slides are available on safety subjects. Select those most appropriate to your lesson to intensify your instruction. Closely supervised operation of the machinery is the next step in learning safe and proper operation.

You may have to instruct some of your men in the safe use of common tools in a safe and efficient manner. He needs to know this before he is ready to handle the far more complicated equipment used by a GMM. Take time to teach any of your men who are deficient in tool skill. See Tools and Their Uses, NAVTRA 10085, for material to review and self-study.

HANDLING AND STOWAGE

You have already qualified as an E-5 in supervising crews in the safe and proper procedures for transferring, handling, and stowing missile components. Now you will work with your officer in planning the handling and stowing operations. The safety of handling and stowing can be greatly bettered by good advance planning. Find out what is coming aboard, and plan how to take care of all the items. Decide who will be stationed at each position to handle the missiles and missile components. Have a practice session the day before the loading is to take place. If you are new on the ship, find out the location of all the storage spaces you will need to use, and the means of reaching them.

On Shipboard

When any explosives are to be handled (and all missiles are explosives and combinations of explosives), firefighting equipment must be readied on the deck. Check the operating condition of the equipment, and make sure that each man knows his responsibility and that he knows how to operate the equipment. It means that you have trained your men in methods of fighting fires in explosives.

The handling equipment also must be checked out before use. Examine the trolley, conveyors, tracks, dollies, and other handling equipment you will use. Before raising any missile or component off the deck, bench, or launcher, check the security of the lifting attachment by raising the component about 2 inches. This way, it will not have far to fall. You know the 5-foot-1-foot rule: if dropped 1 foot or more, an unpackaged explosive is considered unsafe and must be returned to the depot; a packaged explosive, if dropped 5 feet or more, is considered unsafe and must be returned to the depot. It is discussed in chapter 2 of this text and is mentioned several times in chapter 8.

It is difficult to separate explosives safety rules from safety rules for handling equipment since what you are handling consists chiefly of explosives.

Ammunition handling equipment is operated and controlled by electric, hydraulic, pneumatic, and mechanical components or a combination of these. Thus all safety rules for each type of equipment apply in all steps of ammunition
Handling. The handling equipment used with the Tartar system is a good example of a multi type missile handling system. This system employs pneumatic equipment (missile strike down fixture), electrical equipment (deck control box), mechanical equipment (missile handling dolly) and hydraulic equipment (launcher train and elevation systems). At least one hour before replenishment, prepare and examine all handling equipment to be used and operate all equipment in all steps of missile handling. Some shipboard missile handling equipment is under the cognizance of NAVSHIPS. All safety instructions and precautions for this equipment are issued by NAVSHIPS under the guidelines set up by NAVORDSYSCOM.

Safety devices should be inspected frequently to ensure they are operative. Warn personnel if any safety device is inoperative, and restore it to operating condition as soon as possible. Some safety devices may seem to be a “bother,” but it is far better to be bothered or inconvenienced a little than crippled.

Safety at Shore Stations

If you are studying to make E-7, you need to know the methods of handling and stowing missiles ashore. Although some of the handling equipment is the same, shore stations make much use of motorized equipment. Forklift trucks are used to a much greater extent than on shipboard. Proper balance of loads and securing the loads are important factors in the safe operation of forklift trucks. The manufacturer's handbook gives the instructions for his equipment. A compendium of information on about fifteen different models is given in OP 2173 (Volume I), Handling Equipment for Ammunition and Explosives Mobile Equipment. Missile handling equipment for particular missiles is covered in one chapter, and safety precautions are consolidated in appendix A. The handling equipment described for missiles is chiefly for transfer-at-sea use. Some of the forklift trucks described are large enough to handle Talos missiles. Although forklifts are not used on highways, driving rules apply. In addition, extra care is required because of the cargo. The speed usually is 5 miles per hour. Never permit other persons to ride on the equipment. Watch for low or narrow clearance areas, and be sure your equipment can pass through safely. Avoid bumps or sharp objects, drive around them. Guided missiles are extremely sensitive to shocks and jars.

Volume 2 of OP 2173 describes nonmobile handling equipment such as pallets, hoisting slings, cradles, skids, strongbacks, dollies, carriers, and stands. With the use of the stream system for shipboard handling, few of these find shipboard use, but many of them are needed for handling components at shore bases where missiles are assembled, disassembled, repaired, and stored. One safety rule that applies to all be sure that the missile or component is securely attached. The points of attachment are marked on the containers or on the missile skin.

Duty at a shore base may involve you in packaging and shipping of missiles and components. If the shipment crosses state lines, the rules of the Interstate Commerce Commission (ICC) apply, whether Navy vehicles or public carriers are used. OP 2165, Navy Ordnance Shipping Handbook, reviews rules for different types of explosives and different means of transportation. References are given so you can get the latest rules that apply to your particular activity. Discoveries of new types of explosives make new rules necessary for safe transportation. Drivers of vehicles also must be checked on their qualifications and on safety rules. OP 2239, Driver's Handbook, Ammunition, Explosives, and Dangerous Articles, sets forth the regulations.

The safety record of NAVORDSYSCOM in driving of vehicles has been better than most; let's make it better still.

OP 5, Volume 1, Ammunition Ashore, Handling, Stowing, and Shipping, is the overall text on this subject. Be sure you get the latest revision with all the changes. There have been some changes in almost every chapter of that book; the chapter on pyrotechnics is nearly a complete change from the old rules. The chapter on chemical munitions needed some additions: so have chapters on flammable liquids, flammable solids, corrosive liquids, compressed gases, and toxic chemicals. New materials have necessitated additional rules for handling and storing those materials.
The handling equipment is not described in OP 5, but some motor truck specifications are given. Since the ICC shipping rules are constantly revised, it is best to get the shipping regulations directly when needed. The Navy Shipping Guide gives the Navy regulations for truck shipments.

The rules for handling and stowing specific missiles are given in the OPs for those missiles. For example, OP 2979, Volume 6, Terrier/Tartar Shipping and Handling System, describes factory-to-firing sequence, with instructions for depot operations, depot loadout, transfer to dockside, shipboard operations, transfer at sea operations, return of missiles to depots, and other phases of the entire sequence for the HT-3 missile. Volume 5 does the same for the BT-3 and BT-3A missiles.

MOVING MACHINERY

One of the most frequently repeated warning is that about launcher movement or other moving parts of the launching equipment. No one may be in the area covered by the movement of the launcher or gun turret, and to make sure that no one is there, a loud warning bell is rung and a safety observer looks over the area. It took a grisly accident to show the need for this rule. A man thought the shadow of a gun turret provided a good place to take a snooze. While he slept, the turret was activated; his head was crushed before the moving mount could be stopped. To prevent a repetition of such a casualty, you are reminded over and over to make sure that no one is in the path of moving machinery, whether it is a launcher, a crane or boom, or other powered equipment.

To make sure that no one starts the launching system while someone is working on it, set the safety switch on the EP-2 panel to SAFE and remove the switch handle. If you give the switch handle to the person who is working on the system, you can be sure no one can activate it. That takes care of the men working on the system; you still have to look out for any man who might be where he has no business, like the man in the story above.

ELECTRICAL AND ELECTRONIC SAFETY PRECAUTIONS

Volumes have been written about electrical and electronic safety, yet accidents continue to happen. More often than not, the victim of such an accident is a person who should have known the dangers of electricity, such as an electrician making repairs. Certainly an electrician is aware of the dangers of electricity, so why does he fall a victim to it? Perhaps the answer is in the old saying, “Familiarity breeds contempt.” Men become careless when they work with electricity every day.

What can you do about this attitude? You can keep reminding your men of the safety rules that must be observed in each operation. Watch your men to see that they are observing the safety rules. Check to be sure that all electrical tools are in good repair and that the end of the ground wire within the tool is connected to the tool’s metal housing. The other end must be connected to ground. The grounded type plugs and receptacles, which must be used, automatically make this connection.

Missile components must be protected against stray voltages by adequate grounding during all phases of handling, assembling, disassembling, and testing. Attach the ground straps where indicated on the containers and the missiles.

GENERAL SAFETY RULES

The following general safety precautions are applicable during all phases of maintenance and operation.

KEEP AWAY FROM LIVE CIRCUITS. Remove all power from the equipment when conducting operations requiring no power. Under certain conditions, capacitors may retain a high voltage charge after the equipment is turned off. To avoid the possibility of electrical shock, discharge circuits before touching them.

USE SAFE TEST EQUIPMENT. All electrical test equipment using 115-v-a-c line power is provided with a means of grounding the chassis systems through the power cable. Be sure the proper power cable is used. Do not use damaged power cables or test leads. Damaged test leads should be replaced, not repaired.

DO NOT SERVICE OR ADJUST ALONE. Under no circumstances should personnel per-
form servicing or maintenance of the equipment without the immediate presence of another person capable of rendering aid.

RESUSCITATION. Personnel working with or near high voltages should be familiar with the methods of artificial respiration. Standard First Aid Training Course, NAVTRA 10081, describes the accepted method of mouth-to-mouth resuscitation. Charts illustrating and describing the method should be posted at a number of places on the ship. EVERYONE needs to know it. There isn't time to look it up after there has been an accident. Resuscitation should be started in seconds after an accident. After 3 minutes, the chances of revival decrease rapidly.

Safety Precautions to Observe When Testing

Do not attempt cleaning operation until all power is removed from the Guided Missile Test Set (GMTS).

Turn GMTS power off and remove tape readers before attempting lubrication.

High voltage (+300 v-d-c) is present at test points. Use only an insulated portable multimeter and proceed with caution.

Use caution when performing inspection, adjustments, voltage measurement, and maintenance. High voltages are present in the GMTS and the Missile Electrical System Test Set (MESTS).

Voltages up to +950 v-d-c are present in the microwave power supply chassis. Use caution when taking voltage measurements.

Remove power from the test set before attempting to remove any part of the set.

Chassis protective interlock circuits are bypassed when the BATTLESHORT switch is on. UNSAFE lamps on the panel indicate this unsafe status.

Any cabinet, chassis, or cabling damage found during inspection must be corrected before power is applied to the GMTS.

Be careful not only of what you touch with your hands, but what you touch with any part of your body. Be sure you do not brush against energized equipment, or lean against it.

Safety Around Electronic Equipment

In nearly every accident, investigation shows that it could have been prevented by observing the safety practices and procedures in chapter 9670 of the NAVSHIPS Technical Manual, and the applicable schematics, wiring diagrams, and precautions contained in the equipment manual.

Although such protective devices as interlocks, cutout switches, and circuit breakers are built into modern electronic equipment, personnel can still receive severe burns and lethal shocks under many conditions. One source of danger sometimes neglected by repairmen with serious results is the multiple power inputs of electronic equipment. All sources of power must be turned off, including that from other equipment such as synchros and remote control circuits. For example, turning off the antenna safety switch will deenergize the antenna, but it may not turn off the antenna synchro voltages from the ship's compass or stable elements. Moreover, rescue of a victim shocked by the power input from a remote source is often hampered because of the time required to find the power source so that it can be turned off.

Another source of trouble is failure to realize that removing a unit from its normal location and energizing it while outside its normal enclosure may eliminate the protection given by built-in safety features. In such cases, special precautions are necessary to avoid accidents.

