Within the context of a counterbalanced design, 63 female students were tested with a computerized Minnesota Multiphasic Personality Inventory (MMPI) and a group booklet mode of administration. State anxiety was measured before and after each testing session. The correlation between the computer-based MMPI scale scores and the booklet administration scores were shown to be as high as or higher than the correlations reported for comparisons between booklet and card form administrations of booklet-booklet administrations for a college population. When compared to the booklet version, the computer mode initially produced relatively high state anxiety levels. By the end of the test, however, no difference in state anxiety levels between the two modes of administration was found. (Author)
EQUIVALENT VALIDITY OF A COMPLETELY COMPUTERIZED DPPI

Robert E. Lashema, Harold F. O'Neil, and Thomas Dunn
Florida State University

Tech Memo No. 46
April 20, 1972
Tallahassee, Florida

Project NR 154-280
Sponsored by
Personnel & Training Research Programs
Psychological Sciences Division
Office of Naval Research
Arlington, Virginia
Contract No. N00014-68-A-0494

Approved for public release; distribution unlimited.

Reproduction in whole or in part is permitted for any
purpose of the United States Government.
Tech Memo Series

The FSU-CAI Center Tech Memo Series is intended to provide communication to other colleagues and interested professionals who are actively utilizing computers in their research. The rationale for the Tech Memo Series is three-fold. First, pilot studies that show great promise and will eventuate in research reports can be given a quick distribution. Secondly, speeches given at professional meetings can be distributed for broad review and reaction. Third, the Tech Memo Series provides for distribution of pre-publication copies of research and implementation studies that after proper technical review will ultimately be found in professional journals.

In terms of substance, these reports will be concise, descriptive, and exploratory in nature. While cast within a CAI research model, a number of the reports will deal with technical implementation topics related to computers and their language or operating systems. Thus, we here at FSU trust this Tech Memo Series will serve a useful service and communication for other workers in the area of computers and education. Any comments to the authors can be forwarded via the Florida State University CAI Center.

Duncan N. Hansen
Director
CAI Center
1. ORIGINATING ACTIVITY (Corporate author) | 2a. REPORT SECURITY CLASSIFICATION
Florida State University Computer-Assisted Instruction Center Tallahassee, Florida 32306 | Unclassified
2b. GROUP

3. REPORT TITLE
Equivalent Validity of a Completely Computerized MMPI

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Tech Memo No: 48, April 20, 1972

5. AUTHOR(S) (First name, middle initial, last name)
Robert E. Lushene, Harold F. O'Neil, and Thomas Dunn

6. REPORT DATE
April 20, 1972

7a. TOTAL NO. OF PAGES | 7b. NO. OF REFS
22 | 23

8a. CONTRACT OR GRANT NO.
NO0014-68-A-0494
b. PROJECT NO.
NR 154-280
c.
d.

9a. ORIGINATOR'S REPORT NUMBER(S)

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

10. DISTRIBUTION STATEMENT
Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY
Personnel & Training Research Programs
Office of Naval Research
Arlington, Virginia

13. ABSTRACT
Within the context of a counterbalanced design, 63 female students were tested with a computerized MMPI and a group booklet mode of administration. State anxiety was measured before and after each testing session. The computer-based MMPI scale scores were shown to correlate as high or higher with the booklet administration scores than correlations reported for comparisons between booklet and card form administrations or booklet-booklet administrations for a college population. When compared to the booklet version, the computer mode initially produced relatively high state anxiety levels. By the end of the test, however, no difference in state anxiety levels between the two modes of administration was found.
EQUIVALENT VALIDITY OF A COMPLETELY COMPUTERIZED MMPI

Robert E. Lushene, Harold F. O'Neill, and Thomas Dunn
Florida State University

Tech Memo No. 48
April 20, 1972
Tallahassee, Florida

Project NR 154-280
Sponsored by
Personnel & Training Research Programs
Psychological Sciences Division
Office of Naval Research
Arlington, Virginia
Contract No. N00014-68-A-0494

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for any purpose of the United States Government.
EQUIVALENT VALIDITY OF A COMPLETELY COMPUTERIZED MMPI

Robert E. Lushene, Harold F. O'Neil, Jr., and Thomas Dunn
Florida State University

ABSTRACT

Within the context of a counterbalanced design, 63 female students were tested with a computerized MMPI and a group booklet mode of administration. State anxiety was measured before and after each testing session. The computer-based MMPI scale scores were shown to correlate as high or higher with the booklet administration scores than correlations reported for comparisons between booklet and card form administrations or booklet-booklet administrations for a college population. When compared to the booklet version, the computer mode initially produced relatively high state anxiety levels. By the end of the test, however, no difference in state anxiety levels between the two modes of administration was found.
EQUIVALENT VALIDITY OF A COMPLETELY COMPUTERIZED MMPI

Robert E. Lushene, Harold F. O'Neil, Jr., and Thomas Dunn

Florida State University

There have been relatively few investigations of the reliability and validity either of intelligence or personality tests in which automated equipment has been used to actually administer, score, or interpret these tests (Hansen, Hedl, & O'Neil, 1971). In the area of automated administration of intelligence tests, Elwood (1969) investigated the effects of an automated testing booth for presenting the Wechsler Adult Intelligence Scale (WAIS) (Wechsler, 1955). Although the average interval between the two testing sessions was 110 days, he found a correlation of .92 between the prorated performance intelligence quotient (IQ) scores based upon three subtests. In another study (Elwood & Griffith, in press), thirty subjects were tested with a mean of 9.4 days between the two administrations of the automated WAIS. The test-retest reliability coefficients were shown to be .97, .95, and .98 for WAIS verbal IQ's, performance IQ's, and full scale IQ's, respectively.

