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Preface

One of the main purposes of a mathemnaties club is to provide the oppor-
tunity and climate for students to study and present, before their peers,
exciting topics in mathematics that are not ordinarily discussed in the class-
room. It was with this in mind that the idea for this booklet was conceived.

Each of the chapters is intended to be a “turn on” treatment of a mathe-
matical topic to interest students in that topic. Each is written as a eollection
of related subtopics; one result of this organization is that a committee of
students can sce the subtopic breakdown and each take a subtopic for
presentation at a club meeting. The bibliographies are to suggest to the
student where he ean read in depth on his subtopic before presenting it to
the club. Many sponsors have found that when three or more subiopics of
a major topic are presented at one meeting, the students gain considerable
feeling for what that area of mathenatics is about.

The sponsor and/or student reading this booklet will note that many sub-
topics with their suggested references individually provide enough material
for a club program and can be conveniently used in this manner. Still
another way in which this booklet can be used is as a source for material for
written projects for either a mathematics club or a mathematics course.

Ata Mu Alpha Theta Governing Council Mceting held at the 1968 NCTM
Meeting in Philadelphia, the idea of asking the NCTM to publish or jointly
publish a book with materials for mathematies club programs was approved
by the Mu Alpha Theta Council. A proposal was presented by Mu Alpia
Theta to the NCTM Yearbook Planning Coinmittee at its meeting in
Chicago in October 1968. In November 1971 agreements were reached on all
phases of this joint publication by the NCTM Publications Commiittee, the
NCTM Board of Directors, and the Governirg Council of Mu Alpha Theta,

The individuals in official capacities in the NCTM and Muy Alpha Theta

\4



organizations most deserving of credit for their sincere efforts in making this
joint publication possible are:

NCTM Mu Alpha Theta
Arthur F. Coxford Josephine P. Andree
M. Vere DeVault Julius H. Hlavaty
Jack E. Forbes Harold V. Huneke
James D. Gates Robert L. Wilson

Charles R. Hucka

Enough thanks cannot be givén to the ten autbors of the topics presented
here. Although they all are very busy people, they responded enthusi-
astically when asked to write an article on a designated topic. Each did an
excellent job with his writing assignment. The youth of America who Tead
these articles should be most grateful for what they have done.

" Also, our thar.xs are extended to Thomas Fitzpatrick and Henry Frandsen,
who read certain of the manuscripts on request and gave some helpful
suggestions.

Finally, our sincere thanks to Dorothy C. Hardy and the NCTM editorial
staff for the excellent job done in preparing the manuscript for the printer.

LeRoy C. Dalton, Editor
Henry D. Snyder, Associate Editor
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Fibonacci Sequences

Brother Alfred Brousseau

Intuitive Discovery of Fibonacci Relations

Fibonacci numbers got started with a problem dealing with the breeding
of rabbits as found in the Liber Abaci (1202) of Leonardo Pisano (otherwise
known as Fibonacci—one rendering of the meaning of this name being “son
of good nature”). Assume, he says, that there is a pair of rabbits ready to
breed and that each month they breed another pair of rabbits, However,
rabbits that are bred in the first month do not breed during the second month.
They begin to breed a pair a month only in the third mont},. Question: How

many pairs of rabbits are there at the end of twelve months? Table 1.1 tells
the story.

TABLE 1.1
THE BrerpiNG oF Rassir Pars Accoroing 10 THE Scueme
Ser Up sy Fisonacer

Rubbit Pairs Pairs of Pairs_of Total No. of

Bred during Nonbreeding Breeding Pairs of Rabbits

Month Month Rabbits Rablnts at End of Month
1 1 0 1 2
2 1 1 1 3
3 2 1 2 5
4 3 2 3 8
5 5 3 5 13
6 8 5 8 21
7 13 8 13 34
w~ 8 21 13 2i 55
9 34 2] 34 89
10 55 34 55 144
11 89 55 89 233
12 144 89 144 377

Now, what is so remarkable about this table? Looking at the numbers in
the various columns it can be seen that each of the sequences of numbers is
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part of the sequence: 0, 1,1, 2,3, 5,8, 13, 21, 34, 55, 89, 144, 233,377, ... .
The distinctive property of this sequence is that each of the numbers (after
the first two) is the sum of the two preceding numbers! Such is the origin
of what is known as the Fibonacel sequence, which has since become fainous
for its many ramifications in the fields of mathematics, nature, and even
technology.

To facilitate speaking about the sequence and its various terms, a simple
type of notation is introduced: Fo=10,Fy =1, F, = 1,F; = 2, F, =3,
F. = 5, Fg= 8, Fq= 13,F8 = Ol,Fg = 34, Fi0o = 55,and o on.

What characterizes a Fibonacci sequence is the recursion relaticn

7'n+l =T, + Tnet 3

which simply means that each term is the sum of the two preceding terms.
One may start with any pair of integers, such as 2, 5, and build up 2
Fibonacei sequence: 2, 3, 7,12, 19, 31, 50, 81, 131, . ... However, there are
two such sequences that have distinetive propertics: the Fibonacei sequence:
1,1,2,8,5.8,... nentioned above and the Lucas sequence: 1, 3,4,7 11,
18, 29,47, 76,123, . . ., named after Edouard Lucas, a French mathematician
of the latter half of the nineteenth century who did a great deal of work in
connection with sequences of this and related types. For the Lucas sequence
we use the notation Li=1, L, =3, L; = 4, Ly = 7, Ly = 11, Ls = 18,
Ly =29, Lg=47,....

One of the fascinating aspects of Fibonacei sequences is this: There secems
to be an unlimited opportunity to discover formulas and relations. For
example, if cach Fibonacei number is multiplied by its corresponding {,ucas
number we have the following:

n FiulL.

1 1 -
2 3 -
3 8

4 2

5 55

(i} 144

.

The produets are Fibonacci numbers, being the Fibonacei numbers with even
subscript. Intuitively, it seems that F wln = Fon.

Suppose we add the squares of two successive Fibonacci numbers. In
carrying out such experiments, it is usually better to start higher up in the
scquence than at the beginning, since often the results are masked by the
presence of the two 1s at the beginning of the sequence. Let us try a few
pairs and see what result we obtain.

Fi4 Fr=204327 13, Fi 4 F =3t 4 5t = 34,
Fi+ F}=5° +8 =89,....
Again the result is a Fibonace! nunber, and actually, the Fibonacci number
whose subscript is the sum of the subseripts of the two squared numbers.
That is, we have a general relation
F24big=Fun.
Tt is a good idea, once we have a Fibonacci relation, to see what happens

2
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when we perform a corresponding operation with the Lucas sequence, Try
this in the present case.

Is there some way of tying in the Lucas sequence with the Fibonacei
sequence? Examine what happens when alternate terms of the Fibonacei
sequence are added together. For example, the first and third add up to 3,
the sccond and fourth add up to 4, the third and fifth to 7, the fourth and
sixth to 11, and so on. These are all Lucas numbers, the Lucas number lying
between the two Fibonacci numbers that are being summed. Henee the
general relation is : .

Ly=Fopy + Fo,.
Try the corresponding relation adding alternate Lucas numbers.

An interesting situation arises when we have a series of Fibonacei relations
that lead to an overall general formula. For example, try the experiment of
taking any Fibonacci number squaring it, and comparing this square to the
product of the Fibonacei numbers on either »ide of it. The difference is
always one. However, in some cases it is plus one and i others a minus one.
The entire result can be summarized in the following formula:

Fi = FaaFuyy = (=1,
Now compare the square of any Fibonacci number to the produet of the
numbers two away on either side. Again the difference is one, but in the
opposite sense, so that

Fi = FaisFuss = (=)~
The road from here on is elear. Compare the square with the product of the

Fibonacei numbers three away on either side. The difference js always four,
and the relation obtained is:
FY = FoisFusy = 4(=1),
Pursue this sequence. Ultimately one should arrive at a formula for
Fi = FoFuux.
Try the same sequence of formulas using Lucas numbers.

Another type of relation that may be investigated is various sums: for
example, the sum of the terms of the Fibonaeci sequence. Again, avoiding
for the moment tiie early cases, one finds that the sum of the first five terms
is 12; the sum of the first six terms is 20; the sum of the first seven terms is
33; the suin of the first cight terms is 54; and so on. I avariably the sum is
one less than a Fibonacei number, the number that is two steps heyond the
last number summed. Hence one surmises that

.
k-%pt:p.wz—l‘
What is the sum of the first » Lucas numbers?

Other sums that may oe investigated in both sequences «re the sum of the
odd-subscript terms, the sum of the even-subscript terms, the sum of the
squares, the sum of terms where the subseripts differ by four, aud so on.

For more leads and hints about intuitive discovery see Infroduction to

3



Fibonacci Discove = hy the author and his mimeographed publication en-
titled “Fibonacci 7 - mulas Suitable for Intuitive Discovery.” For historical
background, see Gies and Gies.

Fibonacci Sequences and the Golden Section Ratio

The “golden section” is & famous piece of geometry that is found in Euclid's
Elements. The problem is to take a line segment AB and to place a point
C so that AB:AC = AC:BC, as seen in figure 1.1. In other words, the iarger
section of the line segment AB is the mean proportional between the whole
line segment and the smaller section. What is the value of this ratio? Let
AB/AC = z. It is convement to take AB = zand AC = 1, since this gives
the required ratio. Then BC =z — 1. Hence

xs wliz—1,
from which 22 — z — 1 = 0. Solving, there are two roots:
1 -5
92

-

1+vV35
-5

ro= -

and $ =

The first is approximately equal to 16180339887 and the second to
—0.618033¢887. The positive value is the ratio AE/AC, the golden section
ratio. (Sometimes its reciprocal, 0.6180339887, is taken as such.)

A - ro B

Fig. 1.1

Now one of the fascinating things about Fibonaeci numbers is the fact that
they are strongly related to this golden section ratio. We arrive at this
relation when we try to answer the question: Is there an-explicit formula
for the terms of the Fibonacci sequence? The answer is yes, and the solution
brings out a beaatiful piecc of algebra.

We start with the recursion relation for a Fibonacei sequernce

Tea = Tat Taey or Tenn — T = Temr =0.
We form a corresponding quadratic equation with the same coefficients:
p=-z—-1=0,
which is evidently e same as the equation for obtaining the golden section
ratio with roots r and s as given above. Now, since r s a root of this equation,
rr—-r—-1=0 or rr=r+1.
Multiplying through by r**, we have
rnﬂ = r* + rn—l_
Note that the powers of the roots have the same recursion relation as the
terms 0: the Fibonacci sequence. This gives rise to the idea of expressing the
terms of « Fibonacci sequence in the form

T. = Art + Bst,

Y-
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where A and B are suitable constants. If this form holds up to T, , then since
Toor =T, +Tuy )

Tn+l = Ar® 4 Bs® 4- Arn! 4 Bgn-1
= A(™ + o) + B(s" + oY)
= 4pott + Bsnt1,

Hence if this form can be established for the iirst two terms of the Fibonacci
sequence, for example, if, will continue for all terms. To do this we set

1 = Ar 4+ Bs and 1 = Art + Bs?,
the solution for 4 and B being 4 = 1, v/5 and B = —1/v/5. Thus an
explicit expression for the terms of the Fibonacci sequence is:

F =rn_sn

V5
Proceeding similarly for the Lucas sequence, one finds
- L, =r 4 s

These formulas, known as the Binet formulas for the Fibonacci and Lucas
numbers, are not particularly practical for calculating such numbers, but
they. provide powerful tools for developing and proving Fibonacei relations.
For example,
Fo = rin — g0 - (r" = ™ (4 s
20 v Vi
and we have quickly proved one of the relations we found by intuition.
Again

= FaL,,

F2— FoFopy = (rm = s (rrm1 — aml) (prtt — gah1)

5 5

- (an - Qpngn + s§n — y2n + rr-igntl + sn-tpntl szn)

=
5
<

- reignTl (b2 — s o §2)
5
Nowr® 4+ 6= Lo = 3and —2rs = —2(—1) = 2. Hence
Fv? - Fn-lpn(»l = (_])"-l.

A fascinating aspect of the Fibonacei sequence is the fact that if we take
the ratio of consecutive terms, the value geis closer and closer to the golden
section ratio as we go out in the sequence.

Fn+l Fn-H
n F;. n Fn
1 1 6 1.625
2 2 7 1.6153846153
3 1.5 8 1.6190476190
4 1.666666666 . . . 9 1.6176470588
5 1.6 10 ~ 1.6181818181

For n = 20, the ratio is 1.6180339985 .

But what is true of the Fibonacci sequence is true of any Fibonacci
sequence. For example, for the sequence 2, 5, 7, 12, . . . , the ratio of the
twenty-first term to the twentieth is

vt 4 115 bbb Vet £l
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42,187 :
e == 5180339815 .
G073 1.6180330815
Why is this? Let us examine this ratio .ur the Fibonacei sequence.

rn‘l - sn#l

Foo _ _ V5
F, "o
V3
F d R I, sl‘l
SRt e

L]

Dividing the terms in numerator and denominator by »* , one has

r—s (s)
F.-l — r

=

But 5/r has a value less than one, and henee whe. 2 gets larger this fraetion
to the nth power gets eloser and eloser to zero so that the limiting ratio is’r.

Fibonacci Numbers in the World

People are used to finding mathematies embodied in their eulture because
man has put it there. But when they find something so elegant as the
Fibonacei sequence or the golden scetion ratio in nature, they begin to
wonder whether somehow mathematies is not an integral part of the plan
of the universe.

Perhaps the most striking and common instanees are found in planis. It
has long been recognized by botanists that the leaf arrangement (phyllotaxis)
of many plants follows a Fibonacei pattern. This pertains to plants where
the leaves spiral up the stem. Take a leaf and find the next leaf up the stem
whieh is vertically above it. Counting the original leaf as the zero leaf, find
how many steps there are to the next leaf vertieally abeve tl_l'c;iz’cré_.‘_ktaf.
Very often this is a Fibonaeei number, such as 3, 5, 8, 13, . . . ,f?hjg?::dcte_r-
mine how many times it was neeessary to go around the stem in order to
arrive at the leaf. For five steps, this is two, for eight it is three, and so on,
in Fibonaeei arrangements. Such arrangements are expressed by the follow-
ing ratios: 1/2, 1/3, 2/5, 3/8, 5/13, 8/21, and so on. The neaning of this
notation is twofold: 3/8 means that it takes three revolutions and eight
steps to get to the leaf vertically above the zero leaf. Or another way of
thinking about this would be: To go from one leaf to the next leaf in the
sequence takes on the average 3/8 of a revolution around the stem, since
eight steps give three revolutions. Note that these numbers are alternate
Fibonacei numbers. The 1/2 arrangement is the simple arrangement of what
is known as alternate leaves and fits into the general pattern.

If we make a table of angles corresponding to the various eases we have
table 1.2.

6
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TABLE 12

Phyllotaxis Arrangement Ancle

1/2 180°
1/3 120°
2/5 144°
3/8 135°
5/13 . 138.5°
8/21 137.1°

13/34 137.6°

We seem to be approaching a limiting angle. This is because the ratio of
alternate terms of the Fibonacci sequence as given is approaching 1/r2, and
the limiting angle corresponding to this is 137.49°.

Modified leaf arrangements are found in the bracts of pine cones and the
seed arrangements of sunflowers. A somewhat different way of counting
brings out the Fibonacci numbers in these cases. For pine cones, there are
usually two obvious spirals, one steeper and the other more gradual. One
way of counting is to determine how many steep spirals there are and how
many gradual spirals. These are found to be consecutive Fibonacei numbers,
such as 8 and 5. A second way of counting is to start from any one bract
and follow the two spirals going through it to their next intersection.
Counting the number of steps along cach spiral gives the same two consecu-
tive Fibonacei numbers.

The author has counted thousands of pine cones of various species, as well
as cones of Douglas fir, redwood, and spruces of various kinds. Up to
approximately 99 percent, the cones of one species have a common Fibonacci
pattern. Deviations give either Lucas counts or double or triple Fibonacei
and Lucas counts. For example, a count of six and ten would be double three
and five. Thus, almost without exception there is some Fibonacei or Lucas
ceunt on the cones of conifers.

Cacti of certain species (Opuntia. for example) show spirals and Fibonacei
or Luecas counts. Usually, however, there scems to be more variety than
among pine cones. Furthermore, the internal wooden structure that remains
after the cactus dies is a weblike pattern of spirals that gives Fibonacei and
Lucas counts inasmuch as the spines come through the holes in the webbing.

Interesting patterns have also been found in other desert plants such
the ocotillo and the Joshua tree.

The pincapple is a prime example of Fibonacci patterns, there being
many as four spirals through one bract, each pair of spirals interacting to
give Fibonacci numbers. Multiple spirels can also be found on pine cones.

Perhaps the prize example of TFibonacei numbers in nature is the sun-
flower. The seeds on the head are arranged in spirals, usually a steep and a
not-so-steep spiral being evident. Counting the number of steep and the
number of gradual spirals gives such numbers 1< 89 and 55, 35 and 34, 76
and 47. One may also count a third set of spirals going rather dircctly
toward tk:. center. In the case of 89 and 55, this set would give a number
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144; for 76 and 47, the number of spirals toward the center would be 123
(tenth Lucas number).

Another exampie of Fibonacei numbers in nature is found in the ancestry
of the male bee. Male bees hatch frum an unfertilized egg; female bees, from
a fertilized egg. If we trzce back the number »f ancestors of a male bee
(from the bottom to the top in figure 1.2), we have a pattern that produces
Fibonacci numbers. ’

f f=—m § f—m f--m f m—f f 13(8f, 5m)
T T T .
T mof f—l——rk IT—rln 8i5¢, 3m)

m—i_f m—T—f { 5(3f, 2m)
{ t——m 3(2f, Im

m f 20(1f, 1m

- . 1{(1f, Om)

Fig. 12

There are some indications that Fibonacci numbers and the golden section
ratio are related to the structure of atoms and the spacing of the planets in
the solar system.

When we consider the world that man has created, there are many indica-
tions going back to ancient times of the conscious or unconscious use of
Fibonacei numbers at.d the golden section ratio. For example, Donald A.
Preziosi finds evidence of Fibonacci ratios and the golden section ratio in
Minoan architecture. Richard E. M. Moore, after making extensive studies
of mosaics, came to the conclusion that some basic Fibonacci units were being
employed by the people making them. The golden section ratio is evident in
Greck architecture, and many painters employed it in the construction of
their designs.

Fibonacci sequences have also been used in the creation of music, a notable
example being Krenek’s “Fibonacei Mobile.”

In modern times there are those who believe (Ellis Wave Theory) that
Fibonacei numbers have soniething to do with the fluctuations of the stock
market, though they hasten to add that using ihis information would not
enable any one to become rich.

Finally, these numbers have been found useful in computer science and in
search techniques.

REFERENCES

Note—References written by the author of this chapter or pertaining to the
Fibonacei Association may be obtained by writing to Brother Alfred Brousseau, Saint

Mary’s College, Moraga, California 94575. No charge is made for mimeographed
materials.
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Projective Geometry

Donald J. Dessart

What Is Projective Geometry?

In the nineteenth century Arthur Cayley (1821-1895), a prominent mathe-
matician, said, “Projective geometry is all geometry.”” More recently a
twentieth-century mathematician, Morris Kline, wrote, “In the house of
mathematics there are many mansions and of these the  most elegant is
projective geometry” (1956, p. 622). Many scholars of both centuries agreed
that projective geometry is one of the most fascinating branches of mathe-
metics o study because of its beautiful and surprising properties.

The ruots of projective geometry can be traced to artists of the Renais-
sance. Such famous painters as Leonardo da Vinci and Raphael and such
architects, as Brunelleschi were apparently well aware of rotions of pro-
jective geometry, as evidenced by their creations. The basic problem of an
artist is one of capturing three-dimensional reality on a two-dimensional
canvas. To illustrate this problem, imagine that you are an artist peering
through a window into a massive hall with circular pictures on the walls and
with a floor made up of large, brightly colored square tiles. Imagine thal
you wish to recreate this scene by sketching it on the surface of the window-
pane through which you are looking. In accomplishing this, you might think
of straight lines projecting from various points of the scene through the
window and to your eye; and wherever a line of light passes through the
windowpane, you would mark a dot. If you were able to do this for many
of the lines, the mass of dots could provide a crude pirture of the scenec.
(One might observe that this is essentially what a camera does when it
focuses light from a scene through the lens of the camera onto the film.)

As the scene emerges on the windowpane, you would observe that the
squares of the tiled floor would not be represented by squares on the window-
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pane but would be distorted into various kinds of quadrilaterals. The right
angles of the squares would not usually appear as right angles but as obtuse
or acute angles. Circular objects on the walls would usually appear as
clliptical shapes, and other kinds of distortions would oceur.

You might also observe that lines that are straight lines in the scene W oul(l
all appear as straight lines on the windowpane; and that points “on” certain
lines of the scene would remain “on” the same lines of the sketch. The
number of sides of the figures on the tiled floor would equal the nuinber of
sides of the corresponding figures on the windowpane. In other words, you
could conclude that certain properties such as the size of the angles or the
lengths of the sides of figures would usually be changed by the sketching,
whereas other properties, such as the number of sides of figures, would remain
unchanged. You would have observed what is the essence of the study of
projective geometry because this geometry may be described as the study
of those propertics of figures that persist or remain unchanged by projections.

Those mathematicians who studied and developed projective geometry
had to introduce ideas which at first may seem quite strange. For example,
Gerard Desargues (1593-1662), an early rescarcher, found that in projective
geometry it was desirable to consider parallel lines as having a common
point at an infinite distance. This point in which the parallel lines “meet”
is called an “ideal point” of projective geoinetry; similarly, parallel planes
can be considered as meeting at a distant line, which is called an “ideal line.”
So. in the plane of projective gecometry any two lines have a point in coin-
mon; and in three-space of projective geometry any two plancs have a line
in common! In a further study of this subject, you will find many other
strange and fascinating ideas. —_—-

Principle of Duality

We all like to be efficient and enjoy avoiding unnecessary work. Mathe-
maticians are certainly no different froni others in this respeet. In fact, when
a mathematician discovers a method or a principle that saves him a great
deal of time and energy, he frequently refers to such a principle as being
“beautiful,” in the sense that it is very efficient. Such a beautiful principle
in projective geometry is the principle of duality in the plane, which we will
first state and then illustrate by examples. You may wish to make up other
examples; and the members of your mathematies club should be able to
think of some, too. -

This is the principle of duality in the plane: If any statement involving
points and lines of a projective plane, usually stated in the “on” language,
is true. then another true statement is obtained by interchanging the words
“potnt” and “line” of th. first statement.

For example, we know that in Euclidean geomnetry (the geometry studied
in most high schools) any two points determine one and only one line, or
stated in “on”’ language, that any two points lie on one and only one line.
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Suppose we “dualize” this statement by employing the principle of duality
in the plane. The dual of “Any two points lie on one and only one line” is
the statement, “Any two lines lie on one and only one point.” Both of these
statements are true in projective geometry, whereas the first is true but the
second is not true in Euclidean geometry.

Two other dual concepts are provided by collinear points and concurrent
lines. Any set of points on the same line, such as 4, B, C, D in figure 2.1 are
said to be collinear because they all lie on the line ¢; in fact, all of the points
of the line are collinear. Similarly, lines such as a, b, ¢, d in figure 2.2 are
said to be concurrent because they all lic on the point E, and all of the lines
that are on the point E are concurrent. From this we can see that points
being eollinear and Lnes being eoncurrent are dual notions in projective
geometry.

4 B ¢ D

!

Fig. 2.1. Collinear points

Fig. 22, Concurrent lincs

As another example, consider a figure that consists of four points:
L, M, N, O, as shown in figure 2.3, sueh that no three of the four points are
collinear. The dual of this figure consists of four lines: l, m, n, 0, such that
no three of the four lines are concurrent. (See fig. 2.4.)

L M

y

Q

Fig. 23

Suppose that we defined a “triangle” as a figure consisting of the union
of three noneollinear points and the three lines that are determined by these
points, taken a pair at a time. (Note that this is not the usual definition of
a triangle because it uses lines rather than line segments.)
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Carefully dualize this definition by interchanging “point” and “line” and
“concurrent” ar 2 “collinear,” wherever these words appear. Surprisingly,
you will find that the dual statement describes the same configuration and is
therefore another description of a “triangle.” This figure is an example of a
self-dual figure of projective geometry.