Personnel working on electronic equipment and circuits should take the time required to make the operation safe. Schematics and wiring diagrams of the entire system should be carefully studied in advance and note taken of all circuits which must be deenergized in addition to the main power supply. Electronic equipment usually has more than one source of power; all sources must be deenergized before equipment is serviced. A circuit should not be worked on with the primary power applied unless absolutely necessary. In those cases where such a procedure is necessary, the repairman should stand on approved rubber matting and keep one hand free at all times, either behind him or in his pocket.

One-hundred-fifteen volt power is not a low, relatively harmless voltage; only voltages below 30 can be considered safe. Many accidents have occurred in the Navy from 115-volt power because people often regard it as harmless and ignore safety measures.

Most of the hazards which confront the
electronics repairman are the result of careless maintenance practices or failure to observe the required precautions. The following common sense safety precautions should be observed at all times:

1. Use one hand when turning switches on or off. Keep the doors to switch and fuse boxes closed except when working inside or replacing fuses. Use a fuse puller to remove cartridge fuses after first checking the circuit to make certain it is dead.

2. Never work on energized circuits unless absolutely necessary. Always take time to lock out or blockout the switch and tag it. Locks for this purpose should be readily available; if a lock cannot be obtained, remove the fuse and tag it.

3. All supply switches or cutout switches from which power can possibly be fed should be secured in the open position and tagged. The tag should read: "DANGER Shock Hazard. Do not change position of switch except by direction of [the person making, or directly in charge of, repairs]."

4. Never short out, tamper with, or block open an interlock switch.

5. Inform remote stations of the circuit on which work is being performed.

6. Keep clear of exposed equipment; if necessary to work on it, use only one hand as much as possible.

7. Keep clothing, hands, and feet dry if at all possible. If work must be done in wet or damp locations, use a dry platform or wooden stool to sit or stand on, and place an approved rubber mat or other nonconductive material on top of the wood. Use insulated tools and insulated flashlights of the molded types when working on exposed parts.

8. Do not remove hot tubes from their sockets with bare hands. Use asbestos gloves or a tube puller.

9. Use a shorting stick to discharge all high voltage capacitors.

10. Be aware of nearby high-voltage lines or circuits. Use rubber gloves where applicable and stand on approved rubber matting (MIL-M-15562). Not all so-called rubber mats are good insulators.

11. Do not work on high-voltage equipment alone; a safety observer, qualified in first aid for electrical shock, should be present at all times. He should also know the circuits and switches controlling the equipment and should be given instructions to pull the switch immediately in case of accident.

12. Avoid reaching into enclosures except when absolutely necessary. In such case, use rubber blankets to prevent accidental contact with the enclosure.

13. Check circuits with a meter, never with bare fingers, and avoid touching any of the metallic surfaces of the test probes. When measuring voltages over 600 volts, do not hold the test probes.

14. Turn off the power before connecting alligator clips to any circuit.

15. Make certain that the equipment is properly grounded. Ground all test equipment to the equipment under test.

16. Solvents should be used to the minimum extent possible for routine cleaning. Solvents should not be used on hot equipment due to the increased fire or toxicity hazard. See NAVSHIPS Technical Manual, chapter 9600 or chapter 9030, for instructions and safety precautions applicable to cleaning solvents.

Electrical Power Tools

1. See that all power tool cables are so located that they will not be a tripping hazard.

2. Make sure that all electrically powered tools are properly grounded. Refer to chapter 9600 in NAVSHIPS Technical Manual for information on grounding tools and equipment.

3. Wear goggles when doing work where flying particles may strike the eyes.

4. Make certain that all dangerous moving parts of the tools are guarded.

5. Instruct all operators in the correct use of power tools, the hazards present, and the safety practices to be observed.

6. When work is completed, disconnect the tool and stow in it the assigned location.

Soldering Irons

The quals requiring knowledge and experience with soldering irons and soldering techniques are
listed as requirements for the E-4, but we will list a few rules for review.

1. Always assume that a soldering iron is hot.
2. Never rest an iron anywhere but on a rack designed for that purpose.
3. Do not exert lateral pressures on pencil soldering irons. Grasp them lightly and avoid breakdown of internal insulation.
4. Do not use excessive solder because the drippings may cause burns. When excess solder collects on the iron, remove it with a rag. Do not remove solder by swinging the iron.
5. Make sure that the plug on the soldering iron cord is in good condition.
6. Hold small soldering jobs with pliers or clamps to prevent burns.
7. When cleaning an iron, place the cleaning rag on a suitable surface and wipe the iron across it. Do not hold the rag in the hand.

Rescue of Shock Victims

Prompt rescue is essential to survival in case of electrical shock. However, to avoid becoming another victim, the rescuer must first shut off the voltage or, if this is not immediately possible, he must observe the following precautions in freeing the victim from the live conductor.

1. Stand on dry insulating material and use a dry board, belt, clothing or other nonconducting material to free the victim.
2. Pull victim free of shock source by the heels of his shoes or by slack in his clothing.

Two types of injuries require prompt first aid. In case of severe electrical shock, the victim’s breathing may be paralyzed and heart beat stopped; immediate artificial respiration and external heart massage may be necessary. An accident with tools may also cause dangerous bleeding which must be controlled at once. These first aid measures are described in publications issued by the Bureau of Medicine and Surgery and by the Red Cross. NAVSHIPS Technical Manual also illustrates and describes external heart massage and mouth-to-mouth artificial respiration. All personnel concerned with electronic equipment should be familiar with these first aid techniques.

HYDRAULIC FLUID AND EQUIPMENT

The hazards of hydraulics will be discussed in two phases, that is, dangers from the liquid itself, and danger from its power when it is used in machines or missiles. As you know, it does not have power of itself, but transmits power imparted to it.

HAZARDS OF HYDRAULIC FLUID

Many different combinations of materials have been tried in the search for an ideal hydraulic fluid. Water-based fluids are highly fire-resistant but are apt to cause corrosion. Petroleum base liquids are the most widely used hydraulic fluids. However, they are flammable under normal conditions and can become dangerously explosive when subjected to high pressures and there is a source of flame or high temperatures. Do not mix fire-resistant hydraulic fluids with petroleum-base hydraulic oils.

In recent years, nonflammable synthetic liquids have been developed for use in hydraulic systems where fire hazards exist. Special seals are required that will not be deteriorated by the chemicals in the hydraulic fluid.

Never permit high-pressure air to be in direct contact with petroleum base liquids in a closed system because of the danger of ignition. If gas pressure is needed, nitrogen or some other inert gas should be used.

Do not let other mixtures get into the hydraulic system, as when flushing it. Do not use diesel oil for flushing a hydraulic system; small amounts clinging to the pipes would contaminate the new supply of hydraulic fluid and could make it more flammable or explosive.

Most hydraulic fluids are free of toxic materials, but some of the fire-resistant liquids are toxic. If you spill hydraulic fluid on your skin, wash it off; some types cause skin irritation and rash. If your clothes become saturated with hydraulic fluid, change into clean clothes with no delay. Some of the toxic materials can be absorbed through the skin. Containers of hydraulic fluid of a toxic type should have a label indicating this. The label should say: DANGER, TOXIC, CONTAINS (name of substance), AVOID INHALING, SWALLOWING, OR CONTACT WITH SKIN. The toxic symbol is brown on white, with a skull in the circle.
High Pressure Hazards

When servicing hydraulic driving gear, keep in mind that you are dealing with powerful forces. It is the pressure transmitted by the fluid that operates the machinery. With a pressure of a ton per square inch behind it, a jet of liquid from a hydraulic pipe can cause painful damage. This could happen if there were a break in a pipe. You have been told over and over that pressure must always be released before working on a hydraulic system, so you should not be guilty of trying to crack a pipe connection or a valve without first releasing the pressure. Pressure-regulating valves and pressure-reducing valves adjust the pressures to the desired values. Relief valves, simple or compound, drop the pressure. Dumping or unloading a system is useful for stopping the hydraulic mechanism at some point in the operating cycle without shutting off the power.

Be sure to bleed the hydraulic system to reduce accumulator pressure before breaking any hydraulic connections or servicing the ready-service ring or the hoist.

HAZARDS OF HYDRAULIC EQUIPMENT

Explosions have occurred in high pressure hydraulic systems as a result of compression-ignition of petroleum oil in contact with air. The compression-ignition (diesel action) depends on the presence of air and oil, the operating temperature, and the speed of rise in pressure. The quick release of oil under high pressure into a closed part of a system can produce the high temperature and pressure conditions that cause this type of explosion. Air-oil accumulators and air flasks used to charge accumulators are the components that present the greatest explosion hazard in the system. Accumulators and air flasks retain pressure after the pumps are shut down.

Because of this danger, nitrogen is used instead of air in the flasks in missile systems. If there are any air flasks still in use in your system, be sure to observe the following precautions:

1. Keep oil out of the air side of accumulators, and keep air out of the hydraulic oil system.

2. Prevent sudden release of high pressure into dead end parts of a system.

Whether nitrogen or air flasks are used, the temperature of the hydraulic fluid is a critical factor. A maximum of 190 degrees F is commonly given. At high temperatures the fluid decomposes and these chemical changes cause formation of sludge, separation of components of the fluid, and other changes that affect the operation of the hydraulic system. An electric spark in the vicinity of overheated equipment can cause combustion. Immediately mop up any spilled fluid, and wipe off leaks. Repair any leak as soon as possible; shut down the equipment first.

NEVER charge a nitrogen flask with oxygen or compressed air. A mixture of hydraulic fluid and oxygen is extremely explosive.

Clogged filters should be removed as soon as possible. Critical components of a hydraulic system may be damaged if the system is operated when the fluid is not being filtered. Shut down the system before attempting to remove a filter and replace with a good one. Wait for the hydraulic pressure to decay before proceeding.

Before attempting to repair a leak, shut down the system, release the fluid pressure before disconnecting any pressure line; release gaseous nitrogen and hydraulic fluid pressure before disconnecting the accumulator. Be sure the appropriate shutoff valves are closed on the associated main supply tank or the header tank.

In opening a hydraulic system to make repairs, some air is likely to become entrapped. After reassembling all parts, thoroughly bleed the system before placing it in operation.

The hydraulic power drives that operate the different parts of the launching system are very powerful. Before going into any area where you could be injured by moving machinery (launcher area, magazine, loader, spanning rail, blast doors, retractable rails, floating tracks, loader positioner, strikendown gear), set the safety switch on the associated panel to SAFE, and take the switch handle with you. Then no one can start the equipment inadvertently.

If the maintenance requires power on, station a man at the EP2 panel and another safety man at the EP1 panel (circuit breakers), establish phone communication with the two safety men,
and work with extreme caution. There is very little space and a person could easily be crushed by moving machinery.

Blast doors and magazine doors open and close with sudden force. Do not place any part of the body in the opening of either.

Each time before equipment is moved (except at General Quarters), sound the train warning bell and get an “all clear” signal before training or elevating the launcher. Likewise, sound the loading horn before moving any of the feeder components, each time before equipment is to be moved. Do not enter the magazine during any loading or unloading operation.

Do not enter the train circle when the launcher train motor is running.

