Part of an international study of the nature and extent of childhood mortality in geographically, socioeconomically and culturally disparate populations, this report focuses on (1) an investigation into all deaths of children under 5 years of age, and (2) a probability sample of live children within the same northern California area during an 18-month period. For the Mortality Component, data are provided on mortality rates, description of the population, birth history of the deceased infants and children, prenatal care, circumstances of death, causes of death, and Sudden Infant Death. In the Probability Sample of Live Children, emphasis is on descriptions of both mothers of children under 5 years of age and children under 5 years of age. Major recommendations are offered for state and local health departments assuming responsibility for the stimulation, planning, and conduct of community-wide research on prenatal, infant, and childhood mortality on an individual case basis; and for international collaborative studies. Specific suggestions are made regarding data recording methods, health care delivery systems, methods of care for high-risk newborns, studies of Sudden Infant Death, childhood accidents, maternal education, and immunization programs. (LH)
Final Report
Inter-American Investigation of Mortality in Childhood - California Study

REPORT

OF

STUDY OF INFANT AND CHILDHOOD MORTALITY

University of California School of Public Health, Berkeley
Maternal and Child Health Program

June 1972
University of California School of Public Health, Berkeley
Maternal and Child Health Program

THE STUDY STAFF

Principal Investigators: Helen M. Wallace, M.D., M.P.H.
Ira W. Gabrielson, M.D., M.P.H.

Study Directors:
Ethel Barnoon, M.D., M.P.H.
Fischel Coodin, M.D., C.M.

Study Staff:
Robert Sholtz, M.S.
Sharon Chew
Dale Glaser, B.A.
Lorraine Alexander
Madeline Thresh
Afsaneh Mahamedi
Beverly Cutler

Faculty:
Samuel Dooley, M.D.
Victor Eisner, M.D., M.P.H.
Edwin Gold, M.D.
Hyman Goldstein, Ph.D.
Allan Oglesby, M.D., M.P.H.
Wiktoria Winnicka, M.D.
TABLE OF CONTENTS

Chapter I: Introduction ... 1-5
Chapter II: Methodology ... 6-11
Chapter III: Mortality Component 12-84
 Mortality Rates
 Description of Mortality Study Population
 Birth History of Deceased Children
 Low Birth Weight Among Deceased Infants and Children
 Prenatal Care
 Circumstances of Death
 Causes of Death
 International Classification
 Butler Classification
 Sudden Infant Death
 Summary
Chapter IV: Probability Sample of Live Children 85-113
 Description of Study Sample
 Mothers of Children Under 5 Years of Age
 Children Under 5 Years of Age
 Summary
Chapter V: Limitations of Study 114-117
Chapter VI: Summary and Recommendations 118-124
References .. 125
Appendix ..
Inter-American Investigation of Mortality in Childhood
California Study

Chapter I: Introduction

In 1967, the Pan American Health Organization published *Patterns of Urban Mortality,* the final results of an "Inter-American Investigation of Mortality." The report delineated causes of mortality among adults in twelve cities in the Americas during a two-year period. The main objective of the study was the elucidation of geographic and cultural differences in the epidemiology of disease to "contribute to the health and social well being" of the countries studied and to serve as a foundation for future research. One of the recommendations of the study was that a similar project be developed for the study of infant and childhood mortality. Consequently, a working group was formed in October 1966 to plan the development of an Inter-American Investigation of Mortality in Childhood.

Following a testing period of one year, the research program was initiated by the Pan American Health Organization to include fifteen projects in ten countries. The stated goals of this Childhood Mortality Study were clearly defined. The primary objective, as in the Adult Mortality Study, was to determine, accurately and comprehensively, the nature and extent of childhood mortality in geographically, socioeconomically and culturally disparate populations. Additional objectives, as defined by the study group, were:

-- To evaluate the effects of nutritional, sociological, and environmental factors on mortality

-- To compare the underlying and associated causes of death

-- To study the interrelationships of infectious diseases, nutritional deficiency states and socioeconomic factors
To analyze differences in environment in children who die and those who live.

To provide substantive material which may contribute to the improvement of maternal and child health programs and education in participating countries.

The study was a collaborative one with each project accumulating data and forwarding it to the Pan American Health Organization headquarters in Washington, D.C. for analysis and future publication. Study results were to be published in a unified report. However, individual projects were free to further tabulate and analyze data to satisfy particular local needs and interests.

The United States' one participating project is located in the San Francisco Bay Area of California. The study, supported by the federal Maternal and Child Health Service, Rockville, Maryland, was conducted by the University of California School of Public Health, Berkeley, Maternal and Child Health Program. Canada has a study in Sherbrooke, Quebec, and Jamaica one in Kingston. The other twelve projects are located in Latin America: Argentina, Bolivia, Brazil, Chile, Colombia, El Salvador, and Mexico.

The Pan American Health Organization Investigation of Mortality goals and objectives bear particular relevance to the health problems of the United States today, despite some differences in emphasis between the highly industrialized technology of the United States and the developing economy of the Latin American nations. In Latin American countries, mortality in early childhood is responsible for a high proportion of total deaths. The reduction of this mortality by 50 percent is one of the stated goals of the Alliance for Progress. Comparing Inter-American mortality rates in 1965, the infant death rates varied from 105.1 per 1,000 live births in Chile to 24.7 in the United States; the mortality rate for children 1 to 4 years of age varied from 26.9
per 1,000 population in Guatemala to 0.9 in the United States; deaths under 5 years of age accounted for 49 percent of all deaths in Guatemala in contrast to 6 percent in the United States. However, from the 1950's into the middle 1960's, the infant mortality rate of the United States had reached a plateau. In 1967, 1968, and 1969, despite an additional decrease, our infant mortality rate of 24.2 per 1,000 live births placed us fourteenth among the nations of the world. However, the infant mortality rate in California in 1968, 18.7 per 1,000 live births, was considerably better than that of the nation as a whole and compared with the tenth ranked United Kingdom. Deaths during the neonatal period contribute heavily to the persistently unsatisfactory mortality rate in the United States: approximately 72 percent of all infant deaths occur during the first four weeks of life. Newborns dying during the first 24 hours of life comprise 41 percent of all infant deaths. Furthermore, low birth weight infants, that is, babies weighing 2500 grams or less at birth, had a neonatal mortality rate of 174.0 per 1,000 live births compared to 7.4 for all other infants; low birth weight infants accounted for two-thirds of all neonatal deaths.

Socioeconomic status differentially affects pregnancy outcome and infant mortality, for example, the mortality rate for non-Whites is more than double that for Whites in the postneonatal period. It has been estimated that 30 percent of the infant deaths are attributable to identifiable environmental factors, many of which reflect the adequacy - or inadequacy - of the current health care system. The identification of high risk groups and provision of special services for them have become a primary concern of the federal government and health professionals. A closing of the gap between high and low risk groups, accompanied by even minor improvements in rates among the low risk groups, would result in a 10 percent reduction of the overall infant mortality rate. The Maternity and Infant Care Projects, under Title V of the Social Security Act, represent such an
attempt by the federal government to identify and care for the high risk mother and her infant.

Variations in morbidity and mortality among different population segments continue throughout the preschool period. For example, the mortality rate among non-White children in 1965, age 1 to 4, was 1.6 per 1,000, that among White children 0.8 per 1,000. Furthermore, the pattern of the leading causes of death among non-White children tends to resemble that of the White children of a decade earlier.

It is also a well known fact that health care services show tremendous variation in quality and accessibility. The Children and Yough Projects, funded by Title V of the Social Security Act, are an attempt to provide higher quality comprehensive care to low income groups of children and youth.

The University of California School of Public Health, Berkeley, Mortality Study was therefore undertaken with the following additional objectives:

-- To describe the causes and circumstances surrounding fatal illnesses of children under age 5
-- To profile the socio-cultural characteristics and family composition of a representative population sample to better understand the target population to which health and welfare services are directed
-- To examine the accuracy and completeness of vital records
-- To elucidate community needs in the field of maternal and child health programs
-- To identify high risk groups among infants and children
-- To examine patterns of health care within population subgroups.

The San Francisco Bay Area, in which our study is based, is located on the Pacific Coast of Northern California. The climate is moderate with temperatures averaging 50° to 60° throughout the year. The area includes two large cities, San Francisco and Oakland, both important commercial
centers and seaports. The population is heterogeneous, both ethnically and socioeconomically. San Francisco, for example, has the largest Chinese community outside Asia. Chicanos, or Mexican-Americans, and Japanese-Americans are also well represented. Non-Black minority groups account for 15.2 percent of the population and Blacks 13.4 percent. The 1970 total population of the San Francisco - Oakland Bay Area was 3,446,400.

The Bay Area is comprised of six autonomous counties, San Francisco, Alameda, Contra Costa, Marin, San Mateo, and Solano, to form the San Francisco - Oakland Standard Metropolitan Statistical Area (Appendix 1). Each county is self-administered, having an independent government and health department.
Chapter II: Methodology

The Inter-American Investigation of Mortality in Childhood in the United States is composed of two main components: the Mortality Component, an investigation into all deaths of children under 5 years of age within the study area during a one-year period (June 1, 1969 - May 30, 1970), and the Live Child Component, a Probability Sample of Live Children within the same area during an eighteen month period, (June 1, 1969 - November 30, 1970).

The study area is entirely within the San Francisco - Oakland Standard Metropolitan Statistical Area and includes all of San Francisco County and the urban and more heavily populated suburban areas of three surrounding counties, San Mateo, Contra Costa, and Alameda. The total population covered by the study area is 2,751,000, dispersed over a 2,625 square mile area.

Mortality Study

The Childhood Mortality Component of the Inter-American Investigation involves the accumulation of data on all deaths of children under 5 years of age within the designated study area and time period (June 1, 1969 - May 30, 1970). Particular emphasis is placed on the social and biologic determinants of disease.

The University of California, Berkeley, Mortality Study was conducted by the Maternal and Child Health Program in the School of Public Health. Faculty members of the MCH Program served as staff members and consultants to the study. The study staff consisted of two Co-Principal Collaborators, who were faculty members of the Program, a Study Director, a Statistician, a secretary, a Statistical Clerk, and two Survey Workers.

In the University of California Project, county health departments were involved in the provision of birth and death certificates to the study. The
study staff met with health department personnel from each of the four participating counties, discussed the study with them, and made arrangements with them to provide the study with the necessary vital statistics. Ascertainty of cases was based on receipt of death certificates from each of these four county health departments. Alameda, Contra Costa, and San Mateo County Health Departments kept log books and forwarded relevant death certificates to the study office monthly, that is, the deaths that were of children under 5 years of age within the designated study area. The State of California Department of Health furnished a biannual listing of all deaths within the state by county name, and age at death; these listings were checked against death certificates received in the study office. Missing certificates were obtained and checked for admission into the study. Alameda County similarly publishes a biannual listing which served as an additional check for missing certificates. Arrangements with the San Francisco County Health Department were different: visits were made to the County Office of Vital Statistics every two months. Registers of deaths were checked and relevant death certificates obtained.

Upon receipt in the study office, death certificates were logged in a book, assigned a number and checked for eligibility into the Mortality Study by the study secretary. The address was checked to determine if it fell within the census tracts included in the study area. Date of birth and date of death were checked: the child had to be under 5 years of age at time of death and to have died within the study time period, June 1, 1969, to May 30, 1970, to be included in the study. Case numbers were assigned to deaths admitted into the study, their death certificates were checked for clerical errors, and a questionnaire containing information about the case was begun. Cases were then filed according to place of death. When approximately eight or ten cases had accumulated from the same hospital or geographic
area, a member of the study staff was assigned the collection of data for those cases. These staff members functioned as survey workers and statistical clerks: they made arrangements with hospitals, health departments, coroner's offices, and other health facilities, and abstracted information requested by the Mortality Study questionnaire.

The questionnaire used in the Mortality Component of the Inter-American Investigation of Mortality in Childhood was one drawn up by the Pan American Health Organization and modified by the University of California School of Public Health, Berkeley, to suit local needs and interests. Information contained in this questionnaire, known as the Mortality Questionnaire, fell into five broad categories: demographic data; reproductive history of mother, including course of pregnancy, labor, and delivery with study child; nutritional status of child; birth and medical history and events surrounding terminal illness; and an analysis of the cause of death. The questionnaire and a listing of variables coded from it are described in Appendices 2 and 3. Questions regarding accuracy of the death certificate and the preventability and responsibility for the death were added to the original P.A.H.O. form.

After all available data were abstracted from relevant records, the completed questionnaires were reviewed by the project director, a pediatrician, for completeness of data. He returned cases needing more information to the abstracters, who then attempted to obtain the additional information. In many cases, he contacted the child's physicians and discussed the case with them. In some cases, he interviewed the child's family in their home. When the case records contained as much information as was possible to obtain regarding the fatal illness and antecedent events, they were then summarized by the project director. Summaries consisted of a short case presentation. Summarized cases were evaluated at weekly conferences; these conferences were attended by pediatricians, obstetricians, pathologists, maternal and child health
division students, and other health professionals from university, county, and private hospitals. Each completed case was discussed and an underlying cause of death assigned by joint decision of the participating group. These conferences also served as teaching seminars for M.C.H. Division students. In addition, case material was made available to students for use in individual projects (Appendix 4).

The assignment of causes of death is one of the most important aspects of the study. Individual cases often carried several different diagnoses and causes of death as described separately by the clinical record, death certificate, autopsy report, and coroner's record. It was the task of this impartial group of physicians, which included a minimum of three pediatricians present, to consider all the information available and to assign as accurately as possible an underlying cause of death. The underlying cause of death is that condition which initiated the chain of events leading to death. Conditions such as "Immaturity" or "Postmaturity" or "Maceration" were used only if no underlying cause of death could be ascertained. Terminal conditions and syndromes were not considered as underlying causes of death. This procedure was evolved to insure a comprehensive detailed analysis of underlying causation of death in early childhood.

Data from the 898 deaths with assigned causes of death were coded by study staff and the code sheets sent for keypunching to the University of California, Berkeley, Computer Center. Data analysis was done by the study staff and involved the use of an I.B.M. 1130 Computer and Conversational Computer Statistical System (C.C.S.S.), a statistical program developed by Kronmal, Bender, and Mortensen, available at the School of Public Health Computer Center.
The Probability Sample of Live Children was designed to provide baseline socioeconomic, biologic, and nutritional data on a population sample within the study area and to serve as a basis for comparing children who lived with those who died.

Sampling Procedure

A sampling procedure was used to give each household in the study area a probability of approximately 1/180 of appearing in the sample. The sample was drawn from two sources: city directories and areas not included in directories. City directories covered about 60% of the study area's population. All of the remaining study area was sampled by means of census tracts. Separate procedures were devised for city directory areas and for tract areas. For city directory areas a half-open interval procedure was used to take into account households in the area but not listed. Sample pages and lines were first selected. Blocks of thirty lines transcribed from the directories starting at the sample lines: these became sample clusters. Within each cluster, interviewers went to each household.

In census tract areas a three-stage procedure was used. In the first stage primary sampling units were selected. A block map of each PSU was drawn in such a way as to give a minimum block size of 40 households. From each PSU, four blocks were selected. Within these blocks, households were selected to give the desired sampling ratio.

To minimize the natural fluctuation of urban populations, the study period was divided into one-month intervals. Samples were drawn during each month and then combined to yield the total Live Child Probability Sample.

Based on estimates from the 1960 census figures, the sample was designed to yield approximately 1,000 children under the age of 5. In fact, rather than the anticipated 8.4 percent of the population, children under 5
comprised only 7.0 percent of the study area population. Four thousand homes were canvassed: 699 children fell into the study population.

The questionnaire used in the Probability Sample of Live Children known as the Live Child Questionnaire, was drawn up by the Pan American Health Organization and modified by the Berkeley study staff to fit local conditions. Interviews of selected households were conducted by members of the University of California Survey Research Center, Berkeley. Information requested from each household falls into five broad categories: household facilities and composition (demographic data), reproductive history of mother, feeding patterns, health care, and medical history of children under 5. The questionnaire and a listing of variables coded from it are described in Annen- dices 5 and 6. Questions pertaining to local concerns, such as health insur ance and family planning practices, were added to the standard form.

Survey workers were recruited in February 1969, trained by a single individual, and began interviewing on June 1, 1969. They were closely supervised and a 10 percent call-back procedure used to check the reliability of the interviewers and the consistency of respondent's replies.

Data were coded and keypunched at the Survey Research Center. Meet- ings were held bimonthly by study staff and Center staff to monitor progress and supervise data collection.

The collection of data from the sample Live Child Study was completed in November, 1970, and covered an eighteen month period (June 1, 1969 through November 30, 1970).
CHAPTER III: MORTALITY COMPONENT

Study Population

The study area of the University of California School of Public Health, Berkeley, Childhood Mortality Project was divided up into two segments: one was comprised of San Francisco County, Study Area A, and the other of the urban and suburban portions of three surrounding counties, Alameda, Contra Costa, and San Mateo Counties, Study Area B. San Francisco County is primarily urban and has a total population of 715,674 people, 43,003 (6.0 percent) of whom are children under the age of 5. Alameda and Contra Costa Counties have a mixed rural, suburban, and urban population. The cities of Oakland and Berkeley, located in Alameda County have 117,000 and 362,000 people respectively; the city of Richmond, located in Contra Costa County has a population of 79,000. San Mateo County is primarily suburban and contains no large cities. The study population within Alameda, Contra Costa, and San Mateo Counties is 2,040,119, representing 93.2 percent of the total population in those counties. An estimated 161,575 children under the age of 5 (7.9 percent) reside in these three counties (Table 1). The population upon which the San Francisco-Oakland Bay Area component of the Inter-American Investigation of Mortality in Childhood is based is composed, therefore, of an estimated 2,755,793 people, representing 94.9 percent of the population in the four counties of Alameda, Contra Costa, San Francisco, and San Mateo. There are an estimated 204,578 children under the age of 5 in these four counties, comprising 7.4 percent of the population.
Population data for San Francisco County are taken directly from the 1970 United States Census. Figures for Alameda, Contra Costa, and San Mateo Counties are estimates based on 1970 Census material, since actual census data was not yet available at the time the study was completed. The State of California Department of Finance estimated individual census tract and total county populations prior to the 1970 Census. The proportion that each study area represented of the total county population was determined and that proportion applied to the actual total county population determined by the United States Census Bureau. Estimates for numbers of live births were obtained in a similar manner, using the numbers of live births tabulated by the State of California Department of Health for the time period June 1, 1969, to May 31, 1970.

San Francisco County had a birth rate of 15.8 per 1,000 population in 1970, and Study Area B (Alameda, Contra Costa, and San Mateo Counties) a birth rate of 16.4 per 1,000 population in 1970. Alameda County, the largest county in the study, had a birth rate of 17.0 in 1970 and thus contributed heavily to the overall birth rate of 16.2 per 1,000 population. Of the estimated 44,736 live births in the study area, 75.3 percent were White, 16.5 percent Black, and 8.2 percent Other races (Table 2). The category of Other races primarily includes Orientals, American Indians, Philippinos and Samoans.

During the one-year study period, June 1, 1969, through May 31, 1970, there were 898 deaths of children under 5 years of age within the study area. Neonates, age less than 28 days, comprised 63.5 percent (570 deaths) of these deaths; postneonates, age 28 days to 12 months, 23.7 percent (213 deaths); and preschoolers, age 1 to 4 years, 12.8 percent (115 deaths) (Table 3). It should be noted that in Table 3
as in all subsequent tables, percentages have been adjusted to add to 100.0 percent.