AN
/B C\
Fig. 2.5. A triangle

We can see that the principle of duality in the plane provides for efficiency
because in proving one theoremn, we are also proving its dual, which may be
another theorem. It is a real bargain, since we are getting two things for the
price of one!

Desargues’s Theorem

When one looks at a struciure in the distance, such as a tall building, two
iinages of the building, one for each eye, are sent as sensations to the brain.
When the brain compares these two senisations, it provides a perception of
the relative depth of the various parts of the structure. On the other hand,
if one were to look at the building with only one eye, then essentially a
flat or two-dimensional picture is sent to the brain. Apparently, in this
ease, the brain is able to compensate to a certain extent in order to provide
the viewer with some impression of depth; but not as well as it can when it
receives two sensations. ’

A very remarkable example of this campensation by the brain is seen in
the story of Wiley Post, who v.as a pioneer in high-altitude flight in the
United States. When Post was twenty-five years old, he lost his left eye in
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an oil-field aceident. Using the insuranee raoney he received for the aceident,
he purchased his first airplane; and in spite of being seriously handicapped,
he beeaine one of Ameriea’s most famous aviators. His exploits are deseribed
more fully in the Smithsonian Institution in Washington, D.C., which dis-
plays a eumbersome tank suit that he wore while flying at high altitudes.

Suppose that someone with only one eve, such as Wiley Post, or a person
with normal vision who has ecvered one eye, were to view triangle ABC
from the point O and that flat, translueent screens were then placed between
the viewer and triangle ABC so that triangles A’B’C’ and A”B”C"” would be
formed on ihe screens by straight lines of light sueh as those through O and
points 4, B, C, respectively. (See fig. 2.6.) We say that the triangles A’B’C’
and A”B”C” are perspective from the point, O, and, in general, two
triangles are perspective from a point if their vertiees ean be placed into
one-to-one correspondence so that lines joining corresponding vertices pass
through that point, called the eenter of perspeetivity.

Fig. 2.6

Desargues made the astute observation that if one extended the sides of
the triangles A’B’C” and A”B”C” so that A’B’ and A”B” would intersect

in T, A’C" and A”C” would intersect in S, and B’C’ and B”C” would inter-
seet in R, that the interseetion points 2, S, T would be eollinear! The line I,
containing E, S, T' is ealled the axis of perspeétivity, and triangles A’B'C”
and A”B”C” are said to be perspeetive irom the line, L. In general, two
triangles are perspeetive from a line if the sides of the triangles ean be
placed into one-to-one eorrespondenee so that points of intersection of
corresponding sides lic on a straight line.

The theorem of Desargues ean be stated as follows: If two triangles are
perspective from a point, then the two triangles are perspective from a line.

In the case we just examined, the two triargles A’B’C’ and A”B”C” were

14




in different planes (the planes of the screenst, but this theorem is also true
for two triangles in the same projective plane.! You may wish to experiment
with this case by drawing two triangles on a sheet of paper which are perspec-
tive from a point. '

Furthermore, if the “two for the price of one” principle of plane duality
is applicd to Desargues’s theorem, one will obtain another theorem, which
states, “If two triangles are perspective from a line, then the two triangles
are perspective from a point” This is the converse of Desargues’s theorem
and is true for triangles in the projective plane as well as in three-space.

If manbers of your mathematics club become interested in this theorem,
they may wish to attempt to prove it. As a hini, it is much easier to prove
the theorem for two triangles in three-space than for two triangles in the
projective planc. Snme of the references listed at the end of this article
supply such proofs.

Pascal’s Theorem

Blaisc Paseal (1623-1662), when only sixteen years old, provec a theorem
known today as Pascal’s theorein, that amazed older and more experienced
mathematicians of his time. As a youngster, he also “discovered,” by folding
a triangle cut from paper, that the suin of the angles of a triangle is a
straight angle (imembers of your club may wish to experiment with this idea
by folding triangles cut from paper). In addition to these rcmmarkable
achicvements, Pascal demonstrated his genius in many other fields. He
designed and built an adding machine, solved problemns in hydrostaties, and
wrote scholarly papers in arithmetic, algebra, probability, the theory of
nambers, and theology.

Before considering Pascal’s theoremn, we need to describe what we will
mean by a plane hexagon. Consider a figure consisting of six coplanar
points, 4, , 4s, 43, Ay, Ag, Ag, Do three of svhich are collinear, and taken
in numerical order of the subscripts to form six line segments joining pairs of
successive points. The union of the six points, called vertices, and the six
line seginents, called sides, is a plane hexagon. Plane hexagons may look like
any of the shapes in figure 2.7.

A, As A.

Az A A
A A, A : ’
Al 4, 3 L A
AT A A 4,
A, A,

Fig. 2.7. Plane hexagons

1. Perhaps it shonld be pointed ont that Desargues's theorent does not hold true in all
projestive planes. For a discussion of non-Desarguesian geomerries, see Dorwart, pp.
121-50: Eves, pp. 362-65; and Pedoe, pp. 20-32.
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Suppose that a plane hexagon A, , 4., 4,1, A, , As, Ag is inscxi!ﬁi in a
cirele as shown in figure 2.8, and that a pair of opposite sides (4,4, and
Aydg) are extended so that they intersect in a point, P, another pair of

——

opposite sides (424, and Azdg) intersect in a point, R, and the third pair of

—

opposite sides (434, and Agd,) intersect in a point, Q, then Pascal observed
that the points Q, P, R would lic on a straight line. Pascal was able to prove

that if any plane hexagon is inseribed in a circle, then the opposite sides of
the plane hexagon (extended, if necessary), interseet in three points that
are eollinear,

Fig. 28

wed

There are many other fascinating consequences of this theorem. Suppose
we take any six points on a circle. It can be shown that 60 different plane
hexagons could be formed. To each of these 60-hexagons there corresponds a
line, given by Pasecal’s theorem, called a Paseal line. It can be demonstrated
that these 60 lines pass, three by three, through a total of 20 points, ealled
Steiner points; and these 20 points lie, foir by four, on 15 lings, named
Pliicker lines. There are many other éxtensions of Pascal’s theoremy which
make it live up to its earlier name of the “Mystic Hexagram Theorem.”

Cross Ratio

Imagine, again. that you are an artist (see fig, 2.9) looking through a
windowpane, m, frum the point O, at the kine, I, which contains the points
R, S, T, U, as shown; and R, S, T, U are images of the points R, S, T, U
{respectively) formed on the windowpane by lines of light which pass
through O. One can observe that the lengths of the line segments, RS and
R’S’, do not appear to be equal. If we designate these lengths by RS and
R'S', ii seems reasonable to conclude that RS # R'S’. Consequently, it seems
clear that the lengths of other line scgments of I would not be equal to the
corresponding lin. segments of m under a projection, such as the one shown.
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One might wonder if the ratios of lengths of corresponding segments under
a projection are equal. For example, one might ask, “Is RT/TS equal to
R'T'/T'S’ 7" The answer to this question, while not obvious, is, “No, hecause
there are projeetions for which RT/TS # R'T'/T'S'.” At this point, many
people would be inclined to give up searching for relationships between corre-
sponding segients; but the early mathematicians did not give.up and found
that there is a ratio, or more correctly, « ratio of ratios that is not altered
by projection. This ratio, named earlier in history a “double ratio,” is
known today as a cross ratio. If one will allow the leng:h, RS, to he regarded
as positive, and the length, SR, to be negative, that is, if we are willing to
introduce the notion of directed line segnents, then the cross ratio may be
defined as follows: If R, S, T, U are four distinct points on a line, the ratio
of ratios, (RT/TS)/(RU/US), designated by the symbol (RS, TU) is the
cross ratio of R, S, T, and U, in that order.

The ancient Greek mathematicians discovered that in such a projection
as the one described, (RS, TU) would equal (R’S’, T'U’); that is,

RT/TS _ RTIT'S
RU/US — RUTU'S

They observed an extremely important property of projective geometry;
namely, that eross ratio remains unaltered, or is invariant, under projection.
Because the cross ratio has this property, it plays a very special role in
projective geometry; and if one were to study this subjeet in depth, he would
become extremely familiar with the idea of a cross ratio,

\We ean study a few signifieant properties of eross ratio without delving
deeply into the subject. We have scen that the definition of eross ratio
relies upon the particular order in which the points R, 8, T, U, ure consiaered.
If we seleet the points in another order, sueh as, S, R, T, U, and then apply
the definition of eross ratio, we obtain (SR, TU) = (8T/TR)/(SU/UR).
As we shall see later, (SR, TU) = (RS, TU). Suppose that we select the
points in the order S, R, U, T. Applying the definition of cross ratio, we find

that (SR, UT) = (SU/UR)/(ST/TR). In this ease, it can be shown that

(SR, UT) = (RS, TU). Let'ssce! .w!
Since RT and TR are of the same absolute length but have opposite signs,
and similarly for TS and ST, then
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and, similarly,
RU SU

o e }

TUS'UR
Thus, we can conclude that

RT 8T _RU SU
TS'TR = US'UR'

and, furthermore, that

RT/TS SUJUR
RUUS " 3T/TR '

or
RS, TU) = (SR U’l’)

It can be easily seen that there are 4' or 24 permutatnom of the points
R,S8.T, U, taken four at a time. It will prove helpful at this time if you will
enumerate these 24 permutations. Each of them gives rite to a_particular
value of the cross ratio, and one might wonder if the patterns of sclecticns
of points determine these values. This is, indeed, the case! If we let
(RS, TU) = k, then each of the other 23 cross ratios is cqual either to
E1/k,1 — b, 1/ (1 —=k), (k—1)/k,or k/(k —1).

In a further study of these patterns, it can be seen that there are three
basic rules involving changes in the order of the points. Each change afiects
the value of the cross ratio. 1f we let (RS, TU) = k in this discussion, these
rules, which are easily justified (see Eves, pp. 73~74), can be expressed as
follows:

R(1): An interchange of any two points combined with an interchange
of the remaining two points does not alter the value of the cross ratio; for
example, if we interchange R and S and also interchange T and U, we obtain
(RS, TU) = (SR.UT) = k.

R(2): An interchange of only the first pair of points changes the value
of the cross ratio from k to 1/k, for example, (SR, TU) = 1/k.

R(3): Aninterehange of only the middle pair of points ehanges the value
of the cross ratio from k to 1 — k; for example, (RT,SU) = 1 — k.

Applying these rules suecessively-on.cross ratios, we may see how each of
tue sy values k, 17k, (k — 1) /k, k/(k-- 1),1/(1 — k), and 1 — k may be
obtained.

1. Start with (RS, TU) = k.

2. Applying R(2) to (RS, TU), we obtain (SR, TU) = ,\—..
3. Applying R(3) to (SR, TU), we obtain (ST, RU) = 1 — 1 = £=1
4. Applying R(2) to (ST, RU), we obtain (TS, RU) = ——r.
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5. Applying R(3) to (TS, RU), we obtain (TR, SU) = 1 —k—ﬁfl—:l-,:

6. Applying R(2) to (TR, SU), we obtain (RT,SU) =1 —k .

Furthermore, each of the 24 possible cross ratios described above will fall
into one of the six categories of equal cross ratios given-below; in the first

. category each cross ratio is equal to k, in the second to 1/k, and so forth— ;o
g in the last category to k/(k — 1).

Yot

- efetsiaglaas we

a. (RS,TU) = (SR,UT) = (TU,RS) = (UT,SR) = k. |
L b SRTU)=(RS,UT) = (UT,RS) = (PU,SR) = L. % )
. o (RT,SU) = (SU,RT) =(TR,US) = (US,TR) = 1—k. .
d. (TR,SU) = (US,RT) = (RT,US) = (SU,TR) = 1=z R
H ‘ _
‘ e. (ST,RU) = (RU,ST) = (UR, TS) = (TS,UR) = %
t [ (TS,RU) = (UR,ST) = (RU,TS) = (ST,UR) = k—f-f N
: Harmonic Set of Points _ ’
The complete quadrilateral: p}ovides an interesting application of cross j

ratio. It is a figure consisting of the union of four lines in a plane, no three
of which are concurrent, and the six points in which pairs of these lines
intersect. The four lines are naimed sides of the quadrilateral and the six

points are called its vertices. Two vertices, such as A and C in figure 2.10, ’ i
which do not lie on the same line are called opposite vertices. The lines :
joining pairs of opposite vertices, sh by the dotted lines, are the diagonals
of the complete quadrilateral. (Your club members may wish to dualize this

Jnition; the resulting statement is a definition of a figure called a complete ;-
quadrangle). ’ “

Fig. 2.10
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If any diagonal of the complete quadrilateral, such as EF, is taken and
the points of intersection with the otheér diagonals, G and-H, are determined,
the set of points E; G, F, H is called a harmonic set of points. The cross ratio
of any harmonie set of points is equal to ~ 1; so, in this case (EF, GH) =
-1 .

We can demonstrate rather easily-that (EF, GH) = —1. First, we need
to recall from our- earlier discussion that cross ratio is invariant under
projection;-so, we. may-conclude that-(EF,-GH) = (BD, IH)-by:a projec-
tion from the point A. However; (BD;.IH) = (FE, GH) through a projec-

=

tion from the point- “;,,i;ndtth};s;awé;é@rsfeg:thgt;(EﬁjZGH_ ) = (FE, GH).
But we observed-earlier-from-R(2). that-if-the first pair-of: points of a cross
ratio js interchanged, then the fiew cross ratio is-the reciprocal of the first
cross ratio. Consequently, if we let (EF, GH) = y, then from R(2) we get
(FE, GH) = 1/y; but since we have shown that- (EF, GH) = (FE, GH),
it follows thaty = 1/y. Then,y*> = l,andy = = L. But, since (EF, GH) =
(EG/GF)/(EH/HF), where EG, GF, EH are positive and HF is negative,
(EF, GH) must, be negative. Therefore, we can conclude that (EF, GH) =

- =1

Concluding Commentis

There are many branches of mathematics that have proved far more
fruitful to the world of mathematics than-projective geometry. For example,
today topology is being richly developed by an enthusiastic group of re-
searchers; and other geometric types of research, such as that being done
in differential geometry, have proved more useful in varied applications.
However, few mathematical scholars would dispute the fact that projective
geometry has provided some of the most elegant, intriguing, and fascinating
results in all of mathematics. As Kline so appropriately noted of projective
geometry, “The science born of art proved to be an art” (1956, p. 641).
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Groups

Roy Dubisch

What Is a Group?

In the high court of the kingdom of Lower Slobbovia, there are three
judges for every trial. In the grand tradition of algebra, let’s call them
A, B, and C. They file in at the beginning of any trial and sit as shown

in figure 3.1.
ABC

Fig. 3.1

But when the eecentric king of Lower Slobbovia (who attends all trials)
yells “Promenade 1,” B and C change places; when he yells “Promenade 2,”
A and B change places; and when he yells “Promenade 3,” A goes to where C
was sitting, B goes to where A was sitting, and C goes to where B was sitting.
If the judges were sitting in their original positions when the promenade
calls were given, the results would be as shown in figure 3.2.

l ABC ACB ABC B A
: , Promenade Promenade c
E

H ABC BCA

H Promenade

3 _3 o

£

[

& Fig. 32
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Now in a hectic mood one day, the king yells “Promenade 1” and, two
minutes later, yells “Promenade 2.” We can picture the action as in figure 3.3.

ABC ' ACRB B C A
Promenade Promenade
R o N i i

i 33
To his royal amazement, the king realizes that the judges are now seated
exactly as they would be if, instead of yelling “Promenade 17 and then
“Promenade 2,” he had just yelled “Promenade 3.”
The next day he decides to try this "procedure again-<but with a slight
variation: Now he yells “Promenade 2” first and then yells “Promenade 1.”
What happens is shown'in figure 3.4.

ABC B AC CAB
R o i ed

Fig. 34
Now he is amazed to find out that the result is not the same as Promnenade
3; indeed, the result is what he has been calling Promenade 4.
At this point he decides to eall in the court mathematician to analyze the
whole husiness. Immediately, like any mathematician, the CM. employs

some notation. He lets P; stand for Promenade 1, P> for Promenade 2, and
so forth, and writes

A B C A B C A B C A B
I,! B ( I,: B ( > I,z B ( > I,‘ B
A C BJ, B A ¢/, B C 4], ¢ A B

Then he writes

A B C 4 B C 4 B C
(1 (19

A C B B A C B C A
by noting that, under Py, A goés to A and then under P;, A goes to B; that
under Py, B goes to C, and then under P. , C goes to C; and that, under P, ,

C goes to B, and then, under Pz, B goes to A. Symbolically,

Py P PP PP

A=A -B; B>C~-C; C—B—4.

~__~ ~__
P P; P

Similarly,
A B C 4 B C A B C
Py = ( - ( ) s
B A ¢/ \1 C B cC A B
and

(:1 B C) A B C A B C
I’zl’; = ( > = y
B 4 C B C A C B A

a new promenade which he calls P; , and
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(A B C) (.-1 B C) (A B L)

PP, = = ,

A C B 4 C B 4 B

a non-Promenade which he calls I (for identity), since Py] = IPy = Py,
P,I = IP, = P,,and so on.

He now decides to systematize his work by making a “multiplication”
table:

1I. P P, P P, Py
I P, P P, P, Ps
Py p I P, P Py Py
Py} Pe P, I Py P, P, 1
P3| Ps Ps P, P, I P,
Py Py P, Py 1 Py P,
Ps Ps p; P4 Pl I)z I

Exercise 1. Check his work!

As the C.M. studies the situation, he realizes quickly that he could work
out a similar table for the changing around or permutation of four or more
people. Thus, for example,

A B C D A B C D A B C D
(A c B D) (B c D A>—(B D C .-1)
Also, he notes considerable similarity between the combination of pérmuta-
tions as shown in the “promenade” table and the multiplication of positive
rational numbers—and one significant difference.

1. Justasa - 1 = 1 @ = a for all positive rational numbers a, so, he
notes, PI = IP = P for all permutations P.

2. Just as every positive rational number ¢ has a multiplicative inverse
(i.e., a number b such that ab = ba = 1J, so, he notes, for every permutation
P there is a permutation Q such that PQ = QP = I. Examples: P\P; = I;
P.P. = I; P;P; = I (ic, Py, P., and Ps arc their own inverses) ; P3Py =
P.,Pa = I

3. After noting that P](PQP;;) = P1P5 = P.; and (Png)Pa = P3P3 = P.;,
thath(P.]Pa) = Pf_vl = P-_.and (PQP.])P;; = P]P:; = Pg,and thatP;—,(PaP-_;)
= P4P, = P; and (P;P;)P, = P1P, = P;, he concludes (correctly) that if
P, Q, and R are any permutations, then (PQ)R = P(QR). That is, like
multiplication of positive rational numbers, combination of permutations
is associative.

4. He notes, as did his majesty, that PyP, # P.P; and concludes that
combination of permutations, unlike multiplication of positive rational
numbers, is not a commutative operation.

Ezercise 2. Find all pairs (P, Q) such that PQ = QP.

Exercise 3. Show that Py(PsPs) = (PyP,)P; and that P.(PsP;) =
(P2P3) P .

The C.M. is well on his way to a study of what other mathemnaticians have,

for over a hundred years, called group theory. Formally, a group is a set G
with an operation defined on pairs of elements of G (i.e., a binary operation)
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such that, if * represents the operation, we have the following properties:

1. Ifaand b arein G, then q * b is in G. (Closure property)

2. There exists an element e of G such that @ x ¢ = ¢ #' q = a for all q
in G. (Existence of identity) ,

3. For any a in G, there exists a binGsuchthat ¢ « b = b = *a = e,
.(Existence of inverses)

4. as(bsc) = (axb) xcforall a, b, cin G. (Associative property):

When no confusion can arise, we usually do as the C.M. did~and write ab
fora = b, -

Groups abound in mathematics; We have seen that we can have-a group )

‘of permutations, and it is easy to see that the positive rational numbers form
a group under multiplication. There are, however, two important differences
between these two groups: (1) The permutation group has a finite number
of elements and is an example of a finite group, whereas the set of positive

a commutative operation (ie., ab = ba for al] rational numbers a and b).
Thus the group of positive rational numbers under multiplication is an
example of a commutative group, whereas the permutation groups (except
for those on 1 or 2 letters!) are examples of noncommutative groups.. )

Other examples of infinite commutative groups are the integers under
addition and the nonzero real numbers under multiplication.

Ezercise 4. Give some other examples of infinite commutative groups.

Ezercise 5. Why does not the set of all real numbers form a group under
multiplication?

(Our example of a Nhoncomnutative group was a finite group, whereas all
of our examples of commutative groups were infinite. - As we - shall see,
however, there are commutative finite groups. Noncommutative infinite
groups also exist, but the description of them is rather technical.)

Isomorphic Groups

Now let us consider the set of symmetries of an equilateral triangle ABC,
figure 3.5. We can rotate this triangle counterclockwise through 120° and
it will look like figure 3.6. That is, it will appear unchanged except for the
labels on the vertices. Let’s call this rotation R. Similarly, a counter-
clockwise rotation through 240° will give us figure 3.7, and we'll call this

B c A

Fig. 35 Fig. 36 Fig. 37
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rotation R’. A rotation through 360°, of course, will give us back the original
triangle labeled as in figure 3.5, and we can consider this as the identity, I.

We can also “flip” the triangle around any of the medians to obtain Fi,
F2, and F3 as shown in figure 3.8.

B
i

1

]

]

H

4 LB c

R

Fig. 38

Now we can talk about consecutive movements. See, for example, figure
3.9.

Fig. 39

But this is the same result as if we had just applied Fy to the triangle in its
original position, and so we write RF; = Fs, Now let’s compute F:R. We
have the result shown in figure 3.10 and conclude that F1R = F..

Fig. 3.10

Now we could éontinue in this way finding other “products” and establish-
ing the fact that I, R, R’, F1, F2, and F3 form a group under the operation
of tnangle movements, An casier way of establishing this conclusion, how-
gver, is to observe that each of our triangle inovements results in a permuta-
tion of the three vertices and that I,R, R, Fy, F,,and F; account for all
possible permnutations of A, B, and C. Thus using the notation that we
employed before, we have

4 B C
Re— ( ) = Py
C 4 B
(i.e., after the rotation R, A labels the vertex originally labeled C; B labels

-
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the vertex originally labeled 4; and C labels the vertex originally labeled B).

Similarly,

A B C\
R < ( = Py,
B C A

A4 B C
Fl ‘—’( > = l’l ’
- 4 C B

4 B C
Fi e (

¢ B .-l) -

A B C
Fye—» (

A4 B C
1 4—-—»( ) =1].
A B C
Then RF, = F; corresponds to PsPy = P:, F\R = F., corresponds to P,P,
= Py, and so forth. That is, except for notation, the group of svmmetries of
an equilateral triangle is identical with the permutation group on three
letters. -

When two groups differ like this only in notation we say that the two
groups are isomorphic. This concept of isomorphism oceurs in many places
in mathematics and is extremely important in that it enables us to show that
some scemingly different systems are basically the same. (We use this idea
in doing multiplication by the use of logarithms: the group of positive real
numbers under multiplication is isomorphic to the additive group of all real
numbers. The correspondence is a «— logjea for any positive real number
a and we have @ X b «— logio(a X b) = logjua + logeb.)

and, of course,

Subgroups

From any group G we can extract subgroups—subsets of G which them-
selves form a group under the group operation of G. For example, the group
of permutations-on three letters has the subgroups

{], Pl, l"’ ily I’!’ ‘l’
1P Py T Y
I 11 Py Py I 11 I 117
Pl Ps Py 1 PP 1
Poi Py 1 P,

Ezercise 6. Find two other subgroups of the permutation group on three
letters.

Any group G with identity e has the special subgroups {e} and G itself.
The search for other subgroups of finite groups is greatly facilitated by the
use of La Grange’s theorem, which states that tf S is a subgroup of a group G,
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then the order of S (the number of elements of S) must divide the order of G.
Thus any subgroup of the permutation group on three letters must have order
1,2,3,0r6. e e 1

For infinite groups we have no such useful theorem; but it is casy to see,
for example, that the group of all positive rational numbers under multiplica-
tion is a subgroup of the group of all positive real numbers under multiplica-
tion and that the group of all integers under addition is a subgroup of the
group of all rational numbers under addition.

