
generalization that links facts together in terms of abstracted properties such as color, position, number (ordinal, cardinal), degree or type of change, etc. A pupils's attainment will be measured by factual and/or conceptual information embodied in the answers of multiple choice test questions.

The objective of an episode entitled INFERENTIAL or PACTUAL-CONCEPTUAL-INFERENTIAL

The objective of inferential instruction is a change in behsalor which has as 1 ts outcome the ability to arrive at a decision or tentative conclusion, or the acceptance of a seemingly incontrovèrtible outcome based upon a mental model without substantial physical evidence, but from reasoning, partial evidence and relevant facts (the existence of potential energy can only be inferred.... the proof of such occurs when the energy is releaseci. The objective of factual-conceptual-inferential instruction is a change in behavior winich has as its outcome the ability to apply facts and concepts presented during the episode in question and, in part, earlier episodes to make inferences about the nature of selected physical phenomeng. A pupil's attainment will be measured by his ability, to recognize a correct inference embodied in multiple ohoice test items; the test question may describe a new or modified situation to which the pupi? w111 apply the most likely inference.

ADsumed example of a FACTUAL-CONCEPTUAL activity within an instructional episode:

Basio facts about general atonic structure are brought together to build the concept of orderly atomic structure of the elements. The instructor lectures briefiy on the form and structure of the basic plenetary atomic model, starting with hydrogen. He uses the overhead projector or chalkboard to diagram the buildup of several ligit elements, giving the rules for electron orbit compiement. The pupils do likewise; then they use a simple table of atomic characteristics to draw planetary atomic representations of many of the first 20 elements.

Assumed example of a FACTUAL-CONCEPTUAL-INFERENTIAL or INPERENTIAL activity within an instructional episode:

The ass:med example of a FACTUAL-CONCEPTUAL activil:y is extended to inolude interpretation of a simplified version of the Periodic Table of the elements. The pupils ure then invited to make infercroes about certain oharacteristics of elements for whlah only blanks appear in the Table.

Shrader, J. S. The understandirg of selected principles of college chemistry by intermediate grade pupils Science Ecucation, 1968, 52, 196-203.

Smith, E. A. \& Anderson, K. E. Scirnce. In Encyclonedia of education research. (3rc. ed.) New York: hacmillan, 1960, 2p. 1216-1232.

Tate, N. W. Statistics in education and nsycholozy. New York: Nacmillan, 1sé.

Thorndike, R. L. Rellability. In 玉. ミ. Lindquist (Ed.). rducation Z Yensurement. Nashington, D. C. American Council on Edication, 1951, Pp. 5ć0-620.

University of the State of Nem York, Ife State Education Department, Sureau of Secondary Curricilum Development. An experimental syllabus for science ?. 8, $9:$ tie chemistry of matter: Eloci, J. Albany: Uisiversity of the State of den Yors, 1903.

University of the State of New Vork. The State Education Department, Eureau of Elementary Curriculum Development. Science for children: vol. graces $\frac{1}{}-3$ anc Vol. grades $4-6$, Albany: University of ti.e State of New York, 1965.

Walker, H. K. \& Lev, J. Statisticel inference, New Yor'x: Holt, Binehart \& winston, 1953.

Young. D. Atomic energy concepts of children in tuird and sixth grade. School Science and iathematios, 1958, 58, 535-539.

The Valicator's Task

The validator should read each instructional episode and the test question(s) following it. He should then decide if the episode's instructional objective, labeled'either factualepledial is measured in the comitive conceptual or inferential, 1 , measured test 2 by the test item(s).

Attainment on an episode labeled inferential which is measured by more than one test item may include some 1tems at a lower level of the cognitive hierarchy than the inferential level. Thus it is possible that an episode labeled inferential* may have attached to it one or more test items at the factual-conceptual level in addition to one or fore at the inferential level.

For'negative decisions a test item's identification number should be marked with an "X". If time permits, a brief note of explanation would be helpful, and appreciated. Miaris O.K." for acoeptable 1 tems.

APPENDIX A
Directions to the Jurors

4

There is a dearth of studies that are directed toward organizing and evaluating appropriate classroom activities for elementary children，which make use of a major con－ ceptual scientific paradigm or mocel．A conceptual model of science that has had monumental consequence is the of science that has had monumental consequence is the
Bohr－Rutherford atomic model，or planetary atom．Though it has been supplarted in advanced scientific enterprises， it has been supplarited in advanced scientific enterprises，
the planetary model is universally employed as an intro－ the planetary model is universally employed as an intro
ductory instructional paradigm in atomic studies．The ductory instructional paradigm in atomic studies．The elements by their electron complemert in the Periodic Table；this outcome has been described as one of the greatest intellectual acnievements of all time．As such it deserves a significant and meaningful place in elementary science curricula．

The purpose of the present study is to evaluate the fol－ lowing general hypothesis；a major conceptual scheme of lowing general hypotresis；a major conceptual scheme of
science，the planetary atomic model，can be the basis of instructional episodes for pupils of middle elementary and pre－secondary classes．

The instructional episodes have been compiled and modified from a number of sources which incluce curricula hardbooks， commercial sourcebooiks，and even college textbooks．As a judge of the suitability of the instructional episodes you are asked to consider three aspects of each of them．Aspect No． 1 is described on pages l－4．Aspects No． 2 and No． 3 are described on page 4 ．

－Aspect No． 1

Each episode is labeled with a title which indicates its instructional objective（s），namely，FaCTUAL and／or CONCEPTUAL，or INFERENTIAL，or FACTUAL－CONCEPTUAL－ INFERENTIAL．The titles are described and assumed exam－ ples given below．

The aspect to consider：Does the irstructional episode
The aspect to consider：$\frac{\text { Does the instructional epi }}{}$
operational sense for pupils in coti micicile elementary and pre－seconcary classes？

The objective of an episode entitled PACTUAL：
The objective of factual instraction is a
change in behavior which has as its outcome
Difference Between

structional	Standarc Emror or Dirference		$\begin{aligned} & \text { Is Gain } \\ & \text { Sipnify } \end{aligned}$
andard	Between Post \＆		
Devlation	Pre Means	Ratio	$\alpha \times .01$ ？${ }^{\text {a }}$

\％\％\％	哭号	®	が気
$\stackrel{-1}{\sim}$		Nơo nu-	
			$\begin{aligned} & \text { F̛ơ } \\ & \text { ion } \\ & \text { min } \end{aligned}$

Mn of
'tnowledge of an event or phenomenon, or assumption, or principle. A pupil's attainarent will be reasured by his ability to recognize correct factual information embodied in the answers of multiple choice test questions.

The objective of an episocie entitled CONCEPTUAL:
The cbjective of conceptual instruction is a change in behavior which has as its outcome the internalizing of an idea or generalization that links facts together in terms of abstracted links facts together in terms of abs, number (ordinal, carciinal), degree or type of change, etc. A pupil's attainment will be measured by his ability to recognize correct conceptual informition embodied in the answers of multiple choice test questions.

The objective of an episode entitled INPERENFIAL:
The objective of inferential instruction is a change in behavior which has as its outcome the ability to arrive at a decision or tentative conclusion, or the acceptance of a seemingly incontrovertible outcome based upon a mental model without substantial physical evidence, but from reasoning, partial evidence and relevant facts (the existence of potential energy can only be inferred.... the proof of such occurs when the energy is raleased). A pupil's attainment will be measured by his pupilis to recognize a correct inference which ability to recognize a corr, embodied in the explains a physical event, embodied in the
answers of multiple choice test questions.

The objective of an episode entitled FACTUAL-CONCEPTLAL-INFERENTIAL:

The objective of factual-conceptual-inferential instruction is a change in behavior which has as its outcome the ability to apply facts and concepts presented during the episode in question and, in part, earlier episodes to make inferences about the nature of selected physical inferences aboutil's attainment will be measured by his ability to recognize a correct inference

Refisions of the measurement instrument, resulting from analysis of the pilot class performance, are summarized in Table No. 2, Appendix B.
in certain cases an item wns retained with revision. even thou.gh in the original form the item discriminatea poorly between high and low scorers and/or the difficuity inder was low or high. Items that were revised or dropper were done so as a result of interviews with high-scoring chlldren and the teaoher.

All. of pilot episode no. 14 was dropped because of difficulty expressed by pupils and teacher with the concepts of electron eneigy levels to account for certain phenomena assocfated with spectral color and x-rays. The most tasic limiting factor appeared to be thst the activities dia not provide enoush preparation in the conservation principle In addition imple direct demonstration materials were

Item No. pllot class	Item Difficulty, percent Correat	$\begin{aligned} & \text { Upper } 27 \% \\ & \text { of class } \end{aligned}$	$\begin{aligned} & \text { Lower } \\ & \text { of Class } \end{aligned}$	$\stackrel{\text { rind }}{\text { Index }}$ Item Dis. crimination or Valldity	Decision*	Item No. for Exper 1 mental Run
Factual-Conceptual; PAM Items, $n=12$ (continued)						
12.3	43	83	00	. 83	-	12.3
12.4	48	83	17	. 64	M	12.4
12.5	43	50	33	. 18	R	12.5
13.1	48	50	33	. 18	M***	13.1
13.2	33	33	33	. 00	8***	13.2
13.3	33	67	00	. 76	M***	13.3
Inferential; Rackgrounc Items, $n=16$						
1.1	90	100	83	. 4.4	M	1.1
2.1	43.	33	00	. 57	M	2.1
3.1	33	83	00	. 83	-	3.2
3.2	76	100	83	. 44	M	3.1
4.1	14	17	00	. 42	M	4.1
5.1	48	83	33	. 50	M	5.1
5.2	67	100	67.	. 59.	M	562
	-		-	(continued		

1. - In your décisions, do not סive major emphasis to possiole lansuage problems. The episaies accepted from the present validation process will be subject to further assessment and to the scrutiny and criticism of the teachers who will present the activities to their own classes.
2. All episodes which are accepted will be taught to all experimental ciasses that conprise the tio major, grade categories for the study, nemely, midile elementary (grades 3 and 4) and pre-secondary (grades 5 and 6).
3. An eifort has been made to choose episores and modify them so that pupil-teacher interaction is maximized. The milus inch include lecture-ciscussion, dinonstration-discussion and short laboratory-Eype demonstration-disciassion, and shor. Several episodes activities followed by discussion. Several
have provision for reinforcement activities.
4. Several episodes carry the sub-label entitled "background". Cheir purpose is to give the pupils preliminary experiences in dealing with unseen factors or entities.
5. Several episodes relate to findings or evidence tiat postdate initial development of the platetary atomic model. This in no way confourds the purposes of the activities as a whole because a risorous planetary atoric madel is not being employed, nor is it limited to knowledge at a certain point in time: For example, the neutron was nuncovered" alnumber of years after the the neutron was uncovered to the planetary atomic model were introduced.
6. Certain aspects* of the validity of each of 25 proposed classroom instructional episodes are in cuestion. You are asced to judge' the content and "purpose of the proposed episode in respect to the several stated aspects*. Your judzment and that of others will be complled to obtain an assessment for each episode. A sample rating sheet is presented on cage no. 6. An individual rating sheet is provided on the page following each episode. sheet is provided on the rating sheet colncide with the stated aspects*.
*described on pages 1-4, herein.

Instructional Episodes Leadine To and Pertaining to the Planetary Atomic Model
by
3. Hurvey Steinberg

January, 1969
revised July, 1969

INFERENTIAL (background)
This instructional episode is designed to give children background experience in accounting for certain physical phenomena in terms of entities that are not seen directiy.

At the completion of this instructional episode the pupil should be able to select correct statements relevant to the inference that unseen small spaces exist in the structure of certain substances.

P1ll a small beaker with cotton and another beaker of equal size with riater. Cram as much cotton in as possible without going over the rim. Use a droppe: to transfer the water into the beaier of cotton, and note that the water and cotton eventually seem to occupy the same space. Ask Fhe pupils what ay be takins place amone smallest bits of cotton and srallest bits of water. During the discussion, the instructor should write the pupils' tentative hypotheses on the chalkboard or overnead projector, then asis the class to evaluate each hypothesis. See sumaary question no. 2 for the accepted hypothesis. Some children may asik if the process can be reversed, that is, place small bits of cotton into water until the cotton and water seem to occupy the same space. The conclusion is valid botk ways.

Summary Questions

1) At normal temperatures nearly all substances (material.s) can be grouped by their physical state. solid, liquid, gas. Is cotton a solid s^{n} a liquid? [Flexible solid.] Is water as used in this instructional episode a solid or a 11quid?. [Golids tend to keep a shape, liqיids readily take the shape of the bottom of their containers, gasses fill their containers.]
2) Why do we think that the water fills in spaces within the cotton mass? The cotton can be removed and nearly all of the water wrung from 1t.]
3) If drawing A represents cotton and drawing B represents water, how would the results of the demonstration be show in drawing C ?

4) How is a sponge able to hold large amounts of liquid?

New Vocabulary

beake:	represents
flexible	substance
materials	

INFERENTIAL (backeround)

This inst.uctional eplsore is desimed to fivo criliron background experience in accountinz for a chanme in snpcific matter in terms of effects which are not soon diroctiy.

