
ED 079 163

AUTHOR
TITLE
INSTITUTION

PUB DATE
NOTE
AVAILABLE FROM

EDRF PRICE
DESCRIPTORS

DOCUMENT RESUME

SE 016 574

Dalton, LeRoy C., Ed.; Snyder, Henry D., Ed.
Topics for Mathematics Clubs.
National Council of Teachers of Mathemati,:s, Inc.,
Washington, D.C.
73
106p..
NCTM, 1906 As6ociation Drive, Reston, Virginia 22091
(No price quoted)

MF-$0.65 HC Not Available from EDRS.
Algebra; *Enrichment Activities; Geometric Concepts;
Instruction; *Mathematical Enrichment; Mathematics;
Mathematics Education; Number Concepts; *Resource
Materials; *Secondary School Mathematics; Topology

ABSTRACT
The ten chapters in this booklet cover topics not

ordinarily discussed in the classroom: Fibonacci sequences,
projective geometry, groups, infinity and transfinite nbmbers,
Pascal's Triangle, topology, experiments with natural numbers,
nah,-Euclidean geometries, BooleE algebras,,and the imaginary and the
infinite in geometry. Each chapter is written as a collection of
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Preface

One of the main purposes of a mathematics club is to provide the oppor-
tunity and climate for students to study and present, before their peers,
exciting topics in mathematics that are not ordinarily discussed in the class-
room. It was with this in mind that the idea for this booklet was conceived.

Each of the chapters is intended to be a "turn on" treatment of a mathe-
matical-topic to interest students in that topic. Each is written as a collection
of related subtopics; one result of this organization is that a committee of
students can see the subtopic breakdown and each take a subtopic for
presentation at a club meeting. The bibliographies are to suggest to the
student where he can read in depth on his subtopic before presenting it to
the club. Many sponsors have found that when three or more subtopics of
a major topic are presented at one meeting, the students gain considerable
feeling for what that area of mathematics is about.

The sponsor and/or student reading this booklet will note that many sub-
topics with their suggested references individually provide enough material
for a club program and can be conveniently used in this manner. Still
another way in which this booklet can be used is as a source for material for
written projects for either a mathematics club or a mathematics course.

At a Mu Alpha Theta Governing Council Meeting held at the 1968 NCTM
Meeting in Philadelphia, the idea of asking the NCTM to publish or jointly
publish a book with materials for mathematics club programs was approved
by the Mu Alpha Theta Council. A proposal was presented by Mu Alpha
Theta to the NCTM Yearbook Planning Committee at its meeting in
Chicago in October 1968. In November 1971 agreements were reached on all
phases of this joint publication by the NCTM Publications Committee, the
NCTM Board of Directors, and the Governing Council of Mu Alpha Theta.

The individuals in official capacities in the NCTM and Mu Alpha Theta

v
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organizations most deserving of credit for their sincere efforts in making this

joint publication possible are:

NC TM Mu Alpha Theta

Arthur F. Coxford Josephine P. Andree

M. Vere De Vault Julius H. Hlavaty
Jack E. Forbes Harold V. Huneke
James D. Gates Robert L. Wilson

Charles R. Hucka

Enough thanks cannot be given to the ten authors of the topics presented
here. Although they all are very busy people, they responded enthusi-
astically when asked to write an article on a designated topic. Each did an

excellent job with his writing assignment. The youth of America who read

these articles should be most grateful for what they have done.

Also, our thar.ks are extended to Thomas Fitzpatrick and Henry Frandsen,

who read certain of the manuscripts on request and gave some helpful

suggestions.
Finally, our sincere thanks to Dorothy C. Hardy and the NCTM editorial

staff for the excellent job done in preparing the manuscript for the printer.

vi

LeRoy C. Dalton, Editor
Henry D. Snyder, Associate Editor
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Fibonacci Sequences
Brother Alfred Brousseau

do

Intuitive Discovery of Fibonacci Relations
Fibonacci numbers got started with a problem dealing with the breeding

of rabbits as found in the Liber Abaci (1202) of Leonardo Pisano (otherwiseknown as Fibonaccione rendering of the meaning of this name being "sonof good nature"). Assume, he says, that there is a pair of rabbits ready tobreed and that each month they breed another pair of rabbits. However,
rabbits that are bred in the first month do not breed during the second month.They begin to breed a pair a month only in the third month. Question: Howmany pairs of rabbits are there at the end of twelve months? Table 1.1 tellsthe story.

TABLE 1.1
Tin; BREY:DING OF RABBIT PAIRS ACCORDING TO T111 SCHEME

SET Ur BY FIBONACCI

Month

Rabbit Pairs
Bred during

Month

Pairs of Pairs of Total No. ofNonbreeding Breeding Pairs of RabbitsRabbits Rabbits at End of Month
1 i

i
0
1

1

1
2
33 2 1 2 54 3 2 3 85 5 3 5 136 8 5 8 217 13 8 13 348 21 13 21 559 34 21 34 8910 55 34 55 14411 89 55 89 23312 144 89 144 :377

Now, what is so remarkable about this table? Looking at the numbers inthe various columns it can be seen that each of the sequences of numbers is

..
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part of the sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . .

The distinctive property of this sequence is that each of the numbers (after

the first two) is the sum of the two preceding numbers! Such is the origin

of what is known as thaibonacci sequence, which has since become famous

for its many ramification; in the fields of mathematics, nature, and even

technology.
To facilitate speaking about the sequence and its various terms, a simple

type of notation is introduced: Fo = 0, F1 = 1, F2 = 1, = 2, F4 3,

Fr, = 5, F6 = 8, F7 = 13, F8 r Fa = 34, Flo = 55, and so on.
What characterizes a Fibonacci sequence is the recursion relation

7'.+1 = +

which simply means that each term is the sum of the two preceding terms.

One may start with any pair of integers, such as 2, 5, and build up a

Fibonacci sequence: 2, 5, 7; 12, 19, 31, 50, 81, 131, . However, there are

two such sequences that have distinctive properties: the Fibonacci sequence:

1, 1, 2, 3, 5, 8, . . . mentioned above and the Lucas sequence: 1, 3, 4, 7, 11,

18, 29, 47, 76, 123, named after Edouard Lucas, a French mathematician

of the latter half of the nineteenth century who did a great deal of work in

connection with sequences of this and related types. For the Lucas sequence

we use the notation L1 = 1, L2 = 3, L3 = 4, L4 = 7, LA = 11, La = 18,

= 29, L8 = 47, .. . .

One of the fascinating aspects of Fibonacci sequences is this: There seems

to be an unlimited opportunity to discover formulas and relations. For

example, if each Fibonacci number is multiplied by its corresponding Lucas

number we have the following:

1 1

2
3 8
4 21
5 55
6 144

The products are Fibonacci numbers, being the Fibonacci numbers with even

subscript.. Intuitively, it seems that FL = F211.
Suppose we add the squares of two successive Fibonacci numbers. In

carrying out such experiments, it is usually better to start higher up in the

sequence than at the beginning, since often the results are masked by the

presence of the two is at the beginning of the sequence. Let us try a few

pairs and see what result we obtain.

F' 4- F = 22 + 32 = 1:3. FI = + 5= = 34,
= 52 + 82 =-- 89, ....

Again the result is a Fibonacci number, and actually, the Fibonacci number

whose subscript is the sum of the subscripts of the two squared numbers.

That is, we have a general relation
Ft 4- 17, - .

It is a good idea, once we have a Fibonacci relation, to see what happens

2



when we perform a corresponding operation with the Lucas sequence. Try
this in the present ease.

Is there some way of tying in the Lucas sequence with the Fibonacci
sequence? Examine what happens when alternate terms of the Fibonacci
sequence are added together. For example, the first and third add up to 3,
the second and fourth add up to 4, the third and fifth to 7, the fourth and
sixth to 11, and so on. These are all Lucas numbers, the Lucas number lying
between the two Fibonacci numbers that are being summed. Hence the
general relation is

ba

Try the corresponding relation adding alternate Lucas numbers.
An interesting situation arises when we have a series of Fibonacci relations

that lead to an overall general formula. For example, try the experiment of
taking any Fibonacci number squaring it, and comparing this square to the
product of the Fibonacci numbers on either :-ide of it.. The difference is
always one. However, in some eases it is plus one and in others a minus one.
The entire result can be summarized in the following formula:

= (-1)^-1.
Now compare the square of any Fibonacci number to the product of the
numbers two away on either side. Again the difference is one, but in the
opposite sense. so that

= (-1)".
The road from here on is clear. Compare the square with the product of the
Fibonacci numbers three away on either side. The difference is always four,
and the relation obtained is:

=
Pursue this sequence. Ultimately.one should arrive at a formula for

Try the same sequence of formulas using Lucas numbers.
Another type of relation that may be investigated is various sums: for

example, the sum of the terms of the Fibonacci sequence. Again, avoiding
for the moment the early cases, one finds that the sum of the first five terms
is 12; the sum of the first six terms is fig) ; the sum of the first seven terms is
33; the sum of the first eight terms is 54; and so on. Invariably the sum is
one less than a Fibonacci number, the :lumber that is two steps beyond the
last number summed. Hence one surmises that

51: Ft = 1.
What is the sum of the first n Lucas numbers?

Other sums that may be investigated in both sequences tire the stun of the
odd subscript terms, the sum of the even-subscript terms, th( sum of the
squares, the sum of terms where the subscripts differ by four, and so on.

For more leads and hints about intuitive discovery see Introduction to

3



Fibonacci Discove V the author and his mimeographed publication en-

titled "Fibonacci mulas Suitable for Intuitive Discovery." For historical

background, see Gies and Gies.

Fibonacci Swaim*: and the Golden Section Ratio

The "golden section" is a famous piece of geometry that is found in Euclid's

Elements. The problem is to take a line segment AB and to place,a point

C so that AB:AC = AC:BC, as seen in figure 1.1. In other words, the larger

section of the line segment AB is the mean proportional between the whole

line segment and the smaller section. What is the value of this ratio? Let

AB/AC = x. It is convenient to take AB = x and AC = 1, since this gives

the required ratio. Then BC = x 1. Hence
1:3 1,

from which x2 x 1 = 0. Solving, there are two roots:

r
Vg and

2 2

The first is approximately equal to 1.6180339887 and the second to

0.6180334'887. The positive value is the ratio AAC, the golden section

ratio. (Sometimes its reciprocal, 0.6180339887, is taken as such.)

A

Fig. 1.!

Now one of the fascinating things about Fibonacci numbers is the fact that

they are strongly related to this golden section ratio. We arrive at this

relation when we try to answer the question: Is there an -explicit formula

for the terms of the Fibonacci sequence? The answer is yes, and the solution

brings out a beautiful piece of algebra.
We start with the recursion relation for a Fibonacci sequence

T.., a T. + L., or 7'... T., = 0 .

We form a corresponding quadratic equation with the same coefficients:

X 2 - =u,
which is evidently the same as the equation for obtaining the golden section

ratio with roots r and s as given above. Now, since r is a root of this equation,

r: r 1 =0 or r: = r 1 .

Multiplying through by r" , we have
r.+: r" +

Note that the powers of the roots have the same recursion relation as the

terms o. the Fibonacci sequence. This gives rise to the idea of expressing tv.e

terms of g Fibonacci sequence in the form
7'. = Ar Ps,

4



where A and B are suitable constants. If this form holds up to T. , then since
Tn.*1 = 77 + T. ,

= Ar" + + Ar "-1 + Be -1
= A(r^ B(s" s"-')
= A r^+1

Hence if this form can be established for the first two terms of the Fibonacci
sequence, for example, it will continue for all terms. To do this we set

1 = Ar + Bs and 1 = Ar2 Bs2,

the solution for A and B being A = 1, Nig and B = 1/ Nro. Thus an
explicit expression for the terms of the Fibonacci sequence is:

F,, = " 8" .

Ar5
Proceeding similarly for the Lucas sequence, one finds

L = r" s".

These formulas, known as the Binet formulas for the Fibonacci and Lucas
numbers, are not particularly practical for calculating such numbers, but
they. provide powerful tools for developing and proving Fibonacci relations.

For example,

F
r2. 0' (r" s") (r" + s")

2,, = = F,,L,,,
V-5- V-5--

and we have quickly proved one of the relations we found by intuition.
Again

(r" s")2 (r"-1 s^-1) (r"4-1 an+0=
5 5

(r4" 2r "s" s2" r2" r"-18^-1-1 s2")

r"-Is"-1 (r2 2rs 82)

5

Now r2 82 = L2 = 3 and 2rs = 2( 1) = 2. Hence
=

A fascinating aspect of the Fibonacci sequence is the fact that if we take
the ratio of consecutive terms, the value gets closer and closer to the golden
section ratio as we go out in the sequence.

Fn4.1

F F,,
1 1 6 1.625
2 2 7 1.6153846153
3 1.5 8 1.6190476190
4 1.666666666.,. 9 1.6176470588
5 1.6 10 1.6181818181

For n = 20, the ratio is 1.6180339985 .

But what is true of the Fibonacci sequence is true of any Fibonacci
sequence. For example, for the sequence 2, 5, 7, 12, . . . , the ratio of the
twenty-first term to the twentieth is

5



42,187
1 . 6180339815 .

26,0 i3

Why is this? Let us examine this ratio .ter the Fibonacci sequence.

rn.t sn+t

F.,.1
F. r,,

r w + I sfa+

s "

Dividing the terms in numerator and denominator by rn , one has

r s
r

But s/r has a value less than one, and hence whc.i n gets larger this fraction
to the nth power gets closer and closer to zero so that the limiting ratio is.r.

Fibonacci Numbers in the World

People are used to finding mathematics embodied in their culture because
man has put it there. But when they find something so elegant as the
Fibonacci sequence or the golden section ratio in nature, they begin to
wonder whether somehow mathematics is not an integral part of the plan
of the universe.

Perhaps the most striking and common instances are found in plants. It
has long been recognized by botanists that the leaf arrangement (phyllotaxis)
of many plants follows a Fibonacci pattern. This pertains to plants where
the leaves spiral up the stem. Take a leaf and find the next leaf up the stein
which is vertically above it. Counting the original leaf as the zero leaf, find
how many steps there are to the next leaf vertically above the,,zerilkaf.
Very often this is a Fibonacci number, such as 3, 5, 8, 13, . .

mine how many times it was necessary to go around the stein in order to
arrive at the leaf. For five steps, this is two, for eight it is three, and so on,
in Fibonacci arrangements. Such arrangements are expressed by the follow-
ing ratios: 1/2, 1/3, 2/5, 3/8, 5/13, 8/21, and so on. The meaning of this
notation is twofold: 3/8 means that it takes three revolutions and eight
steps to get to the leaf vertically above the zero leaf. Or another way of
thinking about this would be: To go from one leaf to the next leaf in the
sequence takes on the average 3/8 of a revolution around the stem, since
eight steps give three revolutions. Note that these numbers are alternate
Fibonacci numbers. The 1/2 arrangement is the simple arrangement of what
is known as alternate leaves and fits into the general pattern.

If we make a table of angles corresponding to the various eases we have
table 1.2.



TABLE 12

Phy lb:nazis Arrangement Angle

1/2 ISO°
1/3 120°
2/5 144°
3/R 135°
s/ 1:3 138.5°
8/21 137.1°
13/34 137.6°

We seem to be approaching a limiting angle. This is because the ratio of
alternate terms of the Fibonacci sequence as given is approaching 1/r2, and
the limiting angle corresponding to this is 137.49°.

Modified leaf arrangements are found in the bracts of pine cones and the
seed arrangements of sunflowers. A somewhat different way of counting
brings out the Fibonacci numbers in these case`. For pine cones. there are
usually two obvious spirals, one steeper and the other more gradual. One
way of counting is to determine how many steep spirals there are and how
many gradual spirals. These are found to be consecutive Fibonacci numbers.,
such as 8 and 5. A second way of counting is to start from any one bract
and follow the two spirals going through it to their next intersection.
Counting the number of steps along each spiral gives the same two consecu-
tive Fibonacci numbers.

The author has counted thousands of pine cones of various species, as well
as cones of Douglas fir, redwood, and spruces of various kinds. Up to
approximately 99 percent, the cones of one species have a common Fibonacci
pattern. Deviations give either Lucas counts or double or triple Fibonacci
and Lucas counts. For example, a count of six and ten would be double three
and five. Thus, almost without exception there is some Fibonacci or Lucas
count on the cones of conifers.

Cacti of certain species (Opuntia. for example) show spirals and Fibonacci
or Lucas counts. Usually, however, there seems to be more variety than
among pine cones. Furthermore, the internal wooden structure that remains
after the cactus dies is a weblike pattern of spirals. that gives Fibonacci and
Lucas counts inasmuch as the spines come through the holes in the webbing.

Interesting patterns have also been found in other desert plants such as
the ocotillo and the Joshua tree.

The pineapple is a prime example of Fibonacci patterns, there being as
many as four spirals through one bract, each pair of spirals interacting to
give Fibonacci numbers. Multiple spire Is can also be found on pine cones.

Perhaps the prize example of Fibonacci numbers in nature is the sun-
flower. The seeds on the head are arranged in spirals. usually a steep and a
not-so-steep spiral being evident. Counting the number of steep and the
number of gradual spirals gives such numbers as 89 and 55, 55 and 34, 76
and 47. One may also count a third set of spirals going rather directly
toward t.. center. In the ease of 89 and 55, this set would give a number

7
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144; for 76 and 47, the number of spirals toward the center would be 123

(tenth Lucas number).
Another example of Fibonacci numbers in nature is found in the ancestry

of the male bee. Male bees hatch from an unfertilized egg; female bees, from

a fertilized egg. If we trace back the number of ancestors of a male bee

(from the bottom to the tot) in figure 1.2), we have a pattern that produces

Fibonacci numbers.

f-rm fTm fi

1

f-im
m--i-1

f
1

m

fTm f-rm fi

f f-rm
mr--f

f

1

.. f
1

m

1

f

Fig. 12

mTf I 13(8f, 5m)

f-r-m 8(5f. 54
f 5(3t 2m)
m 3(2f, 1m)

2(1f, 1m)

1(1f, Om)

1

There are some indications that Fibonacci numbers and the golden section

ratio are related to the structure of atoms and the spacing of the planets in

the solar system.
When we consider the world that man has created, there are many indica-

tions going back to ancient times of the conscious or unconscious use of
Fibonacci numbers at:3 the golden section ratio. For example, Donald A.
Preziosi finds evidence of Fibonacci ratios and the golden section ratio in
Minoan architecture. Richard E. M. Moore, after making extensive studies

of mosaics, came to the conclusion that some basic Fibonacci units were being

employed by the people making them. The golden section ratio is evident in

Greek architecture, and many painters employed it in the construction of

their designs.
Fibonacci sequences have also been used in the creation of music, a notable

example being Krenek's "Fibonacci Mobile."
In modern times there are (hose who believe (Ellis Wave Theory) that

Fibonacci numbers have something to do with the fluctuations of the stock
market, though they hasten to add that using Lilis information would not

enable any one to become rich.
Finally, these numbers have been found useful in computer science and in

search techniques.

REFERENCES

Note.Reference; written by the author of this chapter or pertaining to the
Fibonacci .Association may be obtained by writing to Brother Alfred Broussean, Saint

Mary's College, Moraga, California 94575. No charge is made for mimeographed

materials.

8



INTUITIVE DISCOVERY OF FIBONACCI RELATIONS

Brousseau, Brother Alfred. An Introduction to Fibonacci Discovery. St. Mary's College,
Calif.: Fibonacci Assn., 1965.

"Fibonacci Formulas Suitable for Intuitive Discovery." Mimeographed.
Gies, Joseph, and Frances Gies. Leonard of Pisa. New York: Thomas Y. Crowell Co.,

1970.

Hoggatt, Verner E., Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin Co.,
1969.

FIBONACCI SEQUENCES AND THE GOLDEN SECTION RATIO

Brotak4eau, Brother Alfred. An Introduction to Fibonacci Discovery. St. Mary's College,
Calif.; Fibonacci Assn.. 1965.

Linear Recursion and Fibonacci Sequences. St. Mary's College, Calif.: Fibonacci
Assn., 1971.

Hoggatt, Verner E., Jr. Fibonacci and Lucia Numbers. Boston: Houghton Mifflin Co..
1969.

FIBONACCI NUMBERS IN THE WORLD

Basin, S. L. "The Fibonacci Sequence As It Appears in Nature." Fibonacci Quarterly,
February 1963, pp. 53-56.

Beard, Robert S. "Design of the Great Pyramid of Gizeh." Fibonacci Quarterly,
February 1968, pp. S5-S7.

Brousseau, Brother Alfred. "Fibonacci Numbers in Nature." Mimeographed.
"Fibonacci Statistics in Conners." Fibonacci Quarterly, December 1969, pp.

525-32. Also mimeographed.

-. "On the Trail of the California Pine." Fibonacci Quarterly, February 1968, pp.
69-76. Also mimeographed.

"The Fibonacci Numbers." Time, 4 April 1969, pp. 48 and 50.
Gardner, Martin. "A Discussion of Helical Structures, from Corkscrews to DNA Mole-

cules." Scientific American, June 1963, p. 152.
"The Multiple Fascinations of the Fibonacci Sequence." Scientific American,

March 1969, pp. 116-20.
Karehmar, E. J. "Phyllotaxis." Fibonacci Quarterly, February 1965, pp. 64-66.
Lowman. Edward A. "An Example of Fibonacci Numbers Used to _Generate Rhythmic

Values in Modern Music." Fibonacci Quarterly, October 1971, pp. 423-26.
-. "Some Striking Proportions in the Musk of Bela Bartok." Fibonacci Quarterly,

December 1971, pp. 527-28, 536.

McNabb, Sister Mary de Sales. "Etyllotaxis." Fibonacci Quarterly, December 1963, pp.
57-60.

Read, B. A. "Fibonacci Series in the Solar System." Fibonacci Quarterly, October 1970,
pp. 42F-38.

Moore. Richard E. M. "Mosaic Units: Pattern Sizes in Ancient Mosaics." Fibonacci
Quarterly, April 1970, pp. 281-310.

Norden, H. "Proportions in Music." Fibonacci Quarterly, October 1964, pp. 219-22.
l'reziosi. Donald A. "Harmonic Design in Minoan Architecture." Fibonacci Quarterly,

December 1968, pp. 370-84.
Wlodarski. "The 'Golden Ratio' and the Fibonacci Numben4 in the World of Atoms."

Fibonacci Quarterly, December 1963. pp. 61-64.

9



Projective Geometry
Donald J. Dessart

What Is Projective Geometry?

In the nineteenth century Arthur Cayley (1821-1895), a prominent mathe-
matician, said, "Projective geometry is all geometry." More recently a
twentieth-century mathematician, Morris Kline, wrote, "In the house of
mathematics there are many mansions and of these the most elegant is
projective geometry" (1956, p. 622). Many scholars of both centuries agreed
that projective geometry is one of the most fascinating branches of mathe-
matics to study because of its beautiful and surprising properties.

The runts of projective geometry can be traced to artists of the Renais-
sance. Such famous painters as Leonardo da Vinci and Raphael and such
architects, as Brunelleschi were apparently well aware of potions of pro-
jective geometry, as evidenced by their creations. The basic problem of an
artist is one of capturing three-dimensional reality on a two-dimensional
canvas. To illustrate this problem, imagine that you are an artist peering
through a window into a massive hall with circular pictures on the walls and
with a floor made up of large, brightly colored square tiles. Imagine that
you wish to recreate this scene by sketching it on the surface of the window-
pane through which you are looking. In accomplishing this, you might thilik
of straight lines projecting from various points of the scene through the
window and to your eye; and wherever a line of light passes through the
windowpane, you would mark a dot. If you were able to do this for many
of the lines, the mass of dots could provide a crude picture of the scene.
(One might observe that this is essentially what a camera does when it
focuses light from a scene through the lens of the camera onto the film.)