If one considers the automated version of a test to be an entirely new test rather than merely a type of administration, then the correlation between the automated test and the traditional test would be considered an equivalent validity index. Several studies of this type have been reported for automated tests. Orr (1969) compared the automated WAIS with the traditional administration of the WAIS. In this study, using a mean intertest interval of 9.2 days, a test-retest coefficient of .93 was reported between the full scale IQ as administered by examiner and as determined by the automated administration. Hedl, O'Neil, and Hansen (1971) have developed a computer-based administration and scoring system for the Slosson Intelligence Test (Slosson, 1963). Within the context of a Latin square design, they report a correlation of .75 between the computerized and the traditionally administered Slosson Intelligence Test. The lower equivalent
validity correlation in the latter study is probably due to the fact that for the computerized Slosson Intelligence Test the computer also scored the test, whereas for the WAIS several verbal subtests were hand scored. Computer scoring of natural language input is often less reliable than human scoring of such input.

With regard to personality tests, computers have been widely used in the scoring and interpretation of personality inventories, particularly the Minnesota Multiphasic Personality Inventory (MMPI) (e.g., Fowler, 1969). However, there has been relatively little use of computers to administer such tests. One example of such an approach is reported by Dunn, Lushene, and O'Neil (in press) in which they demonstrated the feasibility of computerizing the administration, scoring, and interpretation of the entire MMPI. The validity of such an approach is reported in this paper.

It is particularly important that equivalence validity studies of automated tests be conducted. Although the very nature of the automated presentation insures a more standard stimulus presentation than do other methods, certain evidence suggests that test results may be somewhat different under automated conditions. Affective and subjective attitude reactions to computer-based administration of tests may differ from those obtained during standard administrations. For example, a number of investigators have reported that subjects tend to be more open and honest in responding to a computer, particularly if the stimulus material is of highly personal nature (Smith, 1963; Evans & Miller, 1969).

However, in the study by Hedl et al. (1971), in which a computer-based administration of an intelligence test was compared to a traditional administration, it was found that computer administration of the test led to a higher level of state anxiety than did the examiner-administered test. State anxiety (A-State) has been conceptualized by Spielberger (1966) as a transitory state or condition of the
organism that is characterized by feelings of tension and apprehension and high levels of autonomic system activity.

It could be hypothesized from the prior studies that some alteration in a computer-administered and scored MMPI profile would result when compared to a traditionally-administered MMPI. Therefore, it seems of import to determine the equivalence-validity of the MMPI as administered by computer vs. the traditional booklet administration of the test.

Thus, it was the purpose of the present study to investigate the equivalence-validity of the computerized MMPI as compared to a standard administration of the MMPI, i.e., the group booklet form. In addition, the affective and subjective reactions to both modes of administration were investigated.

Method

Subjects

A total of 63 female students\(^1\) participated in this experiment. All students were volunteers enrolled in psychology courses at Florida State University.

Apparatus and Materials

The IBM 1500 Computer-Assisted Instruction System (IBM, 1967) was used to present the MMPI. Students interacted with the computer via terminals which consisted of (a) cathode ray tube; (b) light pen; and (c) typewriter keyboard. The terminals were located in an air-conditioned, sound-deadened room.

MMPI

As reported in more detail by Dunn et al. (in press), the automated version of the MMPI included all 566 items. Items were presented one at a time on the cathode ray tube. Students were instructed to depress "t" for "true," "f" for "false," or "?" for "don't know" on the terminal keyboard to indicate their responses.

\(^1\) One student was dropped from the C/B group since her F scale score was 23. Scores this high generally indicate an invalid profile.
The statement "Press space bar to continue" was inserted after each of the 566 items to allow for accurate latency recordings. Latency served as a dependent measure in a study reported elsewhere (Duma et al., in press). The booklet form of the MMPI, with accompanying answer sheet, was also used.

Twenty-six scales were computer scored. For the automated MMPI, the IBM 1500 system was used to score on-line the MMPI, whereas a Control Data 6400 was used to score off-line the booklet form of the MMPI. The scales scored included the 13 original scales: Hypochondriasis (Hs), Depression (D), Hysteria (Hy), Psychopathic Deviate (Pd), Masculinity-Femininity (MF), Paranoia (Pa), Psychasthenia (Pt), Schizophrenia (Sc), Hypomania (Ma), Social Introversion-Extroversion (Si), Lie (L), Frequency (F), and Correction (K).

Thirteen additional scales scored were: Social Maladjustment (SOC), Depression (DEP), Feminine Interests (FEM), Poor Morale (MOR), Religious Fundamentalism (REL), Authority Conflict (AUT), Psychoticism (PSY), Organic Symptoms (ORG), Family Problems (FAM), Manifest Hostility (HOS), Phobias (PHO), Hypomania (HYP), and Poor Health (HEA) (Wiggins, 1969).

A-State

The A-State scale of the State-Trait Anxiety Inventory (STAI) developed by Spielberger, Gorsuch, and Lushene (1970) was used to measure state anxiety. The short form A-State scale consists of the five items from the total scale having the highest item-remainder correlation for the normative sample of the STAI. In a series of studies using this scale O'Neil (in press) and Leherissey, O'Neil, and Hansen (1971) report alpha reliabilities ranging from .81 to .89. This scale was administered immediately before and immediately after both booklet and computer administrations of the MMPI. When students were going through the computerized version, the anxiety scales were presented on-line. During the booklet administrations the anxiety scales were completed with paper and pencil.
Instructions for the pretest state anxiety scale asked students to describe how they felt while taking the MMPI.