At the completion of this instructional esisoie the ounll should be able to selpct corroct statempnts relevart to the inferonce- that the substance involved is marip un of tiny invisiole entities or bits which are in rotion.

Your some ammonia or perfume in a shallow dish. ask. puplls to indicate when they first notice the ofor as it diffuses throuzh the air in the room. Invite puolls to suzzest an explanation for the spread of fumes (fas:) across the roor. A reasonable assumption is that a little of tre suostanco escapes (or evaporates) into the alr. This liea can io testep by exposing a small quantity of rubbinf alconol to air until it oisappears, or let alcohol evaporate frow the arms of the pupils.

The pupils should be led into a discussion about the conditions that appear to be necessary for the sensing of ofors. and for the evaporation of substances. Ask them to hjootinesize which of these situations would most quickly permit thoto smell something:
A) The ais in the room does not move.
B) The alr in the room moves, but the blts or molecules" of the substance do not move.
C) The alr moves and the bits or molecules of the substance move.
(continued)

[^0]
Summary Questions

1) If the first drawing shows the substance used in the beginning of the demonstration. fill in the drawings to show the amount of it after the time period indicated.

2) Why does the source substance disappear? Where does 1t 80?
3) Which pupils (as to location) noticed the substarce's odor first? Would the results be much different if these same pupils were originally at different locations? Eor can we be scire?
4) Why can we see the substance at its source, but cannot see the substance as it approaches us? [it changes from a liquid with molecules close togetner, to a gas with molecules far apart. It is inferree that the molecules are very small, because we can't see them as a gas.]

New Vocabulary
alconol
ammonis
evaporate
fumes
molecule(s)

CONCEPTUAL - INFERETTIAL (background)

This instructional episode is designed to give chlldren background experience in accounting for differential dispersals of a substance in terms of heat associated with it.

At the completion of this instructional episode the pupil should be able to select correct stateirents relevant to the inference that the substance invoived becomes diffused and the dispersal is dependent on temperature.

Set out three "beakers of equal volume. In one beaker put water at room temperature or at the temperature of the cold water faucet: In a second beaiker place near-oolling \%ater to a level equal to tre water in the first beaker. In the third beaker place two ice cubes and enourn cold water to equal the level in the other beakers. Use a dropper to place a few, drops of dye solution in each of the beakers, or use a flat wooden splint to put a few particles of powdered dye in each beaker. Ask the pupils to explain what is happention in each beaker. In the ensuing discussion, these hypotheses should be accepted as tenable (1) the dye particles or bits of dye are dispersed or diffused in water, (2) the dispe:sal per unit of time appears to be dependent on temperature.*

Be sure the pupils understand that the amount of the dye (or dye soiution, excepr for sifaht evaporation) is conserved... that is, though it spreads out and looks larger, it has done so at the expense of "thichens."

Sunmary Questions

1) If the first drawing below represents dye solution after 1 minace at cold temperature draw a diagram of the dye solution later on vinen it warms to room temperature; when it is made very hot.

(continued)

- Puplls may inquire about the possibility of removing sufflcient heat to reverse the dissociation of the dye in solution... in other words to make it denser so that the volure decreases. This would require special apparatus which produces temperatures far below the capabilities of common coolants. The volume could not be greatly reduced in any case because of certain "forces" that exist between the particles of the material.

2) (a) What makes the heated dye solution spread out more rapidly than the cold one?
(b) Give some examples in everyday life in which heated substances spread out more rapidly than do cooler substances.
3) In an earlier activity the substance could not be seen spreading toward us, but we sensed it by its odor. In the present activity we see the substance spreading; does this show that the bits of dye are in any way different than the bits used in Episode No. 2? Explain. [The bits in Episode :io. 2 are each probably smaller than the bits of dye, herein.]

New Vocabulary
Diffusion, Dispersion
Dye
Increase, Decrease

PACTUAL - CONCEPTUAL - IMFERETiIAL (background)

: This instructional episode is designed to give crilcren background experience in accounting for changes in forms of specific matter, in terms of heat associated with it.

At the completion of this instructional episode the pupil should be able to select correct statements relevant to the inference that small, not-easiij-seen bits or moleoules are kept apart by the heat energy associated with them.

Pour some not water into a beaker. Flace an lce cuoe on a curved glass disi called a watch glass, and coser the beaker with the slass. Invite the pupils to answer these questions.

1) Liquid is collecting (by condensing) on the lower side of the watch glass. Where does it come from?
2) Look at the area just above the water's surface (higher up the molecules may lose enough enorgy to come back together as visible vapor before collecting as liquid on the watch glass). Wing can't the molecules be seen leaving the surface of the water?
3) On the cold glass, why do the molecules cling together?

The idea to seek from the pupils is that the molecu?es of water are individually much too swil to be seen. nowever. when the molecules strike the cold Elass (why do they travel from the water uphard?) something raprens and tre molecules collect near and on top of one anoticer so that masses of them appear as a fogsed portion or filc on the glass. Ask the pupils to explain the events observed. Lieat energy or work*. causes the water molecules to increase their motion, until trey separate from one anotrer... some fly off into space. When the "fllers" (at ni gh enerej) strike the cool (low energy) glass they give up their neat energy to. the glass and their energy of motion is reduced; this leads to a tendency* to collect together.]
(continued)

* Energy is defined as the ability to do work. In a subsequant instructional episode, the terms "snergy" and "work" will be
- treated more definitively.
* There is concomitant electrostatic attraction but this icea should not be pursued here.

4) In the process of condensing, do the molecules themselves get smaller, or do the molecules get closer together? How can we be sure?
[Direct evidence is beyond our capabilities. However, it is inferred that the folecules remain the same size but get closer tozether as they lose the energy that has caused them to stay apart. The inverse phenomena rrom which this inference is drawn 15 demonstrated in Episodes no 2 and no. $3 . j$

Summary Questions

1) See questions $1-4$ above.
2) What is the general effect of heat on molecules as compared to coolness, or loss of heat? LThe energy of motion of =olecules tends to increase with an increase of neat enerey; a loss of neat energy tends to reduce tine energy of motion.]
3) Describe several everyday events that can be explained in terms of the instructional experiences herein.

New Vocabulary

condense
decrease
energy
increase
tends, tendency

CONCEPTUAL - INPERENTIAL (backgTOund)

This instructional episode is designed to give children backeround experience in making and communicating hypotheses and tests of hypotheses about physical attributes of unseen objects.

At the completion of this instructional episode the pupil should be able to select correct statements referring to: (1) the notions of length, volume, and density as applied to unseen entitles in making reasonable estimates about the properties of those entities, and (2) develop=ent and testing of mental models of entities whose properties cannot be directly observed.

Activity A

The instructor employs objects of the shapes pictured. then the class is asired to discuss answers to the questions below:

) Ask the pupils to identify the shspes.
2) Which object(s) would be easiest to push or pull if they all welghed the same? The round ones] Why? Less rubbing.
3) Which object takes up the most volume or space? The least? Use an overflow can as plctured below. The object which makes the most water overflow has the greatest volume. Mark the water level within the beaker by stretching a rubber band arounc the beaiser. Use thin wire tongs to gx:p and hold down objects that float. Though the wire tong takes up some volume, it is a constant that need not be considered in miking the relative measurements, herein. For each measurement be sure the trough is filied up to the level of the spigot and is just ready to commence dripping.

EPISODE \#5 (second of four pages)

4) If the objects were all made from the same substance, which one would weigh the most? Why?
5) If the biggest object is not the heaviest, what can be inferred about the molecules or particies of winich it is composed? [Elther lighter, or farther apart, or both.]

Activity B

The processes involved in the following part of the activity are analonous to those that scientists use in disoovering the properties of unseen entities such as atoms and their sub-particles.

In each of enough boxes (small cardboard, or cigar boxes) for each oupil there hos been placed a common object (pencil, metal strip, spool, wood block, etc.) and the box has been "permanently" sealed. These will be used for the "black box" experiment in which the pupil is to use simple manipulations and then build mental models of the box's contents to infer what is inside. He can never open the box; there is an $1 \mathrm{~m}-$ portant analogy here with tne conception of the atoms of which the world is made. They cannot be seen...all that can be done is to maise mental approximations and models of their structure and test these estimates and revise or extend the mental model as experimental results confirm, deny, or confound the model. One of the most important conclusions is that it can be inferred with great certainty what is most probably NOT in the box, and thus some models can be rejected with great certainty; obviously, there is not a real dog inside a box.

By appropriate manipulation, a pupil should be able to estimate the approximate volume of the object (how much space

EPISODE \#5 (third of four pages)

1t takes up in comparis on to the box), density* (weight/volume), and nence, composition of things that cannot be seen. Invite pupils to estimate the density of the object in the box by "comparing" it to the density of familias objects. For example, is the object more dense, as dense, or less dense than a coin?, a sponge?

7
Invite certain pupils to cherix each other's estimates in front of the class... one child describes ins estimate of volume, weight, shape, density on a plece of paper and hancs it to the teacher. Anotiner child performs "model-thinifin" anez with the same box in front of the class. The teacher compares the two "models" for the whole class.

The teacher should asc the pupils to name some entities that cannot readily be seen, but about winich much is imom. Electricity, atoms, molecules, magnetism, virus, certain diseases, electrons, alr] Point out that the use of the senses, coupled with imagination are common to answer-seeking projects.
-.
Sumany Questions
Activity A. See Questions in Activity A.
Activity B.

1) (a) Give four general characteristics of the contents of the box which can be estimated with reasonable accuracy? Shape, volume, weignt, density.]
(b) Can we be sure that a living thing is not in the box?
[^1]EPISODE \#5 (fourth of four pages)
(a) What can be said about the contents of the box with great certainty? Give examples.
(d) Can the contents of the unopened box ever be lown for certain without the use of special instruments?
2) (a) Give some examples in which scientists deal with invisible things with confidence. See examples, given berore?
(b) Do pupils ever deal with invisible trings with oonfidence? How do they know what the results will be if the object(s) can't be seen?

New Vocabulary
cube
cylinder
density
disc
rectangle (rectangular)
prism
pyramid
sphere
square
*riangle (triangular)
volume
oblans
partual - ccicepmal - inferevtial (background)
Thit instructional episode is designed to inpart to ohllaren lackercind experience about the principle of wor and enfrey tranteorations to account for a wide range of phy:ical events.

At the con-letion of this instructional episode the pupil ahould be able to select correct stntezents and/or diegrams that relate to: (1) interpretition of the concepts of energ: ant work, and ' 2) the inference that energy traisformaticns reshat frox hoir.
-
Pais the pupils. One pipil in the pair repeatediy bends a plece or light-ieleht cont hanger xire. It is flexed with great raplulty util it Ereais. As the rire is flexed the otiner pupll places a ringer upnn the flexing point to sense the increarlrg zont produced. Invite them to explain the source of hoat. If the puplls use the word "friction", ask thes so explait. friction of wat, with what? The problem my becose clerrer if the pupils, after bencing their ulres, waye thea viconcusly through the air in an teapt to p.oduce npprecleble heat. Cr ccurse, the air ovides very litile rricticnil resistance. The purpose here is to give puple wispierce in inferrine that seall invisible bits (the t. Eolecule con be substituted here in a soze:irat less-that-rigerous senre) of the :ire are being zoved ath oeparated by no extemal force. Nolecules of the ilre are. ooupled tiontly together (how they are coupled is beyond the scope of our studies; and some of the work done to weaken or loosen tre couplines shows up as heat. Heat is a form or energy; raze otier forms such as electrical enersy, energy of motion, listy energi. Some of the pupils body chemical conrey allowes trea to make movements that were ulticately transformel to heat energy in the wire.

Tell the pupils that work (contrast it to common peanines) in science is the measure of energy. For our purpores, the vords work and onersy can usually be interohanged. Woik is derined f : acting through a distance, or whic! protuces covement. f :ce is manifested as a push or pull. A suttle but ioportan. concept differentiates a force which prodices movecent from a force that is incapable of itself in pratucins movement. Cnly the former produces work or energy. [ne latter may produce only pressure. ñowever, the pctential to produce work as in a cocired rifle bolt, is termed potential enerej. The concepts of pressure ard potent.il energy will not be pursued in our studies.]

EPISODE \#6 (second of three pages)

Work is capable of transfcrmations. Nearly all appliances in our homes, schools, and industries make eneroy transformations for us; for example, a radio, in part changes electrical energy to sound energy.

To give the pupils experience in generalizing the important concept of energy transformation, invite them to note and explain the source of the heat procuced winle a lead block is repeatedly pounded with a hammer. Some of the energy of motion, in part, moves* lead molecules and part of the enercy of motion is transformed to heat as lead molecules collide and resist movement.