Mortality Rates

The infant mortality rate for the study area for 1969-70 was 17.5 per 1,000 live births. San Francisco County had a rate of 18.3 per 1,000 live births and Study Area B, 17.2 per 1,000 live births (Table 4). Alameda County had the highest rate, 18.6 per 1,000 live births and San Mateo County by far the lowest, 14.5 per 1,000 live births.

The neonatal mortality rate was 12.7 per 1,000 live births for the entire study area for 1969-70. San Francisco County had a rate of 12.9 per 1,000 live births compared to 12.7 for Study Area B. San Mateo County had the lowest rate 10.8 and Alameda County the highest 13.6 (Table 5).

The postneonatal mortality rate was 4.8 per 1,000 live births for the entire study area for 1969-70. San Francisco County had a rate of 5.4 per 1,000 live births, the highest of all four counties, compared to 4.5 per 1,000 for Study Area B. San Mateo County had the lowest postneonatal mortality rate, 3.7 per 1,000 live births (Table 6).

The mortality rate for children age 1 to 4 years in the study area was 0.7 per 1,000 population for 1969-70. San Francisco had a rate of 0.8 per 1,000 population and Study Area B 0.7 per 1,000. Contra Costa had the lowest rate, 0.5 deaths per 1,000 population and there was little variation among the other three counties (Table 7).

The Black mortality rates were significantly higher than those of the Whites among all three age groups. For example, the Black rate of 8.2 postneonatal deaths per 1,000 live births was exactly double the White rate of 4.1 deaths per 1,000 live births. Males had significantly
greater mortality rates during the first year of life due to the significantly greater neonatal mortality rate. However, sex differences in mortality rates were not significant during the preschool period (Table 8).

In summary, the mortality rates for the entire study area from June 1, 1969, through May 31, 1970, are:

Infant
- Neonatal (less than 28 days) 12.7 per 1,000 live births
- Postneonatal (28 days to 11 months) 4.8 per 1,000 live births

Preschool
- 1 to 4 years 0.7 per 1,000 population

The infant mortality rate of 17.5 per 1,000 live births for the study area compares favorably with the 1969 State of California rate of 18.3 per 1,000 live births and the 1970 National rate of 19.8 per 1,000 live births (Table 8). The postneonatal rate of 4.8 per 1,000 live births for the study area is identical to that of the State. The neonatal rate of 12.7 per 1,000 live births for the study area is lower than the State's rate of 13.6 per 1,000 live births. The neonatal mortality rate for the Nation was 14.9 per 1,000 live births, higher than the rates for both the study area and the State of California. Preschool mortality rates were similarly highest for the Nation, 0.9 per 1,000 population in 1968, and lowest for the study area, 0.7 per 1,000 population. The State preschool mortality rate was 0.8 per 1,000 population in 1969.

Other projects in the Inter-American Investigation of Mortality in Childhood report infant mortality rates for the central cities ranging from 91.5 per 1,000 live births (Recife, Brazil) to 42.7 per
Neonatal mortality rates for the 13 projects ranged from 19.1 per 1,000 live births (Medellin, Colombia) to 36.5 per 1,000 live births (San Juan, Argentina), with a median rate of 28.3 per 1,000 live births.

Mortality in preschool children, age 1 to 4 years, ranged from 1.1 per 1,000 population (San Juan, Argentina) to 10.1 per 1,000 population (Recife, Brazil) with a median of 4.4 per 1,000 population.
<table>
<thead>
<tr>
<th>County</th>
<th>Total Population</th>
<th>Female</th>
<th>Male</th>
<th>Female Study Area</th>
<th>Male Study Area</th>
<th>Total Study Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>1,073,184</td>
<td>1,010,639</td>
<td>94.2</td>
<td>8,314</td>
<td>8,069</td>
<td>17,383</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>558,389</td>
<td>532,446</td>
<td>95.4</td>
<td>4,290</td>
<td>4,236</td>
<td>8,526</td>
</tr>
<tr>
<td>San Mateo</td>
<td>556,234</td>
<td>497,034</td>
<td>89.4</td>
<td>3,901</td>
<td>3,316</td>
<td>7,217</td>
</tr>
<tr>
<td>San Francisco</td>
<td>715,674</td>
<td>715,674</td>
<td>100.0</td>
<td>4,918</td>
<td>4,723</td>
<td>9,641</td>
</tr>
<tr>
<td>Subtotal</td>
<td>2,187,087</td>
<td>2,040,119</td>
<td>93.2</td>
<td>16,505</td>
<td>16,121</td>
<td>32,626</td>
</tr>
<tr>
<td>Total</td>
<td>2,903,481</td>
<td>2,755,793</td>
<td>94.9</td>
<td>21,423</td>
<td>20,844</td>
<td>42,267</td>
</tr>
</tbody>
</table>

Table 1: Estimated Study Population by County for 1969-1970
<table>
<thead>
<tr>
<th>County</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
<th>%</th>
<th>Total Birth Rate</th>
<th>%</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>17,153</td>
<td>5.4</td>
<td></td>
<td>19.99</td>
<td>34.0</td>
<td>17.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contra Costa</td>
<td>18,407</td>
<td>4.5</td>
<td></td>
<td>15.8</td>
<td>33.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Mateo</td>
<td>7,870</td>
<td>7.4</td>
<td></td>
<td>15.8</td>
<td>15.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco</td>
<td>11,306</td>
<td>18.4</td>
<td></td>
<td>15.8</td>
<td>15.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>33,430</td>
<td></td>
<td></td>
<td>16.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Live Births Per 1,000 Population
<table>
<thead>
<tr>
<th>County</th>
<th>Neonatal <28 days</th>
<th>Postneonatal 28 days - 1 yr.</th>
<th>Preschool 1-4 yrs.</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>231, 64.0</td>
<td>85, 23.5</td>
<td>45, 12.5</td>
<td>361</td>
<td>100.0</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>106, 65.0</td>
<td>38, 23.3</td>
<td>19, 11.7</td>
<td>163</td>
<td>100.0</td>
</tr>
<tr>
<td>San Mateo</td>
<td>86, 61.4</td>
<td>29, 20.7</td>
<td>25, 17.9</td>
<td>140</td>
<td>100.0</td>
</tr>
<tr>
<td>San Francisco</td>
<td>147, 62.8</td>
<td>61, 26.1</td>
<td>26, 11.1</td>
<td>234</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>570, 63.5</td>
<td>213, 23.7</td>
<td>115, 12.8</td>
<td>898</td>
<td>100.0</td>
</tr>
<tr>
<td>Race</td>
<td>Sex</td>
<td>No.</td>
<td>Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>male</td>
<td>190</td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>female</td>
<td>128</td>
<td>15.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>male</td>
<td>127</td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>male</td>
<td>23</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>female</td>
<td>24</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Study Area A 1969-1970
Number and Rate per 1,000 Live Births by Race, Sex, and County

Table 6
<table>
<thead>
<tr>
<th>Race</th>
<th>Sex</th>
<th>County</th>
<th>No.</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Male</td>
<td>Alameda</td>
<td>50</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Counties</td>
<td>401</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study Area A</td>
<td>152</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study Area B</td>
<td>242</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combined</td>
<td>401</td>
<td>11.4</td>
</tr>
<tr>
<td>Black</td>
<td>Male</td>
<td>Alameda</td>
<td>34</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Counties</td>
<td>108</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study Area A</td>
<td>86</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study Area B</td>
<td>192</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combined</td>
<td>192</td>
<td>14.0</td>
</tr>
<tr>
<td>Other</td>
<td>Male</td>
<td>Alameda</td>
<td>5</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Counties</td>
<td>24</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study Area A</td>
<td>5</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study Area B</td>
<td>20</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combined</td>
<td>20</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Number and Rate Per 1,000 Live Births by Race, Sex, and County (Study Area in 1969-1970)
Table 6: Postneonatal Deaths

Number and Rate Per 1,000 Live Births by Race, Sex, and County in Study Area in 1969-1970

<table>
<thead>
<tr>
<th>Race</th>
<th>Sex</th>
<th>County</th>
<th>No.</th>
<th>Rate</th>
<th>No.</th>
<th>Rate</th>
<th>No.</th>
<th>Rate</th>
<th>No.</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Male</td>
<td>Alameda</td>
<td>22</td>
<td>6.4</td>
<td>77</td>
<td>4.5</td>
<td>62</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contra Costa</td>
<td>22</td>
<td>6.4</td>
<td>77</td>
<td>4.5</td>
<td>62</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Francisco (Study Area A)</td>
<td>22</td>
<td>6.4</td>
<td>77</td>
<td>4.5</td>
<td>62</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Mateo</td>
<td>22</td>
<td>6.4</td>
<td>77</td>
<td>4.5</td>
<td>62</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>Male</td>
<td>Other Counties (Study Area B)</td>
<td>22</td>
<td>6.4</td>
<td>77</td>
<td>4.5</td>
<td>62</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td>Alameda</td>
<td>22</td>
<td>6.4</td>
<td>77</td>
<td>4.5</td>
<td>62</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contra Costa</td>
<td>22</td>
<td>6.4</td>
<td>77</td>
<td>4.5</td>
<td>62</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Francisco (Study Area A)</td>
<td>22</td>
<td>6.4</td>
<td>77</td>
<td>4.5</td>
<td>62</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Mateo</td>
<td>22</td>
<td>6.4</td>
<td>77</td>
<td>4.5</td>
<td>62</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In Study Area in 1969-1970
Table 7
Preschool Deaths
Number and Rate Per 1,000 Population by Race, Sex, and County in Study Area in 1969-1970

<table>
<thead>
<tr>
<th>Race</th>
<th>Sex</th>
<th>County</th>
<th>No.</th>
<th>Rate</th>
<th>County</th>
<th>No.</th>
<th>Rate</th>
<th>County</th>
<th>No.</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>male</td>
<td>Alameda</td>
<td>23</td>
<td>0.9</td>
<td>Contra Costa</td>
<td>7</td>
<td>0.4</td>
<td>San Mateo (Study Area B)</td>
<td>13</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>female</td>
<td>Other Counties (Study Area A)</td>
<td>9</td>
<td>0.4</td>
<td>Other Counties (Study Area A)</td>
<td>8</td>
<td>0.5</td>
<td>Other Counties (Study Area A)</td>
<td>8</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>Other Counties (Study Area A)</td>
<td>32</td>
<td>0.7</td>
<td>Other Counties (Study Area A)</td>
<td>15</td>
<td>0.5</td>
<td>Other Counties (Study Area A)</td>
<td>25</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>total</td>
<td>13</td>
<td>0.8</td>
<td>Total</td>
<td>30</td>
<td>0.6</td>
<td>Total</td>
<td>11</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>male</td>
<td>4</td>
<td>0.7</td>
<td>Black</td>
<td>8</td>
<td>0.5</td>
<td>Black</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>female</td>
<td>Black</td>
<td>4</td>
<td>0.7</td>
<td>Total</td>
<td>12</td>
<td>1.0</td>
<td>Total</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>Total</td>
<td>12</td>
<td>1.0</td>
<td>Total</td>
<td>3</td>
<td>1.2</td>
<td>Total</td>
<td>17</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>male</td>
<td>5</td>
<td>0.8</td>
<td>Other</td>
<td>2</td>
<td>0.5</td>
<td>Other</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>female</td>
<td>Other</td>
<td>1</td>
<td>2.5</td>
<td>Total</td>
<td>1</td>
<td>2.4</td>
<td>Total</td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>Other</td>
<td>6</td>
<td>1.0</td>
<td>Total</td>
<td>2</td>
<td>2.8</td>
<td>Total</td>
<td>17</td>
<td>2.8</td>
</tr>
</tbody>
</table>

In Study Area in 1969-1970

Number and Rate Per 1,000 Population by Race, Sex, and County

Pre-school Deaths

Table 7
Table 8: Comparison of Infant Death Rates of the State of California, 1969 and the United States, 1970.

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonatal</td>
<td>3.9</td>
<td>4.6</td>
<td>3.4</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>21.6</td>
<td>17.9</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>14.9</td>
<td>13.2</td>
<td>14.9</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>13.8</td>
<td>19.9</td>
<td>11.2</td>
<td>12.7</td>
</tr>
<tr>
<td>Infant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>4.9</td>
<td>3.4</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>21.6</td>
<td>17.6</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>14.9</td>
<td>13.1</td>
<td>14.9</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>13.8</td>
<td>19.9</td>
<td>11.2</td>
<td>12.7</td>
</tr>
</tbody>
</table>

Source: State of California, Department of Public Health, Maternal and Child Health.

Table 9
Infant, Neonatal, and Preschool Mortality Rates in the Inter-American Investigation of Mortality in Childhood*

<table>
<thead>
<tr>
<th>Project</th>
<th>Mortality Rate</th>
<th>Mortality Rate</th>
<th>Mortality Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Infant</td>
<td>Neonatal<sup>1</sup></td>
<td>Preschool<sup>2</sup></td>
</tr>
<tr>
<td>Cali</td>
<td>53.1</td>
<td>24.0</td>
<td>6.2</td>
</tr>
<tr>
<td>Cartagena</td>
<td>48.0</td>
<td>23.2</td>
<td>4.7</td>
</tr>
<tr>
<td>Kingston</td>
<td>41.9</td>
<td>26.4</td>
<td>2.2</td>
</tr>
<tr>
<td>LaPaz</td>
<td>76.3</td>
<td>32.7</td>
<td>9.6</td>
</tr>
<tr>
<td>Medellin</td>
<td>46.3</td>
<td>19.1</td>
<td>5.9</td>
</tr>
<tr>
<td>Monterrey</td>
<td>57.7</td>
<td>25.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Recife</td>
<td>91.5</td>
<td>34.4</td>
<td>10.1</td>
</tr>
<tr>
<td>Resistencia-Chaco</td>
<td>76.0</td>
<td>30.2</td>
<td>4.4</td>
</tr>
<tr>
<td>Ribeirao Preto</td>
<td>46.9</td>
<td>30.4</td>
<td>2.4</td>
</tr>
<tr>
<td>San Juan</td>
<td>42.7</td>
<td>36.5</td>
<td>1.1</td>
</tr>
<tr>
<td>San Salvador</td>
<td>76.7</td>
<td>28.3</td>
<td>6.3</td>
</tr>
<tr>
<td>Santiago</td>
<td>50.5</td>
<td>19.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Sao Paulo</td>
<td>69.0</td>
<td>34.8</td>
<td>2.8</td>
</tr>
<tr>
<td>United States</td>
<td>17.5</td>
<td>12.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

¹ Deaths per 1,000 live births

² Deaths per 1,000 population
DESCRIPTION OF MORTALITY STUDY POPULATION

Certain demographic and reproductive characteristics of the mothers of the 898 deceased children were analyzed by the University of California School of Public Health, Berkeley, Inter-American Investigation of Mortality in order to better understand the causes of mortality in children under 5 years of age.

Maternal Age

Maternal age at the time of the birth of the study child* varied from 14 to 45 years with a mean age of 24.8 years. Mothers over 40 years of age accounted for 2.6 percent of the children, and those under 20 years of age for 20.2 percent of the children (Table 10). The mean age of Black mothers of deceased children was 23.2 years, a statistically significant difference from the mean age of White mothers of 25.2 years. All other races had a mean maternal age of 27.2 years. Mean maternal age by county is contained in Appendix 7.

Table 10
Deaths By Age of Mother At Birth of Child In Study

<table>
<thead>
<tr>
<th>Age of Mother</th>
<th>Number of Childhood Deaths</th>
<th>Percent of Total Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 to 19 years</td>
<td>181</td>
<td>20.2</td>
</tr>
<tr>
<td>20 to 24 years</td>
<td>293</td>
<td>32.6</td>
</tr>
<tr>
<td>25 to 29 years</td>
<td>216</td>
<td>24.0</td>
</tr>
<tr>
<td>30 to 34 years</td>
<td>110</td>
<td>12.2</td>
</tr>
<tr>
<td>35 to 39 years</td>
<td>41</td>
<td>4.6</td>
</tr>
<tr>
<td>40 years & over</td>
<td>23</td>
<td>2.6</td>
</tr>
<tr>
<td>unknown</td>
<td>34</td>
<td>3.8</td>
</tr>
<tr>
<td>Total</td>
<td>898</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Paternal Age

Age of fathers at time of birth of the child varied from 16 to 71 years, with a mean age of 28.2 years. Fathers under 20 years of age accounted for 7.1 percent, and those over 40 years for 7.6 percent (Table 11). The mean age of Black fathers of deceased children (26.6 years) was significantly lower than that of White fathers (28.5 years) and that of fathers of all other races (31.8 years). Mean paternal age by county is contained in Appendix 8.

Table 11
Deaths By Age of Father At Birth of Child In Study

<table>
<thead>
<tr>
<th>Age of Father</th>
<th>Number of Deaths</th>
<th>Percent of Total Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to 19 years</td>
<td>64</td>
<td>7.1</td>
</tr>
<tr>
<td>20 to 24 years</td>
<td>234</td>
<td>26.1</td>
</tr>
<tr>
<td>25 to 29 years</td>
<td>230</td>
<td>25.6</td>
</tr>
<tr>
<td>30 to 34 years</td>
<td>139</td>
<td>15.5</td>
</tr>
<tr>
<td>35 to 39 years</td>
<td>79</td>
<td>8.8</td>
</tr>
<tr>
<td>40 to 44 years</td>
<td>43</td>
<td>4.8</td>
</tr>
<tr>
<td>45 to 49 years</td>
<td>13</td>
<td>1.4</td>
</tr>
<tr>
<td>50 years & over</td>
<td>13</td>
<td>1.4</td>
</tr>
<tr>
<td>unknown</td>
<td>83</td>
<td>9.3</td>
</tr>
<tr>
<td>Total</td>
<td>898</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Maternal Marital Status

Marital status of the mothers of deceased children was divided into four categories: Married to the father of the child, Single, "Other", and Unknown. If the names of the father and the mother of the child were identical as given by the birth certificate, then maternal status was coded as Married to the father of the child. If mother's
and father's names did not match on the birth certificate, or, in those fewer instances, where no father's name was given, maternal marital status was coded as Single. Where parental names did not match but either the birth certificate or hospital records indicated that the mother was presently or previously had been married, marital status was coded as "Other". The category of "Unknown" was reserved for those cases in which a discrepancy existed between information given by birth certificate and hospital or other medical records. There were 96 such cases (10.7 percent) in which the maternal marital status could not be clearly ascertained. Only 10.7 percent of the mothers were definitively classified as Single at the birth of the child, and 75.6 percent classified as Married to the father of the child (Table 12).

Table 12
Marital Status of Mothers of Deceased Children in Study

<table>
<thead>
<tr>
<th>Marital Status</th>
<th>Number</th>
<th>Percent of Total Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Married to father of child</td>
<td>679</td>
<td>75.6</td>
</tr>
<tr>
<td>Single</td>
<td>96</td>
<td>10.7</td>
</tr>
<tr>
<td>Other</td>
<td>27</td>
<td>3.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>96</td>
<td>10.7</td>
</tr>
<tr>
<td>Total</td>
<td>898</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Birth Order

Deceased children were the firstborn in 32.1 percent of the cases. They were the fifth born or higher in 8.6 percent of the cases (Table 13). Birth orders ranged from the stated low of 1 to a high of 12, with a mean of 2.4. There was no significant differ-
ence between the mean birth order for White children (2.4) and that for Black children (2.5). Mean birth order and range of parity by county are contained in Appendix 9.