Procedures

Students who signed up to participate in this experiment were randomly assigned to one of two groups:

(a) Those who were to take the computer (C) version of the MMPI first and the booklet (B) version second (C/B); and

(b) Those who were to take the booklet version of the MMPI first and the computer version second (B/C).

As students reported to the Computer-Assisted Instruction Center, they were asked to take a numbered card to identify themselves. Students who had been randomly assigned to the C/B group were asked to have a seat in the terminal room. Those who had been randomly assigned to the B/C group went to a nearby classroom.

The proctor for the C/B group then gave general instructions and information which included the number of items, the duration of the test, and some basic information about the MMPI itself. In addition, instructions were given for use of the cathode ray tube terminal.

The proctor with the B/C group gave the same instructions as those given to the C/B group, with the exception that the use of the cathode ray tube terminal was not discussed. In addition, the proctor with the B/C group distributed the test materials package. Included in this package, in this order, were: (a) STAI A-State pretest; (b) the MMPI booklet and an IBM answer sheet; and (c) the STAI A-State posttest.

All students were also instructed that their responses would be confidential since they would be identified only by number.

Procedures during the second session for both booklet and computer administrations were the same as in the first session, with the exception that students
were not given the general information about the MMPI. After students finished the posttest A-State scale, the experimenter held a debriefing session in which he explained the experiment and answered questions about the test.

Results

In order to investigate whether or not the computerized MMPI is equivalent to a booklet administration of the same test and the students' affective reactions to mode of administration, the results are divided into five sections. The first section deals with the effects of mode and order of administration on MMPI profiles. The second section deals with the effects of mode of administration on MMPI scales. The third section deals with the equivalent validity of the two modes. The fourth section deals with the effects of mode and order of administration on state anxiety, while the fifth section deals with subject preference toward mode of administration.

Effects of Mode and Order of Administration on MMPI Profiles

Figure 1 presents the mean T score profiles for the basic non-K-corrected scales for (a) the booklet administrations for each group (second for the C/B group, first for the B/C group); (b) the computer administrations for each group (first for the C/B group and second for the B/C group); (c) the first administration (booklet for the B/C group and computer for the C/B group); and (d) the second administration (computer for the C/B group and booklet for the B/C group). Figure 2 presents the same profiles for the Wiggins scale.

Discriminant function analyses were conducted in order to determine whether significant differences were present in these mean profiles.

The results of the discriminant analyses on raw scores are shown in Table 1. It will be noted, as shown in Figure 1a, that the relatively higher scores on the basic scales for the booklet administration for the B/C group resulted in significant profile differences for the booklet administration in each group. In addition, as may be seen in Figures 1c and d, respectively, the mean profiles for each group were
Figure la. — Mean T-score profiles for basic MMPI scales for booklet administrations for each group.

Figure lb. — Mean T-score profiles for basic MMPI scales for computer administrations for each group.
Figure 1c.—Mean T-score profiles for basic MMPI scales for first administration for each group.

Figure 1d.—Mean T-score profiles for basic MMPI scales for second administration for each group.
Figure 2a. Mean T-score profiles for Wiggins scales for booklet administrations for each group.

Figure 2b. Mean T-score profiles for Wiggins scales for computer administrations for each group.
Figure 2c.—Mean T-score profiles for Wiggins scales for first administration for each group.

Figure 2d.—Mean T-score profiles for Wiggins scales for second administration for each group.
TABLE 1

F Ratios Based Upon the Discriminant Function Tests on the Mean Profiles of the B/C and C/B Groups for Both the Basic and Wiggins MMPI Scales

<table>
<thead>
<tr>
<th>Comparison</th>
<th>(a) Booklet Administrations</th>
<th>(b) Computer Administrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Booklet Administrations</td>
<td>2.42*</td>
<td>2.24*</td>
</tr>
<tr>
<td>(b) Computer Administrations</td>
<td>1.14</td>
<td>0.95</td>
</tr>
<tr>
<td>(c) First Administration (C vs B)</td>
<td>5.70**</td>
<td>0.88</td>
</tr>
<tr>
<td>(d) Second Administration (C vs B)</td>
<td>5.67**</td>
<td>1.13</td>
</tr>
</tbody>
</table>

*p < .05; df = 26/35
**p < .01; df = 26/35

...significantly different for the first test administration as well as the second administration. There were, however, no significant differences between the computer administration for each group (Figure 1b). In contrast, for the Wiggins scales there was only a significant difference between the mean profiles for the booklet administration to each group (Figure 2a); the remaining comparisons were not significant.

Effects of Mode of Administration on MMPI Scales

While the foregoing discriminant analyses were primarily designed to reveal any differences between the profiles of the mode of administration for each group and any order effects, the following analyses were concerned with pinpointing differences between the booklet and computer administrations of individual scales within the same group.

The mean profiles, in terms of T-scores, for the booklet and computer administration for each group are shown in Figures 3a, b, c, and d.
Figure 3a. Mean T-score profiles for the basic MMPI scales for the C/B group.

Figure 3b. Mean T-score profiles for the basic MMPI scales for the B/C group.
Figure 3c.--Mean T-score profiles for the Wiggins scales for the C/B group.