As the scene emerges on the windowpane, you would observe that the
squares of the tiled floor would not be represented by squares on the window-
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pane but would be distorted into various kinds of quadrilaterals. The right
angles of the squares would not usually appear as right angles but as obtuse
or acute angles. Circular objects on the walls would usually appear as
elliptical shapes, and other kinds of distortions would occur.

You might also observe that lines that are straight lines in the scene would
all appear as straight lines on the windowpane; and that points "on" certain
lines of the scene would remain "on" the same lines of the sketch. The
number of sides of the figures on the tiled floor would equal the number of
sides of the corresponding figures on the windowpane. In other words, you
could conclude that certain properties such as the size of the angles or the
lengths of the sides of figures would usually be changed by the sketching,
whereas other properties, such as the number of sides of figures, would remain
unchanged. You would have observed what is the essence of the study of
projective geometry because this geometry may be described as the study
of those properties of figures that persist or remain unchanged by projections.

Those mathematicians who studied and developed projective geometry
had to introduce ideas which at first may seem quite strange. For example,
Gerard Desargues (1593-1662), an early researcher, found that in projective
geometry it was desirable to consider parallel lines as having a common
point at an infinite distance. This point in which the parallel lines "meet"
is called an "ideal point" of projective geometry; similarly, parallel planes
can be considered as meeting at a distant line, which is called an "ideal line."
So. in the plane of projective geometry any two lines have a point in com-
mon; and in three-space of projective geometry any two planes have a line
in common! In a further study of this subject., you will Cmd many other
strange and fascinating ideas.

Principle of Duality

We all like to be efficient and enjoy avoiding unnecessary work. Mathe-
maticians are certainly no different from others in this respect. In ;act, when
a mathematician discovers a method or a principle that saves him a great
deal of time and energy, he frequently refers to such a principle as being
"beautiful," in the sense that it is very efficient. Such a beautiful principle
in projective geometry is the principle of duality in the plane, which we will
first state and then illustrate by examples. You may wish to make up other
examples; and the members of your mathematics club should be able to
think of some, too.

This is the principle of duality in the plane: If any statement involving
points and lines of a projective plane, usually stated in the "on" language,
is true, then another true statement is obtained by interchanging the words
"point" and "line" of th, first statement.

For example, we know that in Euclidean geometry (the geometry :.tudied
in most high schools) any two points determine one and only one line, or
stated in "on" language, that any two points lie on one and only one line,



Suppose we "dualize" this statement by employing the principle of duality
in the plane. The dual of "Any two points lie on one and only one line" is
the statement, "Any two lines lie on one and only one point." Both of these
statements are true in projective geometry, whereas the first is true but the
second is not true in Euclidean geometry.

Two other dual concepts are provided by collinear points and concurrent
lines. Any set of points on the same line, such as A, B, C, D in figure 2.1 are
said to be collinear because they all lie on the line 1; in fact, all of the points
of the line are collinear. Similarly, lines such as a, b, c, d in figure 2.2 are
said to be concurrent because they all lie on the point E, and all of the lines
that are on the point E are concurrent. From this we can see that points
being collinear and lines being concurrent are dual notions in projective
geometry.

A B C D

Fig. 2.1. Collinear points

Fig. 2.2. Concurrent lines

As another example, consider a figure that consists of four points:
N, 0, as shown in figure 2.3, such that no three of the four points are

collinear. The dual of this figure consists of four lines: 1, m, n, o, such that
no three of the four lines are concurrent. (See fig. 2.4.)

L
3.1

Fig. 2.3

Suppose that we defined a "triangle" as a figure consisting of the union
of three noneollinear points and the three lines that are determined by these
points, taken a pair at a time. (Note that this is not the usual definition of
a triangle because it uses lines rather than line segments.)

12



0

Fig. 2.4

Carefully dualize this definition by interchanging "point" and "line" and
"concurrent" a' "collinear," wherever these words appear. Surprisingly,
you will find that the dual statement describes the same configuration and is
therefore another description of a "triangle." This figure is an example of a
self-dual figure of projective geometry.

Fig. 2.5. A triangle

We can see that the principle of duality in the plane provides for efficiency
because in proving one theorem, we are also proving its dual, which may be
another theorem. It is a real bargain, since we are getting two things for the
price of one!

Desargues's Theorem

When one looks at a structure in the distance, such as a tall building, two
images of the building, one for each eye, are sent as sensations to the brain.
When the brain compares these two sensations, it provides a perception of
the relative depth of the various parts of the structure. On the other hand,
if one were to look at the building with only one eye, then essentially a
flat or two-dimensional picture is sent to the brain. Apparently, in this
ease, the brain is able to compensate to a certain extent in order to provide
the viewer with some impression of depth; but riot as well as it can when it
receives two sensations.

A very remarkable example of this compensation by the brain is seen in
the story of Wiley Post, who Las a pioneer in high-altitude flight in the
United States. When Post was twenty-five years old, he lost his left eye in
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an oil-field accident. Using the insurance money he received for the accident,
he purchased his first airplane; and in spite of being seriously handicapped,
he became one of America's most famous aviators. His exploits are described
more fully in the Smithsonian Institution in Washington, D.C., which dis-
plays a cumbersome tank suit that he wore while flying at high altitudes.

Suppose that someone with only one eye, such as Wiley Post, or a person
with normal vision who has covered one eye, were to view triangle ABC
from the point 0 and that flat, translucent screens were then placed between
the viewer and triangle ABC so that triangles A'B'C' and A"B"C" would be
formed on the screens by straight lines of light such as those through 0 and
points A, 13, C, respectively. (See fig. 2.6.) We say that the triangles :VDT'
and A"B"C" ar perspective from the point, 0, and, in general, two
triangles are perspective from a point if their vertices can be placed into
one-to.one correspondence so that lines joining corresponding vertices pass
through that point, called the center of perspeetivity.

Fig. 2.6

Desargues made the astute observation that if one extended the sides of
the triangles and A"B"C" so that A'B' and A"B" would intersect
in T, A'C' and A"C" would intersect in S, and B'C' and 13"C" would inter-
sect in R, that the intersection points I?, S, T would be collinear! The line 1,
containing R, S, T is called the axis of perspeCtivity, and triangles A'D'C'
and A"B"C" are said to be perspective from the line, 1. In general, two
triangles are perspective from a line if the sides of the triangle- can be
placed into one-to-one correspondence so that points of intersection of
corresponding sides lie on a straight line.

The theorem of Desargues can he stated as follows: If two triangles are
perspective from a point, then the two triangles are perspective from a line.

In the case we just examined, the two triangles A'B'C' and A"B"C" were
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in different planes (the planes of the screens!, but this theorem is also true
for two triangles in the same projective plane.i You may wish to experiment
with this case by drawing two triangles on a sheet of paper which are perspec-
tive from a point.

Furthermore, if the "two for the price of one" principle of plane duality
is applied to Desargues's theorem, one will obtain another theorem, which
states, "If two triangles are perspective from a line, then the two triangles
are perspective from a point." This is the converse of Desargues's theorem
and is true for triangles in the projective plane as well as in three-space.

If members of your inathe:naties club become interested in this theorem,
they may wish to attempt to prove it. As a hint, it is much easier to prove
the theorem for two triangles in three-space than for two triangles in the
projective 'plane. Some of the references listed at the end of this article
supply such proofs.

Pascal's Theorem

Blaisc Pascal (1623-1662), when only sixteen years old, prove? a theorem
known today as Pascal's theorem, that amazed older and more experienced
mathematicians of his time. As a youngster, he also "discovered," by folding
a triangle cut from paper, that the sum of the angles of a triangle is a
straight angle (members of your club may wish to experiment with this idea
by folding triangles cut from paper). In addition to these remarkable
achievements, Pascal demonstrated his genius in many other fields. He
designed and built an adding machine, solved problems in hydrostatics, and
wrote scholarly papers in arithmetic, algebra, probability, the theory of
numbers, and theology.

Before considering Pascal's theorem, we need to describe what we will
mean by a plane hexagon. Consider a figure consisting of six coplanar
points, At , .42 , A3 , A4 , As , A0 , no three of -whieli are collinear, and taken
in numerical order of the subscripts to form six line segments joining pairs of
successive points. The union of the six points, called vertices, and the six
line segments, called sides, is a plane hexagon. Plane hexagons may look like
any of the shapes in figure 2.7.

A2 As
As

A'"---'.A. A.

A;/
A.

Fig. 2.7. Plane hexagons

1. Perhaps it should be pointed out that Dcsargues's theorem does not hold true in all
pmjii,tive planes. For a discussion of non-Desarguesian geometries, see Dorwart, pp.
121-33 t Eyes, pp. 362 -65; and Pedoe, pp. 29-32.
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Suppose that a plane hexagon Al , A2 A3 A4 , A5 , A0 is inscribed in a
circle as shown in figure 2.8, and that a pair of opposite sines (A1.42 and,14.:15) are extended so that they intersect in a point, P, another pair of
opposite sides (A2A3 and A5A0) intersect in a point, R, and the third pair of
opposite sides (i13:14 and /WI) intersect in a point, Q, then Pascal observedthat the points Q, P, R would lie on a straight line. Pascal was able to prove
that if any plane hexagon is inscribed in a circle, then the opposite sides ofthe plane hexagon (extended, if necessary), intersect in three points thatare collinear.

kr-)

There are many other fascinating consequences of this theorem. Suppose
we take any six points on a circle. It can be shown that 60 different plane
hexagons could be formed. To each of these 60 hexagons there corresponds aline, given by Pascal's theorem, called a Pascal line. It can be demonstrated
that these 60 lines pass, three by three, through a total of 20 points, called
Steiner points; and these 20 points lie, four by four, on 15 lines, named
Pliicker lines. There are many other extensions of Pascarilhettrem whichmake it live up to its earlier name of the 'Mystic Hexagram Theorem."

Fig. 2.S

Cross Ratio

Imagine, again. that you are an artist (see fig. 2.9) looking through a
windowpane, m, from the point 0, at the line, 1, which contains the pointsR, S, T, U, as shown; and R', S', T', U' are images of the points R, S, T, U
:respectively) formed on the windowpane by lines of light Which .passthrough 0. One can observe that the lengths of the line segments, RS andR'S', do not appear to be equal. If we designate these lengths by RS and

R'S', it seens reasonable to conclude that RS S R'S'. Consequently, it seems
clear that the lengths of other line segments of 1 would not be equal to the
corresponding lin segments of m under a projection, such as the one shown.
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Fig. 29

One might wonder if the ratios of lengths of corresponding'segments under
a projection are equal. For example, one might ask, "Is RT/TS equal to
-RI' /T'S) ?" The answer to this question, while not obvious, is, "No, because
there are projections for which RT/TS * R'T' /T'S' ." At this point, many
people would be inclined to give up searching for relationships between corre-
sponding segments; but the early mathematicians did not give,up and found
that there is a ratio, or more correctly, a ratio of ratios that is not altered
by projection. This ratio, named earlier in history a "double ratio," is
known today as a cross ratio. If one will allow the leng:11, RS, to be regarded
as positive, and the length, SR, to be negative, that is, if we are willing to
introduce the notion of directed line segments, then the cross ratio may be
defined as follows: If R, S, T, U are four distinct points on a line, the ratio
of ratios, (RT/TS)/(RU/US), designated by the symbol (RS, TU) is the
cross ratio of R, S, T, and U, in that order.

The ancient Greek mathematicians discovered that in such a projection
as the one described, (RS, TU) would equal (R'S', T'U') ; that is,

It777'S 1r7"17" S'
fir:7R iruviPs'

They observed an extremely important property of projective geometry;
namely, that cross ratio remains unaltered, or is invariant, under projection.
Because the cross ratio has this property, it plays a very special role in
projective geometry; and if one were to study this subject in depth. he would
become extremely familiar with the idea of a cross ratio.

We can study a few significant properties of cross ratio without delving
deeply into the subject. We have seen that the definition of cross ratio
relies upon the particular order in which the points II, S. T, U, are consiocred.
If we select the points in another order, such as, S, R. T, U, and then apply
the definition of cross ratio, we obtain (SR, TU) = (ST/TR) /(S(" /IIII).
As we shall see later, (SR, TV) * (RS, TV). Suppose that we select the
points in the order S, R, U, T. Applying the definition of cross ratio, we find
that (SR, UT) = (SU/UR)/ (ST/TR). In this ease, it can be shown that
(SR, UT) = (RS, TU). Let's see ! .w!

Since RT and TR are of the same absolute length but have opposite signs,
and similarly for TS and ST, then
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and, similarly,

Thus, we can conclude that

and, furthermore, that

or

RT ST ,
Ts fit

RU SU ,
US. UR

RT ST RU SU
TS. TR I.' US. UR'

RT/TS SUIUR
$7.1TR '

(RS, TU) (SR, UT).
-

It can be easily seen that there are 4! of-24 'permutations of the points
R, S. 7', U, taken four at a time. It will prove helpful at this time if you will
enumerate these 24 permutations. Each of them gives rise to a particular
value of the cross ratio, and one might wonder if the patterns of selections
of points determine these values. This is, indeed, the case! If we let
(RS, TU) = k , then each of the other 23 cross ratios is equal either to
k, 1/k, 1 k, 1/(1 k), (k 1)/k, or k/ (k 1).

In a further study of these patterns, it can be seen that there are three
basic rules involving changes in the order of the points. Each change affects
the value of the cross ratio. if we let (RS, TU) = k in this discussion, these
rules, which are easily justified (see Eves, pp. 73-74), can be expressed as
follows:

R(1): An interchange of any two points combined with an interchange
of the remaining two points does not alter the value of the cross ratio; for
example, if we interchange R and S and also interchange 7' and U, we obtain
(RS, TU) = (SR. UT) = k.

R(2): An interchange of only the first pair of points changes the value
of the cross ratio from k to 1/k, for example, (.SR, TU) = 1/k.

R (3) : An interchange of only the middle pair of points changes the value
of the cross ratio from k to 1 k; for example, (RT , SU) = 1 k.

Applying these rules successively -on -cross ratios, we may see how each of
tine six values k, 1/k, (k 1)/k, k/ (k 1), 1/(1 k), and 1 k may be
obtained.

1. Start with (RS, TU) = k.

2. Applying R(2) to (RS, TU), we obtain (SR, TU) = .

3. Applying R (3) to (SR, TU), we obtain (ST, RU) = 1 =
k 1

4. Applying R(2) to (S7', RU) , we obtain (TS, RU)
k 1'
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5. Applying R (3) to (TS, RU), we obtain (TR, SU) =1 =k
6. Applying R(2) to (TR, SU), we obtain (RT, SU) = 1 k .

Furthermore, each of the 24 possible cross ratios described above will fall
into one of the six categories of equal cross ratios given below; in the first
category each cross htio is equal to k, in the second to 1/k, and so forth-.=
in the last category to k/ (k 1).

a. (RS, TU) = (SR, UT) = (TU, RS) = (UT, SR) = k
b. (SR, TU) = (RS, UT) = (UT, RS) = (TU, SR). = .

c. (HT, SU) (SU, RT) (TR, VS)-=-- (US, TR) = 1 k .

d. (TR, SU) = (US, RT) (RT, US) (SU, TR) = 1-
.

e. (ST, RU) = (RU, ST) = (UR, TS) = (TS, UR) = k .

f. (TS, RU) = (UR, ST) = (RU, TS) (ST, = k =1

1

1

Harmonic Set of Points

The complete quadrilateral, provides an interesting application Of cross
ratio. It is a figure consisting of the union of four lines in a plane, no three
of which are concurrent, and the six points in which pairs of these lines
intersect. The four lines are named sides of the qUadrilateral and the six
points are called its vertices. Two vertices, such as A and C in figure 2.10,
which do not lie on the same line are called opposite vertices. The lines
joining pairs of opposite vertices, sh by the dotted lines, are the diagonals
of the complete quadrilateral. (Your club members may wish to dualize this

,Inition; the resulting statement is a definition of a figure called a complete
quadrangle).
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If any diagonal of the complete quadrilateral, such as EF, is taken and

the points of intersection with the other diagonals, G and II, are determined,

the set of points E, G, F, H is called a harmonic set of points. The cross ratio

of any harmonic set of points is equal to 1; so, in this case (EF, GH) =

1.

We can demonstrate rather easily that (EF, GH) = 1. First, we need

to recall from our- earlier diScussion that cross ratio is invariant under

projection vso, we may conclude that (EF, _G11) = (BD,1H)=by:a projec=

tion frorn the point A. HOweverABD;,./H) (fq;_GH) throUgh_ri projec=

tibn from the point C; and thus:4e -can thatri(EF;.G11) = (FE, GH).

But we obserVed=earlier=frOtplt(2)- that -if -the first pair_of_points °La cross

ratio = is interchanged, then the new crois--fatiols the reciprotal Of-the first

cross ratio. Consequently, if we let (EF, GH) = y, then froth R(2) we get

(FE, GH) = 1/y; but since we have shown that (EF, GH) = (FE, G11),

it follows that y = 1/y. Then, y2 = 1, and y = 1. But, since (EF, GH) =
(EG/GF)/ (EH/HF), where EG, GF, EH are positive and HF is negative,

(EF, G11) must be negatiVe. Therefore, we can conclude that (EF, GH) =

Concluding Comments

There are many branches of mathematics that have proved far more

fruitful to the world of mathematics than rojective geometry. For example,

today topology is being richly developed by an enthusiastic group of re-

searchers; and other geometric types of research, such as that being done

in differential geometry, have proved more useful in varied applications.

HoWever, few. mathematical scholars would dispute the fact that projective

geometry has provided some of the most elegant; intriguing, and fascinating

results in all of mathematics. As Kline so appropriately noted of projective

geometry, "The science born of art proved to be an art" (1956, p. 641).
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Groups
Roy Dubisch

What Is a Group?

In the high court of the kingdom of Lower Slobbovia, there are three
judge3 for every trial. In the grand tradition of algebra, let's call them
A, B, and C. They file in at the beginning of any trial and sit as shown
in figure 3.1.

ABC

Fig. 3.1

But when the eccentric king of Lower Slobbovia (who attends all trials)
yells "Promenade 1," B and C change places; when he yells "Promenade 2,"
A and B change places; and when he yells "Promenade 3," A goes to where C
was sitting, B goes to where A was sitting, and C goes to where B was sitting.
If the judges were sitting in their original positions when the promenade
calls were given, the results would be at shown in figure 3.2.

ABC ACB ABC BAC
2

ABC
Promenade

3-

Fig. 3.2
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Now in a hectic mood one day, the king yells "Promenade 1" and, two
minutes later, yells "Promenade 2." We can picture the action as in figure 3.3.

A BC
Promenade

A C B
Promenade

2

B CA

Mi 33

To his royal amazement, the king realizes that the judges are now seated
exactly as they would be if, instead Of yelling "Promenade 1" and then
"Promenade 2," he had just yelled "Promenade 3."

The next day he decides to try this -procedure again --but with a slight
variation: Now he yells "Promenade 2" first and then yells "Promenade 1."
What happens is.shownin figure 3.4.

A BC
Promenade2

B A C C A B
Promenade

Fig. 3.4

Now he is amazed to find out that the result is not the same as Promenade
3; indeed, the result is what he has been calling Promenade 4.

At this point he decides to call in the court mathematiCian to analyze the
whole business. Immediately, like any mathematician, the C.M. employs
some notation. He lets P1 stand for Promenade 1, P2 for Promenade 2, and
so forth, and writes

P, =
B C

A C 111,

Then he writes

(A 11 Cl
11 :1 CI,

1'3 =
B C

kB C A
4 =

,
"

B C\
A B1

P 11'2 =
B C A 13 C \ A 13

Al.1 C B
\
1 \13 A C/ 1 \B C

= pr

by noting that, under P1 , A goes to A and then under P2 A goes to B; that
under P1 , B goes to C, and then under P2 C goes to C; and that, under Pi ,
C goes to B, and then, under P2 , B goes to A. Symbolically,

P, P, P, P, P P2A 0:1--.B; B*C,C;
P3 1', P2

Similarly,

l'21' =
:1

A 11 C\ B

C1 \ A C
and

P 21' 3 =
A

BA C \ A

CI \13
a new promenade which he calls P5 , and

11 AC B

B
= 1' 4

C A C B A
B B C
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P IP 1 =-=

B

)B

C\ I
k

A B I A B

A C A C B kA B
a non-Promenade which he calls / (for identity), since
P21 = /P2 = P2 , and so on.

He now decides to systematiie his work by making
table:

D ,

pi, = , = Pi ,
a "multiplication"

I_ P, P2 P3 P4 PS

1

I
Pi
P2
P3
P4
PS

I
Pi
P2
P3
P4
P5

P1
I
P4
Ps
P2
1'3

P:
P3
1
PI
PS
P4

P3
P2
PS
P4
I
PI

P4
Ps
Ps
1
P3
P2

PS
P4
P3
P2
Ps
I

Exercise 1. Check his work!
As the C.M. studies the situation, he realizes quickly that he could work

out a similar table for the changing around or permutation of four or more
people. Thus, for example,

B C B C B C

A B B A

Also, he notes considerable similarity between the combination of permuta-
tions as shown in the "promenade" table and the multiplication of positive
rational numbersand one significant difference.

1. Just as a 1=1- a =a for all positive rational numbers a, so, he
notes, PI = IP = P for all permutations P.

2. Just as every positive rational number a has a multiplicative inverse
(i.e., a number b such that ab = ba = l), so, he notes, for every permutation
P there is a permutation Q such that PQ = QP = 1. Examples: P1P1 =.- /;
P2P2 = /; P5P5 = / (i.e., P1 , P2 , and P5 are their own inverses) ; P3P4 =
P4P3 = 1..

3. After noting that P3 (P2P3) = P1P5 = P4 and (P1P2) P3 = P3P3 = P4 ,
that P(P4P3) = PI = P2 and (P2P4)P3 = P1P3 = P2, and that P5(P3132)
= P5131 = P3 and (P5P3)P2 = P1P2 = P3 , he concludes (correctly) that if
P, Q, and R are any permutations, then (PQ)R = P (QR). That is, like
multiplication of positive rational numbers, combination of permutations
is associative.

4. He notes, as did his majesty, that P1P2 0 P2P1 and concludes that
combination of permutations, unlike multiplication of positive rational
numbers, is not a commutative operation.

Exercise 2. Find all pairs (P, Q) such that PQ = QP.
Exercise 3. Show that Pi (P4P5) = (P1P4)P5 and that P2(P3P5) =

(P2P3) P5
The C.M. is well on his way to a study of what other mathematicians have,

for over a hundred years, called group theory. Formally, a group is a set G
with an operation defined on pairs of elements of G (i.e., a binary operation)
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such that, if * represents the operation, we have the following properties:1. If a and b are in G, then a b is in G. (Closure property)2. There exists an element e of G such that a * e = e a = a for all ain G. (Existence of identity)
3. For any a in G, there exists a b in G such that a * b = b * -a = e.,(Existence of inverses)
4. a s ( b * c) (a * b) * c for all a, b, c in G. (Associative property)When no confusion can arise, we usually do as the C.M. did-and write abfor a *b.
Groups abound in matheMaticS: We have Seen that we can have-a groupof permutation's, and it is easy to see that the positiVe rational numbers forma group under multiplication. There are, however, two important differencesbetween these two groups: (1) The permutation group has a finite numberof elements and is an example of a finite group, whereas the set of positiverational numbers is an set and so provides us with an example of aninfinite group. (2) The operation of multiplication of rational numbers isa commutative operation (i.e., ab = ba for all rational numbers a and b).Thus the group of positive rational numbers under multiplication is anexample of a commutative group, whereas the permutation groups (exceptfor those on 1 or 2 letters!) are examples of noncommutative groups..Other examples of infinite commutative groups are the integers underaddition and the nonzero real numbers under multiplication.

