The requirements for a theory of instruction can be described in the following list of criteria: 1) a model of the learning process; 2) specification of admissible instructional actions; 3) specification of instructional objectives; 4) a measurement scale that permits costs to be assigned to each of the instructional actions and payoffs to the achievement of instructional objectives. From these four elements it is possible to derive optimal instructional strategies. A theory of instruction is, in fact, a special case of what has come to be known in mathematical and engineering literature as optimal control theory. Precisely the same problems are posed in the area of instruction except that the system to be controlled is the human learner. To the extent that the above four criteria can be formulated explicitly, methods of the control theory can be used to derive optimal instructional strategies. Two examples involving the derivation of such strategies are considered in this paper: a computer-assisted instruction program for early reading and an individualized program for learning a foreign language vocabulary. Both are analyzed on control theoretic principles. (Author/MC)
INGREDIENTS FOR A THEORY OF INSTRUCTION

BY

RICHARD C. ATKINSON

TECHNICAL REPORT NO. 187

JUNE 26, 1972

PSYCHOLOGY & EDUCATION SERIES

Reproduction in Whole or in Part is Permitted for Any Purpose of the United States Government

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-67-A-0112-0054, Contract Authority Identification Number, NR No. 154-326.

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

(Continued on inside back cover)
INGREDIENTS FOR A THEORY OF INSTRUCTION

by

Richard C. Atkinson

TECHNICAL REPORT NO. 187

June 26, 1972

PSYCHOLOGY AND EDUCATION SERIES

Reproduction in Whole or in Part is Permitted for Any Purpose of the United States Government

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-67-A-0112-0054, Contract Authority Identification Number, NR No. 154-326.

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA
The requirements for a theory of instruction are discussed and summarized in the following list of criteria: 1) a model of the learning process; 2) specification of admissible instructional actions; 3) specification of instructional objectives; 4) a measurement scale that permits costs to be assigned to each of the instructional actions and payoffs to the achievement of instructional objectives. If these four elements can be given a precise interpretation, then in general it is possible to derive optimal instructional strategies. In terms of these criteria it is clear that a theory of instruction is, in fact, a special case of what has come to be known in the mathematical and engineering literature as optimal control theory. Precisely the same problems are posed in the area of instruction except that the system to be controlled is the human learner, rather than a machine or a group of industries. To the extent that the above four criteria can be formulated explicitly, methods of the control theory can be used to derive optimal instructional strategies. Two examples involving the derivation of optimal strategies are considered in this paper. One deals with the development of a computer-assisted instruction program for teaching initial reading in the early grades; the second example deals with learning a foreign-language vocabulary. In both cases, analyses based on control theoretic principles proved to be highly advantageous.
Instructional Theory
Computerized Instruction
Optimizing Learning
Optimizing Reading Instruction
Optimizing Second Language Learning

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. 8c. & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. RELATIVITY/LIMITATION NOTICES: Enter any limitation notices affecting dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

(5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of keys, rules, and weights is optional.
The term "theory of instruction" has been in widespread use for over a decade and during that time has acquired a fairly specific meaning. By consensus it denotes a body of theory concerned with optimizing the learning process; stated otherwise, the goal of a theory of instruction is to prescribe the most effective methods for acquiring new information, whether in the form of higher-order concepts or rote facts. Although usage of the term is widespread, there is no agreement on the requirements for a theory of instruction. The literature provides an array of examples ranging from speculative accounts of how children should be taught in the classroom to formal mathematical models specifying precise branching procedures in computer-controlled instruction. Such diversity is healthy; to focus on only one approach would not be productive in the long run. I prefer to use the term "theory of instruction" to encompass both experimental and theoretical research, with the theoretical work ranging from general speculative accounts to specific quantitative models.

The literature on instructional theory is growing at a rapid rate. So much so that, at this point, a significant contribution could be made by someone willing to write a book summarizing and evaluating work in the area. I am reminded here of Hilgard's book, Theories of Learning first published in 1948; it played an important role in the development of learning theory by effectively summarizing alternative approaches and placing them in perspective. A book of this type is needed now in the area of instruction. My intention in this paper is to present an overview of one of the chapters
that I would like to see included in such a book; a title for the chapter
might be "A decision-theoretic analysis of instruction." Basically, I
shall consider the factors that need to be examined in deriving optimal
instructional strategies and then use this analysis to identify the key
elements of a theory of instruction.

A DECISION-THEORETIC ANALYSIS OF INSTRUCTION

The derivation of an optimal strategy requires that the instructional
problem be stated in a form amenable to a decision-theoretic analysis.
Analyses based on decision theory vary somewhat from field to field, but
the same formal elements can be found in most of them. As a starting point
it will be useful to identify these elements in a general way, and then
relate them to an instructional situation. They are as follows:

1. The possible states of nature.
2. The actions that the decision-maker can take to transform the
 state of nature.
3. The transformation of the state of nature that results from each
 action.
4. The cost of each action.
5. The return resulting from each state of nature.

