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THE INVERTED STUDENT DENSITY AND TEST SCORES

Robert F. Boldt

Educational Testing Service

Abstract

The inverted student density is one whose contour lines are spheroidal

as in the normal distribution, but whose moments differ from those of the

normal in that its conditional arrays are not homoscedastic, being quadratic

functions of the values of the linear regression functions. It is also

platykurtic, its measure of kurtosis ranging from that of the normal to that

of the uniform depending on the value of a parameter: as that parameter

increases the inverted student distribution approaches normality. Measures

of kurtosis are given for distributions of scores on a number of cognitive

tests, and they are almost all seen to be platykurtic. Data are presented

showing that a quadratic term contributes substantially to the regression

of conditional variances on test scores in a bivariate distribution. These

data suggest that the inv,,rted student distribution may provide a better

description of distributions of test scores than does the normal.



THE INVERTED STUDENT DENSITY AND TEST SCORES

Robert F. Boldt

A4ucational Testing Service

Because of difficulties in handling certain problems in multivariate

statistics, a polynomial distribution similar to the normal seemed to the

author to be a promising alternative distribution (Boldt, 1962). However,

the use of the distribution in analysis proved tedious, and the notion was

dropped. More recently there has been renewed interest in the distribution,

known as the Inverted Student Distribution, because of findings indicating

that variances of conditional test score distributions are, in some cases

at least, not homoscedastic. Rather, the conditional variances seem to

decrease at extreme values of the independent variables (Boldt, 1968, 1972).

Also, the platykurtic character of test score distributions has come to the

author's attention. Both of these characteristics are in contrast to the

normal distribution and are, indeed, properties of the Inverted Student

Distribution (Press, 1972vRaiffa & Schlaifer, 1961) as will be shown below.

Thus the interest in the distribution, which was originally based on its

possible value as an approximation to the normal, may arise specifically

because of the characteristics it has which are in distinction to the normal

but which characterize test scores.

In the material that follows the distribution is introduced, its

marginal distributions and the constant which makes the distribution a

density function are developed. Following this, the relationship of certain

parameters to the population means and to the conditional means is given.

Then the relationship between certain other parameters and the population

variances and covariances is given, followed by a development of the
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conditional variances which exhibits the nonhomoscedastic character of

the conditional variances. Subsequently it is shown that the distribution

tends to normality under certain conditions, followed by a section con-

cerning higher moments of the univariate marginal distribution. Finally,

data are presented which show that measures of kurtosis of test data and

the conditional variances of some tests have properties in agreement with

those of the distribution.

Let

X be a column vector of P random variables;

N , K , C be constants of the distribution;

u be a column vector of P parameters;

A be a P x P symmetric positive definite matrix of parameters.

Then the density is

C[K - (X - u)'A(X - (1)

if the quantity in brackets is nonnegative,zero otherwise. Transform X

to Y as follows:

X = IC TY p (2)

where

T'AT = I .

Then the joint distributior of the Y 's is

P

K.

C
1

- Y'')N .

IA12

(3)
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Note in (3) that the Y 's are symmetrically distributed and hence have

mean zero. Using (2) it follows that p is the mean of X . To find C ,

define V.
3.

=Y.2 , when Y. is the ith element of Y . Then the V 's

have the Dirichlet distributior.

- 1

cKN (P 211 v. ) (1
- E V.

)1

IAF
.

(4)

Equating the constant of (4) to the constant of the Dirichlet distribution

(Press, 1972, p. 131) yields

1

r(N +
P + 2

)
C =

0' NI
r(N + 1) e 2

( 5 )

The interpretation of A and K can be developed as follows. The expected

1

+ 2
valueofaV.is

2N + P
(Press, 1972, p. 134) and is the expected

valueofacorrespondingY.2 . It can be seen on examination of (3) that

the covariance of Y 's is zero so that the variance-covariance matrix of

Y 's is (2N + P + 2)-11 . Then

E(X - p)(x - u)' = T[E(YY' )]T' V

KTT'

2N + P + 2 '

where E is the expectation operator. But since T'AT = I , it follows

that (TT')-1 = A or

E(X - p)(X
2N + P + 2

A
1 (6)

One would not want the variance-covariance matrix of X to depend on the
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choice of N and P , and hence we choose K = 2N + P + 2 and note that

A is the inverse of the variance-covariance matrix of X 's as in the

normal distribution.