Ezxercise 7. Does the set of all positive irrational numbers form a subgroup
of the group of all positive real numbers under multiplication?

Cyclic Groups

Of special importance is a class of groups known as cyclic groups. A cyclic
group of order n can be described very simply as a group with elements
I,R,R* R3, --- , RV where R* = RR,R®* = RR* R* = RR3, --- , and
R = I. Thus, for example, when n = 3, we have

11 R R
I ' I R R
RIR R 1
RriR I R

(We get R*R* = R by R*°R* = (RR)R* = R(RR*) = RR® = Rl = R))

If you are familiar with clock (modular) arithmetic, you can easily sce
that this group is isomorphic to three clock arithmetic (arithmetic moduio 3)
under the operation of addition. We have

+10 1 2
010 1 2
111 2 0
2§20 1

and the isomorphism correspondence is given by 0 «— I, 1 «— R, and 2
«— R?, Indeed, a eyclic group of order n is isomorphic to arithietic modulo
n under the operation of addition. (Note that these are exampies of finite
commutative groups.)

Every infinite cyclic group, on the other hand, is isomorphic to the group
of integers under the operation of addition, We can write I «— 0, B «— 1,
RRe>2 -+ Rre>nR'es —1,R?¢> —2 -  R"¢> —n
and write the cyclic group as { ---, R** , R™1 1, R, R*, --- }. Then, for
example, just as 1 4+ 2 = 3,s0 RR* = R? and just as —2 + 2 = 0, so
R2R*=1.

Many books and artieles have been and continue to be written on group
theory. In particular, any book on abstract algebra will have at least one
chapter on group theory. In the books listed at the end of the articie you
will find additional references that can provide for a lifetime of study of
groups!
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Answers to Exercises

1. Given.

2. Of course, Pl = IP;fori=1,2,3,4,or5andif P = Q we certainly
have PQ = QP. Also, however, we have PyPy = PPy . :

L Py(PyPs) = P\P, = I, and (P,P,)P; = PP, = I; Po(PyP;) = PP,
= I,and (ngg)P_r, = Pz,P:s =]

4. Two examples are the rational numnbers under addition and the nonzero
raticnal numbers under multiplication.

5. 1is the identity for multiplication, but there is no real number a such
that0 X a = 1.

6. : {1, Ps} U, P}
i U 17 s
111 A 1 ’ 1 Py

P, ’ Py 1 PP}

(Recall that the group itself is also considered to be a subgroup of itself.)

7. No. We do not have closure, since, for example, /2 is an irrational
number but v/2 v/2 = 2 is a rational number.
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 Infinity and
_Transfinite Numbers

-

Sister Conrad Monrad, S.P.

Classical Problems Involving Infinity

Infinity is a concept that boggles our minds and yet intrigues us. ftis a
difficult concept for us v comprehend, sinee nothing in the world about us
seems to possess the property of being “infinite”—except possibly shace or
time. Even these, despite their appearance of being endless or limitless, are
actually finite in the personal experience of any individual. Examples such
as the grains of sand on-the seashore, or the eleetrons and protons in the
universe, eonstitute large, but finite, sets. For, although we are physieally
incapable of counting them, they are limited by some large number that is
finite. Perhaps our best example of an infinite set is displayed in our experi-
ence with the counting numbers, or the natural numbers. As small children
we found there was no limit or end to the natural numbers, that no matter
how far you counted, there were more numbers that followed. If any one
claims to name the last or largest counting number, we ean easily name a
larger number by adding “one” to his “largest number.” The concept of
infinity in mathematics has many aspects—the infinitely many, the infinitely
large, the infinitely small, infinite divisibility, infinite repetition, infinite
summation, and a great variety of infinite processes. Infinity is versatile and
surprising,

Asisan moved from the use of mathematics for strictly pragmatic purposes
in Babylonia and in Egypt to leisurely speculation about mathematics in

30

J 1 i {




L it o L 1] '

A v

s A B A 5

—

(R R rrrrrs g » mevs

TN

.ﬁ
i
%
]
4
1
M

Greek civilization, it was the notion of infinity that “disturbed the peace.”
Zeno of Elea, a Greek philosopher of the fifth century before Christ. tossed
an upsetting clement into the active world of Greek thought by his four
paradoxes involving two diametrically opposite viewpoints of infinity and
motion. In his paradox of Achilles and the tortoise, Achilles, who is running,
cannot overtake the crawling tortoise ahead of him because he must first
veach the former position of the tortoise—but when Achilles renches tha
place. the tortoise has moved on. and so is still ahead. As this is repeated each
time, the tortoise will abways be ahead of Achilles.

In 1632 Galileo presented in his Dialogue on Two New Sciences some per-
plexing questions on infinity to the thinkers of his century. One of these was
concerned with the application of words such as “equal,” “greater,” and “less”
to infinite quantitics, He compared the apparently greater infinity of points
contained in a long line segment. with the smaller infinity of points contained
in a shorter line segment. Then he noticed that the numbers that are squares of
the natural numbers are a subset of the natural numbers and that the natural
numbers have more numbers than the squares only. Yet, by matching cach
number with its square, Galileo showed that there are as many squares as
there are natural numbers,

P23 4 5 6...

P49 62536, .,

From this he concluded that any two infinite sets have a corresponding
number of elements and, as a result, one line segment did not contain “more,”
“less,” or *“as many™ points as anothery but that each contained an infinity
of elements. The question implied by his conclusions. that is, whether the in-
finity of points in a line segment is equivalent to the infinity of squares of
natural munbers, was not settled until 1873.

Georg Cantor. two hundred years later, started where Galileo left off, He
devised a method of displaying 2 one-to-one correspondence hetween the
patiral nmunbers and the rational mumbers, as well as between any two line
segments. However, he questioned the possibility of pairing the natural
numbers with the real numbers. He felt that their nature prevented such a
pairing since the natural numbers “consist of diserete pavts'” while the real
numbers form a “continuum.’” At first, however, he could find no supporting
reason. In 1873 he found his first pmof and in 1890 a ~cumd stimpler proof.
Thus, he vesolved Galileo’s problem.

Cantor, in turn, raised a qlmnn(m that was not :luswcro(l for another
century. “Is every infinite subset of the reals either equivalent to the reals,
or to the natural numbers?”’ The contimmm hypothesis is the statement
of Cantor’s belief that the answer to this question is yes. It was not untii 1963
that Paul J. Cohen scttled this question by proving that the continuum
hypothesis is not a consequence of the commonly aceepted fundamental
properties of sets. Finally, it was Bertrand Russell who solved Zeno's paradox
of Achilles and the tortoise by using Cantor’s conclusion that any two line
segments have the same number of points.
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Denumerchle Sets

In more recent times David Hilbert is credited with inventing a paradox
called “Hilbert’s Hotel,” similar to Galileo’s paradox of the squares of posi-
tive integers. As the story goes, a guest comes to Hilbert’s Hotel and requests
a room for the night, only to be told that the hotel is full. But the manager
then proceeds to solve the problem by putting the guest it. room 1, moving the
occupant of room 1 to room 2, the occupant of room 2 to room 3, and, in
general, the occupant of room % to room-n + 1. The hotel had.an infinite
number of rooms! How, then, could the manager claim that the hotel was fuii?

While Hilbert’s Hotel is a fantasy and not a real building, the world »f
mathematics contains an abundance of infinite sets or collections. Far example,
the set of all natural numbers or counting numbers: 1,2, 3, 4,5,. : the set
of all positive even integers: 2, 4, 6, 8, 10, . . . ; the set of all primes: £, 3, 5, 7,
11, . .. ; the set of all positive multiples of 5: 5, 10, 15;20, 25, . . . ; the sct of
all squares of positive integers: 1~ 9, 16, 25, . . . ; the set of all rep.esenta-

— -—tions of 1/3 in the form of ratios .. integers: 1/3, 2/6, 3/9, 4/12, 5/15,. .. ;

the set of all reciprocals of the positive integers: 1, 1/2,1/3,1/4,1/5, . . .,
are all infinite sets. Some other examples of infinite sets are the set of points
on a straight line, the set of circles in a plane, the set of translations in a plane,
and the set of cubes in space.

Cantor compared infinite sets by setting up a one-to-one correspondence
betwee.: their clements, that is, by matching exactly one clemant of cither set
to exactly onc clement of the other set, until all matched. We do this with
finite sets—the places at the dinner table are matched with the members of
the family, and the visitors with the set of empty chairs in the room. Two
sets are said to be equivalent if there is a one-to-one correspondence between
them. We can show that several of the sets mentioned above are equivalent to
the set of natural numbers by setting up a correspondence of eaca set to the
ratural numbers as follows:

the set of even positive integers,
L2,3,4,°5..., n...
2,4,6,8 10,...,2n,...
the set of positive multiples of 5,
L2 8, 4 5...,n,...
SO, 15, 20,25, ...,6n, ...
the set of reciprocals of the positive integers,
, 2, 8 4 5..., n...
L 1/2, 1/3, 1/4, 15, ..., /n, ...
the set of representatives of 1/3,
I, 2, 3, 4, 5 ..., N
1/3, 2/6, 3/9, 4/12, 5/15, ..., u/3n,. ..
the set of primes,
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Here. corresponding to » is the nth smallest prime. Any set that is equivalent
to the set of natural numbers is a der. umerable set and is denumerably, or
countably, infinite. ‘ ]

Infinity is full of surprises. The set of odd natural numbers is an infinite
subset of the natural numbers. Wé would expect the set of natural numbers
to have more members than its subset of odd numbers because the natural
numbers contain the even numbers as well as the odd numbers. If to each
natural number n we assign the odd number 2n — 1,

,2,3,45...,a ...

1,3579...,201,...
then there is an odd number corresponding to each natural number, and,
behold, the subset of odd numbers js equivalént to the set of natural num-
bers. This means the set of odd natural numbers is a denumerable set: Georg
Cantor used a generalization of this last example to characterize an infinite
set. He said that any infinite set is equivalent to a proper subset of itself (a
“proper” subset does not contain ail the members of the set). There is no finite
set that matches up one-to-one with a proper subset of itself. Consider the
finite set M = {2, 4, 6, 8, 10}. No subset of Af » other than M itself, can be
put into a one-to-one correspondence with M .

Suppose S is the set of all negative integers and the reciprocals of all positive
integers. No doubt, one could establish a correspcadence of the negative in-
tegers to the natural numbers, or of the reciprocals of the positive integers,
but is S itself equivalent to the natural numbers? Is S countably infinite?
First, arrange S so that —n» precedes 1/n;

-1,1, -2,172, -3 173, =4, 144, ..., —n, I/n, ...

To each odd natural number, n,, match —_Ll;i.l), and to each even na-

2
tural number, ., mateh =

n,
1,2 3 4 5.. , My, Ny .o
. —{n 1) 2
-1,1, =2, 1/2, =3, (4 D 2
4 ne

Then S must be a denumerable set. One ¢ see from these few examples that
an abundance of denumerable sets exists.

Rationals ¢s a Denumerable Set

Are the rational numbers a denumerable set? This question is not so simply
answered. When we look at the rational numbers, their density poses a
problem. For any two rational numbers—no matter how small their dif-
ference—there is always w rational number between them. How can the ra-
“ionals be lined up, then, in order to set up some type of correspondence? Is it
possible? As a studc.., Cantor devised g method of doing this. The following
deseribes one such arrangement of the rationals.
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We can begin by assigning a value to each rational number equal to the sum
of its denominator and the absolute value of its numerator, and ¢! -1tp together
all those with the same »alue. ° or eliminating repetitions, like 4/2 and 6/3,
and any rationals not in simpwst form, that is, any with common faetors
(greater than 1) in numerator and denominator, the groups can be arranged
according to their value. Only one rational, 0/1, has value 1, and two, —1/1
and 1/1, has ¢ value2. Withineach group the numbers ean be arranged by pairs,
the negative number first, in ascending order aceording to the value of the
positive number. For example, the group of value 4 would be arranged as
b follows: —1/3, 1/3, —3/1, 3/1. We have lined up all the groups now by their
values, 1, 2,3, 4, ..., and each number within its group. All one needs to do
is to assign a natural number to each to have a on -t0-one eorrespondence.
The rational numbers are a denumerable set!

1, 23, 4, 5 67 8 9...
- 01, =1, 1, =1/2, 172, =2, 2, ~1/3, 1/3,. ..

2
H
%
-3

e

Are the Real Numbers Denumerable?

. The investigation of infinite sets scems to lead to the same conclusion that
Galileo reached—that all infinite sets are simply infinite and cannot be cias-
sified in any other way. Before stopping, however, examine the real numbers.
Note that a real number may be written as a nonterminating decimal, and
every nonterminating decimal is a real number. Assuming that there is a one-
to-one correspondence between the real numbers and the natural numbers,
let each real number be represented by a nonterminating decimal in this cor-
respondence. If the following represents the eorrespondence, where the a’s rep-
resent digits in the nonterminating deeimals, then one can find a nonter-
minating decimal, that is, a real number, that is not given in this listing—

i« this, despite the fact that all of them had been listed!
i Qi =tz sty - ..
2 Oty Azz ez 25 A . L.
3 Qazn aszdazazs g, . ..
-4 Outsy g2 Gz dsn Az . . .

Replace each digit along the diagonal, a4, @a, ass, . . .. by a different one,
by, b2, bs, . . ., where b, is not 0 or 9. The number given by the nonterminating
decimal, 0.b1b:b; . . ., is a real number not contained in our list, since it differs
from each given number by at least one digit. In other words, if ever there was
found a way of setting up a correspondence matching up all the real numbers
with the natura! numbers, one eonld at once name a real number that had been
omitted! Since this is always possible, it means one eannot set up a one-to-one
correspondence of the reals to the natural numbers—that no such correspond-
ence exists. But this indicates that *here is a difference between infinite sets,
and that some are “greater’” than others. Not all infinite sets then are
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denumerably infinite: some. like the reals, are nondenumerable, or not
countable.

The set of points on a line can be put into a one-to-one correspondence with
the real numbers. Therefore, there are as many points on a line as there are
real numbers. As a consequence the set of points on a line is 2 nondenumerable
set. It follows that the points on a line are not equivalent to the natural
numbers; therefore, Galileo’s implied question.has to be answered in the nega-
tive.

Cantor’s work with infinite sets led many to believe that the properties of
infinite sets could be used to distinguish one-space from two-space. This was
not a result; on the contrary-. the set of points on a line segment can be shown
to be equivalent to the set of points in a square. The following theorem
(Schrixder-Bernstein theorem) is needed for this purpose: I f there is a one-fo-
one correspondence betiween a set A and a subset of B, and also a ore-to-one cor-
respondence betiween B and a subset of A, then there is a one-to-one correspondence
beticeen the scts A and B. (Sce fig. 4.1.)

(B.

If A is the unit segment and B is the unit square, then each point of A
corresponds to a point of a subset of B, which conld be a side of a square (fig.
4.2). Next, each point of the square B must be matched with a point of a
subset of the segment A. A point in the square has real numbers, (a, b), as
coordinates. These rcal numbers can be expressed as nonterminating de-
cimals:

)

B

/—“\
S

Fig. 4.1

@ = (ol . ..

Fig. 42

Alsv, cvery point on the segment can be represented by a nonterminating
decimai. By alternating the digits of « and b, another nonterminating decimal
¢ is formed:

e = ODagbytsbyazhs ., . .

35




z
%

The new decimal is & real number between 0 and 1 and represents & point on
the unit segment. (See fig. 4.3.)

WL (a.b) ] .

Fig. 43

Every point in the square then can be matched uniquely with a point on the
segment. Since the conditions of the theorem are satisfied, the set of points
on the segment is equivalent to the set of points in the square. Both are non-
denumerable infinite sets, and it can be seen that infinity cannot be used to
distinguish one-space from two-space.

Cardinalily of Infinite Sefs

Iu finite sets the cardinal number of a set indicates “how many’’ elements

the sct contains. For example, the cardinal number of the set of letters in the -

alphabet is 26. Our fingers form a set having the cardinal number 10. The
cardina] number 10 is less than the cardinal number 26 because a set of 10
clements has fewer clements than a set of 26 elements. Cantor used the
Hebrew letter 8o, (read aleph null) for the cardinal number of all sets equiva-
lent to the set of natural numbers. He designated ¢ (for continuum) as the
cardinal number of the reals. The cardinal number of an infinite set is called
a transfinile number. ¥, and c are transfinite numbers.

It appears that any infinite subset of the rationals or the natural numbers,
such as the reciprocals of the positive integers or the even natural numbers,
has cardinal number o, that is, the smallest transfinite number must be No!
It is also evident from our work with the natural numbers and the reals that
R, < c. If there is no transfinite number smaller than R, is there then one
between No and ¢? Or, phrased arother way, % ¥, = ¢? Cantor intuitively
responded in the affirmative—this is known as the continuum hypothesis—
but he was not able to prove it. Recenti-, in 1940 Gadel, and in 1963 Cohen,
showed the continuum hypothesis to be independent and in a position similar
to that of the paralle] postulate in gcometry. That is, if the continuum hypoth-
esis 1s added as a postulate to the accepted fundamental properties of set
theory, you have a consistent axiomatic system comparable to Euclidean
geometry. If, instead, a negation of the continuum hypothesis is added, one
has a different, but consistent, systent, as in non-Euclidean geometrv.

The next question asked ought to be “Is there a transfinite number greater
than ¢?” Before attempting to answer this question, first look at the use of
exponents, as in Ko and 9% In finite cardinal numbers 32 means 3)(3),
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or three threes. This suggests o2 = (8o)(¥,), or an infinite number of in-
finite sets. The set of ordered pairs of the positive integers would be an
example of such a set:

1) 1,2 1,3) 4,9 ...
21 22) 23) 24 ...
31 B2 B3) B4 ...
41 42) 33) 4 ...

There are as many pairs in each row as there are natural numbers, and as
many rows as there are natural numbers. A one-to-one correspondence can
be set up as follows between each natural number in the following array and
the ordered pair that is in the corresponding position in the array above:

"~

1247...
/1]
358 ....
!/
69.....

or

. -

/
0. .....

But the cardinal number of the natural numbers is ¥o. This implies that
Vo2 = (Ry) (W) = 8!

Next, examine the “power set”” of a set S: this is the set of all possible sub-
sets of S, including the empty set, ¢, and S itself. For a set S of three elements,
a, b, ¢, there are eight subsets: S, ¢, {a}, {b}, {c}, {a, b}, {q, ¢}, {b, c}. Fora
set of four elements, there are sixteen subsets. Continue to increase the num-
ber in the set, and notice this:

For a set of three elements, there are 8 = 23 subsets;

for a set of four elements, there are 16 = 2* subsets; and

for a set of n elements, there are 2" subsets.

So, for an infinite set of cardinality N, the set of all possible subsets, that
is, the power set of this infinite set, must have cardinality 2%0! How are n-
and 2" related? We note that 3 < 2% 4 < 24 and, in general, n < 2" Then,
¥y < 2%, Cantor showed further that 2¥0 = ¢. Using the same reasoning,
¢ < 2¢, and behold, here is a transfinite number greater than ¢! Similarly,
2¢ < 29 As this process is repeated, another conclusion looms. There is no
largest transfinite number!

Arithmetic with transfinite numbers is intriguing and full of surprises. For
example, what is 8o + 8,7 Or 28, What is the eardinality of the even
natural numbers? Of the odd natural numbers? What set is the union of the
even numbers and the odds? What is the cardinality of the natural numbers?
Does this suggest that 8o + 8o = 8,7 Which of the operations and their
properties that hold for finite cardinal numbers can be extended to transfinite
nunbers? Explore this further and see what you discover!
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Pascal’s Triangle

John D. Neft

There would seem to be an almost inexhaustible supply of problems and
conjectures in the array commonly known as Pascal’s triangle. One could
allude to it either as a gold mine or as an iceberg—the former because the
riches are there, but some ingenious labor is often needed; the latter because
w¢ shall perhaps never see more than a small percentage of the mass. Much
of what you can learn will come through self-discovery, so you are encouraged
to guess and experiment with easy cases at first and gradually pose conjec-
tures and prove theorems later. In a few cases, the proof of the theorem will
be very difficult, and you will have to settle for some of them in the references
at the end.

The triangle appears in many different contexts at nearly all levels of mathe-
matical endeavor. This is the real beauty of the triangle! The organization of
the material that follows is as you might encounter the triangle in formal
courses. As a suggestion for a talk, you might begin with a topic from the
arithmetic section and then add material from any other section that interests
you.

In its most familiar form the triangle appears as follows, with the row
nur:oers appended for later reference.

Row

0 1

1 1 1

p i 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1

The pattern, of course, is that each entry is the sum of the two entries im-
mediately above it and each end entry is always the number 1. It is suggested
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that for your talk you should always have the above nine rows in view.
You might also save room for the next two rows, if it becomes necessary to
display them.

Arithmetic

1. The row sum is always an even number. Once you are satisfied why this
must be so, then show that the row sum in the nth row is 2"

2. In any row, the algebraic sum of the first minus the second plus the third
minus the fourth, and so on, until the end, is always zero. Moreover, if you
will watch carefully while doing thie operation, you will find the numerical
value of the partial sum conveniently nearby, to the northeast.

3. The sum of the first, third, fifth, seventh, tc., entries is the same as the
sum of the second, fourth, sixth, eighth, etc., entries in any row. Why should
it be half of the sum found in (1) above?

4. Number the diagonals of the triangled = 1, 2, 3, . . . for later reference.
(For example, the third diagonal contains the entries 1, 3, 6, 10, 15, ... .) On
any diagonal, the partial sum of the entries is conveniently nearby. (See
Yaglom and Yaglom.)

5. Add the squares of the entries in any row and note that it isanentryina
later row. Describe the location of this sum on the squares in terms of the
original row number used.

6. If you are very careful to “carry” over the digits, the nth row of the
triangle is the number 117 in disguise.

7. Choose any row (call it row A) and underline the far left entry. Choose a
second row (call it row B) and underline any entry. Multiply these two entries
and add to it the product of the corresponding entries moving to the right on
row A and left on row B, until you run out of numbers. The sum of these prod-
ucts is in the triangle and can be described in terms of your starting position.

8. Pick any row of tlie triangle at random. Skip the first entry 1 entirely
and then form the algebraic sum of the second entry, minus one-half of the
third entry, plus one-third of the fourth entry, minus one-fourth of the fifth
entry, and so on, until you reach the end of the row. This sum is the same as the
partial sum of the “harmonic series” 1 +1/2+1/3 + ..., provided one can
describe how many terms of the harmonic series are needed in terms of the
row number chosen in the triangle. Incidentally, the harmonic series does not
have a sum if the terms are added indefinitely.

Set Theory

9. How many subsets of & elements can be formed from a set with n distinct
elements? For example, a set with two distinct elements has four subsets: the
empty (or null) set, two single-clement sets, and the original set itself. List
all of the subsets similarly for other values of n, with k = 1,2, 3, .. ., n, until
the pattern is clear. Don’t forget that the null set is regarded as a subset of
every set!
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10. The symbol (;:) can be interpreted as the number of subsets with &

clements that can be formed from a set with n distinet elements, and this
symbol is assigned the numerical value

n! n
B -k k)’
(The symbol 0! is defined to have the value 1.) Form a triangle by considering
the various values of k (k = 0, 1, 2, 3, . . ., n) for each value of n, starting
with n = 0. Each row number of this triangle will be the value of n selected
and the entries arranged in increasing values of k. The first few rows will look

like this:
Row

: ® .

‘ ©® @

’ @ @ 6

Evaluate each of these symbols and continue adding rows to this triangle until

the pattern is clear.
11. From a set containing n -+ 1 distinct elements 4, B, C, D, . . ., con-

sider the subsets containing exactly r elements. There will be (n ;I: 1) such

subsets. Some of these subsets will contain a particular element (say, B) and
the rest will not. Justify the “Pascal relation”

n+ 1\ _ /1
()= ()+(2)
in terms of the number of subsets that contain the element B and those that
do not contain the element 5.

Algebra

12. One of the most widely known displays of the triahgle is in connection
with the successive positive integral powers of the binomial (¢ + b). For
example,

(a + by = 1;

@+ bl =a+b;

(@ 4+ b)2 = a? + 2ab + b2
Expand the product (¢ 4 b)" for enough more values of » until the pattern
is clear.