In the context of instruction, these elements divide naturally into three
groups. Elements 1 and 3 are concerned with a description of the learning
process; elements 4 and 5 specify the cost-benefit dimensions of the problem;
and element 2 requires that the instructional actions from which the decision
maker is free to choose be precisely specified.
For the decision problems that arise in instruction, Elements 1 and 2 require that a model of the learning process exist. It is usually natural to identify the states of nature with the learning states of the student. Specifying the transformation of the states of nature caused by the actions of the decision-maker is tantamount to constructing a model of learning for the situation under consideration. The learning model will be probabilistic, to the extent that the state of learning is imperfectly observable or the transformation of the state of learning that a given instructional action will cause is not completely predictable.

The specification of costs and returns in an instructional situation (elements 4 and 5) tends to be straightforward when examined on a short-term basis, but virtually intractable over the long-term. For the short-term, one can assign costs and returns for the mastery of any particular set of reading skills, but sophisticated determinations for the long-term value of these skills to the individual and society are difficult to make. There is an important role for detailed economic analyses of the long-term impact of education, but such studies deal with issues at a more global level than we shall consider here. The present analysis will be limited to those costs and returns directly related to a specific instructional task.

Element 2 is critical in determining the effectiveness of a decision-theory analysis; the nature of this element can be indicated by an example. Suppose we want to design a supplementary set of exercises for an initial reading program that involve both sight-word identification and phonics. Let us assume that two exercise formats have been developed, one for training on sight words, the other for phonics. Given these formats, there are many ways to design an overall program. A variety of optimization problems
Atkinson can be generalized by fixing some features of the curriculum and leaving others to be determined in a theoretically optimal manner. For example, it may be desirable to determine how the time available for instruction should be divided between phonics and sight word recognition, with all other features of the curriculum fixed. A more complicated question would be to determine the optimal ordering of the two types of exercises in addition to the optimal allocation of time. It would be easy to continue generating different optimization problems in this manner. The main point is that varying the set of actions from which the decision-maker is free to choose changes the decision problem, even though the other elements remain the same.

Once these five elements have been specified, the next task is to derive the optimal strategy for the learning model that best describes the situation. If more than one learning model seems reasonable, competing candidates for the correct strategy can be inferred. When these tasks have been accomplished, an experiment can be designed to determine which strategy is best. There are several possible directions in which to proceed after the initial comparison of strategies, depending on the results of the experiment. If none of the supposedly optimal strategies produces satisfactory results, then further experimental analysis of the assumptions of the underlying learning models is indicated. New issues may arise even if one of the procedures is successful. In the second example that we shall discuss, the successful strategy produces an unusually high error rate during learning, which is contrary to a widely accepted principle of programmed instruction (Skinner, 1968). When anomalies such as this occur, they suggest new lines of experimental inquiry, and often require a reformulation of the learning model.
CRITERIA FOR A THEORY OF INSTRUCTION

Our discussion to this point can be summarized by listing four criteria that must be satisfied prior to the derivation of an optimal instructional strategy:

1. A model of the learning process.
4. A measurement scale that permits costs to be assigned to each of the instructional actions and payoffs to the achievement of instructional objectives.

If these four elements can be given a precise interpretation, then it is generally possible to derive an optimal instructional policy. The solution for an optimal policy is not guaranteed, but in recent years some powerful tools have been developed for discovering optimal or near optimal procedures if they exist.

The four criteria listed above, taken in conjunction with methods for deriving optimal strategies, define either a model of instruction or a theory of instruction. Whether the term theory or model is used depends on the generality of the applications that can be made. Much of my own work has been concerned with the development of specific models for specific instructional tasks; hopefully, the collection of such models will provide the groundwork for a general theory of instruction.

In terms of the criteria listed above, it is clear that a model or theory of instruction is in fact a special case of what has come to be known in the mathematical and engineering literature as an optimal control.
theory or, more simply, control theory (Salman, Faib, & Arrib, 1969). The development of control theory has progressed at a rapid rate both in the United States and abroad, but most of the applications involve engineering or economic systems of one type or another. Precisely the same problems are posed in the area of instruction except that the system to be controlled is the human learner, rather than a machine or group of industries. To the extent that the above four elements can be formulated explicitly, methods of control theory can be used in deriving optimal instructional strategies.

To make some of these ideas more precise, we shall consider two examples. One involves a response-insensitive strategy and the other a response-sensitive strategy. A response-insensitive strategy orders the instructional materials without taking into account the student's responses (except possibly to provide corrective feedback) as he progresses through the curriculum. In contrast, a response-sensitive strategy makes use of the student's response history in its stage-by-stage decisions regarding which curriculum materials to present next. Response-insensitive strategies are completely specified in advance and consequently do not require a system capable of branching during an instructional session. Response-sensitive strategies are more complex, but have the greatest promise for producing significant gains for they must be at least as good, if not better, than the comparable response-insensitive strategy.