Marginal Distributions

that

Suppose the variables in X and p are partitioned into subvectors

x = P = Hpilp211

and A is partitioned as follows

11:11 I

Al
I12 22

where the sizes of the submatrices of A are consistent with the partition-

ing of X . Then, using the transformation

X1 - pl = U - A
11
A
12

(X
2
- p

2
) ,

the joint distribution of U and X
2

becomes

(1)

C[K -
(X2 u 2) '(A22 - Al2A1.1Al2 X2 112)/N

(8)

Suppose A
-1

is partitioned in a fashion corresponding to the partitioning

of A given above (this is by (6) a partitioning of the variance-covariance

matrix of X ), yielding say B11 , B12 , B22 with the subscripts corres-

ponding to sections of the partitioning of A , then it can be shown that

A - A' A
-1
A = B

-1

22 12 11 12 22

Transforming U to Y as follows:
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tT = (X
2

p
2
)E-1(X

2
- p

2
) TY

22

where T'A
11
T = I and using (5) yields

, P + 2, n-ltv 11 N4
1

1'0 +
2 1 IAI El( "2 P2)'-2212 P2" VY]

N
(9)

P P 1N4
r(N + 1) li

2
K

2
IA
11

I--

when there are Q variables Y , (e
.g"

A11 and B
11

are Q x Q ; A
12

and B
12

are Q x (P - Q) Then using the transformation

V. = Y.
2

1 1

and the Dirichlet constant yields

r(N + P + 2) Is 1-1 N4s2
2 1 221 )1[K - (X_ - u )

1
(

P-Q P d '2''B22')C2 P2"

._ r(N Q + 2 2
) IT K

N
2

+-

2

as the marginal distribution of the remaining variables. Expression (10)

is written with B
22

using the relation

IAI = IA11IjA22 - Al2 A
11
-1A

12
I (Graybill, 1961, pp. 8-9).

From (10) it can be seen that the marginal distributions are of the same

form as (1), i.e., a quadratic form subtracted from a constant and raised

to power. Thus any distribution for which the form (1) is assumed might

in some contexts be regarded as a marginal distribution.

(10)
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Conditional Means and Variances

From the expression (8) it can be seen that U is symmetrically

distributed for any value of X
2

and hence has mean zero for that value

of X2 . Therefore, from (7), the mean of X1 given X2 is

AllAl2(X2 112)

,It can be shown that -A A
12

= B
12

B
22

and hence, y
1

+ B
12
B
22

kX
2
- u2)

2
) is

the mean of X1 given X2 . This is the familiar regression formula.

Conditional variances are not homoscedastic in this distribution.

That this is true can be seen as follows. Note that if a multivariate

distribution function is CF , where C is the density constant and U

is one of its arguments with mean zero, then the conditional variance of

U is

fCF
U2 IF U2

R
U

R
U

FCF F

RU RU

In the present distribution, F is of the form in brackets in (8) and

we are taking U and A
11

as scalars, i.e., Q equals unity. Then if

we use transformation

U
2
A
11

= V(K - (X
2

- II
2
)B

22
(X

2
-

2
))

the quantity in parentheses in (12) above by which V is multiplied,

factors out of the brackets in (8) and, including the differential, is

raised to the N + power in the numerator of (11), and to the N +
2 2

(12)



power in the denominator. The conditional variance is of the form

W[K - (x2 - u2)'13232(X2 - u2)]

and W turns out to be [A
11

(K - P + 1)]-1 .

Tendency Toward Normality

In this section it is shown that all marginals of the distribution

approach normality as N approaches infinity. To do this factor K ,

which was defined as equal to 2N + P + 2 , out of the brackets in (1)

and use the expression for C in (5) to get

!ILL_

P +
P

k

,

I'0 +P
P + 2,

, r(N + ( +
2

2)2n)

(13)

where Q is the quadratic form in the brackets of (1). Using Stirling's

approximation in the quantity in braces above and letting N co

yields

"'Alp
e-2

(21J

which is the form of the multivariate normal distribution function.

Higher Moments

From expression (10), taking Q = P - 1 obtain the univariate marginal

distribution as

+
P
22)

P
IK -

+ 1
r(N +

P
)a III KN +2

(x

P-1+-
2

)

N

a
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Then

V - (X - P)2

Ka
2

has the Dirichlet distribution,

r(N +
P + 2

)

1
N+

P-1

V
2
[1 - V]

2 2

r(N + P
2

1)

The rth moment of V about the origin, which is the 2rth moment of

(X - p)

aiR

is (Press, 1972, p.133)

r(r + -1,-)r(N + E-t-?)
2 2

147 r(N + P
2

2 + r)

Moments of V can be used to get the even moments of X , and from the

symmetry, all odd moments are zero.

-
E(V) E

r(2 )
- p)

2
1 1 1

r(1)
N

P + 2 2N + P + 2
L Ka

2 2

2

iSince K = 2N + P + 2 , it follows that E(X - u)2 = a
2

is in agreement

with an earlier result.