Table 13

Birth Order of Deceased Children in Study

<table>
<thead>
<tr>
<th>Birth Order</th>
<th>Number</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>288</td>
<td>32.1</td>
</tr>
<tr>
<td>2</td>
<td>246</td>
<td>27.4</td>
</tr>
<tr>
<td>3</td>
<td>163</td>
<td>18.1</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>8.6</td>
</tr>
<tr>
<td>5 & over</td>
<td>77</td>
<td>8.6</td>
</tr>
<tr>
<td>unknown</td>
<td>47</td>
<td>5.2</td>
</tr>
<tr>
<td>Total</td>
<td>898</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Father's Occupation

The following distribution of occupation of the father was found (Table 14).
Table 14
Deaths By Occupation of Fathers of Deceased Children in Study

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Number</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional</td>
<td>162</td>
<td>18.1</td>
</tr>
<tr>
<td>Skilled</td>
<td>149</td>
<td>16.6</td>
</tr>
<tr>
<td>Semiskilled</td>
<td>108</td>
<td>12.0</td>
</tr>
<tr>
<td>Unskilled</td>
<td>90</td>
<td>10.0</td>
</tr>
<tr>
<td>Military</td>
<td>77</td>
<td>8.6</td>
</tr>
<tr>
<td>Service</td>
<td>72</td>
<td>8.0</td>
</tr>
<tr>
<td>Clerical</td>
<td>56</td>
<td>6.2</td>
</tr>
<tr>
<td>Student</td>
<td>43</td>
<td>4.8</td>
</tr>
<tr>
<td>Unemployed</td>
<td>36</td>
<td>4.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>105</td>
<td>11.7</td>
</tr>
<tr>
<td>Total</td>
<td>898</td>
<td>100.0</td>
</tr>
</tbody>
</table>
BIRTH HISTORY OF DECEASED CHILDREN

Hospital of Birth

The hospitals at which the study children were born were divided into two categories: tax-supported and non-tax-supported. County, military, and university hospitals were considered as tax-supported. Private, including pre-payment plan hospitals, were classed as non-tax-supported. There were 267 children born in tax-supported hospitals, 548 in non-tax-supported institutions, and 64 born in institutions outside the study area or born out of hospital (Table 15).

Table 15

<table>
<thead>
<tr>
<th>Types of Hospitals in Which Deceased Children in Study Were Born</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-tax-supported:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-profit</td>
<td>538</td>
<td>59.9</td>
</tr>
<tr>
<td>profit</td>
<td>10</td>
<td>1.1</td>
</tr>
<tr>
<td>Tax-supported</td>
<td>267</td>
<td>29.7</td>
</tr>
<tr>
<td>Outside Study Area</td>
<td>58</td>
<td>6.5</td>
</tr>
<tr>
<td>Not in Hospital</td>
<td>6</td>
<td>0.7</td>
</tr>
<tr>
<td>Unknown</td>
<td>19</td>
<td>2.1</td>
</tr>
<tr>
<td>Total</td>
<td>898</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Initiation of Prenatal Care

The trimester during which prenatal care was initiated is listed in Table 16. Thirty-two mothers or 5.6 percent were known to have had no prenatal care. There were 19 mothers who were known to have prenatal care but the time at which such care began is unknown.
Abnormal Conditions During Pregnancy

In this study, abnormal conditions of pregnancy refer to toxemia, anemia, and antepartum hemorrhage. The category of toxemia includes all those women who were noted to have any of the following: edema and albuminuria, hypertension, or convulsions. The determination of the presence of maternal anemia or antepartum hemorrhage was based on a diagnosis carried by the hospital record, and according to the P.A.H.O. definition, was not dependent upon either hemoglobin levels or blood loss. Antepartum hemorrhage includes threatened abortion and placenta previa. Marginal sinus hemorrhages and abruptio placenta were not included in this category (Table 17). Other conditions during pregnancy about which the questionnaire specifically elicited information were Rubella, syphilis, pulmonary tuberculosis, operations, trauma, and other infectious diseases. There were few cases of each of these, a tabulation of which is contained in Appendix 10, as is a finer breakdown of the other abnormal conditions of pregnancy (Appendix 11).
Table 17

Abnormal Conditions During Pregnancy of Mother By Age At Death* of Study Child

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Neonatal</th>
<th>Postneonatal</th>
<th>Preschool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Toxemia</td>
<td>33</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Anemia</td>
<td>13</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Antepartum Hemorrhage</td>
<td>35</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

*The tabulations of different conditions within this table are not mutually exclusive, that is, the same mother may be counted under more than one condition.

Delivery, Type and Use of Medication

Information concerning the mode of delivery of the study child concerned the use of forceps, anesthesia, and sedation of the mother during labor and delivery (Table 18).

Table 18

Delivery Information on Mother By Age At Death of Child

<table>
<thead>
<tr>
<th>Mode of Delivery</th>
<th>Neonatal #</th>
<th>Neonatal %</th>
<th>Postneonatal #</th>
<th>Postneonatal %</th>
<th>Preschool #</th>
<th>Preschool %</th>
<th>Total #</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous</td>
<td>336</td>
<td>58.9</td>
<td>109</td>
<td>51.2</td>
<td>48</td>
<td>41.7</td>
<td>3</td>
<td>54.9</td>
</tr>
<tr>
<td>Forceps</td>
<td>106</td>
<td>18.6</td>
<td>47</td>
<td>22.1</td>
<td>25</td>
<td>21.7</td>
<td>178</td>
<td>19.8</td>
</tr>
<tr>
<td>Cesarean</td>
<td>78</td>
<td>13.7</td>
<td>15</td>
<td>7.0</td>
<td>5</td>
<td>4.4</td>
<td>98</td>
<td>10.9</td>
</tr>
<tr>
<td>Unknown</td>
<td>50</td>
<td>8.8</td>
<td>42</td>
<td>19.7</td>
<td>37</td>
<td>32.2</td>
<td>129</td>
<td>14.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>570</td>
<td>100.0</td>
<td>213</td>
<td>100.0</td>
<td>115</td>
<td>100.0</td>
<td>898</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Medication:

<table>
<thead>
<tr>
<th>Medication</th>
<th>Neonatal #</th>
<th>Neonatal %</th>
<th>Total #</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesia</td>
<td>356</td>
<td>41</td>
<td>498</td>
<td></td>
</tr>
<tr>
<td>Sedation</td>
<td>223</td>
<td>23</td>
<td>309</td>
<td></td>
</tr>
</tbody>
</table>
Birth Weight

As anticipated, the incidence of low birth weight infants was very high among those children subsequently dying during the first five years of life. Infants weighing 2500 grams or less at birth comprised 56.5 percent of the total 898 births. They accounted for 77.5 percent of the neonatal deaths, 24.4 percent of the postneonatal deaths and 11.3 percent of the preschool deaths. Infants weighing 1000 grams or less at birth accounted for 20.8 percent of the total 898 deaths (Table 19).

Table 19

<table>
<thead>
<tr>
<th>Birth Weight</th>
<th>Neonatal</th>
<th>Postneonatal</th>
<th>Preschool</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth Weight</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>500 gms. or less</td>
<td>31</td>
<td>5.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>501 to 1000 gms.</td>
<td>155</td>
<td>27.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1001 to 1500 gms.</td>
<td>120</td>
<td>21.1</td>
<td>10</td>
<td>4.7</td>
</tr>
<tr>
<td>1501 to 2000 gms.</td>
<td>74</td>
<td>13.0</td>
<td>15</td>
<td>7.0</td>
</tr>
<tr>
<td>2001 to 2500 gms.</td>
<td>62</td>
<td>10.9</td>
<td>27</td>
<td>12.7</td>
</tr>
<tr>
<td>Total 2500 gms. or less</td>
<td>442</td>
<td>77.6</td>
<td>52</td>
<td>24.4</td>
</tr>
<tr>
<td>2501 to 3000 gms.</td>
<td>45</td>
<td>7.9</td>
<td>50</td>
<td>23.5</td>
</tr>
<tr>
<td>3001 to 3500 gms.</td>
<td>45</td>
<td>7.9</td>
<td>59</td>
<td>27.7</td>
</tr>
<tr>
<td>3501 to 4000 gms.</td>
<td>24</td>
<td>4.2</td>
<td>28</td>
<td>13.1</td>
</tr>
<tr>
<td>over 4000 gms.</td>
<td>12</td>
<td>2.1</td>
<td>17</td>
<td>8.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>2</td>
<td>0.3</td>
<td>7</td>
<td>3.3</td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>100.0</td>
<td>213</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Length of Gestation Period

Length of gestation period was calculated on the basis of last menstrual period (L.M.P.) as noted on the birth certificate. Four hundred and fifty-nine children (51.1 percent) were of low gestation, that is, less than 38 weeks, according to the classification of Yerushalmy (Table 20).

Table 20
Length of Gestation By Age At Death

<table>
<thead>
<tr>
<th>Gestation</th>
<th>Neonatal</th>
<th></th>
<th>Postneonatal</th>
<th></th>
<th>Preschool</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 weeks</td>
<td>211</td>
<td>37.0</td>
<td>6</td>
<td>2.8</td>
<td>0</td>
<td>-</td>
<td>217</td>
</tr>
<tr>
<td>30 to 33 weeks</td>
<td>108</td>
<td>19.0</td>
<td>16</td>
<td>7.5</td>
<td>2</td>
<td>1.7</td>
<td>126</td>
</tr>
<tr>
<td>34 to 37 weeks</td>
<td>76</td>
<td>13.3</td>
<td>35</td>
<td>16.4</td>
<td>5</td>
<td>4.3</td>
<td>116</td>
</tr>
<tr>
<td>Total less than 38 weeks</td>
<td>395</td>
<td>69.3</td>
<td>57</td>
<td>26.8</td>
<td>7</td>
<td>6.1</td>
<td>459</td>
</tr>
<tr>
<td>38 to 41 weeks</td>
<td>138</td>
<td>24.2</td>
<td>116</td>
<td>54.5</td>
<td>77</td>
<td>67.0</td>
<td>331</td>
</tr>
<tr>
<td>42 weeks and over</td>
<td>17</td>
<td>3.0</td>
<td>19</td>
<td>8.9</td>
<td>8</td>
<td>7.0</td>
<td>44</td>
</tr>
<tr>
<td>Unknown</td>
<td>20</td>
<td>3.5</td>
<td>21</td>
<td>9.9</td>
<td>21</td>
<td>20.0</td>
<td>64</td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>100.0</td>
<td>213</td>
<td>100.0</td>
<td>115</td>
<td>100.0</td>
<td>898</td>
</tr>
</tbody>
</table>

Condition at Birth

The general state of the newborn was noted as good, fair, poor or unknown, according to the hospital record designation. There were 371 children (41.3 percent) of the total 898, whose condition at birth was listed as poor (Table 21).
Table 21

Condition At Birth By Age At Death

<table>
<thead>
<tr>
<th>Condition</th>
<th>Neonatal</th>
<th>Postneonatal</th>
<th>Preschool</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Good</td>
<td>92</td>
<td>115</td>
<td>66</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>16.1</td>
<td>54.0</td>
<td>57.4</td>
<td>30.4</td>
</tr>
<tr>
<td>Fair</td>
<td>98</td>
<td>24</td>
<td>3</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>17.2</td>
<td>11.3</td>
<td>2.6</td>
<td>13.9</td>
</tr>
<tr>
<td>Poor</td>
<td>354</td>
<td>15</td>
<td>2</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>62.1</td>
<td>7.0</td>
<td>1.7</td>
<td>41.3</td>
</tr>
<tr>
<td>Unknown</td>
<td>26</td>
<td>59</td>
<td>44</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>4.6</td>
<td>27.7</td>
<td>38.3</td>
<td>14.4</td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>213</td>
<td>115</td>
<td>898</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Congenital Anomalies Noted At Birth

Among the 898 deaths included in the study, 112 or 12.5 percent had at least one congenital anomaly noted at birth. Thirty-seven of these children (33.0 percent) had two or more congenital anomalies diagnosed at birth.
LOW BIRTH WEIGHT AMONG DECEASED INFANTS AND CHILDREN

Low birth weight infants* comprised 56.5 percent of all deaths of infants and children under 5 years of age during the one-year period within the study area. This high risk group of newborns accounted for 77.6 percent of the neonatal deaths, 24.4 percent of the post-neonatal deaths, and 11.3 percent of the deaths in children 1-4 years of age. Since accurate figures for the incidence of low birth weight within the study area are not available, the following analysis of data is based on comparisons of low birth weight incidence in different subgroups of the population of deceased children.

Among the 898 deaths of children under 5 years of age, 507 of them (56.5 percent) weighed 2500 grams or less at birth. There were 316 infants weighing 1500 grams or less at birth accounting for 63.2 percent of the infants weighing 2500 grams or less at birth and comprising 35.2 percent of the population of deceased children (Table 23).

Race

A significantly greater proportion of Blacks (63.1 percent) than of Whites (54.0) were of low birth weight. In addition, of the low birth weight infants, a significantly higher percentage of Blacks (71.1 percent) than of Whites (58.1 percent) weighed 1500 grams or less. Males and females did not differ significantly in distribution of birth weight: 57.2 percent of the females and 55.9 percent of the males weighed 2500 grams or less at birth. Differences by sex were not significant among any of the groups.

*Weighing five and a half pounds or less at birth.
Infants dying during the neonatal period had the greatest proportion of infants of very low birth weight (1500 grams or less), 53.7 percent, compared to 4.7 percent among those dying during the post-neonatal period and none dying during the preschool years (Tables 2h, 25, 26). Blacks and other non-white races had a significantly greater proportion of very low birth weight infants dying during the neonatal period than did Whites, 68.4 percent and 60.7 respectively, compared to 47.4 percent. Females predominated among deceased neonates weighing 1500 grams or less at birth.

In the postneonatal period, Blacks had a significantly greater proportion of low birth weight infants than Whites, 36.1 percent compared to 19.4 percent. The proportion of infants weighing 1500 grams or less was, however, not significantly greater among deceased Black postneonates.

The percent of deceased preschoolers who were of low birth weight, 11.3 percent of the total, did not vary significantly between racial groups.
Table 23

Number and Percent of Deaths in the First 5 Years of Life
By Race, Sex, and Birth Weight

<table>
<thead>
<tr>
<th>Birth Weight</th>
<th>Total</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 gms or less</td>
<td>1500</td>
<td>109</td>
<td>82</td>
<td>191</td>
<td>64</td>
</tr>
<tr>
<td>1501 to 2500 gms.</td>
<td>1501</td>
<td>90</td>
<td>48</td>
<td>138</td>
<td>44</td>
</tr>
<tr>
<td>2501 to 4500 gms.</td>
<td>2501</td>
<td>155</td>
<td>103</td>
<td>258</td>
<td>84</td>
</tr>
<tr>
<td>Over 4500 gms.</td>
<td>Over 4500</td>
<td>336</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>12</td>
<td>4</td>
<td>16</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | 369 | 240 | 69 | 241 | 100 |

Notes:
- The table provides the number of deaths and their corresponding percentages for different birth weight categories, by race, sex, and birth weight. The categories range from 1500 gms or less to over 4500 gms, with separate counts for white, black, and other races, and for total numbers.
- The data is organized in a way that allows for easy comparison and analysis of mortality rates across different demographic groups and weight ranges.
<table>
<thead>
<tr>
<th>Birth Weight</th>
<th>Male White Total</th>
<th>Female White Total</th>
<th>Male Black Total</th>
<th>Female Black Total</th>
<th>Male Other Total</th>
<th>Female Other Total</th>
<th>Male Total</th>
<th>Female Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 4500 gms.</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>1501 to 4500 gms.</td>
<td>13.1</td>
<td>13.2</td>
<td>13.0</td>
<td>12.9</td>
<td>13.2</td>
<td>13.1</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>1000 to 1500 gms.</td>
<td>3.5</td>
<td>3.5</td>
<td>3.4</td>
<td>3.3</td>
<td>3.5</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Less than 1000 gms.</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 24

Number and Percent of Neonatal Deaths by Race, Sex, and Birth Weight
<table>
<thead>
<tr>
<th>Birth Weight</th>
<th>White Male</th>
<th>White Female</th>
<th>Black Male</th>
<th>Black Female</th>
<th>Total Male</th>
<th>Total Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 gms. or less</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>12</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>1501 to 2500 gms.</td>
<td>11</td>
<td>10</td>
<td>21</td>
<td>3</td>
<td>11</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>2501 to 4500 gms.</td>
<td>59</td>
<td>47</td>
<td>106</td>
<td>38</td>
<td>41</td>
<td>109</td>
<td>92</td>
</tr>
<tr>
<td>Over 4500 gms.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Percent

<table>
<thead>
<tr>
<th>Birth Weight</th>
<th>White Male</th>
<th>White Female</th>
<th>Black Male</th>
<th>Black Female</th>
<th>Total Male</th>
<th>Total Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 gms. or less</td>
<td>2.6%</td>
<td>6.5%</td>
<td>4.3%</td>
<td>3.1%</td>
<td>6.6%</td>
<td>6.6%</td>
<td>6.6%</td>
</tr>
<tr>
<td>1501 to 2500 gms.</td>
<td>14.3%</td>
<td>16.1%</td>
<td>15.1%</td>
<td>21.9%</td>
<td>37.9%</td>
<td>37.9%</td>
<td>37.9%</td>
</tr>
<tr>
<td>2501 to 4500 gms.</td>
<td>76.6%</td>
<td>75.8%</td>
<td>76.3%</td>
<td>71.9%</td>
<td>76.3%</td>
<td>76.3%</td>
<td>76.3%</td>
</tr>
<tr>
<td>Over 4500 gms.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unknown</td>
<td>6.5%</td>
<td>-</td>
<td>3.6%</td>
<td>3.1%</td>
<td>3.6%</td>
<td>-</td>
<td>3.6%</td>
</tr>
</tbody>
</table>

Total | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% |
<table>
<thead>
<tr>
<th>Birth Weight</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 gms. or less</td>
<td>1500</td>
<td>777</td>
<td>2277</td>
</tr>
<tr>
<td>1501 to 2500 gms.</td>
<td>72</td>
<td>504</td>
<td>576</td>
</tr>
<tr>
<td>2501 to 4500 gms.</td>
<td>35</td>
<td>23</td>
<td>58</td>
</tr>
<tr>
<td>Over 4500 gms.</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Unknown</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 gms. or less</td>
<td>1500.0</td>
<td>777.0</td>
<td>2277.0</td>
</tr>
<tr>
<td>1501 to 2500 gms.</td>
<td>12.0</td>
<td>6.7</td>
<td>10.0</td>
</tr>
<tr>
<td>2501 to 4500 gms.</td>
<td>76.7</td>
<td>72.5</td>
<td>79.2</td>
</tr>
<tr>
<td>Over 4500 gms.</td>
<td>3.7</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>Unknown</td>
<td>14.0</td>
<td>13.3</td>
<td>13.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 26</th>
</tr>
</thead>
</table>
Maternal Age

The occurrence of low birth weight among deceased infants was significantly related to maternal age. Mothers 40 years of age and over had the greatest proportion of low birth weight infants, 69.6 percent. Mothers under 20 years of age had the next highest proportion of low birth weight infants (66.3 percent) (Table 27).