OPTIMIZING INSTRUCTION IN INITIAL READING

The first example is based on work concerned with the development of a computer-assisted instruction (CAI) program for teaching reading in the primary grades (Atkinson & Fletcher, 1972). The program provides individualized instruction in reading and is used as a supplement to normal
classroom teaching; a given student may spend anywhere from zero to 30 minutes per day at a CAI terminal. For present purposes only one set of results will be considered, where the dependent measure is performance on a standardized reading achievement test administered at the end of the first grade. Using our data a statistical model can be formulated that predicts test performance as a function of the amount of time the student spends on the CAI system. Specifically, let \(P_i(t) \) be student \(i \)'s performance on a reading test administered at the end of first grade, given that he spends time \(t \) on the CAI system during the school year. Then within certain limits the following equation holds:

\[
P_i(t) = \alpha_i - \beta_i \exp(-\gamma_i t)
\]

Depending on a student's particular parameter values, the more time spent on the CAI program the higher the level of achievement at the end of the year. The parameters \(\alpha \), \(\beta \), and \(\gamma \), characterize a given student and vary from one student to the next; \(\alpha \) and \((\alpha - \beta) \) are measures of the student's maximal and minimal levels of achievement respectively, and \(\gamma \) is a rate of progress measure. These parameters can be estimated from a student's response record obtained during his first hour of CAI. Stated otherwise, data from the first hour of CAI can be used to estimate the parameters \(\alpha \), \(\beta \), and \(\gamma \) for a given student, and then the above equation enables us to predict end-of-year performance as a function of the CAI time allocated to that student.

The optimization problem that arises in this situation is as follows: Let us suppose that a school has budgeted a fixed amount of time \(T \) on the CAI system for the school year and must decide how to allocate the time...
among a class of \(n \) first-grade students. Assume, further, that all students have had a preliminary run on the CAI system so that estimates of the parameters \(\alpha, \beta, \gamma \) have been obtained for each student.

Let \(t_i \) be the time allocated to student \(i \). Then the goal is to select a vector \((t_1, t_2, \ldots, t_n) \) that optimizes learning. To do this let us check our four criteria for deriving an optimal strategy.

The first criterion is that we have a model of the learning process. The prediction equation for \(P_i(t) \) does not offer a very complete account of learning; however, for purposes of this problem the equation suffices as a model of the learning process, giving all of the information that is required. This is an important point to keep in mind: the nature of the specific optimization problem determines the level of complexity that must be represented in the learning model. For some problems the model must provide a relatively complete account of learning in order to derive an optimal strategy, but for other problems a simple descriptive equation of the sort presented above will suffice.

The second criterion requires that the set of admissible instructional actions be specified. For the present case the potential actions are simply all possible vectors \((t_1, t_2, \ldots, t_n) \) such that the \(t_i \)'s are non-negative and sum to \(T \). The only freedom we have as decision makers in this situation is in the allocation of CAI time to individual students.

The third criterion requires that the instructional objective be specified. There are several objectives that we could choose in this situation. Let us consider four possibilities:

(a) Maximize the mean value of \(P \) over the class of students.
Minimize the variance of P over the class of students.

Maximize the number of students who score at grade level at the end of the first year.

Maximize the mean value of P satisfying the constraint that the resulting variance of P is less than or equal to the variance that would have been obtained if no CAI was administered.

Objective (a) maximizes the gain for the class as a whole; (b) aims to reduce differences among students by making the class as homogeneous as possible; (c) is concerned specifically with those students that fall behind grade level; (d) attempts to maximize performance of the whole class but insures that differences among students are not amplified by CAI. Other instructional objectives can be listed, but these are the ones that seemed most relevant. For expository purposes, let us select (a) as the instructional objective.

The fourth criterion requires that costs be assigned to each of the instructional actions and that payoffs be specified for the instructional objectives. In the present case we assume that the cost of CAI does not depend on how time is allocated among students and that the measurement of payoff is directly proportional to the students' achieved value of P.

In terms of our four criteria, the problem of deriving an optimal instructional strategy reduces to maximizing the function

$$
\phi(t_1, t_2, \ldots, t_n) = \frac{1}{n} \sum_{i=1}^{n} P_i(t_i)
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} \alpha_i + \beta_i \exp(-\gamma_i t_i)
$$
subject to the constraint that

\[\sum_{i=1}^{n} t_i = T \]

and

\[t_i > 0. \]

This maximization can be done by using the method of dynamic programming (Bellman, 1961). In order to illustrate the approach, computations were made for a first-grade class where the parameters \(a, b, \) and \(y \) had been estimated for each student. Employing these estimates, computations were carried out to determine the time allocations that maximized the above equation. For the optimal policy the predicted mean performance level of the class, \(\bar{P} \), was 15% higher than a policy that allocated time equally to students (i.e., a policy where \(t_i = t_j \) for all \(i \) and \(j \)). This gain represents a substantial improvement; the drawback is that the variance of the \(P \) scores is roughly 15% greater than for the equal-time policy. This means that if we are interested primarily in raising the class average, we must let the rapid learners move ahead and progress far beyond the slow learners.