Exercise 4. Give some other examples of infinite commutative groups.Exercise 5. Why does not the set of all real numbers forth a group undermultiplication?
(Our example of a noncommutative group was a finite group, whereas allof our examples of commutative groups were infinite. As we shall see,however, there are commutative finite groups. Noncommutative infinitegroups also exist, but the description of them is rather technical.)

Isomorphic Groups
Now let us consider the set of symmetries of an equilateral triangle ABC,figure 3.5. We can rotate this triangle counterclockwise through 120° andit will look like figure 3.6. That is, it will appear unchanged except for thelabels on the vertices. Let's call this rotation R. Similarly, a counter-clockwise rotation through 240° will give us figure 3.7, and we'll call this

A

B
Fig. 35 Fig. 3.6 Fig. 3.7
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rotation R'. A rotation through 360°, of course, will give us back the original
triangle labeler! as in figure 3.5, and we can consider this as the identity, I.

We can also "flip" the triangle around any of the medians to obtain F1,
F2 and F3 as shown in figure 3.8.

Fig. 3.8

Now we can talk about consecutive movements. See, for example, figure
3.9.

Fig. 3.9

But this is the same result as if we had klat applied F3 to the triangle in its
original position, and so we write RF1 = F3. Now compute F1R. We
have the result shown in figure 3.10 and conclude that F1R ==. F2

R

Fig. 3.10

Now we could continue in this way finding other "products" and establish-
ing the fact that I, R, R', F1, F2 and F3 form a group under the operation
of triangle movements, An easier way of establishing this conclusion, how-
ever, is to observe that each of our triangle movements results in a permuta-
tion of the three vertices and that I, R, R', F1 , F2 and F3 account for all
possible permutations of A, B, and C. Thus, using the notation that we
employed before, we have

A
R

B

C A B
= P4

(i.e., after the rotation R, A labels the vertex originally labeled C; B labels



p

the vertex originally labeled A; and C labels the vertex originally labeled B).
Similarly,

and, of course,

R 4.."4
B

13 C A
= 1)3,

PI 4--+
13 Cl

A C 13
= Pi ,

B

C 13 A
B

B A C

1 4..)
B

= 1.
B C

- 4- = P2 7 FIR = F2 corresponds to PIP,Then 3 P= F corresponds to P
= P5 , and so forth. That is, except for notation, the group of symmetries of
an equilateral triangle is identical with the permutation group on three
letters.

When two groups differ like this only, in notation we say that the two
groups are isomorphic. This concept of isomorphism occurs in many places
in mathematics and is extremely important in that it enables us to show that
some seemingly different systems are basically the same. (We use this idea
in doing multiplication by the use of logarithms: the group of positive real
numbers under multiplication is isomorphic to the additive group of all real
numbers. The correspondence is a logioa for any positive real number
a and we have a X b logio (a X b) = logioa logiob.)

Subgroups

From any group G we can extract subgroupssubsets of G which them-
selves form a group under the group operation of G. For example, the group
of permutations. on three letters has the subgroups

1'3, P41

,1 P3 134 I! !'I
1 ! 1 1'3 P4 1 I 1 pi 1T1
PE I P3 P4 1 P11 PI 1
P4 P4 1 P3

Exercise 6. Find two other subgroups of the permutation group on three
letters.

Any group G with identity e has the special subgroups {e} and G itself.
The search for other subgroups of finite groups is greatly facilitated by the
use of La Grange's theorem, which states that if S is a subgroup of a group G,
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then the order of S (the number of elements of S) must divide the order of G.
Thus any subgroup of the permutation group on three letters must have order
1, 2, 3, or 6. ;

For infinite groups we have no such useful theorem; but it is easy to see,
for example, that the group of all positive rational numbers under multiplica-
tion is a subgroup of the group of all positive real numbers under multiplica-
tion and that the group of all integers under addition is a subgroup of the
group of all rational numbers under addition.

Exercise 7. Does the set of all positive irrational numbers form a subgroup
of the group of all positive real numbers under multiplication?

Cyclic Groups

Of special importance is a class of groups known as cyclic groups. A cyclic
group of order n can be described very simply as a group with elements.
I, R, R2, R3, , R"-1 where R2 RR, R3 = RR2, R4 RR3, , and
R" = I. Thus, for example, when n = 3, we have

i1 1? R2
I I R n2
R R R2 I
R2 j R2 I R

(We get R2R2 = R by R2R2 = (RR) R2 = R(RR2) = RR3 = RI = R.)
If you are familiar with clock (modular) arithmetic, you can easily see

that this group is isomorphic to three, clock arithmetic (arithmetic modulo 3)
under the operation of addition. We have

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and the isomorphism correspondence is given by 0 4---> I, 1 H R, and 2
R2 . Indeed, a cyclic group,of order n is isomorphic to arithmetic modulo

n under the operation of addition. (Note that these are examples of finite
commutative groups.)

Every infinite cyclic group, on the other hand, is isomorphic to the group
of integers under the operation of addition. We can write I +-4 0, R 4---> 1,
R2 4> 2, , R" 4> n, R-1 4--* 1, R-2 4--> 2, , 4---0 n
and write the cyclic group as ( , R-2 , R-1 , 1, R, R2 , ). Then, for
example, just as 1 + 2 = 3, so RR2 = R3 and just as 2 + 2 = 0, so
R-2R2 = I.

Many books and articles have been and continue to be written on group
theory. In particular, any book on abstract algebra will have at least one
chapter on group theory. In the books listed at the end of the article you
will find additional references that can provide for a lifetime of study of
groups!
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Answers to Exercises

1. Given.
2. Of course, Pr1 = IPi for i = 1, 2, 3, 4, or 5 and if P = Q we certainly

have PQ = QP. Also, however, we have P3P4 = P4P3
4. PI (P4P5) P1131 = 1, and (P,P4)P5 = P5Pr. = I; P2(P3Pn) = P2P2

= I, and (P 2P3)/35 = P5P5 = I.
4. Two examples are the rational numbers under addition and the nonzero

rational numbers under multiplication.
5. 1 is the identity for multiplication, but there is no real number a such

that 0 X a = 1.
6. (1, Psl ti, Psi

I I P2 I I 1'2

I

P2 I I 1 Ps
Ps P2 1 P2 I P2 I

(Recall that the group itself is also considered to be a subgroup of itself.)
7. No. We do not have closure, since, for example, is an irrational

number but 14/-2- = 2 is a rational number.
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4

Infinity and
Transfinite Numbers

Sister Conrad Monrad, S.P.

Classical Problems Involving Infinity

Infinity is a concept that boggles our minds and yet intrigues us. ft is a
difficult concept for us to comprehend, since nothing in the world about us
seems to possess the property of being "infiniteexcept possibly space or
time. Even these, despite their appearance of being endless or limitless, are
actually finite in the personal experience of any individual. Examples such
as the grains of sand on-the seashore, or the electrons and protons in the
universe, constitute large, but finite, sets. For, although we are physically
incapable of counting them, they are limited by some large number that. is
finite. Perhaps our best example of an infinite set is displayed in our experi-
ence with the counting numbers, or the natural numbers. As small children
we found there was no limit or end to the natural numbers, that no matter
how far you counted, there were more numbers that followed. If any one
claims to name the last. or largest counting number, we can easily name a
larger number by adding "one" to his "largest number." The concept of
infinity in mathematics has many aspectsthe infinitely many, the infinitely
large, the infinitely small, infinite divisibility, infinite repetition, infinite
summation, and a great variety of infinite processes. Infinity is versatile and
surprising.

As man moved from the use of mathematics for strictly pragmatic imposes
in Babylonia and in Egypt to leisurely speculation about mathematics in
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Denumerable Sift

In more recent times David Hilbert is credited with inventing a paradox
called "Hilbert's Hotel," similar to Galileo's paradox of the squares of posi-
tive integers. As the story goes, a guest comes to Hilbert's Hotel and requests
a room for the night, only to be told that the hotel is full. But the manager
then proceeds to solve the problem by putting the guest it. room 1. moving the
occupant of room 1 to room 2, the occupant of room 2 to room 3, and, in
general, the occupant of room n to room n 1. The hotel had.an infinite
number of rooms! How, then, could the manager claim that the hotel was full?

While Hilbert's Hotel is a fantasy and not a real building, the world if
mathematics contains an abundance of infinite sets or collections. Fer example,
the set of all natural numbers or counting numbers: I, 2, 3, 4, 5, . : the set
of all positive even integers: 2, 4, 6, 8, 10, ... ; the set of all primes: 2, 3, 5, 7,
11, ... ; the set of all positive multiples of 5: 5, 10, 15;20, 25, ... ; the set of
all squares of positive integers: I 9, 16, 25, . . . ; the set of all rer.esenta-

_tions of 1/3 in the form of ratios .;. integers: 1/3, 2/6, 3/9, 4/12, 5/15, . ;

the set of all reciprocals of the positive integers: 1, 1/2, 1/3, 1/4, 1/5, . . . ,

are all infinite sets. Some other examples of infinite sets are the set of points
on a straight line, the set of circles in a plane, the set of translations in a plane,
and the set of cubes in space.

Cantor compared infinite sets by setting up a one-to-one correspondence
betwee.., their elements, that is, by matching exactly one elemznt of either set
to exactly one element of the other set, until all matched. We do this with
finite sets-the places at the dinner table are matched with the members of
the family, and the visitors with the set of empty chairs in the room. Two
sets are said to be equivalent if there is a one-to-one correspondence between
them. We can show that several of the sets mentioned above are equivalent to
the set of natural numbers by setting up a correspondence of cacti set to the
natural numbers as follows:

the set of even positive integers,
1, 2, 3, 4, 5, ... n,
2, 4, 6, 8, 10, ... , 2n, ...

the set of positive multiples of 5,
5, , n,

: :0, 15, 20, 25, , 5n, ...
the set of reciprocals of the positive integers,

1, 2, 3, 4, 5, ... , n,
1, 1/2, 1/3, 1/4, 1.'5, , 1/n,

the set of representatives of 1/3,
1, 2, 3, 4, 5, , n,

1/3, 2/6, 3/9, 4/12, 5/15, . , n /3n, . .

the set of primes,
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1, 2, 3, 4, 5, ...
2, 3, 5, 7, II, ...
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Here, corresponding to n is the nth smallest prime. Any set that is equivalentto the set of natural numbers is a denumerable set and is denumerably, orcountably, infinite.
Infinity is full of surprises. The set of odd natural numbers is an infinitesubset of the natural numbers. We would expect the set of natural numbers

to have more members than its subset of odd numbers because the naturalnumbers contain the even numbers as well as the odd numbers. If to eachnatural number n we assign the odd number 2n - 1,
1, 2, 3, 4, 5, ..., n,
1, 3, 5, 7, 9, , 2n -1, ...

then there is an odd number corresponding to each natural number, and,
behold, the subset of odd numbers is equivalent to the set of natural num-
bers. This means the set of odd natural numbers is a denumerable set. GeorgCantor used a generalization of this last example to characterize an infiniteset. He said that any infinite set is equivalent to a proper subset of itself (a
"proper" subset does not contain all the members of the set). There is no finiteset that matches up one-to-one with a proper subset of itself. Consider thefinite set M = {2, 4, 6, 8, 10). No subset of M, other than M itself, can beput into a one-to-one correspondence with M.

Suppose S is the set of all negative integers and the reciprocals of all positiveintegers. No doubt, one could establish a correspeudence 1 the negative in-tegers to the natural numbers, or of the reciprocals of the positive integers,but is S itself equivalent to the natural numbers? Is S countably infinite?First, arrange S so that -n precedes 1/n:
-1, 1, -2, 1/2, -3, 1/3, -4, 1/4, , -n, 1/n, ...

To each odd natural number, no, match - (Ii
2

+ 1),
and to each even na-

tural number, n match
lie

-1, 1, -2, 1/2, -(n. + 1) 2
2 ng

Then S must be a denumerable set. One c see from these few examples that
an abundance of denumerable sets exists.

Rationals as a Denumerable Set

i
Are the rational numbers a denumerable set? This question is not so simplyanswered. When we look at the rational numbers, their density poses aproblem. For any two rational numbers-no matter how small their dif-ference-there is always a rational number between them. How can the ra-tionals be lined up, then, in order to set up some type of correspondence? Is it

possible? As a stud( Cantor devised a method of doing this. The following
describes one such arrangement of the rationals.
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We can begin by assigning a value to each rational number cyual to the sum
of its denominator and the absolute value of its numerator, and gt .up together
all those with the same -aim. er eliminating repetitions, like 4/2 and 6/3,
and any rationals not in simpiest form, that., is, any with common factors
(greater than 1) in numerator and denominator, the groups can be arranged
according to their value. Only one rational, 0/1, has value 1, and two, I/I
and 1/1, ha, e value 2. Within each group the numbers can be arranged by pairs,
the negative number first, in ascending order according to the value of the
positive number. For example, the group of value would be arranged as
follows: 1/3, 1/3, 3/1, 3/1. We have lined up all the groups now by their
values, 1, 2, 3, 4, , and each number within its group. All one needs to do
is to assign a natural number to each to have a on to-one correspondence.
The rational numbers are a denumerable set!

1, 2. 3, 4, 5, 6, 7, 8, 9
0/1, 1, 1, 1 /2, 1/2, 2, 2, 1/3, 1/3, . . .

Are the Real Numbers Denumerable?

, The investigation of infinite sets seems to lead to the same conclusion that
Galileo reachedthat all infinite sets are simply infinite and cannot be clas-
sified in any other way. Before stopping, however, examine the real numbers.
Note that a real number may be written as a nonterminating decimal, and
every nonterminating decimal is a real number. Assuming that there is a one-
to-one correspondence between the real numbers and the natural numbers,
let each real number be represented by a nonterminating decimal in this cor-
respondence. If the following represents the correspondence, where the a's rep-
resent digits in the nonterminating decimals, then one can find a nonter-
minating decimal, that is, a real number, that is not given in this listing
this. despite the fact that all of them had been listed!

I °.a:: al: a:: at, an . .

2 n a:: as a:s a:1 .

3 0.a.0 al: an a', as. .

0.(1,1 asl a11 . . .

Replace each digit along the diagonal, co a::, . . by a different one,
b:, b3, . ., where b. is not 0 or 9. The number given by the nonterminating

decimal, 0.bib2b3 ..., is a real number not contained in our list, since it differs
from each given number by at least one digit. In other words, if over there was
found a way of setting up a correspondence matching up all the real numbers
with the natural numbers, one could at once name a real number that had been
omitted! Since this is always possible, it means one cannot set up a one-to-one
correspondence of the reals to the natural numbersthat no such correspond-
ence exists. But this indicates that there is a difference between infinite sets,
and that some are "greater" than others. Not all infinite sets then arc
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denumerably infinite: some. like the reals, are nondenumerable, or not
countable.

The set of points on a line can be put into a one-to-one correspondence with
the real numbers. Therefore, there are as many points on a line as there are
real numbers. As a consequence the set of points on a line is a nondenumerable
set. It follows that the points on a line are not equivalent to the natural
numbers; therefore, Galileo's implied question.has to be answered in the nega-

- tive.
Cantor's work with infinite sets led many to believe that the properties of

infinite sets could be used to distinguish one-space from two-space. This was
not a result; on the contrary . the set of points on a line segment can be shown
to be equivalent to the set of points in a square. The following theorem
(Schriider-Bernstein theorem) is needed for this purpose: If there is a one-to-
one correspondence between a set .4 and a subset of B, and also a one-to-one cor-
respondence between B and a subset of .4, then there is a one-to-one correspondence
between the sets A and B. (See fig. 4.1.)

Fig. 4.1

If A is the unit segment and B is the unit square, then each point of :1
corresponds to a point of a subset of B, which could be a side of a square (fig.
4.2). Next, each point of the square 13 must be matched with a point of a
subset of the segment A. A point in the square has real numbers., (a, b), as
coordinates. These real numbers can be expressed as nonterminating de-
cimals:

rr = tro.avier:. . .

b = /),,./014.1

Fig. 42

Also, every point on the segment can be represented by a nonterminating
deeimai. By alternating the digits of a and b, another nonterminating decimal
c is formed:

C = °Abell iblf 1412 . . .
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The new decimal is a real number between Oland 1 and represents a point on

the unit segment. (See fig. 4.3.)

a

c

Fig. 4.3

Every point in the square then can be matched uniquely with a point on the

segment. Since the conditions of the theorem are satisfied, the set of points

on the segment is equivalent to the set of points in the square. Both are non-

denumerable infinite sets, and it can be seen that infinity cannot be used to

distinguish one-space from two-space.

Cardinality of Infinite Sets

In finite sets the cardinal number of a set indicates "how many" elements

the set contains. For example, the cardinal number of the set of letters in the

alphabet is 26. Our fingers form a set having the cardinal number 10. The

cardinal number 10 is less than the cardinal number 26 because a set of 10

elements has fewer elements than a set of 26 elements. Cantor used the

Hebrew letter No, (read aleph null) for the cardinal number of all sets equiva-

lent to the set of natural numbers. He designated c (for continuum) as the

cardinal number of the reals. The cardinal number of an infinite set is called

a transfinite number. No and c are transfinite numbers.
It appears that any infinite subset of the nationals or the natural numbers,

such as the reciprocals of the positive integers or the even natural numbers,

has cardinal number No, that is, the smallest transfinite number must be lc!

It is also evident from our work with the natural numbers and the reals that

Ko < c. If there is no transfinite number smaller than No, is there then one

between No and c? Or, phrased atlother way, iS K, = c? Cantor intuitively

responded in the affirmativethis is known as the continuum hypothesis
but he was not able to prove it. Recently, in 1940 Godel, and in 1963 Cohen,

showed the continuum hypothesis to be independent and in a position similar

to that of the parallel postulate in geometry. That is, if the continuum hypoth-

esis is added as a postulate to the accepted fundamental properties of set

theory, you have a consistent axiomatic system comparable to Euclidean

geometry. If, instead, a negation of the continuum hypothesis is added, one

has a different, but consistent, system, as in non-Euclidean geometry.

The next question asked ought to be "Is there a transfinite number greater

than c?" Before attempting to answer this question, first look at the use of

exponents, as in tio2 and Vo. In finite cardinal numbers 32 means (3)(3),
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or three threes. This suggests 1402 = ($0)(140), or an infinite number of in-
finite sets. The set of ordered pairs of the positive integers would be an
example of such a set:

(1,1) (1,2) (1,3) (1,4) ...
(2,1) (2,2) (2,3) (2,4) ...
(3,1) (3,2) (3,3) (3,4) ...
(4,1) (4,2) (4,3) (4,4) .

There are as many pairs in each row as there are natural numbers, and as
many rows as there are natural numbers. A one-to-one correspondence can
be set up as follows between each natural number in the following array and
the ordered pair that is in the corresponding position in the array above:

But the cardinal number of the natural numbers is No. This implies that
$03 = (14o)(14o) = No!

Next, examine the "power set" of a set S: this is the set of all possible sub-
sets of S, including the empty set, g5, and S itself. For a set S of three elements,
a, b, c, there are eight subsets: 5, (fr, (a}, {b}, {c}, {a, b), a, c }, (b, c }. For a
set of four elements; there are sixteen subsets. Continue to increase the num-
ber in the set, and notice this:

For a set of three elements, there are 8 = 23 subsets;
for a set of four elements, there are 16 = 24 subsets; and
for a set of n elements, there are 2' subsets.

So, for an infinite set of cardinality 140, the set of all possible subsets, that
is, the power set of this infinite set, must have cardinality 2'1 o! How are is
and 2" related? We note that 3 < 23, 4 < 24, and, in general, n < 2". Then,
No < 240. Cantor showed further that 2K0 = c. Using the same reasoning,
c < 2e, and behold, here is a transfinite number greater than c! Similarly,
2, < 2`2`). As this process is repeated, another conclusion looms. There is no
largest transfinite number!

Arithmetic with transfinite numbers is intriguing and full of surprises. For
example, what is 14o So? Or 2140? What is the eardinality of the even
natural numbers? Of the odd natural numbers? What set is the union of the
even numbers and the odds? What is the eardinality of the natural numbers?
Does this suggest that 14o + 14o = t'to? Which of the operations and their
properties that hold for finite cardinal numbers can be extended to transfinite
numbers? Explore this further and see what you discover!
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Pascal's Triangle
John D. Neff

There would seem to be an almost inexhaustible supply of problems and
conjectures in the array commonly known as Pascal's triangle. One could
allude to it either as a gold mine or as an icebergthe former because the
riches are there, but some ingenious labor is often needed; the latter because

shall perhaps never see more than a small percentage of the mass. Much
of what you can learn will come through self-discovery, so you are encouraged
to guess and experiment with easy cases at first and gradually pose conjec-
tures and prove theorems later. In a few cases, the proof of the theorem will
be very difficult, and yoh will have to settle for some of them in the references
at the end.

The triangle appears in many different contexts at nearly all levels of mathe-
matical endeavor. This is the real beauty of the triangle! The organization of
the material that follows is as you might encounter the triangle in formal
courses. As a suggestion for a talk, you might begin with a topic from the
arithmetic section and then add material from any other section that interests
you.

In its most familiar form the triangle appears as follows, with the row
numoers appended for later reference.
Row

0 1

1 1

2 2
3 1 :3 3 1

4 1 4 6 4
5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 :35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

The pattern, of course, is that each entry is the sum of the two entries im-
mediately above it and each end entry is always the number 1. It is suggested
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that for your talk you should always have the above nine rows in view.

You might also save room for the next two rows, if it becomes necessary to
display them.

Arithmetic

1. The row sum is always an even number. Once you are satisfied why this
must be so, then show that the row sum in the nth row is 2n.

2. In any row, the algebraic sum of the first minus the second plus the third
minus the fourth, and so on, until the end, is always zero. Moreover, if you
will watch carefully while doing this operation, you will find the numerical
value of the partial sum conveniently nearby, to the northeast.

3. The sum of the first, third, fifth, seventh, etc., entries is the same as the
sum of the second, fourth, sixth, eighth, etc., entries in any row. Why should
it be half of the sum found in (1) above?

4. Number the diagonals of the triangle d = 1, 2, 3, . .. for later reference.
(For example, the third diagonal contains the entries 1, 3, 6, 10, 15, ....) On
any diagonal, the partial sum of the entries is conveniently nearby. (See
Yaglom and Yaglom.)

5. Add the squares of the entries in any row and note that it is an entry in a
later row. Describe the location of this sum on the squares in terms of the
original row number used.

6. If you are very careful to "carry" over the digits, the nth row of the
triangle is the number 11n in disguise.

7. Choose any row (call it row A) and underline the far left entry. Choose a
second row (call it row B) and underline any entry. Multiply these two entries

and add to it the product of the corresponding entries moving to the right on
row A and left on row B, until you run out of numbers. The sum of these prod-
ucts is in the triangle and can be described in terms of your starting position.

8. Pick any row of the triangle at random. Skip the first entry 1 entirely
and then form the algebraic sum of the second entry, minus one-half of the
third entry, plus one-third of the fourth entry, minus one-fourth of the fifth
entry, and so on, until you reach the end of the row. This sum is the same as the
partial sum of the "harmonic series" 1 + 1/2 + 1/3 + . . ., provided one can
describe how many terms of the harmonic series are needed in terms of the
row number chosen in the triangle. Incidentally, the harmonic series does not
have a sum if the terms are added indefinitely.

Set Theory

0. How many subsets of k elements can be formed from a set with n distinct
elements? For example, a set with two distinct elements has four subsets: the
empty (or null) set, two single-element sets, and the original set itself. List
all of the subsets similarly for other values of n, with k = 1, 2, 3, . . ., n, until
the pattern is clear. Don't forget that the null set is regarded as a subset of

every set!