Figure 3d.--Mean T-score profiles for the Wiggins scales for the B/C group.
Correlated t-tests were conducted on all of the MMPI scales and the results are presented in Table 2. Scales which showed significant changes between the

<table>
<thead>
<tr>
<th>Scale</th>
<th>C/B Group Mean</th>
<th>C/B Group t</th>
<th>C/B Group Mean</th>
<th>B/C Group Mean</th>
<th>B/C Group t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hs</td>
<td>3.73</td>
<td>5.14**</td>
<td>7.17</td>
<td>5.45</td>
<td>3.00**</td>
</tr>
<tr>
<td>D</td>
<td>18.24</td>
<td>6.67</td>
<td>21.79</td>
<td>19.38</td>
<td>4.09**</td>
</tr>
<tr>
<td>Hy</td>
<td>19.42</td>
<td>2.82</td>
<td>21.66</td>
<td>16.69</td>
<td>8.60**</td>
</tr>
<tr>
<td>Pd</td>
<td>14.36</td>
<td>2.38*</td>
<td>15.97</td>
<td>13.69</td>
<td>3.70**</td>
</tr>
<tr>
<td>Mf</td>
<td>39.36</td>
<td>.06</td>
<td>39.97</td>
<td>38.97</td>
<td>1.74</td>
</tr>
<tr>
<td>Pa</td>
<td>9.55</td>
<td>4.10**</td>
<td>10.83</td>
<td>8.62</td>
<td>3.17**</td>
</tr>
<tr>
<td>Pt</td>
<td>14.06</td>
<td>4.23**</td>
<td>19.38</td>
<td>16.97</td>
<td>4.26**</td>
</tr>
<tr>
<td>Sc</td>
<td>11.64</td>
<td>4.92**</td>
<td>18.59</td>
<td>15.14</td>
<td>3.02**</td>
</tr>
<tr>
<td>Ma</td>
<td>17.48</td>
<td>.80</td>
<td>18.97</td>
<td>18.14</td>
<td>1.38</td>
</tr>
<tr>
<td>Si</td>
<td>25.79</td>
<td>1.81</td>
<td>33.66</td>
<td>27.24</td>
<td>9.08**</td>
</tr>
<tr>
<td>L</td>
<td>2.52</td>
<td>2.77**</td>
<td>2.69</td>
<td>2.03</td>
<td>2.74</td>
</tr>
<tr>
<td>F</td>
<td>3.82</td>
<td>3.44**</td>
<td>6.45</td>
<td>6.00</td>
<td>.71</td>
</tr>
<tr>
<td>K</td>
<td>14.58</td>
<td>9.24**</td>
<td>12.55</td>
<td>9.00</td>
<td>7.03**</td>
</tr>
<tr>
<td>Hs+0.5K</td>
<td>11.27</td>
<td>.49</td>
<td>13.66</td>
<td>10.14</td>
<td>5.24**</td>
</tr>
<tr>
<td>Pd+0.4K</td>
<td>20.17</td>
<td>5.98**</td>
<td>21.00</td>
<td>17.31</td>
<td>5.54**</td>
</tr>
<tr>
<td>Pt+1.0K</td>
<td>28.64</td>
<td>4.51**</td>
<td>31.93</td>
<td>25.97</td>
<td>9.37**</td>
</tr>
<tr>
<td>Sc+1.0K</td>
<td>26.21</td>
<td>3.78**</td>
<td>31.14</td>
<td>24.14</td>
<td>6.20**</td>
</tr>
<tr>
<td>Ma+0.2K</td>
<td>20.45</td>
<td>2.99**</td>
<td>21.48</td>
<td>19.86</td>
<td>2.54**</td>
</tr>
<tr>
<td>SOC</td>
<td>9.48</td>
<td>1.69</td>
<td>13.07</td>
<td>13.21</td>
<td>.34</td>
</tr>
<tr>
<td>DEP</td>
<td>6.73</td>
<td>2.78**</td>
<td>9.90</td>
<td>9.07</td>
<td>1.37</td>
</tr>
<tr>
<td>FEM</td>
<td>20.76</td>
<td>.21</td>
<td>20.34</td>
<td>20.69</td>
<td>1.26</td>
</tr>
<tr>
<td>MOR</td>
<td>8.79</td>
<td>2.75*</td>
<td>11.17</td>
<td>10.24</td>
<td>2.07*</td>
</tr>
<tr>
<td>REL</td>
<td>5.55</td>
<td>.20</td>
<td>5.34</td>
<td>5.34</td>
<td>.00</td>
</tr>
<tr>
<td>AUT</td>
<td>6.94</td>
<td>.68</td>
<td>7.28</td>
<td>7.83</td>
<td>1.29</td>
</tr>
<tr>
<td>PSY</td>
<td>7.42</td>
<td>3.93**</td>
<td>11.10</td>
<td>10.69</td>
<td>.65</td>
</tr>
<tr>
<td>ORG</td>
<td>3.33</td>
<td>4.22**</td>
<td>7.14</td>
<td>5.17</td>
<td>3.36**</td>
</tr>
<tr>
<td>FAM</td>
<td>4.70</td>
<td>1.04</td>
<td>6.03</td>
<td>5.28</td>
<td>2.15*</td>
</tr>
<tr>
<td>HOS</td>
<td>7.88</td>
<td>.59</td>
<td>10.07</td>
<td>10.10</td>
<td>.05</td>
</tr>
<tr>
<td>PHO</td>
<td>7.48</td>
<td>4.62**</td>
<td>9.34</td>
<td>7.79</td>
<td>3.38**</td>
</tr>
<tr>
<td>HYP</td>
<td>15.52</td>
<td>.21</td>
<td>15.14</td>
<td>16.03</td>
<td>2.84**</td>
</tr>
<tr>
<td>HEA</td>
<td>3.30</td>
<td>3.86**</td>
<td>6.28</td>
<td>4.72</td>
<td>4.16**</td>
</tr>
</tbody>
</table>

*p < .05
**p < .01
booklet and computer administrations in both groups were Hs, Pd, Pa, Pt, Sc, L, and K among the basic scales and MOR, ORG, PHO, and HEA among the Wiggins scales. Scales which did not change significantly for either group were the basic Mf and Ma scales and the Wiggins SOC, FEM, REL, AUT, and HOS scales. Eight scales were significant for only one group; three of these significant differences were in the C/B group and five in the B/C group.