Although a time allocation that complies with objective (a) did increase overall class performance, the correlated increase in variance leads us to believe that other objectives might be more beneficial. For comparison, time allocations also were computed for objectives (b), (c), and (d). Figure 1 presents the predicted gain in \(\bar{P} \) as a percentage of \(\bar{P} \) for the equal-time policy. Objectives (b) and (c) yield negative gains and so they should since
Figure 1: Percent gains in the mean value of P when compared with an equal-time policy for four policies each based on a different instructional objective.
their goal is to reduce variability, which is accomplished by holding back on the rapid learners and giving a lot of attention to the slower ones. The reduction in variability for these two objectives, when compared with the equal-time policy, is 12% and 10%, respectively. Objective (d), which attempts to strike a balance between objective (a) on the one hand and objectives (b) and (c) on the other, yields an 8% increase in \bar{P} and yet reduces variability by 6%.

In view of these computations, objective (d) seems to be preferred; it offers a substantial increase in mean performance while maintaining a low level of variability. As yet, we have not implemented this policy, so only theoretical results can be reported. Nevertheless, these examples yield differences that illustrate the usefulness of this type of analysis. They make it clear that the selection of an instructional objective should not be done in isolation, but should involve a comparative analysis of several alternatives taking into account more than one dimension of performance. For example, even if the principal goal is to maximize \bar{P}, it would be inappropriate in most educational situations to select a given objective over some other if it yielded only a small average gain while variability mushroomed.

Techniques of the sort presented above have been developed for other aspects of the CAI reading program. One of particular interest involves deciding for each student, on a week-by-week basis, how time should be divided between training in phonics and in sight-word identification (Chant & Atkinson, 1972). However, these developments will not be considered here; it will be more useful to turn to another example of a quite different type.
OPTIMIZING THE LEARNING OF A SECOND-LANGUAGE VOCABULARY

The second example deals with learning a foreign-language vocabulary. A similar example could be given from our work in initial reading, but this particular example has the advantage of permitting us to introduce the concept of learner-controlled instruction. In developing the example we will consider first some experimental work comparing three instructional strategies and only later explain the derivation of the optimal strategy.

The goal is to individualize instruction so that the learning of a second-language vocabulary occurs at a maximum rate. The constraints imposed on the task are typical of a school situation. A large set of German-English items are to be learned during an instructional session that involves a series of trials. On each trial one of the German words is presented and the student attempts to give the English translation; the correct translation is then presented for a brief study period. A predetermined number of trials is allocated for the instructional session, and after an intervening period of one week a test is administered over the entire vocabulary. The optimization problem is to formulate a strategy for presenting items during the instructional session so that performance on the delayed test will be maximized.

Three strategies for sequencing the instructional material will be considered. One strategy (designated the random-order strategy) is simply to cycle through the set of items in a random order; this strategy is not expected to be particularly effective but it provides a benchmark against which to evaluate others. A second strategy (designated the learner-controlled strategy) is to let the student determine for himself how best to sequence the material. In this mode the student decides on each trial
which item is to be tested and studied; the learner rather than an external controller determines the sequence of instruction. The third scheme (designated the response-sensitive strategy) is based on a decision-theoretic analysis of the instructional task. A mathematical model of learning that has provided an accurate account of vocabulary acquisition in other experiments is assumed to hold in the present situation. This model is used to compute, on a trial-by-trial basis, an individual student's current state of learning. Based on these computations, items are selected from trial to trial so as to optimize the level of learning achieved at the termination of the instructional session. The details of this strategy are complicated and can be more meaningfully discussed after the experimental procedure and results have been presented.

Instruction in this experiment is carried out under computer control. The students are required to participate in two sessions: an instructional session of approximately two hours and a briefer delayed-test session administered one week later. The delayed test is the same for all students and involves a test over the entire vocabulary. The instructional session is more complicated. The vocabulary items are divided into seven lists each containing twelve German words; the lists are arranged in a round-robin order (see Figure 2). On each trial of the instructional session a list is displayed and the student inspects it for a brief period of time. Then one of the items on the displayed list is selected for test and study. In the random-order and response-sensitive conditions the item is selected by the

Insert Figure 2 about here

Figure 2: Schematic representation of the round-robin of display lists and an example of one such list.
computer. In the learner-controlled condition the item is chosen by the student. After an item has been selected for test, the student attempts to provide a translation; then feedback regarding the correct translation is given. The next trial begins with the computer displaying the next list in the round-robin and the same procedure is repeated. The instructional session continues in this fashion for 336 trials (see Figure 3).