40



10. The symbol (kn) can be interpreted as the number of subsets with k

element; that can be formed from a set with n distinct elements, and this
symbol is assigned the numerical value

n!
k! (n - k)! (0

(The symbol 0! is defined to have the value 1.) Form a triangle by considering
the various values of k (k = 0, 1, 2, 3, . . n) for each value of n, starting
with n = 0. Each row number of this triangle will be the value of n selected
and the entries arranged in increasing values of k. The first few rows will look
like this:
Row
0

(0
0)

1

(1)
2

(g) (1) 0)
Evaluate each of these symbols and continue adding rows to this triangle until
the pattern is clear.

11. From a set containing n 1 distinct elements A, B, C, D, . con-

sider +sider the subsets containing exactly r elements. There will be such

subsets. Some of these subsets will contain a particular element (say, B) and
the rest will not. Justify the "Pascal relation"

(n + 1) in\
-1)

in terms of the number of subsets thakrt contain the element B and those that
do not contain the element B.

Algebra

12. One of the most widely known displays of the triangle is in connection
with the successive positive integral powers of the binomial (a b). For
example,

(a b)° = 1;
(a + = a + b;
(a + b)2 = a= + lab + b2.

Expand the product (a + b)" for enough more values of n until the pattern
is clear.

13. In its compact form, the binomial theorem in (12) can be written

(a b)" E (nk )
k =0

Owhere the symbol ( is defined as in (10). Verify this form of the theorem,k

again using the convention 0! = 1.
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14. Clever choices of the numbers a and b in (12) or (13) will net you an
easy proof of the statements made in (1) and (2), as well as a compact form
for many of the statements made earlier. For exampi the statement made in
(5) can be written

n
kk k

On\
k

in this compact notation.

Plane Geometry

15. Place n points in a plane, so that no three are collinear, and connect
this set of points with straight lines. How many lines have you drawn? Relate
this answer to the triangle.

16. All of the lines that are drawn in (15) created an n-sided polygon and
its diagonals. How many diagonals does a polygon with n sides have? (For
example, an octagon has 20 diagonals.) Relate the number of diagonals in an
n-sided polygon to the nth row of the triangle.

17. Place n points at random on a circle, and connect all of these points
with straight. lines (Bryant; Yaglom and Yaglom).

a) How many regions are formed inside the circle? You are creating the
sequence 2, 4, 8, . . x, . . . starting with n = 2 points. Find the number x
in terms of the triangle.

b) How many regions are formed inside the polygon that is inscribed in
the circle? You are creating the sequence 1 , 4, 1 1 , . . y, . . . starting with
n = 3 points. Find the number y in terms of the triangle.

c) Count. the total number of intersection points of the diagonals of the
polygon. You are creating the sequence 1 , 5, 15, . . z, . . starting with
n = 4 points. Find the number z in torm, of the triangle.

18. This is much the same as the preceding, except that we shall use circles
instead of lines. We wish to determine the maximum number of regions
created in a plane by n circles, so drawn that no two are tangent, none is
wholly inside or outside of another, and no three are concurrent. You are
creating the sequence 2, 4, 8, 14, . . w, starting with n = 1 circle. (For
example, with n = 1 circle, you have a region inside the circle and the region
in the plane outside of the circle.) Find the number w in terms of the triangle.
You will find it easier to relate the answer to the triangle by also considering
the sequence formed by one-half of each number w (Bryant; Yaglom and
Yaglom).

Probability

19. Continue the tree diagram in figure 5.1, %Odell shows the two outcomes
(H or T) of a fair coin tossed once and the four outcomes (1111, HT, TH, TT)
of a fair coin tossed twice to the eight outcomes of flaw tosses, and so on.
Count the number of ways that exactly k heads show up when the coin is
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tossed n times, for several n and k = 0. 1, 2, . . a. Considering each of the
2^ outcomes as equally likely when the coin is tossed a times, determine the
probability of no heads. 1 head, 2 heads. . . heads. Relate the numerator
and the denominator of the probability to the triangle's nth row (NIosteller,
Rourke, and Thomas).

1st toss 2d toss

H

T

Fig. 5.1

H

T

H

T

20. Ilow likely, in your opinion, would it be that both persons' would get
exactly the same number of heads when they each tossed a coin 10 times? The
answer is perhaps surprising: more than one-sixth of the time this will happen
(exactly .1872). Try to establish a pattern in the triangle by first considering
that each person flips once, then twice, and so on and referring to the trees
drawn in (19). In order to tackle the general case, you will need to refer back
to (5) or (14) for the sum of the sum of the squares of the row entries. (The
approximation 1 VI; is surprisingly good for large a. See Feller.)

Trigonometry

21. Verify the following trigono,notric identities:
ros 23 = t.os2a sin2a,

cos 33 = e os= 3 cos a sin:a, and
-OA 42 = ens'a eosla sm1a

and try to establish. wi'h the aid of the nth row of the triangle. a similar iden-
tity for cus ax.

22. Verify the following trigonometric identities:
sin 23 = site a cos a.
`al 33 = a cos2a sin'a, and
:sin 42 = 1 sin a cos:a 4 sin3a cos a,

and try to establish, with the aid of the nth row of the triangle, a similar iden-
tity for sin ax. The general pattern in this and the preceding pnililein is
given by De Nloivre's theorem. which can be found in any trigonometry book.

Solid Geometry

23. We would like to determine the maximum 'lumber of -chunks" of
space that are created by n planes in arbitrary position. One plane creith.s 2
"chunks" (above and below), two planes can create a maximum of 4 "chunks"
(3 if the planes are parallel and 2 if they are coincident). Convince yourself
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that three planes will create at most 8 "chunks" by considering your class-
room front wall, side wall, and floor. Four planes do not, unfortunately, create
16 "chunks," so try the easier two-dimensional problem "How many regions
in a plane are created by n lines in arbitrary position?" You create the s e -
q u e n c e 2, 4, 7, . . as you will quickly discover, starting with n = 1 line.
Note that, to achieve the maximum, every new line you draw must cross every
line already drawn in a distinct intersection point. Now consider the number
of line segments formed by piacing n points on a line. You can finish the orig-
inal "chunks" problem and relate it to the triangle's nth row if you will
finish table 5.1 and discover the pattern. (Sec Polya entries.)

TA131.1.: 5.1

11

Number of figments Number of Regions Number of Chunks
by n Pont i4 by n Lines by n Planes

0 I 1 1

1 2 2
2 4 4

4 7 8

Calculus

24. The geometric. series

+ + X2 + 73 + . . . -
for ix; < 1. (This can be easily verified by actual division.) Consider the
corresponding derivatives

2% + 314 + 473 t . . .

1

,

also a true statement for lxf < 1. By repeated differentiation, establish the

connection between the successive powers of and the numerical eoeffi-
1 x

eients in the series of derivatives ill terms of the triangle.
25. The decomposition of the rational function

n!

x(x + 1) (1. + 2) . . (x-1- n)

into partial fractious will involve the triangle very quickly. For example,

x(x x x +
and

2 I 2 I

a- (.2- + 11 Cr + 2) -x x + I + x --1- 2

Try the eases /4 = 3, 4, . . in turn and observe the pattern. A similar situation
exists for the rational function

n!
x(x 1) (x 2) (r :1) . . (x

in terms of the nth row of the triangle.
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Linear Algebra
26. Consider the matrix formed by the first two numbers in the first twodiagonals, namely,

t 2)
The determinant of this matrix has the value 1. Now write the matrix withelements the first three numbers in the first three diagonals, namely,

1Ifa (t 2 3),
1 3 6

and show that 1/11 = 1 also. Does the determinant of all such matrices formedin this manner always equal 1? If so, try to prove it.

Miscellaneous
If the iceberg analogy that was mentioned in the beginning is at all correct,this portion could be many pages long. However, the list of topics will closewith some additional suggestions that are not as easily classified but are atleast as interesting.
27. By drawing lines of approximately 30 degrees elevation through thetriangle and adding the numbers touched by the lines, one will create the se-quence 1, 1, 2, 3, 5, 8, 13, . . known as the Fibonacci sequence. This sequencehas many fascinating properties and applications; but only one will be men-tioned here. The limit of the sequence formed by dividing each element by itssuccessor is known as the golden section (approximate value 0.618 . . .).(See Hoggatt.)

28. Reconsider the tree drawn in (19) and ask for the probability that thefirst head occurs on the kth toss of the faircoin (k = 1, 2, 3, . .). The probabil-ity that the first head occurs on the first toss is one-half, since we are using afair coin. This statement is written compactly as P(k = 1) = 1/2. Similarly,P(k = 2) = 1/4, since one needs a tail first and then a head in order to havethe first head occur on the second trial. Is it possible that the first bead willnever occur? The answer is no! You need to sum the probabilities invokedwith the aid of the geometric series sum found in (24). In short, sooner orlater, you must get the first head (hosteller, Rourke, and Thomas).29. Let us extend the discussion in (28) a bit further. There will always be afirst, head, and there willalways be a second head, and a third head, and so on.In an experiment where the outcome is always success, with P(S) = p,or failure, with P(P) = q (p q = 1), then there will always he a first success,a second success, . . ., a twenty-first success (as in table tennis), and so on.The triangle is involved even here, and the analysis requires looking at thetwenty-first diagonal, a formidable undertaking. You might be interestedin learning that the most likely number of total points scored in a table tennismatch is the minimum of the two numbers

[i + =1 and [1 +
9
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where [xl denotes "the greatest integer contained in the number x." Draw

the graph of the most likely number of total points as a function of p, for values

of p in the interval 0 < p < 1, and see how sensitive the total is to the skill

of the better player.

Open Question

:30. We have only scratched the surface of the iceberg. As you progress

through your mathematical studies, keep a sharp eye peeled for the most

unexpected appearances of the triangle. Sooner or later, you will find another

application; the thrill of discovery will be yours, and the best talk of all will

be your telling of your discovery. Happy bunting!
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6

Topology
Bruce E. Meserve
Dorothy T. Meserve

Topology is a study of sets of points and is often thought of as a basic ge-
ometry. In this geometry there are formal rules under' which a circle may be
transformed into a s( tare, the surface of a teacup into the surface ofa dough-,
nut, and even a line segment an inch long into a line segment a mile long. (An
inch is as good as a mile in this geometry.)

Many aspects of topology may be observed from such games with geometric
figures. Topology may also he studied very seriously and formally. The fol-
lowing topics have been selected to help you gain an informal understanding
of some aspects of topology. You can have fun exploring topological ideas with-
out going seriously astray relat've to the formalities that are left for pos,,ibie
future study. As you read, !we sure to make sketches of figures whenever they
can help you visualize the statements under consideration.

Topologically Equivalent Figures

Any two congruent figures are equivalent under a rigid motion, that is,
either figure may be mapped onto the other by a transformation that, preserves
lengths of line segments. If two figures are similar, either figure may be mapped
onto the other by a transformation that preserves measures of angles. When
lengths of line segments are preserved, each line segment is mapped onto a
line segment of the same leng',' as the original line segment. When measures
of angles are reserved, each angle is mapped onto an angle of the same mea-
sure as the original angle.

In topology we are concernedlvith transformations that preserve neighbor-
hoods of points. It is possible to give a formal definition of neighborhood, but
«e shall not qtempt to do so. Rather, we shall depend upon your intuitive
concept of the word. The neighborhood of a point 1' on a line may he taken as
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an open line segment containing the point P. The neighborhood of a point Q

on a plane may be taken as the interior of a circle with Q as center. The neigh-

borhood of a point R in space may be taken as the interim of a sphere with R

as center.
If a topological transformation maps a point P onto a point P'. then every

neighborhood of P (no matter how small) must be mapped into a neighborhood

of P' and the points of every neighborhood of I/ must be image points from

some neighborhood of P. This restriction requires that distinct points cor-

respond to distinct points. Each point of the original figure is mapped onto

exactly one point of the new figure. and each point of the new figure is the

image of exactly one point of the original figure. Two figures are topologically

equivalent if neighborhoods are preserved under a mapping of either figure

onto the other.
Consider a circle 0 of radius 3 inches and a circle 0' of radius 4 inches. The

3-inch circle is congruent to another 3-inch circle that is concentric with the fl-

inch circle. Can you find a pattern for mapping points of the larger . these

two concentric circles onto points of the smaller circle so that neighborhoods

are preserved? Can you find a pattern for mapping points of the smaller circle

onto points of the larger circle so that neighborhoods are preserved? If you

have difficulty visualizing a mapping of one of the concentric circles onto the

other, make the points along radii correspond, that. is, project one circle onto

the other from their common center. Figure 6.1 illustrates the sort of drawings

that you should make as you read this paragraph.

Fig. 6.1

Do you think that any two congruent circles are topologically equivalent?

Explain why this must be so. Now you should be able to explain why any

circle is topologically equivalent to any other circle. If the words "topolog-
ically equivalent" seem too cumbersome, you can say the same thing by
saying that the figures are homeomorphic.

A simple closed carve may be defined as a figure that is topologically moi-

valeta to a circle. Show that any triangle is a simple closed curve; any square,

any parallelogram, any regular polygon. ('an you think of a curve that is not

a simple closed curve? Try a "figme mght," a line segment, a parabola, a

hyperbola in our usual geometry, a sine curve. None of these curves are simple

closed curves.
Think of a ureie tangent to a line at a point A as it figure 6.2, and let II be

the point diametrically opposite A. Use lines through b to map (project) every

point P different. from B on the circle onto a point I/ of the line. Neighbor-
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hoods are preserved. After the point B has been removed. the remaining
punctured circle (a circle with a point removed) is topologically equivalent
to the line.

,

B

A

P

\

Fig. 62

Each of the following statements may be demonstrated as indicated in the
figure accompanying the statement.

1. Any open line segment (such as the set of points between 0 and 1 on a
number line) is topologically equivalent to a half-line. (In fig. 6.3 where

DB i; :IC. D is a fixed point and P is any point of AB. observe that

.4 B is topologically equivalent to .1 C.)

A P'
Fig. 6.3

Any open line segment is topologically equivalent to a line. (in fig. 6.1
-4

where DB . AC Et'. ob....erve that BE is topologically equivalent to
11-.

AC.)

wP

A

Fig. 6.4

3. Any line segment A B is topologieally equivalent to any other line seg-
ment CD. (See fig. 6.5.)
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P'

C =A'

_Fig. 6,5

The third statement provides the basis for the comment in the first para-
graph of this article that "an inch is as good as a mile in this geometry."

In demonstrations such as those just considered we have tacitly assumed
that a figure may be replaced by any congruent figure to obtain suitable
figures in an approptiate relative position. This assumption is a special case
of the statement that any two figures that are topologically equivalent to
the same figure are topologically equivalent to each other. For example. we
have already noticed that any 3 -inch circle and a 4-inch circle are topologically
equivalent to a 3-inch circle concentric with the 4-inch circle and also are
topologieall equivalent to each other. Draw figures for a few other such
examples. Observe the mappings (topol iral equivalences) from the first
figure to the second and from the third figure to the second. Is there also a
topological equivalence represented by a mapping from the first figure to the
third? Explain why the first and third figures must be topologically equiva-
lent. Note that this is a trangilite properly for topological equivalences.

Any figure that is topologically equivalent to a punctured circle is a simple
open curve. Thus a line is a simple open curve. Explain or show why each of
the following statements mist he true:

1. An open line segment is a simple open curve.
2. A half-line is a simple open curve.
3. A plane angle is a simple open curve.
. A parabola is a simple open curve.
5. A sine eurve is a simple open curve.
6. Au ellipse is not a simple open curve.
7. A hyperbola is not a simple open curve.

The letters of our alphabet may be grouped according to the topological
properties of a given representation of the capitals of the letters considered as
curves. For example. in their usual style N. awl T are topologically equivalent
curves. Also M. N. and Z arc topologivally equivalent curves (see Jacobs,
pp. .151-52).

The neat little ink :Tots known as letters of the alphabet may also he con-
sidered as regions on the plane. Then. (wen though their boundaries are of
different sitars, the regions V. T. NI. N. Z, and others are all topologically
equivalent to each other and to a lit-pular disk. Similarly, the regions A, 0, P,
and others are equivalent to rich other and to a eirenlar ring; that is, a disk
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with a hole in it. In general, any connected bounded plane region with its
boundary is topologically equivalent to a disk with some number b of holes.
The number b is called the Belli number of the region. Any two topologically
equivalimit regions have the same Betti number.

In space a sphere may be considered as the surface of a solid ball. A sphere
is topologically equivalent to the surface of a cube, a tetrahedron, a convex
polyhedron, and many other spare figures.

Consider the surface of an ordinary doughnut (a torus). Because of the hole
in the middle, the surface of the doughnut is not equivalent to a sphere. How-
ever. the spherical part of a sphere with one handle may be thought of as
shrunk into the continuation of the handle. Thus the surface of a doughnut
is topologically equivalent to a sphere with one handle. See figure 6.6.

Fig. 6.6

Think of a sphere as a hollow ball such that one hemisphere can be pushed
into the other to form a bowl or cup without handles. A sphere without
handles is topologically equivalent to a cup without handles. See figure 6.7.

Fig. 6.7

A sphere with one handle is topologically equivalent to a cup with one
handle. such as a teacup. Thus an ordinary doughnut is topologically equi-
valent to a teacup. A sphere with two handles is topologically equivalent to a
cup with two handles.

Exercises and further information regarding topological surfaces may be
found in several of the references in the bibliography at the end of this chapter.

Traversable Networks

.mother famous topological problem is concerned with bridges in the city
of Konigsberg. There was a river flowing through the city. In the river there
were two islands connected to the mainland and each other by seven bridges
as shown in figure 6.8.
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Fig. 6.8

The people of Konigsberg loved a Sunday stroll and thought it would be
nice to take a walk in which they would cross each bridge exactly once. But
no matter where they started or what route they tried, they could not cross
each bridge exactly once. This caused considerable discussion. Gradually it
was observed that the basic problem was concerned with paths'between the
two sides A, B of the river and the two islands C, D as in figure 6.9.

Fig. 6.9

With this geometric representation of the problem it was no longer neces-
sary to diSiTusS the problem in terms of walking across the bridges. Instead
one could discuss whether or not the curve associated with the problem is
II-at:amble in a single trip, that is, whether or not one could start at some point
of the curve and traverse each arc exactly once. The curve is often called the
graph of the problem. The Konigsberg bridge problem could be considered
in terms of its graph by people who had never even been to Konigsberg. The
desired walk was possible if and only if the graph was traversable.

When is a graph traversable in a single trip? One can walk around a city
block, and it is not necessary to start at any particular point. In general,
one may traverse any simple closed curve in a single trip. This may be sur-
prising for some complicated-appearing simple closed curves, but it is a basic
property of all simple closed curves.

We next consider walking around two city blocks and down the street sep-
arating them. (See fig. 6.10.) This problem is a bit more interesting in that
it is necessary to start at 13 or E. Furthermore, if one starts at B, then one
ends at E; if one starts at E, then one ends at 13. Note that it is permissible to
pass through a vertex several times but each arc must be traversed exactly



once. The peculiar property of the vertices B and E is that each is an endpoint
of three arcs while each of the other vertices (A, C, D, F) is an endpoint of
exactly two arcs. A similar observation led a famous mathematician by the
name of Leonard Euler to devise a complete theory for traversable graphs,
often called traversable networks.

F

A

D

C

Fig. 6.10

Euler classified the vertices of a graph as odd or even. A vertex that is on
(an endpoint of) an odd number of arcs is called an odd vertex; a vertex that
is on an even number of arcs is called an even vertex. Since every arc has two
ends, there must be an even number of odd vertices in any graph. Any graph
or network that has only even vertices is traversable, and the trip may be
started at any vertex. Furthermore, the trip will terminate at its starting
point. If a graph contains two odd vertices, the graph is traversable, but the
trip must start at one of the odd vertices. The trip will then terminate at the
other odd vertex. If a graph has more than two odd vertices, the graph is
not traversable in a single trip. In general, a graph with 2k odd vertices,
where k is a positive integer, may be traversed in k distinct trips.

The graph for the Konigsberg bridge problem has four odd vertices. This
graph cannot be traversed in a single trip. Thus it was not possible to cross
each of the seven Konigsberg bridges exactly once in a single trip. The solu-
tion of the Konigsberg bridge problem is the determination that the desired
walk is impossible. The discussion of this problem in an article by Tucker and
Bailey (1950) is concluded with the statement that Tucker bad actually
walked across each of the bridges exactly once in 1935. (There were eight
bridges at that time.)

--

Frequently we see in advanced mathematical theories only complicated
manipulations and intricate statements involving precisely worded defini-
tions and theorems. It is refreshing as well as enlightening to look hack oc-
casionally at the roots of the theory and see the problems that started great
minds working for generalizations that have led to present theories. The
Konigsberg bridge problem is independent of the size and shape of the objects
under consideration. It is a topological problem. It has been considered by
some writers to be the starting point of the theory of topology.

The study of networks (graphs) is a part of the major branch of topology
that is now called graph theory (see Ore). Recent considerations of net-
works include separate considerations of the point of view of a highway in-
spector who wishes to traverse each arc (highway) exactly once and the
point of view of a salesman who wishes to visit each vertex (town) exactly

53



once (see Stein). Exercises and further information regarding networks
and graph theory may he found in the references in the bibliography.'

The Mobius Strip

Let us conclude our consideration of topology with a few comments about a
surface that has several very unusual properties. The surface is one-sided. A
fly can walk from any point on it to any other point without crossing an edge.
Unlike a table top or a wall, it does not have a top and a bottom or a front and
a back. This surface is called a Mobil's strip and may be constructed very
easily from a rectangular piece of paper such as a strip of gummed tape. Size
is theoretically unimportant, but a strip an inch wide and about a foot long
is easy to handle.

AC

Fig. 6.11

Consider the rectangular strip ABCD shown in figure 6.11. If we simply
form a cylinder as in the second drawing, then the corners A and D are placed
together and the corners B and C are placed together. To construct a Mobius
strip we twist the strip of gummed tape just enough to stick the gummed edge
of one end to the gummed edge of the other end. In this way we place the
corners A and C together and the corners B and D together.

If we cut across the Mobius strip, we again get a single rectangular strip
similar to the one we started with. Howevc- , if we make a Mains strip from
a rectangular strip and cut around the strip halfway between the long sides
of the rectangle (see the dotted line in fig. 6.12), we do not get two strips.
Rattier we get one strip with two twists in it.

Fig. 6.12

William Hazlett Upson used the peculiar property of Mobius strips in his
story called "Paul Bunyan and the Conveyer Belt" (see Fadiman 1962, pp.
:33-35). Other stories based on topological concepts may be found (see Fadi-
man 1958 and 1962).

I. The material in t his sect ion is adapted from Nleserve 1953, pp. 172-73.
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People of all ages can enjoy exploring the properties of a Mains strip.
Make a strip, cut it down the middle to check the property that we have just
discussed. Cut the strip down the middle again and see what happens. (You
may be astonished.) Make another Mains strip and try to cut it in thirds;
try to cut it in quarters by taking one fourth off the edge. Make a Mobil's
strip using coat zippers so that it can be cut (unzipped) down the middle
once and then down the middle again. One enterprising teacher designed a
one-sided drdss and a child's bib based on a Mobil's strip (see Pedersen),
You may find exercises and further discussion of Mobil's strips in some of the
other references in the bibliography.'

Bibliography

Several other topics could have been selected to provide an introduction to
topology. Some of you might have enjoyed topics such as the Jordan curve
theorem, surfaces and connectivity, En lees formula, and the four-color prob-
lem even more than the topics selected. These and other topological topics

-may be explored in articles in the Mathemattes Tracker, a wide variety of
books, and, in particular, the following references.
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7

Experiments
with Natural Numbers

Richard V. Andree

The natural numbers 1, 2, 3, 4, . . ., N, ... hold their secrets well. The ancient
Greeks studied them with considerable enterprise. Euclid, of geometry fame,actually published more work on number theory than he did on geometry;
and many of his proofs still stand today as models of ingenuity.