Summary Questions

1) Define these terms and give examples or demonstrate each one:
(a) force
(c) energy transf ormation
(b) work
2) A boy pushes $\nabla 1$ gorously trying to make a car move, but
it remains stationary. Does he do work on the whole it remains stationary. Does he do work on the whole car? Does he do any work? Explain.
3) Who would wear out the seat covers in a car first, a 250 pound woman or a 120 pound woman (assume same amount of tive in the car and same kind of cover)?... explain in terms of work.
4) In which of the following situations is worin performed? In which one is the most work performed? In which one is the least work performed?
(a) A boy pushes his cart up a hill.
(b) A truck rolls down a:h11l and'crashes into a house.
(c) A bird pulls a worm out of 1 ts hole.
(d) A dog pulls at the end of his leash, but he doesn't move at all.
*The surface beoomes dented.
5) In wilch of the following situations is work transformed (energy changed from one kind to another kind of energy)?
(a) A girl uses an electric hair dryer to dry her curls. Name the energy changes; if any. [Electrical energy is transformed to heat energy.] Where did the electrical'energy come from? Perhaps falling water, as at Niagara Falls... energy of motion.]
(b) The wind scatters fallen leaves all around. Name the energy changes, if any. [No appreciable change of energy in this example; the energy of motion of the wind is imparted to the leaves which also move?
(c) A girl uses an electric sewing machine to stitch an apron together. Name the energy changes, if any. [Electrical energy is changed to energy of motion of the needle, etc.]

PACTUAL - CCNCEPTUAL - INFERENTIAL (bac'sground)
This instructional episode is designed to give children background experience in applyins the principle of energy transformation to entities whose actions are explained in terms of the electrical nature of matter.

At the completion of this instructional eplsode the pupll should be able to select correct statements about charged particles derived from certain electrostatic demonstrations.

Ask pupils to reccill famillar phencmena with static electricity. finls activity might well be preceded by usinf inflated balloons and noting their action on each other and on other objects after they have been rubbed against wool or plastics.

Then proceed to the following demonstration which introduces the basic principle of electrostatics; like electrical charges repel, unlike electrical charges attract.

1) Charge an "ebony" (actually made of hard rubber) rod by rubbing it vigorously several times in one direction with fur. It is known tirat such action, in effect, upsets the electrical neutrality of the substance of the rod; the action puts a negative (symbol is -) charge on the rod. Bring the ebony rod near the knob of a neutral electroscope...note the action of the electroscope leaves. They will diverze. Touch the ebony rod to the knob...note the action of the leaves. They will probably diverge farther. Remove the rod and touch the knob. The leaves will converge. This action grounds or discharges the charge on the scope, and it returns to electrical neutrality.
2) Repeat No. 1 with an uncharged ebony rod, a glass rod, a pencil, etc.
3) Charge a smooth glass rod by rubbing it very very vigorously several times in one direction with silk. It is known that such action, in effect, upsets the electrical neutrality of the rod; the action puts a positive (symbol is +) charge on the rod. Repeat the steps outlined in No. 1 with the glass rod.
4) (a) Touch a charged ebony rod to the kncb of a neutral eleotroscope, then touch another charged ebony rod to the knob while keeping the first one in place.

Describe the action of the leaves. The divergence will increase. What can be concluded about the action of negative charges on each other? [They repel each other.
(b) Repeat A, but with two charged glass rods.

Describe the action of the leaves. What can be concluded about the action of positive charges on each other? [They repel each other]
(c) What can be concluded about the action of like charges on each other? They repel each other.
5) To the knob of a neutral electroscope, touch a charged glass rod, remove the rod, then touch a charged ebony rod. Groind the electroscope and repeat, reversins the order of the rods. Describe the action of tho leaves:" One type of charge gives a diversence, the other type added to it creates a convergence] inat can be concluded about the action of unlike charges on each other? Unlike charges tend tr ittract each otherd One result of such attraction is to neutralize a previously charged body. For example, a positively charged body may be neutralized by negative charges which are attracted to $1 t$.
*Several suggestions for obtaining satisfactory results with the electrostatic apparatus follow :

1) When a gharged rod is touched" to the electroscope knob. run the rod along 1 ts length against the knob. This action maximizes the contact area between knob and rod.
2) Some people produce better electrostatic effects than others. Invite different children to participate.
3) Eumid conditions may inhioit maximum results from electrostatic demonstrations.
(a) The glass rod usually glves the most trouble. Clean the surface by washing in a detergent or wiping with a paper towel saturated with alcohol. Dry thoroughly.
(b) Humidicy in the classroom is usually lowest early in the day.
(c) An operating electric hot plate in proximity to the demonstration area may dry the air and apparatus. Plug-in well in advance.

As in earlier episodes, unseen entities are canifest here. The principle of repulsion of like charses and attraction of unlike charges is a fundamental one. it should be empiosized that the actions demonstrated are basic to exple. ining and predicting atomic and sub-atomic events. Encourage the pupils to hypothesize about what may be happening to the tiny bits that make up the ebony, the fur, the slass, the silis and the electroscope leaves. An acceptable hypothesis at this point would suggest that some things are added or are removed" from an electrically neutral object in the production of electrostatic phenomenon.

Summary Questions

1) Describe the energy transforcation in this instructional episode. Energy of motion is transformed to electrostatic energy.]
2) (a) What is meant by an electrostatically neutral object?
(b) How does a neutral object become charged?
(c) What is an electrical ground?
3) (a) Eow do negative charges affect each other?
(b) How do positive charges affect each other?
(o) How do positive and negative charges affect each other?
4) Which symbol is used to signify a:
(a) positive charge?
(b) negative charge?
[-]
(c) neutralized charge? [0]

The information that follows will be introduced to the pupils in subsequent episodes. It is known tiat negative electrical charges are derived from sub-atomic particles called electrons, and positive electrical charges are derived from sub-atomic particles called protons. In common applications, the loss of electrons from atoms makes it possible for the protons to display" their charges. Taken alone an atom is thought to be electrically neutral, that is, the number of electrons equals the number of protons.
5) On a prepared worksheet (as below) each pupil should complete electroscope diagrams by drawing leaves in the correct position. The upper left diagram is completed as an example. It is sugzested that the pupils. work be examined by the instructor to ascertain class progress.
1.

II.
in.
then \rightarrow

?
IV.
?

New Vocabulary
attract, repel ebony rod
electroscope
electrostetic olectrical ground
negat1ve
neutral, neutralized
positive
symbol

PACTUAL - CONCEPTUAL - INFERENTIAL (background)

This instructional episode is designed to give children background experience in using basic principles of wor' and the electrical nature of matter to explain a transformation of energy.

At the completion of this instructional episode the pupil should be able to select correct statements about positive electrical charges (protons) and negative electrical charges (electrons) in relation to (1) their influence on like crarses, (2) their influence on unlike charges, and (3) their relative mob1lity.

Invite the pupils to differentiate between the meaning of the words conductor and insulator, and, ask for examples. expecially those in common electrical applications. Eell the puplls that nearly any material, even wipll mown good insulstors* can be made to conduct electricity if enousin. work is done on them.

The demonstration employs an electrophorus; it can achieve a larzer charje than that of other inexpensive electrostatic devices. An electrophorus consists of a layer of plastic on a stand and a separate metal charge-carryinz idsc, which has an insulated handie. Each step is explainod (see diagram and information below) from the standpoint of moillity of electrons. When a substance is electrically neutrai tine quantity of the protons and electrons are in balance. It requires work to unbalance the quantity of charges. Scientists tell us that in common applications, it is the relative moility of electrons which accounts for the production of electrical effects when appropriate woris is done. In general, if the work adds electrons, then negative charges abound, and if the work removes electrons then the effect of positive charges is manifest.**

(continued)

Wood, normally a good insulator, can conduct, as when a tree or barn is destroyed by lightning. This common danger should be cited to the pupilst

* Some pupils may ask how to 1dentify the polarity (+, -) of an unknown electrical charge. Place a kown charse on an electroscope, then place the unimom charge on the scope. The polarity of the unimown charge will be indicated by the . convergence (attraction) or divergence (repulsion) of the electroscope leaves.

EPISODE $\# 8$ (second of three pases)

STEP 1

Rub the plastic plate vigorously with wool to charge the plastic negatively; this results in an excess of electrons on the plastic.

STEP 2.
Place the metal disc on the plastic. The electrons of the disc are forced to the disc's top surface (why?) by the action of the excess electrons on the plastic below.

STEP 3

Touch the disc. . .this action removes the electrons from the top surface of the disc because 'ground' is more attractive than the repulsion
the plastic plate. The metal disc is now positively charged.

STEP 4

Lift the disc from contact with the piastic plate. Touch the disc to \& bared end of a wire lead from a 1/25 watt neon* lamp. A crief red flash of the lamp indicates torat an electric charoe is flowing across $1 t$ (from where?) to neutralize tre positively charged disc. The "other"
wire from the bulb may not require a connection to complete tie circuit because the electrons in it way suffice as a source of charges. If the bulb does not flash, clip the "other" wire to a metal object, or even hold the bared end firmly between your thumb and forefinger.

[^2]Show pupils that the lisht will not flash if no work is done in STEP 1. The emphasis throughout is to give the pupils experience in accounting for the observations in terms of the relative mobility of electrons, as compared to protons.

Summary Questions

1) (a) Usually plastics are electrical insulators. What had to be done to the plastic in this demonstration for it to become electrifled?
(b) Give common examples in which insulating substances may become electrified, or conduct electricity.
2) What specific work was done to produce electricity in the demonstration?
3) Where did the electrons come from to light the oulb?
4) Why did the buib flash, then go out? [Electrons did work (light energy) "on the way" to neutrality in the disc.]
5) In which steps in this demonstration is it inferred that:
(a) like electrical charges repel each other? [Step no. 2]
(b) neutrality was re-established: [When the light flashes and gons out... end of step no. 4.]
6) Scientists tell us that charged particles, and hence, electricity comes from the atoms from which all things are derived or made. Further, scientists tell us that It is negative charges or electrons that are involved in carryinö electricity or in "movement" of electricity. In view of this inforiation what part of the atom, "insiden or "outside, ${ }^{n}$ would most likely oonsist of protons? Explain.

New Vocabulary
electron, proton
electrophorus
o onductor
insulator
neon

FACTUAL - CONCEPTUAL

This instructional episode is designed to impart to children the 1dea trat the universe is composed of a limited number of elements winch make up all classes of substances. From earlier episodes the principle of eneray transformation is brought to bear on the basic relationships between atoms and molecules.

At the completion of this instructional episode, the pupil should. be able to select correct statements winich relate to:

1) the definition of chemical element, mixture and compound and the relation between them (rigor of definitions will be sacrificed for ease of comprekension).
2) the definition of atom and molecule and the relation between thez (rigor of definitions will be sacrificed for ease of comprehension).
3) tine most general qualitative attributes which differentiate the approximately 100 chemical elements at ti.e atomic level.

Referring to some of the materials used in earlier demonstrations such as ebony (hard rubber), glass, wool; silk, wax, leaves of ar electroscope, tell the pupil that all things in the world, including plants and animals, sun and stars, are thought to be comprised of one or more of about 100 different elements, in various combinations. Name several well-imonn elements (1ron, silver, aluminum, carbon, hydrogen, oxjgen. nitrosen, zinc, radium, uranium, etc.) and relate to pupils' lives and experiences. At this point relate the word atom to the concept of elemert. Do not push for a deep understanding... it will be treated more rigorousiy in a later instrictional episode. Ask the pupils to give a general inypotiesis to explain the existence of so zany other substances (give examples such as water, sugar, salt, protein*, wax, silk, ebony, wool, etc.) besides the elementary 100. An analogy may help: in a wardrobe of clothes of different styles, colors, etc., there is a large number of possible cmoinations that could be worn. :̈owever, some possibilities are "more satisfactory" than others. Give examples and let pupils give examples; brown and black shoes

(continued)

*Proteins are a class of complex compounds which give evidence of being involved with the basic chemistry of life in all living things. Proteins are in general composed of the elements altrogen, hydrogen, oxygen, carbon and of ten sulfur.
(split pair) etc.. vs. 2 browns, 2 blacks, or swimming trunks and T-shirts vs. siniming trunks and overcont. The important generalization here is tiat elements may combine, but there are easier or "more satisfactory" combinations with some elements compared to otners.

There are two general modes by which substances, including elements, may enter into combination; these modes are mixtures* and compounds. Demonstrations follow which should involve trie pupils in differentiatins, via discussion, between mixtures and compounds. Usé approximately equal. and small quartities of powdered zinc (an element) and powdered sulfur (an element). Use a.clean end of a wood splint to spoon out once from each container, and mix the powders a bit in a small porcelain oricible. Close thè chemical containers before proceedinz. Give the pupils, a definition for mixture winich emphasizes the opera.tional possibility of separatinn the substances again. "cy rani"; demonstrate separation by piciring out a few grains of on of the powders.**

Now proceed to make a compound from the mixture of zinc and sulfur. iaie a compact mound of the mixture in the crucible, so that it will hold the heat from a burner. dith long tongs, hold the crucible over a flaming burner.. Be sure tre pupils are well away from the reaction because $1 t$ will produce intense neat and lisht. Cnce the $=1 x$ ture starts to sion, remove the crucible from the flame, set the crucible dom and sund back... there will be forthcoming a great release of enersy. Compare the color of the new compound zinc sulfide (wilte) with the colors of the original reactants. Zinc is Erey, suif r is yellow. Remind the pupils that the reactants are elementi, and re-emphasize the definition of an element. Emprasize that horic, \cdots in this case, heat energy, was needed to start the reaction anc there is a release of energy as a consequence of the reaction that rorms the new substance, a compound. Underscore the diea that the compound zinc shfide ald not exist as such before the reaction and that it almays forms under the same conditions.
*There are other modes"iof combinations associated inth mixtures, 1.e., mixtures of compounds, and mixtures of compounds and elements. An example of the latter is air; examples of the foraer are products such as Coca-Cola and Bufferin.