Table 27

Number and Percent of Low Birth Weight Infants Among Deceased Children by Maternal Age

<table>
<thead>
<tr>
<th>Maternal Age</th>
<th>Birth Weight 1500 grams and under</th>
<th>Birth Weight 1501-2500 grams</th>
<th>Birth Weight 2501 grams and over</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 to 19 years</td>
<td>89 49.2</td>
<td>31 17.1</td>
<td>61 33.7</td>
<td>0 -</td>
<td>181</td>
</tr>
<tr>
<td>20 to 24 years</td>
<td>92 31.4</td>
<td>76 25.9</td>
<td>124 46.3</td>
<td>1 0.4</td>
<td>293</td>
</tr>
<tr>
<td>25 to 29 years</td>
<td>70 32.4</td>
<td>46 21.3</td>
<td>100 46.3</td>
<td>0 -</td>
<td>216</td>
</tr>
<tr>
<td>30 to 34 years</td>
<td>40 36.4</td>
<td>20 18.2</td>
<td>46 41.8</td>
<td>4 3.6</td>
<td>110</td>
</tr>
<tr>
<td>35 to 39 years</td>
<td>13 31.7</td>
<td>9 22.0</td>
<td>19 46.3</td>
<td>0 -</td>
<td>41</td>
</tr>
<tr>
<td>40 years & over</td>
<td>10 43.5</td>
<td>6 26.1</td>
<td>17 30.4</td>
<td>0 -</td>
<td>23</td>
</tr>
<tr>
<td>unknown</td>
<td>2 5.9</td>
<td>3 8.8</td>
<td>12 35.3</td>
<td>17 50.0</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>316 35.2</td>
<td>191 21.3</td>
<td>369 41.1</td>
<td>22 2.4</td>
<td>898</td>
</tr>
</tbody>
</table>

Maternal Parity

Maternal parity was not significantly associated with frequency of low birth weight among deceased infants in this study (Table 28).
Table 28

Number and Percent of Low Birth Weight Infants
Among Deceased Children by Maternal Parity

<table>
<thead>
<tr>
<th>Parity</th>
<th>Birth Weight</th>
<th>1500 grams and under</th>
<th>1501-2500 grams</th>
<th>2501 grams and over</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>106 36.9 60 20.9 119 41.5 2 0.7 287 100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>99 40.1 42 17.0 105 42.5 1 0.4 247 100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>53 32.7 40 24.7 68 42.0 1 -0.6 162 100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>24 31.2 20 26.0 32 41.5 1 1.3 77 100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 & Over</td>
<td></td>
<td>25 32.1 21 26.9 31 39.7 1 1.3 78 100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>9 19.2 8 17.0 14 29.8 16 34.0 47 100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>316 35.2 191 21.3 369 41.1 22 2.4 898 100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Father's Occupation

Occupation of the fathers of the 898 deceased children was assigned to one of three categories: I, II, and III. The White collar professions were grouped in category I, i.e. professional and clerical. Blue collar workers, skilled and semi-skilled were classed in category II, and service and unskilled employees were grouped in category III. The unemployed, students, and military personnel were omitted from this analysis. The differences in the percent of low birth weight infants between each of the three groups were not statistically significant (Table 29).
Abnormal Conditions During Pregnancy

Mothers with the group of abnormal conditions related to pregnancy had significantly greater incidence of low birth weight infants. These conditions included toxemia, anemia, antepartum hemorrhage, abruptio placentae and others (Table 30). In contrast, the incidence of low birth weight was not significantly increased among those mothers whose abnormalities were unrelated to the pregnancy (Table 31). A finer breakdown of these conditions is found in Appendix 12.

Table 30

Number and Percent of Low Birth Weight Infants Among Mothers of Deceased Children by Presence of Abnormal Conditions Related to Pregnancy

<table>
<thead>
<tr>
<th>Abnormal Conditions Related to Pregnancy</th>
<th>2500 grams of less</th>
<th>2501 grams and over</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 or more</td>
<td>78.7</td>
<td>21.3</td>
<td>100.0</td>
</tr>
<tr>
<td>none</td>
<td>42.0</td>
<td>58.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>57.2</td>
<td>42.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Abnormal Conditions Unrelated to Pregnancy</td>
<td>2500 grams and less</td>
<td>2501 grams and over</td>
<td>Total</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>1 or More</td>
<td>68</td>
<td>61.8</td>
<td>42</td>
</tr>
<tr>
<td>none</td>
<td>367</td>
<td>55.4</td>
<td>296</td>
</tr>
<tr>
<td>Total</td>
<td>435</td>
<td>56.3</td>
<td>338</td>
</tr>
</tbody>
</table>
Prenatal care was compared among different groups. Although there was some indication of trends, the numbers were too small to draw conclusions. Initiation of prenatal care by race, maternal age, parity and marital status, father's occupation, and abnormal conditions related to pregnancy, are contained in Appendices 13, 14, 15, 16, 17, 18.
CIRCUMSTANCES OF DEATH

Onset of Terminal Illness

The questionnaire contained information regarding the terminal illness of each child. Information coded included age at onset of illness, interval recorded between onset of illness and time of death, and how illness started. Among the 898 deaths, 538 (94.4 percent) of the neonates, 35 (16.4 percent) of the postneonates, and 20 (17.4 percent) of the preschoolers died of illness which began at birth. Of the postneonatal deaths, 79.8 percent were to children whose illnesses began sometime during the postneonatal period (Table 32).

Table 32

<table>
<thead>
<tr>
<th>Age at Onset of Illness</th>
<th>Neonatal</th>
<th>Postneonatal</th>
<th>Preschool</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>Birth</td>
<td>538</td>
<td>94.4</td>
<td>35</td>
<td>16.4</td>
</tr>
<tr>
<td>1 day to 6 days</td>
<td>12</td>
<td>2.1</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>7 days to 27 days</td>
<td>20</td>
<td>3.5</td>
<td>7</td>
<td>3.3</td>
</tr>
<tr>
<td>28 days to 1 year</td>
<td>0</td>
<td>-</td>
<td>170</td>
<td>79.8</td>
</tr>
<tr>
<td>1 year to 2 years</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2 years to 3 years</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3 years to 4 years</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>4 years to 5 years</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>100.0</td>
<td>213</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Autopsy Data

Autopsies were performed on 82.0 percent of the 898 deaths.

Autopsies were coded according to type, hospital or medicolegal, and
whether the autopsy was designated as complete or not by the Mortality Study Project Director (F.C.). There were 524 autopsies performed in the hospital, 499 or 95.2 percent of which were termed as complete. Medicolegal autopsies, that is, those done under the auspices of coroners, accounted for 23.5 percent of all autopsies; 95.3 percent of these were termed as complete by the Project Director (Table 33).

Table 33

Degree of Completeness of Autopsy By Place of Autopsy and By Age At Death

<table>
<thead>
<tr>
<th>Type of Autopsy</th>
<th>Neonatal</th>
<th></th>
<th>Postneonatal</th>
<th></th>
<th>Preschool</th>
<th></th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>Hospital (complete)</td>
<td>410</td>
<td>71.9</td>
<td>50</td>
<td>23.5</td>
<td>39</td>
<td>33.9</td>
<td>499</td>
<td>55.6</td>
</tr>
<tr>
<td>Hospital (partial or incomplete)</td>
<td>14</td>
<td>2.5</td>
<td>4</td>
<td>1.9</td>
<td>2</td>
<td>1.7</td>
<td>20</td>
<td>2.2</td>
</tr>
<tr>
<td>Hospital (unspecified if complete)</td>
<td>3</td>
<td>0.5</td>
<td>2</td>
<td>0.9</td>
<td>0</td>
<td>-</td>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>All Hospital</td>
<td>427</td>
<td>74.9</td>
<td>56</td>
<td>26.3</td>
<td>41</td>
<td>35.7</td>
<td>524</td>
<td>58.4</td>
</tr>
<tr>
<td>Medicolegal (complete)</td>
<td>15</td>
<td>2.6</td>
<td>133</td>
<td>62.4</td>
<td>53</td>
<td>46.1</td>
<td>201</td>
<td>22.4</td>
</tr>
<tr>
<td>Medicolegal (incomplete)</td>
<td>1</td>
<td>0.2</td>
<td>5</td>
<td>2.3</td>
<td>4</td>
<td>3.5</td>
<td>10</td>
<td>1.1</td>
</tr>
<tr>
<td>All Medicolegal</td>
<td>16</td>
<td>2.8</td>
<td>138</td>
<td>64.7</td>
<td>57</td>
<td>49.6</td>
<td>211</td>
<td>23.5</td>
</tr>
<tr>
<td>Type Not Specified</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>No Autopsy</td>
<td>127</td>
<td>22.3</td>
<td>18</td>
<td>8.5</td>
<td>17</td>
<td>14.8</td>
<td>162</td>
<td>18.0</td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>100.0</td>
<td>213</td>
<td>100.0</td>
<td>115</td>
<td>100.0</td>
<td>898</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Death Certificates

Death certificates received by the study were assessed by the Mortality Study Staff as to completeness and accuracy. This assessment was classified into inaccurate medical reporting or clerical error or both. Among the 898 death certificates received, 369, (41.1 percent) had
an inaccuracy of some kind. One or more medical inaccuracies were found on 21.0 percent of all death certificates (Table 34).

Table 34
Inaccuracies on Death Certificate By Age At Death

<table>
<thead>
<tr>
<th>Lack of Accuracy</th>
<th>Neonatal</th>
<th>Postneonatal</th>
<th>Preschool</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>θ</td>
<td>θ</td>
<td>θ</td>
<td>θ</td>
</tr>
<tr>
<td>Medical Inaccuracy</td>
<td>115</td>
<td>20.2</td>
<td>13</td>
<td>6.1</td>
</tr>
<tr>
<td>Clerical Error</td>
<td>131</td>
<td>23.0</td>
<td>37</td>
<td>17.4</td>
</tr>
<tr>
<td>Both Medical and Clerical</td>
<td>44</td>
<td>7.7</td>
<td>3</td>
<td>1.4</td>
</tr>
<tr>
<td>None Noted</td>
<td>280</td>
<td>49.1</td>
<td>160</td>
<td>75.1</td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>100.0</td>
<td>213</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Preventability

The University of California Mortality Study group was interested in examining the circumstances surrounding the childhood deaths included in the study. Therefore, questions concerning the preventability of the death and responsibility for it were added to the questionnaire. Preventability of the death was determined by the weekly case conference group of the University of California School of Public Health: deaths were classified as preventable, possibly preventable, not preventable, and preventability not determinable. Among the 898 deaths, 36 (4.0 percent) were considered to be clearly preventable and 57 (6.4 percent) were considered possibly preventable (Table 35). There were 72 cases (8.0 percent) whose preventability could not be determined. Deaths considered as unpreventable, 733 (81.6 percent) comprised the greatest proportion of deaths. It is of interest that deaths during the preschool period had the highest percentage of preventability, 13.0 percent.
Table 35

Preventability of Deaths (Assigned by Study Committee) By Age At Death

<table>
<thead>
<tr>
<th>Preventability</th>
<th>Neonatal</th>
<th>Neonatal</th>
<th>Postneonatal</th>
<th>Postneonatal</th>
<th>Preschool</th>
<th>Preschool</th>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventable</td>
<td>6</td>
<td>1.0</td>
<td>15</td>
<td>7.0</td>
<td>15</td>
<td>13.0</td>
<td>36</td>
<td>4.0</td>
</tr>
<tr>
<td>Possibly Preventable</td>
<td>41</td>
<td>7.2</td>
<td>8</td>
<td>3.8</td>
<td>8</td>
<td>7.0</td>
<td>57</td>
<td>6.4</td>
</tr>
<tr>
<td>Not Preventable</td>
<td>501</td>
<td>87.9</td>
<td>167</td>
<td>78.4</td>
<td>65</td>
<td>56.5</td>
<td>733</td>
<td>81.6</td>
</tr>
<tr>
<td>Preventability Not Determinable</td>
<td>22</td>
<td>3.9</td>
<td>23</td>
<td>10.8</td>
<td>27</td>
<td>23.5</td>
<td>72</td>
<td>8.0</td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>100.0</td>
<td>213</td>
<td>100.0</td>
<td>115</td>
<td>100.0</td>
<td>898</td>
<td>100.0</td>
</tr>
</tbody>
</table>

When a case was classified as preventable, a further judgment was made as to the responsibility for the hypothetical action which might have prevented the death. Of the 93 preventable or possibly preventable deaths, the committee judged that 52 (38 neonatal, 13 postneonatal, and 2 preschool) might have been prevented by a physician or hospital personnel. A total of 37 (10 neonatal, 9 postneonatal, and 18 preschool) might have been prevented by the family. The high number of preschool deaths that might have been prevented by the family reflects the importance of external causes of death in this age group. The study group did not assign responsibility in three cases (Table 36).
Table 36

Responsibility for Preventable Deaths (Assigned By Study Committee) By Age At Death

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Neonatal</th>
<th>Postneonatal</th>
<th>Preschool</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>θ</td>
<td>$%$</td>
<td>θ</td>
<td>$%$</td>
</tr>
<tr>
<td>Medical</td>
<td>37</td>
<td>78.7</td>
<td>13</td>
<td>56.5</td>
</tr>
<tr>
<td>Family</td>
<td>10</td>
<td>21.3</td>
<td>9</td>
<td>39.1</td>
</tr>
<tr>
<td>Community</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Not Assigned</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>4.4</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>100.0</td>
<td>23</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Assignment of Cause of Death

The weekly case conferences, by which the underlying and associated causes of death were assigned, utilized data from all available sources. The bases on which cause of death were assigned were classified as follows:

a. Clinical history plus autopsy
b. Clinical history, no autopsy
c. Death certificate only

There were no cases in which an autopsy was the only available information.

The great majority of cases, 736 (82.0 percent) were decided on the basis of both clinical history and autopsy. Another 161 (17.9 percent) had the benefit of a well-defined clinical picture but no autopsy. Only one case depended upon the death certificate alone for assignment of cause of death (Table 37).
Table 37

Basis For Assignment of Cause of Death By Study Committee By Age At Death

<table>
<thead>
<tr>
<th>Basis</th>
<th>Neonatal</th>
<th>Postneonatal</th>
<th>Preschool</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>Clinical History and Autopsy</td>
<td>448</td>
<td>78.6</td>
<td>191</td>
<td>89.7</td>
</tr>
<tr>
<td>Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical History Only</td>
<td>122</td>
<td>21.4</td>
<td>21</td>
<td>9.8</td>
</tr>
<tr>
<td>Death Certificate Only</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>100.0</td>
<td>213</td>
<td>100.0</td>
</tr>
</tbody>
</table>
CAUSES OF DEATH

The underlying cause of death in each of the 898 cases was assigned by the weekly case conferencing committee as described in the Chapter on Methodology (Chapter II). The assignment and subsequent coding of the underlying cause of death were based on the selection procedures outlined in the International Classification of Diseases. Assignment of the associated causes of death was based on rules and coding procedures developed by the Pan American Health Organization. Classification and enumeration of underlying and associated causes of mortality are based on the format adopted by the Pan American Health Organization and enable comparison with data from each of the other 14 projects in the Inter-American Investigation of Mortality in Childhood.

Infancy

Among the 898 deaths studied by the University of California School of Public Health, Berkeley, Study Project on Childhood Mortality, there were 783 deaths during the first year of life, comprising a rate of 1750.3 deaths per 100,000 live births (Table 38). Over one-half of these deaths, 907.5 per 100,000 live births, were attributed to "Certain Causes of Perinatal Mortality," 760-778, in the International Classification of Diseases. This category includes conditions such as the following: Maternal conditions (categories 760-763), including those related to pregnancy, and those independent of gestation, such as Difficult labors and/or consequential birth injury (categories 764-768 and 772)

Important complications of pregnancy (category 769), including conditions such as premature rupture of membranes, antepartum hemorrhage and multiple pregnancy.
Hemolytic disease of the newborn (categories 774-775).

Hypoxic and anoxic conditions of unspecified cause (category 776), including hyaline membrane disease, respiratory distress syndrome, and others.

Immaturity or prematurity, unqualified (category 777).

Other complications of the newborn (category 778).

Congenital anomalies accounted for the second largest group of deaths during infancy, 281.7 per 100,000 live births. Third in importance were pneumonia and influenza, given as the underlying cause of death in 134.1 cases per 100,000 live births. Sudden deaths in infancy were fourth, with a rate of 127.4 per 100,000 live births, and infective and parasitic diseases ranked fifth, 76.0 per 100,000 live births, as a cause of infant mortality within the San Francisco Bay Area Study.

Neonatal Period

Almost all deaths (900.8 out of 907.5 per 100,000 live births) attributed to "Certain Causes of Perinatal Mortality" occurred during the first 4 weeks of life, comprising the main cause of death during the neonatal period (Table 38). Congenital anomalies were the next leading cause, with a rate of 203.4 deaths per 100,000 live births. Diseases of the circulatory system were third, 51.4 deaths per 100,000 live births. Fourth and fifth ranked causes of death during the neonatal period were infective and parasitic diseases, 26.8 per 100,000 live births, and pneumonia and influenza, 24.6 per 100,000 live births, respectively. Diseases of the digestive system followed closely, with a mortality rate of 22.4 per 100,000 live births.

Postneonatal Period

During the postneonatal period, age 28 days to 1 year, there were 476.1 deaths per 100,000 live births (Table 38). Almost 25
percent (118.5) of these deaths were attributed to sudden deaths.

Twenty-three percent (109.5) were attributed to pneumonia and influenza, and congenital anomalies were responsible for 78.2 deaths per 100,000 live births during the one-year study period. Infective and parasitic diseases ranked fourth along with external causes, each with a rate of 49.2 per 100,000 live births, as underlying causes of death in the post-neonatal period.

Preschool

Deaths of children age 1 to 4 years occurred at a rate of 70.9 per 100,000 population (Table 38). The leading cause of death was accidents, responsible for 41 percent of the deaths in this age group, with a rate of 29.0 per 100,000 population. Transportation accidents, fires, drownings, and homicides were the most common types of fatal accidents (Appendix 4). Rates for other causes were considerably lower: congenital anomalies ranked second with a rate of 10.5 per 100,000 population, followed by leukemia 5.5; malignant neoplasms, and inflammatory diseases of the central nervous system, each at a rate of 4.3 per 100,000 population. Pneumonia and influenza, and infective and parasitic diseases each had rates of 3.7 deaths per 100,000 population.