Equivalent Validity

The comparisons in the prior sections tend to emphasize the differences between the booklet and computer profiles. Such differences, although statistically significant, were not large in terms of absolute score change.

Since the primary objective of this study was to determine the equivalence-validity of a computer administration of the MMPI compared to a booklet form, test-retest correlations were calculated between the computer and booklet scores for each scale. These correlations were computed separately for each group as well as the total sample. These correlations are presented in Table 3.

All of the test-retest coefficients were significant beyond the .01 level and range from a low of .47 to a high of .95 for the C/B group, a low of .42 to a high of .93 for the B/C group, and a low of .45 to a high of .93 for the total sample.

Effects of Mode and Order of Administration on State Anxiety

A five-item STAI A-State scale was administered both before and after each test administration. An overall analysis of variance was performed on these data with groups, mode of administration, and pre-post as the independent variables and the A-State scores as the dependent variable. The triple Groups x Mode x Pre-Post interaction was significant beyond the .001 level ($F = 26.99; df = 1/168$). The nature of this interaction can be seen in Figure 4.
<table>
<thead>
<tr>
<th>MMPI Scale</th>
<th>C/B Group</th>
<th>B/C Group</th>
<th>Both Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha</td>
<td>.68</td>
<td>.76</td>
<td>.63</td>
</tr>
<tr>
<td>D</td>
<td>.73</td>
<td>.85</td>
<td>.77</td>
</tr>
<tr>
<td>Hy</td>
<td>.57</td>
<td>.73</td>
<td>.52</td>
</tr>
<tr>
<td>Pd</td>
<td>.88</td>
<td>.76</td>
<td>.81</td>
</tr>
<tr>
<td>Mf</td>
<td>.80</td>
<td>.73</td>
<td>.76</td>
</tr>
<tr>
<td>Pa</td>
<td>.47</td>
<td>.42</td>
<td>.45</td>
</tr>
<tr>
<td>Pt</td>
<td>.87</td>
<td>.92</td>
<td>.85</td>
</tr>
<tr>
<td>Sc</td>
<td>.91</td>
<td>.83</td>
<td>.80</td>
</tr>
<tr>
<td>Ma</td>
<td>.85</td>
<td>.73</td>
<td>.80</td>
</tr>
<tr>
<td>Si</td>
<td>.80</td>
<td>.90</td>
<td>.83</td>
</tr>
<tr>
<td>L</td>
<td>.83</td>
<td>.66</td>
<td>.75</td>
</tr>
<tr>
<td>F</td>
<td>.89</td>
<td>.67</td>
<td>.75</td>
</tr>
<tr>
<td>K</td>
<td>.80</td>
<td>.72</td>
<td>.77</td>
</tr>
<tr>
<td>Hs+0.5K</td>
<td>.51</td>
<td>.68</td>
<td>.54</td>
</tr>
<tr>
<td>Pd+0.4K</td>
<td>.83</td>
<td>.68</td>
<td>.75</td>
</tr>
<tr>
<td>Pt+1.0K</td>
<td>.79</td>
<td>.86</td>
<td>.78</td>
</tr>
<tr>
<td>Sc+1.0K</td>
<td>.82</td>
<td>.78</td>
<td>.75</td>
</tr>
<tr>
<td>Ma+0.2K</td>
<td>.84</td>
<td>.65</td>
<td>.76</td>
</tr>
<tr>
<td>SOC</td>
<td>.84</td>
<td>.93</td>
<td>.89</td>
</tr>
<tr>
<td>DEP</td>
<td>.83</td>
<td>.83</td>
<td>.81</td>
</tr>
<tr>
<td>FEM</td>
<td>.83</td>
<td>.82</td>
<td>.82</td>
</tr>
<tr>
<td>MOR</td>
<td>.92</td>
<td>.87</td>
<td>.88</td>
</tr>
<tr>
<td>REL</td>
<td>.95</td>
<td>.93</td>
<td>.94</td>
</tr>
<tr>
<td>AUT</td>
<td>.85</td>
<td>.85</td>
<td>.85</td>
</tr>
<tr>
<td>PSY</td>
<td>.84</td>
<td>.83</td>
<td>.81</td>
</tr>
<tr>
<td>ORG</td>
<td>.79</td>
<td>.75</td>
<td>.67</td>
</tr>
<tr>
<td>FAM</td>
<td>.93</td>
<td>.86</td>
<td>.88</td>
</tr>
<tr>
<td>HOS</td>
<td>.81</td>
<td>.74</td>
<td>.77</td>
</tr>
<tr>
<td>PHO</td>
<td>.88</td>
<td>.86</td>
<td>.81</td>
</tr>
<tr>
<td>HYP</td>
<td>.82</td>
<td>.81</td>
<td>.80</td>
</tr>
<tr>
<td>HEA</td>
<td>.73</td>
<td>.85</td>
<td>.73</td>
</tr>
</tbody>
</table>
Figure 4.—Mean STAI A-State scores for each group, both before and after the booklet and computer administrations.
Subsequent analyses indicated that the decrease in state anxiety scores during the computer administration was statistically significant beyond the .01 level for both groups, while the change during the booklet administration was non-significant for each group. Further, it will be noted that the decrease in anxiety scores was much greater for the C/B group than for the B/C group.