* The proportion of reactants that make up a compound are invariable. However, a mixture can vary in the oproportion of its substances. For example, the wheat cereals we buy (weaties, pep, etc.) are made from the same basic compounds, but they are mixed in different proportions to attain a difference in taste.

Put another way, when substances (elements and/or compouncis) are put under conditions in'wich a new compound can be formod. the new compound will glvays be formed.*

The term molecule can now be introduced in a somewhat more rigorous (but not complete) sense tian lused in eariler activities: a molecule is tine smallest sub-division of a compourd thai has the compound's properties.** an approximate contrast may be helpful: atoms are to elements as molecules are to compcunds.

Some pupils may now ask if compounds can be broken down into their constituent substances. At this point tine lesson could be terminated until the next session.

A demonstration of breaking a compound into the elements follows. Place enough of a compound mercuric oxice in a heatresistant test tube (small) to fill the tribe to the level show. in the diagram. Do not let tie mercuric oxide clinsto the inside wall of the test tube... lightly cork the test tube and heat, moving it back and forth over a flaming ourner. When the contents become thoroughly blackened, remove the cork and quicily insert a glowing (not flaming) splint. It should burst into flame;*** this indicates the issuance of the element oxygen. Note the silvery droplets of the element mercury which deposit on the inside of the tube.**** Outline the results on the chalisboard using the following word equation:

*The compound zinc sulfide could be broken into its constituent elements, but it would rèquire much work or energy to do so. Some other compounds are more easily, broicen into component elements as will soon be described.
**The term molecule may also apply to polyatomic forms of certain elements, mostly elemental reactant gases under rormal conditions.
** If the first attempt fails, cork the tube, reheat and try the test again.
****Referring to earlier episodes, it might be noted that enerzy is used to change a solid into a iiquid and a gas. nowever. the change here is chemical not physical...Winy? [A, physical, change is limited to a change in shape or a change in stade, suci as sas to liquid. Chemical changes very of ten lrclude physical cranges but, in addition, there is formed one or more substances with wholly new reactive (chemical) properties?

EPISODE \#9 (fourth of six pages).

| (compound)
 mercurlc oxide
 (molecule) |
| :---: |$\xrightarrow{\text { Add neat energy }} \quad$| (element) |
| :---: |
| mercury |
| (atom) |$+$| (element) |
| :---: |
| oxygen |
| (atom) |

Emphasize that in this case a compound composed of two elements has been broien dom to release 1 ts elements. \# Compare the word equation for the decomposition of mercuric oxide with tife earlier reaction in wilch a compound is formed:
\(\left.$$
\begin{array}{c}\begin{array}{c}\text { (element) } \\
\text { zinc } \\
\text { (atom) }\end{array}\end{array}
$$+\begin{array}{c}(element)

sulfur

(atom)\end{array}\right) \xrightarrow{add heat energy}\)| $\left.\begin{array}{c}\text { (compounci) } \\ \text { (mo sulficie } \\ \text { (molecule) }\end{array}\right)$ |
| :---: |

Ask certain pupils to come to the chalkboard to lndicate on each word equation where the terms atom ánd molecule snould be properly placed. The ewphasis nere should be upon the tinree objectives stated at the top of page 1 , not in memorizing word equations.

Invite the pupils to generalize, via discussion, the conditions for raiking a compound or breaking a compound into its elements. [ñ botn cases energy. or work is required.

Summary Questions

1) What are the definitions for each of the following terms?

Where relevant, give a common example.

element	compound	energy
mixture	atom	molecule

, 2) As we have defined them, which would have the most elements represented in it, an atom or a molecule?
3) (a) A scientist breaiks a compound into its elements. Which one of the 4 statements below outilnes what is thought to happen at the level of the atoms and molécules. Explain. [\#2]

1) compound to mixture
2) atom to molecule
3) molecule to atom
4) proton to molecule

[^3]3) (b) A scientist creates a compound from certain elements. whicr one of the 4 statements above outlines wingt is trought to happen at cine level of the atoas and molecules? Explain. [73]
4) Scientists tell us that there are approximately 100 difrerent elements which cake up ali the trinas in the unlverse. which one of the three stavezerios below best states the relation of the elements to the Eake-up of all substances? [C]
A) all substances are mixtures
3) all substances are either elements, or a mixture of elements
C) all substances are elther an element, or are compourds, or are a mixture of elements and/or compounds.
5) Wren the element oxysen and the element hydrowen are Elxed, rothinz rappens until a sparik or Alaze is introcuced into the sixture. Then an explosion ocrurs ard tise cozpound water, in some quantity, is alwnys formed. Relate tire substances descritec above to ine terms atom ard molecule by fililng in tine chat: below.

	oxygen	water	hydrozen
element or compound?			

[^4]New Vocabulary

atom	molecule
composition	oxygen
compound	reaction
element	splint
energy	substance
mercury	sulfur
mixture	zino

FACTUAL - CCNCEFTUAL - INFERENTIAL

This instructional episode is designed to give children an experience in recapitulation of certain prof ound lieas concerning the developzent of a reascnably valld wodel of the atomic nature of تatter. This eplsode draws or earller experiences in electrostatics and making inferences about unseen entities.

At the completion of this instructional episode the pupll should be able to select correct statements concerning tre experiment and inferences which led from the Kelvin-Thompson "jelly-roll" model of the atom to the Riutherford-Sohr planetary model of the atom.

As' the pupils to try to imagine the tiniest entities of which the material of the korld is made. Some scientists, not too long aso. leanined these entitles or atoms as sort of a spherlcal ball (see drawings) of jelly-like positive cirarzes in which there would be embedded one or more negative ciarges. depending on tine element. Scientists mew trat atcms rac negative ciarzes (electrons) and positive charces (prozors), but thelr arranzement was a mystery. The: correctly surmisect that electrons were responsiole for certain manifestations of enerey. among them, neat ard light. In reference to the jelly-roll ldea. if electrons were pulled about witrin the "jelly" by having work cone on them, they would give up energe in tine form of heat and light.

Diagram I is an approximate representation of a "jelly-roll" atom which has several randomly arranged electrons and protons. If the "jelly-roll" model is a good one, then nicí speed, positive* charges, fired at a mass of such atoms from the outsice, would be expected to taise wrat path(s)? Invite the pupils to precict what path the proton projectiles would take, and defenc tinelr predictions. Then craw Dlagram II on the cinalkboard. Dlagram II represents wrat was thought would happen if the target atoms were analogous to the "jelly-roll" 1dea.

If the atom is analogous to the "Jelly-roll" conception then the path of proton projectiles should be slightly bent as the projectiles come under the repulsion influence of the rand omly-arranged target protons (Dlagram II). Electrons of

> (continued)
*Protons have much more wass ("welght") than electrons. Therefore. it was expected that protons fired at rigin speed would rot be easily deflected by randomly arranged positive charges of the tareet nor be captured or slowed by negative charges of the target.
the target might only speed-up oncoming protons by atiraction and slow them a bit as the protons pass by. wien tre pupils seez to understand this lozic. then show them what really occurred, as in Diagram III.

Dramatize that Diagram III represents that happened when Rutherford experimentally tested the "Jelly-roll" zociel of tine atom. From the diagram it will be seen that some protons got through unmolested...in fact, zost of them dia, but a few that didn't were either very scarply defiected. or actually came dicectly back! The pupils should be'led to infer that:

1) atoms seem to be mostly empty space;
2) there is a central portion that has a large, positive charge;
3) the planetary atomic model seems to be a better representation than the "jelly-roll" wodel.

* $\uparrow \longrightarrow$ represents many, many protons driven at high speeds.

When pupiis appsiently accept the foregoing, the following questions can serve to extend and reinforce pupils. conceptions about the planetary atomic model.

1) For a source of target atoms, Rutherford selected elements having the property of beino dense. what was the basis for inis reasoning? Eifh speed protons would more likely be influenced because of more targets.]
2) Assuming there are electrons associated with each atom, what can be inferred sbout their distance from the nucleus of the atom? Electrons must be far away and in motion, otherwise the cluster of positive charges in most nuclei would ättract them so much that electrons would fall into nuce1]
3) The planetary atomic model seemed to "solve" some important problems for scientists, but it made problems, too. Can you spot one of them? :int: consider nuclei which have more than one proton and then recall the rules for electrostatic attraction and repulsion:

Summary Questions

1) If high speed positive particles were fired at atomic. targets, which one of these drawings shows the expected path if protons were mixed evenly with electrons throughout target atoms? Explain. [n3". See explanation an p. 2.]
A)

B)

C) \longrightarrow
D) \qquad
2) Repeat No. 1 except the high speed positive particles are fired at an atomic target with closely packed protons; which arrow(s) represent(s) what occurred in Rutherford's experiments? ["C" mostly, and "D" occasionally.j
3) Scientists claim that atoms are mostly empty space. How did Rutherford's experiment help to infer such a conclusion? [yost of the projectiles went through seemingly solid targets, without being derlected.]

New Vocabulary

```
atom1c target
embedded
deflect
```

PACTUAL - COMCEPTUAL - MEEREMITAL
This instructional episode is designed to impart to children basic uncerstancings about the sub-itozic attributes of selected elements. It cirais upon earlier experiences which dealt witi the electrical nature of matter.

At the completion of this instructional episcie, tiee pupil. siould be able to use a chart of atomic properties (p. 5) to select, correct statements winich reate to a casic body of content on the general structure of the planetary atomic model.

The introductory statements herein should be prosented via lecture: In order to account for cifferences in tiee elements in such features as color, density, relative conductivity of heat and electricity, relative nbility to form zases. liquids, solids, and abllity to form new substances, it is evident that there must be differences in the structure mareup) of the smallest division of an element iticic has all tiee properties of trat element...an atom of that element.

Based on experiences in earlier activities ask the puoils to consider a difference they noted between zinc and sulfur, both of winch are elements; [Coloy. Tell trea tiat the last bit of zinc that has all of zinc's properties will je difierent from the last bit of sulfur that has all of sulfur's properties. These last bits are called atoms. isis the puplls to make mental comparisons of properties amons such familiar elements as iron, oxy $e n, ~ c o p p e r, ~ s u l f u r, ~ a l u m i n u m, ~ e t c ; ~(C o m p a r e ~ p r o p e r t i e s ~$ of color and common pisysical state.)

Now, invite tre pupils to make seneral hypotineses about the features of tree "szaller-yet", or sub-particles of atoms which could have a bearing on the differences each element's atoms display compared to all other elements' acoms. what is sought here are responses of the follonine types: "billt different". "have different parts". "some have zore parts than others", etc. If progress here is too slon, asis winy water vs. alcunol (neitiner are elemenis. both in their pure form are compounds) have such different properties (dezonstrate burniro. odor) though they look alike.

At this point, explain that scientists have evicence ticat the differences between ators of elements are due to aifferences in the nimber and arrangement of three basic types of sub-atomic particles (smaller yet than whole atoms). The three basic particles of atoms are:
(continued)

1) Electron - a negatively chareed particle winch ordits outside tie nucleus or central portion of tho atom... there are several likely orbiting patis called stelis.
2) Proton - a positively chargec (opposite of electron) particle sinich is found as part of the centrally $-0-$ cated nucieus. It ras nearly 2,000 times more mass ("weignt") than an electron.
3) Neutron - an electrostatically neutral particle wrich is found in the nuclel of all atoms exce:t the most common type of hycrozen. It car. be consirerer as equal in tass ("reignt") to tie protor. i neintron is thought to be composed of a positive crarge anc a negative charoe.
on the chalkboard or overhead projector, dra:i a diagram of a simple atom, slich as helium, 2 ت̈e.

Tell tre pupils trat this is a simplified picture of what is now mokm; in fact, there is strons evicience ticat it is not this simple, but is a good start in learnine how tine world is structiored from tiny entities. As t tie puelis unich part of an atom, electrons or protons, hould crej expect to be most easily removed. Semind them of their experiences intin eiectrostatics.

Frovide each pupil with the chart of the first 20 elements (similar to tre one on pase no. 5) for their continumi reference. Invite the to zaine drawines of soze of che lizhter elements in their notebooks. Poirt out that all plezents. cicept hjdrogen*, have neutrons in treir nuclei. Ephasize

[^5]EPISODE 411 (third of seven pages)
that the electrons are arranged about the nucleus in successive shells, according to certain rules (to follow). At ílrst ask them to copy the teacher's chalkboard (or overhend projector) drawings. The teacher should give individual help to assure that pupils are drawing their atomic representations in an orderly fashion.