The leading causes of death for each major age group were thus:

<table>
<thead>
<tr>
<th>Ages</th>
<th>Rates per 100,000 live births</th>
</tr>
</thead>
<tbody>
<tr>
<td>All causes</td>
<td>1750.0</td>
</tr>
<tr>
<td>Certain causes of perinatal mortality</td>
<td>907.5</td>
</tr>
<tr>
<td>Congenital anomalies</td>
<td>281.7</td>
</tr>
<tr>
<td>Pneumonia and influenza</td>
<td>134.1</td>
</tr>
<tr>
<td>Sudden Infant Death</td>
<td>127.4</td>
</tr>
<tr>
<td>Infective and parasitic diseases</td>
<td>76.0</td>
</tr>
<tr>
<td>Preschool Period</td>
<td>Rates per 100,000 population</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>All causes</td>
<td>70.9</td>
</tr>
<tr>
<td>External causes</td>
<td>29.0</td>
</tr>
<tr>
<td>Congenital anomalies</td>
<td>10.5</td>
</tr>
<tr>
<td>Leukemia</td>
<td>5.5</td>
</tr>
<tr>
<td>Malignant neoplasms</td>
<td>4.3</td>
</tr>
<tr>
<td>Inflammatory diseases of the</td>
<td></td>
</tr>
<tr>
<td>central nervous system</td>
<td>4.3</td>
</tr>
<tr>
<td>Pneumonia and Influenza</td>
<td>3.7</td>
</tr>
<tr>
<td>Infective and Parasitic Diseases</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Table 38
Causes of Death in Children Under 5 Years of Age with Rates Per 100,000 by Age Group

<table>
<thead>
<tr>
<th>Cause</th>
<th>All Causes</th>
<th>Infant</th>
<th>Preschool</th>
<th>Postpreschool</th>
<th>Neonatal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infective and Parasitic Diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>76.0</td>
<td>22</td>
<td>3.7</td>
</tr>
<tr>
<td>Leukemia</td>
<td>1</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Malignant Neoplasms</td>
<td></td>
<td>1</td>
<td>2.2</td>
<td>0</td>
<td>2.2</td>
</tr>
<tr>
<td>Autoimmune</td>
<td>1</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutritional Deficiency</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Endocrine and Metabolic Diseases</td>
<td></td>
<td>2</td>
<td>4.5</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>Deficiency Anemias</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Other Diseases of Blood Forming Organs</td>
<td>1</td>
<td>2.2</td>
<td></td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Inflammatory Diseases Of Central Nervous System</td>
<td>132</td>
<td>281.7</td>
<td>9</td>
<td>15.6</td>
<td>13.4</td>
</tr>
<tr>
<td>Other Diseases of Nervous System and Sense Organs</td>
<td>7</td>
<td>15.6</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Diseases of Circulatory System</td>
<td>26</td>
<td>58.1</td>
<td>23</td>
<td>51.4</td>
<td>3</td>
</tr>
<tr>
<td>Pneumonia and Influenza</td>
<td>60</td>
<td>134.1</td>
<td>49</td>
<td>109.5</td>
<td>3</td>
</tr>
<tr>
<td>Other Diseases of Respiratory System</td>
<td>4</td>
<td>8.9</td>
<td>1</td>
<td>2.2</td>
<td>0</td>
</tr>
<tr>
<td>Diseases of Digestive System</td>
<td>14</td>
<td>31.3</td>
<td>10</td>
<td>22.4</td>
<td>4</td>
</tr>
<tr>
<td>Diseases of Genito-Urinary System</td>
<td>1</td>
<td>2.2</td>
<td></td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Diseases of Skin, Subcutaneous Tissue</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Diseases of Musculoskeletal System</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Congenital Anomalies</td>
<td>126</td>
<td>281.7</td>
<td>91</td>
<td>203.4</td>
<td>35</td>
</tr>
<tr>
<td>Certain Causes of Perinatal Mortality</td>
<td>406</td>
<td>907.5</td>
<td>403</td>
<td>900.8</td>
<td>3</td>
</tr>
<tr>
<td>Sudden Death</td>
<td>57</td>
<td>127.4</td>
<td>4</td>
<td>8.9</td>
<td>53</td>
</tr>
<tr>
<td>Other Ill Defined Conditions</td>
<td>3</td>
<td>6.7</td>
<td>2</td>
<td>4.5</td>
<td>1</td>
</tr>
<tr>
<td>External Causes</td>
<td>265</td>
<td>88</td>
<td>4</td>
<td>8.9</td>
<td>47</td>
</tr>
</tbody>
</table>

Note: The table details the causes of death in children under 5 years of age, with rates per 100,000 by age group, including specific categories such as Infective and Parasitic Diseases, Leukemia, and other Malignant Neoplasms.
CAUSES OF INFANT AND CHILDHOOD MORTALITY

The information contained in the original case records (birth and death certificates, hospital records, and autopsy reports), and on the assignment of cause of death by the University of California Study Staff was reviewed and reclassified to fit into the Butler classification used in the British Perinatal Mortality Study, and to fit into a more standard clinical-pathologic format used in common practice in the U.S.A. The following section contains the data resulting from this reclassification.

CAUSES OF NEONATAL MORTALITY

Of the total 569 neonatal deaths in the study, 363 (63.7 percent) were attributed to anoxia; 102 (17.9 percent) to congenital malformations; 43 (7.5 percent) to infections; 39 (6.8 percent) to birth injury; 5 (0.9 percent) to iso-immunization; 4 each (0.7 percent) to sudden infant death syndrome and to spontaneous perforation of the stomach; 3 (0.5 percent) to aspiration pneumonia; and 2 (0.4 percent) to hemorrhagic diathesis, cause undetermined (Table 39).

Anoxia

There were 363 deaths associated with anoxia. The largest group was associated with respiratory distress syndrome (30.0 percent), either alone or in combination with other conditions. Of the conditions associated with respiratory distress syndrome as a cause of death, cerebral hemorrhage or infection played a major role (Table 40).

In addition to the respiratory distress syndrome deaths, 111 deaths were attributed to asphyxia (19.5 percent), and 55 to atelectasis (9.6 percent) (Table 39).
Congenital Malformations

Of the total 102 deaths attributed to a congenital malformation, 38 were due to congenital heart disease, and 21 to central nervous system malformations (largely anencephaly). Ten deaths were due to malformations of the gastrointestinal system (largely diaphragmatic hernia associated with malrotation of the GI tract), and 9 deaths were due to genito-urinary anomalies (largely renal agenesis or polycystic kidneys). A total of 13 deaths were associated with multiple anomalies (Table 41).

Infections

Of the total 43 deaths attributed to an infection, the major types were pneumonia, septicemia and meningitis (Table 42).

Birth Injury

All deaths attributed to birth injury were due to intracranial or subarachnoid hemorrhage (Table 43).

Comparison With British Perinatal Mortality Study

Because of the fact that the British Perinatal Mortality Study is the only recent large-scale community study of perinatal deaths, it is relevant that a comparison of causes of death be made.

The percentage of deaths attributed to congenital malformations in the two studies was similar (17.9 percent and 17.5 percent) (Table 44).

The U.S.A. study found more deaths attributed to anoxia (66.4 percent) compared with 36.5 percent in the British study, and more deaths attributed to infection and birth injury.

The British study found more deaths attributed to iso-immunization.
Table 39

Summary of Causes of Neonatal Deaths

<table>
<thead>
<tr>
<th>Cause</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoxia</td>
<td>363</td>
<td>63.7</td>
</tr>
<tr>
<td>Antepartum</td>
<td>1</td>
<td>0.2%</td>
</tr>
<tr>
<td>Intrapartum</td>
<td>25</td>
<td>4.4%</td>
</tr>
<tr>
<td>Postnatal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphyxia</td>
<td>111</td>
<td>19.5%</td>
</tr>
<tr>
<td>Respiratory Distress Syndrome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alone</td>
<td>171</td>
<td>30.0%</td>
</tr>
<tr>
<td>With other conditions</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Atelectasis</td>
<td>55</td>
<td>9.6%</td>
</tr>
<tr>
<td>Congenital malformations</td>
<td>102</td>
<td>17.9</td>
</tr>
<tr>
<td>Infection</td>
<td>43</td>
<td>7.5</td>
</tr>
<tr>
<td>Birth injury</td>
<td>39</td>
<td>6.8</td>
</tr>
<tr>
<td>Iso-immunization</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>Sudden Infant Death Syndrome</td>
<td>4</td>
<td>0.7</td>
</tr>
<tr>
<td>Spontaneous perforation of stomach</td>
<td>4</td>
<td>0.7</td>
</tr>
<tr>
<td>Aspiration pneumonia</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Hemorrhagic diathesis of newborn</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Accidents and other external causes</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Unknown</td>
<td>4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Total | 570 | 100.0 |
Table 40

Neonatal Deaths Associated With Respiratory Listress Syndrome

<table>
<thead>
<tr>
<th>Cause</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Distress Syndrome alone</td>
<td>94</td>
</tr>
<tr>
<td>Respiratory Distress Syndrome with</td>
<td>77</td>
</tr>
<tr>
<td>cerebral hemorrhage</td>
<td>44</td>
</tr>
<tr>
<td>congenital malformations</td>
<td>7</td>
</tr>
<tr>
<td>infection</td>
<td>11</td>
</tr>
<tr>
<td>aspiration pneumonia</td>
<td>3</td>
</tr>
<tr>
<td>cerebral hemorrhage plus infection</td>
<td>7</td>
</tr>
<tr>
<td>congenital malformation plus infection</td>
<td>1</td>
</tr>
<tr>
<td>birth injury</td>
<td>1</td>
</tr>
<tr>
<td>pulmonary hemorrhage</td>
<td>1</td>
</tr>
<tr>
<td>cerebral hemorrhage plus pulmonary hemorrhage</td>
<td>1</td>
</tr>
<tr>
<td>cerebral hemorrhage plus ABO incompatability</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>171</td>
</tr>
</tbody>
</table>
Table 41

Neonatal Deaths Attributed To Congenital Malformations

<table>
<thead>
<tr>
<th>Type of Congenital Malformation</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital heart disease</td>
<td></td>
</tr>
<tr>
<td>alone</td>
<td>27</td>
</tr>
<tr>
<td>with other congenital malformation</td>
<td>7</td>
</tr>
<tr>
<td>with other conditions</td>
<td>4</td>
</tr>
<tr>
<td>Central nervous system</td>
<td></td>
</tr>
<tr>
<td>anencephaly</td>
<td>16</td>
</tr>
<tr>
<td>encephalocele, meningocele, hydrocephalus</td>
<td>5</td>
</tr>
<tr>
<td>Gastrointestinal system</td>
<td>10</td>
</tr>
<tr>
<td>Genito-urinary system</td>
<td>9</td>
</tr>
<tr>
<td>Down's Syndrome</td>
<td>4</td>
</tr>
<tr>
<td>Trisomy 18</td>
<td>3</td>
</tr>
<tr>
<td>Musculo-skeletal system</td>
<td>2</td>
</tr>
<tr>
<td>Respiratory system</td>
<td>2</td>
</tr>
<tr>
<td>Multiple systems</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
</tr>
</tbody>
</table>

-66-
Table 42

Neonatal Deaths Attributed To Infection

<table>
<thead>
<tr>
<th>Type of Infection</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>14</td>
</tr>
<tr>
<td>Septicemia</td>
<td>15</td>
</tr>
<tr>
<td>alone</td>
<td>4</td>
</tr>
<tr>
<td>with meningitis</td>
<td>8</td>
</tr>
<tr>
<td>with other conditions</td>
<td>3</td>
</tr>
<tr>
<td>Meningitis</td>
<td>8</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
</tr>
</tbody>
</table>
Table 43

Neonatal Deaths Attributed To Birth Injury

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial hemorrhage</td>
<td>36</td>
</tr>
<tr>
<td>alone</td>
<td>17</td>
</tr>
<tr>
<td>with pneumonia</td>
<td>3</td>
</tr>
<tr>
<td>with atelectasis</td>
<td>3</td>
</tr>
<tr>
<td>with tentorial tear</td>
<td>8</td>
</tr>
<tr>
<td>with pulmonary hemorrhage</td>
<td>2</td>
</tr>
<tr>
<td>with miscellaneous</td>
<td>3</td>
</tr>
<tr>
<td>Subarachnoid hemorrhage</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
</tr>
</tbody>
</table>
Table 44

Comparison of Causes of Neonatal Death in U.S.A. Study With Study in United Kingdom

<table>
<thead>
<tr>
<th>Cause</th>
<th>U.S.A.</th>
<th>United Kingdom*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoxia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antepartum</td>
<td>0.2%</td>
<td>10.3%</td>
</tr>
<tr>
<td>Intrapartum</td>
<td>4.4%</td>
<td>21.4%</td>
</tr>
<tr>
<td>Postnatal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphyxia</td>
<td>19.5%</td>
<td></td>
</tr>
<tr>
<td>Respiratory Distress Syndrome</td>
<td>30.0%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>9.6%</td>
<td></td>
</tr>
<tr>
<td>Congenital malformation</td>
<td>17.9%</td>
<td>17.5%</td>
</tr>
<tr>
<td>Infection</td>
<td>7.5%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Birth injury</td>
<td>6.8%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Iso-immunization</td>
<td>0.9%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Sudden Infant Death Syndrome</td>
<td>0.7%</td>
<td></td>
</tr>
<tr>
<td>Spontaneous perforation of stomach</td>
<td>0.7%</td>
<td></td>
</tr>
<tr>
<td>Aspiration pneumonia</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Hemorrhagic diathesis of newborn</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0.7%</td>
<td></td>
</tr>
<tr>
<td>Antepartum, no major lesion</td>
<td></td>
<td>10.3%</td>
</tr>
<tr>
<td>Intrapartum anoxia plus cerebral birth trauma</td>
<td></td>
<td>6.3%</td>
</tr>
<tr>
<td>Massive pulmonary hemorrhage</td>
<td></td>
<td>1.8%</td>
</tr>
<tr>
<td>Intraventricular hemorrhage</td>
<td></td>
<td>2.1%</td>
</tr>
<tr>
<td>Early neonatal, no histological lesion</td>
<td></td>
<td>3.0%</td>
</tr>
<tr>
<td>Remainder</td>
<td></td>
<td>3.9%</td>
</tr>
<tr>
<td>No autopsy</td>
<td></td>
<td>7.2%</td>
</tr>
</tbody>
</table>

CAUSES OF POSTNEONATAL DEATHS

The major causes were infections; Sudden Infant Death Syndrome; congenital malformations; and accidents (Table 45).

Infections

Of the 69 deaths in this group, 46 were due to respiratory causes; 8 were due to infections of the central nervous system; 5 were due to gastroenteritis (Table 46).

Sudden Infant Death Syndrome

There was a total of 62 deaths attributed to Sudden Infant Death Syndrome. Twenty were found to have evidence of pneumonia; 3 at autopsy were reported to have epidural hemorrhage of the spinal cord; and 1 had cleft palate. The other 38 were reported to have no other finding (Table 47).

Congenital Malformations

Within this group, deaths due to congenital heart disease, malformation of the central nervous system, and Down's Syndrome were the most frequent types. Some deaths due to a congenital malformation were associated with infection (Table 48).

Accidents and Other External Causes

Within this group, burns, falls, aspiration pneumonia, and accidental strangulation play a prominent role. Included also are child abuse and homicide (Table 49).

Anoxia

There were 5 deaths due to anoxia; 4 of these were respiratory distress syndrome, 3 of which were complicated by infection. The fifth was an infant with neurofibromatosis, and post-tracheotomy obstruction of the airway.
<table>
<thead>
<tr>
<th>Cause by Group</th>
<th>Deaths</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious</td>
<td>69</td>
<td>32.4</td>
</tr>
<tr>
<td>Sudden Infant Death Syndrome</td>
<td>62</td>
<td>29.1</td>
</tr>
<tr>
<td>Congenital Malformations</td>
<td>49</td>
<td>23.0</td>
</tr>
<tr>
<td>Accidents</td>
<td>22</td>
<td>10.3</td>
</tr>
<tr>
<td>Anoxia</td>
<td>5</td>
<td>2.4</td>
</tr>
<tr>
<td>Malignant Disease</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td>2.3</td>
</tr>
<tr>
<td>Total</td>
<td>213</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 45

Causes of Postneonatal Deaths
Overall Summary
Table 46
Postneonatal Deaths Due To Infections

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>46</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>40</td>
</tr>
<tr>
<td>Pneumonia, septicemia, otitis media</td>
<td>1</td>
</tr>
<tr>
<td>Pneumonia, gastroenteritis</td>
<td>1</td>
</tr>
<tr>
<td>Pneumonia, pertussis</td>
<td>1</td>
</tr>
<tr>
<td>Pneumonia, aspiration of vomitus</td>
<td>1</td>
</tr>
<tr>
<td>Tracheobronchitis</td>
<td>2</td>
</tr>
<tr>
<td>Meningitis or Encephalitis</td>
<td>8</td>
</tr>
<tr>
<td>Meningitis</td>
<td>6</td>
</tr>
<tr>
<td>Virus encephalitis</td>
<td>2</td>
</tr>
<tr>
<td>Septicemia</td>
<td>7</td>
</tr>
<tr>
<td>Sepsis, meningitis</td>
<td>1</td>
</tr>
<tr>
<td>Meningococcemia</td>
<td>5</td>
</tr>
<tr>
<td>Sepsis</td>
<td>1</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>5</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>3</td>
</tr>
<tr>
<td>Cytomegalic inclusion disease</td>
<td>1</td>
</tr>
<tr>
<td>Generalized viral infection</td>
<td>1</td>
</tr>
<tr>
<td>Congenital rubella, CHD,* aspiration pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
</tr>
</tbody>
</table>

*Congenital heart disease.
<table>
<thead>
<tr>
<th>Cause</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudden Infant Death Syndrome</td>
<td>38</td>
</tr>
<tr>
<td>Sudden Infant Death Syndrome, pneumonia</td>
<td>20</td>
</tr>
<tr>
<td>Sudden Infant Death Syndrome, epidural hemorrhage of spinal cord</td>
<td>3</td>
</tr>
<tr>
<td>Sudden Infant Death Syndrome, cleft palate</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
</tr>
</tbody>
</table>
Table 48

Postneonatal Deaths Due To Congenital Malformation

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital Heart Disease</td>
<td></td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td>13</td>
</tr>
<tr>
<td>C.H.D., cataracts</td>
<td>1</td>
</tr>
<tr>
<td>C.H.D., septicemia</td>
<td>1</td>
</tr>
<tr>
<td>C.H.D., bronchiolitis</td>
<td>1</td>
</tr>
<tr>
<td>C.H.D., septicemia, pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>C.H.D., multiple anomalies of brain</td>
<td>1</td>
</tr>
<tr>
<td>C.H.D., pneumonia</td>
<td>3</td>
</tr>
<tr>
<td>Endocardial fibroelastosis</td>
<td>1</td>
</tr>
<tr>
<td>Down's Syndrome</td>
<td></td>
</tr>
<tr>
<td>Down's, pneumonia</td>
<td>2</td>
</tr>
<tr>
<td>Down's, congenital heart disease</td>
<td>1</td>
</tr>
<tr>
<td>Down's, aspiration pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Down's, cleft palate, blindness</td>
<td>1</td>
</tr>
<tr>
<td>Down's, pneumonia, septicemia, meningitis</td>
<td>2</td>
</tr>
<tr>
<td>Central Nervous System</td>
<td></td>
</tr>
<tr>
<td>Hydrocephalus, sepsis, peritonitis</td>
<td>1</td>
</tr>
<tr>
<td>Meningomyelocele, hydrocephalus, agenesis of kidney</td>
<td>1</td>
</tr>
<tr>
<td>Hydrocephalus, septicemia, meningitis</td>
<td>1</td>
</tr>
<tr>
<td>Werdnig-Hoffman Syndrome</td>
<td>2</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>1</td>
</tr>
<tr>
<td>Hydrocephalus, meningomyelocele</td>
<td>1</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
</tr>
<tr>
<td>Congenital malformation of small intestine, surgery, peritonitis</td>
<td>1</td>
</tr>
<tr>
<td>Hirschsprungs, peritonitis, septicemia, pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Volvulus, strangulated</td>
<td>1</td>
</tr>
<tr>
<td>Intussusception, aspiration pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Intestinal obstruction, pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Genito-urinary</td>
<td></td>
</tr>
<tr>
<td>Renal hypoplasia, ureteral strictures</td>
<td>1</td>
</tr>
<tr>
<td>Congenital urethral valves, hydrenephrosis</td>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Trisomy 18, congenital heart disease</td>
<td>1</td>
</tr>
<tr>
<td>E Trisomy, pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Galactosemia</td>
<td>1</td>
</tr>
<tr>
<td>Congenital agammaglobulinemia, sepsis</td>
<td>1</td>
</tr>
<tr>
<td>Multiple congenital malformations</td>
<td>1</td>
</tr>
<tr>
<td>Achondroplasia, pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
</tr>
<tr>
<td>Type</td>
<td>Number</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Accidents</td>
<td></td>
</tr>
<tr>
<td>Auto accidents</td>
<td>1</td>
</tr>
<tr>
<td>Drowning</td>
<td>1</td>
</tr>
<tr>
<td>Burns</td>
<td>3</td>
</tr>
<tr>
<td>Burns (homicide)</td>
<td>1</td>
</tr>
<tr>
<td>Burns, carbon monoxide poisoning</td>
<td>2</td>
</tr>
<tr>
<td>Falls</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>2</td>
</tr>
<tr>
<td>Fall, aspiration pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Drug overdose</td>
<td>1</td>
</tr>
<tr>
<td>Child abuse</td>
<td>1</td>
</tr>
<tr>
<td>Homicide</td>
<td>1</td>
</tr>
<tr>
<td>Aspiration pneumonia</td>
<td>4</td>
</tr>
<tr>
<td>Accidental strangulation</td>
<td>3</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Trauma, ? accidental, ? abuse</td>
<td>2</td>
</tr>
<tr>
<td>Cardiac arrest in surgery for cavernous hemangioma</td>
<td>1</td>
</tr>
<tr>
<td>Post surgical death</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
</tr>
</tbody>
</table>
CAUSES OF DEATH IN CHILDREN AGE 1 TO 4 YEARS

As would be expected in a technologically developed country, the major causes of death were accidents and other external causes: congenital malformations; infections; and malignant disease (Table 50).