Correlated t-tests on the initial pretest scores for the computer and booklet administration revealed statistically significant initial differences (beyond the .01 level) for each group. There were, however, no significant differences between the booklet and computer anxiety scores at posttest A-State measurement.

Mode of Administration Preference

In order to study the subjective preference for mode of administration, the subjects were asked to indicate which version of the MMPI they preferred after having completed both versions. For the C/B group (which answered the question after completing the booklet version), 15 students preferred the computer version and 14 preferred the booklet version. For the B/C group (which answered the question after completing the computer version), 20 preferred the computer and 14 preferred the booklet. Overall, therefore, 35 students preferred the computer administration to 28 for the booklet. However, these differences in preference were not significant ($\chi^2 = .10; \text{df} = 1; p = .75$).

Discussion

Since regression towards the mean has often been observed upon MMPI retesting (Dahlstrom & Welsh, 1960), the two groups were given the booklet and computer administrations in counter-balanced order. However, the results in the present study do not consistently reveal such regression toward the mean. While the computer profile is generally lower for the B/C group, the
booklet profile is not consistently lower than the computer profile for the C/B group.

Much of the between-group variance seems to be attributable to the relatively higher scores on the booklet administration for the B/C group. It is also of some interest to note that although the booklet scores for the B/C group were somewhat elevated over their computer scores on the basic scales, the profiles were quite similar and the test-retest coefficients were consequently rather high in spite of the absolute score differences. No consistent explanation for these results is immediately apparent. Likewise, the anxiety data indicate that the B/C group, for some reason, was a more state-anxious group initially than was the C/B group. However, the data do not demonstrate any consistent scale bias as a result of computer administrations of the MMPI.

Although a number of scales showed significant differences between the computer and booklet administration for the same group, the differences were often not large (less than 2 score points). The test-retest coefficients were as high as those reported for comparisons between the booklet and card form of the MMPI with a one-week interval (e.g., Cottle, 1950; Gilliland & Colgin, 1951; MacDonald, 1952). The median scale test-retest coefficient in those studies was .76, .67, and .72. The values also are in line with one-week test-retest coefficients for the booklet alone; the median coefficient in a study by Cofer, Chance, and Judson (1949) was .68, and .81 in a study by Windle (1955).

The finding that the computer administrations to the two groups were not significantly different as were the booklet administrations at least implies that computer administration of personality tests results in more reliable measurement. Perhaps this is due to removal of such systematic sources of variance as administrator personality.
The findings with respect to the anxiety data suggest that the first administration of the test is met with more anxiety than is the second. This finding supports a similar interpretation advanced by Dahlstrom and Welsh (1960) to explain, at least in part, the regression towards the mean effect noted on retesting. In this study only the B/C group (highest A-State) showed regression toward the mean. It is also apparent that, compared to the booklet version, the computer initially produces rather high anxiety levels. By the end of the test, however, no differences in anxiety level between the two modes was found.

The fact that the computer profiles were not more "deviant" than the booklet profiles suggests that perhaps this initial anxiety level is not maintained throughout the test but quickly dissipates once the subject is comfortable responding to the computer; this explanation is further supported by subjective reports which indicated that no difference in preferences existed towards the two modes of administration. The A-State results are in contrast to Hedl et al. (1971), in which high levels of A-State were maintained throughout a computerized intelligence test.

While the data reported here must be regarded as preliminary, it appears that administration of a computerized MMPI is at least as valid as administration via the booklet version. Further, computerized administration offers additional conveniences in terms of immediate on-line scoring and interpretation.
References

DISTRIBUTION LIST

NAVY

4 Director, Personnel and Training Research Programs
Office of Naval Research
Arlington, VA 22217 (All)

1 Director
ONR Branch Office
495 Summer Street
Boston, MA 02210 (All)

1 Director
ONR Branch Office
1030 East Greet Street
Pasadena, CA 91101 (All)

1 Director
ONR Branch Office
536 South Clark Street
Chicago, IL 60605 (A11)

1 Commander
Operational Test and Evaluation Force
U.S. Naval Base
Norfolk, VA 23511 (1345)

6 Director
Naval Research Laboratory
Code 2627
Washington, DC 20390 (All)

12 Defense Documentation Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, VA 22314 (All)

1 Chairman
Behavioral Science Department
Naval Command and Management Division
U.S. Naval Academy
Luce Hall
Annapolis, MD 21402 (A11)

1 Chief of Naval Air Training
Code 017
Naval Air Station
Pensacola, FL 32508 (A11)

1 Chief of Naval Training
Naval Air Station
Pensacola, FL 32508
ATTN: Capt. Allen E. McMichael (A11)

1 Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054 (A11)

1 Chief
Bureau of Medicine and Surgery
Code 513
Washington, DC 20390 (28)

1 Chief
Bureau of Medicine and Surgery
Research Division (Code 713)
Department of the Navy
Washington, DC 20390

1 Commandant of the Marine Corps
(Code A01M)
Washington, DC 20380 (125)

1 Commander Naval Air Reserve
Naval Air Station
Glenview, IL 60026 (134)

1 Commander
Naval Air Systems Command
Navy Department, AIR-413C
Washington, DC 20360 (234)

1 Commanding Officer
Naval Air Technical Training Center
Jacksonville, FL 32213 (4)

1 Commander
Submarine Development Group Two
Fleet Post Office
New York, NY 09501 (A11)

1 Commanding Officer
Naval Personnel and Training Research Laboratory
San Diego, CA 92152 (A11)
1 Commanding Officer
Service School Command
U. S. Naval Training Center
San Diego, CA 92133
ATTN: Code 303 (34)

1 Head, Personnel Measurement Staff
Capital Area Personnel Service Office
Ballston Tower #2, Room 1204
801 N. Randolph Street
Arlington, VA 22203 (All)