Problems involving the positive integers have long interested educatedamateurs as well a: professional mathematicians. Several important dis-coveries have been made by amateurs and even by schoolboys. No doubt thereare mans more still to be discovered. If your school has a desk calculator or acomputer, or even a set of tables, you, too, may participate in the thrill of
numerical exploration and discovery. Someone else may have made the same
discoveries earlier, but that does not take away from either the thrill of dis-covery or the credit due youproviding you make the discoveries and create
your own proofs rather than looking them up in the library.

Are you ready? Let's go.

Excursion 1Sums
The sums of the odd integers (,those not evenly divisible by 2, namely,1, 3, 5, 7, 9, . . .) show an interesting peoperty:

I = 12.
1 + 3 = 4 = 2'.1 + 3 + 5 = 9 = 3'.1 + 3 + 5 + 7 = 16 = 4'.1 + 3 + 5 + 7 + 9 = 25 = 52.1 + 3 + 5 + 7 + 9 + 11 = 36 = 6'.1 + 3 + 5 + 7 + 9 + 11 + 13 = 49 = 72.1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 = 82.
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From this, one might jump to the following conjecture:
The sum of the first K odd integers is K2.

This conjecture may or may not be correct. Your problem is to either
prove or disprove the conjecture. If a computer or desk calculator (even an
adding machine) is available, we can easily check our conjecture for the first
few values. The following program, written in the BASIC computer language,
will check our conjecture for the sum of the first IN = 1, 2, 3, . . ., 50 odd
integers.

10 PRINT "N", "K"K", "SUM OF FIRST l om) isTEGEns
20 S = 1
30 X = I
40 FOR li = 2 TO 50
50 N = X +2
60 S=S+N
70 PRINT K, N*N, S
SO NEXT K
90 PRINT "END OF PROGRAM"
100 END

.k partial output of this program is shown below:
:RUN
K K*K SUM OF FIRST K 01)1) INTEGERS

2 4 4

3 9 9
4 16 16

5 25 25
6 36 36
7 49 49
S 61 64
9 81 81

10 100 100

11 121 121

12 144 144

13 169 169

14 196 196
15 225 225
16 256 256
17 289 289
18 321 321
19 361 361

20 100 400

18 230 1 230 1

19 2 101 2401

50 2500 25(10

END OF PROGRAM
END PROGRAM

Since typing of results is rather slow and wastes computing time, the fol-
lowing program (which types only when S K*K) will test the conjecture
for K = 1, 2, ..., 1000 in about the same time that the first program required
to print the first ten lines of output.
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desk calculator or a small computer would be helpful but is not really essential.

Excursion 2Palindromes

Positive integers such as 4735374 or 461164 that r"ad the same forward as
backward are called , lindromes. interestiog ',amber game is described
below:

1. Take a positive integer N.
2. Form the sum of N and it, fever., , i'he reverse of N is the number obtained

writing the digits of N in reverse order. The reverse of 826 is 62S.)
3. If the sum is a palindrome, STOP, otherwise continue \ Atli step 2, using the sum

as the new value of N.

Example 1:
I. N = 139.
2. New N = 139 + 931 = 1070.
3. 1070 is not a palindrome.
2. 1070 + 0701 = 1771.
3. 1771 is a palindrome in two cycles.

Example 2:
N = 48017

48017 + 710s4 = 119101, not a palindrome.
119101 + 101911 = 221012, not a palindrome.
221012 '.:10122 = 431134, a palindrome in three cycles.

However, forming a palindrome is not always so easy; 89 does not produce
a palindrome until 24 cycles have been completed, and 106 goes a long, 1,-..1g
time without producing a palindrome. I don't know if it ever does. Investi-
gate whether or not N = 5, 6, . 99 all produce palindromes and if so, how
long the cycles are. If you wish, ext,gul your investigations to starting values
of more than two digits. Can you determine several infinite sets of starting
values that will always produce palindromes in one cycle? In two cycles?
What else can you discover about starting values that produce palindromes?
As far as I know. no one has ever proved that every starting value will
eventually produce a palindrome, but neither has anyone produced a starting
value that they can guarantee does not eventually produce a palindrome. You
may wish to consider how such a guarantee CI .11d bt, given.

Excursion 3Related Digits

We now turn our attention to a number of problems that are related to the
individual digits that make up certain positive integers. Our first problem is
as follows:

Determine all of the three-digit integers for which the sum of the cbes of the digit: of
the number equals the number. Since

13 + 5, + 33 = 1 + 125 + 27 = 153,
we know such numbers do gist.
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It is possible to solve this problem using pencil and paper. However, if a
computer or calculator is available, we let H, T, and U represent the hundreds,
tens, and units digits. The original number is N = 100*II + 10*T + U. and
the sum of the cubes of the digits is S = II I 3 + T I 3 + U 13 in BASIC
notation.

The following program suggests one possible "brute force" technique, in
which we simply try all possible three-digit numbers to see if N = 100*H -I;
10*T + U= H I 3+ T T 3+ U T 3 and print out those N that do satisfy
the given condition. We let H take on the values from 1 to 9 while T and U
take on values from 0 to 9. (Why?) The values HTU advance much as a car
odometer would in going from 100 to 999, with tests occurring at each value.

Study the program given below before continuing.

10 REM FIRS'1"fRIAL AT SUM OF CUBES OF DIGITS = NUMBER
20 FOR II = 1 TO 0
30 FOR T = 0 TO 9
10 FOR V = 0 TO 9
50 LET N = 100*H + 10*T + U
60 LETS=H13 +TI3 4-I'T 3
70 IF S<>N THEN 80
75 PRINT N;
80 NEXT V
90 Ni;:xl"r
100 i :xl. it
110 PRINT, " END OF EXAMPLE"
150 END

This program does not use statement 7i to print out a succes4u1 find
until II = 1, '1' = 5, U = 3. At that time S = N since 153 = P -l- ,i3 + 33.
Therefore, in statement 70 the transfer to statement 80 is not made. Line 75
is then executed. Your program should type out

153 370 371 407 END OF EXAMPLE

The actual comps .er time used to do the problem (approximately 10.5 sec-
onds on the Nova) will vary from computer to computer, but the vital thing
is to notite how much faster it could run using a program that is no harder to
write but uses "common sense" in the way it attacks the problem.

The above program ran and produced correct answers; but as a computer
program, it is at best inept. By using a very small amount of "programming
common sense," you could have saved more than 50 percent of the computa-
tion time on this problem. Are you ingenious enough to see it before you
continue?

Write out your revised program before continuing.
The program computes

N = 113 + T3 + U3
each time it goes through the inside FOR U = 0 TO 9 . . . NEXT U-loop
for a total of 3 X 2 X 900 = 54(X) time-consuming multiplications and 1800
additions. If each digit were cubed directly after the FOR loop for that digit,
it would cut this down to 18 + 180 + 180' = 1998 multiplications and the
same 1800 additions (which take much less time than multiplications do).
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This saving of 3402 multiplications shows the difference between a complete

"hack" programmer and a capable one.
We can also save some time by using WWII rather than the slower H j 3

instruction. On computers that compute II 1 3 as EXP (39.06(II)), in-

creased accuracy may also result. The following program will do this.

10 REM MORE POLISHED VERSION OF SUM OF CUBESOF DIGITS = NUMBER

20 PRINT "THREE DIGIT INTEGERS N HAVING THE SUM OF THE CI BF:SOFT/IC

30 PRINT "DIGITS OF N EQUAL. TO N ARE;"

50 FOR H = 1 TO 9
60 LET H3 = H*11'fi
70 LET NI = 100*II
80 FOR T = 0 TO 9
90 LET T3 = T`TIT
100 LEI' N2 = 10*T
110 FOR U = 0 TO 9
120 LET S = 113 ÷ T3 + U*1**I*
130 LET X = NI ± N2 ÷
1.10 IF s<> N THEN 150
145 PRINT N;
150 NEXT U
160 NEXT T
170 NEXT El
180 PRINT
190 PRINT "END OF EXAMPLE'
230 END

The output is

RUN
THREE DIGIT INTEG.:11S N HAVING TYE SUM OF THEcumsorrnE
DIGITS OF N EQUAL 10 N ARE;

133 370 371 407

Es: I) OF EXAMPLE
END PROGRAM

The time used in this revised version is 4.7 se( owls. as compared with 10.5

seconds for the original program. This may seem a small savings, but it is a

savings of over 50 percentand that is very worthwhile on long or frequently

run progran.. Students should think about efficient use of the computer if they

plan to use it. The use of human intelligence as a computer-saving device is

what makes one programmer worth three times as much as another with the

same experience. If you can save only ten minutes per working day on a

computer worth S600 an hour, you have saved between S2000 and $3000 ?er

month. No wonder employers arc willing to pay an extra $1000 per month

to a really able programmer over and above what they will pay al. ordinary

programmer! Which will you he? Try the following:

I. Our programs determine all the thee-digit integers such that the sum of

the cubes of those digits is equal to the original number. Ilowever, there may

be one- and two-digit integers that also have this property. Modify the above

program so that it will determine all one-, two-, and three-digit integers having

tho above property.
2. Use some mathematical ingenuity to supplement your computer output

02
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and determine all integers (no matter how many digits) that have the prop-
erty that the sum of the cubes of the digits of the number equals the original
number.

3. Determine all the positive integers N such that the sum of the factorials
of the digits of N equals the original number N. Be clever in your program-
ming. Perhaps you may even wish to use subscripted variables and compute
and store the values of 0!, 1! *)!, 3! 9t in subscripted storage locations to
mince the amount of computation.

here is another little-known problem concerning digits that merits investi-
gation:

Let No be any four-digit positive integer. If we define the following relations
as

I.K = (the largest integer obtainable. by rearranging the digits of N K)

=
and

the smallest integer obtainable by rearranging the digits of NK)

then NK4., = LE
Thus if

N. = 7162,

N1 = 7621 1267 = 6151.

N: = 65-13 3-151; = 30S7,

; = 8730 0.37c =

and

N4 = 8.532 23.5S = 6171,

Ny = 761 1-167 = 6-;.
h h clears' repeats forever.
Also. if

= 2212.

N = 2221 1222 = 0999,
N, = 9690 0999 = 6991.

N.; = 9981 8082,

N4 = 8820 0288 = 8532.

Ny = 6532 2356 = 617',
N4 - 76-11 1.167 eee 617.1.

which again clearly repeats forever.
In contrast. if

N. = 7777.
N, = 7777 7777 = 0.

whieh also repeats tin ever
Your problem is to investigate this recurrence relation. The results may

surprise you.
It is not nece-isary to investigme all 009 possible -1-digit numbers to com-

pletely sidve this problem. The 21 starting values 7115?. 7621. 1726, 2671, etc.,
each yield the same t :due fin. NI and th the same sequence from there on.
Show that t here are unit possible values for N,. and therefore we need spend
less than 1 100 yet t be time that would be required to cheek all 9000 eases. You
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may also wish to investigate this process for starting values having 3 or 5 or
6 digits. Some 6-digit starting values lead to the repeater 631764, others do not.
Note that 165033 = 163 + 503 + 333, base 100 instead of base 10.

Excursion 4Factorials

If N is a positive integer, then the product of the positive integers from 1
to N inclusive is called N-factorial and symbolized as

N! = 1-2-3-1-...-(N 1)-N

In some problems it IS also desirable to define 0! as 1, but we shall not.
Here are some problems for you to investigate.

I. It is true (but not obvious) that all ten possible digits appear among
the digits of N! for some integers N. The table seen in figure 7.2 lists the
smallest positive integer NK that contains the digit K for K = 0, I, 2, 3. 4. :5, 6,
7, 8, 9. First verify that the table as given is corr..et (or correct it) and then ex-
tend it to larger values of K. Note, for example. that when K = 12, N = 5
since 51 = 120. Can you extend the table as far as K = 100?

K I 0 1 2 3 4 5 6 7 1 8 91

II

Smat
est N1
such
that 1 5
N!

con
tans

I 2 8 4 7 3 6 9

N! 1120 I 2 24 50401 6 720 ,,,,, t i
40320

Fig. 7.2

362880 399168001

2. What is the smallest positive integer N that contains all 10 of the digits
(in some order) among the digits of N!?

3. Are there values of N other than N = 1,2 such that N! begins with N?
Note that the computer may he able to produce a "Yes" answer, but cannot
give a definite "No" answer. Why not?

4. .1. Maxfield has :thown (Math Magazine, Vol. .13. #2. March 1970, pp.
64-67) that given a sequence of digits K = d1, d2, (:3, . . (1, there exists an
integer N such that N! begins with the sequence of digits K. Write a program
to create a table such that the mnallest such positive integer N(K) is deter-
mined for each i 5.100. You may wish to also print out the floating point
value of N! if it will be available at no additional cost. Eventually, we would
like a formula for N(K) = smallest positive integer N sorb that N! begins
with the sequence of digits N, but that may be too much to hope for. Your
table might well begin:
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1

X(K)
I I

N!

2 2 2
3 9 362880
4 8 40320
5 7 5040
6 3 6
7 6 720
8 14 8.7178 . . . X 10'°
9 96 9.9168 . . . X 101"
10 27
11 22 .
12 5
13 15

100

5. If N 5. then N! ends with one or more "trailing zeros." Create ule
that enable you to look at N and determine exactly how many trailing
zeros N! will have.

6. The numeral that represents 100! contains exactly 158 digits. Is there a
value of N such that N! contains exactly 100 digits?

Excursion 5Superprimes

We next turn our attention to an interesting subset of the primes called
the superprimes.

The integer 7331 is a prime. So is any integer obtained by deleting digits
from the right edge of 7331. since 733, 73. and 7 are each prime.

A prime integer that has the property that every integer obtained by de-
leting an arbitrary number of its right-most digits is again prime is called a
superprime. The integers 317 and 2399 are also superprimes. (You should
N.erify thisit is part of reading mathematics.)

The superprimes 7331 and 317 are rather special, even among super-
primes, and are called superprime leaders since there is no digit. X that will
make either 73,111 or 3,17X into a superprime. (If you wish to do some
mathematical research get out your pencil and paper and prove this last
statement before you continue reading. It isn't very difficult.)

A superprime leader is a superprime that cannot be obtained by deleting
digits from a larger superprime. The superprime 2399 is not a superprime
leader, since 23993 is also a superprime. actually 23993 is not a superprime
lewler either.

Ascertain which four of the following seven integers are superprime leaders:
59 23339 59393139 7323 7331 239933 739397.

Yon may save considerable time and effort if you are observant enough to
make and prove the validity of a few observations (that is, theorems) along
the way. The types of theorems that could be helpful might include the fol-
lowing:
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THEOREM. If a superprime contains either of the digits 2 or 5, then 2 or 5 can
only be the left-most digit of the superprime.

THEOREM. The digits 4, 6, S, 0 will not appear in a superprime.
THEOREM. The digit 1 cannot appear as the left-most digit of a superprime.

(This is true because 1 is neither prime nor composite.)
These and other theorems that are not difficult to prove can be most help-

ful in any search for superprime leaders.

Research proposition 1

Select an integer K 4 and determine all of the superprime leaders having
K or fewer digits. If you have a computer available you ;nay wish to use it.
If not, use prime tables, which shout 1 be available ,n your library.

For those of you who would like sonic assurance that you are progressing
satisfactorily the following partial table is presented.

Number of digits 2 3 4 5 6 7 8
Number of known superprime leaders
having the above number of digits

I 3 6 5 3 5

Research proposition 2

Determine whether the number of superprime leaders is finite or infinite.
Don't guess. This requires a proof. but the proof is within your ability if you
have solved research proposition 1 for sufficiently large K.

Excursion 6A Recursive Function

The problem given here is one that has not as yet (1972) been investigated
very fully. Perhaps. you or some of your classmates may be able to add to our
current knowledge of this little problem, which arose while creating an
example of an integral recursive function for a computer class being taughtto high school students on Saturdays on the campus of the University of
Oklahoma.

The problem is simple.
Let No be any integer.
'We now obtain a sequence of integers starting with No using the recursive

rule.

N NK/2K1 = if NK even
1. 0(111

If No = 1 I, the corresponding suit; -mce is 1 1 34 17 52 26 13 0 20 10 5 16
8 4 2 I. If a chain contains the digit 1, repeats the digits 1 4 2 I 4 2 I 2 . . .

in a periodic fashion thereafter. In this case we terminate the chain at the first
1 and say the chain converged to I. furthermore, we define the number of
steps from No to the first I to be the length of the chain; that is, if the integer
1 appears in the sequence for the first time as then the length of the chain
is a. The above chain, which begins with No = 11, has x = 14.

Several typical chains follow.
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25 76 38 19 55 24 SS 44 22 11 34 17 52 26 13 40 20 10 5 16 S4 2 1
2613 40 20 10 5 1684 2 1
27 82 41 124 62 31 94 47 142 71 214 107 322 161 4S4 242 121 :364 182 91 274 137 412

206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 66S
334 167 502 251 754 377 1132 566 283 S50 425 1276 63S 319 95S 479 1438 719 215S
1079 3238 1619 1858 2429 72SS 3644 1S22 911 2734 1367 4102 2051 6154 3077 9232
4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 4G 23 70 35
106 53 1110 80 40 20 10 5 16 842 1

28 14 7 22 1! 34 17 52 26 13 40 20 10 5 16 8 4 2 1
29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
30 15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
It will be noted that each of the given chains terminates the integers

16. S. 4. 2. 1. This makes us wonder if every chain of length 4 or greater will
end with this sequence. We do not know the answer to this question. However,
it is easy to prove the following theorem:
TnEoRENt. If a chain of thr sequence

if NI; awnNI;:2
; 3 \h ± I if NE c; odd

(bow conceive to I. they its terminal elements will be 16. 8. 4. ;?, 1 If it hos
length 4 or greater.
The proof given by %vorking backward from 1. and it is left for the reader,

The nib, of that we do not yet know that for every starting value
No. the chain will converge to 1. Actual experiment (On a computer. of
courser shows that all No < 10.000 do converge to 1, but this does not prove
the conjecture that all chains eventually converge to 1.

Another theorem that i, important sounding but ea:,y to prove is:
(71ren nn Infiger r > 0. there exi4. a ..tarting rabic Nv, sure that Me

1. nglh rf the chow from N, to /
It 1, left fir the reader to di,cmer a ,imple foruht that yekls a starting

value Not.zt that will produce a chain of length y.

Unfortunately no formula that %v:11 enable one to look at No and easily
determine the length of the chain froml N, to I is known for general N.
Perhaps ,vot: or one of roar classmates will eventually ,olve this problem, but
let II:, pot it aide for now tind look at zotm of her problems.

If there is a stalting value No that dov: not converge to 1 (and there could
well be either a value that "cycles' somewhere else or mu, that inereases
without bound. as far as our know ledge given here ,how) then there nuist be
a smallest No that does not converge to I. It is almo4 obvious that such a
"smallest No that does not converge to I" cannot be even. (Why not?)

Your research problem is to investigate tilitc,1%.eti:11,r.vs.(i..7 function

NK" ) 3N,; + I if NI, i odd

and to prove many theorems about t as possible. As far as your author
knows no one ha, yet (1973) proved that for every integral starting value
No > 0, the sequence always converges to 1. nor has anyone yet devised a
formula to determine the length x of a chain from No to I that works for au
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arbitrary starting value No. Still, there are a number of theorems that can
be proved. Thinking up possible theorems (call them conjectures) and then
trying to either prove or disprove them is an important phase of mathematical
research.

Another recursive function you may enjoy investigating is:
No
NI

= 92463
=81 + 4 + 16 + 36 + 9 = 146

N7 = 1 + 16 + 36 = 53
7 = 25 + 9 = 34

N4 = 9 + 16 = 25
N; = 4 + 25 = 29
N6 = 4 + 81 = 85
N7 = 64 + 25 = 89
N6 = 64 + 81 = 145
N6 = = 42
N10= =20
No = = 4
N47 = =16
NI3 = =37
NI4 = =58
Nis = = 89, which repeats in a cycle.

Show that for every starting value No the
NK.4.4 = the sum of the squares of the digits of NK

recurrence relation either converges to 1 (which then repeats) or converges to
the cycle of length 8 that is given above. This is an interesting problem, and
the proof requires ingenuitybut no mathematics beyond ninth-grade algebra.

While this particular problem has now been solved, the related problems
of NK+1 = the sum of the cubes of the digits of N and in general

NK.4 = the sum of the nth powers of the digits of NX

have not been investigated.

Excursion 7Zeros

There are integers such as 10000 or 3000000 whose leading digit is (of course)
nonzero, but all the rest of whose digits are zero. Some such numbers can be
factored into two factors, neither of which contains any zeros at all.

10000 = 16 * 625

is such an integer, as is
1000000000 = 1953125 * 512.

However,
100000000 and 50000000

each contain a zero somewhere in every possible factorization into two factors.
Your problem is to investigate the phenomenon in as much detail as you can.
Start with only those numbers having 8 or fewer digits. It may be well to
start your investigation with the additional restriction that the initial (and
only nonzero) digit is a 1, that is, that your starting value is a power of 10. As
far as your author knows the only powers of 10 ?-. 10" that possess a factoriza-
tion in which neither factor contains a zero are 10N for

N = 1, 2, 3, 4, 5, 6, 7, 9, 18, 33.
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It is quite possible that there are others with exponent N > 33. The followingseem to be the only likely candidates for N < 10500 (and quite possibly theonly ones for exponent N < 50,000), but your author has only checked theones listed above.
N 34, 35, 36., 37, 39, 49, 51, 67, 72, 76, 77, 81, 86.

The related problem for leading digits other than 1 seems not to have beeninvestigated at all. What can you discover?

Excursion 8Irrational Approximations
A rational number is a quotient N/D of two integers with D > 0. There aremany real numbers such as -0 that cannot equal a rational number. A proofof this can be found in most high school advanced algebra books.Even though -0 can never equal a rational number N/D, it is quite pos-sible to determine rational numbers N/D that approximate -0 (or anyother Vrcl, M > 0) as closely as is desired.
Let us find a rational number N/D, with D > 0 such that I (N/D)2 2 I< .001. An algorithm (method) for determining such a rational numberN/D is given in the flow chart seen in figure 7.3. The algorithm can be carriedout mechanically on a small computer or desk calculator. It can be carriedout in many fewer steps if instead of folowing it mechanically you "playyour hunches" on how much to change Nand D at each step to approach thedesired approximation. Such intuitive involvement becomes important andhelpful if the user is working by hand or with a nonprogram, ,ed desk calcula-tor. If a programmable calculator or computer terminal is used, the suggestedroutine is easy to program and will produce the desired results at about 181/128, which produces 1.41406 as N/D and 1.9996 as (N/D)2. More alert stu-dents may wish to discuss the fact that (N/D)2 and N2/D2 need not be iden-tical on the computer.

Set N = I
D =I

gr-21<001

Print values
of

N,D,V

1

Stop

Replace D Replace Nby D+1 by N+I

Fig. 7.3
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A much faster algorithm for actually computing VM, M > 0 is given in
figure 7.4, showing Newton's method, but the above algorithm seems to pro-
duce greater understanding in many students. Both algorithms merit study.

Input M >0,
the number whose
square root is to be

found

Set A=1÷

Print values
of

A,AA,M

Replace A by
I 1;±

Fig. 7.4

In this case the approximation of Vici as A is replaced by the average of A
and M/A to obtain a closer approximation. The complete proof that (A +
M/A)/2 is usually a better approximation of VM than is A is not easy. Most
students will agree that it at least seems likely that it may be an improvement.

A number of investigations should be carried out on each of the above
algorithms. How fast does each obtain an approximation? What happens along
the way (insert additional print statements)? What would happen if M < 0
on algorithm 2? ('an you revise algorithm 1 to find M > 0 rather than
./2? Can you improve either or both algorithms by permitting the user to
insert a "first guess" for N, 1) (algorithm 1) or A (algorithm 2)? Does this
really save any time on a computer terminal or does it take so long to insert
the first guess that the computer could obtain several hunched approxima-
tions during that time and hence be closer to the answer than your guess?