As some mechanical skill in dra sing becomes evident, the pupils should be told the following:

1) The drawings, as we make them, are very much oversimplified. Eut, it is a good way to begin to learn interesting ideas about the composition of the universe.
2) The electron(s) should be thought of as orbiting in a cloud-like shell* at various relatively "fixed" distances from the nucleus.
3) Kost of the atom is empty space. Give the following analogy about an atom of hydrosen: If the nucleus were the size of a golf ball, the electron would be buzzing around it about 2 miles away.

It may prove advisable to terminate the activity here and continue at the next session.

After the pupils have had experience in drawing representations of several light elements, they should be led to "discovering" the following rules for determining the atomic structure, via questions frem the instructor, and continual reference to their charts.

1) The atomic number always equals the number of positive charges (protons) in the nucleus.
2) The atomic number equals the number of negative charges (electrons) that circulate around the nucleus of a neutral atom.
3) The atomic mass ("weight") minus the atomic number equals the number of neutrons. For the element chlorine: atomic mass $=35$, atomic no. $=17$, therefore, the number of neutrons $=18$ in a "normal" atom of chlorine... Elve other examples for drill.

* Por the sake of simplicity, we will draw shells as concentric circles.

215
EPISODE \#11 (fourth of seven pages)
4) The number of electrons in the first shell outside the nucleus cannot exceed two.
5) The number of electrons in each of the second and third shells does not exceed eight up througn element no. 20 .

At this point the pupils should be invited to hypothesize about tre properties of certain elements, based on our simplifled look at atomic structure. For example, ask the pupils to note that in a set of four wetallic elements made into cylinders of equal weignt, each has a different volume. Invite the pupils to account for tine differences discussing it in terms of general atomic structure.*. Despite earlier experlences in these instructional episodes, it can be expected that some of the pupils will not have a definitive conception of volume, much less density. Eiowever, a conception of weignt can be expected, and from tinis the notion of a difference in density should be re-introduced.

THE PIRST 20 ELEMENTS:
CHART OR BASIC ATOMIC PRCPERIIES

$\begin{aligned} \mathrm{M}= & \text { mostly acts like metal } \\ \text { Nm } & =\text { mostly acts like non-metal, however there are important } \\ & \text { exceptions with nitrogen, sulfur and phosphorus ** }\end{aligned}$
Ind. = indeterminate; can act like a metal or non-metal

* Fine pupils' charts do not contain the column entitled, "Basic

Chemical Property, " nor the inf ormation entered below row no. 20.

* It might be well to mention to the pupils that there are common exceptions to most of the "rules", or patterns stated nerein. There are valid explanations for meny of the exceptions, but they are embodied in the content of advanced studies.

Summary Questions

1) In atomic structure where do the negative charges exist?, positive charges"
2) If the atomic number is known, the quantity of what two basic parts of a neutral atom are known? [Frotons and electrons.]
3) (a) What two parts of atomic structure make up atomic mass ("weight")? [Protons and neutrons.]
(b) Describe the electrostatic charse of each of the two parts named in "a". [Protons carry q oositive charge. Neutrons carry a positive and nesative charge, hence, neutrons are electrostatically neutrai]
4) What are the relative wasses ("weights") of these atomic particles?.... Use the terms most. least, same.
(a) electron
(b) proton
(c) neutron
5) If the atomic number and the atomic mass ("weight") are known, how can the neutron, complement of an atom, be computed? [From the atomic mass subtract the atomis number. Give pupils several examples to work out such as hellum, beryllium, oxygen, magnesium, phosphorus, argon ${ }^{[]}$
6) Given equal volumes, which element would you expect to be heavier, aluminum or mannesium? bhy? Use the chart. [Aluminum has more particles in the nucleus.]
7) At ordinary temperatures the following elements are gases: hydrogen, hellum, oxygen, nitrogen. Air is a mixture of mostly oxygen and nitrosen. Why are hydrogen and helium used in balloons and dirigibles? Use the chart. [If 4 balloons are each filled with equal volumes of these gases, then the nydrosen and hellum balloons would flcat in air. iydrogen and hellum atoms have less mass ("weight") than do nitrogen and oxygen atoms which compose the alr]
8) Name the element(s) in the chart of the first 20 elements which:
(a) have the most electrons in their outermost shell, [Neon, argon...each has 8 electrons.]

EPISODE \$11 (seventh of seven pages)
(b) have the same number of neutrons,

ESoron, carbon $=6$; fluorine, neon $=10$; sodium, magnesium $=12$; aluminum, silicon $=14$; phosphorus sulfur $=16$; potassium, calcium $=20$.]
(c) have the same atomic mass ("weight"). [Argon and calcium, both $=40$.
9) (a) Which element in the first 20 elements has the most neutrons? Argon $=22$.
(b) Does it have the greatest atomic mass ("weight")? [No, but argon's atomic mass ("welgnt") is the same as calcium with an atomic mass ("weignt") of 40]

New Vocabulary
arrangement
atomic mass ("weight")
atoric number
electron shell(s)
nucleus
orbit
outermost
particle(s)
represents
symbol

EPISODE \#12.
RACTUAL - CONCEPTUAL
This instructional episode'is designed to give children experience in using the planetary atomic model to classify certain elements as metallic, non-metallic, indeterminants, or inert; these chemical characteristics are employed in accounting for the formation of selected compounds.

At the completion of this instructional episode the pupil should be able to select correct statements which explain (in terms of the planetary atomic model) the tendency of certain ${ }^{2}$ elements to (1) act like metals, (2) act like non-metals, (3) be indeterminant as to metal and non-metal, (4) be "inert".

With forceps hold a piece of magnesium ribbon in the flame of a burner until it begins to burn. Avoid looking directly at the flame. Emphasize that the burning is release of energy (heat and light). Invite the pupils to observe the product. Tell the pupils that the element magnesium has combined with the element oxygen from the air. Ask the pupils to use their atomic charts from an earlier instructional episode to help hypothesize a possible explanation for the ready combination of magnesium atoms and oxygen atoms. See diagram on page 2. Invite them to draw a diagram of each atom. The explanation is expected to be difficult to elucidate. The pupils should then be told that some types of atoms tend to effect acomplete outer shell by gaining electrons which they "acquire" from other types of atoms. The completion of the outer shell for the first 20 elements follows these rules:

1) A maximum of two electrons can appear in the shell next to the nucleus.
2) A maximum of eight electrons can appear in each of the two more distant shells.

Ask pupils to verify these rules in their atomic charts. Employ a short recitation of examples to help reinforce the verification.

Nov, begin a lecture-discussion which uses these rules to eventually elicit hypotheses from the pupils relevant to other possible combinations of some elements. Explain that wany elements have a tendency to complete outer shells of their atoms, as in the rules above. Use the analogy that the rich get richer, and the poor get poorer to introduce the concept that atoms with fewer than four electrons in their outermost shell tend to share or even lose their outer electrons to yield a complete shell (next shell in toward nucleus)
\qquad
and those that have more than four electrons (exceot those that have eight electrons in tree..quter shell) tend to take on electrons to complete a sheil. Emphasize the tendency to complete outer shells by sharing (or giving wi). or by aninine electrons. Ators with exactly four outer electrons. such as carbon. may go el ther way and are herein called indeterminant. Atoms that tend to share or lose electrons and thus expose a complete (or wore cquplete) shell nearer to the nucleus are called metals. Atoms that tend to Eain electrons to complete a shell are called non-metals. Give examples of comon metals such as magnesiua. Iron and aluminum in the first 20 eiements. The gas hydrogen may act like a metal because of its tendency to share 1 ts lone electron. Invite the pupils to Eive otner examples of metals. Lext. give examples of non-metals in the first 20 elements...ask the pupils to do likerise using the rules outlined above. Certain elements have filled outer shells and are called tine ireert elements." They are not likely to enter into chemical combinations. Tne inert elements, where found. are uncombined or free.

A worksheet (see p.3) is employed to give the pupils experience in usins the atomic chart from an earlier instructional episode to confirm tine cheitical characteristics of the first 20 elements as bein metallic, non-zetallic, indeterminant. or inert. For each elewent the pupil selects one of the four characteristics and also a rationale or explanation,' labeled A, or 3 , or C, or D. Several examples are $\overline{8} 1 \mathrm{ven}$.

Plan to take sufficient time with the Worksheet on the Basic Chemical properties to insure that most of the pupiis can demin trate a facility inith the rules. Then ask the pupils to recal demonstration with magnesium d oxysen....invite the pupils to olve an explanation for the combination of these two elements and the release of eneray. An acceptable explanation would suggest that magnesium's two outer electrons are sinared by oxygen, forming the compound magnesium oxide. Furthermore, enopsous numbers of atoms are combining by the sharing of electrons to form the new substance. The energy given up in the form of heat and 11 int was, in effect, the energy that

Diagram of molecule of magnestum oxide

Miagnesium's outer electrons = $x X$
Oxygen's outer electrons $=$ -
*In the first 20 elements, the following elements have filled outer shells: hellum. neon, argon.

EPISODE \#12 (third of five pazes)

Kept the aetai = manesium and the gas oxygen in their respective jncomisnct forms. rinen they combined (it took some
 It way rectire two or zore sessions to reach this point in the presentation.
is a consequence of the experiences outlined above, invita sne purils to discuss and diagram the hypothetical eleczror excraries, if any, betineen some other elemonts; a seiecion ro:ions on pase 4 . The puplis should attempt to make fres ont Jagrams (as shom) of the electron complement of ter ontez sheils in the approp=late cases, and certain puplis ccild to acsor to put trelf representations on the chaskearc. Ant discussion should be supplemenved where necessazy by the teacrea's chalinboard diagrams.

MCRHSEEEn CR mUE EASIC CEEVICAL PROFERTIES OF TEE FIAST 20 ELEVEMS

$\dot{A}=$ outer eicctron snell 1 s flliled (8 electrons except for he:ium whicn is filled by 2 electrons)
5 a outer eaccanon srell mas 1, or 2, or 3 electuons (less than 4)
 tu: less tran 8)
$\mathrm{D}=$ outer electron srell has 4 electrons
Aan act like
Hetal or
Letter
Xon-ivetal of

Compound formed is
hydrogen ohloride (HCl). a gas used to make a very useful acid. Hydrogen's eleotron oan, in erfeot fill ohlewine's outer shell whioh contains 7 eleotrons, thus jomDiagram or hydrogen chloride molecule ores showing hydrogen's outer electron (x) Sodium and Analogous to rbove
chlorine Hyd rogen
and and
and
chlorine

| Sodium and
 chlorine | Analogous to above |
| :--- | :--- | :--- |

EPISODE ${ }_{\gamma} 12$ (fourth of five pages)
2inc (notin Zinc has outer eleotrons, hence, they can be a ments) and effect, completes the outer shell for both elements. (the reaction was
$2 n s$
In each of these oases, arter the pupils have worked out the
possibility, tell them the name and 1mportance of the compound
formed (if any). That oon-
possibility, tell them the name and importance of the compound
formed (if any). Terminate the activity at any time that oon-
fusion overtakes apparent progress. Continue at the next session with a review; use short lecture and examples on chalkbard
Diagram of zinc sulfide
 sulfur's outer electrons
$(\bullet \bullet)$

Summary Questions

Questions wrich sum̈arize the expoctations stated in the lead paragraph are implied in tre wor: heet activities.

New Vocabulary

maximum - minimum
indeterminant
inert
product
tends. tendency

FACTUAL-CONCEPTUAL

This instructional eplsode is designed to give children experience in accounting for the phenomenon of atomic polarity (charged atoms). princlples of electrostatics ard chemical characterists of classes of elements are drain from earlier episodes.

At the completion of this instructional episode the pupil should be able to select correct statements about the neture of charged ators following a demonstration of electrolysis.

Fill a small beaker $2 / 3$ with varm water. Stir in about $1 / 2$ teaspoonful of copper sulfate crystels (CuSC_{2}) until wost of the crystals dissolve. The solution will have a origint biue color. Connect a clean* copper strip and a clean 1ron rall to a 6 volt D.C. electrical source as shom in Diagram I: Imerse only the copper strip and the nall in the solution. not any of the terminal or supportir. apparatus. e copper strip and nall should not touch each other.

Diagram I

Soon a deposit of copper "threads" will appear on the iron nail and at the same time the copper strip attains a rather etched surface.

The pupils should be invited to discuss the following problem: How can conver atoms, which are sald to be electrically neutral (see Diagram II), be pulled from a copper strip, migrate, and be deposited elsewhere?**
(continued)
*Use scouring powder, or steel wool, or fine sandpaper.
**only the migration of copper is considered herein. In any eleotrolysis there is some type of reciprocal action.

Diag-am II

Neutral Atom of Copper*

29 protons
29 electrins
vo eharge

Diagram III
Chargel Atom of Copper

[ine electrical source does work to remove tiee two outer electrons from the neutral copper atom. This leaves 27 electrons, and, of course, tiee 29 protons...hence, the atom now displays two positive (+2) ciaroes and is called a chareed copper atom; see Dlacram III. Sositively charged copper atoms are attracted to the fron nall winch is tine negative pole of the electrolysis circuit. At the resative pole each charged copper atom. in effect, re-acquires tro electrons and is neutrailzed; it is the neutral atoms winich cling loosely to the iron nail.]