Do not depend on a switch alone to remove power from equipment. If the equipment is wired to a secondary power distribution system by a power cable, separate the cable from the receptacle before attempting repairs. If permanently wired in, remove the main fuses and open the power switch. Attach a warning tag to the switch so no one will close the switch while repairs are in progress.

HYDRAULICS IN MISSILES

In missile testing, the hydraulic fluid becomes heated. It is imperative that the missile be allowed to cool before attempting to bleed or disconnect a hydraulic line.

Smoking is prohibited in the immediate area while filling or maintaining the pumping unit. Any spilled fluid must be wiped up immediately.

Remove all power from the missile before connecting the pumping unit servo oscillator cable to the missile for making the test. Failure to do so will result in damage to the missile and to the pumping unit.

Prior to installation of the replacement hot-gas generator (hydraulic), check to make sure that the squib is shorted.

The turbine, gearbox, and hydraulic pump for the missile are combined in a single unit that may be replaced. Before disconnecting any hydraulic line or connection, the missile hydraulic system must be bled.

Follow the steps of the procedure exactly so as to avoid deforming the hydraulic tube (high pressure or low pressure) or damaging the seal.

Leakage of hydraulic oil may contaminate harnesses (electrical) and connectors. It may be removed with aliphatic naphtha, but this must be done in a well-ventilated and fireproof (restricted) area.

PNEUMATIC EQUIPMENT

Compressed air is used as the power source in a number of your operations, though not to the extent that hydraulic power is used. The source is the compressor plant of the ship, from where the compressed air is led by piping to many parts of the ship. NAVSHIPS Technical Manual, chapter 9490, describes the ship’s compressor equipment and its uses. Other rates have responsibility for care and maintenance of the system, but users must know how to use the air at the outlets. You have used the low-pressure lines for operating pneumatic tools; the chipping hammer is probably the first pneumatic-powered tool that you used in the Navy.

SAFETY WHEN USING LOW-PRESSURE AIR

The usual working pressure is 100 psi, but repair ships and tenders use 125 psi. In some ships low-pressure air is supplied through reducing valves from a higher pressure system. The low-pressure system can be used for many purposes, including operation of pneumatic tools, cleaning electrical machinery, cleaning CO₂ indicator systems, charging pump air chambers, and operating parts of the missile launching system. Even at low pressures, an air hose should never be pointed at anyone. The pressurized air can cause serious bodily damage. Make sure that output hoses are securely connected to the tool or other equipment to be operated by compressed air.

Pneumatic Tools and Handling Equipment

Before operating a pneumatic drill, inspect the air hose and check for any leaks or damage. Blow air through the air hose to free it of any foreign material before connecting it to the drill. Keep the air hose clean and free from lubricants.

Chipping hammers should not be operated without safety goggles. All persons in the im-
mediate vicinity should also wear goggles. Never point the chipping hammer toward a person; the tool might be accidently ejected and could seriously injure personnel or damage equipment. Disconnect the hose from the tool if you have to lay it down temporarily.

The same safety rules apply to the use of the pneumatic impact wrench.

The pneumatic handling equipment is usually under NAVSHIPS cognizance and NAVSHIPS publications give the instructions for use of the equipment. Air-operated chain hoists are sometimes used to replenish missiles. The Tartar loading fixture is air operated.

Air Motors

In manual operation of launchers, air motors are used instead of the hydraulic power drives. The normal safety interlocks are bypassed. Use extreme caution; specifically, never move the launcher if the blast doors are open, and never open or close the blast doors by use of the handpumps if the launcher has been moved off the stow position by air motors. Be sure the power system is off before using the air motors.

SAFETY IN THE USE OF HIGH PRESSURE COMPRESSED AIR

The highest pressures are used in the dud-jettison units. In the Mk 108 Mod 0 dud-jettison unit, air trapped by the underside of the piston at the end of the jettison stroke is nearly 15,000 psi. This charge returns the ejector to the position it had before jettison. Air from the 100-psi ship’s supply line passes to the positioner valve, but the pressure admitted at the charging valve is 3500 psi. The charging chamber acts as a temporary storage for the pressurized air. The high pressure air is passed to both sides of the firing valve. Air can be vented from the chamber by a bleeder valve if the jettisoning operation is to be stopped.

Operation with such high pressures makes it essential that all tubing and flexible hoses be inspected periodically for weak points. Flexible hose should be replaced, regardless of condition, at expiration date (labeled at installation). Release pressure before disconnecting any high pressure lines.

Do not direct a high pressure air jet at any part of the human body; to do so may be fatal. Keep your face clear of any air outlet, air flask, or hose.

Do not use compressed air to clean air breathers. Compressed air is not effective as a cleaner.

Before unscrewing any of the filter plugs on the dud-jettison panel, close the manual shutoff valve, and be sure that the pneumatic lines leading to the dud ejectors are vented.

Before applying air pressure, be sure that all air connectors are secure; a loose air connection is dangerous.

The missile air flask is charged in the checkout area before mating of a Terrier or Talos missile. Permit only one man in the checkout area during charging of the air flask. Remain behind protective shields while charging the air flask, and for 5 minutes after charging. Do not charge or top-off more than one missile air flask at one time in the same checkout compartment. Never exceed the maximum stabilized air pressure of 3750 psi. Refer to the manufacturer’s table of flask pressures and read the pressure from the air supply high pressure outlet gage, not the missile air flask gage. Discontinue checkout during rough seas. Bleed off air pressure before disconnecting the supply line. If it is necessary to remove the plug from the air fill valve, be sure that the air fill valve does not unscrew.

Be very sure you do not use compressed air where pressurized nitrogen should be used.

Immediately report any leak to the safety officer or the officer in charge of operations.

Inspect threads of couplings before mating. Make sure they are free of dirt, oil, and physical defects. Do not use light oils, benzene, or kerosene as cleaning or lubricating agents in a high pressure air system. These oils vaporize easily and form a highly explosive mixture with compressed air. Do not use oil on gages associated with pneumatic systems, and do not use oil gages on an air system.

Do not kink a high pressure line or hose, nor strike a fitting or an air line that is under pressure. Do not attempt to loosen or tighten any high pressure connection while the system is under pressure.
PRESSURIZING AIR FLASKS, TANKS, AND BLADDERS

Some uses of compressed air in missiles and launching systems were mentioned in Chapter 7. Depot testing of missiles with a pneumatic test set is briefly described. High pressure air is used for that test. Before energizing the equipment, make sure that all hoses are connected firmly both to the test set and to the missile. The hoses require replacement at stated intervals, and oftener if found defective. Inspect them each time before using.

Be sure that there is no oil or grease near high pressure air lines or fittings. High-pressure air and petroleum make an explosive combination.

Be careful not to come into contact with any of the compressor or discharge pipes as they operate at a temperature of around 200°F. Be careful not to get in the path of high pressure air; it is extremely dangerous.

Before applying air pressure to the missile, be sure all the connections are tight and the air hoses are attached to rigid supports.

Do not remove air supply lines to the missile while air supply is pressurized. Shut off the air supply at the test station and bleed pressure from the lines before removing the line from the missile. Do not strike a fitting or an air line that is under high pressure.

Do not attempt to loosen or tighten any high-pressure connection while the system is under pressure. Personnel must be thoroughly trained and checked out on a high pressure system before being authorized to operate the system.

Anti-icing systems use an air bladder to provide pressure for the hot water tank. It is charged to 10 PSI and not over 12 PSI. While servicing or troubleshooting the anti-icing system, be sure the launching system cannot be activated.

USE OF AIR PRESSURE GAGES

Gages used to measure pressure are described and illustrated in Basic Machines, NAVTRA 10624, and in Fluid Power, NAVTRA 16193. Dropping a gage may permanently damage the calibrated units. When gages are not in use they should be stowed in a dry place.

Do not use oil on gages associated with pneumatic systems. Keep the gages clean at all times. Do not use an oil gage on air systems.

Carefully observe sequence of operations as outlined in the procedures to prevent damage to low-pressure gages, controls, and connections.

Keep pressures within safe range by frequent checks of the gages. Don't let the pressure become dangerously high before you do something about it. Relieve the pressure by means of a relief valve or switch and then look for the cause of the trouble and remove it. Do not open or close the valves rapidly, unless authorized to do so.

Use no oil when calibrating gages. Even a minute amount of oil is an explosion hazard in a high pressure air system.

On equipments where there is an installed air pressure gage, as in the dud ejector, be sure all air supply is closed off before attempting to remove any part of the equipment, such as the filters. Close the manual shutoff valve on the jettison panel, and be sure all air lines leading to the ejector are vented.

AMMUNITION AND EXPLOSIVES SAFETY

Because of the dangerous nature of munitions, you have been reminded of safety precautions with regard to explosives throughout your Navy career. You should know the cautions and warnings quite thoroughly by now, and remind those with you of the rules.

HAZARD CLASSIFICATIONS

The hazard classification of each type of explosive has been determined through tests at firing ranges, research activities, and manufacturing establishments. The combinations of explosives used in missiles have also been tested. Shipboard, you will not be concerned with meeting the regulations of the Interstate Commerce Commission (ICC) for shipment of explosives, but at a depot, you must make yourself familiar with the ICC regulations on shipment of missiles and missile components. The color code painted on the ammunition indicates its hazard classification. The specific hazard classifications...
and stowage compatibility are provided in OP 5, Ammunition Ashore, and OP 1631 Ammunition Hazard Classifications, Dimensions, and Weights. Be sure you have the latest revision. OP 2165, Navy Ordnance Shipping Handbook, gives instructions for packing and marking specific items. As new items are tested, instructions are issued to cover them.

Shipboard you check the condition of the magazine where the missiles and missile components are to be stored; at a shore base you check the buildings that are to be used. Different types of structures are used for munitions of different hazard classification. The distance between buildings, distance from occupied dwellings or offices, distance from roads or streets, and other specifications must be met. If you have duty at a shore base, you need to study the regulations that apply to the explosive components that you have to stow. There are many of them, but they are necessary because of the dangerous character of the materials being handled.

STOWAGE FOR SPECIAL TYPES OF EXPLOSIVES

The assembled missiles are stowed in the missile magazine of the launching system, as you know. The extra components, or spares, are stored in magazines and lockers according to their hazard classification. Throughout the text you have been reminded where to stow or not to stow.

PYROTECHNICS

One of the most frequent reminders concerns the stowage of flash signals and flares. All pyrotechnic items are easily actuated, and must be so in order to serve their purpose, but that also makes them very dangerous. While the quantity of explosives they contain is small, they are a terrible fire hazard. When handling any pyrotechnic items, grasp them securely to avoid dropping them. Do not disturb the actuating mechanism, whether it is a tear tape, a wire, or other device.

The flash signals used on missiles are treated as pyrotechnic ammunition. Like fireworks, they are easily set off and will quickly ignite other flammables nearby. Precautions are as follows:

1. Dissipate static electrical charges before they are able to reach pyrotechnics. Sparkproof shoes, tools, and other safety items should be used when working with pyrotechnics. The flash signals used on missiles are treated as pyrotechnic ammunition. Like fireworks, they are easily set off and will quickly ignite other flammables nearby. Precautions are as follows:

BOOSTERS.—To the inexperienced eye, boosters are inoffensive looking items. Nothing could be farther from the truth; they are deadly.