Insert Figure 3 about here

The results of the experiment are summarized in Figure 4. Data are presented on the left side of the figure for performance on successive blocks of trials during the instructional session; on the right side are results from the test session administered one week after the instructional session. Note that during the instructional session the probability of a correct response is highest for the random-order condition, next highest for the learner-controlled condition, and lowest for the response-sensitive condition. The results, however, are reversed on the delayed test. The response-sensitive condition is best by far with 79% correct; the learner-controlled condition is next with 58%; and the random-order condition is poorest at 38%. The observed pattern of results is expected. In the learner-controlled condition the students are trying, during the instructional session, to test and study those items they do not know i should have a
Figure 3: Flow chart describing the trial sequence during the instructional session. The selection of a word for test on a given trial (box with heavy border) varied over experimental conditions.
Figure 4: Proportion of correct responses in successive trial blocks during the instructional session, and on the delayed test administered one week later.
lower score than students in the random-order condition where testing is random and includes many items already mastered. The response-sensitive procedure also attempts to identify for test and study those items that have not yet been mastered and thus also produces a high error rate during the instructional session. The ordering of groups on the delayed test is reversed since now the entire set of words is tested; when all items are tested the probability of a correct response tells us how much of the list actually has been mastered. The magnitude of the effects observed on the delayed test are large and of practical significance.

Now that the effectiveness of the response-sensitive strategy has been established, let us turn to a discussion of how it was derived. The strategy is based on a model of vocabulary learning that has been investigated in the laboratory and shown to be quite accurate (Atkinson & Crothers, 1964; Atkinson, 1972). The model assumes that a given item is in one of three states (P, T, and U) at any moment in time. If the item is in state P then its translation is known and this knowledge is "relatively" permanent in the sense that the learning of other vocabulary items will not interfere with it. If the item is in state T then it is also known, but on a "temporary" basis; in state T other items can give rise to interference effects that cause the item to be forgotten. In state U the item is not known and the student is unable to provide a translation. Thus in states P and T a correct translation is given with probability one, whereas in state U the probability is zero.

When a test and study occurs on a given item the following transition matrix describes the possible change in state from the onset of the trial
to its termination:

\[
P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1-a & 0 \\ 0 & (1-b)c & 1-c \end{bmatrix}
\]

Rows of the matrix represent the state of the item at the start of the trial and columns its state at the end of the trial. On a trial when some other item is presented for test and study, a transition in the learning state of our original item also may take place; namely, forgetting is possible in the sense that if the item is in state T it may transit into state U.

This forgetting can occur only if the student makes an error on the other item; in that case the transition matrix applied to the original item is as follows:

\[
P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1-f & f \\ 0 & 0 & 1 \end{bmatrix}
\]

To summarize, consider the application of matrices \(\mathbf{A} \) and \(\mathbf{F} \) to some specific item on the list; when the item itself is presented for test and study transition matrix \(\mathbf{A} \) is applied; when some other item is presented that elicits an error then matrix \(\mathbf{F} \) is applied. The above assumptions provide a complete account of the learning process. The parameters in matrices \(\mathbf{A} \) and \(\mathbf{F} \) measure the difficulty level of a German-English pair and vary across items. On the basis of prior experiments, numerical estimates of these parameters exist for each of the items used in the experiment.
As noted earlier, the formulation of a strategy requires that we be precise about the quantity to be maximized. For the present task, the goal is to maximize the number of items correctly translated on the delayed test. To do this, a theoretical relationship must be specified between the state of learning at the end of the instructional session and performance on the delayed test. The assumption made here is that only those items in state P at the end of the instructional session will be translated correctly on the delayed test; an item in state T is presumed to be forgotten during the intervening week. Thus, the problem of maximizing delayed-test performance involves, at least in theory, maximizing the number of items in state P at the termination of the instructional session.

Having numerical values for parameters and knowing the student's response history, it is possible to estimate his current state of learning. More precisely, the learning model can be used to derive equations and, in turn, compute the probabilities of being in states P, T and U for each item at the start of trial n, conditionalized on the student's response history up to and including trial n-1. Given numerical estimates of these probabilities, a strategy for optimizing performance is to select that item for presentation (from the current display list) that has the greatest probability of moving into state P if it is tested and studied on the trial. This strategy has been termed the one-stage optimization procedure because it looks ahead one trial in making decisions. The true optimal policy (i.e., an N-stage procedure) would consider all possible item-response sequences for the remaining trials and select the next item so as to maximize the number of items in state P at the termination of the instructional session. For the present case the N-stage policy cannot be applied because the necessary computations...
are too time consuming even for a large computer. Fortunately, Monte Carlo studies indicate that the one-stage policy is a good approximation to the optimal strategy for a variety of Markov learning models; it was for this reason, as well as the relative ease of computing, that the one-stage procedure was employed. The computational procedure described above was implemented on the computer and permitted decisions to be made on-line for each student on a trial-by-trial basis.