The following questions and activities should be woven into the discussion from which the main inference is to de derived.

1) What is the function of the electrical source? [It provides energy, or does work, to move electron]
2) What must be done to an atom of an element for it to become charged? Electrons must be added or taken away.]
3) Explain why the copper is removed at the positive pole in electrolysis and deposited at the negative pole. [See first parasraph, this page.]
*The element copper does not follow the rule for completion of electron shells as given in an earlier instructional episode. This exception is not part of the lesson at rand. Copper was selected for the ceanostration because it so readily sions the overall effects stated in the objective for this instructional episode.
4) Atoms of other elements can acquire charges. Draw diagrams of the following:
(a) an atom of magnesium \rightarrow (12 protons 12 electrons
(b) a charged atom of magnesium; explain the difference between a and b.

12 protons 12 protons
$\frac{\text { ? electrons }}{2}$ positive
charaes $\quad[10]$
charoes
[Yagnesium, a metal, has tio outer elecirons which It can readily give up. The loss of tinese two electrons unbalances the electrical neutrality of the atom, and "exposes" two protons. sins, a chared magnesium atom has a positive two charge.]
(c) an atom of nitrozen \longrightarrow
7 protons
7 electrons
(d) a charged atom of

7 protons
? electrons
3 negative
charges the dirference between c and d.
[Nitrogen, in this case, is to be consigered a non-metal (there are important exceptions ${ }^{\prime}$. nitrogen). It tends to acquire three elecu. ns to complete its outer shell. Ti.e eain of the three electrons unbalances the neutrain $=y$ of the atom by a factor of three negatives. Tnus, a charged nitrogen atom has a negative tiree cnarge.]

Summary Questions

1) See questions No. 1-4. above.
2) In an earlier instructional episode. we learned that some elements are metals. some are non-metals. some may aot both as a metal or a non-metal. and some are inert. In regard to the metals and non-wietals of the first 20 elements. which ones tend to:
(a) lose electrons to become charged atoms? $[\mathrm{H}, \mathrm{L} 1$, $\mathrm{Be}, \mathrm{B}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}, \mathrm{K}, \mathrm{Ca}]$
(b) gain electín to become charged atoms? [N. 0 , $P, S, C 1]$
3) If the compound water is electrolyzed. the elements oxygen and hydrogen are obtained.
(a) Which drawing, A or B. represents a neutral atom of hydrogen; a charged atom of hydrosen? Explain. [mn represents the neutral atom...the protonic oharge is balanced by charge on electron.]
(A)
(B)
(©)
(b) To which pole in electrolysis would a charged atom of hydrogen be attracted? Why? The neative pole, because hydrogen's outer electron is removed in electrolysis, thus displaying its protonic (+) charge $]$
(o) Does it act like a metal or non-metal? Explain. Thetal; it tends to share or even give up its electron.]
(d) Which drawing. C or D. shows a neutral ator of oxygen; [C] a charged atom of oxygen 3 ; [D]

C

D
(e) To which pole in electrolysis would a charje atom of oxygen be attracted? thy? [noe positive pole, because oxjeen acquires two elecirons to fill its outer shell, and thus displays tio "excess" negative charges in comparison to 1 ts 8 protoric charges]
(f) Doos it act like a =etal or non-metal? Explain. Non-metal; it tends to acquire electrons to fill 1 ts outer shell.]
4) (a) Draw a picture representing a charsed $a=0$ of each of the metalifc-acting elements oi tae first 20 elements.

> 1E no electron, shows positive one char $3^{L 1}=$ two electrons, shows positive one charge $4^{\mathrm{Be}=}$ two electrons, shows positive tio ciarge
$5^{B}=$ two electrons, shons positive three charse
11 Na - ten electrons, shows positive one cibarae
$12^{\mathrm{Mg}}=$ ten electrons, shows positive two charse
$13^{\text {Al }}=$ ten electrons, shows positive three charze
$19^{K}=$ eighteen electrons, shows positive one ciarae
$20^{\mathrm{Ca}}=$ eigiteen electrons, shons positive tio crarje.]
(b) To which pole in electrolysis nould each of tinese charged atoms go? Nhy? 30 the nesative joie because each shows at least one positive crarsed
5) (a) Draw a picture representing a charged atom of the elewents winich tend to act liאe non-zetals* in the first 20 elezents.
[7. $\mathrm{N}=$ ten electrons, shows nezative three charõe
$8^{0}=$ ten electrons, shows negative two charoe
$9^{F}=$ ten electrons, shows negative one charse
$15^{P}=$ elghteen electrons, shows nesative tincee cirarze
$16 S=$ eighteen electrons, shons negative tro cinarge
$17^{\text {Cl }}=$ eighteen electrons, shons nesative one charse.]
(b) To which pole in electrolvsis vould each of these charged atoms go? Why? To the positive pole. because each ras taren on at least one adiltional negative charge.]

New Vocabulary
charged ator
electrolysis
pole

FACTUAL - CONCEPYUAL - INPEREMIAL
This instructional episoie is eesigned to give chilcren experience in using a simplifled Eeriocic lable or the elements to make inferences about elements inose chemical craracteristics and atomic structure have not been previously studied.

At the completion of this instructional episoce the pupll should be able to select correct statements concerninm certain characteristics of some of tree more common elements iv using a simplifled version of the Periailc Table of the elements.

In part, the present eplsode is designed to sive the pupils an introductory experience in predictint some cinarncteristics of certain elements as a simple Periodic Table is ouilt-up. Farlier, the pupils were introduced to concepts relevant to the manetary atomic model including atomic number, atomic mass (": electron shells and the general principle tint tro chomica: cnaracteristics are a furction of the compieaent of electrons, especially those in tre outer shell. Also, the puplls iave hac experlence interpreting a simple, non-periodic triole of the basic atomic structure of tre first 20 elements.

A simplified version oi the Periodic Table of the elements will be introduced. Each sturent recelves a blanik Table; an identical one is projected via overnead transparenoy by tre instructor. As the rules for bulldins tre labie are cievelopec by lecture and practiced by tiee pupils, the teacher should invite them to preaict what might follow, in terms of (i) electron sireli structure and nuclear complement, and (2) chemical and physical characteristics, based on rinat the pupils already mo: about common elements such as oxysen, iron, sulfur, magnesium, aluminum, lead, etc. The following basic facts and principles shouid be imparted via lecture-discussion-recitation. If ine puplis become confused, or have difficulty concentratins on tise procecures, be prepared to termirate the activity for tine day....try asain tree next session, placing special emprasis on asking the crilidren to explain to each other the basic system of or onanizing the Table.

1) The Periodic Table of the elements helps to organize and classify much information about the elements anc one can avoid memorizing a great amount of detall by learning to interpret $1 t$.
2) The Periodic Table is arranged according to increasing atomic number (atomic number equals number of protons, and number of electrons) in such a way trat sizllarity is shown between the number of shells and the number of electrons in the outermost shell. The atomic number
appears below the symbol of each element. The atomic mass ("weight") appears above the symbol. Basic concepts relevantwito atomic number, proton and electron complemer: and atomic mas ("welsit") have been presented in earlier. episodes.
3) The elements are arranged in column and rows.
(a) Columns - This is the vertical alignment of the Table. Each column's elements are somewhat similar in che=la ch or reactive properties because they have the same number of electrons in the outermost shell. The number of electrons in the outermost shell appears in the heading for each column.
(b) Rows - This is the horizontal alignment of tree Table. Each row contains elements mich have tie same rumour of electron shells. The number of shells for each row appears leftmost on the Table.

The pupils should be invited, concomitant with trice lecture, to fill in their blank periodic Proles for the first 20 elements. They may be allowed to copy other well mom elements as lraicajed on the instructor's reference table, directly fro the instructor's projection overlay. Fie electron complement should be filled in;
 to use the information they are building into their Tapes to draw diagrams of various atoms on separate sheets. Certain students could be asked to put their drawings on the chalkboard and explain them. Although this portion of the current episode is a repetition of an earlier activity, it is expected that tine reinforcement will have a salutary effect on learning.

As the mechanical process of filling in tine Table begins to proceed with greater ease, tire pupils should be asked to predict some of the characteristics (see questions sos. 1 - 4 below) of elements that are yet to ce charted in the Table; also, ask for predictions about several of the approximately 60 other elements not provided for in our simplified version of the Periodic Table. The query should include the following:

1) Relative gas ("weight") - Mould the same volume of element No.- be lighter, heavier, or have tie same weight* as element No.-? Explain.

CCompare element No. 1 vs. No. 2 (:io. 1 is 14 giter); element vo. 15 vs. Xo. 16 (No. 15 is 11Enter) ; elezent No. 18 vs. No. 19 (No. 18 is neavier), elemer: $\because 0.18$ vs. No. 20 (same); element No. 33 vs. Xo. 35 (:io. 33 is lighteri.]
2) Atomic number. electron comblement - Wrat atomic number is assizred to ine-ia element 1: row-and what is its eiectron complement? [Example: the ist element in row 2 has an eiectron cowplezent of 2, 1 .] What atomic number is assinaed to the - in element os column and what is its eiectron comiement? Exa=pie: the 2nd element of column I has an electron complement of $2,8,7$. What is the number of electrons in tire outermost shell of the element with ato=ic : ※o. St? [.ook in lower right portion of the Table; note that the element iodine has atomic $i 0.53$ and its outermost shell has? electrons. Element :io. 54 can be expectec to have 8 outermost electrons...1t is an inert element.]
3) Netallic, non-metallic. indeterinant. Anpry- Nould element No. - be more or iess mefallic than element No.-? Example: element No. 3 on tre lef sicie of the Table is more metallic tian any of those in the same row. Element No. 9 is wore non-metallic tian any of those in the same ro\%. Element No. 10 is irert. Elements in column No. 4 are indeterminant; in some situations they can act lixe a metal, and in oteer situations a non-metal, because the electrons co=plements of their outermost shells are half filled]
4) Reactivity of elements - In which parts of the peridic Table would there be located those elemerts zost likely to react or comblne with each other: The left portion vs. the right portion of tice Table? Zhe upper portion vs. the lower portion of the Table? The central part of the Table? [in general, the elements on the Left are most 11 kely to react with those on the riont except, of course, for the inert elements all of whicic are in column no. 8. Elements tosard the rigit of the Fable are the non-metals which acquire electrons to fill the electron complements of treir outermost shelis...such. electrons may be readily provided by the elements toward the left of the Table, the metais. Elements of certain columns tend to react most readily with elements of certain other colums to form compounds; elements of column no. 1 combine readily with those of column no. 7, column no. 2 with column no. 6 .
column no. 3 with column no. 5. These coribindtions are in accord with the rules for filline outer electron shells, however, there are a oreat many important modifications in advanced stucies. It is very common for certain elements of column ro. 5 to combine inth an element of column no. 6 despite tie cesionation of elements in these colimins as ron-metals. In tre presert instructional episode emprasize the most eeneral ruies, as given earlier]

Summary Questions

The sketches of the Periocic Table, as used ir a nimoer of questioas in the sumary, can be very ouiciciy copled on the chaliboard or overhead projector in free tacd...each such. sketch should rave the titie "Feriocic abie" as acorovnuaj reminder to pupils, end they srould have their own lables in front of them. Do not plisn for too much in one cession...be prepared to terminate tice lesson for a cay if sions of tension, confusion, or boredom are generally noticeaible.

1) In what way are the elements in row-all alike? [They all have the same numjer of electron shelis.]
2) (a) Eow many electron shells does element io. 26 have? [4]
(b) Eow many electron shells does element :o. 21 have?
(c) Eow many elecuron shells does element ivo. 92. have? [7]
3) Predict the number of outer electrons of element No. 34. Explain. Ficcording to the Periocic Faole, element no. 33 ras 5 eqectrons in 1 ts outer siell, and element ro. 35 has 7 electrons in 1 is outer shell. Elemer.t no. 34 which is between them can be expected to bave 6 slich electrons.]