Excursion 9Goldbach's Conjectures

Many years ago (1742) Goldbach made two conjectures: (1) Every even
integer N > 1s the sum of two odd primes. (2) Every odd integer N > 9 is
the sum of three odd primes.

If the first conjecture is true, then the second conjecture can easily be
proved. (Can you do it? Try!) However, no one has yet peen able to prove
the first conjecture. N. Pipping has verified the first conjecture for a!1 N <
100,000 by producing examples, but this is of little assistance in proving that
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it is valid for all N. In 1937, Vinogradov proved that there exists an integer K
such that, for all odd N > K, the second conjecture is valid. However, again,
this is an existence proof and no one knows how large K actually is. Recent
results show that is less than 10",m, thus it might seem possible to examine
all integers less than 10400,00° on a computer to complete the proofhowever,
10"m" is a large number, and the task is formidable. Viggo Brun proved
that every positive even int.:ger N can be written as the sum of two pisitive
odd integers, each of which is the product of nine or fewer prime factors.
Recently, it has been possible to reduce the "nine" in this result to "four,"
but this is still far short of Goldbach's conjecture.

Actually, there ar' even integers such as 20 that can be represented as a
sum of two odd primes in more than one way:

20 = 13 + 7.
20 = 17 + 3.

Out problem on this excursion is to express each integer between 6 and 1,000
as a sum of two odd primes in as many ways as possible. Alatiy books of
tables contain lists of primes which will be helpful.

The following BASIC computer program, which expresses each even number
between 6 and 100 as a sum of two odd primes, can be extended rather easily,
or you can write a more efficient program of your own.

10 REM TIIERE ARE 24 ODD PHI' IES < 100
20 DATA 3. 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 1, 3, 17, 53, 59, 61, 6721 DATA 71, 73, 79, 83, 89, 97
30 DIM P /21)
10 FOR I = 1 TO 21

50 READ P(I)
60 NEXT I
70 FOR N 6 TO 100 STEP 2
80 FOR I = 1 TO 21
90 1,1.71' L = P(I)
100 FOR .1 = 1 TO I
110 = P(.1)
120 IF I. + I. < > N THEN 150
130 PRINT N; "="; 1'; "+"; L,
140 GO TO 170
150 IF I. + > N THEN 170
160 NENT
170 NEXT I
180 NEXT N
190 PRINT
200 PRINT "END OF PROBLEM"
250 END

The output for this program follows:
6 = 3 + 3

12 = + 7
16 = 3 + 13
20 = 3+17

= II + 13
26 = 7 + 19
30 = 13 + 17
32= 3+29

8= 3 + 5
1I= 7+ 7
IS = 7 ±II
22 = 11 + 11
24 = 7 + 17
26= 3 +23
30 = 11 + 19
31 = 17 + 17

10 = +
14 = 3 + 11
18= 5 + 13
22 = + 17
21 = 5 + 19
28 = II 4 17
30 = 7 -- 23
34 = 11 - 23

10 = 3 -r
16 = 5 + 11
20= 7 +13
22 = 3+ 19
26 = 13 + 13
28 = 5 +23
32 = 13 + 19
31 =5 + 29
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173 ++

31
34= 3 +31 36 = 17 + 19 36= 7 +29
36 = 5 + 31 38 = 19 + 19 40 = 17 + 23

40 = 11 + 29 40= 3 +37 42 = 19 + 23 42 = 13 + 29

42 = 11 + 31 42 = 5 +37 44 = 13 + 31 44 = 7+37
44 = 3+41 46 = 23 + 23 46 = 17 + 29 46= 5+41
46 = 3 + 3 48 = 19 + 29 48 = 17 + 31 8 = II + 37
8 = 7 + 4 1 48 = 5 +43 50 = 19 + 31 50 = 13. +37
.50 = 7 + 43 50 = 3 + 7 5 2 = 23 + 29 I 2 = 1 1 + 4 1

52= 5+47 51 = 23 + 31 54 = 17 + 37

.7r)),,t:
= 1

1 7) ++
37

51 = 13 + 41
54 = 7 + 4751 = 11 + 43 56 = 13 + 43

56= 3+53 58 = 29 + 29 58 = 11 + 47

58 = 5 + 53 GO = 29 + 31 60 = 23 + 37 60 = 19 + 41

60 = 17 + 43 GO = 13 + 47 60 = 7 + 53 62 = 31 + 31

62 = 19 + 43 62= 3 4 59 84 = 23 + 4 1 64 = 17 + 47

64 = 1 1 + 5 3 0 1 = 5 + 59 01 = 3 + 61 6(1 = 29 + 37

66 = 23 + 43 = 13 + 53 66 = 7 +59
66 = 5 -4 61

66 = 19 + 17 66
6S = 31 + 37 68 = 7+61 70 = 29 + 41

70 = 2S - 17 70 = 17 + 53 7 0 = 1 1 + 5 9 70= 3 + 67
72 = 31 -1.- 41 72 = 29 + 43 72 = 19 53 72 = 13 + 59

72 = I: 4- 61 72 = ':, + 4:7 74 = 37 + 37 74 = 31 43

74 = 13 + 61 74 = 7 + 67 71 = 3 + 71 76 = 29 47

76 = 23 + 53 76 = 17 + 59 76= 5+71 76 = 3 +73
78 = 37 + 1 78 = 31 + 47 78= 19 + 59 78 = 17 + 61

78 = 11 + 67 78 = 7 + 71 78 = 5 + 73 80 = 37 + 3
80 = 141 + 61 80 = 13 + 67 80 = 7 + 73 82 = 11 41

82 = 29 + 53 82 = 23 + 59 8 2 = 1 1 + 7 1 82 = 3 + 9
81 = 41 + 43 81 = 37 + 47 84 = 31 + 53 81 = 23 + 61

81 = 17 + 67 84 = 13 + 71 84 = II + 73 84= 5 +79
86 = 43 + 13 SO = 19 + 67 86 = 13 + 73 86 = 7 + 79
86 = 3 + 83 88 = 1 + 7 88 = 29 + 59 88 = 17 + 71

88 = 5 + 83 90 = 43 + 47 90 = 37 + 53 90 = 31 + 59

90 = ?) + 61 90 = 23 + (.; 90 = 19 + 71 90= 17 + 73
90 = H + 79 !XI) = 7 + 83 92 = 31 + 61 92 = 19 + 73

92 = 13 + 79 92 = 3 + 89 94 = 47 + 47 9 1 = 41 + 53

91 = 23 + 71 9 1 = 11 + 83 91 = 5 +89 t16 = 43 + 53
416 = 29 + 0796 = 37 + 59 96 = 23 + 73 !16 = 17 + 79

96 = 13 + 83 96 = 7 +89 98 = 37 + 61 98 = 31 + 67

98 = 19 + 79 100 = 47 + 53 100 = 41 + 59 100 = 29 + 71

100 = 17 + 83 1 0 0 = 1 1 + 8 9 100 = 3 +97
END OF PROBLE.M
EN!) PROGRAM

It should be noted, however, that this problem may be solved by hand (or

using an adding machine).

Excursion 10Euclid's Primes

A prime is a positive integer N greater than 1 that cannot be written as the

product of two positive integers unless one of the factors is also N. Positive

integers that can be written as the product of smaller positive integers arc

called composite. The integer 1 is neither prime nor composite. but is called a

unit.
Thus 2, 3, .5, 7, 11. 13. 1009, and 7132339208719 are a few examples of

primes. while 6, 38. 221, and 1003 (which equals 17 59) are composite.

Euclid (Elements, Book IX) proved that there are infinitely many primee.

There are also infinitely many composite integers. (Why?)
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It is easy to tell whether a given integer is even or odd, but to determine'
whether a given positive integer is prime or composite is by no means simple
if the integer is large. Actually, we do know how to determine whether or
not a given positive integer is prime; it is just that fo large integers there is
not time enough to carry out the simple algorithm even using the fastest
modern computers. The algorithm itself is simple. In its crudest form it is:

Given a positive integer N > 1, if there exists an integer D, with 1 < I) < N which dividesN, then N is composite, otherwise N is prime.

An easy refinement shows that there is really no need to test all of the in-
tegers D between 1 and Nwe need only test the primes. Furthermore, since,
if N has a factor > Nig, then it must also have a factor < Nig, we need test
only those primes < Nig. We, thus, have a much faster test algorithm:

If some prime I) < N/7 dithks a positive integer N > 1, then N is composite, otherwise N
is prime.

Even this test was so time-consuming that it was 1964 before it was shown that
N = 21,213 1 is prime. This result was needed in research related to Ater-
smuc primes and perfect numbers.

It is almost obvious that if one takes a multiple of 3 and adds 1 to it, the
result is not divisible by 3. A remainder of 1 results. In a similar fashion if a
multiple of 5 is increased by 1, the result is not divisible by 5. In general
terms, an integer that is 1 more than a multiple of K is not divisible by K.

In attempting to prove that the number of primes is infinite, perhaps the
most natural way to attack the problem would be to produce a formula that,
given a prime, will produce the next larger prime. This, however, has not been
possible. Even today, no one has developed a formula e at will produce the
"next larger prime," in spite of many attempts to do so. The pattern of
primes is irregular in the extreme. Euclid realized that it was unnecessary to
produce the next larger prime and that it would be sufficient merely to show
the existence of some prime that was larger than the supposedly largest prime
to show that the sequence of primes has no end.

Euclid's proof that the number of primes is infinite uses this observation.
He considers

(2.3) + 1 = 7 is not divisible by either 2 or 3,
(2.3.5) + 1 = 31 is not divisible by 2 or 3 or 5,

(2.3.5.7) + 1 = 211 is not divisible by 2 or 3 or 5 or 7,
(2.3.5.7,11) + 1 = 2,311 is not divisible by 2 or 3 or 5 or 7 or 11,

(235711 13) + 1 = 30,031 is not divisible by 2 or 3 or 5 or 7 or 11 or 13,

(2357... Ph) + 1, is not diviQible by any prime <
whet e PK is the K tl. prime

The proof follows:
Assume there exists a largest prime PK. Add 1 to the product of all the

primes PK

N = 1 + (23571113... PK).

Since N is greater than I, N is not a unit and must be either prime or com-
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posite. However, N has no prime factor < PN, since each such factor produces
a remainder of 1 upon division. Hence, either N is a prime greater thin PH
or N is composite, in which case each of its prime factors must be greater
than PR. In either case, the existence of a prime larger than the supposed
largest prime PR has been demonstrated. Hence, the sequence of primes is
unending (i.e., infinite).

Actually, there are values of PR for which the corresponding N is really
prime (for example, if PR = 3, then N = 1 + 2 3 = 7 is prime). There
are also values of PR such that the corresponding value of N is composite
(with all its factors > PR, of course). Your problem is to determine the
smallest value of PR such that N = 1 + (2. 3 5 ... . PH) is composite.

The reader interested in exploring more about primes will find a wealth
of material in almost any text on number theory (Dewey decimal number
512, Library of Congress Number QA 241). Two conjectures that can be
investigated using techniques available to the reader follow:
CONJECTURE. Given an integer N, there exists 0 sequence of consecutive integers,

each of which is composite (or as a special case, find a sequence of 2,000 con-
secutive integers containing no primes).

Comm:Tula:. The sequence of integers of the form

13n + 1 1 = 1 4 , 7, 10, 13, 16, 19, 22, . . .1

contains infinitely many primes.
Both of the above conjectures are true, but the fact that someone else has

already discovered a proof of them does not detract from your credit if you,
too, can do so. Techniques related to those used by Euclid will produce the
desired results. although neither of these conjectures was considered by Euclid
(as far as we can determine).

Actually, the sequence of integers of the form {3n I I also contains in-
finitely many primes, but the methods of proof we have seen are not related
to those discussed in this section. A general theorem states that the arithme-
tic progression (sequence)

la + nbl = la, a + b, a -4- 2b, a + 3b, t, t- .1b. . . .1

will contain infinitely many primes if the integer;, a > 0 and b > 0 are rela-
tively prime (i.e.. have no common faetors greater than I). Tliis is a hard
theorem to prove, in general, but mai.. special cases ({3n + I I, {n I I,

e.g.) can be proved by methods similar to those discussed above.

Excursion 11Powers of 2

Look at a table of powers of 2. Can you detect the pattern 2, .1, 8, 6, 2,
4, 8, (I, . . in the final (units) digits? Now can you prove that this pattern will
continue throughout the table of 2` no matter how far it goes' If you have
studied modular (clock) arithmetic the mod 10 system will be a big help. If
not, just think about what happens to the final digits as you multiply by 2.

Now let's hunt for a pattern in the last too digits of the powers of 2. What
about the powers of 3, or 4, or 5 ? What about a pattern in the last three
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digits? There are a lot of conjectures to be made, and then proved or dis-
proved.

Let us also look at the beginnint, digits of the powers of 2. No pattern is
apparent.

However, mathematicians can prove that given any sequence of digits
S = did2d3 . . there is an integer Ns such that 2x:, begins with the sequence
of digits S. For example, if S = 81 then 2" = 8192 and Ns = 13. Our task is
to find the smallest positive Ns associated with S = 1 2, 3, 4, . . ., 25. See
figure 7.5.

For S=
1 2 3 4 5 6 7 8 ... 25

Ns = smallest positive
integer such that 2Ns
starts with the
digits S

4 1 5 c 9 6 46 3 ... '
Value of 2 Ns 16 2 32 4 512 64

1

70368744177664

Fig, 7.5

Actually, the property discussed above holds not only for powers of 2 but
also for powers of any positive integer that is not a power of 10 (i.e., b 0.
1, 10, 100, . . .). Pick some one-digit number other than 0, 1, or 2 and find
the smallest power Ns such that Vs begins with S for S = I, 2, 3
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8

Non-Euclidean Geometries
Bruce A. Mitchell

It is the purpose of this paper to introduce the reader to the rather strange
world of non-Euclidean geometry. The introduction begins with the historical
events that precipitated a closer look at Euclid's fifth postulate and the con-
sequential development of the non-Euclidean geometries. In addition to the
discussion of the fifth postulate, the emergence of three additional subtopics
(absolute geometry, hyperbolic plane geometry, and elliptic, pi,..,e geometry)
should be obvious. Some of the major results will he presented with the idea
that interested students will pursue the details in the appropriate references
presented in this paper.

The Fifth Postulate of Eudid

When Euclid organized his geometry in the Elements, he began with five
"common notions" and five postulates (Wolfe, p. 4). It is the fifth postulate
of Euclid that has been the center of so much controversy. Although there are
many equivalent forms of this postulate (Eves and Newsom, pp. 53-54;
Wolfe, pp. 25 -26), the particular one that is usually used in place of the rather
lengthy original version is credited to .John Mayfair (1748-1819).
PLAYFAIR'S AXIOM. Through a given point can be drawn only one line parallel

to a given line.

The troublesome part of this postulate is that to accept it, one must place a
certain amount of faith that every other line through the given point will
eventually intersect the given line. Suppose another line through the given
point meets the parallel at an angle of 179.9999999999999 degrees. Can we
really be sure it intersects the given line? Now, if someone could deduce the
fifth postulate from the others, it could be classified a theorem. Assuming the
acceptance of the other postulates, Euclidean geometry would then be the
"true" geometry.
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Because of a strong belief of the early mathematicians :n the correctness of
Euclidean geometry, there were numerous attempts to prove the fifth postu-
late. Proclus (410-485) tells of Ptolemy's attempt, and Proclus himself
attempted a proof. Some of the attempts that followed o.tre made by Nasirad-
din (1201-1274), Wallis (1616-1703), Saccheri (1667-1733), Lambert (1728-
1777), and Legendre (1752-1833). Generally speaking, the attempts all failed.
Somewhere in each attempted proof, a theorem that %%as an equivalent form
of the fifth postulate; or a tacit assumption about parallels, was used. Today
we know that it is impossible to prove the fifth postulate from the others;
it is independent. For those who are interested in exploring in more detail
these attempts, Wolfe's book, pp. 26-41, does an excellent job. Details about
the fifth postulate and historical developments are given good accounts in
Bell; Bergamini; Courant and Robbins; Eves; Fawcett; Insights into Modern
Mathematics; Noise; Mathematics in the Modern World; and Wolfe.

Absolute Geometry

It was the attempt by Saccheri to establish Euclid's fifth postulate that led
directly to absolute geometry. If Saccheri had not believed so strongly in the
correctness of the Euclidean fifth postulate, he might have had the distinction
of discovering non-Euclidean geometry.

Let us follow a little of what Saccheri did. It turns out the first twenty-eight
propositions (theorems) proved by Euclid in the Elements were proved with-
out using the fifth postulate. (See Wolfe, pp. 220-22. for a listing of the proposi-
tions.) Perhaps Euclid himself was trying to avoid what he thought might be
a controversial postulate. (This is pure conjecture.) At any rate, since none of
the proofs of these first twenty-eight propositions depends on the fifth postu-
late, they are available for our use in any system that assumes the other postu-
lates. This is exactly what Saccheri did. Using the other postulates and the first
twenty-eight propositions, Saccheri examines what lie called the "isosceles
birectangle. Don't let that name scare you because it is really quite simple!
DEP.] :crrioN. Figure A BCD is an isosceles birectangle, usually called a Saccheri

quadrilateral, if :113 1 BC, DC 1 Be, and :1B = DC. (See fig. 8.1.)
A

Fig. 8.1

Problem. l'sing Euclid's common notions, all his postulates except thefifth, and any of the first twenty-eight propositions, prove that given a
Saccheri quadrilateral, as defined and pictured, AC = BD and Z A = L D.(This is very easytry it.)

Although it can be easily demonstrated that L A = L I), without the use
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of Euclid's fifth postulate no conclusion can be made about the measure of
these two angles. Saecheri considered three possibilities:

1: Both LA and L D could be right angles.
2. Both L A and L D could bye malt ^ngles.
3. Both L and L D could be obtt . e angles.

At this point Saeeheri attempted to rule out 2 and 3 as possibilities If he had
been successful in doing this, he would have established possibility 1 as (or-
rect. Since 1 is equivalent to the fifth postulate, Saecheri would have estab-
lished Euclidean geometry as a system free from ronjeeture about the fifth
postulate!

Although his arguments were not correct, in the process of their develop-
ment Saeciteri established many of the classical theorem of non-Euclidean
geometry. (See Eves and Newsom, pp. 55-59; Kattsoff, pp. 030-36; Fawcett
and Cummins. p. 27:3.)

We are led quite naturally by this discussion into absolute geometry. The
geometi.v that results by ignoring the fifth postulate and deducing theorems
without its use is absolute geometry. Saecheri, then, with his assault on the
hypothesis of the acute and obtuse angles proved a substantial number of
themems that (10 not require the use of the fifth postulate or its equivalents.
These theorems together with the first twenty-eight propositions of Euclid
constitute the core of absolute geometry. Five of the more important results
appear in Eves and Newsom. p. 58. On pp. 125-31 of 'AIoise's Elementary
Geometry frmn an Advanced Standpoint. there is a readable treatment of the
theorems that can be proved in absolute geometry, along wit b their proofs.
Two particularly i'iterest ing results are these (Kattsofi):

I. In any Sahcri quadrilateral the upper base (summit) ) is equal in length
to or longer than the lower base.

2 The sum of the interior angles of a triangle is always eyial to or less
than 180.J

Hyperbolic Geometry

The three men usually redit((-1 with the discovery of innt-Euclulean ge-
ometry are Carl Gauss (1777-1855), Johann liolyai (1802-1860) and Nieolvi
Lobacheski (1793-1850). Gauss and Bolyai were probably the first to see
the independence of the fifth postulate, but Lobachz-ski was the first to pub-
lish an organized development of the subject. The wometry that tliose men
were studying was hyperbolic non - Euclidean geonntiy and is sometimes re-
ferred to as Lolythm geometry. There are many fasinating ivsults
in this geometry. If you share this feelit after the eurs(try examm.,ion give')
here, Wolle's Non-Eaclidean Geometry is an excellent readable source' for
further study.

As in the case of absolute geometry. the first nine postulates dive common
notions and four postulates) are a% ailable as well as the ti:st twenty -eight prop-
ositions. (Why?) In hyperbolic geometry, instead of the tifth postulate's
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being ignored, it is replaced by a contradictory alternative that will be called
the characteristic postulate of hyperbolic plane geometry.
CHARACTERISTIC POSTULATE OF HYPERBOLIC PLANE GEOMETRY. Through a

given point not on a given line there exists more than one line that does not in-
tersect the given line.

Before looking at the theorems of hyperbolic geometry, it should be men-
tioned that indirect proof is used in many cases, and, at the beginning, refer-
ence is made to Pasch's axiom. Put very briefly, the spirit of indirect proof
involves assuming the negation of t' ^ entire statement that is being proved
and, as a con: "quence of this assumption. finding a contradiction of a :.own
fact. Since Cie assumption led to a contradiction, it is an incorrect assump-
tion; therefore, its negation, which is this original statement, has been proved
within the structure of the system (Van Engen. pp. 640-42). Euclid made a
few tacit assumptions in developing his geometry (Wolfe, pp. 5-9). Moritz
Pasch (1843-1930) recognized one of these. The result of this was Paschs'
axiom. %vide') roughly states:

If G line passes through one side of o triangle, not at a vertex, then it must In-
tersect at least one of the other two sides.

It follows f: Jm this that if a line enters a triangle at a vertex, then it in-
tersects the opposite side (Kattsoff, pp. 630 -3').

Because of the characteristic postulate of hyperbolic geometry, three
classes of lines are generated (given line I and a point P not on I) as described
and pictured in figures 8.2 through 8.4.

Case 1. shown in figure 8.2: those lines through P that intersect I.

I ig. 8 2. ('are I

Case 2. shown in figure 8 3: those line, that are the "first- linos on the left
and right of intersecting Iine PQ that do not intersect I.

hg. 8.3. ('arc 2

(rase 3, shown in figure 8.: ,ho-zc lines through I' contained within the
angles formed by the lines in ease 2.
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Fig. 8.4. Case 3

The lines in case 1 are &led intersecting, the lines in case 2 are called
parallel (it is important to note that parallel lines in hyperbolic geometry refer
to the first nonintersecting lines), and the lines in case 3 are called noninter-
secting lines. For a discussion of case 2 see Wolfe, pp. 66-67; or Moise, ,.! .

306-8. It must be proved that the lines described in case 3 do not intersect
the given line; that proof is included in the outline of the proof of the first
theorem. We are ready to summarize some of the above discussion in a
theorem.

THEOREM. If I is any line and P is a point not on 1, then there are always two
lines through P which do not intersect 1 and (I) which make equal acute a, gles
with the perpendicular from I- to I; and (2) every line through P lying within the
angle containing that perpendicular and one of the two nonintersecting lines
described i ,) intersects 1, while (3) every other line through P does not.

Establish the fact (using the characteristic postulate and Dedekind's
theorem) that the lines through P are divided int two sets: (1) those that
intersect 1 and (2) those that do not intersect 1. Show next that the dividing
lines the two sets are the first of those lines, one on the "left" and one
on the "right," that do not intersect I. Parts 1, 2, and 3 of the theorem refer
to these two line:;. (See fig. 8.5.)