1 Program Coordinator
Bureau of Medicine and Surgery (Code 71G)
Department of the Navy
Washington, DC 20390 (All)

1 Research Director, Code 06
Research and Evaluation Department
U. S. Naval Examinig Center
Building 2711 - Green Bay Area
Great Lakes, IL 60088
ATTN: C. S. Winiewicz (All)

1 Technical Director
Naval Personnel Research and Development Laboratory
Washington Navy Yard
Building 200
Washington, DC 20390 (All)

1 Technical Director
Personnel Research Division
Bureau of Naval Personnel
Washington, DC 20370 (All)

1 Technical Library (Pers-11B)
Bureau of Naval Personnel
Department of the Navy
Washington, DC (All)

1 Technical Library
Naval Ship Systems Command
National Center
Building 3 Room 3
S-08
Washington, DC 20360 (All)

1 Technical Reference Library
Naval Medical Research Institute
National Naval Medical Center
Bethesda, MD 20014 (All)

1 Behavioral Sciences Department
Naval Medical Research Institute
National Naval Medical Center
Bethesda, MD 20014 (4)

1 COL George Caridakis
Director, Office of Manpower Utilization
Headquarters, Marine Corps (AQ1H)
MCB Quantico, VA 22134 (All)

1 Special Assistant for Research and Studies
OASN (M&RA)
The Pentagon, Room 4E794
Washington, DC 20350 (All)

1 Mr. George N. Graine
Naval Ship Systems Command (SHIPS 03H)
Department of the Navy
Washington, DC 20360 (All)

1 CDR Richard L. Martin, USN
COMFAIRMIRAMAR F-14
NAS Miramar, CA 92145 (All)

1 Mr. Lee Miller (AIR 413E)
Naval Air Systems Command
5600 Columbia Pike
Falls Church, VA 22042 (1245)

1 Dr. James J. Regan
Code 55
Naval Training Device Center
Orlando, FL 32813 (All)

1 Dr. A. L. Slafkosky
Scientific Advisor (Code Ax)
Commandant of the Marine Corps
Washington, DC 20390 (All)
1 LCDR Charles J. Theisen, Jr., MSC, USN
Naval Air Development Center
Warminster, PA 18974 (All)

1 Mr. Edmund Fuchs
BESRL
Commonwealth Building, Room 239
1320 Wilson Boulevard
Arlington, VA 22209 (All)

1 ARMY

1 Behavioral Sciences Division
Office of Chief of Research and Development
Department of the Army
Washington, DC 20310 (All)

1 U.S. Army Behavior and Systems Research Laboratory
Roselyn Commonwealth Building,
Room 239
1300 Wilson Boulevard
Arlington, VA 22209 (All)

1 Director of Research
U.S. Army Armor Human Research Unit
ATTN: Library
Building 2422 Morade Street
Fort Knox, KY 40121 (All)