The response-sensitive strategy undoubtedly can be improved upon by elaborating the learning model. Those familiar with developments in learning theory will see a number of ways of introducing more complexity into the model and thereby increasing its precision. We will not pursue such considerations here, however, since our reason for presenting the example was not to theorize about the learning process but rather to demonstrate how a simple learning model can be used to define an instructional procedure.

CONCLUDING REMARKS

Hopefully, these two examples illustrate the steps involved in developing an optimal strategy for instruction. Both examples deal with relatively simple problems and thus do not indicate the range of developments that have been made or that are clearly possible. It would be a mistake, however, to conclude that this approach offers a solution to the problems facing education. There are some fundamental obstacles that limit the generality of the work.

The major obstacles may be identified in terms of the five criteria we specified as prerequisites for an optimal strategy. The first criterion concerns the formulation of learning models. The models that we examine...
totally inadequate to explain the subtle ways by which the human organism stores, processes, and retrieves information. Until we have a much deeper understanding of learning, the identification of truly effective strategies will not be possible. However, an all-inclusive theory of learning is not a prerequisite for the development of optimal procedures. What is needed instead is a model that captures the essential features of that part of the learning process being tapped by a given instructional task. Even models that may be rejected on the basis of laboratory investigation can be useful in deriving instructional strategies. The two learning models considered in this paper are extremely simple, and yet the optimal strategies they generate are quite effective. My own preference is to formulate as complete a learning model as intuition and data will permit and then use that model to investigate optimal procedures; when possible the learning model will be represented in the form of mathematical equations but otherwise as a set of statements in a computer-simulation program. The main point is that the development of a theory of instruction cannot progress if one holds the view that a complete theory of learning is a prerequisite. Rather, advances in learning theory will affect the development of a theory of instruction, and conversely the development of a theory of instruction will influence research on learning.

The second criterion for deriving an optimal strategy requires that admissible instructional actions be clearly specified. The set of potential instructional inputs places a definite limit on the effectiveness of the optimal strategy. In my opinion powerful instructional strategies must necessarily be adaptive; that is, they must be sensitive on a moment-to-moment basis to a learner's unique response history. My judgment on this
matter is based on limited experience, restricted primarily to research on teaching initial reading. In this area, however, the evidence seems to be absolutely clear: the manipulation of method variables accounts for only a small percentage of the variance when not accompanied by instructional strategies that permit individualization. Method variables like the modified teaching alphabet, oral reading, the linguistic approach, and others undoubtedly have beneficial effects. However, these effects are minimal in comparison to the impact that is possible when instruction is adaptive to the individual learner. Significant progress in dealing with the nation's problem of teaching reading will require individually prescribed programs, and sophisticated programs will necessitate some degree of computer intervention either in the form of CAI or computer-managed instruction. As a corollary to this point, it is evident from observations of teachers on our CAI Reading Program that the more effective the adaptive strategy the less important are extrinsic motivators. Motivation is a variable in any form of learning, but when the instructional process is truly adaptive the student's progress is sufficient reward in its own right.

The third criterion for an optimal strategy deals with instructional objectives, and the fourth with cost-benefit measures. In the analyses presented here, it was tacitly assumed that the curriculum material being taught is sufficiently beneficial to justify allocating time to it. Further, in both examples the costs of instruction were assumed to be the same for all strategies. If the costs of instruction are equal for all strategies, they may be ignored and attention focused on the comparative benefits of the strategies. This is an important point because it greatly simplifies the analysis. If both costs and benefits are significant variables, then it
is essential that both be accurately estimated. This is often difficult to do. When one of these quantities can be ignored, it suffices if the other can be assessed accurately enough to order the possible outcomes. As a rule, both costs and benefits must be weighed in the analysis, and frequently subtopics within a curriculum vary significantly in their importance. In some cases, whether or not a certain topic should be taught at all is the critical question. Smallwood (1971) has treated problems similar to the ones considered in this article in a way that includes some of these factors in the structure of costs and benefits.

My last remarks deal with the issue of learner-controlled instruction. One way to avoid the challenge and responsibility of developing a theory of instruction is to adopt the view that the learner is the best judge of what to study, when to study, and how to study. I am alarmed by the number of individuals who advocate this position despite a great deal of negative evidence. Don’t misinterpret this remark. There obviously is a place for the learner’s judgments in making instructional decisions. In several CAI programs that I have helped develop, the learner plays an important role in determining the path to be followed through the curriculum. However, using the learner’s judgment as one of several items of information in making an instructional decision is quite different from proposing that the learner should have complete control. Our data, and the data of others, indicate that the learner is not a particularly effective decision maker. Arguments against learner-controlled programs are unpopular in the present climate of opinion, but they need to be made so that we will not be seduced by the easy answer that a theory of instruction is not required because, "who can be a better judge of what is best for the student than the student himself?"
The aim of this paper was to illustrate the steps involved in deriving an optimal strategy and their implications for a theory of instruction. I want to emphasize a point made at the outset—namely that the approach is only one of many that needs to be pursued. Obviously the main obstacle is that adequate theories as yet do not exist for the learning processes that we most want to optimize. However, as the examples indicate, analyses based on highly simplified models can be useful in identifying problems and focusing research efforts. It seems clear that this type of research is a necessary component in a program designed to develop a general theory of instruction.
REFERENCES