1. Never jar, drop, bump, or otherwise subject boosters to shock. They are sensitive to both shock and friction.
2. Never use nails to secure covers on boxes containing boosters—use screws on wooden boxes.

FUZES.—Fuzes contain delicate mechanisms and sensitive explosives.

1. Any fuze from which the safety pin has been removed must be considered armed. No exceptions are considered.
2. A fuze dropped from a height of 5 feet or more (when packaged) must not be installed. Set it aside and dispose of it as instructed. This may involve destruction or sending it back to the factory or depot. When not packaged, a drop of 1 foot or more is sufficient to require return or, if armed, disposition in deep water.

INERT MUNITIONS.—Inert munitions in-
include such things as wings and fins, and dummy or training missiles. The weight and mass of inert ammunition require care in handling to avoid accidents. The weight can crush a man if it falls on him. Edges of wings and fins can inflict cuts. Dents or bends can cause erratic flight of the missile.

Exercise heads without the destruct charge can be stored as inert items. When the destruct charge is assembled into it, it must be handled as class A explosive, the same as a warhead.

Liquid Propellants and Fuels

The Talos missile uses a ramjet liquid fuel which is put in at the depot. This fuel is JP-5; it is flammable and its vapors form explosive mixtures with air. It is moderately skin irritating but its main danger comes from accidentally swallowing some of the fuel. Do not induce vomiting if fuel is swallowed accidentally, except on medical direction. Clothing contaminated by the fuel should be promptly removed, and the skin washed with soap and water as soon as possible.

The fire danger comes from fuel spills, fuel in storage, or burning fuel streams. Wipe up fuel spills promptly; sand and dirt will absorb spills. Do not allow accumulation of oily rags, waste, or papers.

Do not inhale vapors of the fuel. If the area is poorly ventilated have canister type gas masks or respirators at hand.

Shipboard you are provided with only enough JP-5 fuel to top off the tanks. Handle it with the same care as larger quantities—store in a cool place, free of combustibles. Take care not to spill it on yourself or on the deck. Promptly clean up spills. Wear goggles or a face shield if fuel splashing is likely to occur. Wear non-sparking or static-conductive type shoes. Do not permit open flames or spark-making equipment in fuel-handling areas. This includes smoking paraphernalia (matches, lighters).

Be sure the missile is grounded to prevent static buildup.

Hydraulic fluid, fuel, or other flammables must not be stored in or near any space where explosive components will be stored or handled.

S&A Device

Every missile has an S&A device. In the assembled missile it is attached to the center of the warhead or the exercise head. The spare S&A devices are stored in the fuze and detonator locker or magazine, each one packaged in its container. Do not subject it to rough handling. An S&A device that has been dropped 5 feet or more (in its container) must not be used. Do not use an S&A device that has been dropped 1 foot or more when out of its container. Repackage the dropped unit and request disposition instructions from NAVORDSYSCOM.

Do not test or disassemble an S&A device.

Make certain that the S&A device is in SAFE condition (fig. 12-1). If it is found to be ARMED, it must be disposed of according to instructions from NAVORDSYSCOM (disposed of in deep water).

Do not attempt to force the arming mechanism into position, or tamper with it. Do not install a damaged S&A device.

The S&A device is connected to the warhead booster by a flexible explosive lead, similar to "primacord" in construction. It has an explosive-filled cup at either end for attachment. It should be handled and stored as a high explosive. Do not kink or strike the explosive lead, or try to stretch it to fit, or force it in any way.

Igniters

The igniter assembly is supported in the center of the headcap of the booster by an arming ring. It contains the ignition charge (black powder) and two ignition element diverters. In the armed condition, the squibs may be activated by electrical signals sent through contacts on the forward launching shoes of the booster. Figure 12-2 shows the ARMED and SAFE positions which you observe. Do not tamper with the arming mechanism. Handle it as a high explosive. Spare igniters are stored (in their containers) in the fuze and detonator locker. They are not tested aboard ship.

Verify that the booster arming device is in the SAFE position during all handling operations, and that the igniter assembly is in the non-
Do not approach a misfire for at least 20 minutes. This time varies for different missiles; follow ship's doctrine.

INCREASE IN HAZARD THROUGH DETERIORATION

Explosives deteriorate because of moisture, heat, sun, cold (freezing), and age. The degree of damage varies with the type of explosive. To the above factors, physical damage may be added. Powdered propellant, for example, is much more dangerous than pressed propellant. It will catch fire much more readily. It can explode. A crack in a propellant grain can cause uneven burning or it might cause it to explode instead of burn. Its behavior becomes unpredictable. That's why you must not use a booster that has been dropped. The same thing may happen to the high explosive in the warhead; its behavior cannot be depended on. The shock of the fall can set off some of the very sensitive high explosives. A drop of only a few inches can trigger a detonator, or a fuze. Be very careful not to drop or bump any of these sensitive explosives.

Even with the best conditions, smokeless powder deteriorates with age. Its behavior becomes unpredictable. Therefore, age limits are set for missiles; the missiles are returned to a depot or factory after the expiration date. Temperature limits are set for each type of missile. Exposure to excessive temperatures affects the explosives in the missile. Missiles exposed to excessive temperatures must not be used, but must be returned to the depot or factory for reworking. Exposure to a hot sun is one way in which missiles become overheated. This is more likely to occur on shore stations than on shipboard, where you promptly strike down the missiles and missile components as they are delivered on the ship. Storage problems are compounded at an advance base. These are discussed in OP 4, Volume 3, Ammunition Ashore, Advanced Bases. Instructions are included for stowage of pyrotechnics, fuzes, primers, igniters, boosters, detonators, tracers, and other components. If missiles have to be stored at such a base, they need to be given the same protection as bombs, rockets, and torpedoes. The problems will vary with the climate of the region, the shelters and the transportation...
available, and other local factors.

The temperature and humidity limits for nuclear warheads are clearly defined in the Navy SWOP for each Mark and Mod. If there are nuclear warheads in any of your missiles, study the applicable SWOP and follow the regulations prescribed.

Excessive vibration can break down an explosive so it becomes dangerous. Cushioning of explosive components in containers, and blocking and bracing of containers, are two methods used to reduce vibration. In overland transportation, such protection is especially necessary, but prevention of unrestrained movement is also necessary on shipboard. The missiles are secured in the trays in the ready service ring. The spare components must be securely stowed in their magazines so they cannot roll about.

SAFE TRANSPORTATION OF EXPLOSIVES

The Navy's safety record in transportation of explosives has been good; let's make it even better.

The rules for transportation of explosives and other dangerous articles are made by the Interstate Commerce Commission (ICC). The regulations are known as Agent T.C. George's Tariff (latest edition), and apply to shipments via common carriers (barges, trucks, trailers, railroad cars, boats, etc.). When you return missiles or components to be utilized, at least part of the way, and therefore ICC regulations apply, as well as Navy shipping regulations. Transportation by freight, express, or the Coast Guard (CG 108) is covered by the rules. The shipment of explosives in any form by mail is forbidden. The regulations are very comprehensive and specific. OP 5 (Volume 1), Ammunition and Explosives Ashore, Safety and Security Regulations gives thorough coverage to the rules.

Safety in transportation of explosives begins with the proper packaging. When you are preparing components for shipment, use the container designed or designated for each item and use the cushioning and blocking material made to fit the item and the container. It is not so much the quantity of cushioning used, as the fit and design of it. It is important to prevent movement of the item inside the container. A small amount of cushioning and bracing, snugly fitted, is more effective than quantities of loose material that can shift about.

During the packaging operation, safety precautions must be observed. Firefighting equipment should be at the ready. The smoking lamp is out. Handling equipment must be in safe condition. Nonsparking tools are to be used, and no spark- or heat-producing operation, such as welding, may be carried on in the space. As a general rule, metal containers should be kept grounded. Check the grounding requirements for the components you are packaging. In no case should a ground strap lie across, or be attached to, an umbilical connector of an assembly containing an explosive component. A warhead container must be grounded before inserting the warhead, and the warhead must be grounded while it is outside the container. Only authorized personnel may be in the area where the work is being done.

Motors must also be grounded during handling and packing operations. The container must be grounded before inserting the rocket (missile) motor (or opening and removing it). Do not get behind the motor, where you would be in the path of the blast in case of an accidental ignition.

Do not bring power lights or power cords near the motor. Use a safety flashlight to inspect the motor.

When packaging a nuclear warhead, follow the instructions in the applicable Navy SWOP. Mark the container in accordance with the SWOP. Containers of conventional explosives are marked according to ICC rules. This includes the hazard classification and the nomenclature.

Before closing a container, make sure that the explosive component is in the SAFE condition. If you believe an explosive component is in hazardous condition and should not be shipped, get the approval of your officer to dispose of it in deep water, without delay.

If the container is a wooden one, use only nonsparking tools for driving the nails or inserting the screws for closing the container, and be very careful to drive the nails into the container only. If packing lists must be attached by nailing, use tacks that do not penetrate through the wood container.

The applicable OP gives the detailed-pack-
GUNNER'S MATE M I & C

aging procedure for each type of component. If the item is to be shipped by common carrier, the packaging must meet ICC standards as well as Navy standards. Pyrotechnics, for example, must be specially packaged to keep out moisture. One method used by manufacturers is to package the items in corrugated board cartons and seal out moisture with a paraffin dip. A number of cartons then are placed in an outer container of wood. Metal-lined wooden boxes may be used when there are no facilities for sealing the inner boxes.

Shipment

Whatever method of shipping is used, always make sure that the handling equipment is checked out just prior to use. Supervise the men closely and be sure there is no rough handling or dropping of any component. Do not neglect to follow up on any dropped item; the damage may not be visible to the naked eye, but it can be serious, even critical.

SHIPMENT BY COMMON CARRIER. Many missiles and missile components are transported by truck, trailer, and/or railroad car. The components must be blocked and braced so they will not move about during transit. The quantity and type of material to be used has been computed by ICC to give a margin of safety. Follow the instructions laid down for the shipment of your packages or containers, even though the amount of blocking and bracing may seem excessive to you. It has to be strong enough to take care of contingencies that may occur.

Explosive items must not be left untended on the pier, dock, or loading platform and must not be left overnight.

The driver of the truck or other vehicle hauling the explosives must read and sign the safety instructions before he starts on his trip. He must know what to do in case of accident, breakdown, fire, or other emergency.

SAFE DISPOSAL OF DAMAGED EXPLOSIVES

Missiles deteriorate with age, and suffer damage from moisture, heat, shock, rough handling, or malfunction of components. Before the missile reaches a dangerous stage from deterioration, you package it in its container and return it to a depot for rework. Missiles damaged by rough handling, or by failure of a component, as in a dud, are also returned to the depot. Only if the missile is endangering the ship, as in a misfire that might explode on the launcher, is a missile jettisoned. No rule of thumb can be given; the danger has to be assessed on the spot and the decision made by the officer.

If the stability and compatibility of ammunition or an explosive is not known, it shall be given separate stowage, and instructions for its disposal requested.

The preferred method of disposal of dangerous explosives is by dumping at sea, in deep water. If the material is not heavy enough, it must be weighted so it will not rise to the surface after dumping.