EPISODE 414 (fifth of seven pages)

(a) Kost of the non-metals are located in the sinaced part [5NS of winici Eerlocic Tajle above? [A... elements that tend to be non-metals have =ore than 4 electrons in ticeir outermost sheli inerefore are located in columns nos. 5. 6. 7.]
(b) The inert elements are located in the snaded yart of which Periodic Table ajove? [E... elezents that are inert have a complete electron complement in their outer shell.]
(c) The indeterminant elements are located in the shaded part of winich Feriodic Table abuve? Explain. [C... indeterminant elements can act like a metal or non-metal. Such elements tave 4 electrons in their outermost shell, and tierefore, are located in column no. 4.]
(d) There are several elements that are appiled as' common conductors of heat and electricity tecause they can be made into wire oy reat, pressuixe and the action of tools. The neutral atoms of suc.. elements have up to three electrons in their outermost shell. On a blanix table (as ajove) indicate the approximate locazion of such elements by inscribing an "X". Elace tine X toward the lower niddle-left of the table. Here are located the well-inown conductors such. as copper, zinc, iron, silver... see $\left.X_{d} \cdot\right]$

EPISCDE 414 (sixth of seven pases)
(e) inhe boinue you gre a scientist who neecs an element trat can act bota like a metal ard a nor-metal and is lient weleat. On a blank toble (as above) incicate the approximate location of such an element of inscribing an "K". Fiace tree X in ti.e lipper porvion wrere tixe 11gnter eleaents are located and concomitahtly in the =lccla where tre 1 ndeterminant elements are ased... see $\left.X_{e} \cdot\right]$
5)

Perıodic Table

(a) Each of Ewo alemonts is represented by tine sjmbol (1). aindcn Eable shons the two elements positicred so that trey would =os: :1kely form a compoure? Explain. [.... tne jus-Eioring indicates a zetal combininö with a non-wetal]
(b) minich wie shows ine تio elements in positions most unlizely to form a compound? Explain. [C.... tiee positionino indicates a non-metallic eiement and an jrert ejement; tre iatter is not lixely to enter 1:0*0 co=clnaた:on. "he micdie taole incicates a comelnation or tio metals nhlcr ls possible. but noこ =oo comon. thereiore is not included in our stuales]
6)

Periodic Table

Periodic Table

\qquad

EPISODE 414 (seventh of seven pages)
(a) In Feriodic Table A, draw a line from the element: marked \otimes to a circle θ which: represents an element chemically most like $(\otimes$. Explain. [fine line soil be dram vertically coward. Elements in tide saze column of the Periodic Table tend to rave similar chemical characteristics because they have tho same number of electrons in their outermost shell.]
(b) In Periodic Table a, crave a line from the element Larked $($ to the circle O that represents a.. tiezer:t most likely to'react or combine isth Q. Explain.
Ene line should ce dram toward the upper riant or "two o'clock." THe element= directly to tie mize: is fairly similar with a slightly greater number of outer electrons and is not likely to combine in a strong manner. The element to the far right is inert:. Fine element in the same colum has similar chemical pro-
 could be expected to combine init a non-meta? as in the upper right, why? Vitals tend to olive io toner outer electrons (1,2 , or 3 electrons) to non-चetais which acquire or share electrons to complete tie electron complement of their outer she. ls (5 or more electrons).]

New Vocabulary
combine, combination
Feridic Table of the Elements
react, reaction ,

\square

Appendix D, Table No. 1

Conversion Table
Deviation IQs to T -Scores

Middle Elementary Experimental Classes, $N=57$

DIQ	$\underline{ \pm}$	T-Scores	DIQ	$\underline{1}$	$\underline{\text { T-Scores }}$
123	1	73	98	1	46
120	1	69	97	2	46
116	1	67	95	1	45
115	2	64	95	3	44
113	3	62	94	1	43
111	2	60	93	3	42
109	3	58	89	2	40
107	7	55	88	2	39
106	1	53	87	1	37
105	1	53	85	1	36
104	2	52	83	1	35
102	3	51	80	1	34
101	4	49	79	1	32
100	2	48	77	1	30
99	2	4?	70	1	26

Appendix D, Table No. 2
Conversion Table
Deviation IQs to T-Scores
Middle Elementary Reference*("Control") Classes, $\mathrm{N}=56$

DIQ	f	T-Scores	DIQ	f	3 -Scores
122	1	73	99	3	50
119	1	69	98	2	49
117	1	66	97	6	47
115	2	64	95	3	45
113	1	62	93	4	43
112	2	61	91	2	41
111	4	59	89	2	40
109	3	57	88	2	38
104	2	55	85	!.	37
103	1	54	33	1	35
102	3	53	81	1	34
101	4	52	79	2	31
100	1	51	75	1	26

*T-scores from reference classes IQs were not applied directly in testing hypotheses.
*
Appendix D, Table No. 3
Conversion Table
Deviation IQs to T-Scores
Pre-Secundary Reiererce* ("Control") Classes, $N=5{ }^{\circ}$

DIG	I	$\underline{\text { T-Scores }}$	DIQ	$\underline{\text { f }}$	T-Scores
127	1	73	101	1	45
122	1	69	100	1	45
118	2	65	99	1	44
117	3	62	98	1	44
116	1	60	97	2	43
114	3	59	96	4	41
113	1	57	95	1	39
112	5	56	94	1	39
110	1	54	92	2	37
109	3	53	91	1	36
108	5	51	90	1	34
107	2	50	88	1	33
106	2	49	85	1	30
104	3	47	80	1	26
102	2	46			

- T-scores from rererence classes I民s were not epplied directly in testing hypotineses.

Appendix D, Table No. 4

Conversion Tabie
Deviation IQs to M -Scores

Pre-Secondary Experimental Classes, $i=59$

DiQ	\underline{p}	T-Scores	DIQ	$\underline{1}$	T-Scores
118	3	69	101	3	46
117	1	65	100	2	45
116	2	63	98	2	44
115	2	61	97	1	43
114	9	58	96	3	42
112	3	54	95	1	41
111	1	53	94	1	40
110	1	53	93	3	39
109	1	53	91	1	37
108	3	52	90	2	36
107	3	50	89	1	34
106	2	49	88	1	32
105	2	48	87	1	30
104	2	48	86	1	26
102	1	47			

Appendix D, Table No. 5

Conversion Table
Deviation IQs to T-Scores
Hypotheses Nos. 9a, 9b, 11a, 11b Middle Elementary Boys ${ }_{x}, N=30$

DIQ	$\underline{1}$	T-Scores	DIQ	$\underline{1}$	T-Scores
123	1	71	97	2	46
120	1	66	95	3	44
113	3	61	93	1	42
109.	1	59	87	1	40
107	5	55	85	1	39
106	1	52	83	1	38
104	2	51	79	1	36
102	1	50	77	1	33
101	1	49	70	1	28
99	2	48			

Appendix D, Table No. 6

Conversion Table
Hypotheses Nos. 10a, 10b, 12a, 12b
Midde Elementary Girls ${ }_{x}, N=27$

Appendix D, Table No. ?

Con:arsion Table
Deviation IQs to T-Scores
Hypotheses Nos. $13 a, 13 b, 15 a, 15 b$ Pre-Secondary Boys, $N=29$

DIQ	$\underline{5}$	T-Scores	DIQ	\underline{r}	T-Scores
118.	2	68	104	1	48
$117{ }^{\circ}$	1	63	102	1	47
116	1	61	101	1	46
115	1	60	97	1	45
114	4	57	96	2	44
112	1	54	94	1	42
111	1	* 53	93	2	40
110	1	52	90	1	38
109	1	51	89	1	36
108	1	50	88	1	33
107	1	50	86	1	28
105	1	49			

Appendix D, Table No. 8

Conversion Table.
Deviation IQs to T-Scores
Hypotneses Nos. $14 \mathrm{a}, 14 \mathrm{~b}, 16 \mathrm{a}, 16 \mathrm{~b}$
Pre-Secondary Girls, $N=30$

.4
ξ
θ

APPENDIX E

The Measurement Instrument

TEST OR PUPJL＇S AごエALKUE：．．．

f LEADING TO AND PEETAT：ING 7C ב：E
flayetary ancill ：

An investigation in elementary science curriculum empiojing a major concepzual schemes approaci．
by S．Earvey Steintera

PRS－Instructional ：orm．acministere \qquad 19

PCST－Instiotional sorm，acministerec． \qquad 15
X
a
Grade level \qquad

Name of Pupil 30%

GIEi

Teacher＇s ïame \qquad School \qquad

1. Read the directions on the first page of tine test booklet to the pupilis.
2. Read each question aloui as many times as needed for each pupil to maris an ansicer to each question. The

- pupils should circle the letter of the best of four answors. Thej car use pen or pencil. Zove arourd the room to ascertain that all pupils are vorkins.

3. Space the seating of tine puipils to insure that each does nis om work. Encouraze them to work tarci even thougn some or nearly ail of the cuestions are unfamiliar. Some classes dill be taning tae vest a second time without benefit of formal in Eviction on the material. Asis the to do their best.
4. The PRE and the PCST form are each given in two sittings. Each sittins will take at least 30 =inutes
 factor in completinz tree test. Ine irst sitinis of each of the PaE and POSN forms ends intin question no. 11.1 .
5. To help dissipate the effects of fatisue, the class should, for one Einite during each siztinō, stand up. exercise, wigole, taik, etc.. then prompily so back to the tasis. rest papers should be closed durino tre break.
6. The pages of each booklet of the PRE form are in the same partially randomizet order. Tine first sittino of both the PZE and PCS? forms of the tes ends as question no. 11.1 and the second sitting begins at question no. 11.2.

SECOND SITMING, PRE AND POSS FCE:S
7. Beginning at the second sittirg (cuestion no. 11.2) of bott the PRE and PCOT Form, tio tables must be issued to each pupil. The teacher is to describe the use of each table upon distribution; tell the pupiss only the following:
(mABLE OF 20 ELE:EMS)
a) This sheet (show pupils...ask tiem to look at tielr table of 20 elements) is a table of the first 20 elements and their basic atoric parts."
(PEPIODIC TABLE)
b) "This sheet (show pupils...ask them to 100 k at their Perlodic abie) is a Perioilc Table of some of the elements. It is made in such a way tiaza a relation is snom betweer an atcm's eleczron saelis and the number of electrons in the outerzost sisei.. I will five you time to loox over both tables. I carnot tell you boo they are user, but I will tell you when they are used."
(TEACEER LETS PUPILS PERUSE TAELES, MEEN SAYS:)
c) MYany of the questions in tinis part (second sittin \tilde{z}) of the test state that The ?upilyouse toe Jajes or The pupll Uses zables. I wil Eeli you on inicn questions either of these statements appears, but you will have to decide inich table is best sulted to help answer the question."
For each such question tell the puplls before reading the question that the tabies can or may be used, and remird them agair, a minute or so cefore golr. 5 on to the next question.

Puplls who have not beer tavint hor: to lise the tables may seem upset. Asslire them that their "marik" in science will not be affectec. blit they $\times 1 i l$ be expected to try hard on all questions.

It is important in the investigation that tine cirections for administering the test be implemented as exaciay as possible. Your time and sttention to trese det 's is very much appreciated.

DIRECTICNS ECR PUPILS

PRE - FOR

1. The purpose of tinis test is to find out what yo: wny Now about certain parts of science. Try your best on every question.
2. There are probably many questions wich asc about trinss that are rew to you. Some may be fin to taiñ about e:ren If you are not sure of the answer. Mry rard on all questions.
3. Each question has four answers, but orly one is tee best ansier. Put a circle around tre letver of the best ansier only. Do every question.
4. The test 2111 be siven in tiro parts. $\dot{\text { itt the start of tie }}$ second part, you will be ofven tio crares or tabies. If you mow how. $\begin{gathered}\text { me charts can help ansier auostions zaried }\end{gathered}$ "PUPIL USES TAELES", or "PVロIL YAY USE FiE゙iEs"•
5. Wour teacher will read each question slonly. Zou should read alons ristin your teacher. If you need =ore time. or need a question read again, ask you teaciner.

DIRECTIONS FOR FUPILS

```
POST - FORM
```

1. The purpose of this test is to Eind out wirat you may have learned in science over the past fem reeks. Don't be uvset if you are not sure about an answer. iut try your best on every question.
2. Each question has four arsiers, but only one is tre best answer. Put a circle around the letter of the kest ansier only. Do every question.
3. The test will be given in tio parts. At the start of tire second part, you will be given tio charts or tables. me charcs can help you answer the questions marked "pupii ïses TAELES", or "PUPIL NAY USE TABLES".
4. Your teacher will read each question slowly, You should read along with your teacher. If you need more time. on need a question read again, ask your teacher.
1.1 Why can a sponge soak up a lot of water?
A) Because sponges can bend when wet.
B) Because some kindis of sponges grow in water.
C) Because sponges have many open spaces.
D) Eecause sponges need water.

Episode No. 2
Inferential (background)
2.1 When a substance changes irom a liquid to a gas. what happens to its molecules?
A) The molecules are destroyed.
B) The rnolecules get smalier.
C) The molecules get closer to each other.
(1) The molecules move apart irom each other.
$\$$
3.1 The smell fivin peifume in a dish most easily spreads through a room when,
A) ice is put in the dish.
(3) the room is made warmer.
C) the room :s ciaikececi.
D) the room is made colder.
3.2 Onl flows easier in hot weather because;
(A) the oil molecules are far apart.
B) the oil molecules dry fast.
C) the oil molecules are close together
D) the oil molecules dry slow.

?

256
Episode No. 4
Factual - Conceptual - Inferential (backgrou:d)
4.1 A child taikes a cold soft drink can from the refrigerator. He leaves it unopened. lifen ae returns a fen mantes later, be fincs molsture on the can. How dad the moisture get there?
A) Water from the atr changes to a gas when it stakes the warm can.
B) Tise can leaked fiom around the topedge. It dipped cion: the siche of the can.
C) Water molecules from the abr collect on the can because they lost their heat to the cold car.
D) Heat from the can makes air moieciles co:iciense upon it.

Episode No. 5

Inferential (background)

5.1 A child tries to itiess what is in a box. Of what can he be directly sure. without opeming it?
A) What 25 in it.
B) If it has a living thang in $1 t$.
C) If it has a non-living thing in it.
(D) The many kinds of thaters that catnot be in it.