("First" nonintersecting ("First" mnintersecting
line on left ) line on right )

Fig. 8.5

DEDEKIND s THEOREM. Let A and B be sets of real numbers such that-
1. every real number is either in A or in B;
2. no real number is in A and in B;
3. 'either A nor B is empty;
4. if a C A arul b C 13, then a < b.
Then there is one and only one real number c such that a < c for all a C A and
c < b for all b C B.
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Fig. 8.6

1. Assume L APQ L DPQ, say L APQ is larger. Construct L RPQ =
L DPQ. PR intersects 1, say at 7'. (Why?) Construct JQ = TQ. (See fig.
8.6.) PQ 2'4 L, JPQ. (Why?)niL 1 = niZ 2, but mL 1= inZ 2 + niL 3
with . : .ter than zero. This means m L 2 = ni.L 2 + in L 3 with m l. 3
> 0, and ttu npossible. (The outlines of the proofs . k this paper are lacking
in detail and rigor. It is the intent that the reader can supply these.) The
demonstration that the angles are acute is left to the reader.

2. Use the fact that the lines in (1) are the first nonintersecting lines.
4-.1,

3. Assume PR intersects I at J. PQL is a triangle with PD passing
1.4

through the vertex. PD must intersect I by the theorem proved from Pasch's.
axiom. Since PD was given as nonintersecting, we have a contradiction, and
the assumption is incorrect. (See fig. 8.7.)

r
0

Fig 8 7
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Problem: Which of the three classes of lines described above would the Eu-
clidean "parallels'' fit?

In order toexplore, briefly, the idea of the ideal triangle, a defiThtion of
ideal point is necessary.

DEFINITION. If two lines are parallel (first nonintersecting lines), then they share
an ideal point, L3 (omega)

DEmcrrios. Given two ordinary points A and B and the ideal point O., the figure
A Ba is an ideal ti iangie with :1 a parallel to Ba
After showing that the exterior angle of an ideal triangle is greater than the

opposite interior angle at the ordinary point, tie topic of congruent ideal
triangles is developed (Wolfe, pp. 73-76).

It is now Cute to get back and see w.,at's happening to the Saceheri quadri-
lateral in this geometry. We shall do this via a theorem. (See fig. 8.8.)
THEOREM. If A BCD is a Saccheri quadrilateral with right angles at band C, then

(I) the angles at .4 and D are equal. (2) the angles at A and D arc acute, and
(3) the line connecting the midpoints of the base and summit is perpendicular
to each.
(1) and (3) have already been proved in absolute geometry, and the same

proofs can be used here.
(2) There exists a parallel to 13C through A and D, A S2 and D. Since

Al3 = DC and Z ABC = ZDCE, LAB a =2:_`-' LDC S2 by a congruence
theorem for ideal triangles. Now, L2 = L5 by corresponding parts; Z I >
L 4, since L I is an exterior angle of LAD a Therefore Z 1 + L 2 > L +

5. L + L 5= L 3, so Z 2> L 3. This makes L 3 acute!

D

Fig. 8 8

Another strange quadrilateral is the Lambert quadrilateral.
DEFIsrnos. A quadrilateral with three of its interior angles right angles is a

Lambert quadrilateral..

What seems a little unusual atut thiA olladrilateral is the fact that it can
be proved in hyperbolic geometry that the fourth angle is acute! (Wolfe, pp.
79-80.)

TnEoitEm. The sum of the interior angles of every right triangle is less than 180.
Construct L3 = L B. At M, the midpoint of hypotenuse AP, con:4ruct

1. CB, Mark off A Q = l'B. (See fig. 8.9.) Now PQA 3/ = LPBM.
(Why?) L 1 = L 2, and P,M,Q are collinear (why?), and ACPQ is a Lambert
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quadrilateral (why?), with LCAQ acute Since L3 + L4 < 90 and .LB =
L 3, this means L 4 +LB< 96 With L C= 90, L C L 4 -I- LB< 180.

Fig. 8 9

Topics that follow in a more thorough study are properties of ordinary
triangles, nonintersecting lines, construction of parallels, angle defect, area, and
modelsnot necessarily in that order. Problems can be found in Wolfe's book,
in Maiers's article, in most textbooks on non-Euclidean geometry, and in
Eves and Newsom. One that I will leave you with is important in the proof of
(2) for a Saccheri quadrilateral. Are the base and summit of a Saccheri qua-
drilateral intersecting, parElPi, or nonintersecting? Which is greater, base or
summit? It might be finally interesting to note that in hyperbolic geometry
two triangles with all of the angles in one equal respectively to those in the
other are congruent!!

Elliptic Geometry

In 1854 Bernhard Rieman!' delivered a lecture dealing with the bounded-
ness and infinitude of a line that mad. a major contribution to geometry. Any
two stiaight lines in a plane intersect if the first. second. and fifth postulates
of Euclid are modified to the following:

1'. Two distinct points determine at least one straight line.
2'. A straight line is unbounded
5'. Two straight lines always intersect each other.

Another geometry, equally consistent to Euclidean and hyperbolic, results.
An interesting result that comes early in thk geometry is that all perpendi-

culars erected on the same side of a given line I are concurrent in a point P
called the pole (Wolfe pp. 175-7'1).

It is also true that PA = PR PC = P: = q. (See fig. 8.10.)

Fig. 8.10

D
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Problem. Given figure 8.11 with OA 1 a OB _L Di, extend OA to 0'

such that AO' = AO. Draw O'B and show that 0', B, and 0 are collinear.

0'

Fig. 8.11

The figur^ formed is called a digon. In this geometry it is possible for two

of the same kind of line Euclid was talking about to enclose space.

THEOREM. Given a triangle ABC with a right angle, if one of its sides is less than

q (the constant perpendicular distance from the pole to the line), the angle

opposite that side is acute. See figure 8.12.

Since 0 is the pole, the angle at A is a right angle (L CA0), with L CAB <

L C AO and therefore acute.

A.

Fig. 8.12

THEOREM. The line joining the midpoints of the base and summit of a Saccheri

quadrilateral is perpendicular to both of them, and the summit angles are equal

and obtuse. See figure 8.13.

Fig. 8.13

Again the proof of the midpoint line and equal --immit angles is unchanged.

To prove that the summit angles are obtuse, extend AD and BC and they
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will meet at a pole, say 0. (Why?) Z DCO is a right angle with CO shorterthan g. By the theorem above, L CDO is acute. This means that Z CDMis obtuse, and the theorem is established.
It follows that in a Lambert quadrilateral the fourth angle is obtuse, andthe sum of the interior angles of a right triangle is greater than 180. The prooffor the angle sum theorem is very similar to the corresponding proof inhyperbolic and can be supplied by the reader. Can you generalize the interiorangle sum theorems to a general triangle? A quadrilateral?There are models on which the properties described for hyperbolic andelliptic have physical justifications (Moist, pp. 114-21; Eves and Newsom,pp. 68-72; Groza, pp. 287-89; Courant and Robbins, pp. 221-25; Mathema-tics in the Modern World, pp. 118-19); but that is a whole topic in itself.The author has made an attempt to get the reader involved just deeplyenough in the geometries to let his curiosity get the l him in at least oneof the topics discussed. An adequate list of references . ,:en supplied to helpsatisfy the curiosity. I hope that many of you will do this sort of follow-upwork on one of the topics. I think you will find it fascinating!
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Boolean Algebras
Wade Ellis

9

The purpose of this all too brief expository tract is to provide enough
general insight into the concept and application of Boolean algebras to create

and stimulate interest on the part of students who have studied some ordinary
algebrainterest which, if sustained, will :,ring the deep and rewarding satis-

factioo that always accompanies productive mental labor. But the rewards

should extend beyond the gratification of a natural desire, even need, for ac-
complishment. Mastery of the historic, recent, and continuing development of

Boolean algebras will provide the student with knowledge that continues to

grow, to become more beautiful. and to reveal its deeper and broader associa-

tions with an ever-increasing variety of mathematical concepts and applica-

tions.
A list of references appears at the end of the article. The books in this list

provide insights into the earliest developments in the subject area as recorded

by 13oole himself. They also provide more extensive expository treatment than

can he given here and include enough examples of apulications and relations

with other parts of mathematics, together with their own bibliographies,

to whet our curiosities and interests.
Ordinary algebra uses the real number field. The field axioms should be

reviewed carefully in connection with this article; by all means they should

be at hand for careful comparison w.Jen the different sets of axioms for a
Boolean algebra are encountered here. The differences and similarities between

the two types of systems are defined by the sets of axioms. They are more
clearly and fully explained by the ho:les of theorems developed from the

axioms. Thus no axiomatic system is fully understood until all the conse-

quences of its axioms are known.
Just as the field axioms are satisfied by various fields (e.g., the complex

field; the real field; the algebraic fields;.the rational field; the fields of residue
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classes of integers modulo p where p is a prime, or modulo p" where p is
prime, and n is a natural number, n ?. 2), so there are various systems of the
type (S; e, 0), each consisting of a set of elements and two operations
jointly satisfying the I3oolean algebra axioms. It should he remembered that
every Boolean algebra in the sense of the preceding paragraph has all the prop-
erties that emerge as consequence., of the axioms.

We begin now with ordinary familiar truth tables.

Propositional Calculus

A proposition is a sentence that is either true or false, but not both (and also
not neither). Propositions abound, not only in nature, but in everyday life.
We might wish that all sentences could be time, but that is not possible. The
proposition 3 + 5 = 8 is true. however, if we change any one (and only one)
of the numbers 3, 5, or 8, the new proposition will be false: 3 + 6 = 8 is false.
Moreover, if we leave one of the numbers unspecified, the expression is not a
proposition; n + 5 = 8 is a sentence, but it is neither true nor false, and there-
fore it is not a proposition. It becomes a proposition whenever n is a specified
number. Not only that, but as soon aS n is specified, we know whether the
proposition is true or false. As a matter of fact, we know that for every value
of n except n = 3 the proposition is false and that for n = 3 the proposition
is true.

A sentence that is not a proposition but becomes a prope akin when
exactly one unspecified word (repeated or not) in it is specified is called a
propositional function. A conve:aent example is

II [n
2. 2J

nwhich says, remembering that [ is the symbol for "the largest integer9

in 'f," precisely that "n is an integer that is divisible by 2," If we specify that9

n = 6, the sentence becomes a proposition that is true. Similarly for a = 8.
Clearly the possibilities are boundless. However. if we specify that n = 9,
tile sentence becomes a proposition that is false. Similarly for a = I I. Again
the possibilities are boundless.

Let us now resort to the use of the familiar notation for a function. Let p
be the name of oar function, and let its domain be the set / of all integers,
positive, negative, and zero. Let a he the generic name of the elements of
the domain. Let the range of p be the set 1? = i 7'. F , T -------- (the preposition
is true), F --- (the proposition is false) '. Then p maps 1 onto 1? through

p: IC, pip) V if 2" [21
tI if` X [0"1.

-I1-

A short table of valuer for t function follows.
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n A(n)
6 7'
8 7'
9 F
n P

This table can be extended without bound by simply enterh ig values of nand com-

puting the co:responding Values of p according to its defining formula.
Another convtient example is provided if we map I onto F through a

similar definition of a function q:

7' if!), g. [7-1
{ ° 0
F if 7 NT

where now m is the generic name of the elements of I. A short table of values

for the function q shown below:
m q(m)
6 7'
8 P
9 T

11 F

Again the table can be extended indefinitely, as in the case of p. Let us keep

these functions and tables in mind as we proceed.
The functions have immedir.ce but rather simple-minded applications. Sup-

pose we have one device that can determine whether an integer is congruent
to zero modulo 2, that is, for a given n, whether p(n) = 7' or p(n) = F. Let
this device be connected to a switch controlling lighted signals so that if the

switch is closed (p(n) = 7'), the 7' signal is lighted and if the Switch is open

(p(n) = F), the le signal is lighted. A simple toy, suitable for use in a kinder-

garten, could now be constructed. But before we consider that, let's drag in

some other ideas.
Suppose we feed through the device in succession 1,000 random nutnbers and

count the T's and P's as they light up. How many 7"s would be expected by

the time the process was complete? Suppose the number actually found should

be much different from what was expected. What conclusion(s) could he

reached (Don't jump to conclusionq! Nor away from them! Your hypoth-
esized, observed discrepancy could be due to one reason or any combination

of several reasons.) It would be entertaininga prime reason for studying and

doing mathematicsbut perhaps distracting to continue asking and answer-

ing such questions. These few are included only for the purpose of providing

a glimpse into the kind of experieces the mind provides even in the absence

of hardware. And if you want 1trdware, it is much less expensive to explore

the realm mentally before even beginning to design machines or draw con-
struction diagrams, to say nothiug of starting to build.

It is left as a simple exercise f ,r the reader to examine the function q as we
have just examined p. Now that that's finished, let us consider working with

p and q jointly. To do this in the way that will lead us toward Boolean algebra,

we first make an = n and use n as our symbol. We have two obvious choices
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=

t.
3.7

suggested by simplest joint uses of two switches. Simple diagrams will-per-hips help.

-Batte_tY_

-----
,.

It will be intereSting to use our previous tables to represent these diagrams:

P(n)

Fig. 9.1._Series connection

q(n)

p(n)

Fig. 92. Parallel connection

n p(n)
. _ _

q(n) _-8e-ti61-:- l'arialiel
cOnneetioti_cimileetion-

6
8
9

-11_

-T
T
-F
F --

T
F
T
F

---T

F-
-F

-T-

--r
-F

The reader should-verify- all these entS -by- spedilating _about -the-VatiouS
possible combinations of conditions of-the_sWitcheS iii_ the diagrinnS. We note

.
rie

. _,__

immediately that any integer n_ will generate tiitafritiguoiisly_ exactly one of
the horizontal- rows of entries within __the- entire table Also, no -integerivill-

...
..._

generate any -row- of entries except -_ one of -these sfour We can dispense -With
both the specific difinitions of the functions p and Iand_also with the integerS.
This is a peculiar abstraction in which we the functions and their col-ninon
domain but preServointact their common range. We have put ourselves in
position not only to complete the usual truth table entries for 0;4;-, p; p A 4;p V .q; p- q;j; .. q;pAl (.p) (tautology); and P_ A- (,-,4) (contradiction)
but also the other seven colutims_olentrieS almost never listed and even more

,N,(p <=0-#). It is easily seen that each of these sixteen; columns defines a ftinc-
tion_thitt is a "coMposite"blp and q;-*hor)e domain (which need notrboothei=
wise specified) May be taken as the common domain of_p and -q. The reader
will easily construct the entire sixteen-colunin-taido and Will use the sixteen
names (p, q, i,p, .. : . , ,(p .:-. q))- of functions above to properly label the
cOluMns. The more_encrgetic_ and resourceful reader will construct wiring dia-
grams, similar to those above, to simulate or represent these functions based
on p and q. The persistent :and affluent reader will even construct or assemble
bits of-hardware for concrete illustration.
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Since the table of entries is now complete, with font' rows and sixteen col=

unins, it is virtually impervious. The labels on the columns can be rearm:sod

in precisely 4! (no. not 16!) different wayS witI)out_chinging its import: More

important, however, is the fact that the table can-be re-presented-by 16 dif-

ferent _. trices. They are:

C_ p A (,--p) p A q ,----(P9)- ?-- (p9)

\91 \i/ \g
p\, F _T 1...-bq

F
:1. _P_\ F __T _p\ F T_

_F F F 1' F F. F F F. F -T

T F F T F T T T P T F- .F

A/ 9)

1X1 F __T _F T :\, _T X F-

-F T F -F T F 1' 1'

-T F F T T T T F T

- -

41),=' 9)
,.41 r.,p p v

P F T
\9_p\ F T

\9
0 T

\,
P 4

F T F T F F T T T

F T T F T F F T T T

p ''''(/) A 9) T= PV (Awl))

T T p_ T_ T

T T T F T= T F T T

T T T T T T T F T T T

If we replace each F by 0, and each T by /, these arrays are, in order:
.....(p =, q) '-(p C q)

C=
4

p A (-,p) p A q

pN o i p9\ 0 I
0 0 0 0 0 0
1 0 0- 1 0 1

ew(p V q)

0 1 >p ql 0 1

O 1 0 0 0
0 0 I I I

q)

0 1 0 1

O
1

0
1

1
0

0 1
1

0
0

0

p q

0 1

1 0
1 1

Xf -0 I
0 0 0
1 1 0

9

O
I

0 -I
I I
0 0

p9' 0 1

0 0 I
1 0 0

p tr, q
9 0

0 1 0
1 0 1

p V q

p 0 1

0 0 1
I I 1

'-`413 A 9) T =PV (,,,p)

0 1
\
p 4\ 0 I

0 1 1 0 1 1

1 0 1 1 I.

Just as the truth tables contained all possible columns of four symbols, each

symbol being a T or an F, so this table contains all possible 2-by-2 arrays of

symbols, each symbol being an 0 or an/.
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The array for p A q now reminds us of the multiplication table for-the fieldof residues of the integers modulo 2, and the one for (p a g)-Idoksrlike
the addition--table for that same -field: So a more thorough-than- usual -exa-inination and. tanipidation-of truth tables _hits led us to ti- situation having
some features reminiscent of a- familiar and apparently rather simple irfathe=matieal system. Let. us not be diverted!-

_Boolean Algebras

Consider an arbitrary set hating elettient:4 (a 1-; The PbWer Set_of
L(the Set Of all StibSets 61,/) iS-1{4,/},

Where 95-iSlife=eitmity-Set.:The-O-PeratiOnsof _ _set Union- and__ set- interseetioii-definett,:on- thiS-_pOWer -set -haVe--t heAableSshower below;

U 4 1 n is 1
is is 1 4 is cl)1 1 -1 1 is I

As we know, the counterparts of,these arrays Must be found-in-the eXhatiStiVeset of arrays in the preceding section; they_are the attays forp V yand,p A q,respectively, George Boole'S recognition of this fact, ekpreSSed in considerably
differentternis, led-hiin to lay the grofnid*ork--aba make the.initia construc-tions is apparentiy_pio-perly-known.tion'-Mlicioleiairaigebta.

We -reconStrbet the early stages of this development, arranged -in-arationally appealing if not necessarily chronological order, in the folloWing
aShion-;

First the above fact-was noted-in the case Of a One=element set L Then a setof axioms, not all independent, was - developed to,deSciibe the set algebra forthe power set-of I. Then a start was made-to ekplore the axioms, leading to thedevelopment of a body of- theorems and associated statements as Well as inodi-fieation of the axioms themselves:=Continuing throughout this developmenthas been a consideration of and application to the ease of an arbitrary set Iwith an arbitrary number of elements. This generalization -from the earliestconcept proceeds in a different manner from the development in the ease offields. There the start was with the rational field. A very interesting diversionlies herelet us not follow it!
An interesting set of mutually independent axioms for a Boolean algebrais the set of so-called Huntington postulates. It is liSted here because of itsaesthetic appeal and the simplicity of its use as a criterion to determinewhether a given mathematical system is a Boolean algebra.

Axiomatic Definition: A mathematical system < 13; ®, 0 > is a Booleanalgebra if the following axioms are satisfied.

A0. Closure. If a and b are any elements of S, then a e b C B and-a 0 b C B.
AI. Commutative laws. If a and b are any elements of B, then a eb=belaand-a 0 b = b 0 a. (As usual we assume that "equality" is an equivalencerelation.)
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Ae Distributive laws. If a,-b, and,C are any. elenienrs Of_131:then_er 0 -(b c)-=
(a 0 b) ED (a 0-c)_aticliaE9 (b-7:Yc) (a _E-9 b) 01(a c):-(Note that-the
left ideritityris_atialogotiS to the -disttibUtiVe_laW=Of- orditiatyr algebra. The
right identity is different ;_its .analogue,does_not-,hold in ordinary get)*
Remember that the word identity as used-,here-means an equality that is
valid Mien ifTrtherlettet sytaboiS:are-changed_in:-a,consi§teht:niauner.)

A-3 Zero and unit elo,entS. thoct-11- has tWo--ieleilieilits*Od-L'Och-that,f6r
any element a d-rEii=c6-7-+-, a'

eoniiiikmemokin.-._Poi,ea-eii.oieffieht: =of =11:: there is an element, which we
shall call a', tfch that a' I and d a'

ãiihit:
aaoms appear in Kayé's Booleëñ Systems, chãpteF 4 and article 1 Q _

The simplicity of

and valuable This yiiiii_oetiy=fie§iii-the'filetithatihe axioms are collectively
unchanged if Wesioake=t*-6=ChatigeS-iira

Change
2. Chan* each-41-tolirideach I to 4
$ow-tbe,-,beatity-lincttiotiinpottaiice:arei-__Plaiiitoise-e.-Since this symmetry

_ _

lies in the &Ioms, it throuhotit of con-.
SeqUeiiceSofittie
the -dual- of that itieortin can be _Stated-ratid=firoVithbytSiiiiply= making =thel
above-listed ohaoges. in the -original - theMetri--afid--ptoof. Although ,Soine-
theatems are_self=dtial,--jtist_aside all-theS-4iakieMS, many theorem either
not self-dual or can be split,Se_thatoillY one half heeds tO-be_pt-OVed' the other
half is then- established -- by tlie:Ofiikilile of dtiality.

To demonstrate -hoW-this-WorkS, -let us prove the following theorem (laws
of tautology).
THEOREM -L If B is any ,Boolean algebra, and if a is any element-of -B, then

c it-and tt-04t_ -= a._
As. it stands, this theorenvis self=dtial: We'ean split it in iudf by omitting

-either of the identities. -Let us omit_ the_a 0 a = a, and prove-the other;
(a E B. Ao
(a a) = (a ea_a) 0 I As

= (a (D a) 0 (a (D te) As
-== a eo (a 0 a') A2

As
= a. As

This completes the proof of this half. The second half, being the dual of the
first, can be stated and its_proof constructed by simply making the specified
interchanges between ED and 0 and-between and 1; Since this is true, we
need not bother tto write a proof. However, it is indispensable to understand
the principle Of duality as it applies here and-to make certain that-the state=
ihents which-we consider as (mutually) dual are indeed (mutually) dual.

Five additionalthedreMs, split into dtialS where appropriate, form a broader
basis on which to develop the.ektensive theory that proceeds from the system
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4

of axiOms aud at the same tithe-explains,the nature ofrBoolefin algebras. In
each of-these, (B; ED, 6) is any tOolean algebra and et, b, . . ate arbitrary
elements Of B.

THEOREM 1 a (0 / = I;
Proof: (to be supplied by

the reader.)

THEOREM:aci e-_(as0_),_-==a;
Prod: (TWbe_Supplied-by

the Mader.)

Proof: a 43 (a 04)
-(4r6-- oi)-6,-(a (1))

=4: 4-

a=e, (o:19--10,
Proof : as6 (ci3O,0):,-0 (a 6 b)

9-(0-p-b)
==-d-E0

a:-

TittohENii-4.-Ce (the-conOteirient of a)is,unigueiand-CaT
Proof:-Supiaose B contains an a -tinit-hasf*O-ohhiplerheht.4 a'-and_a'1. Then

= 1; WO (1); and a'1
Henee-

a' cet)

°61'1,ffeek-9 a'-° cea'
c5-9 (n!1:0aTt=(a'iS2) (131 (0'1,0 to-

EB-a-

therefore a' is unique: To find -(aT, regard the symbol just as it Were a
letter _Without, decoration- suchr as b thew- (a')' is the complement of a', the
parentheses being used '0 avoid :confusion with aif, to which no ineithihg-has
been ASSigned. Then (a')/-6_ = Lanti:(40',0- a' = ,assCllasa _9 et' = I
and a 6 a' = _0. And since the complement of-za is uiiique, (a')' ===,a. This
completes the proof Note that-in-a 61-s= I, a-6 1 #,_ala any eleitant of
11:If a = We have 45 9 I = I and .4) 0-1 = This means that 4," = I,
ifence (0"1' = = That is, the distinguished elements (I) and I of every
BooleawalgebrWare each the-CoMplement of-the:Other.

TWEottEm-5. (a 6 b)' a" 9 b'; (a -ED-b)' = a' 0 b'.
TffEottEst 6. a Itb p_ = (a 0:131 b) 6;_ -0 (b_-0 c) (a _0, b) 0 c.