For routine disposal, authorization must be obtained from NAVORDSYSCOM. Explosive Ordnance Disposal (EOD) personnel and qualified graduates of the explosive Ordnance Disposal School may be called on in an emergency and, if no one is available, immediate disposal must be made by the commander and other ship's personnel. You can't wait for someone to tell you what to do in an emergency situation.

SAFETY FEATURES OF MISSILES

Most fuzes contain one or more safety features designed to prevent premature firing. When set at SAFE and packaged in containers, they are protected against stray radiation, but dropping them is always a hazard. Fuzes, primers, tracers, boosters, and detonators are all explosive hazards; they are sensitive to shock, friction, and heat. They must be handled with care at all times, and cushioned and supported against shock.

The arming plug is not added to the missile until it is in the assembly area preparatory to firing, and only one missile is armed.

The safing devices provided for explosive actuating circuits and components are designated by different terms: safety switch, arming plug, shorting clip, shorting plug, safing and arming device, etc. The purpose of each is to prevent the electrical impulse from reaching the explosive before time.

Grounding wires or straps are other safing
devices used on explosives containers and on explosive components while removing or packaging components and during tests and maintenance operations.

The safety devices on nuclear warheads are multiple. They are described in the Navy SWOPS applicable to each type.

RADIATION

Radiation dangers are of several kinds. Nuclear radiation is probably the most feared, but there is also radio-frequency (RF) or electromagnetic radiation. Electromagnetic radiation may be further classified according to frequency as Hertzian, infrared, visible (light), ultraviolet, x-rays, and gamma rays. Cosmic radiation is a mixture, not completely identified.

NUCLEAR RADIATION

With so many of our missiles carrying nuclear warheads, many of our ship’s crews live with nuclear dangers. The multiple safety devices on each weapon make accidental detonation almost impossible, but there is always the chance of human errors. The accidents that have occurred have been due to carelessness or neglect by the men handling the weapons. Neglect in checking of handling equipment has been a prominent cause of incidents. Improper procedure in removing or installing a warhead is another common cause of incidents. There has never been an accidental full-scale nuclear detonation but there have been many cases of incidents. Each one is investigated and reported. When you read the reports of the investigations (your publications custodian will have them), you can readily see that observation of simple safety rules would have prevented almost all of them.

A bulletin published quarterly, Nuclear Weapons Safety, discusses various aspects of nuclear safety, safety of particular weapons, results of NTPIs and NWAIs, and analysis of incidents. Most of the issues are classified Secret. They can give you valuable information to aid your safety program, and your plans for drilling your men in safe procedures.

Detection and Measurement

The instruments used to detect and measure nuclear radiation are called Radiac instruments, meaning Radioactivity, Detection, Identification and Computation. Different types of instruments are used for different purposes. Those used to measure radiation after a nuclear attack or an accident are survey instruments. On nuclear submarines, installed equipment monitors the air continuously. Continuous monitoring of nuclear weapons storage spaces on surface ships is no longer required. Portable radiac instruments are used in the shops, assembly or checkout areas, and storage areas where anyone is working in the area. The instructions for operating the monitor are packed in the carrying case with it. Since many ships have no GMTs aboard, you will need to learn how to operate the instrument. The IC/T2-PA is a portable meter that can be plugged into an 115-V a-c, 60-hertz outlet. It has an audible alarm that is triggered by the presence of radioactive particles in the air. Monitoring of individuals who are believed to have received some radiation is done in the medical department.

The medical department also keeps records of the amounts of radiation received by individuals. Decontamination of the ship is done by Hull Technicians and under their supervision. Control of day-to-day contamination in the missile spaces is your responsibility. Minor spills of nuclear material can be wiped up with absorbent paper and the wipes placed in the can for contaminated waste, which is later disposed of at sea. The waste may not be burned, as fire does not destroy radioactivity. Wear protective gloves while cleaning up. Other personnel should be sent out of the area until the cleanup is finished and the radioactivity is reduced to a safe level.

In case of a major spill evacuate the area, close it off, and send for the decontamination team. They will wear protective clothing and OBAs.

Protection Against Nuclear Radiation

The use of protective clothing and of shelters, and the methods of decontamination are described in Basic Military Requirements, NAVTRA 10054, with regard to nuclear attacks, where there are massive quantities of radiation.
However, the same care must be exercised when the quantities of radiation are much smaller, as in a slight incident with a nuclear warhead. Constant association with the deadly nuclear giant may make you careless and complacent. Don't forget that the danger is always there, even though surrounded by numerous safeguards. Prevention is the best protection.

Peacetime Safety Rules

Fear of nuclear radiation from nuclear weapons is worldwide: every nuclear warhead is viewed as a potential cause of another Hiroshima. The need for extreme caution in peacetime operations with nuclear missiles is obvious. Safety rules were developed by all the services and were written into the Navy SWOPS and the check lists and the MRCs for each missile and nuclear weapon. The standards set up by OPNAV to be applied in all the studies setting up the safety rules were:

1. There will be positive measures to prevent weapons involved in accidents or incidents, or jettisoned weapons, from producing a nuclear yield.

2. There will be positive measures to prevent deliberate arming, launching, firing, or releasing except upon execution of emergency war orders or when directed by competent authority.

3. There will be positive measures to prevent inadvertent arming, launching, firing, or releasing.

4. There will be positive measures to ensure adequate security.

These criteria were observed in preparing the nuclear weapons peacetime safety rules. It was also recognized that information to the public is of great importance to allay fears. Definite rules and procedures have been established for the informational angles in case of an accident or incident. OPNAVINST 8110.16 gives those instructions. The most recent revision consolidates a number of instructions and documents on nuclear accidents and incidents. Your CO is responsible for preparing releases in case of an accident or incident, but you should be aware of what is required.

RF OR ELECTROMAGNETIC RADIATION

Chapter 8 told about the studies made under the HERO and RAD HAZ programs to discover the dangers of RF radiation to people, explosives, and fuel. The tests and studies are being continued, and any changes in the rules will be published as changes to the basic OP 3565. NAVORD has the responsibility for making the changes.

Ordnance Protection

Sources of RF radiation are the communication equipment and the radars. The majority of the ordnance systems tested have proven to be HERO SAFE and HERO RELIABLE if just a few general precautions are followed. An assembled Tartar or Talos missile is HERO SAFE, but HERO UNSAFE when being tested disassembled. Radar transmitters must be silenced during operations when missiles are HERO UNSAFE. If within the distance limits, radar transmitters on other ships must also be silenced. The minimum safe distance for a particular radar may be looked up in OP 3565, (Technical Manual Radio Frequency Hazards To Ordnance, Personnel, and Fuel). Greater standoff distance is required for ships with large amounts of transmitting equipment, such as command ships, and communication ships.

Avoid touching any exposed firing contact, wiring, or other exposed circuitry with the hand or any metal object or structure such as a metal steering hook, or screwdriver.

To prevent accidental touching of electrical connector pins, cover the connectors with nonmetallic caps.

Do not expose internal wiring or firing circuits by unnecessary disassembly.

Electrically insulate all steering hooks or loading hooks used with loading cranes, booms, burtoning wires, etc. Use nonconductive rope, strain insulators, or similar material.

When handling missiles with nuclear warheads, follow the SWOP checklist exactly.

HERO UNSAFE ordnance, such as flash signals, igniters, tracking flares, unshielded rocket motors, warheads, and exercise heads,
should not be stored in the same space with exposed electronic transmitting apparatus or with any exposed antenna or transmission line. Transport all HERO UNSAFE ordnance in completely enclosed metal cases whenever possible. Unshielded items are not permitted on the weather deck or the flight deck. As far as possible all handling should be below decks.

A missile that is HERO SAFE in the assembled state, becomes HERO UNSAFE or HERO SUSCEPTIBLE in different stages of disassembly.

The auxiliary power supply (APS) of a Tartar missile may be ignited by RF radiation when it is undergoing test or disassembly on the launcher. Stay at least three feet from the APS ports when standing in direct line with them.

Personnel Protection

The Bureau of Medicine and Surgery has established safe limits of RF radiation to humans based on the power density of the radiation beam and the exposure time of the human body in the radiation field. The non-thermal effects on the body are still being studied.

The Naval Ship Systems Command has the responsibility for determining the hazardous shipboard areas and ensuring that the RF radiation hazard to personnel is minimal, or non-existent. All hazardous areas are posted with warning signs, and the ship's intercommunication system is used to warn personnel when the radars are operating. Observe the warning signs and avoid entering those areas. Some of these areas will be permanently marked, and others temporarily.

Fuel Hazards

Volatile fuel-air mixtures are most likely to occur near aircraft fuel vents, open fuel inlets during over-the-wing fueling, and spilled gasoline. Obviously, the most danger of fuel ignition by RF radiation is on aircraft carriers. The danger of fueling with JP-5 (which you use to top off the liquid fuel container of the Talos missile) is not considered significant. The use of nonsparking equipment reduces any hazard.

OTHER RADIATION HAZARDS

You are bombarded with cosmic rays whenever you are in the open air. Whether this is good or harmful has not been proven. It is known that overexposure to the sun is harmful. Frequent suntans can cause skin cancer.

Overexposure to X-rays is a cause of cancer. Early experimenters with X-rays did not know this and many of them succumbed to cancer. Doctors now are careful not to use an excess of X-rays. Each man's medical record lists the dates when X-rays were taken, so there is no duplication or overexposure. The technicians who take the X-rays must step behind a lead curtain to protect themselves while they are taking the X-rays.

Luminous paints that contain radium emit rays constantly. There is no record that anyone wearing a wrist watch with a radium dial received enough radiation to be harmed: the workers who painted the dials were the ones who died of bone cancer.

GASES, VAPORS, AND TOXIC MATERIALS

There are so many poisonous and toxic materials all around us, maybe we sometimes wonder how we manage to escape. We will review only those that are a particular hazard in association with military life.

CARBON DIOXIDE

The use of carbon dioxide as a fire extinguisher in missile magazines makes it an ever-present hazard. The dangers were discussed in chapters 8 and 10. The use of CO2 extinguishers, portable and installed, was discussed in Basic Military Requirements, NAVTRA 10054, in connection with damage control on shipboard. No mention is made in that text of the CO2 installations in missile magazines. Although CO2 is not toxic, it displaces air and kills by suffocation. Since it has no odor, a man can be overcome before he realizes what is happening to him. The warning system attached to the missile magazine CO2 system must always be in
operating condition. If the warning system indicates that the CO₂ system has been activated, do not enter the magazine until it has been thoroughly ventilated. If it is necessary to enter the magazine before it is completely free of CO₂, be sure to wear an OBA or an airline mask. A filter mask may not be used, as it does not filter out the CO₂. Do not use a canister type gas mask. Always have a person posted outside the magazine to render assistance.

Before anyone is allowed to go into a magazine with a CO₂ installation, make sure the supply of CO₂ is shut off. Disconnect the control and discharge heads and cap the connection to the supply tanks, before entering the magazine. Just closing the valves is not enough; they can be opened accidently. Be sure the CO₂ supply cannot be turned on while anyone is in the magazine. Immediate application of artificial respiration is necessary for anyone overcome. The standby observer must be qualified to give artificial respiration. Brain damage results if the brain is without oxygen for even a few minutes; therefore speedy resuscitation is necessary.