For kurtosis take r = 2 , to get

5 P + %

2 2 r(7) r(N +
[(X -

2

P)

2)

3 . 1 . 1

1 % 2
2 2

P + 2 P + 2
Ka r(-7,;) r(N + ILL

2
F-1 + 2) (h + - + 1)(N + - + 2)
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[(x u ) 4 ] 3 2N + P 2
uh E

Q4
2N + P t 4

(15)

Note that lim U4 = 3 as in the normal distribution. Further, since U4

N c°

monotonic in 2N + P , it is at a minimum when the exponent in (14) equals

zero, i.e., 2N + P - 1 equals zero. Hence, a minimum for U4 is

5

3
x 3 = 1.8 , the kurtosis of a rectangular distribution.

is

At the outset it was mentioned that this polynomial distribution

function fits test data, at least in some respects, better than the normal.

That this is true at least with respect to kurtosis can be seen by exami-

nation of Table 1 (for which the author is indebted to F. Swinefc'rd). The

first data line in Table 1 indicates that for a certain form of SAT-V,

which is scored R-W/4, the skewness and kurtosis measures based on 900

cases wer, .3417 and 2.5155 respectively. Further, by looking down the

column headed Kurtosis, one can see that in almost all cases the measure

of kurtosis, which is the ratio of the fourth moment around the mean to

the squared variance, lies between 1.8 and 3.0 as indicated in equation

(15) and the following discussion. If measures of kurtosis were symmetri-

cally distributed around three, the probability of observing three or fewer

kurtosis measures in excess of three is less than t:n to the minus eight for

thirty-two such measures. Clearly, three is certainly too large a number

to be the median of the kurtosis measures in Table 1. Those three for

which the normal might be better, on the basis of the kurtosis measures,

are the most skewed and hence still might not be very well described by

the normal distribution. In most cases, the polynomial distribution seems
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more appropriate than the normal on the basis of the measure of kurtosis, and

one may note that this holds across test programs (SAT, GRE, LSAT, ATGSB,

and SSAT) and hence over different scoring formulae.

Insert Table 1 about here

Table 2 contains data similar -co those in Table 1. However, the data

in Table 1 come from test programs in which many parallel tests have been

constructed over the years for essentially similar populations, but those

in Table 2 (nor which the author is indebted to F. Lord) were constructed

in a somewhat less familiar situation. Also, though the examinees for the

testing program whose data are presented in Table 2 were volunteers, they

did include some 80 to 90% of the students in the grades listed who were

selected on a statewide basis, and who certainly extend the grade range of

studen''s beyond that provided in Table 1. In short, no attempt is made to

choose data which are selective against the normal distribution.

Insert Table 2 about here

Another, and perhaps more important, kind of agreement between the

polynomial distribution and data is in the matter of homoscedasticity.

Table 3 contains data which indicate agreement between the polynomial

distribution and observation. This table contains two types of evidence.

The entries for the table come from scatterplots of reported SAT scores

and shorter tests which are built to the same specifications except for

length. The data in Table 3 concern reported score variances observed at

each level of the shorter tests. The first column in Table 3 gives the



correlations of the variances with the associated short test score level,

and the second column shows the multiple correlation of the variances with

the score level and its square. Note that in some cases the gain by using

the quadratic term is substantial, but of course the correlation with two

independent variables must be better than with one. Therefore. the data

in the last two columns are of special interest. These data give the

standard score regression coefficients, and the important thing to note is

that in every case the-pattern of signs is identical, being negative for

the quadratic term. The probability that all thirty-one examples would have

the same sign is two to the minus thirtieth, and thus the trend noted seems

quite reliable. In fact, the negative sign for the coefficient of the

quadratic term is predictable on the baiis of the polynomial distrioution

since in the discussion following the expression (8) it is pointed out that

the coefficients of variables remaining after integration are the elements

of the inverse of a matrix B
22

which is a principal submatrix of a

population variance-covariance matrix that will be positive definite.

Therefore, the quadratic form in (13) must be positive definite, and it

follows that the coefficient of the squared term is positive in the quadratic

form or negative in (13). Thus, one would expect the signs of the quadratic

terms in Table 3 to be negative, which they were. Under a null hypothesis

of p = .5 (either sign is equally likely) the probability of all signs

being negative is only two to the minus thirty-one (as opposed to the i,wo to

the minus thirty mentioned above).