Accidents and Other External Causes

Within this group, deaths due to auto accidents, drowning, carbon-monoxide, or burns play a prominent role. Also in this age group, falls, homicide, child abuse, aspiration pneumonia, aspiration of foreign body, or drug reactions appear (Table 51).

Congenital Malformations

Within this group, deaths due to congenital heart disease or malformations of the central nervous system (meningomyelocele or hydrocephalus) play a prominent role. In addition, 3 deaths occurred in children with Down's Syndrome. Some (6) of the deaths due to congenital malformation were associated with infection (Table 52).

Infection

Within this group, pneumonia, meningitis, or septicemia play a prominent role. The organism identified in the meningitis or sepsis cases was pneumococcus, H. influenzae, or meningococcus (Table 53).

Malignant Disease

Within this group, leukemia plays a prominent role (Table 54).

Birth Injury

This group of 3 deaths consist of 2 children with cerebral palsy with infection (1 pyelonephritis, the other pneumonia); and 1 child with intraventricular hemorrhage, hydrocephalus, and meningitis.
Endocrine and Metabolic Disease

This group of 2 deaths consists of 1 child with nephrosis, the other with Gaucher's disease.

Sudden Infant Death Syndrome

There were 2 deaths, 1 in a child with Down's Syndrome.
Table 50
Causes of Death in Children Age 1 to 4 Years

Overall Summary

<table>
<thead>
<tr>
<th>Cause by Group</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
</tr>
<tr>
<td>Accidents and other external causes</td>
<td>49</td>
</tr>
<tr>
<td>Congenital malformations</td>
<td>23</td>
</tr>
<tr>
<td>Infections</td>
<td>19</td>
</tr>
<tr>
<td>Malignant disease</td>
<td>16</td>
</tr>
<tr>
<td>Birth injury</td>
<td>3</td>
</tr>
<tr>
<td>Endocrine and metabolic disease</td>
<td>2</td>
</tr>
<tr>
<td>Sudden Infant Death Syndrome</td>
<td>2</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>115</td>
</tr>
</tbody>
</table>
Table 51

Deaths in Children Age 1 to 4 Years
Due to Accidents and Other External Causes

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidents</td>
<td></td>
</tr>
<tr>
<td>Auto accidents</td>
<td>12</td>
</tr>
<tr>
<td>Drowning</td>
<td>10</td>
</tr>
<tr>
<td>Carbon monoxide poisoning</td>
<td>6</td>
</tr>
<tr>
<td>Burns</td>
<td>4</td>
</tr>
<tr>
<td>Burns, carbon monoxide poisoning</td>
<td>3</td>
</tr>
<tr>
<td>Burns, carbon monoxide poisoning</td>
<td>1</td>
</tr>
<tr>
<td>Falls</td>
<td>2</td>
</tr>
<tr>
<td>Aspiration of foreign body</td>
<td>2</td>
</tr>
<tr>
<td>Struck by falling object</td>
<td>2</td>
</tr>
<tr>
<td>Drug reaction</td>
<td>2</td>
</tr>
<tr>
<td>Child abuse</td>
<td>2</td>
</tr>
<tr>
<td>Homicide</td>
<td>2</td>
</tr>
<tr>
<td>Aspiration pneumonia</td>
<td>2</td>
</tr>
<tr>
<td>Post-fall hydrocephalus</td>
<td>1</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>1</td>
</tr>
<tr>
<td>Stricture of oesophagus - due to lye</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac arrest during bronchoscopy</td>
<td>1</td>
</tr>
<tr>
<td>Hanging</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
</tr>
</tbody>
</table>
Table 52
Deaths in Children Age 1 to 4 Years Due to Congenital Malformation

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital Heart Disease</td>
<td></td>
</tr>
<tr>
<td>C.H.D. alone</td>
<td>8</td>
</tr>
<tr>
<td>C.H.D., cleft palate and lip, skeletal anomalies</td>
<td>1</td>
</tr>
<tr>
<td>Subendocardial fibroelastosis</td>
<td>1</td>
</tr>
<tr>
<td>Central Nervous System</td>
<td>8</td>
</tr>
<tr>
<td>Meningomyelocele</td>
<td>2</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>1</td>
</tr>
<tr>
<td>Meningomyelocele, meningitis</td>
<td>1</td>
</tr>
<tr>
<td>Meningomyelocele, ventriculitis</td>
<td>1</td>
</tr>
<tr>
<td>Hydrocephalus, bronchopneumonia</td>
<td>2</td>
</tr>
<tr>
<td>Microcephaly, aspiration pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Down's Syndrome</td>
<td>3</td>
</tr>
<tr>
<td>With pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>With aspiration of vomitus</td>
<td>1</td>
</tr>
<tr>
<td>With fibrocystic disease, pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>2</td>
</tr>
<tr>
<td>Biliary atresia</td>
<td>1</td>
</tr>
<tr>
<td>Strangulation of small intestine</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
</tr>
</tbody>
</table>
Table 53

Deaths in Children Age 1 to 4 Years Due to Infection

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>9</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>4</td>
</tr>
<tr>
<td>Pneumonia, mental retardation</td>
<td>1</td>
</tr>
<tr>
<td>Post rubeola pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Pneumonia, overwhelming sepsis</td>
<td>1</td>
</tr>
<tr>
<td>Pneumonia, post meningitis hydrocephalus</td>
<td>1</td>
</tr>
<tr>
<td>Tracheobronchitis</td>
<td>1</td>
</tr>
<tr>
<td>Meningitis</td>
<td>4</td>
</tr>
<tr>
<td>Meningitis</td>
<td>4</td>
</tr>
<tr>
<td>Septicemia</td>
<td>4</td>
</tr>
<tr>
<td>Septicemia, meningitis, sickle cell anemia</td>
<td>1</td>
</tr>
<tr>
<td>Meningococcemia</td>
<td>1</td>
</tr>
<tr>
<td>Meningococcemia with meningitis</td>
<td>1</td>
</tr>
<tr>
<td>Septicemia, sickle cell anemia</td>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>2</td>
</tr>
<tr>
<td>Viral hepatitis</td>
<td>1</td>
</tr>
<tr>
<td>Pyelonephritis, peritonitis, perirenal abscess, pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>
Table 54

Deaths in Children Age 1 to 4 Years Due to Malignant Disease

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia</td>
<td>9</td>
</tr>
<tr>
<td>Leukemia</td>
<td>8</td>
</tr>
<tr>
<td>Leukemia, mongolism</td>
<td>1</td>
</tr>
<tr>
<td>Wilms Tumor</td>
<td>3</td>
</tr>
<tr>
<td>Miscellaneous*</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

* Consists of one each of medulloblastoma, astrocytoma, retinoblastoma, malignant teratoma
SUDDEN INFANT DEATH

Sudden deaths in infancy are of increasing concern to the health professional and public in the United States today. In January 1972, Senate hearings called attention to the magnitude and scope of the problem at a National level. The University of California School of Public Health, Berkeley, Mortality Study, recorded a mortality rate of 127.4 per 100,000 live births due to the Sudden Infant Death Syndrome. Among the 898 deaths occurring in the study area during a one-year period, 57 or 6.4 percent were attributed to Sudden Infant Death Syndrome. However, the numbers within different subgroups were too small to validly assess the relationship of Sudden Infant Death Syndrome to race, sex, maternal parity, and season (See Appendices 19, 20, 21, 22).
There were 898 deaths of children under 5 years of age from June 1, 1969, to May 31, 1970, within a general population of 2,755,793 persons, 204,578 of whom (7.4 percent) were children under the age of 5. This study sample represented 94.9 percent of the total population of 2,903,481 within four counties (Alameda, Contra Costa, San Francisco, and San Mateo) of the San Francisco-Oakland Bay Area.

Among the 898 deaths, 570 (63.5 percent) were neonates, under 28 days of age, 213 (23.7 percent) were postneonates, 28 days to 12 months, and 115 (12.8 percent) were preschoolers, age 1 through 4 years.

Rates

The mortality rates of the study group by race and age group are summarized below:

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Rate</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant</td>
<td>17.5 per 1,000 live births</td>
<td>15.7 per 1,000 live births</td>
<td>28.8 per 1,000 live births</td>
<td>11.2 per 1,000 live births</td>
</tr>
<tr>
<td>Neonatal</td>
<td>12.7 per 1,000 live births</td>
<td>11.6 per 1,000 live births</td>
<td>20.5 per 1,000 live births</td>
<td>7.6 per 1,000 live births</td>
</tr>
<tr>
<td>Postneonatal</td>
<td>4.8 per 1,000 live births</td>
<td>4.1 per 1,000 live births</td>
<td>8.2 per 1,000 live births</td>
<td>3.5 per 1,000 live births</td>
</tr>
<tr>
<td>Preschool</td>
<td>0.7 per 1,000 population</td>
<td>0.6 per 1,000 population</td>
<td>1.1 per 1,000 population</td>
<td>0.5 per 1,000 population</td>
</tr>
</tbody>
</table>

The Black mortality rates were significantly higher than the White mortality rates among all three age groups.
Description of Study Population

Mean maternal age among Black mothers of deceased children (23.2 years) was significantly lower than that among White mothers of deceased children (25.2 years). A similar racial difference was found among fathers of deceased children.

Birth History

Among mothers of deceased children, 5.6 percent had no prenatal care; 10.9 percent had been delivered by cesarean section.

Among the 898 children, 12.5 percent were noted on the birth certificate or the hospital neonatal record to have had at least one congenital anomaly noted at birth. Congenital anomalies of the brain and central nervous system accounted for 22.1 percent, those of the cardiovascular system for 15.4 percent, and those affecting multiple systems accounted for 16.1 percent.

Low Birth Weight

Infants weighing 2500 grams or less at birth accounted for 56.5 percent of the 898 deceased children. Those weighing 1000 grams or less at birth accounted for 20.8 percent of the deceased children; those weighing between 1001 and 1500 grams for 14.4 percent, and those weighing between 1501 and 2500 grams for 21.3 percent.

A significantly greater proportion of Blacks (63.1 percent) than of the Whites (54.0 percent) were of low birth weight (2500 grams or less) and a significantly greater proportion of the Black low birth weight infants than of White low birth weight infants weighed 1500 grams or less at birth.

Mothers 40 years of age and over had the greatest proportion of low birth weight infants (69.6 percent). Mothers under 20 years of
age, second in frequency of low birth weight infants (2500 grams or less) had the greatest proportion of infants weighing 1500 grams or less at birth.

As expected, mothers with abnormal conditions related to pregnancy had a significantly greater proportion of infants weighing 2500 grams or less at birth than mothers without such conditions.

Circumstances of Death

Autopsies were performed on 736 (82.0 percent) of the 898 deaths and the autopsy data were considered in assigning cause of death in all of these.

Causes of Death

Mortality rates for the main causes of death within each age group are summarized below, in accord with the International Classification of Diseases, 1965.

<table>
<thead>
<tr>
<th>Infant</th>
<th>Rates per 100,000 live births</th>
</tr>
</thead>
<tbody>
<tr>
<td>All causes</td>
<td>1750.3</td>
</tr>
<tr>
<td>Certain causes of perinatal mortality</td>
<td>907.5</td>
</tr>
<tr>
<td>Congenital anomalies</td>
<td>281.7</td>
</tr>
<tr>
<td>Pneumonia and influenza</td>
<td>134.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neonatal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All causes</td>
<td>1274.1</td>
</tr>
<tr>
<td>Certain causes of perinatal mortality</td>
<td>900.8</td>
</tr>
<tr>
<td>Congenital anomalies</td>
<td>203.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postneonatal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All causes</td>
<td>476.1</td>
</tr>
<tr>
<td>Sudden infant death</td>
<td>118.5</td>
</tr>
<tr>
<td>Pneumonia and influenza</td>
<td>109.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preschool</th>
<th>Rates per 100,000 population</th>
</tr>
</thead>
<tbody>
<tr>
<td>All causes</td>
<td>70.9</td>
</tr>
<tr>
<td>External causes</td>
<td>29.0</td>
</tr>
<tr>
<td>Congenital anomalies</td>
<td>10.5</td>
</tr>
</tbody>
</table>
A retabulation of the causes of death using the Butler classification enabled a comparison of this study with the British Perinatal Mortality Study.

The main causes of death in the neonatal period were:

- Anoxia: 63.7%
- Congenital malformation: 7.5%
- Infections: 6.8%

Major causes during the postneonatal period were:

- Infections: 32.4%
- Sudden Infant Death Syndrome: 29.1%
- Congenital malformations: 23.0%

During the preschool period the major causes of death were:

- Accidents and other external causes: 42.6%
- Congenital malformations: 20.0%
- Infections: 16.5%
CHAPTER IV: PROBABILITY SAMPLE OF LIVE CHILDREN

DESCRIPTION OF STUDY SAMPLE

The Probability Sample of Live Children consisted of a sample of 10,315 persons, which included 699 children under 5 years of age, taken within the study area during an eighteen month period (June 1, 1969 through November 30, 1970). The greatest number of persons in the sample (4,074) were from Alameda County representing 0.403 percent of that county's study area population, the fewest were from San Mateo County (1,370) representing 0.276 percent of the study area population in that county. Contra Costa County contributed 2,258 people and San Francisco 2,613 people, representing 0.424 percent and 0.365 percent respectively of the study area population within each of those two counties. The study sample was thus composed of 10,315 persons, 39.5 percent of them from Alameda County, 21.9 percent from Contra Costa County, 13.3 percent from San Mateo County, and 25.3 percent from San Francisco County (Table 55).

Racial Composition

Alameda County had both the greatest number and largest proportion of Blacks within its sample, 750 persons, comprising 18.4 percent of its sample. San Mateo County had both the least number of Blacks (81) and the smallest proportion (5.9 percent) (Table 56). Other races, which in the San Francisco-Oakland Bay Area, are predominantly Orientals, comprised 11.8 percent of the sample in San Francisco County but only 2.2 percent in Contra Costa County. San Mateo County, where 2.9 percent of the sample population was of other races, contributed
the fewest number (39) to the total study sample. The total Probability Sample of Live Children was thus composed of 10,315 people, 8,385 (81.3 percent) of them White, 1,406 (13.6 percent) Black, and 524 (5.1 percent) of Other races.

Age

There were 699 children under 5 years of age, 6.8 percent of the total sample (Table 57). San Francisco and San Mateo Counties each had small proportions of children under 5 years of age, 5.0 and 5.1 percent, respectively, whereas, Alameda and Contra Costa Counties each had high proportions of this age group, 7.8 and 7.9 percent, respectively. Children under 1 year of age represented 1.4 percent of the total Probability Sample, drawn from a low of 0.5 percent in San Mateo County to a high of 1.7 percent in Alameda County. Children age 1 to 4 years of age represented 5.4 percent of the sample population. Alameda and Contra Costa Counties each had higher proportions of this age group, 6.1 and 6.5 percent, respectively, and San Mateo and San Francisco Counties lower, 4.6 and 3.8 percent, respectively. A finer breakdown of the sample population by age is contained in Appendix 23.