CARBON MONOXIDE
Carbon monoxide (CO) is odorless and colorless but its effects are deadly. It results from smouldering fires, exhaust gases, or whenever carbon burns. As little as 9 parts of gas in 10,000 parts of air will cause nausea and headache, and slightly larger amounts will cause death. It may cause headache before unconsciousness comes, but in most instances the person becomes drowsy and then unconscious. One symptom that distinguishes carbon monoxide poisoning from other types is the bright cherry-red color it often causes in the skin, lips, and the eyes and inner edge of the eyelids. Death results quickly. Before entering any space that has been closed, ventilate it, or check the air for gases, or wear an OBA or an airline mask if you must enter the space. Remove a victim to fresh air before giving artificial respiration, but it must be done quickly. Methods of artificial respiration are described in Standard First Aid Training Course, NAVTRA 10081.

EXHAUSTS FROM MISSILES
The exhaust from missiles is a double threat—

from heat and from the noxious quality of the gases. The APS gas generator is classed as a fire hazard and the gases produced are toxic and may be explosive if confined.

The blowout pipe in the checkout area must be connected to the missile during checkout. If there is an accidental ignition, the exhaust is ported out through the blowout pipe.

The deck area near a launcher must be cleared before a missile is to be fired.

At all times, personnel should keep clear of the exhaust cone of a missile motor.

Deep clear of the exhaust vent of a missile magazine. If you have to pass the vent, do so quickly.

The blast doors must not be opened when there is a missile on the launcher.

MISSILE FUELS
At present none of the missiles you handle use "exotic" missile fuels. The precautions for solid missile propellants and the liquid fuel used for the Talos missile have been reviewed. The prepackaged liquid fuel used in the Bullpup missile would be a fire hazard if a leak developed. If you have these missiles aboard, follow the rules for handling as given in the OP for the missile.

OXYGEN, HYDROGEN, NITROGEN,
AND OTHER GASES
Although oxygen, nitrogen, and some carbon dioxide make up the air you breathe, the safety precautions are concerned chiefly with compressed gases, obtained either from ship's lines or from tanks. For stowage purposes, ALL compressed gases of ANY type are classed as dangerous materials.

So much injury and damage can be and has been caused by mistaken cylinders that a national program has been established to make it almost impossible to confuse cylinders. The identifying features include the color code for painting the cylinders, the name of the gas stenciled along two sides of the cylinder, two identifying decals placed on the shoulder of the cylinder, and a code letter (X for oxygen). With all these ways of identifying the
contents of a cylinder, there should be no excuse for making a mistake.

OXYGEN.—Because oxygen makes explosive combinations with many substances, especially the hydrocarbons such as oils, fuels, and greases, compressed oxygen is not supplied to missile spaces.

NITROGEN.—Compressed nitrogen in cylinders is one of the expendable materials supplied for your work. Where ship’s nitrogen is available, nitrogen in cylinders is not supplied.

Although nitrogen is not toxic, it can asphyxiate you if it replaces all the oxygen in the air. It is an inert gas and does not support combustion. The rules for safe handling and stowage of cylinders of compressed gases apply.

If a nitrogen tank must be disconnected for repairs, as in the dud jettison device, be sure it is vented to the open air before you disconnect any lines.

HYDROGEN.—Hydrogen is classed as a fuel gas; the cylinders are painted yellow with a brown band at the shoulder. It is highly flammable, and will explode if it is mixed with air (5 to 75% by volume) and contacted with hot metal, sparks, or flames. It is used for underwater welding and cutting operations, and for inflating barrage balloons. Liquid hydrogen is used for fuel in some missiles. Normally, there will be no hydrogen storage cylinders in missile spaces.

WAR GASES

The different gases used against the enemy are discussed under NBC warfare in your military texts as chemical warfare. Some are intended to be deadly and others are merely incapacitating. All major nations have arsenals of these agents. Since World War I, fear of reprisal has prevented the use of fatal agents or those producing permanent disability. The use of materials that disable temporarily has increased.

G Agents

Gases that affect the nerves are called “G” gases. There are several kinds, all deadly in a short time. As part of your disaster control training, you need to recognize the symptoms they cause, as they cannot be detected with any certainty by the senses. They can be detected with a special chemical kit, but this is of doubtful value because it would delay donning of a protective mask.

CHEMICALS

Some chemicals are dangerous in themselves and others become dangerous when they contact other materials. Some may not be stored near flammable materials. For stowage purposes, they are classified as safe, semisafe, and dangerous (NAVSHIPS Technical Manual). The semisafe materials are considered safe unless the container is opened or there is leakage. Many of the acids are included in the category—they are safe unless spilled, and are not explosive or highly flammable. Trichloroethylene, which you use for cleaning, is classed as semisafe.

Dangerous chemicals include all the compressed gases and materials involving considerable hazard or having other dangerous characteristics, whether in containers or not. Electrolytes, both the acid and the caustic types, and many of the cleaning compounds, such as methanol, Stoddard solvent, and toluene, are listed as dangerous.

Naked lights and spark-emitting devices must not be used in compartments containing semisafe or dangerous materials. Sodium igniters must not be fought with water; therefore stowage spaces for sodium igniters must not be equipped with sprinkling systems. Other ammunitions that must not contact water are white phosphorus, smoke pots, torpedo torch pot, and flash signals. An OBA must be worn when smoke-producing chemicals or munitions are in a fire.

OTHER TOXIC MATERIALS

Many mixtures, compounds, gases, and chemicals that you use or come in contact with rather frequently are unsafe if improperly used. Among these are batteries, cleaning solvents, epoxy compounds and their solvents, vinyl resin adhesives, and certain chemicals. Many of these materials are used in repair and maintenance work.
A few materials are so dangerous, chiefly to human life, that they are not permitted aboard ship. These are: DDT xylene emulsion, hydrocyanic acid gas, methyl bromide, and carbon tetrachloride.

Broken fluorescent lights present an additional danger of poisoning. The mercury vapor sealed into the lights is poisonous to breathe. Dust from the coating on the interior of the lights is poisonous to inhale, and is also dangerous if it gets into cuts or abrasions. A number of fatalities have been traced to cuts received while disposing of broken fluorescent lights. Place the defunct fluorescent tube in the empty container which held the replacement. Do not break it up.

BIOLOGICAL AND CHEMICAL WARHEADS

These warheads are not carried aboard ship except by special authorization from NAVORD-SYSCOM or higher authority, and then they are accompanied by trained personnel. However, you must know how to protect yourself against such attacks by the enemy, or possible accidental rupture and spilling of those on board. They are built in a very rugged way and careful handling will prevent accidents with them. If you have any of these special warheads aboard, you will be given special training in detection and decontamination techniques, and handling of emergency equipment.

If any biological or chemical agents are spilled or released don a protective mask immediately and move upwind from the source. The VX nerve agents are absorbed primarily through the skin, and a mask is therefore not effective against those deadly agents.

Self-protection and first aid methods for each type of BW/CW agents are given in brief in Basic Military Requirements, NAVTRA 10054 and more fully in Disaster Control (Afloat and Ashore), NAVTRA 10899 and in Standard First Aid Training Course, NAVTRA 10081-B. In your shipboard training exercises, you will probably have to give first aid drills for simulated attacks with different types of gases.

FIRES

Fire at sea is a dreaded catastrophe. You have received training and drill in fire prevention and firefighting since you came aboard. Now it is up to you to organize and administer a safety program applicable particularly to your missile system. Preventing and fighting fires is a big part of that program.

Some of the worst holocauts on shipboard started in the ammunition or explosives. The sprinkler systems in the magazines usually can take care of the stocks in the magazines (if they are turned on soon enough). Careless handling and transportation of explosive components is a frequent cause of explosions and fires. You learned about the use of different types of firefighting equipment in Basic Military Requirements, NAVTRA 19054 and which was best for Class A, B, or C fires.

FIRES IN EXPLOSIVES

When the missiles are assembled and stowed in the magazine, they are protected against fire by automatic sprinkling systems, water injection systems, and carbon dioxide flooding systems. When the missiles are partially disassembled in the checkout area, you have to depend on portable extinguishers and fire hoses. On the launcher, you again have to depend on these two methods, and you may have, in addition, foam and fog nozzles.

If the missile contains a nuclear warhead, extraordinary efforts must be made to prevent detonation. Keep away any nonessential personnel and make every effort to cool the missile to a temperature below the detonation point (below 300°F). Foam spread over the entire weapon will radiate heat away from it and protect the weapon from nearby flames (if the weapon itself is not in the fire). Do not break the blanket of foam with streams of water. When fighting fire involving explosives, seeks as much cover as possible and do not expose yourself unnecessarily to intense heat, flying fragments, and possible explosions.

All personnel who have helped with the firefighting or have been in the area must be monitored for contamination. Any who have received nuclear contamination must go through the decontamination showers. Eating, chewing, drinking, and smoking must be forbidden in the area where contamination may be present. A decontamination team may be called to decon-
taminate the area. Any missile, nuclear or conventional, that has been in a fire must be returned to a depot.

If the fire or accident with a nuclear warhead is below decks, it is extremely important to prevent the spread of nuclear contamination to other spaces. Close the ventilation system immediately and turn off any fans in the space. You will need to hold drills so your men will know what to do in case of a fire or accident. Study the Navy SWOPs for the latest rules on what to do when a nuclear component is involved. OBAs are required for any firefighting, rescue, or salvage operations below decks in case of accident or incident with nuclear warheads.

Each ship must train teams for nuclear, biological, and chemical monitoring and decontamination. They perform in case of attacks or accidents. Special teams may be called aboard to assist and direct the shipboard teams. The widely publicized episodes in which nuclear weapons were accidently dropped over foreign soil show the extent of responsibility and involvement of our government. At the same time, it showed how safe the weapons are—there was no detonation although the weapons were dropped from a considerable height. However, our government is still paying damages for the one that broke open and spilled nuclear material on the farms and gardens of the area.

For nuclear accidents aboard a ship there are two broad areas of responsibility. One is responsibility for the action taken by the ship and the other is the responsibility of the appropriate commander ashore.

Electrical Fires

General cleanliness of the work area and of the electrical and electronic apparatus is essential for prevention of electrical fires. Oil, grease, and carbon dust can be ignited by electrical arcing. Electrical and electronic equipment should be kept absolutely clean of all such deposits. Wiping rags and other flammable waste material must always be kept in tightly closed metal containers, which must be emptied at the end of the day's work. Containers holding paints, varnishes, cleaners, or other volatile solvents should be kept tightly closed when not in actual use. They must be stored in a separate compartment or locker.

In case of electrical fire, deenergize the circuit and then use the CO₂ fire extinguisher, directing it at the base of the flames. Never use carbon tetrachloride for firefighting since it changes to phosgene (a poisonous gas) upon contact with hot metal. The application of water to electrical fires is dangerous. Foam type fire extinguishers should not be used on electrical fires as the foam is electrically conductive.

When selenium rectifiers burn out, fumes of selenium dioxide are liberated. These fumes are poisonous and should not be breathed. Deenergize the equipment immediately and ventilate the space. Do not attempt to remove the rectifier until it has cooled; a burn from a hot rectifier might result in the absorption of some of the selenium compound, with serious results.