13. In its compact forin, the binomial theorem in (12) can be written

n n~k k&
@+bp = 3 (’f) P
k=0 k

where the symbol (Z) is defined as in (10). Verify this form of the theorem,

again using the convention 0! = 1.
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14. Clever choices of the numbers ¢ and b in (12) or (13) will net you an
casy proof of the statements made in (1) and (2), as well as a compact form
for many of the statements made earlier. For exampiz, the statement made in

(5) can he written
n n\* _ (2n
X k n
k=0
in this compact notation,

Plane Geometry

15. Place n points in a plane, so that no three are collinear, and connect
this set of points with straight lines. How many lines have you drawn? Relate
this answer {o the triangie.

16. All of the lines that are drawn in (15) ereated an n-sided polygon and
its diagonals. How many diagonals does a polygon with n sides have? (For
example, an octagon has 20 diagonals.) Relate the number of diagonals in an
n-sided polygon to the ath row of the triangle.

17. Place n points at random on a circle, and conneet all of these points
with straight lines (Bryant; Yaglom and Yaglom).

a) How many regions are formed inside the cirele? You are ereating the
sequence 2, 4, 8, .. ., z, . . . starting with n = 2 points. Find the number z
in terms of the triangle, .

b) How many regions are formed inside *he polygon that is inseribed in
the circle? You are creating the sequence 1, 4, 11, .. ., 9, . . . starting with
n = 3 points. Find the number y in terms of the triangle.

¢) Count the total number of intersection points of the diagonals of the
polygon. You are creating the sequence 1, 5, 15, . . ., z, . . ., starting with
n = 4 points. Find the number z in termis of the tiiangle.

18. This is much the same as the preceding, except that we shall use circles
instead of lines. We wish to determine the maximum number of regions
crected in a plane by n circles, so drawn that no two are tangent, none is
wholly insidc or outside of another, and no three are concurrent. You are
creating the sequence 2, 4, 8, 14, . . ., w, starting with n = 1 circle. (Ior
example, with » = 1 circle, you have a region inside the cirele and the region
in the plane outside of the circle.) Find the number w in terms of the triangle.
You will find it easier to relate the answer to the triangle by also considering
the sequence formed by one-half of cach number « (Bryant; Yaglom and
Yaglom).

Probability

19. Continue the tree diagram in figure 5.1, which shows the two outcomes
(HorT) of a fair coin tossed onee and the four outcomes (HH, H'T, TH, 1'T)
of a fair coin tossed twice to the eight outcomes of thiee tosses, and so on.
Count the number of ways that exactly & heads show up when the coin is
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tossed n times, for several n and k = 0, 1, 2, . . ., n. Considering each of the
2" outcomes as equally likely when the coin is tossed n times, determine the
probability of no heads, 1 head, 2 heads. . . ., n heads. Relate the numerator
and the denominator of the probability to the triangle’s nth row (Mosteller,
Rourke, and Thomas).

Ist toss 2d toss

H <
<

I 4 I

T
T

Fig. 5.1 ‘
20. How likely, in yonr opinion, would it be that both persons’would get
exactly the same number of heads when they each tossed 2 eoin 10 times? The
answer is perhaps surprising: more than one-sixth of the time this will happen
(exactly .1872). Try to establish a pattern in the triangle by first ¢onsidering
that each person flips once, then twice, and so on and referring to the trees
drawn in (19). In order to tackle the general ease, you will need to refer back
to () or (14) for the sum of the sum of the squares of the row entries. (The
approXimation 1/4/=n is swrprisingly good for large n. See Feller.)

Trigonometry

21. Verify the following trigonometrie identities:
cos 2a = costxy  sinty,
cos 3a = cox*x ~ 3 cos x sina, and
"8 = condy ~ 6 costa anta - sinta,
and {ry to establish, with the aid of the nth row of the trinngle. a similar iden-
tity for cos na.
22, Verify the following trigonometric identities:
sin 22 = 2 sin x cos a,
sinda = 3 sin x cos?x — #nfx, and
sinda = §sin x costa ~ o sinda cos g,
and try to establish, with the aid of the nth row of the triangle, a similar iden-
tity for sin nz. The general pattern in this and the preceding problem s
given by De Moivre’s theorem, which can be found in any trigonometry book.

Solid Geometry

23. We would like to determine the maximmm number of “chunks™ of
space that are created by n planes in arbitrary position. One plane ereates 2
“chunks”™ (above and below). two planes can create a maximum of 4 “chunks™
(3 if the planes are parallel and 2 if they are eoimeident). Convinee vourself
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that three planes will create at most 8 “chunks” by considering your class-
room front wall, side wall, and floer, Four planes do not, unfortunately, create
16 “chunks,” so try the easier two-dimensional problem “How many regions
in a plane are created by » lines in arbitrary position?” You create the se-
quence 2, 4, 7, . . ., as vou will quickly discover, starting with » = 1 line,
Note that, to achieve the maximum, every new line you draw must cross every
line already drawn in a distinet intersection point. Now consider the number
of line segments formed by p'acing n points on a line. You can finish the orig-
inal “chunks” problem and relate it to the triangle’s ath row if you will
finish table 5.1 and discover the pattern. (Sce Polya entries.)

TABLE 5.1

Number of Segments Number of Regions Number of Chunks
n by n Points by n Line by n Plance
(] 1 1 1
1 2 2 2
2 3 4 4
3 4 7 8
Calculus =

24, The geometrie series
1
l —r
for {z| < 1. (This can be casily verified by actual division.) Consider the
corresponding derivatives

1l 4+r4+axt4a34...=

1

aT==m

also a true statement for jx! < 1. By repeated differentiation, establish the

P4 2r 404434 ... =

. . 1 .
connection between the successive powers of ~—— and the numerical coeffi-
-z
cients i1 the scries of derivatives in terms of the triangle.
25. The decomposition of the rational function
LY ..
rx+ D +2)...&+n
into partial fractions will involve the trinngle very quickly. For example,
1 1 1

T+ r+1

and
Y 1 5 1
tryee
Try the enses n = 3,4, . .. in turn and observe the pattern, A similar situation
exists for the rational function

CFN+y)  r T3

nl
rr = l)(x=x—-3)...& —n)

in terms of the nth row of the triangle.
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Linear Algebra

26. Consider the matrix formed by the first two numbers in the first two
diagonals, nanely,
11
1= ().

The determinant of this matrix has the value 1. Now write the matrix with
clements the first three numbers in the first three diagonals, namely,

111
lin(l23,
136

and show that |B] = 1 also. Docs the determinant of all such mutriees formed
in this manner always equal 1? If 50, try to prove it.

Miscellaneous

If the iceberg amlogy that was mentioned i the beginning is at all eorreet,
this portion could be many pages long. However, the list of topics will elose
with some additional suggestions that are not as casily elassified but are at
least as interesting.

27. By drawing lines of approximately 30 degrees clevation through the
triangle and adding the numbers touched by the lines, one will create the se-
Quence 1,1,2,3,5,8,13, . .. known as the Fibonacei sequence. This sequence
has many fascinating properties and applications, but only one will be men-
tioned here. The limit of the sequence formed by dividing cach clement by its
suecessor is known as the golden seetion (approximate value 0.618 . | D
(See Hoggatt.)

28. Reeonsider the tree drawn in (19) and ask for the probability that the
first head oceurs on the kth toss of the fair coin (k = 1,2,3,...). The probabil-
ity that the first head oceurs on the first toss is one-half , Since we are using a
fair coin. This statement is written compactly as Pk =1) = 1/9, Similarly,
Pl =2) = 1/4, since one needs a tajl first and then a head in order to have

never oceur? The answer is no! You need to sum the probabilities involved
with the aid of the geometric series sum found (24). In short, sooner or
later, you must get the first hend (Mosteller, Rourke, and Thomas).

29. Let us extend the discussion in (28) a bit further. There will always he
first head, and there will ulways be a second head, and a third head, and so on.
In an experiment where the outcome is always success, with P(S) = ),
or failure, with P(F) = 9{p + ¢ = 1), then there will always he a first suceess,
a second suecess, . . ., g twenty-first success (as in table tennis), and so on.
The triangle is involved even here, and the analysis requires looking at the
twenty-first diagonal, a formidable undertaking. You might be interested
in learning that the most likely number of total points scored in a table tennis
match is the minimum of the two numbers

[l + :;;-0] and [1 -f-:»;(—)




where [z} denotes “the greatest integer contained in the number z.”” Draw
the graph of the most likely number of total points as a function of p, for values
of pin theinterval 0 < p <1, and sce how sensitive the total is to the skill
of the better player.

Open Question

30. We have only scratched the surface of the iceberg. As you progress
through your mathematical studies, keep a sharp eye peeled for the most
unexpected appearances of the triangle. Sooner or later, you will find another
application; the thrill of discovery will be yours, and the best talk of all will
be vour telling of your discovery. Happy hunting!
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Totology

Bruce E. Meserve
Dorothy T. Meserve

Topology is & study of sets of points and is often thought of as a basic ge-
ometry. In this geometry there are formal rules under which a circle may be

transformed into a sc ‘1are, the surface of a teacup into the surface of a dough- .

nut, and even a line segment an inch long into a line segment a mile long. (An
inch is as good as a mile in this geometry.)

Many aspects of topology may be observed from such games with geometric
figures. Topology may also be studied very seriously and formally. The fol-
lowing topics have been selected to help you gain an informal understanding
of some aspects of topology. You can have fun exploring topological ideas with-
out going seriously astray relat've to the formalities that are left for possibie
future study. As you read, be sure to make sketches of figures whenever they
can help you visualize the statements under consideration.

Topologically Equivalent Figures

Any two congruent figures are equivalent under a rigid motion, that is,
either figure may be mapped onto the other by a transformation that preserves
lengths of line segments. If two figures are similar, either figure may be mapped
onto the other by a transformation that preserves measures of angles. \WWhen
lengths of line segments are preserved, each line segment is mapped onto a
line scgment of the same leng!" as the original line segment. When measures
of angles are preserved, each angle is mapped onto an angle of the same mea-
sure as the original angle.

In topology we are concerned with transformations that preserve neighbor-
hoods of points. It is possible to give a formal definition of neighborhood, but
we shall not ~ttempt to do so. Rather, we shall depend upon your intuitive
concept of the word. The neighborhood of a point  on a line may be taken as
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an open line segment containing the point P. The neighborhood of a point Q
ou a plane may be taken as the interior of a circle with Q as center. The neigh-
borhood of a point R in space may be taken as the interio! of a sphere with B
as center.

If a topological transformation maps a point P onto a point P'. then every
neighborhood of P (no matter how small) must be mapped intoa neighborhood
of P' and the points of every neighborhood of P’ must be image points from
some neighborhood of P. This restriction requires that distinct points cor-
respond to distinct points. Each point of the original figure is mapped onto
exactly one point of the new figure. and each point of the new figure is the
image of exactly one point of the original figure. Two figures are topologically
equivalent if neighborhoods are preserved under a mapping of either figure
onto the other. -

Consider a circle O of radius 3 inches and a circle O’ of radius 4 inches. The
3-inch circle is congruent to another 3-inch circle that is concentric with the 4-
inch circle. Can vou find a pattern for mapping points of the larger « ~ these
two concentric circles onto points of the smaller circle so that neighbothoods
are preserved? Can you find a pattern for mapping points of the smaller circle
onto points of the larger circle so that neighborhoods are preserved? If you
have difficulty visualizing 2 mapping of one of the concentric circles onto the
other, make the points along radii correspond, that is, project onc circle onto
the other from their common center. Figure 6.1 illustrates the sort of drawings
that vou should make as you read this paragraph.

Fig. 6.1

Do vou think that any two congruent circles are topologically equivalent?
Explain why this must be so. Now you should be able to explain why any
cirele is topologically equivalent to any other cirele. If the words “topolog-
ically equivalent” seem too cumbersome, you can say the same thing by
saving that the figures are homeomorphic.

A simple closed curre may be defined as a figure that is topologically eq:u-
valent to a circle. Show that any triangle is a simple closed curve; any square,
any parallelogram, any regular polygon. ('an you think of a curve that is not
a simple closed curve? Try a “hgue vizht,”” a-line segment, a parabola, a
hyperbola in our usual geometry, a sine curve. None of these curves are simple
closed curves.

Fhink of a urele tangent to a line at a point A as i figure 6.2, and let B be
the point diametrically opposite A. Use lines through L to map (project) every
point P different trom B on the circle onto a point 7 of the line. Neighbor-
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hoods are preserved. After the point B has been removed. the remaining
punctured circle (a circle with a point removed) is topologically equivalent
to the line.

Fig. 62

Each of the following statements may be demonstrated as indicated in the
figure accompanying the statement.

L. Any open line segment (such as the set of points between 0 and 1 on a

number line) is topologically cquivalent to a half-line. (In fig. 6.3 where

- - —i
DB i AC. D is a fixed point and P is any point of A B. observe that
— -

A B is topologically equivalent to AC.)

4 P=<C
Fig. 63
2. Any open line segment is topologically cquivalent to a line. (In fig. 6.1
.— .- — }—-{
where DB, AC : EF, observe that BE is topologically equivalent to

AC.)

Fig. 6.4

3. Any line segment A B is topologically cquivalent to any other line scg-
ment CD. (See fig. 6.5.)
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The third statement provides the basis for the comment in the first para-
graph of this article that “an inch is as good as a mile in this geometry.”

In demonstrations such as those just considered we have taeitly assumed
that a figure may be replaced by any congruent figure to obtain suitable
figures in an approptiate relative position. This assumption is a special case
of the statement that any two figures that are topologically equivalent to
the same figure are topologically eqnivalent to each other. For example. we
have already noticed that any 3-inch cirele and a 4-inch cirele are topologically
cquivalent to a 3-inch circle concentric with the 4-inch circle and also are
topologically cquivalent to cach other. Draw figures for a few other such
examples. Observe the mappings (topol ‘ical equivalences) from the first
figure to the secoud and from the third figure to the second. Is there also a
topological eqnivalence represented by 1 mapping from the first figure to the
third? Explain why the first and third figures must be topologically equiva-
lent. Note that this is a transilive properly for topological equivalences.

Any figure that is topologically equivalent to a punctured cirele is a simple
open curve. Thus a line is a simple open curve. Explain or show why each of
the following statements must be true:

An open line segment is a simple open curve.
A half-line is a <imple open curve.

A plane angle is a simple open curve,

A parabola i= a simple open curve.

A sine enrve is a simple open curve.

6. \u ellipse is not & simple open curve.

7. A hyperbola ix 1ot a simple open curve.

U O

The letters of our alphabet may be grouped acrording to the topological
properties of a given representation of the capitals of the letters considered as
eurves, For example, in their nsual style Y and T are topologically equivalent
curves. Also M. N, and Z are topologically equivalent enrves (see Jarobs,
pp. $51-52).

The neat little ink spots known as letters of the alphabet may also he con-
sidered as regions on the plane. Then, even though their boundaries are of
different shapes, the regions Y. T M, N. 7, and others are all topologically
equivalent to cach other and to a circular disk. Similarly, the regions A, O, P,
and others are equivalent to each other and to a cirenlar ring; that is, a disk
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with a hole in it. In general, any connected bounded plane region with its
boundary is topologically equivalent to a disk with some number b of holes.
The number b is called the Betti number of the region. Any two topologieally
cquivalent regions have the same Betti number.

In space a sphere may be considered as the surface of a solid ball. A sphere
is topologically equivalent to the surface of a cube, a tetrahedron, a convex
polyhedron, and many other space figures.

Consider the surface of an ordinary doughnut (a torus). Because of the hole
in the middle, the surface of the doughnut is not equivalent to a sphere. How-
ever. the spherical part of a sphere with one handle may be thought of as
shrunk into the continuation of the handle. Thus the surface of a doughnut
is topologically equivalent to a sphere witn one handle. See figure 6.6.

Fig. 66

Think of a sphere as a hollow ball such that one hemisphere can be pushed
into the other to form a bowl or cup without handles. A sphere without
handles is topologically equivalent to a cup without handles. See figure 6.7.

Fiz. 6.7

A sphere with one handle is topologically equivalent to a cup with one
handle. such ax a teacup. Thus an ordinary doughnut is topologically equi-
valent to a teacup. A sphere with two handles is topologically equivalent to a
cup with two handles. )

Exercises and further information regarding topological surfaces may be
found in several of the references in the bibliography at the end of this chapter.

Traversable Networks

Arother famous topological problem is concerned with bridges in the city
of Kénigsberg. There was a river flowing through the city. In the river there
were two islands connected to the mainland and each other by seven bridges
as shown in figure 6.8,
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Fig. 68

The people of Konigsberg loved a Sunday stroll and thought it would be
niee to take a walk in which they would eross cach bridge exaetly onee. But
no matter where they started or what route they tried, they eould not eross
each bridge exaetly once. This caused considerable diseussion. Gradually it
was observed that the basie problem was concerned with paths between the
two sides 4, B of the river and the two islands C, D as in figure 6.9.

A

B
Fig. 69

With this geometrie representation of the problem it was no longer neees-
sary to diSGliss the problem in terms of walking across the bridges. Instead
one could discuss whether or not the curve associated with the problem is
traversable in a single trip, that is, whether or not one could start at some point
of the curve and traverse each arc exactly once. The curve is often ealled the
graph of the problem. The Konigsberg bridge problem could be considered
in terms of its graph by people who had never even heen to Konigsherg. The
desired walk was possible if and only if the graph was traversable. )

When is a graph traversable in a single trip? One can walk around a city
block, and it is not necessary to start at any particular point. In general,
one may traverse any simple closed curve in a single trip. This may be sur-
prising for some complicated-appearing simple elosed eurves, but it is a basic
property of all simple closed eurves.

We next consider walking around two city blocks and down the street sep-
arating them. (See fig. 6.10.) This problem is a bit more interesting in that
it is necessary to start at B or E. Furthermore, if one starts at B, then one
ends at E; if one starts at £, then one ends at B. Note that it is permissible to
pass through a vertex several times but each are must be traversed exactly
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once. The peculiar property of the vertices B and E is that each is an endpoint
of three arcs while each of the other vertices (4, C, D, F) is an endpoint of
exactly two arcs. A similar observation led a famous mathematician by the
name of Leonard Euler to devise a complete theory for traversable graphs,
often called traversable networks.

F E D
A B C
Fig. 6.10

Euler classified the vertices of a graph as odd or even. A vertex that is on
(an endpoint of) an odd number of arcs is called an odd vertex; a vertex that
is on an even number of ares is called an even verfer. Since every arc has two
ends, there must be an even number of odd vertices in any graph. Any graph
or network that has only even vertices is traversable, and the trip may be
started at any vertex. Furthermore, the trip will terminate at jts starting
point. If a graph contains two odd vertices, the graph is traversable, but the
trip must start at one of the odd vertices. The trip will then terminate at the
other odd vertex. If a graph has more than two odd vertices, the graph is
not traversable in a single trip. In general, a graph with 2k odd vertices,
where & is a positive integer, may be traversed in & distinet trips.

The graph for the Konigsberg bridge problem has four odd vertices. This
graph cannot be traversed in a single trip. Thus it was not possible to cross
cach of the seven Konigsberg bridges exactly once in a single trip. The solu-
tion of the Kénigsberg bridge problem is the determination that the desired
walk is impossibic. The discussion: of this problem in an article by Tucker and
Bailey (1950) is concluded with the statement that Tucker had actually
walked across each of the bridges exactly once in 1933, {(There were eight
bridges at that time.) z :

Frequently we see in advanced mathematical theories only complicated
manipulations and intricate statements involving precisely worded defini-
tions and theorems. It is refreshing as well as enlightening to look hack oc-
casionally at the roots of the theorv and see the problems that started great
minds working for generalizations that have led to present theories. The
Konigsberg bridge problem is independent of the size and shape of the objects
under consideration. It is a topological problem. It has been eonsidered by
some writers to be the starting point of the theory of topology.

The study of networks (graphs) is a part of the major branch of topology
that is now called graph theory (sce Ore). Recent considerations of net-
works inclurde separate considerations of the point of view of a highway in-
spector who wishes to traverse each are (highway) exactly once and the
point of view of a salesman who wishes to visit cach vertex (town) exactly
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once (see Stein). Exercises and further information regarding networks
and graph theory may be found in the references in the bibliography.!
<

The Maobius Strip

Let us conclude our consideration of topology with a few comments about a
surface that has several very unusual properties. The surface i one-sided. A
fly can walk from any point on it to any other point without crossing an edge.
Unlike a table top or a wall. it does not have a top and a bottom or a front and
a back. This surface is called a Mobius strip and may be constructed very
casily from a rectangular piece of paper such as a strip of gummed tape. Size
is theoretically unimportant, but a strip an inch wide and about a foot long
is easy to handle.

A D AD AC
——lab dp &

Fig. 6.11

Consider the rectangular strip ABCD shown in figure 6.11. If we simply
form a cvlinder as in the second drawing, then the corners A and D are placed
together and the corners B and C are placed together. To construct a Mobius
strip we twist the strip of gummed tape just enough to stick the gummed edge
of one end to the gummed edge of the other end. In this way we place the
corners .4 and C together and the corners B and D together.

If we cut across the Mdbius strip, we again get a single rectangular strip
similar to the one we started with. Iowever, if we make a Mébius strip from
a rectangular strip and cut around the strip halfway between the long sides
of the rectangle (see the dotted line in fig. 6.12), we do not get two strips.
Rather we get one strip with two twists in it.

Ing. 6.12

William Hazlett Upson used the peeuliar property of Mdbius strips in his
story ecalled “Paul Bunyan and the Conveyer Belt” (see Fadiman 1962, pp.
33-35). Other storics based on topological concepts may be found (see Fadi-
man 1938 and 1962).

1. T'he material in this section is adapted from Meserve 1953, pp. 172-73.
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People of all ages can enjoy exploring the properties of a Mobius strip.
Make a strip, cut it down the middle to check the property that we have just
discussed. Cut the strip down the middle again and see what happens. (You
may be astonished.) Make another Mobius strip and try to cut it in thirds;
try to cut it in quarters by taking one fourth off the edge. Make a Mobius
strip using coat zippers so that it ean be cut (unzipped) down the middle
once and then down the middle again. One enterprising teacher designed a
one-sided dress and a child’s bib based on a Mgbius strip (see Pedersen),
You may find exercises and further discussion of Mébius strips in some of the
other references in the bibliography.!

Bibliography
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Experiments
with Natural Numbers

Richard V. Andree

The natural numbers 1, 2,3,4,...,N,... hold their secrets well. The ancient
Grecks studied them with considerable enterprise. Euclid, of geometry fame,
actually published more work on number theory than he did on geometry;
and many of his proofs still stand today as models of ingenuity.

Problems involving the positive integers have long interested educated
amateurs as well a- professional mathematicians. Several important dis-
coveries have been made by amateurs and even by schoolboys. No doubt there
arc many more still to be discovered. If your school has a desk calculator or a
computer, or even a set of tables, you, too, may participate in the thrill of
numerical exploration and discovery. Someone else may have made the same
discoveries earlier, but that coes not take away from either the thrill of dis-
covery or the credit due you—providing you make the discoveries and create
your own proofs rather than Jooking them up in the library.

Are you ready? Let’s go.

Excursion 1—Sums

The sums of the odd integers (those not evenly divisible by 2, namely,
1,3,5,7,9,...) show an interesting property:

12,

1 - =
1 +3 = 4 =2
14+3+5 = O =32
1+3+5+7 =16 = 42
F+3+5+7+9 =25 = 32,
V+34+54+74+9+11 =36 = 6
V+3 454749411413 =49 =72,
- 1+3+5+7+9+ll+l3+15=64==8’.