Income

Each interviewer asked the member of each household being interviewed for the total family income for the past twelve months. Income was recorded to the next lowest thousand dollars. Median total family income ranged from a low of $9,000 per year in Alameda County to a high of $11,800 per year in San Mateo County, with a median family income of $10,000 for the total sample population (Table 58).
Household Size

The number of rooms and the number of persons in each household sample were noted, and the percentage of households with more than 1.00 person per room computed for each county sample. The percentage of households with 1.01 or greater persons per room was 4.5 percent for the total study sample, ranging from 2.7 percent in San Mateo County to 5.6 percent in Alameda County (Table 59).
<table>
<thead>
<tr>
<th>County</th>
<th>Total Population</th>
<th>Number in Sample</th>
<th>Percent of Study Area</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>1,010,639</td>
<td>0.403</td>
<td>0.371</td>
<td>0.3714</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>732,446</td>
<td>0.142</td>
<td>0.276</td>
<td>0.365</td>
</tr>
<tr>
<td>San Francisco</td>
<td>497,034</td>
<td>0.219</td>
<td>0.253</td>
<td>0.253</td>
</tr>
<tr>
<td>San Mateo</td>
<td>715,674</td>
<td>0.365</td>
<td>0.365</td>
<td>0.365</td>
</tr>
<tr>
<td>Total</td>
<td>2,755,793</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 55

Number and Percent of Persons in Probability Sample of Live Children by County
Table 56
Number and Percent of Persons in Probability Sample of Live Children by Race and County

<table>
<thead>
<tr>
<th>County</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>San Francisco</td>
<td>3%</td>
<td>13%</td>
<td>87%</td>
<td>100%</td>
</tr>
<tr>
<td>San Mateo</td>
<td>5%</td>
<td>22%</td>
<td>73%</td>
<td>100%</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>4%</td>
<td>16%</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>Alameda</td>
<td>6%</td>
<td>25%</td>
<td>69%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
<td>87%</td>
</tr>
<tr>
<td>Black</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>13%</td>
</tr>
<tr>
<td>Other</td>
<td>0%</td>
<td>0%</td>
<td>97%</td>
<td>87%</td>
</tr>
</tbody>
</table>

By Race and County
Number and Percent of Persons in Probability Sample of Live Children

Table 56
Table 57
Number and Percent of Persons in Probability Sample of Live Children by Age and County

<table>
<thead>
<tr>
<th>Age</th>
<th>Unknown</th>
<th>0 to 4</th>
<th>5 to 9</th>
<th>10 to 19</th>
<th>20 to 44</th>
<th>45 to 64</th>
<th>65 and over</th>
</tr>
</thead>
<tbody>
<tr>
<td>County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alameda</td>
<td>1,748</td>
<td>86.1</td>
<td>7.8</td>
<td>1,288</td>
<td>31.6</td>
<td>902</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>2.6</td>
<td>0.6</td>
<td>24</td>
<td>0.6</td>
<td>450</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>10,315</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>2,258</td>
<td>63.5</td>
<td>7.9</td>
<td>677</td>
<td>31.3</td>
<td>532</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.4</td>
<td>0.5</td>
<td>26</td>
<td>1.1</td>
<td>138</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>1,370</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>San Francisco</td>
<td>2,613</td>
<td>69.6</td>
<td>7.8</td>
<td>498</td>
<td>19.1</td>
<td>675</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.2</td>
<td>0.8</td>
<td>33</td>
<td>1.3</td>
<td>337</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>2,613</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>San Mateo</td>
<td>1,370</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.5</td>
<td>0.8</td>
<td>11</td>
<td>0.8</td>
<td>110</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>1,370</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>142</td>
<td>1.4</td>
<td>5.4</td>
<td>699</td>
<td>25.7</td>
<td>3,374</td>
<td>32.7</td>
</tr>
<tr>
<td></td>
<td>10,315</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

By age and county, number and percent of persons in probability sample of live children.
Table 58

Distribution of Annual Family Income in Probability Sample of Live Children by County

<table>
<thead>
<tr>
<th>Income (thousands)</th>
<th>Median</th>
<th>0 to $5,999</th>
<th>$6,000 to $11,999</th>
<th>$12,000 to $17,999</th>
<th>$18,000 to $24,999</th>
<th>$25,000 and over</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>60</td>
<td>9.0</td>
<td>29</td>
<td>39</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>12</td>
<td>12.5</td>
<td>29</td>
<td>39</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>San Mateo</td>
<td>18</td>
<td>11.1</td>
<td>29</td>
<td>39</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>San Francisco</td>
<td>18</td>
<td>11.1</td>
<td>29</td>
<td>39</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>12.5</td>
<td>121</td>
<td>137</td>
<td>102</td>
<td>19</td>
</tr>
</tbody>
</table>

Note: The table shows the distribution of annual family income in thousands of dollars for the probability sample of live children by county.
Table 59

Percent of Households With 1.01 or More Persons Per Room
In Probability Sample of Live Children by County

<table>
<thead>
<tr>
<th>County</th>
<th>1.00 or less</th>
<th>1.01 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>94.4</td>
<td>5.6</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>95.7</td>
<td>4.3</td>
</tr>
<tr>
<td>San Mateo</td>
<td>97.3</td>
<td>2.7</td>
</tr>
<tr>
<td>San Francisco</td>
<td>96.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Total</td>
<td>95.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Total Persons Per Room

- 94.4
- 95.7
- 97.3
- 96.8
- 4.5
MOTHERS OF CHILDREN UNDER 5 YEARS OF AGE

In each household with a child under 5 years of age, specific information was elicited regarding the health, education, and reproductive history of the mothers of each of these children. There were 526 mothers (5.1 percent of the 10,315 people in the study sample) having 699 children of this age.

Age

Mothers age 15 to 19 years comprised 6.3 percent of the 515 mothers of known age of children under 5 years of age sample by the study, whereas mothers age 35 years and over comprised 15.8 percent of the sample (Table 60).

Education

Only 5.8 percent of the mothers with children under 5 years of age had an elementary school education or less. Another 10.7 percent had 4 or more years of college, ranging from 9.2 percent in Contra Costa County to 15.2 percent in San Francisco County. The median level of education was 11.6 years of schooling completed (Table 61).

Prenatal Care

Among the 520 natural mothers of children under 5 years of age in the study sample, 414 (79.6 percent) received prenatal care during the first trimester. Only 4 mothers (0.8 percent) began care during the eighth or ninth month of pregnancy.

The relationship of maternal education to the start of prenatal care was examined. Mothers receiving care during the first trimester were classed as one group, and those receiving it later as a
second group. Maternal education was also classified into two groups: those having less than a high school education, and those having at least 4 years of high school. A statistically significant difference was found between the two groups; mothers who have not completed their high school education come later for care than do mothers who have completed 4 years of high school (Table 62).

Use of Contraception

Mothers of children under 5 years of age interviewed by the study were asked whether they were using any form of contraception. Mothers currently pregnant and those mothers or fathers having been sterilized were omitted from consideration. There were 264 of the 444 mothers at risk (59.5 percent) who said that they were using some form of contraception.

The use of contraception declined with increasing age: among mothers aged 15 to 19 years, 74.2 percent, were using contraception, whereas among those 35 years and over, only 36.4 percent were using some contraceptive method (Table 63).

The use of contraception was significantly greater among mothers who had at least a high school education than among those who had completed 3 years of high school or less.
Table 60

Ages of Mothers of Children Under 5 Years of Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to 19 years</td>
<td>33</td>
<td>6.3</td>
</tr>
<tr>
<td>20 to 24 years</td>
<td>139</td>
<td>26.4</td>
</tr>
<tr>
<td>25 to 29 years</td>
<td>173</td>
<td>32.9</td>
</tr>
<tr>
<td>30 to 34 years</td>
<td>91</td>
<td>17.3</td>
</tr>
<tr>
<td>35 years and over</td>
<td>83</td>
<td>15.8</td>
</tr>
<tr>
<td>Unknown</td>
<td>7</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td>526</td>
<td>100.0</td>
</tr>
</tbody>
</table>

In Probability Sample of Live Children

<table>
<thead>
<tr>
<th>Age</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to 19 years</td>
<td>33</td>
<td>6.3</td>
</tr>
<tr>
<td>20 to 24 years</td>
<td>139</td>
<td>26.4</td>
</tr>
<tr>
<td>25 to 29 years</td>
<td>173</td>
<td>32.9</td>
</tr>
<tr>
<td>30 to 34 years</td>
<td>91</td>
<td>17.3</td>
</tr>
<tr>
<td>35 years and over</td>
<td>83</td>
<td>15.8</td>
</tr>
<tr>
<td>Unknown</td>
<td>7</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td>526</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 60
Table 61

Completed Years of Education of Mothers of Children Under 5 Years of Age In Probability Sample of Live Children by County

| County | 0 to 3 | 4 to 6 | 7 to 9 | 10 to 12 | 13 to 15 | 16 to 18 | 19 to 21 | 22 to 24 | 25 to 27 | 28 to 30 | 31 to 33 | 34 to 36 | 37 to 39 | 40 to 42 | 43 to 45 | 46 to 48 | 49 to 51 | 52 to 54 | 55 to 57 | 58 to 60 | 61 to 63 | 64 to 66 | 67 to 69 | 70 to 72 | 73 to 75 | 76 to 78 | 79 to 81 | 82 to 84 | 85 to 87 | 88 to 90 | 91 to 93 | 94 to 96 | 97 to 99 | 100 to 102 | 103 to 105 | 106 to 108 | 109 to 111 | 112 to 114 | 115 to 117 | 118 to 120 | 121 to 123 | 124 to 126 | 127 to 129 | 130 to 132 | 133 to 135 | 136 to 138 | 139 to 141 | 142 to 144 | 145 to 147 | 148 to 150 | 151 to 153 | 154 to 156 | 157 to 159 | 160 to 162 | 163 to 165 | 166 to 168 | 169 to 171 | 172 to 174 | 175 to 177 | 178 to 180 | Than 181 | Total |
|----------------------|--------|--------|--------|----------|
| Alameda | 5 | 2.1 | 11 | 4.7 | 46 | 19.7 | 101 | 43.2 | 58.8 | 25.0 | 35 | 38.9 | 48 | 20.5 | 239.8 | 100.0 | 11.6 | |
| Contra Costa | 0 | - | 3 | 2.3 | 0 | - | 0 | - | 3 | 2.3 | 0 | - | 131 | 100.0 | 11.6 | |
| San Mateo | 0 | - | 3 | 2.3 | 0 | - | 0 | - | 3 | 2.3 | 0 | - | 35 | 100.0 | 11.6 | |
| San Francisco | 4 | 4.0 | 4 | 4.0 | 10 | 10.1 | 42 | 42.4 | 122 | 23.7 | 55 | 10.7 | 516 | 100.0 | 11.8 | |
| Total | 9 | 1.7 | 21 | 4.1 | 90 | 17.4 | 219 | 42.4 | 122 | 23.7 | 55 | 10.7 | 516 | 100.0 | 11.6 | |

10 women with unknown amount of education were omitted from this table.
<table>
<thead>
<tr>
<th>Education</th>
<th>1st Trimester</th>
<th>2nd Trimester</th>
<th>3rd Trimester or Later</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Years High School or Less</td>
<td>83</td>
<td>20.2</td>
<td>36.5</td>
<td>114</td>
</tr>
<tr>
<td>4 Years High School or More</td>
<td>328</td>
<td>79.8</td>
<td>63.5</td>
<td>382</td>
</tr>
<tr>
<td>Total</td>
<td>411</td>
<td>100.0</td>
<td>85</td>
<td>100.0</td>
</tr>
<tr>
<td>Maternal Age</td>
<td>Contraceptive Users</td>
<td>Number</td>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>15 to 19 Years</td>
<td>31</td>
<td>23</td>
<td>74.2</td>
<td></td>
</tr>
<tr>
<td>20 to 24 Years</td>
<td>121</td>
<td>84</td>
<td>69.4</td>
<td></td>
</tr>
<tr>
<td>25 to 29 Years</td>
<td>151</td>
<td>93</td>
<td>61.6</td>
<td></td>
</tr>
<tr>
<td>30 to 34 Years</td>
<td>75</td>
<td>44</td>
<td>58.3</td>
<td></td>
</tr>
<tr>
<td>35 Years & Over</td>
<td>66</td>
<td>24</td>
<td>36.4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>444</td>
<td>264</td>
<td>59.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 63

Use of Contraception Among Mothers at Risk of Conception

<table>
<thead>
<tr>
<th>Education</th>
<th>Contraceptive Users</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary</td>
<td>23</td>
<td>5</td>
<td>21.7</td>
</tr>
<tr>
<td>1 to 3 Years of College</td>
<td>74</td>
<td>43</td>
<td>58.1</td>
</tr>
<tr>
<td>4 Years</td>
<td>189</td>
<td>122</td>
<td>64.6</td>
</tr>
<tr>
<td>High School</td>
<td>112</td>
<td>67</td>
<td>59.8</td>
</tr>
<tr>
<td>1 to 3 Years</td>
<td>44</td>
<td>27</td>
<td>61.4</td>
</tr>
<tr>
<td>College & More</td>
<td>44</td>
<td>27</td>
<td>61.4</td>
</tr>
<tr>
<td>Total</td>
<td>442</td>
<td>264</td>
<td>59.7</td>
</tr>
</tbody>
</table>

*Mothers currently pregnant, sterilized or whose partners had been sterilized were omitted from the table.
Among the 10,315 people sampled in the Probability Sample of Live Children, 699 (6.8 percent) were under 5 years of age. The 142 children less than 1 year of age comprised 1.4 percent of the total probability sample and the 577, age 1 to 4 years, 5.4 percent of the sample. The male:female was 1.02 with 50.5 percent male and 49.5 percent female (Table 64). Racially, 517 (74.0 percent) were White, 145 (20.7 percent) Black, and 37 (5.3 percent) of "Other races" (Table 65).

Breast Feeding

Among the 699 children under 5 years of age in the study sample, 468 (67.0 percent) were not breast fed at all. One hundred (14.3 percent) were breast fed for 1 to 3 months, 54 (7.7 percent) for 4 to 7 months, and 43 (6.1 percent) for 8 months or more (Table 66). It is apparent that since some of the infants were still being breast fed at the time of the interview, the data are understated with respect to duration of breast feeding. Although the frequency with which children were breast fed seems to increase with increasing maternal age, the difference is not statistically significant. Mothers with at least a high school education did not have a higher proportion of breast fed babies than those having less than 4 years of high school (Table 67).

Mothers who stated that they did not breast feed their children within the study sample were asked why they had not chosen to do so. Most (71.8 percent) gave the health of the child as the main reason for not breast feeding. The meaning of this response is unknown: that is, we do not know whether the child's health at birth necessitated bottle
feeding, or whether the mother believed that the child's well-being would best be served by bottle rather than breast feeding. Only 4.5 percent of the mothers in the study sample said that they did not breast feed due to a lack of desire or interest on their part (Table 68 and Appendix 24). It is interesting to note that mothers under 30 years of age gave the health of the child as the reason for not breast feeding in a significantly greater proportion of cases than did mothers 30 years of age and over. Maternal education was not significantly related to the reasons given for not breast feeding.
<table>
<thead>
<tr>
<th>County</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
<td>Other</td>
</tr>
<tr>
<td>Alameda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contra Costa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 64
In Probability Sample of Live Children by Race, Sex and County
Number and Percent of Children Under 5 Years of Age
<table>
<thead>
<tr>
<th>County</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>69</td>
<td>37</td>
<td>5</td>
<td>111</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>32</td>
<td>29</td>
<td>2</td>
<td>63</td>
</tr>
<tr>
<td>San Francisco</td>
<td>60</td>
<td>14</td>
<td>4</td>
<td>78</td>
</tr>
<tr>
<td>San Mateo</td>
<td>69</td>
<td>10</td>
<td>7</td>
<td>86</td>
</tr>
<tr>
<td>Total</td>
<td>217</td>
<td>74</td>
<td>20</td>
<td>311</td>
</tr>
</tbody>
</table>

In the table, the data represents the racial composition of children under 5 years of age in a probability sample of live children by county of residence.
<table>
<thead>
<tr>
<th>Age of Mother</th>
<th>not 1 to 3 Months</th>
<th>1 to 7 Months</th>
<th>8 Months or More</th>
<th>Unknown</th>
<th>Total</th>
<th>35 Years and Over</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to 19 years</td>
<td>7</td>
<td>18.9</td>
<td>0</td>
<td>2.7</td>
<td>27</td>
<td>100.0</td>
</tr>
<tr>
<td>20 to 24 years</td>
<td>14</td>
<td>7.1</td>
<td>2.1</td>
<td>1.0</td>
<td>137</td>
<td>100.0</td>
</tr>
<tr>
<td>25 to 29 years</td>
<td>12</td>
<td>9.2</td>
<td>9.2</td>
<td>5.1</td>
<td>160</td>
<td>100.0</td>
</tr>
<tr>
<td>30 to 34 years</td>
<td>10</td>
<td>8.4</td>
<td>8.4</td>
<td>3.3</td>
<td>76</td>
<td>100.0</td>
</tr>
<tr>
<td>35 Years and over</td>
<td>5</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>62</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>14.3</td>
<td>14.3</td>
<td>7.7</td>
<td>468</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Table 67
Breast Feeding During Infancy
In Probability Sample of Live Children by Education of Mother

<table>
<thead>
<tr>
<th>Education of Mother</th>
<th>1 to 3 years</th>
<th>4 to 78 months</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>College</td>
<td>88</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>1 to 3 years</td>
<td>56.0</td>
<td>14.3</td>
<td>12.4</td>
</tr>
<tr>
<td>4 years or more</td>
<td>21.0</td>
<td>3.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Total</td>
<td>157</td>
<td>42</td>
<td>9</td>
</tr>
</tbody>
</table>

High School	90	33	6
1 to 3 years	1512.2	73.2	6.4
4 years or more	1031.1	10.6	1.7
Total	1232	42	9

Elementary	26	9	0
1 to 3 years	35.6	75.0	0
4 years or more	13.0	25.0	5.7
Total	46	100.0	100.0

Unknown	9	75.0	0
1 to 3 months	0	0	0
4 to 78 months	0	0	0
8 months or more	0	0	0
Total	9	100.0	100.0
Table 68

Reasons for Not Breast Feeding
In Probability Sample of Live Children by Age of Mother

<table>
<thead>
<tr>
<th>Age of Mother</th>
<th>Health of Child</th>
<th>Other Reasons*</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Than 30 Years</td>
<td>247</td>
<td>60</td>
<td>17</td>
<td>324</td>
</tr>
<tr>
<td>30 Years and Over</td>
<td>87</td>
<td>35</td>
<td>16</td>
<td>138</td>
</tr>
<tr>
<td>Unknown</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>336</td>
<td>95</td>
<td>37</td>
<td>468</td>
</tr>
</tbody>
</table>

* Includes health of mother, insufficient milk and no desire to breast feed
HEALTH CARE OF CHILD

Common Childhood Diseases

Table 69 describes the ages at which the children in the study sample had the common communicable diseases of childhood. Diseases included were rubella, measles, mumps, chickenpox, and pertussis. It should be remembered that the study period (July 1, 1969 through November 30, 1970) began just prior to the large scale rubella immunization programs.

Immunizations

Table 70 describes the number of children known to have had any of the following immunizations: D.P.T., polio, smallpox, rubella, measles, mumps, other vaccines (typhoid, influenza, etc.). It should be noted that the study period began just prior to the national immunization programs for rubella vaccine. In the study sample, only 2.2 percent of the children under 5 years of age had been immunized against rubella, whereas 97.2 percent had received any polio vaccine.

The schedule for active immunization of normal infants and children recommended by the Committee on Infectious Diseases of the American Academy of Pediatrics is as follows:

<table>
<thead>
<tr>
<th>Age</th>
<th>Vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 months</td>
<td>DPT</td>
</tr>
<tr>
<td>4 months</td>
<td>DPT</td>
</tr>
<tr>
<td>6 months</td>
<td>DPT</td>
</tr>
<tr>
<td>1 year</td>
<td>measles</td>
</tr>
<tr>
<td>1 to 12 years</td>
<td>rubella</td>
</tr>
<tr>
<td>1 year 6 months</td>
<td>DPT</td>
</tr>
<tr>
<td>4 to 6 years</td>
<td>DPT</td>
</tr>
</tbody>
</table>
Medical Attention

Mothers interviewed in the Probability Sample of Live Children were asked whether each of their children under 5 years of age had been attended by a physician or in a clinic or hospital during the past year. Among the 588 children about whom such information was known, 80.2 percent had received medical attention of some kind during the past year (Table 71). There were no significant differences by county in the numbers of children having received medical attention during the past year.