When using the fire extinguisher, do not allow the tip to touch the electrical panel or energized equipment. The "snow" that forms on the tip should not be touched; it will burn the skin.

Summary

This chapter brings together the safety precautions of all the chapters and adds some that did not fit into any particular place in the text. It is not possible to write rules that will cover all the situations that might occur on a ship or ashore in connection with missiles and their launching equipment. The introduction of nuclear weapons added much to be learned about the effects of nuclear detonations and the best methods to circumvent or remedy the bad effects. The public disaster aspects are covered in other texts. Since GMMs are responsible for handling missiles with nuclear warheads, they must know the safety rules to avoid nuclear accidents or incidents. Much of the necessary information is beyond the scope of this text, and may be found only in the Navy SWOPs. Study them carefully and apply the rules with meticulous exactness.

Zeal in observation of safety rules should be unflagging. Don't let the desire to be popular with your men mislead you to be lax in enforcing the rules. Temporary thoughtlessness or impatience will give way to the clear appreciation of the need for adhering to the rules at all times.
INDEX

A

Accident prevention program, 357
Adjustment and repair of hydraulic systems, 175-182
 at a Navy Yard or repair tender, 181
 shipboard maintenance, 175
Administration and supply, 325-356
 administration requirements, 325
 inventories and surveys, 353-355
 management of ordnance stowage area, 355
 security, 351-353
 Standard Navy Maintenance and Material Management System, 326-336
 supplies for maintenance and repair, 336-351
Advancement
 assignments, types of, 5
 classification codes, 4
 examination, 7-9
 final multiple, 9
 Gunner's Mate rate, 3
 opportunities for Petty Officers, 14
 PNA factor, 10
 rewards and responsibilities, 1-3
 scope of manual, 6
 studying for the test, 7
Air driven handling equipment, 206-210
Air lubricators, 223
Air motors, 222
Air supply, use of, 217
Air throttle valve, 207
Aligning the missile batteries, 284-291
 alignment of launcher, 288-291
 information sources, 284
 system alignment, 285
Allowance Parts List (APL), 341
Ammunition and explosives safety, 367-373
 disposal, 372
 hazards, 367, 370
 igniters, 369
 liquid propellants and fuels, 369
 pyrotechnics, 368
 S and A device, 369
 safety features of missiles, 372
 Ammunition and explosives safety — Continued
 stowage, 368
 transportation, 371
Ammunition and magazines, 229-252
 explosives, dangers of, 231
 inspection and test of explosive components, 234-251
 nuclear warhead weapons, 233
 RF radiation, 230
 safety, 230, 231
Ammunition records and reports, 250
Amplifiers, 129-143
 applications in servomechanisms, 131
 magnetic, 130
 maintenance, 162
 power supply regulator, 132-134
 servoamplifier, 134-137
 synchro testers, 140-142
 synchosystems, 137-139
 troubleshooting synchro systems, 142
 zeroing synchros, 139-142
Angular rate, 255
Angular velocity, 255
AN/SPS-10 surface search radar, 255
AN/SPS-37 long range radar, 258
AN/SPS-39 air search radar, 255
Anti-icing systems, 217
Asroc loading fixture, 212-214
Asroc missiles, 107-114
 care of cable assemblies, 108
 duds and misfires, 111-114
 loading, 108
 torpedo, 112
 unloading, 109-111
Assignment priorities, 5
Assignments, types of, 5
Assistance teams, 335

B

Ballistics, fire control, and alignment, 253-296
 aligning the missile batteries, 284
 equipment of missile weapons system, 254-284
INDEX

Ballistics, fire control, and alignment—Continued
final alignment adjustment procedures, 294
firing stop mechanisms, 291-293
radar alignment, 293
Batteries, 284
Bench mark, 286
Bibliography for Advancement Study, 7
Hi-rail trolley hoist, 206
Boosters,
 disposal, 235
 safety, 368
Bridge cranes, 206
Budgeting and funding, 338

Cam alignment, 293
Captain's panel, launcher, 272
Capture transmitter, 275
Carbon dioxide, 238, 375
Carbon monoxide, 238
Carriage-mounted hydraulic parts, 163
chain driven fixture, 207-210
Chemicals, safety precautions, 377
Classification Codes, 4
Commanding Officer's Narrative Report
 (CONAR), 345
Components used with and/or in missile systems,
 205-217
 air driven handling equipment, 206-210
 pneumatic components of launching systems,
 210-217
 tools, 205
Constant velocity operation, 307
Control system, weapons, 261
Controller and actuator units, 199-204
Coordinated Shipboard Allowance List (COSAL),
 339-341
 disposition of repair items, 341
 in-excess requisitions, 340
 issuing procedures, 341
 ordering supplies, 340
 ordnance segment, 339
 procurement of material, 340
 records and reports, 339
Crane, bridge, 206
Current Ships Maintenance Project (CSMP), 322
Depot handling and stowage,
 Talos missiles, 40
 Terrier missiles, 31-36
Director Assignment Console (DAC), 266
Disposal of explosives, 235
Disposition of repair items, 341
Dud-jettisoning, 86-91, 93-95, 100-107
Dummy director and error recorder, 305-311

E
Ejectors and dud-jettisoning equipment, 215-217
Electrical and electronic safety precautions,
 360-363
Electrical fires, 379
Electrical zero conditions, 139
Electricity and electronics, 115-149
 amplifiers, 129-143
 GMM's responsibility, 115-129
 circuit testing by GMM, 116-127
 control panels, 115, 116
 safety rules, 128
 oscilloscope, dummy director and dual trace
 recorder, 143-148
 servomechanisms, 128
 similarities and differences in, 148
Elevation horizon check, 290
Elevation (train) accuracy test, 148
Entry and access: control, 47
Equipment, missile weapons system, 254
 GMLS capabilities, 255-261
 guided missile fire control system Mk 76,
 275-284
 linear rate systems, 254
 search radar, 265-268
 weapons control system, 261-275
Equipment OPs, 327
Error recorder, 305, 307
Explosives,
 components, inspection and test of, 234-251
 disposal of explosives, 235
 dangers of, 231
 disposal of damaged explosives, 372
 safety, 367
 stowage, 268
 transportation, 371
Fault location lamps, 228
Feedback report, 336
Final alignment adjustment procedures, 294
Final multiple system, 9
Fire protection systems, checking, 302
Fire safety, 378
 electrical, 379
 in explosives, 378
Firefighting equipment, magazine, 241
Firing stop mechanisms, 291-293
Frequency generation operation, 307
Fusible slug, installing, 242
 Fuze delay time, 277

G

G agent, 377
Gases, vapors, and toxic materials, safety, 375-378
 biological and chemical warheads, 378
 carbon dioxide, 375
 carbon monoxide, 376
 chemicals, 377
 exhausts from missiles, 376
 hydrogen, 376, 377
 missile fuels, 376
 nitrogen, 376, 377
 other toxics, 377
 oxygen, 376, 377
 war gases, 377
Guidance transmitter, 276
Guided missile fire control system Mk 76, 275-284
Guided missile launching systems capabilities, 258-261
 airborne, 261
 modes of operation, 259
 surface and shore targets, 259
 underwater targets, 261
Guided Missile Service Record, 346
Guided missile status indicator, 273
Guided missile support facilities, 338
Gunner’s Mate Missile Rating, 3
Gunner’s Mate ratings, 3
Gyros, 284

H

Hand control box, 207
Handling equipment, air driven, 206
Hazardos of Electromagnetic Radiation (HERO) program, 230
Hoists,
 bi-rail trolley, 206
 telescoping, warhead, 206
Hydraulic fluid and equipment safety, 363-365
 hazards, 363, 364
 in missiles, 365
Hydraulic power in missile systems, 151-175
 handling equipment, 151
 hoist mechanisms, 156
 hydraulic schematics, 173
 hydraulically operated launcher components, 163-173
 hydraulics in the feeder system, 151
 loader components, 159
 magazine doors, 157
 tray shift mechanism, 155
Hydraulics,
 in missile launching systems, 150-204
 adjustment and repair, 175-182
 receiver-regulators, 182-192
 testing and maintenance, 192
 trouble analysis, 193
 in missiles, 365
Hydrogen, 377

I

Identification of friend or foe (IFF), 258
Identification, ordnance sources, 342
Igniters, 369
Illuminator transmitter, 276
Inert munitions, 368
In-excess requisitions, 340
Injuries, personal, 351

Inspection and test of explosive components, 234-251
Inspection records and reports, magazine, 348
 Integrated testing, 326
 Inventories and surveys, 353-355
 Inventory Control Points, 338
 Inventory record of small arms and pyrotechnics, 249

Launcher orders, 277
Launcher shipboard performance test, 304-324
 dummy director and error recorder, 305-311
 missile simulator, 311-313
 ORDALTS, 325
 overhaul, 324
 own ship’s maintenance program, 322
 preparation for missile checkout, 318
INDEX

Launcher shipboard performance test — Continued
slow-run-through (SRT), 322
sonar simulator, 315
testing the missile, 316-318
training missiles, 313-315

Launching systems,
Mk 4, 66
Mk 7, 77-79
Mk 9, 63-66
Mk 10, 66-69
Mk 11, 101-106
Mk 12, 79
Mk 13, 70-75, 102
Mk 22, 75, 106

Linear rate system, 254

Loading and stowage plans, missiles, 16-23
knowledge factors, 16-19
planning sequence, 20
radiation monitoring and protection, 20
scheduling of work, 19
security, 19
stowage areas, 20-23

Loading, unloading and dud-jettisoning, 82-114
Asroc missiles, 107-114
Talos missile system, 91-97
Tartar missile system, 97-114
Terrier missile, 82-91

Log, SMS Equipment Status, 347

M

Magazine accumulator power system, 151-159
Magazine inspection records and reports, 248-251
Magazine safety precautions, 240
Magnetic amplifiers, 130
Maintenance Data Collection System (MDCS), 298
Maintenance level responsibilities, 328-329
Maintenance of weapons systems, NavOrdSysCom
program for, 297
responsibilities of GMM, 298
Maintenance procedure, steps in, 298-304
cleaning of parts, 299
lubrication, 300
tests, 301-304
visual inspection, 299

Maintenance, repair, adjust, test, and overhaul,
297-324
Maintenance Requirement Card, 327
Management of ordnance stowage area, 355
Manual control valve, 207
Military Standard Requisitioning and Issue Procedures (MILSTRIP), 343
Missile batteries, aligning, 284-291

Missile component identification, 236-238
color code interpretation, 236
markings, 236
miscellaneous explosive devices, 237
Missile control components and systems, 195
Missile firing report, 344
Missile handling and stowing, 16-50
loading and stowage plans, 16-23
nuclear weapons, 46-48
standard missile, 49
Talos missile, 36-41
Tartar missile, 41-50
Terrier missiles, 23-36
Missile launching systems, 51-81
differences in systems, 57
launcher captain's panel, 53-56
manning stations, 59
NTDS/WDS, 52
power panels, 53
preparation of launcher for firing, 51
safety checks, 57-69, 62
standard missile system, 80
Talos system, 76-80
Tartar system, 69-76
Terrier system, 63-69
test panels, 56
wing and fin assembly areas, 57