FOOTNOTES

1 A briefer version of this paper was presented as an invited address at
the meetings of the American Educational Research Association, Chicago,
April, 1972. This research was sponsored in part by National Science
Foundation Grant No. NSF GJ-443X2 and by Office of Naval Research Contract

2 Requests for reprints should be sent to Richard C. Atkinson, Department
of Psychology, Stanford University, Stanford, California 94305.

3 See, for example, Smallwood (1962), Carroll (1963), Hilgard (1964),
Bruner (1966), Groen and Atkinson (1966), Crothers and Suppes (1967),
Gagne (1970), Seidel and Hunter (1970), Pask and Scott (1971), and

4 For a more extensive discussion of some of these points see Atkinson and
Paulson (1972), Calfee (1970), Dear, et al. (1967), Laubsch (1970), and
Smallwood (1971).

5 A detailed account of this research can be found in Atkinson (1972).

6 The student's response history is a record (for each trial) of the item
presented and the response that occurred. It can be shown that a sufficient
history exists which contains only the information necessary to estimate
the student's current state of learning; the sufficient history is a function
of the complete history and the assumed learning model. For the model
considered here the sufficient history is fairly simple; but cannot be
readily described without extensive notation.
For a discussion of one-stage and N-stage policies and Monte Carlo studies comparing them, see Groen and Atkinson (1966), Calfee (1970), and Laubsch (1970).
DISTRIBUTION LIST

NAVY

5 Director, Personnel and Training Research Programs
Office of Naval Research
Arlington, Virginia 22217

1 Director
ONR Branch Office
495 Summer Street
Boston, Massachusetts 02210

1 Director
ONR Branch Office
1030 East Green Street
Pasadena, California 91101

1 Director
ONR Branch Office
556 South Clark Street
Chicago, Illinois 60605

1 Office of Naval Research
Area Office
1076 Mission Street
San Francisco, California 94103

1 Commander
Operational Test and Evaluation Force
U.S. Naval Base
Norfolk, Virginia 23511

1 Director
Naval Research Laboratory
Code 627
Washington, D.C. 20370

12 Defense Documentation Center
Camden Station, Building 5
5010 Duke Street
Alexandria, Virginia 22314

1 Chairman
Behavioral Science Department
Naval Command and Management Division
U.S. Naval Academy
Duke Hall
Annapolis, Maryland 21402

1 Chief of Naval Air Training
Code 017
Naval Air Station
Pensacola, Florida 32506

1 Chief of Naval Training
Naval Air Station
Pensacola, Florida 32506
ATTN: CAPT Allen E. McMichael

1 Chief of Naval Technical Training
Naval Air Station Memphis
Millington, Tennessee 38053

1 Chief
Bureau of Medicine and Surgery
Code 513
Washington, D.C. 20301

1 Commander Naval Air Reserve
Naval Air Station
Glenview, Illinois 60026

1 Commander
Naval Air Systems Command
Navy Department, AIR-4130
Washington, D.C. 20360

1 Commander
Submarine Development Group Two
Fleet Post Office
New York, New York 09601

1 Commanding Officer
Naval Air Technical Training Center
Jacksonville, Florida 32213

1 Commanding Officer
Naval Personnel and Training Research Laboratory
San Diego, California 92152

1 Commanding Officer
Service School Command
U.S. Naval Training Center
San Diego, California 92133
ATTN: Code 303
1 Mr. William J. Stormer
DOD Computer Institute
Washington Navy Yard
Building 175
Washington, D. C. 20390

1 Mr. Joseph J. Cowan, Chief
Psychological Research Branch (P-1)
U.S. Coast Guard Headquarters
400 Seventh Street, SW
Washington, D. C. 20590

OTHER GOVERNMENT

1 Dr. Alvin E. Goin, Chief
Personality and Cognition Research Section
Behavioral Sciences Research Branch
National Institute of Mental Health
9600 Fishers Lane
Rockville, Maryland 20852

1 Dr. Andrew R. Molnar
Computer Innovation in Education Section
Office of Computing Activities
National Science Foundation
Washington, D. C. 20550

1 Office of Computer Information Center for Computer Sciences and Technology
National Bureau of Standards
Washington, D. C. 20234