Proofs for theoieths 5 and 6 can be found in Kaye as well as in some Of the
other references;or perhaps the reader Can construct his own.

Systems: (S;0, 0)
It may be useful-to note briefly several mathematical systems consisting

of-a setiof elements and two binary operations governed by a code of laws'(liSt
of -axioins). We -might first notice the existence ot a class of systems, even ,

lOwer'in-a knid of hierarchy, in each of which there is a set and one binary
operation with governing axioMs, An example is the now familiar class of
groiiPs. Orie group IS the set Of integers -With Ordinary tulditiori, the -Word,

1:9

-4
-r
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ordinary indicating-that the well-known laws of addition hold, Anothetria the
iset. of integers, including zero, divisible by-an arbitrary integer -n; again-with

ordinary addition as the operation. These groups alfintire a countable infinity-7
Of eleMents. They are not- tb.be_ebtiftiSed =with- the-grOuPs-bi residue claSSes
of integers modulnan-arbitrary integer n-withsModified:addition. Such, groups
have the same (finite) iiumber Of ,elements as the (absolute value of thb)
modulus., e

If We again consider systems Witli,-ewo-binaty-i-opetations, We -find a- _-rich
variety:. A,:familiarisYstem,,iS=the=_Set:--or iniegers AYitli7-:oidinatadditi6h(aS
just Mentioned): cinci.ii,-kihd
cOntains=very few-nitiltifilientiVeifiVetieSztheii=titereate tingsAiiiifiefdS-iod,a
Hat- difersity- Of- sySteinS-- Within eachStilSelasS=Akfritisobiated-AYitli---subclasses:
DiscusSiohs-olsonie of tlieSe systems, _coMprehensibie tothentietsiSteht--readet,
even the tytoi appeat in_shoh boOkS as -Biikhoff-and-Maelithe,-and:Aildree:
Diligent study, with an eye out for properties of one class of systems that seem
similar-to properties unfiaggingeffoit-to-Aiiiderstand
andzbecome familiar with_ tidiViduaf systems; can be.almost =unbelievably re=
warding -and satisfying. MbreoVet, -thete ate diSefti (itS well -as-_ aesthetiO)

terpretations and applications- of Most SySteinS.
In our owit sitUation; _with-,oht-tiuth-tableS set_up:fitst-inthe usitallashion,

theft in a- conveniently modified -arrangeinent,_ tte found several interesting
_pairs pf atrayS.-If the arrays- representing 25_ A q and q)_ are used as-the
"multiplication " and "addition"- tables; tespeetiVely, of an (S; e, 6),
where S = (0, 1), we have _a -field' of characteristic '(ana- alsb order) 2. An
example -of such a field is the,field of residue eldSses of integers-modulo 2.

On another hand, _if tve take the aetaya- tePteSentiiig_rp A q and ,1) 4V q
as "Multiplication" and "addition" tables, respectively, of an (B;- e, _(8)),
where B = {0, I }, We have a Boolean algebra: NoV a boOleari algebra is very
different froth a field. It has diffetehrapplications and different interpreta-
tions.

It shotild not be surprising that We call find tables -defining different- systems
among these arrays, The-fact is that all-possible 2=by-2 arrays involving only
two district elements are there. Hence if it is possible to define _different
two-element systeMs by-using different pairs of arrays, it has to be possible
to find the tables in this set. It will certainly be interesting for you to explore
this matter further.

Simple- Applications of a Boilean Algebra

We can obtain some simple applications for the Boolean algebra (B; ,

0), where B = {4), I) , by first considering a set of light bulbs controlled
by a collection of switches each with only on-off positions: The immediate
source of power can be an ordinary base plug. Or nift configutation
May be simply a part-of the house (or other) wiring; As-With so-called word
Problems, we have to assign meanings to our terms. -Let-SI, S2, ; . indicate
Specific switches and LI, L2, . . . indicate specific bulbs. In each- switch, (1)



indicates the "open" or "off" Status with no current flowing; /ndicates the
"closed" or "on" status with (all) current flowing. fir the-case Of each bulb,
4) indicates that it is not lighted'and / indicates that itislighted. For a=single
bulb controlled by a single switch_; reptesetitatien-iS so simple -as to be
perhaps confusing: .

SI LI
4, 4, Switch off; bulb not lighted
I I -Siviteh on;,bulb lighted`

-The _Wit_ assumptions- are:=that (11) the:.house -current -ig- on, (2)- the ,sWitch
-works, andi,(4)-the =btilb AlSO;:-the- case of a_ thieeiitay_ bulb con tröl led
by an in-socket so-called switch must be differehtiatOd Such a switch i.§-a_eot=
lection of--two of our switches o ii,Witing-eofifigtitation;litli_eqUiValerit effect

We are free to- reverse this_cotitrol-by-specifying that when the
switch is on, the bulb is not :lighted and when-the-switch-is- off the is
lighted. Why, de _yow suppoSeidon't--We use this.arrangementgenetally?

If We want a- bulb_ to be controlled by twoiSwitchesT(at differentiocations)
in such a way- that the--bulb's -status:will be_ reVelSed-_(troni (Ate ono fioni On
to off) by reversing -the status of either sWitchi2ont-representation. his to pro -
vide- all-font possible, combinations of statuses for the.switches as well as both
statuses for the bulb. This, may be done in -either the-column-al' -or the
(bordered) square array form with the L1 entries inside:_-

St S2 Lt
/

4 / 4-
4 4

I I I

S2
St _4_

4- /
4

Note that our requirement, "reversing either switch reverses the bulb,"
fixes the I.d_column_(or the inside of the table). HoWeVer,-We do'have the alter-
native of specifying that the upper entry in that column should be 0. If we did
that,_ our controls would still work, but according to these displays:

.

In practice, a wiring (or schematic) diagram is made to represent these
displays. It will be helpful to compare such -a diagraM from an electricians'
handbookwith our displays. The displays can be interpreted for valved pipe-
lines for liquid flow, but the piping configurations will be somewhat different.

You should note that in this early case a peculiar type of symthetry Mani-
festsjtself. In either of the trio pairs of displays above, the labels SI, S2, and
L1 may be rearranged in any way while the columns remain fixed, without
disturbing the validity and interpretation of the representation. This symme-
try will be present only in some representations, not in all.

What you have here are rudimentary parts of a much broader, highly
sophisticated, and enormously effective system of analyzing wiring needs and
designing wiring configurations to implement controls and Operations of

S, $2 LI
4. 4.

4
//

/ 1 44

NS:
S,_ 0
4.
I

4.
I

/
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various types. This system- has been -indispensable to the development of
computers of various types, including control systems, and of the great cony=
munications networks that now span the earth and reach out into space. The
references provide further information and experience.
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Julius H. Hlavaty

A Euclidean Paradox
A baffling demonstration

Consider a circle 0 With radius r and a point P inside the circle. Find a
point P', outside the circle, such that

OP OP'
(Such a point is constructible even with straightedge and compasses only,as seen in figure 10.1.)

Fig. 10.1

Where do you think P' is located; inside, outside, or on the circle? Let'ssee!
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Find the midpoint M of segment PP' assume it is inside the circle. Con-

struct a perpendicular to 61, at M and extend it until it meets the circle in A.
Draw AO, AP, AM, and AP'.

Now, in A AOM:
0M2 4:A3/2 = A02 = r2

and in A APM:

From equation (1):

Substituting in equation (2):
PA2 PM, + r2 - O'

r2 (0M2 - PM2)
= r2 - (OM + PM)(0M PM).

PM2 AM2 a API. (2)

But, since PM

Al A r2 - OM:.

PA: = r2 - OP' OP
= r2 - r2 0!

This neans that the distance between a point on the circle (A) and a point
within the circle (P) is zero! Does this mean that the two points are coincident?

An expIgnatiOn?

It is obvious that there is something wrong with the demonstration in the
foregoing section. Is it that point,11/ is outside the circle and tiit, therefore,
the perpendicular bisector does not intersect the circle?

Let's try coordinates and a special case (the treatment can easily be made
general).

Let the circle have its center at the origin and let its radius be 1. Its equa-
tion then will be

e +
Let the point P have coordinates (3/4, 0).
Then, to find P' we get 3/4 . a = 1 and a = 4/3, or the point P' has co-

ordinates (4A, 0).
Using the midpoint formula we find that the coordinates of the point M

are (25/24, 0). It is, therefore, outside the circle, and the perpendicular
to the x-axis at M does not intersect the circle. Does this solve our paradox?

The line perpendicular to the x-axis at M has the equation x = 25/24, and
we can look for the intersection of this line with the circle by attempting to
solve the system of equations:

x2 + y2 =
Or

X =
24

We get
625
576

1

-'9
:t

Y 24'
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so the perpendicular bisector of PP' meets the- circle in the points (25/24,
7i/24) and (25/24, 77/24).

Let A be the point (25/24, 7i/24) and let us find the distance between A
and P. Yes, the distance again turns out to be zero!

So, again we find that, distance AP is zero, that is, that A and P would
seem to coincide.

We now have an alternative: We can decide that the algebraic demonstra-
tion shows that there-simply isn't such a--point A on the circle (because we
cannot represent points with imaginary coordinates-in-the plane), or we can
ad N.enturefort li to see what consequences would follow if we allow "imaginary"
points into our work in geometry.

Problems to investigate

I. Can you prove by metlAs of demonstrative plane geometry that point
M must fall ontside?

2. Can you make the analytic proof general, that M must fall outside the
circle?

Imaginary Points and Lines

Same definitions and their implications

Consider the set of ordered pairs (a, b) where a and b are real or imaginary
numbers. We shall tall any such pair the coordinates of a point in the plane.
We shall even say that r.ny such ordered pair is a point in the plane. If a or
b or both are imaginary, we shall call the point imaginary.

We shall consider equations with real and imaginary coefficients. We shall
assume (though it can be prayed) that the Pythagorean theorem (and there-
fore the distance formula) Imids.

Consider the real paint A (0. 0) and the imaginal). points B (i, 1) and
C (i, 1). Find the lengths of 3he sides of PABC. Do you find AB = 0,
BC = 2,CA = 0? We have an iso,celes (?!) triangle, but the triangle inequality
does not hold!

Consider the two equations

x and x iy O.

We will say these are two imaginary lines. If we seek their point of intersec-
tion we find it to be (0, 0). A real point of intersection for two imaginary
lines. As a matter of fact it. can be shown (can you show it?) that every
imaginary line has one and only one real point on it.

Find any two points on the first of she above equations (that. is, two ordered
pairs that satisfy the equation.) Find he distance between these two points.
Do you find the result interesting? Do you think you would get the same result
for any imaginary line?
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Probloint to invostigato

1. Find the midp' s of the line segments determined by the following
pairs of points:
a. (0, 0), (1, 0 b. (1, i), (1, -1)
c. (1, 1), (1, 0 d. (1, -1), (-,.= 1, 1)

e. (1, -0, (-1, 0 (5,70, (0, 30
g. (0,1 + i), (0, 1 - i) -
i. Make up.otllerproblems and solve -them.

2. Find the distance between the folloWing_pairS of points:
a. (0, 0), .(1)=1)- b. (1,:0,-(1, =i)-
c. (i, i), (1, -i) dz (-i,_ -0, (1, =i)-
e. (-i, f. (0, 1 + i), (0, 1 - i)
g. Make up other problems and solve them,

3. Find the points of intersection of the following pairs of lines:
.a. x + 2y = 7. b. x iy = I.

3x +.6y = 5. x - iy = 1.
c. 2x 3y1 = 1. d. x iy.

2x + 3y1 = 1. x 5iy.

e. x (3 ily = 1.
x - (3 i)y = 1.

Homogopoitus coordinates

While we could continue our investigation of the role of imaginaries in
geometry by means of the esual Cartesian coordinates, we introduce a new
system of coordinates that will give more depth and generality to our explora-
tion and will also enable te, to talk about the infinite in geometry.

If the Cartesian coordinates of a point A are (x, y) let

- and y
X1 X3

that is,
XI se X X3 1111(1 x3

where x3 is an arbitrarily chosen number.
Then (24, x2, x3) will be called the homogeneous coordinates of the point A.

For example, if A has the Cartesian coordinates (3, 5), the homogeneous
coordinates could be (3, 5, 1) or (6, 10, 2) or (3r, 5r, r) where r is any num-
ber, real or imaginary. It is clear that any pair of coordinates in the Cartesian
system can be transformed into homogeneous coordinates-except that we
shalrexelude the triple (0, 0, 0). (Why?)

It is also clear that any triple of numbers (al, at, 03) will give us a point in
the plane (agaii. excluding (0, 0, 0)). For example: the triple of numbers
(0, 0, I) or (0, 0, 7) could be the coordinates of the wint (0, 0) in ordinary
Cartesian coordinates; or (1, 2, 1), (2, 4, 2) and (r, 2r, r) could be the homo-
geneous coordinates of the point (1, 2).,

If the ratios ai:a2:a3 are complex, we shall say that we have an imaginary
point.
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*What about homogeneous coordinates (xi, ;z, x3)_ if x3 = that
the-ratios xi/x3and _x243 would iaPProach_infiiiity as-i.approaches_iere. We
will therefore define all such of nuMbers ,(for 0)_ as co-"
ordinates of points at 'infinity. Since x3 = 0-1s_, *e*tation,that-giveS,-tis,a11-
such "-pointsat infinity" and since eqttatiO0'e--say
that === Olia the eqUationpk,iheliie

_

With hoinegeneouS;coordinateSs-the `,',Origiif. of-440, otcji*o0, :atioakeo=
ordinate system *tie*
ever, We no* 6. nd _three- origins Akitk_Oilt neW,:e6O4inate:,;_sYstem::fie-.4lier
tWo are (0,_ 1, 6):anci=4, 0, 0) -and_« a can think of =these additional "origin's"
as Points of intersection_ of the`usual _x.4_anitiv=_axes

in tact «'e -can think of this :iiew-ethi4ifiate-sYsteTin--.as consisting off-iiitri,
angle Withkertiees (0;-0 1), (0, 0) (i 0)_Trind'itliihree

_=1-0;-X3 = 6;_alid z3 =

-Pitiiieliwto invesfigote-

1. Find homogeneous- coordinates -for the following_ points- in _ Cartesian-
cOorditlate-syStem:
a, -_(0-; 1)

(1-0) d. (0, i)
e: (410) 1,-(i, i)
g.-(i, =1) i)-
i: (1, a j; (=-1, i)
k. Other- points of-Your choosing,

2. Find the Cartesian coordinates Im' the points given with the following
honlegeilemis coordinates:
a. (1, 1, 1) b. (1, 0, _1)
c. (1, 1,=0) d._(0, 1, 1)
e. (1, i, 1) 1. i, 1)
g. (1, 1)- h. (i, =1, i)
i. (1, i, 0) j. (0,-6, i)
k. Other points of your own choosing.

Geometry in the-Complex -ProjettiVe Mane

The linearequation

The equation Ax -+ By C =-0 or, inliomogeneous coordinates, _AX1
Bx2 Cx2 = 0 is a linear equation. It is a theorem in analytic geometry
that this equation represents a straight line: We can define a straight line, then,
as the set of ordered_triples_that satisfy the second forin of this equation.

Every imaginary line-has one and only one real-point on it. TO see this, con-
sider the equation

+ Cis = 0
in which
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and

Then

A =

C =-

.0

in }_x, -=(-

This equation will=besatisfieilitYreal-Valties ti, x2,_is if and oidLi.- if

+
and

-cal
_

a2xt_ o.

These equations:have the selutioit_
=4p-to, cewasb-i-=satbli,

Which_ gives, its the-coordhuttes- of a-real point -(though the point -niay be at
infinity if 02 a2b,

For example, the-imaginary line -5x, -ix: 3x3 = -0 haS_the real -point
(-=3, 0, 5).

Problems to investigate

1. -Find real-points on each of the lilies: ---

a. 3x + 2itj_ 7. y =ve
e. x -iy I = -0. d. ix iy 1 =.0.
c. x y i = 0. f. (a -F-b0x + (a_bi)y =

2. Find -the equation of a real line through each of -the follOwing imaginary
points:
a. (1, 1) b. (1, i)
c. (i, i) d. (1 i, 1 = i)
e. (i, 1. (2 + N/5 is 2 V 1.)
g. (i, 0) h. (5, 0

3. Find the real-point on each of the following lines:
a. XI 2X2 = X3. -b. ix, -1- x2 + x3 = 0.
c. xt x: ix3 = 0. d. +11 + Ox2 xs = 0.
c. (1 + i)xt + (1 i)x2 + x3 = 0. f. ix, + xs = 0.
g. x.,;= oat
Two parallel lines intersect at infinity. Consider the equations of two lines:

A Its +1 ;,z: ± Ctrs = 0 and A zr, (:,r1 = 0;

these lines are real or imaginary, depending on the values of the coefficients.
They have the unique solution:

=

This solution represents the point common to the two lines. If At/12 = BIA 2,
the point of intersection is on the line at infinityxs = 0aPd the lines are
parallel. If the lines are imaginary, we shall call them parallel by definition.
We have, therefore, proved: Two straight lines intersect in one and only one
point. If the lines are parallel, the point of intersection is on the line at infinity.
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For example, the equations:

= ars and = r, 5r3

have the solution. (I, 1, 0). These lines are parallel and intersect the line at
.r3 = 0,-in the point (I. I, 0).

Problem _to. investigate

I. Find-th^ point of-intersection of each of the following pairs of lines:
a. xi =4, x =
b. it = ix3i -iX3

C. x2 = ix3
d. (1 =l= i)xu= (I' i)x3, (1 = 0.r3
e. 1'1 2-2 x3-= 0, x1 0-

M inimal (or isotropic) lines. Let us consider-the lines that.conneet the origin
of _the Cartesian coordinate system, (0, 0, 1), with the imaginary points
(I, i, 0) and (I. =4-0).

The equations of these line arex-_= iX1 and x2 = and their-slopes-are
i and Since the distance between any two [Mints on either line is Zero (see
the section above entitled "Some definitions and their-implications"), these

are called minimal or isotropie
If we raise the general question of what. is the locus of-points at zero distance

from a given point (4. yo) we find,-using_ordinary Cartesian-coordinates:
Ear 4- YeY = 0

or x,) yob -((x xu) =
so + i(y y.) = 0
or icy yo) = 0;

In homogeneous coordinates these equations are-of the form:
÷ ix: + /.73 = 0 or xi m.ts

These are, in fact, the minimal lines that go through the given point.
(Another way of thinking of the minimal fillet: is that they are lines with slope
i or i.) In other words:, the locus of points at Zero distance from a given point
consists of the given point and the two minimal lines going through that point.

The circle

Adapting ordinary Cartesian coordinate equationS to homogeneous co-
ordinates, we can eonsider the equation

+ 4 0

as the equation of a rircle with renter at the origin and radius 0.
If one or more coefficients are complex, the line will be said to be imaginary.

The equation x3 = 0 will be called the line at infinity.

We see immediately that this equation reduces to the equations:
ix, and

in-other words, to the two minimal lines through the origin. We ran say, there-
fore, that-the null circle consists of the center and of the two minimal lines
going throctth the center.
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It is clear that the null circle giVen above intersects the line at infinity,
t's = 0, in the points (1, i, 0) and (1, i, 0). (Check this statement.)

We shall- now show that every circle in the plane goes through these two
phintX at infinity: For this reason the points (1, i, 0) and (1-, 0) are called
the circle points allnfinity.

The equaticin_ of--an arbitrary- circle, in homogeneous = coordinates (recall
and-transform the or-diirafy-Cartesian- equatioir),_is-

4 + r-I42x3-+ (44 = 0.-

A: ditect substitution -Will-Shmi; -that -the_ Point§ 0) =and= (1, -i, 0)
satisfY:thiS eqUation.

liotemiet,_-we :can shod= that=any -conic- Seat t hitt goeS-thititigh- the -tWo=
circle points -at infinity is alcifcle, The geheral'egtiatibh of a=conicir in-hoiho=

geneous Coordinates, is

+ Brix: + Czz ± Aztis -Eitts

-If this equation is satiSfied=by_ (1, i, 0) and_ (L =- i; -0)l -then
A + and A- Bi = C = O.

Solving these equations, we see that Al = C and B = 0,-anthwe:let

.44 + Axf + Ariz: +-Erai := 0,

Which is the equation of a circle.

The other t'OnIt sections

From ordinary geometry we lean, that the intersections of a plane And's),
conic surface Yield-the conic sectionscircle, ellipSe,-hyPefbola, and parabola:
(Of course, there are special, degenerate- cases in which these sections are
points, two intersecting lineS, two Parallel lines, or two-coincident_ lines.)

What light is shed on the conics by- the techniques we.have iiitfoduced
homogeneous coordinates, imaginary poiirts Land lineSi and points and -lilies'
at infinity?

The parabola. In analytic geometry we learn that the simplest form of the
equatidir of a parabola is

y cx2 or r4:
The parabola intersects the line at infinity, xi = 0 in the point (0, 1, 0)

in fact it intersects that line in two coincident points (0, 1, 0) and (0, I, 0)--=
and therefore we can say that the parabola is tangent-to the line at- infinity
at that pant. The point of tangency is the point in which the axis of symmetry
of the parabola intersects the line at infinity.

The ellipse. We learn in analytic geometry that the equation:
r2 y2

(72 + I

represents an ellipse. Let us extend this definition by considering each of
the following as an ellipse, also:

r2
+ 62

r2 Y2= 1 and 2 = O.
62

104



Let us change these equations to homogeneous coordinates:

- 4 1-+ 51- = 4, + = 0a bz ' a2 IA az bz

Clearly, the last equation becomes the two conjugate, imaginary, inter-secting lines:

i,b =0: -and- iax: =0:
The lines intersect in the point:(0; 6,-1),(the origin otthe Cartesian Cot:ordinate
system),_ and -,_they-- ifiteiSect --the = atinfiiiitY ,iU_=the -:Conjutate4ifyigiiiaty
points: (acbi-,---oiAnd;(a;

We say,;.tberefote-Ethatthe_thifd
eqtfation=f0-proSeritS degenerate_ ellipse ihatconsists of -WO- conjugate-imaginary lifiesIliaviitteitect -r-eiii_E`Poifiti= theorigin, -ail& intersect the- line_atrinfinity in two confOgate4imagiicatyipoilit-S.

The second equation (x2I/a= + x22/62 = tea) is ah:ellipSe-With Ao_realgraph, but it alSo intersects the:line at infinity in-the- points (a,:bi, 0) and
-(a: 0) .

The_ equatiOn-eda2 + e2/b2 = e3, which represents-a real ellipse, inter=sects the line at infinity in thepoints (a, bi; 0) and -(a, 0).
In the special case where a = b = 1- the equations tedUce-to

4 + 4 = zi, 4 +41 and 5 si + x =k
the equations-of a real l-circlefanimaginaty-circle, and -the pOint..circle,-tespeC-
tively. Each-of these intersects the line-at infinity:in _tbe-tioints (1; i, 0) and(1, 0)=.=the circle points at infinity. ThiS confirms -What we observed inan earlier section on the circle:

AlSo, in the -last case, the &de reduces to-the conjugate isotrOpic lines"xi ± ix = -0 and xl = ii2 = 0 and their real -point of intersection (0, 0, 1).
The hyperbola. The equations.

xi 4
az bz x3

, xi =and
bzaz

represent, respectively, real nondegenerate hyperbolas and real degenerate.hyperbolas (if a and b are real).
The second Of these reduces to the two real intersecting

h.rt = 0 and bxt ax: = 0:
These lines intersect the line-at infinity in the two teal points (u, b, 0) _and(a, =b, 0), and they intersect each other at the point (0, 0, 1) (the origin of the

Cartesian coordinate system).
The real, nondegenerate hyperbola,

xf 2q
az bz x3,

.

also intersects the line at infinity in the two real points (a, b, 0) and (a, b, 0).
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