37




From this, one might jump to the following conjecture:

The sum of the first I\ odd integers is K3,

This conjecture may or may not he correct. Your problem is to cither
prove or disprove the conjecture. If a computer or desk caleulator (even an
adding machine) i available, we can easily check our conjecture for the first
few values. The following program, written in the BASIC computer language,
will check our conjecture for the sum of the first K = 1, 2,3, ..., 50 odd

integers.
10 PRINT “K”, “K*K”, “SUM OF FIRST K ODLD INTEGERS
20 S=1 -
30 N =1 )

10 FOR K = 2 TO 50

5 N =N-+2

60 8§ =8+\X\

70 PRINT K, K*K, §

80 NEXT K

90 PRINT “END OF PROGRAM”
100 END

A partial output of this program is shown below:

RUN
K K*K SUM OF FIRST K ODD INTEGERS
2 4 4
3 9 9
4 16 16
5 25 25
6 36 36
7 19 49
8 61 64
9 81 81
10 100 100
1t 121 121
12 144 i44
13 169 169
B} 196 196
15 225 225
16 256 256
17 289 289
18 324 321
19 361 361
20 100 400
18 2301 2301
19 2101 - 2401
50 2500 2500

END OF PROGRAM
- END PROGRAM

Since typing of results is rather slow and wastes computing time, the fol-
lowing program (which types only when S # K*K) will test the conjecture
for K = 1,2, ..., 1000 in about the same time that the first program required
to print the first ten lines of output.
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10 PRINT THE ONLY VALUES OF K <= 1000 FOR WHICH THE SUM OF
THE”

11 PRINT “FIRST K ODD INTEGERS DOES NOT EQUAL K*K ARE LISTED
BLELOW:”

30 Se=1

W N =1

5 FORK =270 1000

55 N=X+2

60 S=84N

70 IF 8 = K*K THEN % -

80 PRINTK, K*K, 8

9 NEXNT K

95 PRINT ¢ XD OF JoB”

110 END

The output of the program is:

RUN -

THE ONLY VALUES OF K <= 1000 FOR WIHICH THE SUM OF THE
FIRST K ODD INTEGERS DOEX NOT EQUAL K*K ARE LISTED BELOW:

END OF JOB

END PROGRAM
Thus, we have shown by actual experiment that the eonjecture “I'ne sum of
the first K odd integers i K*” is valid for all K < 1000, but that still does not
prove it is a true statement for all positive integers I, even if it does holster
our confidence. ]

The actual proof is not beyond your ability, It can be done casily by mathe-
matical induction or by using an ingenious geometric argument based on
reasoning similar to that suggested in the diagram shown in figure 7.1.

g"_",-r[:Bﬂ T+ T3+ 01 = =K*

Fig. 7.1

]

I
1 1]

I

J

On this first excursion we have guided you rather carefully over the ground
to be traversed and planted clear guideposts along the way. The final proof
is still left for you. Some of our later excursions will prove more adventurous.
Some will even lead you into uncharted waters. We hope you will participate
actively in the adventure and let your own imagination wander a bit, too.
For example, what, if anything, can you discover about the sum of the first
K even integers? (Can you prove your conjecture?) What about the sum of the
first K integers (both odd and even)? You are probably already aware that the
answer is K(K + 1)/2, but have you ever proved it?

Even more ingenuity is needed to prove the following conjectares:

The sum of the squares of the first K positive integers is K (K + 1) @K + 1)/6.

The sum of the cubes of the first K positive wntegers is the square of the sum of the first K
positive nlegers, e, 13+ 2« + 3 4+ ..+ = (1 +2+3 +... + k)2

Can yon make (and prove??) similar conjectures about the sums of the
squares (or cubes) of the first I odd (even) integers, or ahout higher powers
of the integers? Do a bit of investigating on your own. A set of tables or a
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desk caleulator or a small computer would be helpful but is not really essential.

Excursion 2—Palindromes

Positive integers such as 4735374 or 461164 that read the same forward as
backward are called » "ndromes. Aw interesting namber game is described
below:

1. Take a positive imeger N,
2. Form the sum of N and its revers_yhe reverse of N is the number obtained

writing the digits of N in reverse order. The reverse of 826 is 628.)

3. If the sum is a palindrome, STOP, otherwise continue with step 2, using the sum

as the new value of N,

Example 1:
1. N =130,
2. New N = 139 + 931 = 1070.
3. 1070 iz not a palindrome.
2. 1070 4+ 0701 = 1771,

3. 1771 s a palindrome in two cveles.
Example 2:
N = 48017
48017 + 71084 = 119101, not a palindrome,
19101 + 101911 = 221012, not a palindrome.
221012 + 210122 = 431134, a palindrome in three cyeles,

However, forming a palindrome i« not always so easy; 89 does not produce
a palindrome until 24 cveles have been completed, and 196 goes a long, g
time without producing a palindrome. I don’t know if it ever does. Investi-
gate whether or not N = 5, 6, .. ., 99 all produce palindromes and if so, how
long the cycles are. If you wish, extond your investige.dons to starting values
of more than two digits, Can you deterruine several infinite sots of starting
values that will always producce palindromes in one cyele? In two eycles?
What else can you discover about starting values that produce palindromes?
As far as T know. no one has ever proved that every starting value will
eventually produce a palindrome, but neither has anyone produced a starting
value that they can guarantee does not eventually praduce & palindrome. You
may wish to consider how such u guarantee « ald he given,

Excursion 3—Related Digits

We now turn our attention to a number of problems that are related to the
individual digits that make up certain positive integers. Our first. problem is
as follows:

Determine alf of the three-digit integers for which the sum of the enbes of the digits of
the number equals the number, Since

1345+ 3 =14 125 + 27 = 153,
we hnow such numbers do evist.
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It is possible to solve this problem using pencil and paper. However, if a
computer or calculator is available, we let H, T, and U represent the hundreds,
tens, and units digits. The original number is N = 100*H + 10T 4+ U, and
the sum of the cubes of the digits is § = 1113 + T13 + U T3 in BASIC
notation.

The following program suggests one possible “brute force” technique, in
which we simply try all possible three-digit numbers to see if N = 100*H -+
10T + U = H13 + T13 4+ U3 and print out those N that do satisfy
the given condition. We let H take on the values from 1 to 9 while T and U
take on values from 0 to 9. (Why?) The values HTU advance much as a car
odometer would in going from 100 to 999, with tests occurring at each value.

Study the program given below before continuing.

10 REM FIRST TRIAL AT SUM OF CUBES OF DIGITS = NUMBER
20 FORHO =17T0 0

30 FORT =07TO 9 s
10 FOR U =0 TO 9 :

50 LET N = 100°H + 10°T + U

60 LET S =H{3+T13+ 1013

70 IF S<>N THEN 80

75 PRINT N;

80 NEXT U

90 NEXT T

100 NEXT IT
10 PRINT, “ END OF EXAMPLIE”
150  END

This program does not use statement 73 to print out a successful find
until Hl = 1, T = 5, U = 3. At that time S = N since 153 = 13 4+ 0% + 33,
"Therefore, in statement 70 the transfer to statement 80 is not made. Line 75
is then executed. Your program should type out

153 370 371 407 IND OF EXAMPLE
The actual compr .cr time used to do the problem (approximately 10.5 sec-
onds on the Nova) will vary from computer to computer, but the vital thing
15 to notite how much faster it could run using a program that is no harder to
write but uses “common sense” in the way it attacks the problem,

The above program ran and produced correct answers; but as a computer
program, it is at best inept. By using a very small amount of “programming
common sense,” you could have saved more than 30 percent of the computa-
tion time on this problem. Are you ingenious enough to sec it hefore you
continue?

Write out your revised program before continuing,

"The program computes

N o= 4T3 4 U :
cach time it goes through the inside FOR U = 0 TO 9. .. NENT U-loop
for a total of 3 X 2 X 900 = 5400 time-consuming multiplications and 1800
additions. If each digit were cubed direetly after the FOR loop for that digit,
it would cut this down to 18 4+ 180 + 180" = 1998 multiplications and the
same 1800 additions (which take much less time than multiplications do).
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This saving of 3102 multiplications shows the difference between a complete
“hack’ programmer and a capable one.

We can also save some time by using H*H*H rather than the slower H13
instruction. On computers that compute H {3 as EXP (3*LOG(H)), in-
creased aecuracy may also result. “The following program will do thix.

REM MORE POLISHED VERSION OF SUM OF CUBES OF DIGITS = NUMBER |
PRINT “THREL DIGIT INTEGERS X HAVING THE SUM OF THE CUBES OF THE
PRINT “DIGITS OF N EQUAL TO N ARE;”
FOR H =1TO9
LET H3 = H*H*H
LET N1 = 100°H
FORT =0TO 9
LET 13 = T*T*T
LET N2 = 10°T
FOR U =0TO 9
LET § = H3 + T3 + 10U,
IFT X = N1 + X2+ U
IF S<>N THEN 150
PRINT X\;
NENT U
NENT T
NEXT H
PRINT
190 PRINT “END OF ENAMPLE"
230 END

FEEELEELE

130
140
145

z3g8g

The output is
RUN
THREE, DIGITINTEG..RS N HAVING T SUM OF THE CUBESOFTHE
DIGITS OF N EQUAL FO N ARE;
153 370 371 407
END OF EXAMPLE
END PROGRAM

The time used in this revised version is -h.7 se onds. as compared with 10.5
seconds for the original program. This may seem a small savings, but it is a
savings of over 50 percent—and that is very worthwhile on long or frequentiy
run progran.:. Students should think about efficient use of the computer if they
plan to use it. The use of human intelligence as a computer-saving device i3
what makes one programmer worth three times as mueh as another with the
same expericnce. If you can save only ten minutes per working day on a
computer worth $600 an hour, you have saved between $2000 and $3000 ner
month. No wonder employers are willing to pay an extra $1000 per month
to a really able programmer over and above what they will pay an ordinary
programmer! Which will you be? Try the following:

1. Our programs determine all the three-ligit integers such that the sum of
the cubes of those digits is equal to the original numker. However, there may
be one- and two-digit integers that also have this property. Modify the above
program so that it will determine all one-, two-, and three-dligit integers having
the above property.

2. Use some mathematical ingenuity to supplement your computer output
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and determine all integers (no matter how many digits) that have the prop-
erty that the sum of the cubes of the digits of the number equals the original
number.

3. Determine all the positive integers N such that the sum of the factorials
of the digit= of N equals the original number N. Be clever in vour program-
ming. Perhaps you may even wish to use subscripted variables and compute

and store the values of 0!, 11, 21, 31, . . . 9! in subscripted storage locations to
reduce the amount of computation. .

Iere is another little-known problem concerning digits that merits investi-
gation:

Let No be any four-digit positive integer. If we define the following relations
as
Lk = (the largest integer obtainable by rearranging the digits of Ng)

and

Y4

tthe smallest integer obtainable by rearranging the digits of Ng)

K
then Ngs = Lg — Sk

Thus if
No = 7162,
N: = 762} - 1267 = 6351,
N: = 6543 = 3456 = 3087,
N: = 8730 - 0378 = §352.
N; = 8532 - 2358 = €17},
and

Ns = 763 = 1467 = 675,

wh h clear!y iepeats forever.
Ako. if
Ne = 2212,
N = 2221 — 1222 = 0o,

N o= 9990 — 0999 = §981,
N: = 0881 —~ I1SY9 = 8082,
Ni = 8820 — 0283 = 8532,
Ny = 8532 ~— 2338 = 6171,
Ne = 7641 1467 = 6174,
which again clearly repeats forever.
In contrast, if
N = 7707,
Ny = 7957 - TTIT =0,
whirh also repeat~ torever

Your problem ix to investigate this recurrence refation. The results may
SUrprise you.

It is not necessary to investigate alt 9000 possible 4-digit numbers to com-
pletely sclve this problem. The 214 ~tartme values 7162, 7621, 1726, 2671, ete.,
cach yield the =ame vaiae for Ny and thiss the ;ame ~equence from there on.
Show that there are oniy 54 possible values for Ny, and therefore we need spend
les= than I 100 of the time that would be required to cheek all 9000 cases. You
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may also wish to investigate this process for starting values having 3 or 5 or
6 digits. Some 6-digit starting values lead to the repeater 631764, others do not.
Note that 165033 = 16° + 50° + 333, base 100 instead of base 10.

Excursion 4—Factorials

If N is a positive integer, then the product of the positive integers from 1
to N inclusive is called N-faclorial and symbolized as

Nt = 1-2:34-. . .«(N = 1)-N

In some problems it. is also desirable to define 0! as 1, but we shall not.
Here are some problems for you to investigate.

1. It is true (but not obvious) that all ten possible digits appear among
the digits of N! for some integers N. The table seen in figure 7.2 lists the
smallest positive integer Nk that contains the digit Kfor K=0,1,2,3. 4,5,6,
7,8, 9. First verify that the table as given is corrct (or correct it) and then ex-
tend it to larger values of IX. Note, for example. that when K = 12, N = 5
since &1 = 120. Can you extend the table as far as K = 100?

k{olijlal3ja]ls|ej7z]|s]o

Smalt
estN
such
Ir':‘ol 5 1 2 8 4 7 3 6 9 1
\
con-

TIEIERE
40320

2 5040 6 (70|, |
362880 399168007

N

Fig. 7.2

2. What is the smallest positive integer N that contains all 10 of the digits
(in some order) among the digits of N'1?

3. Are there values of N other than N = 1, 2 such that N begins with X7
Note that the computer may be able to produce a **Yes” answer, but cannot
give a definite “No’”’ answer. Why not?

4. J. Maxfield has shown (Math Magazine, Vol. 43, 2, March 1970, pp-
64-67) that given a sequence of digits K = d,, ds, ¢y, . . ., d,, there exists an
integer N such that N1 begins with the sequence of digits K. Write a program
to create a table such that the smallest such positive integer N(K) is deter-
mined for cach K = 100. You may wish to also print out the floating point
value of N1if it will be available at no additional cost. Eventually, we would
like a formula for N(K) = smallest positive integer N such that N1 begins
with the sequence of digits K, but that may be too much to hope for. Your
table might well begin:
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K N(K) Nt

i 1 1

2 2 2

3 9 362880

4 8 10320

5 7 5040

6 3 6

7 6 720

8 14 87178 ... X 10w
9 96 9.9168 . .. X 101¢
0 27 .

I 22 -

12 5

13 15

100

5. If X Z 5. then N!ends with one or more “trailing zeros.” Create s ule
that will enable you to look at N and determine exactly how many tailing
zeros N! will have.

6. The numeral that represents 100! contains exactly 138 digits. Is there a
value of N such that N'! contains exactly 100 digits?

Excursion 5—Superprimes

We next turn our attention to an interesting subset of the primes called
the superprimes.

The integer 7331 is a prime. So is any integer obtained by deleting digits
from the right edge of 7331. since 733, 73. and 7 are cach prime. .

A prime integer that has the property that every integer obtained by (lc-
leting an arbitrary number of its right-most digits is again prime is called a
superprime. The integers 317 and 2399 are also superprimes. (You should
verify this—it is part of reading mathematics.)

The superprimes 7331 and 317 are rather special, even among super-
primes, and are called superprime leaders sinee there is no digit X that will
make either 73,11X or 3,17X into a superprime. (If you wish to do some
mathematical research get out your pencil and paper and prove this last
statement before you continue reading. It isn’t very difficult.)

A superprime leader is a superprime that cannot be obtained by deleting
digits from a larger superprime. The superprime 2399 is not a superprime
leader, since 23993 is also a superprime. Actaally 23993 is not a superprime
leacder either.

Ascertain which four of the following seven integers are superprime leaders:

a9 23339 59393339 323 7331 239933 739307,

You may save considerable time and effort if you are observant enough to
make and prove the validity of a few observations (that is, theorems) along
the way. The types of theorems that could be helpful might include the fol-
lowing:
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THEOREM. If a superprime contains cither of the digits 2 or 5, then 2 or 5 can
only be the left-most digit of the superprime.

THEOREM. The digits 4, 6, 8, 0 will not appear in a superprime.

TreoreM. The digit 1 cannot uppear as the left-most digit of a superprime.
(This is true because 1 is neither prime "or composite.)

These and other theorems chat are not. difficult to prove can he most help-
ful in any search for superprime leaders.

Research proposition 1

Sclect an integer K 2 4 and determine all of the superprime leaders having
K or fewer digits. If vou have a romputer available you :nay wish to use it.
If not, use prime tables, which shout ! be available n your library.

For those of you who would like sor.e assurance that you are progressing
satisfactorily the following partial table is presented.

Number of digits 2345678
Number of known superprime Icadors 1346535

having the above nimber of digits
Research proposition 2

Det:vmine whether the number of superprime leaders is finite or infinite.
Don't guess. This requires a proof, but the proof is within your ability if you
have solved rescarch proposition 1 for sufficiently large K.

Excursion 6—A Recursive Function

The problem given here is one that has not as yet (1972) heen mvestigated
very fully. Perhaps you or some of your classmates may be able to add to our
current knowledge of this little problem. which arose while creating an
example of an integral recursive function for a computer class being taught
to high school students on Saturdays on the campus of the University of
Oklahoma.

The problem is simple.

Let No be any integer.

We now obtain a sequence of integers starting with Ny using the recursive
rule.

\'l\‘ - ; \‘K/2 If \',\ i\ cven
Rl 3Ng + 1 if N s odd
If No = 11, the corresponding sequrnee is 34 17 52 26 13 40 20 10 5 16
842 L. If a chain contains the digit 1, 1t repeats the digits 142142142,
in a periodic fashion thereafter. In this rase we terminate the chain at the first
I and say the chain converged to 1. I urthermore, we define the number of
steps from Ny to the first 1 to be the length of the chain; that is, if the integer
1 appears in the sequence for the first time as Ny then the length of the chain
is z. The above chain, which begins with Ny = | 1, has x = I
Several typical chains follow.
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RITOSSINAS 288 #4122 1134175226134020105 16842 1

2601340201051684 21

20 S2 4112462 31 94 47 142 71 214 107 322 161 484 242 121 364 182 01 274 137 412
206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1750 S90 445 1336 668
334 167 502 251 754 377 1132 566 283 8350 425 1276 638 319 958 479 1435 719 2158
1079 3235 1619 4858 2420 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232
4616 2308 1154 577 1732 866 433 1300 650 325 076 488 244 122 61 184 92 46 23 70 35
10653 160504020105 16842 1

281472211341752261340201051684 21

20884422 1134175226134020105168421

30 15 46 23 70 35 106 53 160 80 4020 10 5 16 8 4 2 1

It will be noted that cach of the given chains terminates with the integers
16. 8. 4. 2. 1. This makes us wonder if every chain of length 4 or greater will
end with this xequence. We do not know the answer to this (uestion. ITowever,
it is casy to prove the following theorem:

Turorem. If a chain of the sequence
_ 5 Ng/2 U Nt cren
- I} 3Nk + 1 if N 3 0dd

does converge to 1. then its terminal dements will be 16, 8. b.2, 1 af it Los

length 4 or greater.

‘The proof i< given by working backward from 1. and it is lef* for the reader.
The ruby, of comn~e. is that we do not vet know that for every starting value
No. the chain will converge to 1. Aetual experiment (on a computer. of
course) shows that all Ny < 10,000 do converge to 1, but this does not prove
the conjecture that all chains eventually converge to |,

Another theorem that is important sounding but casy to prove is:

N

Turores. Guen an mibeger 7 > 0. there créals a ~larting value Ny such that the

length of the ehaue from Noto 1 es z.

It 1~ left for the reader to diseover a ~imple formula that yields a starting
value No(z that will produce a chain of length 7.

Unfortunately no formula that will enable one to look at No and casily
determine the length of the chain from Ny to 1 is known for general N,
Perhaps you or one ot your classmates will eventually ~olve thi= problem, Lut
let us put it aside for vow and look at <eme other problems,

If there is a starting value Ny that does not converge to 1 (and there could
well be either a value that “eveles™ somewhere else or one that inereases
without hound. as far as our knowledge given here shows) then there must be
a =mallest No that does not converge to 1. Tt is almost obvious that such a
“smallest Ny that does not converge to 17 eannot be even., {Why not?)

Your rescarch problem is to investigate the recursive function

Mo = dNeZ NN

3Nk 4+ 1 if N is odd
and to prove us many theorems about it as possible, Ax far as vour author
knows no one has yet (1973) proved that for every integral starting value
No > 0., the sequence always converges to 1. nor has anyone yvet devised a
formula to determine the length x of a chain from N, to 1 that works for an
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arbitrary starting value No. Still, there are a number of theorems that can
be proved. Thinking up possible theorems (call them conjectures) and then
trying to either prove or disprove them is an important phase of mathematical
research.

Another recursive functton you may enjoy investigating is:

No = 92463

Ni =814+ 4416436 +9 =146
N: = 1416 + 36 =33

N: =254+ 9 =34
Ne=9416=25

N = 442=20

Ne = 4481 =8

N; =642 =89

Ns =64 481 =145

Ng = = 42

Nm = = 20

N" = =4

N; = = 16

N = =37

Ny = = 58

Ny = = 89, which repeats in a cycle.

Show that for every starting value Ny the
Nx,: = the sum of the squares of the digits of Nk

recurrence relation either converges to 1 (which then repeats) or converges to
the cycle of length 8 that is given above. This is an interesting problem, and
the proof requires ingenuity—but no mathematics beyond ninth-grade algebra.

While this particular problem has now been solved, the related problems
of Nks1 = the sum of the cubes of the digits of Nk and in general

Nk.1 = the sum of the nth powers of the digits of Nk

have not been investigated.

Excursion 7—Zeros

There are integers such as 10000 or 3000000 whose leading digit is (of course)
nonzero, but all the rest of whose digils are zero. Some such numbers can be
factored into two factors, neither of which contains any zeros at all.

10000 = 16 * 625
is such an mteger, as is
1000000000 = 1953125 * 512.
However,
100000000 and 50000000

each contain a zero somewhere in every possible factorization into two factors.
Your problem is to investigate the phenomenon in as much detail as you can.
Start with only those numbers having 8 or fewer digits. It may be well to
start your investigation with the additional restriction that the initial (and
only nonzero) digit is a 1, that is, that your starting value is a power of 10. As
far as your author knows the only powers of 10 = 103 that possess a factoriza-

tion in which neither factor contains a zero are 10~ for
N=123456709,18, 33.
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It is quite possible that there are others with exponent N > 33. The following
seem to be the only likely candidates for N < 10500 (and quite possibly the
only ones for exponent N < 50,000), but your author has only ehecked the
ones listed above.

N 234 35, 36, 37, 39, 49, 51, 67, 72, 76, 77, 81, 86.
The related problem for leading digits other than 1 seems not to have bheen
investigated at all. What eap you diseover? )

Excursion 8—Irrational Approximations

A rational number is a quotient N/D of two integers with D > 0. There are
many real numbers such as /2 that cannot equal a rational number. A proof
of this can be found in most high school advanced algebra books.

Even though v/2 can never equal a rational number N/D, it is quite pos-
sible to determine rational numbers N/D that approsimate V2 (or any
other v/M, M > 0) as closely as is desired.

Let us find a rational number N/D, with D > 0 such that | (N/D)2 - 2 |
< .001. An algorithm (method) for determining such a rational number
N/D s given in the flow ehart seen in figure 7.3. The algorithm can be carried
out mechanically on a small computer or desk caleulator. It ean be earried
out in many fewer steps if instead of following it meehanically you “play
your hunches” on how much to change N and D at each step to approach {he
desired approximation. Such intuitive involvement beeomes important and
helpful if the user is working by hand or with a nonprogram .ed desk ealevla-
tor. If a programmable ealeulator or computer terminal is used, the suggested
routine is easy to program and will produce the desired results at about 181/
128, which produces 1.41406 as N/D and 1.9996 as (N/D)2. More alert stu-
dents may wish to diseuss the fact that (N/D)? and N2/D? need not be iden-
tieal on the computer.

Stop

Fig. 7.3
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A much faster algorithm for actually computing /M, M > 0 isgiven in
figure 7.4, showing Newton’s method, but the above algorithm seems to pro-
duce greater understanding in many students. Both algorithms merit study.

Input M>0,
the number whose
square root is to be
found

l

=M
Set A=%

[7Replooe Aby
i

Fig. 7.4

In this case the approximation of v/M as A is replaced by the average of A
and M/A to obtain a closer approximation. The complete proof that (A +
M/A)/2 is usually a better approximation of /M than is A is not easy. Most
students will agree that it at least seems likely that it may be an improvement.

A number of investigations should be caried out on each of the above
algorithms. How fast does each obtain an approximation? What happens along
the way (insert additional print statements)? What would happen if M < 0
on algorithm 2? Can you revise algorithm 1 to find VM. M > Orather than
A/2? Can you improve either or hoth algorithms by permitting the user to
insert a “first guess” for N, D (algorithm 1) or A (algorithm 2)? Does this
really save any time on a computer terminal or does it take so long to insert
the first guess that the computer could obtain several hundved approxima-
tions dwring that time and hence be closer to the answer than your guess?