1 Dr. Sandra Anderson
Executive Director for Special Development
Educational Testing Service
Princeton, New Jersey 08540

1 Professor John Annett
The Open University
Walton Hall, BLETCHLEY
Bucks, ENGLAND

1 Dr. Bernard M. Haus
University of Rochester
Management Research Center
Rochester, New York 14627

1 Professor Mats Bjorkman
University of Umea
Department of Psychology
Radhusplanad 2
S-902 47 UMEA/SWEDEN

1 Dr. David G. Bowers
Institute for Social Research
University of Michigan
Ann Arbor, Michigan 48106

1 Mr. H. Dean Brown
Stanford Research Institute
533 Ravenswood Avenue
Menlo Park, California 94025

1 Dr. Jaime Tarbounell
Bolt Beranek and Newman
50 Moulton Street
Cambridge, Massachusetts 02138

1 Dr. Kenneth E. Clark
University of Rochester
College of Arts and Sciences
River Campus Station
Rochester, New York 14627

1 ERIC Processing and Reference Facility
1833 Ryder Avenue
Bethesda, Maryland 20014
1 Dr. Victor Fields
Department of Psychology
Montgomery College
Rockville, Maryland 20850

1 Dr. Robert Glaser
Learning Research and Development Center
University of Pittsburgh
Pittsburgh, Pennsylvania 15213

1 Dr. Albert J. Glickman
American Institutes for Research
8555 Sixteenth Street
Silver Spring, Maryland 20910

1 Dr. Bert Green
Department of Psychology
Johns Hopkins University
Baltimore, Maryland 21218

1 Dr. Duncan N. Hansen
Center for Computer-Assisted Instruction
Florida State University
Tallahassee, Florida 32306

1 Dr. M. D. Havron
Human Sciences Research, Inc.
Westgate Industrial Park
7710 Old Springhouse Road
McLean, Virginia 22101

1 Human Resources Research Organization
Division #3
Post Office Box 5787
Presidio of Monterey, California 93940

1 Human Resources Research Organization
Division #4, Infantry
Post Office Box 2086
Fort Benning, Georgia 31905

1 Human Resources Research Organization
Division #5, Air Defense
Post Office Box 6057
Fort Bliss, Texas 79916

1 Library
HumRRO Division Number 6
P. O. Box 428
Fort Rucker, Alabama 36360

1 Dr. Lawrence E. Johnson
Lawrence Johnson and Associates, Inc.
2001 "S" Street, NW
Suite 502
Washington, D. C. 20009

1 Dr. Norman J. Johnson
Associate Professor of Social Policy
School of Urban and Public Affairs
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

1 Dr. Roger A. Kaufman
Graduate School of Human Behavior
U.S. International University
8655 E. Pomerada Road
San Diego, California 92128

1 Dr. E. J. McCormick
Department of Psychological Sciences
Purdue University
Lafayette, Indiana 47907

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
Santa Barbara Research Park
6780 Cortona Drive
Goleta, California 93017

1 Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, Virginia 22207

1 Dr. Robert D. Pritchard
Assistant Professor of Psychology
Purdue University
Lafayette, Indiana 47907

1 Dr. Diane M. Ramsey-Klee
R-K Research & System Design
3947 Ridgemont Drive
Malibu, California 90265
1 Dr. Joseph W. Rigney
Behavioral Technology Laboratories
University of Southern California
3717 South Grand
Los Angeles, California 90007

1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, Maryland 20850

1 Dr. George E. Rowland
Rowland and Company, Inc.
Post Office Box 61
Haddonfield, New Jersey 08033

1 Dr. Benjamin Schneider
Department of Psychology
University of Maryland
College Park, Maryland 20742

1 Dr. Robert J. Seidel
Human Resources Research Organization
300 N. Washington Street
Alexandria, Virginia 22314

1 Dr. Arthur I. Siegel
Applied Psychological Services
Science Center
404 East Lancaster Avenue
Wayne, Pennsylvania 19087

1 Dr. Henry Solomon
George Washington University
Department of Economics
Washington, D. C. 20006

1 Dr. Benton J. Underwood
Department of Psychology
Northwestern University
Evanston, Illinois 60201

1 Dr. David Weiss
University of Minnesota
Department of Psychology
Elliott Hall
Minneapolis, Minnesota 55455
Continued from inside front cover)

E. Gammon. The statistical determination of linguistic units. July 1, 1966.

L. L. Young. Effects of intervals between reinforcements and test trials in paired-associate learning. August 1, 1966.

R. C. Atkinson, J. E. Holmgren, and J. F. Judia. Processing time as influenced by the number of elements in the visual display. March 14, 1969.

Continued from inside back cover

165 Lawrence James Hubert. A formal model for the perceptual processing of geometric configurations. February 19, 1971.
169 James F. Juola and R.C. Atkinson. Memory scanning for words versus categories.
170 Ira S. Fischler and James F. Juola. Effects of repeated tests on recognition time for information in long-term memory.
175 D. Jamison, J.D. Fletcher, P. Suppes and R.C. Atkinson. Cost and performance of computer-assisted instruction for compensatory education.