1 COMMANDANT
U.S. Army Adjutant General School
Fort Benjamin Harrison, IN 46216
ATTN: ATSAG-EA (All)

1 Commanding Officer
ATTN: LTC Montgomery
USADC - PASA
Ft. Benjamin Harrison, IN 46249 (All)

1 Director
Behavioral Sciences Laboratory
U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760 (All)

1 Commandant
United States Army Infantry School
ATTN: ATSIN-H
Fort Benning, GA 31905 (All)

1 Army Motivation and Training Laboratory
Room 239
Commonwealth Building
1300 Wilson Boulevard
Arlington, VA 22209 (All)

1 AIR FORCE

1 AFHRL (TR/Dr. G. A. Eckstrand)
Wright-Patterson Air Force Base
Ohio 45433 (1345)

1 AFHRL (TRT/Dr. Ross L. Morgan)
Wright-Patterson Air Force Base
Ohio 45433 (14)

1 AFHRL/MD
701 Prince Street
Room 200
Alexandria, VA 22314 (All)

1 AFOSR (NL)
1400 Wilson Boulevard
Arlington, VA 22209 (All)

1 Commandant
USAF School of Aerospace Medicine
ATTN: Aeromedical Library (SCL-4)
Brooks AFB, TX 78235 (All)

1 Personnel Research Division
AFHRL
Lackland Air Force Base
San Antonio, TX 78236 (All)

1 Headquarters, U.S. Air Force
Chief, Personnel Research and Analysis Division (AF/DPXY)
Washington, DC 20330 (All)

1 Research and Analysis Division
AF/DPXYR Room 4C200
Washington, DC 20330 (All)

1 Headquarters Electronic Systems Division
ATTN: Dr. Sylvia R. Mayer/MCIT
LG Hanscom Field
Bedford, MA 01730 (34)

1 CAPT Jack Thorpe USAF
Dept. of Psychology
Bowling Green State University
Bowling Green, OH 43403 (124)
<table>
<thead>
<tr>
<th>Category</th>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
<th>Phone</th>
<th>Country</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOD</td>
<td>Mr. William J. Stormer</td>
<td>DOD Computer Institute</td>
<td>Washington Yard</td>
<td>DC</td>
<td>20390</td>
<td>(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building 175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mr. Joseph J. Cowan, Chief</td>
<td>Psychological Research Branch (P-1)</td>
<td>U.S. Coast Guard</td>
<td>Washington, DC 20590</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 Seventh Street, SW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER GOVERNMENT</td>
<td>Dr. Alvin E. Goins, Chief</td>
<td>Personality and Cognition Research Section</td>
<td>National Institute</td>
<td>Rockville, MD 20852</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behavioral Sciences Research Branch</td>
<td>of Mental Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5600 Fishers Lane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Andrew R. Molnar</td>
<td>Computer Innovation in Education Section</td>
<td>National Science</td>
<td>Washington, DC 20550</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Office of Computing Activities</td>
<td>Foundation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td>Dr. Scarvia Anderson</td>
<td>Executive Director for Special Dev.</td>
<td>Educational Testing Service</td>
<td>Princeton, NJ 08540</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Psychology</td>
<td>The Open University</td>
<td>Waltontea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walonteale, BLETCHLEY</td>
<td>Bucks, ENGLAND</td>
<td></td>
<td></td>
<td>1234</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Richard C. Atkinson</td>
<td>Department of Psychology</td>
<td>Stanford University</td>
<td>Stanford, CA 94305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stanford, CA 94305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Bernard M. Bass</td>
<td>University of Rochester</td>
<td>Management Research Center</td>
<td>Rochester, NY 14627</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professor Mats Bjorkman</td>
<td>University of Umea</td>
<td>Department of Psychology</td>
<td>Radhuseplanaden 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-902 47 UMEA/SWEDEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. David G. Bowers</td>
<td>Institute for Social Research</td>
<td>University of Michigan</td>
<td>Ann Arbor, MI 48106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mr. H. Dean Brown</td>
<td>Stanford Research Institute</td>
<td>333 Ravenswood Avenue</td>
<td>Menlo Park, CA 94025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Jaime Carbonell</td>
<td>Bolt Beranek and Newman</td>
<td>50 Moulton Street</td>
<td>Cambridge, MA 02138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Kenneth E. Clark</td>
<td>University of Rochester</td>
<td>College of Arts and Sciences</td>
<td>River Campus Station</td>
<td>Rochester, NY 14627</td>
<td></td>
<td></td>
<td>(A11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERIC</td>
<td>Processing and Reference Facility</td>
<td>4833 Rugby Avenue</td>
<td>Bethesda, MD 20014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Victor Fields</td>
<td>Department of Psychology</td>
<td>Montgomery College</td>
<td>Rockville, MD 20850</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Robert Glaser</td>
<td>Learning Research and Development Center</td>
<td>University of Pittsburgh</td>
<td>Pittsburgh, PA 15213</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Albert S. Glickman</td>
<td>American Institutes for Research</td>
<td>8556 Sixteenth Street</td>
<td>Silver Spring, MD 20910</td>
<td></td>
<td></td>
<td></td>
<td>(A11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Bert Green</td>
<td>Department of Psychology</td>
<td>Johns Hopkins University</td>
<td>Baltimore, MD 21218</td>
<td></td>
<td></td>
<td></td>
<td>(124)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Duncan N. Hansen</td>
<td>Center for Computer-Assisted Instruction</td>
<td>Florida State University</td>
<td>Tallahassee, FL 32306</td>
<td></td>
<td></td>
<td></td>
<td>(14)</td>
</tr>
</tbody>
</table>
1 Dr. M. D. Havron
Human Sciences Research, Inc.
Westgate Industrial Park
7710 Old Springhouse Road
McLean, VA 22101 (A11)

1 Human Resources Research Organization
Division #3
Post Office Box 5787
Presidio of Monterey, CA 93940 (A11)

1 Human Resources Research Organization
Division #4, Infantry
Post Office Box 2086
Fort Benning, GA 31905 (A11)

1 Human Resources Research Organization
Division #5, Air Defense
Post Office Box 6057
Fort Bliss, TX 79916 (1234)

1 Library
HumRRO Division Number 6
P. O. Box 428
Fort Rucker, AL 36360 (A11)

1 Dr. Lawrence B. Johnson
Lawrence Johnson and Associates, Inc.
2001 "S" Street, NW
Suite 502
Washington, DC 20009 (2345)

1 Dr. Norman J. Johnson
Associate Professor of Social Policy
School of Urban and Public Affairs
Carnegie-Mellon University
Pittsburgh, PA 15213 (A11)

1 Dr. Roger A Kaufman
Graduate School of Human Behavior
U.S. International University
8665 E. Pomerada Rd (A11)

1 Dr. E. J. McCormick
Department of Psychological Sciences
Purdue University
Lafayette, IN 47907 (1234)

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
Santa Barbara Research Park
6780 Cortona Drive
Goleta, CA 93017 (A11)

1 Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, VA 22207 (A11)

1 Dr. Robert D. Pritchard
Assistant Professor of Psychology
Purdue University
Lafayette, IN 47907 (1234)

1 Dr. Diane M. Ramsey-Klee
R-K Research & System Design
3947 Ridgmont Drive
Malibu, CA 90265 (1234)

1 Dr. Joseph W. Rigney
Behavioral Technology Laboratories
University of Southern California
3717 South Grand
Los Angeles, CA 90007 (A11)

1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850 (1245)

1 Dr. George E. Rowland
Rowland and Company, Inc.
Post Office Box 61
Haddonfield, NJ 08033 (1234)

1 Dr. Benjamin Schneider
Department of Psychology
University of Maryland
College Park, MD 20742 (A11)

1 Dr. Robert J. Seidel
Human Resources Research Organization
300 N. Washington Street
Alexandria, VA 22314 (4)

1 Dr. Arthur I. Siegel
Applied Psychological Services
Science Center
404 East Lancaster Avenue
Wayne, PA 19087 (A11)

1 Dr. Henry Solomon
George Washington University
Department of Economics
Washington, DC 20006 (A11)

1 Dr. Benton J. Underwood
Department of Psychology
Northwestern University
Evanston, IL 60201 (4)

1 Mr. C. R. Vest
General Electric Co.
6225 Nelway Drive
McLean, VA 22101 (34)