Excursion 9—Goldbach’s Conjectures

Many years ago (1742) Goldbach made two conjectures: (1) Every even
nteger N = 6 is the sum of two odd primes. (2) Every odd integer N 2 9 is
the sum of three odd primes.

If the first conjecture is true, then the sceond conjocture can easily be
proved. (Can you do it? Try!) However, no one has yet bren able to prove
the first conjecture. N. Pipping has verified the first conjecture for all N <
100,000 by produciug examples, but this is of little assistance in proving that
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it is valid for all N. In 1937, Vinogradov proved that there exists an integer K
such that. for all odd N > K, the second conjecture is valid. However, again,
this is an existence proof and no one knows how large K actually is. Recent
results show that ¥ is less than 10%%:%, thus it might scem possible to examine
all integers less than 1040000 ¢ o computer to complete the proof—however,
and the task is formidable. Viggo Brun- proved

10%%9% s a large number,
that every positive even i
odd integers, each of whic
Recently, it has

<ger N can be written as the sum of two positive

I is the product of nine or fewer prime faetors.

been possible to reduce the “nine” in this result to “four,”

but this is still far short of Goldbach’s conjecture.
Actually, there ar> even integers such as 20 that can be represented as a
—— - sum of two odd primes in more than one way:

—

20
20

13 4 7.
17 + 3.

Our problem on this excursion is to express each integer between 6 and 1,000
. . . t4
as a sum of two odd primes in as many ways as possible. Many hooks of

tables contain lists of primes w

hich will be helpful.

The following BASIC computer program, which expresses each even number
between 6 and 100 as a sum of two odd primes, can be extended rather casily,
or you can write a more efficient program of your own.

10
20
21
30
0
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
250

REM  TIHIRE ARE 24 ODD PRI [ES < 100
DATA  3.5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 17, 53, 39, 61, 67
DATA 71, 78, 79, 83, 80, 97

DIM P/21)

FORT = 17TO 24

REEAD P(I)
NEXT I
FOR N

FOR

—
—
-

S =ty

i
P
1

,_.
I
":\-
i+ =
o~y
Pt n

-1
I~

-—
—
-—

GO TO 1

- 6 TO 100 STEP 2
TO 21
{

N TIHHEN 150

v u=n; l'; u+-'; L,

IFL 4+ U > N THEN 170

NEXT J
NEXT I
NEXT N
PRINT

PRINT “END OF PROBLEM"

FND

The output for this program follows:

6
12
16
20
24
26
30
32

LI 1 R T

3+ 3
A+ 7
3413
3+ 17
I 413
T4+19
13 + 17
3+29

S
It
18
22
24
26
30
31

L T

EN S U Qi

+ 5 10= 54 35 0= 3 7
+ 7 o= 3 411 16 = 5 + 11
+ 11 18 = 5 + 13 20=7+13
+ 11 2 = 5-+17 2= 3419
+ 17 2t = 5419 26 =13 + 13
+ 23 28 =114 17 288= 5423
+ 19 0= 7--23 22 =134+19
+ 17 34 =11- 23 3t = 5429
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341 = 3 +31 36 =17 + 19 36 =13 + 23 36 = 7+29
36 = 5+ 31 38 =19 + 19 38 = 7+ 31 10 = 17 + 23
10=11+2 10 = 3+ 37 12 =19+23 12 =13+ 29
42 =11 + 31 42 = 5 437 41 =13 + 31 M= T7T+3
4 = 34441 46 =23 + 23 16 = 17 -+ 29 16 = 5441
6= 3+13 18 =19 + 29 {8 = 17 4 31 18 = 11 + 37
48 = T 4 4l 8= 5+13 50 =19 4 31 50 = 13.+ 37
50 = 7 +43 50 = 3447 52 =23 +29 52 = 11 41
52 = 5447 51 =23 + 31 5 =17 + 37 51 = 13 + 41
5t =11 +43 5 = T 447 36 =19 4 37 56 = 13 + 43
36 = 3+ 33 58 =29 + 29 5 =17 + 41 58 = 11 + 47
3= 35+53 60 = 29 + 31 60 = 23 + 37 60 = 19 + 11

- 60 = 17 + 13 60 = 13 + 47 60 = 7+ 53 62 = 31 + 31
E 62 = 19 + 43 62 = 34 54 44 = 23 + 41 64 = 17 + 47
64 =11 4+ 33 61 = 5+ 50 6t = 3 + 61 66 = 29 + 37
66 = 23 + 43 66 = 19 4 17 66 = 13 + 53 66 = 7+ 59
66 = 54 6] 68 = 31 + 57 68 = 7 + 6l 70 = 29 + 41
70 =24 -- 147 0 =17 + 33 76 = 11 4 59 70 = 3+ 67
72 =31 + 4l 2 =294+ 43 72=19453 72 =13 + 59
72 = 11 + 61 2= 467 =37 +37 74 =31 +43 .
7 =13 + 6] 4= 7467 1= 3471 76 =29 4 47
76 = 23 + 53 6 =17 + 59 6= 5471 6= 3+73
78 = 37 + 41 8 =31 4+ 47 78 =19 4+ 59 78 = 17 + 6l
78 =11 + 67 8= T+71 8= 5+73 80 = 37 + 13
80 = 19 + 61 80 = 13 + 67 0= 7473 82 =t + 4l
82 =29 + 53 82 = 23 1 59 82 =11 +471 82 = 3+"79
81 = 41 + 43 8t = 37 4+ 7 81 = 31 + 33 81 = 23 + 61
81 = 17 + 67 81 =13 +71 84 =11+4+73 81 = 5+ 7Y
86 = 43 4- 13 86 = 19 + 67 86 = 13 + 73 86=7+7Y
86 = 3+ 83 88 = A1 + 47 88 = 29 + 59 88 = 17 + 71
88 = 5 4 83 90 = 43 + 47 90 = 37 + 53 90 = 31 + 59
90 = 2 + 61 90 = 23 + G/ 90 = 19 + 71 90 = 17 + 73
90 = 1t + 7Y 90 = 7+ 83 92 = 31 + 61 92 =19 + 73
92 =13 + 79 92 = 3+ 89 04 = 47 + 17 91 = 41 4 53
91 =23 +71 91 = 11 + 83 91 = H+ 8 96 = 43 + 53
06 = 37 + 5 96 = 29 + 67 96 = 23 + 73 96 = 17 + 79
96 = 13 + 83 96 = 7 4- 89 08 = 37 + 61 98 = 31 + 67
98 = 19 + 79 100 = 47 + 53 100 = 41 + 39 100 = 29 + 71
100 = 17 + 83 100 = 11 + 89 100 == 3 + 97

FND OF PROBLEM
EXD PROGRAM

It sbould be noted, however, that this problem may be solved by hand (or
using an adding machine).

Excursion 10—Euclid’s Primes

A prime is a positive integer N greater than 1 that cannot he written as the

product of two positive integers unless one of the factors ix also N. Positive
integers that can be written as the product of smaller positive integers are
called composite. The integer 1 is neither prime nor composite. but is called a
unit. .
Thus 2, 3, 3, 7, 11. 13. 1009, and 7132339208719 are a few examples of
primes. while 6, 38. 221, and 1003 (which equals 17-59) arc composite.
Fuelid (Elements, Book 1X) proved that there are infinitely many primes.
There are also infinitely many composite integers. (Why?)
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It is easy to tell whether a given integer is even or odd, but to determine’
whether a given positive integer is prime or compasite is by no means simple
if the integer is large. Actually, we do know how to determine whether or
not a given positive integer is prime; it is just that for large integers there is
not time enough to carry out the simple algorithm even using the fastest
modern computers. The algorithm itself is simple. In its crudest form it is:

Given a_positive tnteger N > 1, if there exists an infeger D, with 1 < D < N which divides
N, then N'is composite, otherwise N is prime.

An casy refinement shows that there is really no need to test all of the in-
tegers D between 1 and N—we need only test the primes. Furthermore, since,
if N has a factor > 4/N. then it must also have a factor < VN, we need test
only those primes < 4/N. We, thus, have a much faster test algorithm:

. If some prime D </ N divides a positive integer N > 1, then N is compostle, otherwise N
is prime.

Even this test was so time-consuming that it was 1964 before it was shown that
N = 21213 — | i prime. This result was needed in research related to Mer-
senne primes and perfect numbers.

It is almost obvious that if one takes a multiple of 3 and adds 1 to it, the
result is not divisible by 3. A remainder of 1 results. In a similar fashicn if a
multiple of 5 is increased by 1, the result is not divisible by 5. In general
terms, an integer that is 1 more than a multiple of K is not divisible by K.

In attempting to prove that the number of primes is infinite, perhaps the
most natural way to attack the problem would be to produce a formula that,
given a prime, will produce the next larger prime. This, however, has not been
possible. Even today, no one has developed a formula t! at will produce the
“next larger prime,” in spite of many attempts to do so. The pattern of
primes is irregular in the extreme. Euclid realized that it was unnecessary to
produce the nert larger prime and that it would be sufficient merely to show
the existence of some prime that was larger than the supposedly largest prime
to show that the sequence of primes has no end.

Euclid’s proof that the number of primes is infinite uses this observation.
He considers

23)+1=7 is not divisible by either 2 or 3,
2:3-5) + 1 = 31 ix not divisible by 2 or 3 or 5,
(2:3-5-7) + 1 = 211 is not divisible by 2 or 3or 5 or 7,
(2:3-5-7-11) + 1 = 2,311 is not divisible by 2 or 3 or 5 0r 7 or 11,
2-3-5-7-11-13) + | = 30,031 is not divisible by 2or 3 or 5 or 7 or 11 or 13,

(2:3:5:7-.. .- Py) + 1, is not divisible by any prime < Py,
whete Py is the Ktk prime

The proof follows:
Assume there exists a largest prime Px. Add 1 to the product of all the
primes < Pk
N =1 4 (23:5:7-11-13-. . .- Py).

Since N is greater than 1, N is not a unit and must be either prime or com-
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posite. However, N has no prime factor < Py, since each such factor produces

a remainder of 1 upon division. Hence, either N is a prime greater then Pk

or N is composite, in which case cach of its prime factors must be greater

than Pk. In either case, the existence of a prime larger than the supposed
largest prime Py has been demonstrated. Hence, the sequence of primes is
unending (i.c., infinite).

Actually, there are values of Pk for which the corresponding N is really
prime (for example, if Px = 3, then N = 1 + 2.3 = 7 is prime). There
are also values of Py such that the corresponding value of N is composite
(with all its factors > Py, of course). Your problem is to determine the
smallest value of Px such that N = 1 + (2-3-5-.. .- Pxg) is composite.

The reader interested in exploring more about primes will find a wealth
of material in almost any text on number theory (Dewey decimal number
512, Library of Congress Number QA 241). Two conjectures that can be
investigated using techniques available to the reader follow:

CoxsrcTeRe. Given an integer N, there cxists a sequence of consccidive inlegers,
each of which 1s composite (or as a special case, find a sequence of 2,000 con-
secutive inlegers containing no primes).

CoNJECTURE. The sequence of integers of the form

(8 + 1) = (4,7, 10,13, 16, 19,22, ...}

contains infinitely many primes.

Both of the above conjectures are true, but the fact that someone else has
already discovered a proof of them does not detract from your credit if you,
too, can do so. Techniques related to those used by Euclid will produce the
desired results. although neither of these conjectures was considered by Euclid
(as far as we can determine).

Actually, the sequence of integers of the form {3n — 1} also contains in-
finitely many primes, but the methods of proof we have scen are not related
to tho-e discussed in this section. A general theorem states that the arithme-
tic progression (sequence)

fa +nby = {a,a +ba-+2b,a+43be '-4b ...}

will contain infinitely many primes if the integers @ > 0 and b > 0 are rela-
tively prime (i.c.. have no common iactors greater than I). This is a hard
theorem to prove, in general, but mavy special cases ({3n + 1}, {40 — 1},
e.g.) can be proved by methods similar to those discussed above.

Excursion 11—Powers of 2

Look at a table of powers of 2. Can you deteet the pattern 2, 4, 8, 6, 2,
4, 8,6, ...inthe final (units) digits? Now can you prore that this pattern will
continue throughout the table of 2¥ no matter how far it goes? If you have
studied modular (clock) arithmetic the mod 10 system will be a big help. 1f
not, just think about what happens to the final digits as you multiply by 2.

Now let's hunt for a pattern in the last fwo digits of the powers of 2. What
about the powers of 3, or 4, or 5. .. .7 What about a pattern in the last three
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digits? There are a lot of conjectures to he made, and then proved or dis-
proved,

Let us also look at the beginning digits of the powers of 2. No pattern is
apparent.

However, mathematicians ean prove that given auy sequence of digits
S = diduds . . .. there is an integer Ns such that 2¥s begins with the sequence
of digits S. For example, if S = 81 then 21 = 8192 and Ns = 13. Our task is
to find the smallest positive N associated with § = [,2,3 4, ... 25. See
figure 7.5.

For S= 112)3ja|sle]7]8]...T25

Ns = smallest positive

integer such that 2Ns

starts with the 4|1 151ci9i6l46]3!...]2

digits S i

| Value of 2Ms 16]2 |32]|4 [s2le4| , |8 ]...[>
70368744177664”

Fig. 7.5

Actually, the property discussed above holds not only for powers of 2 hut
also for powers of any positive integer that is not a power of 10 (i.e., b 0.
1, 10, 100, . . .). Pick some one-digit number other than 0, 1, or 2 and find
the smallest power N such that b¥s begins with S for S = 1,2, 3

2~
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Non-Euclidean Geometries

Bruce A. Mitchell

It is the purpose of this paper to introduce the reader to the rather strange
world of non-Euclidean geometry. The introduction begins with the historical
events that precipitated a closer look at Euclid’s fifth postulate and the con-
sequential development of the non-Euclidean geometrics. In addition to the
discussion of the fifth postulate, the emergence of three additional subtopics
(absolute geometry, hyperbolic plane geometry, and elliptic pi...c geometry)
should be obvious. Some of the major results will be presented with the idea
that interested students will pursue the details in the appropriate references
presented in this paper.

The Fifth Postulate of Euclid

When Buclid organized his geometry in the Elements, he began with five
“common notions” and five postulates (Wolfe, p. 4). It is the fifth postulate
of Euclid that has been the center of so much controversy. Although there are
many cquivalent forms of this postulate (Eves and Newsom, pp. 53-54;
Wolfe, pp. 25-26), the particular one that is usually used in place of the rather
lengthy original version is credited to John Playfair (1748-1819).
Prayram’s axiom. Through a given point can be drawn only one line parallel

lo a given line.

The troublesome part of this postulate is that to accept it, one must place a
certain amount of faith that every other line through the given point will
eventually intersect the given line. Suppose another line through the given
point meets the parallel at an angle of 179.9999999999999 degrees. (an we
really be sure it intersects the given line? Now, if someone could deduce the
fifth postulate from the others, it could be classified a theorem. Assuming the
acceptance of the other postulates, Euclidean geometry would then be the
“true’”’ geometry.
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Because of a strong belief of the early mathematicians :n the correctness of
Euclidean geometry, there were numerous attempts to prove the fifth postu-
late. Proclus (410-483) tells of Ptolemy’s attempt, and Proclus himself
at.empted a proof. Some of the attempts that followed w.re made by Nasirad-
din (i201-1274), Wallis (1616-1703), Saccheri (1667- 1733), Lambert (1728~
1777), and Legendre (1752-1833). Generally speaking, the attempts all failed.
Somewhere in each attempted proof, a theorem that was an equivalent form
of the fifth postulate, or a tacit assumption about parallels, was used. Today
we know that it is impussible to prove the fifth postulate from the others;
it is independent. For those who are interested in exploring in more detail
these attempts, Wolfe’s book, pp. 26—11, does an excellent job. Details about
the fifth postulate and historical developments are given good accounts in
Beli; Bergamini; Courant and Robbins; Eves; Fawcett; [ nsights into Modern
Mathematics; Moise; Mathematics in the Modern World; and Wolfe.

Absolute Geometry

It was the attempt by Saccheri to establish Euclid’s fifth postulate that led
directly to absolute geometry. If Saccheri had not believed so strongly in the
correctness of the Euclidean fifth postulate, he might have had the distinction
of discovering non-Euclidean geolnetry.

Let us follow a little of what Saccheri did. Tt turns out the first twenty-eight
propositions (theorems) proved by Euclid in the Elements were proved with-
out using the fifth postulate. (Sec Wolfe, pp- 220-22. for a listing of the proposi-
tions.) Perhaps Euclid himself was trying to avoid what he thought might be
a controversial postulate. (This is pure conjecture.) At any rate, since none of
the proofs of these first twenty-cight propositions depends on the fifth postu-
late, they ave available for our use in any system that assumes the other postu-
lates. This is exactly what Saccheri did. Using the other postulates and the first
twenty-cight propositions, Saccheri examines what he called the “isosceles
birectangle.” Don’t let that name scare you because it 15 really quite simple!
Dexiximox. Figure ABCD is an isosceles birectangle, wsually called a Saccheri

quadrilateral, if AB 1 BC, DC 1 BC, and AB = DC. (See fig. 8.1,)

A D

B M C
) Fie. 8.1
" Problem. Using Euelid's common notions, all his postulates exeept the
fifth, and any of the first twenty-cight propositions, prove that given a
Saccheri quadrilateral, as defined and pictured, AC = BD and £4 = 2D,
(This is very casy—try it.)
Although it can be easily demonstrated that LA = £D, without the use
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of Euelid’s fifth postulate no conclusion can be made about the measure of
these two angles. Saccheri considered three possibilities:

1: Both ZA and £ D could be right angles.

2. Both ZA and £D could b acut * “ngles.

3. Both ZA and £ D could be obuw. ¢ angles,

At this point Saccheri attempted to rule out 2 and 3 ax possibilities. If he had
been successful in doing this, he would have established possibility 1 as cor-
rect. Since 1 is equivalent to the fifth postulate, Saccheri would have estah-
lished Euclidean geometry as a svstem free from conjecture about the fifth
postulate!

Although his arguments were not correct, in the process of their develop-
ment Sacciteri established many of the classical theoiems of non-Fuelidean
geometry. (See Fves and Newsom, pp. 35-59; Kattsoft, pp. 630-36; Fawcett
and Cummins. p. 273.)

We are led quite naturaliy by this diseussion into absolute geometry. The
geometiy that results by ignoring the fifth postulate and dedueing theorems
without it= use is absolute geometry. Saccheri, then, with hix assault on the
hypothesiz of the acute and obtuse angles proved a substantial number of
theorems that do not require the use of the fifth postulate or its equivalents.
These theorems together with the first twenty-cight propositions of Fuclid
constitute the core of absolute geometry. Five of the more important results
appear in Eves and Newsom, p. 38. On pp. 125-31 of Moixe’s Klementary
Geometry from an Advanced Standpoint, there is a readable treatment of the
theorems that can be proved in absolute geometry, along with their proofs.
Two particularly iiteresting results are these (Kattsoff):

1. Inany Saccheri quadrilateral the upper base (summit} is equal in lengih
to or longer than the lower basc.

2 The sum of the interior angles of a triangle i~ always equal to or less
than 180,
— e

Hyperbolic Geometry

The three men usually eredited with the discovery of non-Fachdean ge-
ometry arc (‘ari Gauss (1777-1853), Johann Bolvai (1802-1860) and Nirolai
Lobachevski (1793-1856). Gauss and Bolvai were probably the first to ~ee
the independence of the fifth postulate, but Lobachesski was the first to pub-
lixh an organized development of the subject. The geometry that these men
were studying was hyperbolic non-Euclidean geometry and ix sometimes re-
ferred to a~ Lobachev:kian geometry. There are many fascinating iesults
in thix geometry. If vou share this feeln ;after the cursory examind‘ion given
here, Wolfe's Non-Euclidean Geometry 1= an excellent readable souree for
further study.

As in the case of ab=olute geometry, the first nine postulates (five cormmon
notions and four postulates) are available as well asthe st twenty-eight prop-
ocitions, (Why?) In hyperbolic geometry, instead of the tfth postulate’s
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Leing ignored, it is replaced by a contradictory alternative that will be called

the characteristic postulate of hyperbolic plane geometry.

CHARACTERISTIC POSTULATE OF HYPERBOLIC PLANE GEOMETRY. Through a
given point not on a given line there exists more than one line that does not in-
tersect the given line.

Before looking at the theorems of hyperbolic geometry. it should be men-
tioned that indirect proof is used in many cases, and, at the beginning, refer-
ence is made to Pasch’s axiom. Put very briefly, the spirit of indirect proof
involves assuming the negation of t' ~ entire statement that is being proved
and, as a con: ~quence of this assumption. finding a contradiction of a _..own
fact. Since the assumption led to a contradiction, it is an incorrect assump-
tion; therefore, its negation, which is the original statement, has been proved
within the structure of the system (Van Engen. pp. 640-12). Euclid made a
few tacit assumptions in developing his geometry (Wolfe, pp. 3-9). Moritz
Pasch (1843-1930) recognized ove of these. The result of this was Paschs’
axiom. which roughly states:

If « line pusses through one side of a trianqle, not at a vertex. then it must in-

- ¢ tersect at least one of the other two sides.

It follows fiom this that if a linc enterx a triangle at a vertex, then it in-
terseets the opposite side (Kattsoff, pp. 630~31).

Beeause of the characteristic postulate of hyperbolic geometry, three
classex of Hues are generated (given line [ and a point P not on {) as described
and pictured in figures 8.2 through 8.4.

Case 1. shown m figure 8.2: those lines throuzh P that interseet [

l)

Fig. 82, Case |
Case 2, shown in figure 8 3: those Line~ that are the “first™ lines on the left
and right of interseeting line Q) that do not terseet L.

0o
g, 8.3, Case 2
Case 3, shown in figure 8.4: (hose lines through I’ contained within the

angles formed by the lines in case 2.
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Fig. 8.4. Case 3

The lines in case 1 are celled tnlersecting, the lines in case 2 are called
parallel (it is important to note that parallel lines in hyperbolic geometry refer
to the first nonintersecting lines), and the lines in case 3 are called noninter-
secting lines. For a discussion of case 2 see Wolfe, pp. 66~67; or Moise, _.; .
306-8. It must be proved that the lines described in case 3 do not intersect
the given line; that proof is included in the outline of the proof of the first
theorem. We are ready to summarize some of the above discussion in a
tbeorem.

Turorem. If s any line and P is a pown not on !, then there are always two
lines through P which do not intersect ! and (1) which make equal acute a: gles
with the perpendicular from F to 1; and (2) every line through P lying within the
angle containing that perpendicular and onv of the two nonintersecting lines
described i .) wnlersects I, while (3) every other line through P does not.

Establish the fact (using the characteristic postulate and Dedekind’s
theorem) that the lines through P are divided int two sets: (1) those that
intersect ! and (2) those that do not intersect L. Show next that the dividing
lines .. the two sets are the first of those lines, one on the “left’”” and one
on the “right,” that do not intersect . Parts 1, 2, and 3 of the theorem refer
to these two linec. (See f&ig. 8.5.)

("First" ponintersecting
tine on left)

("First” nonintersecting _
line on right )

I 0

Fig. 8.5

DEDEKIND s THEOREM. Let A and B be sels of real numbers such that—
1. every real number is cither in A or in B;
2. no reol number is in A and in B;
3. neither A nor B is emply;
. ifa€ Aand b € B, thena < b.
Then there ts one and only one reci number ¢ such thata < ¢ foralla € A and
c< bforallb € B.
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Fig. 8.6

1. Assume £ APQ ¢ £ DPQ, say £ APQ is larger. Construct £ RPQ =
£ DPQ. PR intersects [, say at T. (Why?) Construct JQ = TQ. (See fig.
86.) TPR=AJPQ.(Why)ymZ1l=m/Z2butmZl=ms2+ms 3
with . -waer than zero. Thismeans mZ 2 =m < 2 +m <4 3 withm< 3
> 0, and thy npossible. (The outlines of the proofs . 1 this paper are lacking
in detail and rigor. It is the intent that the reader can supply these.) The
demonstration that the angles are acute is left to the reader.

2. Use the fact that the lines in (1) are the first nonintersecting lines.
-y L and
3. Assume PR intersects | at J. PQL is a triangle with PD passing
through the vertex. PD must intersect I by the theorem proved from Pasch’s

>
axiom. Since PD was given as nonintersecting, we have a contradiction and
the assumption is incorrect. (See fig. 8.7.)