Missile orders, 277
Missile simulator, 311-313
Missile Systems Test (MST), 317
Missile weapons system, equipment of, 254-284
GMLS capabilities, 258-261
guided missile fire control system Mk 76, 275-284
linear rate systems, 254
search radars, 255-258
weapons control system, 261-275
Mk 4 launching system, 66
Mk 7 launching system, 77-79
Mk 9 launching system, 63-66
Mk 10 launching system, 66-69
Mk 11 launching system, 69
Mk 11 launching system, dud and misfire handling in, 101-106
Mk 12 launching system, 79
Mk 13 launching system, dud and misfire handling in, 102
Mk 13 Mod 0 launching system, 70-75
Mk 17 depth charge, 112
Mk 22 launching system, 75
Mk 22 launcher dud-jettison system, 106
Mk 22 Tartar system train and elevation power drives, 170
Mk 119 computer, 277

383
NavOrdSysCom program for maintenance of weapons systems, 297
Navy Management Data List (NMDL), 342
Navy Technical Proficiency Inspection (NTPI), 348-350
NEC Coding System, 4
Nitrogen, 377
Nuclear radiation, 373
detection and measurement, 373
peacetime safety rules, 374
protection against, 373
Nuclear warhead inspection, 234
Nuclear warhead weapons, 233
Nuclear Weapons Acceptance Inspection (NWAI), 350
Nuclear weapons handling and stowage, 46-48
alarm and warning systems, 48
entry and access control, 47
human reliability program, 48
safety, 47
two-man rule, 47
ventilation in nuclear weapons spaces, 48

Ordering publications, 343
Open-and closed-loop servosystems, 197
OPNAV Form 4790/2L, 334
ORDALTS, 323
Ordnance identification, sources of, 342
Ordnance material, survey of, 354
Ordnance protection against FR radiation, 374
Ordnance segment of COSAL, 339
Ordnance stowage area, management of, 355
Oscillographs, 143
Oscilloscope, dummy director and dual trace recorder, 143-148
Overhaul, 324
Own ship's maintenance program, 322

Parts, cleaning of, 299
Performance test, launcher shipboard, 304
Personnel reports, 350
PETN, 232
Planned Maintenance Material Management (3-M), 326
Planned Maintenance System, 298
Planned Maintenance System for Surface Missile Systems, 326-328
Plenum chambers, 245
PNA factor, 10
Pneumatic components of launching systems, 210-217
Pneumatic equipment and components, 205-228
components used with and/or in missile systems, 205-217
overhaul, repair, testing, and adjustment, 222-228
air lubricators, 223
air motors, 222
repairs aboard ship, 223
test set TS-1165/DSM, 224-228
ship's air supply, 217-222
Pneumatic equipment safety, 365-367
air flasks, tanks, and bladders, 367
air motors, 366
air pressure gages, 367
high-pressure compressed air, 366
low-pressure air, 365
tools and handling equipment, 365
Pneumatic test set TS-1165/DSM, 224-228
Pneumatic wrenches, 206
Pressure regulator, 207
Pressurizing air flasks, tanks, and bladders, 367
Priority system, 343
Procurement of material, 340
Proficiency pay, 14
Pyrotechnics, 249, 368

Radar alignment, 293
Radar set AN/SPG-55, 275
AN/SPS-10, 255
AN/SPS-37, 258
AN/SPS-39, 255
Radiation safety, 373-375
cosmic rays, 375
detection and measurement, 373
luminescent paints, 375
nuclear, 373
peacetime safety rules, 374
protection against, 373
RF or electromagnetic radiation, 374
X-rays, 375
Rate Training Manuals, 7
Receiver-regulators, 182-192
indicating equipment, 190-192
maintenance of, 194
shipboard adjustments, 192
Talos, 189
Tartar, 184
Terrier, 187
Receiving stands, 206
INDEX

Records,
ammunition, 250
for COSAL, 339
Guided Missile Service Record, 340
inventory of small arms and pyrotechnics, 249
material usage and job data, 336
Relative rate, 254
Repair,
aboard ship, 228
air lubricators, 223
air motors, 222
and maintenance, supplies for, 336
items, disposition of, 341
pneumatic test set TS-1165/DSM, 224
supplies, studies to improve, 341
Reports,
ammunition, 250
completion inspection, 350
CONAR, 345
feedback, 336
for COSAL, 339
missile firing, 344
missiles, 250
personnel, 350
Requisitions, preparation of, 343
in-excess, 340
Rescue of shock victims, 363
Resuscitation, 361
RF radiation, 230, 374
Rules, safety, 360
Safety,
accident prevention programs, 357
ammunition and explosives, 367-373
around machinery, 358-360
at shore stations, 359
checks, 231
electrical and electronic safety precautions, 360-363
fires, 378
gases, vapors, and toxic materials, 375-378
handling and stowage, 358
hydraulic fluid and equipment, 363-365
magazine, 240
moving machinery, 360
obligations, 230
on shipboard, 358
pneumatic equipment, 365-367
programs, organization and administration of, 241-248
during tests and maintenance, 242
installing fusible slug, 242-245
magazine anti-icing system, 245-247
Safety, programs, organization and administration of—Continued
magazine firefighting equipment, 241
missile magazine hazards, 241
plenum chambers, 245
ventilating system, 247
radiation, 373-375
rescue of shock victims, 363
Tartar missile, 43
Search radars, 255
Security, weapons, 19
Seeker head orders, 280
Servoamplifier, 134-137
gain, phase, and balance adjustments, 135
magnetic amplifiers used as servocontrol amplifiers, 135
repair, replacement, or adjustment, 137
review of use in launching system, 134
servoamplifiers in launching systems, 136
Ship Armament Inventory List, 330-331
Shipboard alignment, 285
Shipyard and tender availability, 332-335
Ship's air supply, use of, 217-222
pneumatics in missiles, 220
thermo-pneumatic control systems, 218-220
Ship's Parts Control Center, 337
Shock victims, rescue of, 363
Simple harmonic motion operation, 307
Simulator, missile, 311
Slow-run-through (SRT), 322
Small arms, 249
SMS Equipment Status Log, 347
Sonar simulator, 315
Sonar-to-radar alignment checkout, 293
Stable element, 283
Standard Navy Maintenance and Material Management System, 326-336
assistance teams, 335
feedback report, 336
maintenance level responsibilities, 328
OAR Program, 330
planned maintenance for surface missile systems, 326-328
records of material usage and job data, 336
Ship Armament Inventory List, 330, 331
shipyard and tender availability, 332-335
Steps in maintenance procedure, 298-304
Stowage area, ordnance, management of, 355
Stowage, missile components, 240
Strikedown operation,
Tartar missile, 42
Terrier missile, 26-31
Supplies for maintenance and repair, 336-351
budgeting and funding, 338
COSAL, 339-341
GMM responsibility, 336
Supplies for maintenance and repair—Continued
Guided Missile Service Record, 346
nuclear reports and inspections, 347-350
personnel reports, 350
preparing requisitions, 343
SMS Equipment Status Log, 347
sources of ordnance identification, 342
sources of supply, 337
studies to improve repair supplies, 341
Uniform Material Movement and Issue
Priority System, 343
Weapons department reports, 343
Supply references, 342
Surface and shore targets, 259
Survey of ordnance material, 354
Surveys and inventories, 353-355
Sustainers and boosters, 235
Synchro testers, 140-142
Synchrosystems, 137-139
System alignment, 285
System OPs, 328

T

Talos launching system, 76-80
Talos missile handling and stowage, 36-41
handling and stowage at depots, 40
shipboard equipment, 37
Talos missile system, 91-97
adjustment of launcher to missiles, 95
automatic loading operation, 91
dud-jettisoning, 93-95
location and duties of personnel, 96
step control, 93
unloading, 92
Target designation transmitter (TDT), 258
Target Selection and Tracking Console (TSTC), 263
Tartar launching system, 69-76
Tartar missile handling and stowage, 41-46
deck equipment, 42
missile-no-test program, 42
safety precautions, 43-46
strippedown operation, 42
Tartar missile system, 97-107
automatic loading, 97
automatic unloading, 99
dud-jettisoning, 100-107
step control, 99
Technical Standardization Inspection (TSI), 350
Telescoping warhead hoists, 206
Tender availability, 332
Terrier launching system, 63-69
Terrier missile handling and stowage, 23-36
assembly and disassembly, 36
depot handling and stowage, 31-36
equipment needed, 23-26
problems with missile, 23
safety precautions, 26
strippedown, 26-31
Terrier missile system, 82-91
dud-jettisoning, 86-91
loading, 82
malfunctions and their corrections, 85
troubleshooting, 86
unloading, 83
Test,
aboard ship, 226
air lubricators, 223
air motors, 222
checkout, 34, 317-322
daily, 301
explosive components, 234
hydraulic system, 192
launcher performance, 304
missile, 316
missile magazines, 238
Missile Systems Test (MST), 317
monthly, 302
periodic, 303
Pneumatic Test Set TS-1165/DSM, 224
quarterly, 303
safety, 242, 361
weekly, 302
Thermo-pneumatic control systems, 218-220
Toxic materials, 377
Track transmitter, 275
Train alignment errors, correcting, 289
Train and elevation air drive motor, 210
Training missiles, 313-315
T-m readings, 286
Transportation of explosives, 371
Two-man rule, 47

U

Underwater targets, 261
Uniform Material Movement and Issue Priority
System (UMMIPS), 343
Unloading order, 56

V

Vapors, toxic materials, and gases, 375
Ventilating system, 247
INDEX

Ventilation in nuclear weapons spaces, 48
Visual inspection, maintenance procedure, 299

W
War gases, 377
Warheads, nuclear, 233
 biological and chemical, 378
 inspection, 234
 limitations imposed by, 251
Warning and alarm system, 48
Weapon electrical simulator, 313
Weapon systems,
 equipment of, 254
 NavOrdSysCom program for maintenance of, 297

Weapons Assignment Console (WAC), 268
Weapons control system, 261-275
Weapons department reports, 343
Weapons direction system, 261
Wing and fin assembly areas, 58
Work Center Manual, 329
Work requests, 333
Wrenches, pneumatic, 206

Zeroing procedures, 139
YOU CAN HELP

Comments and recommendations received from users have been a major source of textbook improvement. You are invited to submit your constructive criticisms and recommendations. Use this cut-out form, writing your comments and recommendations in the form letter on the back side of this page. Typewrite, if possible, but readable handwriting is acceptable. If you want to make a specific point or indicate a technical correction, do so, but give the source of your information. This could be the text or reference source(s) and page number(s) where it can be found, or a characteristic of a piece of equipment which you can identify, or your personal knowledge about a matter concerning your rate that is wrong in the text. If you have a difference of opinion as to how a statement is made, give your reason(s) for the difference. If you wish to recommend a difference in style, slant, or depth of treatment of any subject matter, write out your point of view in an example.

POSTAGE AND FEES PAID
DEPARTMENT OF THE NAVY
'DOD 316

OFFICIAL BUSINESS

Officer in Charge
Naval Training Publications Detachment
Building 220, Washington Navy Yard
Washington, D. C. 20374

This page is preaddressed and franked. After you have completed your letter, fold in thirds, seal with tape and mail. Your interest and assistance are appreciated.
From:

Subj: [Title]; comments on

(continue on separate sheet if necessary)