Inferental (background)

5.2 Pretend each of the things listed has the same weight. Whach one takes up the most space or volume?
A) A coin.
B) A new bar of soa?.
C) A 10 c chocrlate bar.
(5) A balloon floaing in air.
5.3 Protend each of the thangs insted has the same weight. Whach one has the most density?
(A) A coin.
B) A new bar oi soap.
C) A 10 chocolate bar.
D) A balloon floaturg an arr.

Episode No. 6
Factual - Conceptual - Inferential (background)
E. 1 In which drawing does it shaw the: work is being done?
A)

B)

D)

6.2 In which drawing is tie most work being done?

(5)

C)

D)

6. 3 Which drawing shows one kind of work being changed to another kind oi work?
A)

j)

Episode No. i

Factual - Conceptual - (background)
7. 1 To add elcciric charges, or to take away electric charges,
(A) work must always be done.
B) a switch must always be turned on.
C) a switch must always be tirned off.
D) always use an electroscope.
7.2

Which particles could make the leaves of the electroscope act as the drawing show 8 ?

> KEY
> Positive charged electrical particle $=\varnothing$
> Negative charged electrical particle $=\varnothing$
A) $+G$
B) $(-)$,
(C) $+(+)$ or $(-)$
D) $+\Theta \Theta \Theta$
7.3 Negative electric charges show up on an ebony rod when it is rubbed with fur. From where do the negative charges come?
(A) The smallest parts of the fur. B) Batteries inside the ebony rod.
C) The smallest parts of the evony rod.
D) Magnets inside the ebony rod.
7.4 Which chain of electrical particles would need the most work or energy to be broken apart?

KEY	
Positive charged electrical particic	$=\Theta$
Negative charged electrical particle	$=\Theta$
Neutral particle.	$=O$

(A) $(+7+9 \oplus$
B) $O+C$
с) $-\infty-0$
(6) $\mathbb{E}+O_{0}$

Sre poot-instructional romm of the test appears in tris apyendix. Enges in tne pre-instructional in wraneran a mancomized order. Irciudec here axe dixncticns for teachers and pupils on tioe pre and poci iraivuctionas forms.

The reference taples recuired for Part II o: totr forms of tine test are firtually identical to those recorded in ippendix C, Secuence of Instruction: Ef:soces; see paze 5 episoce no. it Cot the crati entitied Sre Elrst 20 Elements, and sue "ree faral prate of episocie no. 14 for pupils' copy of i Poniocic Jable of Some Elemerts.

Fsilowing the administration of the post1.mincosiorai: zest. Ene irvestizator ciscoverec trat one guesticn. ro. 7.t. hac an amblguluj in conter. A pipil ino krew only trat it requires woris to oferccue electristaちic attraction between bodius moult ba lisely to selečansrer D. Fe novid resect ardwer i reasonino that protons repulse eacr otrex. Co the otner rana, a pupll wio runderstoal tre precenine. but also zien trat oreat * Totces" : old protons Eveetner in atomic nuclel would stiect anseer i, reasonino that Eluch Nork Hoid be reauired to serarate protons united as suer. In scomira, eltren answer A or L was counted as a correct arsier.

Episode No. 8

Factual - Conceptual - Inferential (background)

[^6]\qquad
8. 3 ī we rub a substance, what part of its atoms is most likely to be mured?
A) protons
B) neutrons
(C) electrons
D) ruclei:
t
8.4 When an atom loses electrons it:
(A) becomes more positively (+) charged.
B) becomes more negatively (-) charged.
C) becomes neutral.
D) is destroyed.
8.5

In sunlight the leaves of a positively charged electroscope go down because energy from the sun gives some of the air around the electroscope an electric charge. Which air particles make the leaves go down?
A)

B)

C)

(D)

Episode No. 9

Factual - Conceptual

9. 1 Scientısts tell us that about 100 elements make-up all the things of the world. How do each of the elements differ from each other?
A) All elements are alike except for their names.
(B) Each element has its own kind of atom.
C) All elements are alike except for their color.
D) Each eloment is a different mixture of compourds.
9.2 What is the taniest part of an element which is exactly like the element?
A) a compound
B) a mixture
C) a molecule
(1) an atom
9.3 What 25 the tiniest part of a compound which is exactly like the compound?
(A) A molecule
B) An atom
C) A mixture

D' An element
9. 4 When the clement hydrogen and the element oxygen are joined in the right way, they form water. Water is called:
A) A mixture
B) An element
C) A mixture of compounds
(D) A compound

Episode No. 10
Factual - Conceptual - Inferentıal
10. 1 A scientist shoots high speed positive charges, $+\longrightarrow$, at atomic nuclei, (N). Which drawing shows the most likely resuit?
A)

B)

c)

(D)

Episode No. 11

Factual - Conceptual - Inferential
11.1 Which one of these parts of an atom is thought to have the deast mass
('weight')?
A) neutron
(B) electron
C) positive charge
D) proton

END FIRST HALF OF TEST HERE
begin seccnd half of test here.
EACH PUPIL RECEIVES TWO TABLES.

11.2 (PUPIL MAY USE TABLES)

The atomic number of an element is always the same as its:
A) atomic mass ("weight").
B) number of neutrons.
C) number of protons.
D) number of electron shells.
11.3 What is the atomic number of the elems $1 t$ with 26 protons and an atomic mass ('weight') of 56 ?
A) 56
C) 30
B) 82
(D) 26

An element with 15 protons and an atomic mass ('weight') of $i 1$ has how many neutrons?
A) 31
(C) 16
B) 15
D) 46
11.5 (PUPIT USES TABLES)

In the first 20 elements, which elements have all their electron shells fillec'?
(A) helium (He), neor (Ne), argon (A) B) helum (He), oxygen (O), neon (Ne) C) hydrogen (H) helum (He), be ryllum (Be)
D) beryllium (Be), oxygen (O), argon (A)

11.6 (PUPIL USES TABL.ES)

Equal sized boxes are completely flled with certain clements; as pictured

Which one weighs the most?
(3) suifur (S)
C) carbon (C)
B) aluminum (Al)
D) magnesium (Mg)

11.7, (PU'PIL-USES TABLES)

Which one of these elements has the most neutrons?
A) No. 20
No. 18
B) No. 19
D) No. 17
11.8 (PUPIL USES TABLES)

A drau'ing of an atom of element No. 21 would be like wheh one of these?
(A)

$8^{B)}$

C)

D)

Episode No. 12
Factual - Conceptual
12.1 Ah inert element is NOT usually active because its outer electron sheli:
A) has fewer than 4 electrons.
(B) Is complete.
C) has 4 electrons
D) has no electrons.
12. 2 Which one of these elements would most easily lose outer electrons?
A)
$\ddot{\beta}$
B)

(C)

${ }^{\circ}$
D)

chlorine (Cl)
;

```
`
```

275
12.3 (PUPIL. MAY USE TABLES)

Which one of these elements is most likely to act as a metal?

12.4 (PUPIL MAY USE TAELES)

Some elements can act like metals or can act like non-metals. Which drawing best shows the outer electron shell of an element most likely to act this way?

12.5 (PUYII, USFS TABLES)

The element sodium (Na) and the element fluorine (F) can form the compound sodium fluoride (NaF). Which sentence best explains how the compound is formed?
A) Fluorine's outer electron fills sodium's outer shell.
B) Sodium loses ail its electrons.
(C) Sodium's outer electron fills iluorine's outer shell.
D) Eluorine loses all its electrons.

Episode No. 13
Factual - Conceptual
13.1 Charged atoms have:
A) lost neutrons.
(3) gamed electrons or lost electrons.
C) ganed neutrons.
D) gained neutrons and lost protons.
13.2 (PUPIL, MAY USE TABLES)

Which one of these drawings shows a charged atom of nitrogen (i)?

Factual - Conceptual - Inierential

14.1 (PUPIL USES TABLE)

What do these numbers in the Periodic Table Stand for?

A) The number of electrons in the atom.
B) The number of protons.
C) The atomic number.
(D) The number of electron shells.
14.2 (PUPII, USES TABLE)

In the shaded \mathbb{E} part of whoch Periodic Table drawing do the elements act most like each other?

C)

14.3 (PUPIL MAY USE TABLE)

In the shaded part of which Periodic Table drawing are some of the heavy elements found?

14.4 (PUPIL MAY USE TABLE)

What is the smallest number of total electrons that an atom can have in the shaded part of the Periodic Table in the drawing?

A; 3
B) 16
(C) 11°
D) 6

145 (PUPIL MAY USE TABLE)
In the shaded part $\bar{F} \mathrm{C}$, of which Periodic Table drawing would some nonmetallic elements be found?

14.6 (DUPIL MAAY USE TABLES)

Pretend you are a scientist looking for a very light weight element that cioes NCT easily form compounds. Which one of the se would you choose?

14.7 (PUPIL MAY USE TABLES)

Pretend you are a scientist looking for an element that is very likely to form ccmpounds with either metals or non-metals. Which one of these would you choose?
A)

C)

atomic no. 10
B)

atomic no. s
 -

APPENDIX F
Experimental Run: inumber Correct Per Test Item for Estimating Reliability.

Appendix F, Table No. 1
Experimental Run: Number Correct Per Test Item for Estimating Reilability*

Item Designation on Test	No. Correct	Item Designation on Rest	\%o. Correct
1.1			
2.1	111	10.1	95
3.1	88	11.1	65
3.2	96	11.2	93
4.1	56	11.3	48
5.1	77	11.4	101
5.2	78	11.5	89
5.3	95	11.6	104
6.1	64	11.7	94
6.2	100	11.8	100
6.3	61	12.1	93
7.1	73	12.2	104
7.2	86	12.3	92
7.3	69	12.4	74
7.4	87	12.5	59
8.1	95	13.1	59
8.2	67	13.2	22
8.3	70	14.3	56
8.4	81	14.2	102
8.5	55	14.3	76
9.1	70	14.4	58
9.2	54	14.5	17
9.3	78	14.6	77
9.4	61	14.7	50

"These scores were taken from the post-instructional tests of the 116 pupils of the experimental classes. Addicional data for estimating the coefficient of reliability for experimental and pilot classes are reported in Table XLIV.

vita

S.(amuel) Earvey Steinberg was born in Sjraid. ", Ne: York, February 1, 1928. Fie is the only surviving cirild of Bose I. Chadwici Steinberg and Natran Steinberg. Ee a was educated in Syracuse public schools, graduating from Central aigh in January 1946. During two periods fro= 1946 through 1951, he served a total of 33 montins erilisted In the U. S. Marine Corps. Ke entered Syracuse Čiversity in ; 948 and received a Bachelor of Science in Combined Science degree in 1953. In 1954 he received the Naster of Science in Science Education degree from Syracuse Eniversity: From 1954 to 1956 , he was chairmar of tine science department at New Yoric illis, New York :igh Schooi. In 1955 he was awarded a New Yor'k State 'jar Service scholarship and thereby continued advanced studies in science education. From 1956 to 1961 he taught at Syracuse Central Technical Eign School and was chairman of the academic science department for three years. Ee was married to the former Jean Karie Earrington on Cctcber 10, 1959. Since September 1961 he has been an assistant professor at State University College, Cortland, New York.

Permanent address: 948 Nolfe Road, R. D. \#4 Cortland, New Yori 13045

[^0]: *The term molecule is defined more precisely in a latar instructional episode. For this episode define molecule as tiny invisible bits or "parts" of the substance.

[^1]: *To give the pupils more experience with the concept of density, fill a plastic bag with one pound of loose paper and demonstrate that 1 ts much greater volume is balanced by a one pound metal object of much smaller volume. Ask the pupils to explain the difference...accept answers that sugrest. (1). greater space between the molecules or particles of paper as compared to the particles of metal, and (2) a difference in the ultimate structure of the parti.cles. Separately weigh the two objects using a spring scale. Adjust the contents of the plastic bas to weigh one pound. Use rubber bands around the closed neck. of the bag to hook the bag to the spring scale. To fasten the metal object to the scale, wrap rubber bands tautly around the object and attach to the soale hook.

[^2]: *Tne neon bulb is a miniature version of the ones used in electrical advertising signs of ten seen at restaurants and shopping centers, etc. Given an appropriate electrical circuit, neon gas in a bulb will glow a red color.

[^3]: *It mignt be mentioned that many compounds contain more than two elements. One of the most comon is sugar which contains the elements carbon, hydrogen, and oxygen.

[^4]: - Wxyen and nydrozen ench readily exist in diatomic (trio closely associnted atoms of the elezent) form and as suct are comaniy calird "moiectiles." in tiese instructional eplsodes tine term =olecule will be used only in reference to compourds.

[^5]: *ydroser, too, is kown to rave some atoms with neutrons in the nucleus. Atoms, with more or fever neutrons than "normal" are called isotoves: many suc' examples exist xitir other eiements. The compound mom as heavy vater, contains an isotope of hycrozen. The concept of isotopes is not pursued in these instructional episodes.

[^6]: Bentroh moterter

 D) Posmbe eiccir.za: mosecuies