Fig 87
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Proble.n: Which of the three classes of lines deseribed alove would the Eu-
clidean “parallels” fit? .

In order to-explore, briefly, the idea of the ideal triangle, a defiliition of
ideal point is necessary.

DErixiTION, If fwo lines are parallel ( Jirst nonintersecting lines), then they share
an ideal point, L (omega)

DErixrrioN. Given tico ordivary points A and B and the ideal point Q, the figure
ABQ is an ideal triangle with AQ parallel to BQ.

After showing that the exterior angle of an idenl triangle is greater than the
opposite interior angle at the ordinary point, the topic of congruent ideal
triangles is developed (Wolfe, pp. 73-76).

It is now tine to get back and see w..at’s happening to the Saceheri quadri-
lateral i this geometry. We shall do this via a theorem. (See fig. 8.8.)

Tueorem. If ABCD is a Saccheri quadrilateral with right angles at band C, then
(1) the angles at A and D are equal. (2) the angles at A and D are acute, and
(3) the line connecting the midpoints of the base and summit is perpendicular
lo each.

(1) and (3) have already been proved in ahsclute geometry, and the same
proofs can be used here.

(2) There exists a parallel to BC through A and D, 4Q and DQ. Since
AB = DC and £ABC = £DCE, AABQ =~ ADCQ by a congruence
theorem for ideal triangles. Now, £2 = /3 by corresponding parts; £1 >
£4, since £1is an exterior angle of AAD Q. Therefore £ 1 + 42> L4+
L3 L+ £d = £3.s50 L1 + £2 > /3. This makes £3 acute!

A D
S0, 3353
\y\ \\\ K'\) \\\
\\ ~
\\\
~_ 8
B C E
Fig. 88

Another strange quadrilateral is the Lambert quadrilateral.

DerFiNrrioN. A quadrilateral with three of its interior angles right angles is a

Lambert quadrilateral.,

What secnis a little unusual akout this enadrilateral is the fact that it can
be proved in hyperbolic geometry that the {oarth angle is acute! (Wolfe, pp.
79-80.)

TreoreM. The sum of the interior angles of cvery right triangle is less than 180.

Construct £3 = £B. At M. the midpoint of hypotenuse AB. construct
MP L CB. Mark off AQ = PB. (See fig. 8.9.) Now AQAM = APBA.
(Why?) £1 = £2,and P,M Q are collinear (why?), and ACPQ is a Lambert
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quadrilateral (why?), with ZCAQ acute Since 23 + L4 <90 and -£B =
£3,thismeans Z4 4+ ZB < 96 With £C = 90, £C + 24 + £ZB < 180.

Fig. 89

Topics that follow in a more thorough study are properties of ordinary
triangles, nonintersecting lines, construction of parallels, angle defect, area, and
models—not necessarily in that order. Problems ean be found in Wolfe’s book,
in Maiers’s article, in most textbooks on non-Euclidean geometry, and in
Eves and Newsom. One that I will leave you with is important in the proof of
(2) for a Saccheri quadrilateral. Are the base and summit of a Saccheri ¢qua-
drilateral intersecting, pargilel, or nonintersecting? Which is greater, base or
sammit? It might be finally interesting to note that in hyperbolic geometry
two triangles with all of the angles in one equal respectively to those in the
other are congruent!!

Elliptic Geometry

In 1854 Bernhard Riemann delivered a lecture dealing with the bounded-
ness and infinitnde of a line that mads a major contribution to geometry. Any
two stiaight lines in a plane interseet if the first. seeond. and fifth postulates
of Enclid are modified to the following:

V. Two distinet points determine at least one straight line.

2. A straight line is unbonnded

5. Two straight lines always intersect each other,

Another geometry, equally consistent to Euelidean and hyperbolie, results.

An interesting result that comes early in this geometry is that all perpendi-
cenlars erected on the same side of a given line ! are concwrrent in a point P
called the pole (Weolfe pp. 175-74).

It is also true that PA = PB = pC = p7 = q. (See fig. 8.10.)

P

Fig, 8.10
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Problem. Given figure 8.11 with 0A L AB,OB L AB, extend 04 to 0
such that A0’ = AO. Draw O'B and show that 0', B, and O are collinear.

(]
¢
A B
o
Fig. 8.11

The figur~ formed is called a digon. In this geometry it is possible for two
of the same kind of line Euclid was talking about to enclose space.

TruioreM. Given a triangle A BC with a right angle, if one of ils sides is less than
g (the constant perpendicular distance from the pole to the line), the angle
oppostle that side is acute. See figure 8.12.

Since O is the pole, the angle at A isa right angle (£ CAO0), with £ CAB <

2 CAO and therefore acute.

A
i q—C—O
| N
N
C'r—— 0 B _IO

Fig. 8.12
Tueores. The line joining the midpoints of the base and summit of a Sacchert
quadrilateral is perpendicular to both of them, and the summit angles are equal
and obtuse. Sce figure 8.13. ’

A M D
a ~
\\\
\\
70

////

I %

B M c :

Fig. 8.13

Again the proof of the midpoint line and equal «“1immit angles is 1}11(:11:111;.50(1.
To prove that the summit angles are obtuse, extend AD and BC and they
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will meet at a pole, say 0. (Why?) £DCO is a right angle with CO shorter
than ¢. By the theorem above, ZCDO is acute. This means that ZCDM
is obtuse, and the theorem is established.

It follows that in a Lambert quadrilateral the fourth angle is obtuse, and
the sum of the interior angles of a right triangle is greater than 180. The proof
for the angle sum theorem is very similar to the corresponding proof in
hyperbolic and can be supplied by the reader. Can you generalize the interior
angle sum theorems to a general triangle? A quadrilateral?

There are models on which the properties described for hyperbolic and
elliptic have physical justifications (Moise, pp. 114-21; Eves and Newsom,
pp. 68-72; Groza, pp. 287-89; Courant and Robbins, pp. 221-25; Mathema-
tics in the Modern World, pp. 118-19); but that is a whole topic in itself.

The author has made an attempt to get the reader involved just deeply
enough in the geometries to let his curiosity get the b f him in at least one
of the topics discussed. An adequate list of references, <en supplied to help
satisfy the curiosity. I hope that many of you will do this sort of follow-up
work on one of the topics. 1 think you will find it fascinating!
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Boolean Algebras

Wade Ellis

The purpose of this all too brief expository tract is to provide enough
general insight irto the concept and application of Boolean algebras to create
and stimulate interest on the part of students who have studied some ordinary
algebra—interest which, if sustained, will Lring the deep and rewarding satis-
faction that always accompanies productive mental labor. But the rewards
should extend beyond the gratification of a natural desire, even need, for ac-
complishment. Mastery of the historie, recent, and continuing development of
Boolean algebras will provide the student with knowledge that continues to
grow, to become more beautiful. and to reveal its deeper and broader associa-
tions with an ever-increasing variety of mathematical concepts and applica-
tions.

A list of references appears at the end of the article. The books in this list
provide insights into the earliest developments iu the subject area as recorded
by Boole himself. They also provide more extensive expository treatment than
can be given here and include enough examples of apolications and relations
with other parts of mathematics, together with their own bibliographies,
to whet our curiosities and interests.

Ordinary algebra uses the real number field. ‘The field axioms should be
reviewed carefully in connection with this article; by all means they should
be at hand for careful comparison w.ien the different sets of axioms for a
Boolean algebra are encountered here. The differences and similarities between
the two types of systems are defined by the sets of axioms. They are more
clearly end fully explained by the holies of theorems developed from the
axioms. Thus no axiomatic system is fully understood until all the conse-
quences of its axicms are known.

“ Just as the field axioms are satisfied by various fields (e.g., the complex
field ; the real ficld; the algebraic fields; the rational field; the fields of residue
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classes of integers modulo p where p is a prime, or modulo p» where pis
prime, and »n is a natural number, n 2 2), so there are various systems of the
type (S; @, ®), each consisting of a set of elements and two operations
jointly satisfying the Boolean algebra axioms, It should he remembered that
every Boolean algebra in the sense of the preceding paragraph has all the prop-
erties that emerge as consequence. of the axioms.

We begin now with ordinary familia» truth tables.

Propositional Calculus

A proposition ix a sentence that is either true or false, but not both (and also
not neither). Propositions abound, not only in nature, but in everyday life.
We might wish that all sentences could be true, but that is not. possible. The
proposition 3 4 5 = 8 is true. However, if we change any one (and only one)
of the numbers 3, 5, or 8, the new proposition will be false: 3 + 6 = 8 is false.
Moreover, if we leave one of the numbers unspecified, the expression is not a
proposition; n + 5 = 8 is a sentence, but it is neither true nor false, and there-
fore it is not a proposition. It becomes a proposition whenever » is a specified
number. Not only that, but as soon as 2 is specified, we know whether the
proposition is true or false. As a matter of fact, we know that for every value
of n except n = 3 the proposition is false and that for n = 3 the proposition
is true, )

A sentence that is not a proposition but becomes a prope «ion when
exactly one unspecified word (repeated or not) in it is specified is called a
propositional function. A convesient example is

H] _' n
2., L2
1]

n

, is the svmbol for “the largest integer

which says, remembering that [

. n . . . . [T .
in ;,” precisely that “n is an integer that is divisible by 2. If we speeify that

n = 6, the sentence hecomes a proposition that i< true. Similarly for n = 8.
Clearly the possibilities are boundless. However. if we specify that » 9,
the rentence becomes a proposition that is false. Similarly for n = 11, Again
the possibilities are boundless.

Let us now resort to the use of the familiar notation for a function. Let p
be the name of our function, and let its domain be the set / of all integers,
positive, negative, and zero. Lot n he the generie name of the elements of
the domain. Let the range of p be the set 2 = 7., I T = (the proposition
is true), ' = (the proposition is false) . Then p maps I onto R through

N Xl

rity = [
pd — R op) = ’ 2 2

i n'l'
ll ’fli‘ # laJ
A short table of value: for thi: funetion follows,
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n___p(n)
¢ T
s T
9 F
n r

Thistablecan beextended without bound by simply entering valuesof nand com-
puting the cosresponding values of p according to its defining formula.

Another convenient example is provided if we map I onto E through a
similar definition o1 a function g:

T} =[%]
g:1 — R, g(m) = 3 L3

e m mY

where now m is the generic name of the clements of I. A short table of values
for the function ¢ shown below: .

m  q(m)

6 T

8 ¥

9 T

11 ¥

Again the table can be extended indefinitely, as in the case of p. Let us keep
these functions and tables in mind as we proceed.

The funetions have immedir.ce but rather simple-minded applications. Sup-
pose we have one device that can determine whether an integer is congrueit
to zero modulo 2, that i3, for a given n, whether p(n) = Torp(n) = ¥. Let
this device be conneeted to a switch controlling lighted signals so that if the
switch is elosed (p(n) = T), the T signal 1s lighted and if the switeh is open
(p(n) = F), the F signal is lighted. A simple toy, suitable for use in a kinder-
garten, could now be constructed. But before we consider that, let’s drag in
some other ideas.

Suppose we feed through the device in succession 1,000 random numbers and
count the 7"s and F’s as they light up. How many 77s would be expected by
the time the process was complete? Suppose the number actually found should
be much different from what was expected. What conclusion(s) could be
reached (Don't jump to conelusions! Nor away from them! Your hypoth-
esized, observed discrepancy eould be due to one reason or any combination
of several reasons.) It would be entertaining—a prime reason for studying and
doing mathematics—but perhaps distracting to continue asking and answer-
ing such questions. These few are included only for the purpose of providing
a glimpse into the kind of experie~ces the mind provides even in the absence
of hardware. And if you want berdware, it is much less expensive to explore
the realm mentally before even heginning to design machines or draw con-
struction diagrams, to say nothing of starting to build.

It is left as a simple exercise f r the reades to examine the function g as we
have just examined p. Now that that's finished, let us consider working with
p and ¢ jointly. To do thisin the way that will lead us toward Boolean algebra,
we first moke 2 = n and use n as our symbol. We have two obvious choices

&




oy e — = B -
3
H
-
=
-t
sdon
S s
;.%.;;"«-E“‘"Q
. s
- ea™s
& ompr e LSt T T T R % -
- . =G = { T

suggosted by simplest joint uses of two switches. Sim;;le.di@gti;ns will-per-
haps help. S

plo) gy - .

e
Wy

I"ig 9.1._Series connection

AT A S gy
.

e e

pln) . } g o

— Fig. 92. Parallel coninéction

B R N TR
. ' .
’

It,\\jill'be interesting to use our previois tables to represent these diagrams:
n p(n) q(n)  Series - “Parallel- e
. L _____connection _connection- ) - =
’ 6 :T h T - ;771"_ ;T’ B . - :,: .. - -
8 T F F T o :
9 F T F -T ]
11 F- F F F - 1

The reader should Verify all these entries by- speculating about :tbéw‘aﬁoys' C- . ,._.M.;

S
|
i
b

‘possible combinations of conditions of the switches ii-the diagrams. We fote
immediately that any integer n will-generate unambiguously exactly- one of

‘the horizontal rows of: entries within the entire-table. Also, -no-integer-will- -

generate any row of entries except-one of these-four; We-can disperise with - -
both the specific definitions of the functions p and g and also with the integers. S

This is a peculiar abstraction in which ive frec the functionsand their common
‘domain but preserve:intact their-comson range. ‘We:have pit-ourselves in i
position not only to complete the usual truth table entries for p; q; ~p; p A g; o=
PV-8;p=q;p=q;pV (~p) (tautology); and p. A (~p) (contradiction) s
but also the other sevén columns of entries almost riever listed and even more § .
rarely used: ~ (p.A )5 ~ (p V g); p SE~P=9q);~q; ~(p=g);and

-
'

~(p &q). It is easily seen that each of these sixteen. columns defines a func-

tion that is a “composite” of p and g; whose domain (which need not-be other-

wise specified) may be taken as the common domain of p and g. The reader -
will easily construct the entire sixteen-column table and will use the sixteen
names (p,g, ~p, - : ., ~(p < g))-of functions above to_properly label- the
columns. The more encrgetic.and resourceful reader will construct wiring dia-
grams, similar to those above, to simulate or represent these functions. based
on p and q. The persistent and affluent-reader will even construct or assemble

bits of hardware for concrete illustration.
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Since the table of entrics is now complele, with four rows and sixteen col~
umns, it is virtually impervious. The labels on the columns can be rearrar zed

in precisety 4! (no. not 16?) different ways \\jitboutvchanging its import. More

important, however, is the fact that the table can be represented by 16 dif-
ferent® trices. They aret

C=pA (~p) PAQ
2 e
Ny F T N F T
FI F F F| F F
T F F T\ F T

- ~p V9

If we replace each F by 0, and each T by 1, these arrays are, in 'Qrdc;'i

C=pA(~P) ~pAg ~(p=4q) - ~pe=9)
q q
PN o I PN 0 I
0] 0 O 0| 0 I
I o I I o O
P pe4q
q‘ q
P 0 I AN 0 I
o]l o0 O ol 1 O
I 11 I o I
~q ~p pPVvae
q q q
P 0 N O I p o I
o1 O o\ 1 I o] o I
I I O I o 0 I R |
p=q p=q ~pAg T=pV{~p)
q

q q _ g

P 0 p ‘ o I PN o I P\|_O I
0 I 0 I I 0 I{ I 0 I I
I I I 0 I I |1 0 I I L

Just as the truth tables contained all possible 7cvolumrtrls of four symbols, each
symbol being a 7 or an F, so this table contains all possible 2-by-2 arrays of

symbols, cach symbol being an O or an I.

~D~
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The array for 5 A q now reminds us of the multiplieation table for-the field
of residues of the integers modulo 2, and the one for ~ (p & g)-looks like
the addition table for that same field. So a more thorough-than- usial ‘exa-
mination and.manipulation of truth tables has led us to a-situation having

some features reminiscent of a familiar and apparently-rather. simple mathe-

matieal system. Let us not be diverted!

Bodlean Algebras

Cousider an arbitrary set having a single elerent:T = {q}. The power set. of
I (the set.of all subsets of:I) is{g, I}, Where ¢'i§—_§lié_§3fn§ty@t;:ﬁébﬁéi‘ét@m
of sét wiioit and set- intersection- defiiied-on- this -power -set “have-the-tables
shown below. )

u ¢ 1 n ¢ I
¢ ¢ 1 ¢ & @
o1 1 ¢ I

set of arrays in the preeeding section; they are the atrays for p V. gandp A g,
respectively. George Boole’s recognition of this fact, expressed ‘in eonsiderably
different terms, led hif to lay the groundwork-aiid make the initial’ coiistue-
tions of what is apparently properly ‘known now as iﬁmlééii:aigébfa.

We eait reconstrict the early stages of this development, arranged in-a

rationally appealing if not necessarily chronologieal order, iir the following
ashion: . '
First the above fact-was noted-in the case of a one-element set I. Then a set
of axioms, not all independent, was developed to-describe the set algebra for
the power set-of . Then a start was made-to explore the axioms, leading to the

. As we kuow, the counterparts of ‘these arrays must be found-in-the éxhaustive

development of a body of theorems and associated statements as well as modi:
fieation of the axioms thémselves;Continuing‘ throughout this development
has been a consideration of and application to the ease of an arbitrary set I
with an arbitrary number of clements. This generalizatioii- from the earliest
concept procecds in a different mamner from the development in the case of
fields. There the start was with the rational field. A very interesting diversion
lies here—let us not follow jt! .

An interesting set of mutually independent axioms for a Boolean algebra
is the set of so-called Huntington postulates. It is listed here because of its
aesthetic appeal and the simplicity of its use as a ciiterion to determine
whether a given mathematical system is a Boolean algebra.

Axiomatic Definition: A mathematical system < B; ®, ® > is a Booleann
algebra if the following axioms are satisfied.

Ao. Closure. If a and b are any elements of S,thene ® b€ B anda ® b € B.

Ay. Commulative laws. 1f @ and b are any elements of B, thena @ b = b ®a
ande ® b = b ® a. (As usual we assume that “equality” is an equivalence
relation.) .
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Aq: Distributive laws. If a,-b, and.¢ are any.élemenrs ¢f B, then a ® -(b-® ¢) =
@®Db) & (a®c) and a® (® ) = (a ® b) ¥-(a® c): (Note that-the
left -identity-is. analogous to- the-distributive law-of- ordmary algebra The
right identity.is different; its analogue does_not-hold in- ordmary a gebra
Remenmber that-the word zdentzty as_used.- hermmeans -an_équality-that is.
“valid even if* the letter symbols aré. changed in.a- consxstent manner.)

As. Zero and-unit-eles-.ents. The set: B has two elements ¢ and -L-s1ch-that:for
any element a ofB \\e have a-®:0-=-a and a ®- I =g

above—hsted chang% m the ongmal theorem- and proof Although Some
theorems are self-dual, Just asare alLthese ",,many thieorems éither are
not self—dual or can’ ‘be splnt $0. that only one half ,needs to be proved the other
half-is thefi established: by the: pnnclple of duahty

To demonstrate how- this- \vorks Tet us-prove the following theorem (laws
of tautology)
TugorEM 1. If B 4s any. Boolean algebra and if ais any element-of -B, then

a-® 6= aand q ®-a =a.

As.it stands; this theorém.is self-dual: We can split it in half by omitting
-either of the 1dentmes ‘Let us omxt thea @ a=g and prove.the other:

@®a)€ Ao
(aeaa)=(ae>a) ®1 A; -
;(aQa)@(aea’) A,
=a® (a®a’) A,
=a®e A,
= a. Az

This completes the proof of this half. The second half, being the dual of the
first, can be stated and its proof constructed by simply making the specified
mterchanges between @ and ® and-between ¢ and-I. Since this is true, e
need not bother to writé & proof. HO\vever, it is indispensable t» understand
the principle of duality as it applies here and to make certain that the state-
inents which-we consider as (rutually) dual afe indeed (mutually) dual.
Five additional theorems, split into duals where appropriate, forin a broader
basis on which to develop the extensive theory that proceeds from the system
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of axioms aud-at the same time-explains.the nature of Booléén algebras In
each of-these, (B; @, ®) is any -Boolean algebra and a, b, ... are arbitrary
elements of B.

THEOREM 2:a © ] = [ a®¢ =4
Proof: (to be supplred by . Proof: a- @ qS = 6D (a ® ¢)
the reader.)- ) : (@:® d) & (a ®-¢)
’ : = a Q-(a" ®-). ’
= @@V{l’ .
THEOREM 3:-d ®-(d- ®~b) =0; o® (@®: b) =4
Proof: (To: be. Supplied- by Proof:a: ®- (a &) =-(a: ®. $):®.(a ®b)
the reader.) ‘ ’ —a®(¢®b)
—a®¢
= q:
THEOREM 4.-@’ (the camplement of a) “is-unigue: and (@) =-a
Proof ‘Suppose B contams an a that-has:two- complements a'-and ¢’. Then
n@a—-la@a ¢,anda@a,—1a®a,5-¢. :
Hence

B TN

TR o e
R L

[

Ly R T

o

%
i
f
%
{
5
3
i
i

Therefore a’ is nmqne To find - (a’)’ regard the symbol a’ just as. if*it were a
letter Without- decoration- such -as b: Then (@) is-the complement ‘of-a’, the
parentheses being used:to avord -confusion with a”; t6 which no meanrng has
been assrgned Then (/)" @ @ = Land(@)": ®ad' =g aswellasa @ a’ = I
“and @ ® a’ = ¢. And since- the complement of-a is* umque, (¢’)’ =.a. This
comple\es the proof Note that-in a ©l=La®I= a, a'is any element of
B. Ifa = ¢,“ehave¢®I‘= Iand 61 =g Thlsmeansthatqs =T
Heice (¢°) = I' = ¢. That is; the- drstlngulshed eléments ¢ and 7 of & every
Boolean- al&,ebra are each the complemeént of - the-other.

THEOREM 5. (a®b)’==a OV; @odb) =dev.
Tm;onEMGa@(bGBc) (a@b)@c, a® b®c)=(a®b®c

Proofs for theorems 5 and 6 can be found in Kaye as well as in some of the
other references or perhaps the reader can construct his own.
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Systems: ( 5 ®, 0)

It may be useful to note briefly several mathematical systéms consisting
of a set-of elements and two bmary operations” governed by a code of laws (list
©oof- axxoms) We- might first notice the existence of. a class of systems, even
lower in-a kiud oflhlerarchy, in eachof which theré-is-a set and-one binary
operatron wrth governrng axxoms An example 1s the now famrlrar class of
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ordinary indicating that the well-known laws of addition hold: Another.is the
set-of integers, including zero, divisible by -an arbltrary integer n, agam ‘with
ordinafy addition as the operation. These groups all- ‘have a countable infinity
of elements. They are.not-to be. confused with the- -groups-of reésidue classes
of integers médulo-an- arbltrary mtegenn withrmodified addition. Such: -groups
have the same (ﬁmte) numbér of -elemients-as the (absolute value .of the)

modulus

rich. d1vers1ty of systems Wwithin each subclass and assoclated \v1thisubclasses
Discussioiis of some of these systems comprehensxble to, the pers1stent reader,
even the tyro; appear in such ‘bocks as ‘Birkhoff-and- MacLane -and-Andrée:
Diligent study, with aii eye out for- propertles of one class of- -systenis that seem

‘similar to properties of-other- clases,-as-well as unﬂaggmg effort to-understand

and-become familiar with individual:systéms;-can-be-almiost- unbelievably- re:
warding and satisfying. Mnreover, _theré- areiuseful (a5 well -as-acstheti¢) in:
terpretatlons and’ apphcatlons of-most systems.

In our own situation; with-our. truth tables set-up-first i in-the usual: fashlon
then in a-conveniently modified - arrangement, we found several- mterestmg
_pairs of arrays. ‘If the arrays representing p A g and- N(p < ¢)-are used as the
“multiplicatioh” and- “addition” tables; respectlvely, of an (S; @, ®),
where 8 = {0, 1}, we have a ﬁeld of charactenstzc (and also order) 2. An
example. of such a field is the field of resndue classes of integers-modulo 2.

On another hand, if we take the- arrays-representing p A ¢ and pV ¢
as “multlphcatlon” and- “addition” tables, respectlvely, of an (B; @, ®),
where B = {¢, I}, we have a Boolean algebra: Now a Boolean algebra is very
different from a field. It has different*applications and different interpreta-
tions.