Insert Table 3 about here
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Thus, in two ways the data observed give better agreement with the

polynomial distribution than with the normal. Of course, it is recognized

that one must not assume that because the polynomial distribution is

better in some respects it is better in all respects. There may be other

deductions for which the normal is better. However, the agreement of the

polynomial distribution with the lack of homoscedasticity seems fairly

important in some applications, particularly in their relation to range

restriction formulae.
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Table 1

Skewness and Kurtosis of Various Operational Test Score Distributions

Test
Scoring
Formula No. Cases Kurtosis Skewness

SAT
a
-V

b
R-W/4 900 2.5155 .3417

865 2.7244 .4210

900 2.6078 .1360

2345 2.5168 .2492

2000 2.6509 .3016

SAT-M
c

R-W/4 900 2.3701 .2342
865 2.4790 .2146
900 2.3074 .0700
2345 2.5009 .0245
2000 2.5236 .1156

GRE
d
-V R-W/4 1660 2.3863 -.0212

1485 2.4395 -.0299
700 2.4566 -.0341

1495 2.4255 -.0788

GRE-Qe R-w/4 1660 2.3154 -.0674
1485 2.2742 -.1715
700 2.4956 -.1244

1495 2.4627 -.0863

LSAT
f
-Error Recognition R 350 2.8700 -.4102

1810 3.4599 -.5097

LSAT-Sentence Correction R 350 2.8873 -.2638
1810 2.9505 -.2344

LSAT-Reading Comprehension R 1810 2.5161 -.1293

LSAT-Data Interpretation R 1810 2.8832 .0481

LSAT-Reading Recall R 1810 2.8627 -.2669

LSAT-Principles and Cases R 1810 3.5500 -.4215

ATGSBg-Reading Recall R-W/4 1090 2.7166 -.3354
1260 3.1475 -.4912
1260 2.8303 -.3187

ATGSB-M R-w/4 1090 2.5628 -.1408
1260 2.6103 .2223
1260 2.5943 .1147
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Table 1 (Continued)

Test
Scoring
Formula No. Cases Kurtosis Skewness

ATGSB-V R-W/4 1090 2.4796 .1597
1260 2.4084 .0629
1260 2.4298 .0763

SSAT
h
-V R-W/4 860 2.4076 .1659

1820 2.4063 .0453

SSAT-M R-W/4 860 2.7983 .4039
1820 2.7536 .4367

SSAT-Reading Comprehension R-W/4 860 2.7667 .4494
1820 2.3904 .1878

a
Scholastic Aptitude Test (SAT).

b
Verbal (V).

c
Mathematics (M).

d
Graduate Record Examination (GRE).

eQuantitative.

f
Law School Aptitude Test.

gAdmissions Test ft,r Graduate School in Business.

h
Secondary School Aptitude Test.
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Table 2

Survey of Students in a Midwestern State, September 1965

Kurtosis and Skewness (in Parentheses) of Test Score Distributionsa

Test and
No. of Items 4

2.284
(-.113)

Grade

6

2.586

(-.092)

8

2.372

(-.016)

10

English Achievement
20 items

Math Ability 2.336 2.481 2.426 2.438
50 items (.079) (.018) (.034) (-.011)

Math Achievement 2.611 2.900 3.001 2.864
50 items (.132) (.138) (.276) (.200)

Reading 2.629 5.837 2.893
30 items (-.479) (-1.955) (-.287)

Verbal Ability 2.975 2.491 2.238 2.426
50 items (.394) (.112) (.087) (-.001)

a
No entry is based on less than 19,500 cases, all volunteers.
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Table 3

Correlation between Linear and Quadratic Functions of Equating Test Scores

and the Conditional Variances and Standard Score Regression

Coefficient for the Quadratic Function

Test

SAT -M

SAT -V

Correlations Regression Terms
Linear Quadratic Linear Quadratic

.3671 .6759 1.5920 -2.0396

.0100 .8823 2.4882 -2.6494

.3311 .8950 2.7800 -2.5862

.3009 .5079 .8909 -1.2601

.0158 .1810 .4856 -.5033

.0126 .8184 2.1283 -2.2919

.0278 .9179 2.7297 -2.8525

.0322 .8518 2.2592 -2.3842

.2287 .9558 3.2376 -3.5884

.2563 .7507 2.8917 -2.7232

.4807 .7687 1.7599 -2.3196

.3864 .7027 1.8381 -2.3005

.3037 .4656 1.0143 -1.3645

.1179 .7061 2.4824 -2.6919

.5800 .7334 1.0378 -1.6850

.6531 .888o 1.5945 -2.3267

.2615 .5233 1.2869 -1.6134

.0469 .734o 2.3549 -2.5110

.1849 .4899 1.1059 -1.3632

.0985 .8230 2.4892 -2.5350

.0521 .823o 2.4892 -2.5350

.0521 .7814 2.2954 -2.4736

.3161 .7213 1.6617 -2.0813

.1708 .7695 2.4980 -2.4452

.3795 .7766 2.1826 -2.6801

.2380 .3280 .6155 -.8828

.4377 .7744 1.9791 -2.4998

.4193 .7142 1.7678 -2.2619

.2794 .4157 .8013 -1.1364

.0534 .6771 2.5506 -2.6901

.0978 .1020 .2072 -.1132

.0170 .0665 .2598 -.2511