It should not be surprising that we can find tables defining ¢ different systems
among these arrays: The fact is that all posslble 2-by-2 arrays involving only
two district elements are there. Hence if it is possible to define different
two-element systems by using different pairs of arrays, it has to be possible
to find the tables in this set. It will certainly be interesting for you to explore
this matter further.

Simple Applications of a Boélean Algébra

We can obtain some simple appllcatlons for the Boolean algébra (B; ©,
®), where B = {9, I}, by first considering a set of light bulbs controlled
by a collection of switches each with only on- off posmons The immediate
source of power can be an ordinary base plug. Or our -wiring configufation
may be simply a part-of the house (or other) wiring: As-with so-called word
problems, we have to assign meanings to our terms. LetSy, Se, - - . indicate

specific switches and’ Ly, Ly, . . . indicate specific bulbs, In eaeh switch, ¢
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“works, and:(3)-the: bulb i§- “good ¥ Also;the case ofd three

indicates the “open” or “off” status with no current flowing; I"indicatés the

“closed” or “‘on” status with (all) current flowing. In the-case of each bulb,
¢ indicates that it is not llghted and 7 indicates that iti is lighted. For a- singlé
bulb controlled by a single swrtch the: represeritation.is so simple -as to be
perhaps confusing:

S y

d,l (Ibl Switch off; bulb not hghte(l

I 1 “Bivitch on;_bulb-lighted”

“The tacit. ‘assumptions-are-that (1) the “house -current -is- on, (2) the.switch
3 bulb controlled
by an.in=socket so-calléd-swit ch:miist be, dlﬁerentlated Sucb:f siviteh is a éol:
lection of two of our switches or. a WiFing confi guratrons\\ ith eqmvalent efféct

We-are frec to. reverse this_control procedire- bvespecrfymg that when- the
switch is oi, the bulb is not hghted and when-thie-sivitch-is off the -bulb .is
hghted Why, do you suppose; -don’t-we use this. arrangement generally?

If we want a bilb. t6 be controlléd -by two- switches-(at- différent- locations)
in such a Way that the'bulb’s status-will be. reversed (from off to on-oF froin on
to off) by reversing the status of erthex smtch, our-representation has to pro-
vide-all-four possible:combinations of statuses for the Switches as well as both
statuses for the bulb: This- may be done in elther the -columna¥ -or the
(bordered) square array form with the L, entries inside: .

S»
S S: }q . S K-y
¢ & / ¢- )
¢ I & 1 I ¢ I
I s ¢
I I I .

Note that our requirement, “reversing either switch reverses the bulb,”
fixes the L column (or the inside of the table). However, we dohave the alter-
native of specifying that the upper entry in that column should be ¢. If we did
that, our controls would still work, but accordihg to these drsplays

S: .
S| s: Ll Sl _ ¢ _ I
4 ¢ ¢ I
¢ I 1 ? ? &
I ¢ I
I I 4

In practice, a wiring (or schematic) diagram is made to represent these
displays. It will be helpful to compare such a diagram from an electricians’
handbook-with our displays. The displays can be interpreted for valved pipe-
lines for liquid flow, but the piping configurations will be somewhat different.

You should note that in this carly case a peculiar type of symmetry mani-
fests jtself. In either of the two pairs of displays above, the labels S,, S,, and
Ly may be rearrariged in any way while the columns remain fixed, without
disturbing the validity and interpretation of the representation. This symme-
try will be present only ih some representations, not in all.

What you have here are rudlmentary parts of a much broader, highly
sophisticated, and enormously cfféctive system of anulyzing wiring needs and
de51gn1ng wiring configurations to implement controls and operations of
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various typés. This system has been -indispetisablé to -the development of
computers of various types, including control systéms, and of the great com=
munications networks that now span the earth and reach out-into space. The

references provide further information and experience.

alul.iosmmv

Adelfio, Snlvatore-A:,and Christiné F. Nolan.-Pinciples and Applications of Boolean Algebra
New York: Hay dcn Book Co., 1964.

Allendoéifer; C: Bg- and C. O: O'xkl('y Principles of Mathematics. New York: McGraw-
-Hill:-Book Co., 1955, 1963,

Andree,-Richard V. Modern Abstract: :Algebra: New York: Holt Rmchart & Wmswn, 1958

Birkhoff,- ‘Garrett, and:Sainders MacLane. A Survey of Moden Alyebra New York: Ma¢:
mxll'm o, 1941

Boole, George. An Investigation into the Laus of. Thoughl New York Dovcr Pubhcahonﬂ
1951.

The Mathematical Analysis of Logic. Oxford: Basil Blaekw ell; 1948

Bowran, A. P. A Boolean Algebra. T.ondon: Macmillan & Ca., 1965.

Carvallo, Michel. Y onograplic des treillis el algébre de Boole. Pafis: Gauthier-Villars
& Co., 1062 : -

. Principes et applications-de Panalyse Booléenne. Paris: Gauthier-Villiis & Co.,
1965. L

Casanova, Gaston. L'Algébre de Boolc ‘Paris~Presees Universitaites de France; 1967.

Eves, Howard, and Carroll V. Newsom. An Introduction to the Forndations and I’umlamenlal
Concepls of ‘llnlhemalzcs New York: Rinehart & Co., 1958.

Goodstein, R. L. Boolean Algebra. New York: Pergamon. Press, 1963.

Kaye, Douglas. Boolean Systems. London: Longmans, Green & Co.; 1968.

Kuntzmann, J. Fundamental Boolean Algebra. London: Blackie & Son, 1967

-

S ram 4,

o

M | v

LI

AL b et M Wt r i e (o ©

PN

PCPTE

'

}[ B

k] b

Wt s Yl




e T A TR R S e R A TR e 05 TeS E T F SRt T F b e RS ok -
e -

R -
Rt
{

o
k«
I Oy e
+
5]

¥
e .
W :
uL -
¥ 3
'3 T
- ]

giﬁafy and the

W A A G A et gl e

Julius H. Hlavaty

brnas il

A Euclidean-Paradox
| F—
A bif?ﬁxng demonstration

Consider a circle O with radius r and a point P inside the circle. Find a
point P’, outside the circle, such that
OP . OP' =1,
(Such a point is construetible even with straightedge and compasses only,
as seen in figure 10.1.)

, .
, .
,‘.;MMA q.w,uw, o Iy A

S b e

R R P P

Fig. 10.1

Where do you think P’ is located ; inside, outside, or on the circle? Let’s
see!
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Find the midpoint M of segment PP'—assume it is inside the cirele. Con-
struet _zlg_erp_e_ndicular to Q_I’_ at M and extend it until it meets the circle in 4.

‘Draw AOQ, AP, AM ,and AP,

Now, in A AOM: )
OM? + AM? = 4Q? = r? (1)
and in A APM:
PM? 4+ AM? = AP @)
From equation (1):
) AM 292 = QM2
Substituting in equation (2):
PAr = PM? 42 — OM2
= y? — (()."l’ - l’x‘l’
. =1t — (OM + PM)(OM — PPM).
But, since PAM =: P'M: '
PA2 =2 - QP . OP
=7 =t a(!
This means that the distance between a point on the circle (4) and a point
within the circle (P) is zero! Does this mean that the two points are coincident?

An explanation?

It is obvious that there is something wrong with the demonstration in the

foregoing section. Is it that point, M-is oulside the circle and that, therefore,
the perpendicular bisector does not intersect the cirele?

Let's try coordinates and a special case (the treatment can easily be made
general).

Lct the circle have its center at the origin and let its radius be 1. Its equa-
tion then will be

2t yt=1

Let the point P have coordinates (3/4, 0).

Then, to find P’ we get 3/4-a = 1 and a = 4/3, or the point P’ has co-
ordinates (4/3, 0).

Using the midpoint formula we find that the coordinates of the point M
are (25/24, 0), It is, therefore, outside the circle, and the perpendicular
to the z-axis at M does not intersect the circle. Does this solve our paradox?

The line perpendicular to the r-axis at M has the equation 2 = 25/24, and
we can look for the intersection of this line \uth the circle by attempting to
solve the system of equations:

We get .
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so the perpendicular bisector of PP’ meets the-cirele in the points (25/24, 2
. 74/24) and (25/24, — 7i/24). -
; Let A be the point (25/24, 7i/24) and let us find the distance between A4 }
i and P, Yes, the distance again turns out to be zero! ] v
; 8o, again we find that distance AP is zero, that is, that A and P would .
: seem to coincide. ‘
: i We now have an alternative: We can decide that the algebraic demonstra-
3 tion shows that there simply isn’t such a-point A on the circle (because we
& cannot represent points with imaginary coordinates in- the plane), or we can = e
¥ adventure forth to see what consequences would follow if we allow “imaginary” 3
£ g points into our work in geometry. i
& Problems to investigote '
i f‘i 1. Cau you prove by methads of demonstrative plane geometry that point H

. M must fall ontside?

(]

. Can you make the analyiic proof general, that M must fall outside the
circle?

imaginary Points and Lines

Some definitions and th;ir implications

,‘M
Py TS, T R

Consider the set of ordered pairs (a, b) where a and b are real or imaginary .
numbers. We shall rall any such pair the coordinates of a point in the plane. >
We shall even say that ray such ordered pair is a point in the plane. If a or
b or both are imaginary, we shall call the point imaginary.

; We shall consider equaticas with real and imaginary coeflicients. We shall

assume (though it can be proved) that the Pythagorean theorem (and there-
fore the distance formula) halds,

I T PR

Censider the real point A (0. 0) and the imaginary points B (i, 1) and
] C (i, ~1). Find the lengths of :Ye sides of AABC. Do you find AB = 0, X
] BC = 2,CA = 0? We have an isu-celes (?1) triangle, but the triangle inequality -
3 does not hold!

Consider the two equations
r4dy=0 and r-iy=0

We will say these are two imaginary lines. If we sezk their point of intersce-
tion we find it to be (0, 0). A real point of intesection for two imaginary
lines. As a matter of fact it can be shown (can you show it?) that cvery
imaginary line has one and only oxc real point on it. ¢

Find any two points on the first of the above equations (that is, two ordered :
pairs that satisfy thé equation.) Find the distance between these two points. .

Do you find the result interesting? Do you think you would get the same result
for any imaginary line?

e U ST,




T TR T AT e S e R ST, e 2R b St S ST R A g S e SR el e - — "
- s = — - i T o 2 o 2 e o T b 3 e oy B e . S gl en S 3 = ity N e

) Problems to investigate
N 1. Find the midpr - s of the line segments determined by the following
- pairs of points: .
hd a. (0, 0)7 (l, t) b. (l i) (l —i)
c. (l, l), (’y l) d. (l n ("l l)
e. (i, —1), (=1, 7) f. (5, 79), (9, 3¢)

' ] 0. 0,1+1,0,1=14) ale+bi0),(a— bis0)
¢ ' i. Make up other problems and solve them.

2. Find the distance hetweeii the following. pairs of points:
: a.(0,0), (1,4 b (1,4),(1, =)

e (4,9), (1, =i) d. (=1, -4, 1, =i)

O TE I

E - , e (T'i, ’),(5,6) J (0, 1414),0,1-1) i
: g. Make up other problems and solve them.
; 3. Find the points of interscction of the following pairs of lines:
: a 242 =7 boa iy =1
3z 4 6y = 5. x—ty =1 ,
¢.2r=38yi=1 d. T =14y
: 2r 4+ 3yi = 1. x = biy. :
f ex+ @B+ dy= ’ !
i t—@-dy= i
;i Homogersous cgordinutn 3
* While we -could continue our investigation of the role of imaginaries in i
i geometry by mcatis of the usual Cartesian coordinates, we introduce a new :
i system of coordinates that-will give more depth and genérality to our explora- .
| tion and will also enable us to talk about the infinite in geometry. i
g If the Cartesian coordinates of a point A are (z, y) let 1
! 4] z: ;
i 1. X - ;‘ and Y- ;;, f‘
: that is, :
- n=z.2; and Z:m Yy -2y 3
§ where z is an arbitrarily chosen number. | :
! Then (24, #s, x3) will be called the homogeneous coordinates of the point A. v
i For example, if A has the Cartesian coordinates (3, 5), the homogencous
: coordinates conld be (3, 5, 1) or (6, 10, 2) or (3r, 5r, r) where r is any num-
: ber, real or imaginary. It is clear that any pair of coordinates in the Cartesian
system can be transformed into homogeneous coordinates—cxcept that we :
7 ! shall’exelude the triple (0, 0, 0). (Why?)
! It is also clear that any triple of numbers (ay, as, asj will give us a point in ;
the plaue (agait. excluding (0, 0, 0)). For example: the triple of numbers
0,9, 1) or (0,0, 7) could be the coordinates of the noint (0, 0) in ordinary .
Cartesian coordinates; or (1, 2, 1), (2, 4, 2) and {r, 2r, r) could be the hono- ’
geneous coordinates of the point (1, 2). p
é If the ratios a;:as:as are complex, we shall say that we have an imaginary
f point. ‘ i
3 3
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What about homogeneous coordinates (z), T, x3) if 23 = 07 It is'clear that
the ratios /23 and x4/ would - -approach. mﬁmt,y ass. approach% zero. We
will thereforé define all. such tnp]% of numbers (for whlch 73 = 0). as co-
ordinatés of points at mﬁmty Smce X3 = 0 is &, equatxon that glvaus -all-
such “pomts at mﬁmty” and SInce 4y = 0 is mear equatnon, we- sha]l say
that :cs = 0 1s the equatlo‘ : L

Inr fact \;e c;n Aiew - Coor ;
angle With- i‘eftib% (0—0, l) (0 1, 0) (1 0 0) Aaic
equations: @, = 0;%; = 0, and % =0, - :‘ PR S

Pi"oiiiéiﬁs‘ to fﬁvés‘ii‘ga}é : - - .

a(0;1) b (1,70),

¢: (1) d:(0,19) -
[ (‘Z;,O) f(l, %) =
i (1,4) -

3 (=1 =9) -

k: Other points of your choosihg.

2. Find the Cartesian cocrdinates for the pomts given with the fo]]o“mg - - ST o
homogeneots coordinatés: ) ) -

a (1, 1,1) b (1,0 1) -

¢ (1,1,0) d.(0L1)

c. (17 ir 1) f (l; iy l) '

g. (1, =1, 1) h. (3, =1,9)
. n(L,4,0  .(0,0,9)
" k. Other points of your own choosing. B R

-Geometry in the Complex Projective Plane

The linear equation

The equation Az # By + C =-0 or; in homogeneous coordinates, Az, +
Bxy + Cz: = 0 is a linear equation. It is a theorem in analytic geometry
that this equation represents a straight line: We can define a straight ]me, then,
as the set of ordered triples.that satisfy the second form of this equation.

Every imaginary line has one and only one real point on 4. To sec this, con-
sider the equation

] Az + Bi, 4 Ciz; = 0
in which

"
o AT e R b e 20 -
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: £
14 A = a +ia, :
A B = b+ b, y

{ and
%
- 1 C =6 + I-C:_
- - Then

(lil + ju:):.r.z+ ("1 :-f_’ib:)i;i:-%-.'kﬂ + lé:) oy =:0.
This cquation will be satisfied by real-values of &, xs, % if and only if
ki % b 6 20 '

and asty Fibifs €2 =0,

»
t
PP T

These equationis-have the solutioi

which_gives-iis the coordinates of -a-real point (though the point-may be at

SOt 2 A B g e B A N A 7
N

: L - infinity if @b — asby #-0). ]
- : For example, the imaginary liie 5ry + ixs + 32; =-0 has the real point
o (=3,0,5). _.
R . Problems to investigate i i
N Y. i
) 1. Find real-points on cach of the following ﬁéﬁ':i L
= a. 3r#¥ 2y =T 5.2ix = y + 5 =90, i
- x4+ iy=1=0 d ix—iy—1="0_ :
‘. — ' e.r+y=—i=0._ f(e+b)xF (a=biy=0: :
. : 2. Find the cquation of a real line through cach of -the following imaginary ;
: - points: ' .
. : T e (l,) b1, -0
- : e (i, =9 d.Q+il=i
- . -~ : e G [ @+V3i2- V3D
: : o - g. @0 h(5,9 -
: . 3. Find the real point on each of the following lines:
a.x + iz = ra. bointrat =0 ]
: .1+ 22— ixa = 0. d.oy+ U+ drs + 13 = 0. ;

C. (l+i).r.+(l—i)x,~,+x;=0. f.ir;—z'x=+x;=0.

g. X2-= mxy -+ ibxs.
Two parallel lines intersect at infinily: Consider the equations of two lines:
Atk Br:+Cr; =0 and Aary + Boz: 4+ Coxs = 0; :

these lines are real or imaginary, depending on the values of the cocfficients.
They have the unique solution: i
XyoXaly = ”]C: - I;:C]:Clo": — C:.‘h:-'h": e ."g"p

This solution represents the point common to the two lines. If A,B. = B,

the point of interscction is on the line at infinity—z: = 0—ard the lines are

é parallel. If the lines are imaginary, we shall call them parallel by definition.

i We have, therefore, proved: Two straight lines interscct in one and only one

g point. If the lines are parallel, the point of intersection is on the line at infinity.
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For example, the equations: :
1 rs=xn<+3r;: and X2 = x; = 5x; ‘E
have the solution. (1, 1, 0). These lines are paraliel and intersect the linc at 3 T
- infinity, rs = 0,-in the point. (1, 1, 0). -
#"  Problem to.investigate )
¥ 1. Find the point of intersection of each of the following paits of lines: 3
i a =4 xr=—i ' i )
??j .b. Zi[ = ii';; n = i— II:; f 3 -
& €. T2 = if3, ¥z = =irs $ ;
% d. (1 F ir= (F= 8, (1 = dn = (1 + ir: : o
f, e X; + X2 + xr;-= 0_. g ¥ 1-3‘2"+“l‘1';; = ,i
ES Minimal (or tsolropic) lines. Let us consider the lines that_connect the origin ’ 3
- of the Cartesian coordinate system, (0, 0, 1), with the imaginary points o -
(1,7,0) and (1, =7,0). i .
- The equations of these lines are xs = i, and 22 = =iz, and their.slopes-are -
> 7and =i, Since the distance between any two points on cither line is zero (see
3 the sectionn above entitled “Some definitions and their implications”), these o
. ; lines are called minimal o isotropic lines. :
% If we raise the general question of what is the locts of points at zero distance .
. I from a given point (xo. 5o} we find; using ordinary Cartesian coordinates: :
: £ =2 4 (x = )7 =0 |
7 £ or r = xg) + ity - u))-((x = x)) — iy — y2)) = 0. )
s (F = xo) + iy — ye) = 0
H 5 :
§ or {r —x0) ~ iy — yo) = 0: . ;
- - ,_%; In homogeneous coordinates these equations are-of the form: :
%" ntire k=0  or - irs4 miz =0, ;
E These are, in fact; the minimal lines that go through the given point:
: £ (Another way of thinking of the minimal lines is that they are lines with slope ;
] g for —4.) In other words, the locus of points at zero distance from a given point :
’ g~ consists of the given point and the two minimal lines going throngh that point.
: £ Thecircle :
: i Adapting ordinary Cartesian coordinate eouations to homogencous co- :
‘£ ordinates, we can consider the cquation * - -
4 N . Ead s -
3 1" +ri=0 :
% as the equatjon of a cirele with center at the origin and radius 0.
: If one or more coefficients are complex, the line will be said to be imaginary. 3
é\f The equation zz = 0 will be called the line at infinity. i '

We sce immediately that this cquation reduces to the cyuations:

E . X: =i and  xe = —in, . f
: ‘, i other words, to the two minimal lines through the origin. We can say, there- z
) % fore, that the null cirele consists of the center and of the two minimal [lines H
e going throvah the center. H
- i
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It is clear that the null circle given above intersects the line at infinity,

Z3y = 0, in the points (1, 7, 0) and (1, —1, 0). (Check this statement.)

We shall now show that every circle i the plane goes through these two
points at infinity- For this reason the points (1, 1, 0) and (1, =7, 0) are called -

the circle points al infinity.
The- equation. of -an arbitrary- circle, in homogeneous -coordinates (recall

and transform the ordmary Cartesian equation), is-
x§ + 23 F ainits +0:I.I:+asl’2 =0, =
A-difect substitution will-show -that -the -points - a, 1, 0) and 1, =i, 0)

catlsfy this équation.
Morsover, we can show that- -any “coiic SC"thl\ that goes through the two-

circle_points-at infinity is a_circle. The general-equation of a-cofic,.1h- homo-
gencéous coordinates, is
Az? 4 Brz: 4+ Cx3 % Dns + ‘Ezts + Fit=0:

If thxs equation is satisfied-by. (1, 7, 0) and. (1. =13, 0), then
A+B =C=0 aiuj A=Bi=C=0.

Solving these equations, we see that A = C and B = 0, and:we. get
Axi 4 Azl + Dnzs +-Ezor: + I':t’ 0,

which i is thc equation of a circle.

The other coni¢ sections

From ordinary geometry we learn that the intersections of a plane and-»,

" conic surface yield the conie scctlons—cm,]c c]hpsc, hyperbola, and parabola.

(Of course, thére are special; degcncrate cases in which these sections are
points, two mterscctmg lines, two parallel lines; or two- coincident lines:)

What light is shed on the conics by the techniques we have introduced—
homogeneous coordinates, imaginary poiits and lines; and points and lines-
at infinity?

The parabola In analytic geometry we learn that the snmplest form of the
equation of a parabola is

y = cx? or  zx3 =-cx}.

The parabola intersects the line at infinity, z: = 0 in the point (0, 1, 0)—
in fact it intersects that line in two coincident points (0, 1, 0) and (0, 1, 0)=
and therefore we can say that the parabola is tangent to the line at-infinity
at that pSint. The point of tangency is the point in which the axis of symmetry
of the parabola intersects the line at infinity.

The ellipsc. We learn in analytic geometry that the equation:

2 v -
+ ;”, =1 T
represents an ellipse. Let us cxtcnd this definition by considering each of
the following as an ellipse, also:
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Let us change these equations to homogeneous coordinates:

| 22 : x|, 2} P 4 z3
_ 2 i 2 )
=+ == R = - < +=ay,

Clearly, the last equation becomes the tivo conjugate, imaginary, inter-

secting lines:
o~ faz: = 0. and  £b + dazs-= 0 B

The lines intersect in the point (0, 0, 1)-(the origin of the Cartesian coordinate
system), and_they-intersect -the line:zat-infinity ;iﬂs‘thé—réoqju‘g@iéiiﬁjggigiaiy
points: (a,b;0).and a, =b;;0). . = - N

We say;therefore; that-the third equation répreseiits degenerate ellipse that
consists of ‘two conjugate-imaginary Iinés-that-iitersect in-a -real:point,- the
origin; and intersect the litié at-infinity in two conjiigate MAgiNary points.

The second equation- @3/a® + 2%/b* = =z%) isan éllipse- with no real
graph, but it also intersects the Tine at infinity in-the poiiits (a, bs, 0) and.
(a, =b;0). - ' :

i The equation 2% /a* + 27,/b* = g2, which fepresents a real ellipse, inter-
. sects the line at-infinity in tlie-points (a, bz; 0) and (a, =bi, 0).
1 In the special case wherea = b = | the equations reduce to
' HHal=zl, zi+sl=z, and. 42350, )
the equations:of a real circle, an‘imaginary circle, and-the point-circle, respec-
tively. Each of these intersects-the line at_infinity-in the-points (1, 7, 0) and
1, =4, 0)==the circle points at infinity: This confirms what we observed in
- an earlier section on the circle. o -
Also, in the last case, the circle reduces to-the cqlljugate—isotrgpjc lines
> it iz =0andr, ~ iz, = 0 and their real point of intersection 0,0, 1).
The hyperbola. The equations. ’
] 7 aij-—:-%ézi' and :—;—4%%=0
;  represent, respectively, real nondegenerate hyperbolas and real degenerate,
= hyperbolas (if a and b are real). B . l
i The second of these reduces to the two real intersecting lines:
bry — ar, = 0 . and bry + ar; = 0;
] These lines intersect the line-at infinity in the tivo real points (4, b, 0).and
. (a, =b,0), and they intersect each other at the point (0, 0, 1) (the origin of the -
. Cartesian coordinate system). '
; The real, nondegenerate hyperbola,
2

also intefsects the line at infinity in the two real points (a, b, 0) and (a, ~b,0).
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