Care of Child

The person who cared for each of the children under 5 years of age for most of the day was recorded and the relationship of the type of caretaker to maternal age and education explored. Fewer mothers with at least a high school education cared for their own children than those with less than 4 years of high school (Table 72). However, there was no relationship between age of mother and the type of caretaker. It is interesting to note the small number of children in day care.
Table 69

Ages At Which Children Under 5 Years of Age Had Common Childhood Diseases
In Probability Sample of Live Children

<table>
<thead>
<tr>
<th>Age</th>
<th>Rubella</th>
<th>Measles</th>
<th>Mumps</th>
<th>Chickenpox</th>
<th>Pertussis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>never had</td>
<td>had disease</td>
<td>unknown</td>
<td>disease</td>
<td>unknown</td>
</tr>
<tr>
<td>1 year</td>
<td>63</td>
<td>69</td>
<td>1.0</td>
<td>15</td>
<td>2.1</td>
</tr>
<tr>
<td>1 to 3 years</td>
<td>91</td>
<td>7</td>
<td>3.0</td>
<td>24</td>
<td>3.4</td>
</tr>
<tr>
<td>3 to 4 years</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>5 to 6 years</td>
<td>1</td>
<td>7</td>
<td>0.8</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>699</td>
<td>100.0</td>
<td>131</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Note: The table provides data on the ages at which children under 5 years of age had common childhood diseases in a probability sample of live children. The diseases listed are Rubella, Measles, Mumps, Chickenpox, and Pertussis.
<table>
<thead>
<tr>
<th>Type of Immunization</th>
<th>Number Immunized</th>
<th>Percent Immunized</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.P.T.</td>
<td>643</td>
<td>97.2</td>
</tr>
<tr>
<td>Polio</td>
<td>639</td>
<td>91.2</td>
</tr>
<tr>
<td>Measles</td>
<td>645</td>
<td>71.8</td>
</tr>
<tr>
<td>Smallpox</td>
<td>639</td>
<td>71.8</td>
</tr>
<tr>
<td>Mumps</td>
<td>619</td>
<td>92.2</td>
</tr>
<tr>
<td>Rubella</td>
<td>640</td>
<td>61.2</td>
</tr>
<tr>
<td>Other Vaccines</td>
<td>646</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Number and Percent of Children Under 5 Years of Age In Probability Sample of Live Children Having Had Any Immunizations
Table 71

Medical Care to Children in Probability Sample of Live Children By County

<table>
<thead>
<tr>
<th>County</th>
<th>Children Having Had Medical Attention During Past Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
</tr>
<tr>
<td>Alameda</td>
<td>257</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>146</td>
</tr>
<tr>
<td>San Mateo</td>
<td>55</td>
</tr>
<tr>
<td>San Francisco</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>558</td>
</tr>
<tr>
<td>Year</td>
<td>1 to 3</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1906</td>
<td>217</td>
</tr>
<tr>
<td>1910</td>
<td>608</td>
</tr>
<tr>
<td>1915</td>
<td>534</td>
</tr>
</tbody>
</table>

Table 72: Care of Children in Probability Sample of Live Children by Education of Mother
SUMMARY

The Probability Sample of Live Children was drawn from a general population of 2,755,793 within the study area during an eighteen-month study period (June 1, 1969 through November 30, 1970). Among the 10,315 members of the 4,000 households interviewed, there were 699 children under 5 years of age who fell into the study sample. Children under 1 year of age comprised 1.4 percent of the population sampled; those 1 to 4 years of age, 5.4 percent, for a combined total of 6.8 percent of the 10,315 people in the sample.

Household Data

Median family income for the sample was $10,000 and the percentage of households with 1.01 or more persons per room was 4.5 percent.

Mothers of Children Under 5 Years of Age

Among the 10,315 people in the sample, 526 (5.1 percent) were mothers of children under 5 years of age. Of the 526 mothers, those age 15 to 19 years comprised 6.3 percent and those 35 years and over 15.8 percent.

Median level of education was 11.6 years of school completed, only 5.8 percent having had an elementary school education or less.

Among the 520 natural mothers of children under 5 years of age, 414 (79.6 percent) began prenatal care during the first trimester. Maternal education was significantly related to the time at which prenatal care was begun: mothers with 4 or more years of high school came earlier for care than did those without a high school diploma.
The use of contraception declined with increasing age and was significantly related to maternal education, i.e. high school graduates more frequently used some method of contraception.

Children Under 5 Years of Age

Among the 699 children in the sample, 50.5 percent were male and 49.5 percent female. There were 517 (74.0 percent) Whites, 145 (20.7 percent) Blacks, and 37 (5.3 percent) of "Other races."

Only 33 percent of the 699 children were known to have been breast fed at all; younger mothers significantly more often gave the health of the child as the reason for not breast feeding than did older mothers.

At the time the sample was taken, 97.2 percent of the children under 5 years of age had had any D.P.T. immunizations and 91.2 percent any polio immunization.

Among the 588 children about whom such information was accurately known, 80.2 percent had had some form of medical attention during the past year.

Significantly fewer mothers who had completed high school cared for their own children throughout the day than did mothers with less schooling.
CHAPTER V: LIMITATIONS OF STUDY

The limitations of the University of California School of Public Health, Berkeley, Investigation of Mortality in Childhood may be divided into three major categories: 1) Limitations imposed by the design of the international collaborative study, within which the University of California, Berkeley Study was a participating project; 2) Limitations imposed by the quality and variability of data; and 3) Limitations imposed by budgetary considerations.

The design of the Inter-American Investigation of Mortality in Childhood was composed of two main components: 1) The Mortality Component, which consisted of an accumulation of data on all deaths to children under 5 years of age within the study area during a specified period; 2) The Probability Sample of Live Children, which contained information on a sample of live children under 5 years of age gathered through home interviews.

The Mortality Component

In the Mortality Component, although questionnaires designed for the large scale collaborative study were modified to suit local needs and interests, the major emphasis of much of the data collected was directed toward problems more prevalent in Latin America. For example, case discussion and analysis were often limited by the paucity of obstetrical information regarding the deceased child or his mother. To compensate for this lack of data, the University of California study staff introduced a two page supplement regarding labor and delivery into the Mortality Questionnaire (Appendix 2). This information was
utilized by the University of California study staff in arriving at the most comprehensive cause of death for each child.

The quality of data available for analysis by the Mortality Component of the Study was variable due to the lack of uniformity of source material. There were several places at which the study staff encountered variations in quality and content. Death certificates completed by physicians and clerks and processed by state and county health departments gave evidence of qualitative variation. It should be noted that as far as is known, no deaths of children under 5 years of age within the study area went unrecorded by the county and/or state offices of vital statistics. Birth certificates matched to death certificates showed fewer variations. In very few cases (approximately six) was the study staff unable to locate and match the birth and death certificates of deceased children. The quality of data abstracted from hospital records varied from place to place. However, review and subsequent follow-up by the medical staff of the study eliminated some of this variation in quality. Clinical material was supplemented by postmortem examination in 82.0 percent of the 898 deaths studied. While 700 of the 736 autopsies performed (95.1 percent) were designated as complete by the study staff, 10 of the 211 medicolegal autopsies were classified as incomplete. This lack of complete information was particularly distressing when such autopsies were performed on children dying suddenly in infancy. Another limitation of the study was some lack of homogeneity between groups reviewing cases during the weekly case conferences. Although the first Project Director (F.C.) was at every meeting and two of the Maternal and Child Health Faculty members attended most, but not all, meetings, other physicians attending these case conferences varied from week to week.
Budgetary restrictions were responsible for three meaningful limitations of the Mortality Component of the study. The cost of home interviews to the families of each of the deceased children was prohibitive; this was also true for inclusion of the entire San Francisco-Oakland Standard Metropolitan Statistical Area within the boundaries of the study. Further, abstraction of hospital and medical records by professional medical personnel would possibly have enhanced the quality of data.

The Probability Sample of Live Children

The Probability Sample of Live Children consists of data gathered in home interviews by professionally trained personnel of the University of California, Berkeley, Survey Research Center, under contract to the School of Public Health Mortality Study. As noted in the discussion of the Mortality Questionnaire, local needs and interests were somewhat limited by the requirements of participation in collaborative study. Questions regarding health care services and use of contraception were added, but the thrust of the data collected is toward the interests of the Latin American countries.

The availability of population data for the study was dependent upon the United States Census Bureau and was limited. Racial groups considered by the Census Bureau are White, Black, and Other, whereas the Mortality Study had allowed for the more detailed classification of White, Black, White with Spanish surname, Orientals, and Other. Since denominators were not available from the U.S. Census Bureau for each of these subgroups, the study staff was unable to calculate rates by any finer breakdown. The greatest limitation imposed by the use of census data was the unavailability of 1970 individual census tract
material for use in the analysis of study findings. Population data for the study area, as well as the numbers of live births, were of necessity estimates based on the 1970 census figures for each of the four counties. That is, individual census tract figures were not available to compute the exact numbers of persons, by race, sex, age, and so on, contained within each of the four counties within the study area. Instead, total figures for each county were multiplied by the proportion of each county that each study area represented to derive denominators for the study area.
CHAPTER VI: SUMMARY AND RECOMMENDATIONS

Summary

The University of California School of Public Health, Berkeley, Investigation of Mortality in Childhood collected data on all deaths within a study area comprising 2,755,793 people, during a one-year period from June 1, 1969 through May 31, 1970. In addition, a population of live children was sampled within the same study area during an eighteen-month period, June 1, 1969 through November 30, 1970, to examine characteristics of the population from which the deceased children were drawn.

There were 898 deaths of children under 5 years of age within the study area during the one-year study period. Infants comprised 87.2 percent (neonates 63.5 percent and postneonates 23.7 percent) and preschoolers, age 1 to 4 years, 12.8 percent of the deaths. The infant mortality rate was 17.5 deaths per 1,000 live births: with a neonatal rate of 12.7 per 1,000 live births and a postneonatal rate of 4.8 per 1,000 live births. The preschool mortality rate was 0.7 per 1,000 population, aged 1 to 4 years in the study area. Blacks had significantly higher mortality rates within each age group. There were, in addition, variations in rates by county.

"Certain Causes of Perinatal Mortality", categories 760-778 in the International Classification of Disease were the predominant cause of death during infancy, with a rate of 907.5 (51.8 percent) of the 1750.3 deaths per 100,000 live births. "Causes of Perinatal Mortality" were responsible for 70.7 percent of the deaths during the neonatal period (under 28 days), whereas the Sudden Death Syndrome in
Infancy was the major cause of death during the postneonatal period (28 days to 11 months), claiming 24.9 percent of the deaths during this period. Accidents were the leading cause of death during the preschool years (1 to 4), with a rate of 29.0 deaths per 100,000 population, comprising 41.4 percent of the 70.9 deaths per 100,000 population occurring in that age group. Congenital anomalies were the second largest cause of death in infancy and the preschool years, responsible for 16.1 percent and 14.8 percent of the deaths, respectively, within each age group.

A reclassification of the causes of death using the system devised by Butler in his study of Perinatal Mortality, organized the results in a clinicopathologic framework. Anoxia was the leading cause of death during the neonatal period, infections during the post-neonatal period, and accidents during the preschool years.

The Probability Sample of Live Children consisted of a sample of 10,315 people drawn from 4,000 households sampled in the study area during the 18-month study period. There were 699 children in the sample, 142 of them under 1 year of age and 557 of them 1 to 4 years of age, representing 1.4 and 5.4 percent respectively of the total sample. The racial composition was 74.0 percent White, 20.7 percent Black, and 5.3 percent of "Other Races."

Significant findings included positive correlations between maternal education and the initiation of prenatal care and the use of contraception. Reasons given for not breastfeeding were also significantly related to maternal education.

Childhood immunizations for D.P.T. and polio were administered in 97.2 percent and 91.2 percent, respectively, of the children under
5 years of age. Among the 558 children for whom such information was available, 80.2 percent were known to have had some type of medical attention during the year prior to when the sample was taken.

Recommendations

Recommendations based on the conclusions reached by the study may be divided into two categories: those based upon the design and conduct of the study and those based upon the actual results of the study.

Recommendations based upon the conduct of the study may be further subdivided into those relating to the study design and those concerning the quality of data retrieved by the study.

Recommendations Regarding Study Design

1. The incorporation of obstetrical consultants in the planning and conduct of the study would enhance the quality of data, particularly in regard to the obstetrical antecedents of neonatal causes of death, and would expand the teaching and research capabilities of the study.

2. Continuous monitoring and evaluation of each project at local and central levels would assure greater uniformity between collaborating groups.
 a. Provision of personnel at a central level would increase uniformity.
 b. On-site visits by project personnel to other collaborating projects would encourage an interchange of information at an operational level.
Recommendations Regarding Quality of Data

1. Consideration should be given to the development of a different type of certificate for recording and reporting information in regard to live births and the deaths of infants and young children. Potential changes might include the use of a combined live birth-death certificate, requiring only one certificate, instead of two, in the case of a live birth and early neonatal death.

2. Physicians should be made aware of the meaning and usefulness of accurately completed birth and death certificates and the official circumstances regarding completion and filing of the certificate should favor, not hinder, accuracy. Medical students and resident staff should be educated to the uses of data from birth and death certificates and the potentials for improvement of vital statistics.

3. Hospitals and physicians should be encouraged to adopt more uniform formats for records. The development of new forms could be initiated at national or international level by governmental agencies with the participation of university personnel.

4. Because of the variation in the quality of postmortem examination, including those done under medicolegal supervision, the adoption of recommended national guidelines for the conduct of postmortem examinations would encourage uniformity and accuracy of autopsy data.

5. Antecedent maternal health information should be included on all of the above documents, that is, birth and perinatal death certificates, medical and hospital records, and autopsy records.

Recommendations Based on Analysis of Data

1. The mortality component of the project pointed up the
need for continued study of infant and early childhood mortality, including socioeconomic aspects. The mortality rates for Blacks were significantly higher than those for Whites at each age group within each county studied.

a. The differences in mortality rates should be investigated to determine the influence of health care delivery systems and other factors on these rate differentials.

2. Each age group studied is characterized by one or two causes of death which far exceed all others in that group. Continued research support and medical and public attention must be given to the etiology, diagnosis, and prevention of each of these diseases.

a. Causes of Perinatal Morbidity and Mortality (including neonatal anoxia and low birth weight) during the neonatal period.

1) It is recommended that more operational research be undertaken to evaluate the manifold methods of care of the low birth weight or other high risk newborn.

b. Sudden Infant Death Syndrome during the postneonatal period.

1) It is recommended that public health and medical personnel should study in depth the causes and prevention of Sudden Infant Death.

2) It is recommended that the public be continually advised of new developments in the field and the burden of guilt of parents of children dying of
Sudden Infant Death Syndrome be alleviated through programs of public education.

c. Accidents during the preschool period.

1) Continued research should be directed into the nature and causes of early childhood accidents in defining high risk families and children and specific environmental circumstances.

2) Public education should be intensified and include programs for parents and for children at nursery, elementary, and high school levels in the prevention and treatment for accidents and accident victims.

 a) The public should be advised of characteristic patterns of major accidents under particular conditions: for example, the time of day, age of child and his supervision, and the activity of parents or guardians concerned.

3. The relationship of maternal education to health related behavior, often described, was exemplified by findings in the Probability Sample of Live Children.

 a. Education in the need for health maintenance should begin at the nursery or elementary school level, not delayed until high school or college level, when some of those at risk have already dropped out of school or begun their own families.

4. A survey should be undertaken to assess the effectiveness of the national and local programs to immunize all children. Through participation in the Inter-American Investigation of Mortality in
Childhood, the staff of the University of California School of Public Health, Berkeley, project has formulated two major recommendations to add to those above:

1. State and local health departments should assume responsibility for the stimulation, planning, and conduct of community-wide research on perinatal, infant, and childhood mortality on an individual case basis.

2. The Pan American Health Organization and the Maternal and Child Health Service of the U.S. government should give consideration to planning other collaborative studies which would be of value to other countries concerned and to which the collaborative framework would lend strength. It would be particularly advantageous to initiate and conduct such research with project personnel from the collaborative study.
References

APPENDICES

1. Map of San Francisco - Oakland Standard Metropolitan Statistical Area showing Study Area
2. Mortality Component Questionnaire
3. Variables Coded From Mortality Questionnaire
4. Childhood Accident Mortality in the San Francisco Bay Area
5. Probability Sample Questionnaire
6. Variables Coded From Probability Sample Questionnaire
7. - 23. Tables
Appendix E.

Map of San Francisco S.M.S.A.

Study Area

County lines

One inch = 8 miles
APPENDIX 2

INTER-AMERICAN INVESTIGATION
OF MORTALITY IN CHILDHOOD
CALIFORNIA STUDY - PH 205

FACE SHEET
MORTALITY SERIES

<table>
<thead>
<tr>
<th>Req.</th>
<th>PROCEDURE</th>
<th>DATE COMPLETED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hospital Record</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autopsy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical Doctor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Home Visit</td>
<td></td>
</tr>
</tbody>
</table>

Type of Case: Hospital ☐ Coroner ☐ Home ☐

Autopsy: Yes ☐ No ☐

Hospitals:
1. ____________________________
2. ____________________________
3. ____________________________
4. ____________________________
5. ____________________________

Physicians:
1. ____________________________ ____________________________ ________
2. ____________________________ ____________________________ ________
3. ____________________________ ____________________________ ________

Other Sources: ____________________________

INTER-AMERICAN INVESTIGATION OF MORTALITY IN CHILDHOOD
California Study

<table>
<thead>
<tr>
<th>1. Name of child</th>
<th>2. Serial no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Date of birth</td>
<td>4. Date of death</td>
</tr>
<tr>
<td>5. Sex</td>
<td>6. Age at death yrs. mos. days hrs.</td>
</tr>
<tr>
<td>7. Address</td>
<td></td>
</tr>
</tbody>
</table>

HOUSING

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Toilet: Flush Other None</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

13. HOUSEHOLD ROSTER

<table>
<thead>
<tr>
<th>Ind. no.</th>
<th>Name</th>
<th>Relation to head</th>
<th>Date of birth*</th>
<th>Age</th>
<th>Sex</th>
<th>Marital status</th>
<th>Education</th>
<th>Length of residence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Enter date of birth for children under 6 years.

14. OCCUPATION

<table>
<thead>
<tr>
<th>Ind. no.</th>
<th>Name</th>
<th>Currently employed</th>
<th>Occupation</th>
<th>Kind of business</th>
<th>Time in occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. DEATHS IN HOUSEHOLD IN PAST YEAR

<table>
<thead>
<tr>
<th>Name of deceased</th>
<th>Age</th>
<th>Sex</th>
<th>Date</th>
<th>Home/Hosp.</th>
<th>Name of hospital</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. PREGNANCY HISTORY OF MOTHER

<table>
<thead>
<tr>
<th>Order</th>
<th>Date pregnancy ended</th>
<th>Abortion?</th>
<th>Stillbirth?</th>
<th>Live births</th>
<th>Name of child</th>
<th>Sex</th>
<th>Living now?</th>
<th>Age at death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. Pregnant now? Yes ☐ No ☐ Unknown ☐

18. Remarks:

19. Source of information: Name ___________ Ind. no. _______ Date _______ Interviewer _______
INTER-AMERICAN INVESTIGATION OF MORTALITY IN CHILDHOOD

California Study

Date of Death

- **Serial no.**
- **Name of child**

Data on Parents

<table>
<thead>
<tr>
<th>Ind. no.</th>
<th>Name</th>
<th>Live here?</th>
<th>Date of birth</th>
<th>Age</th>
<th>Marital status</th>
<th>Education</th>
<th>Employed now?</th>
<th>Occupation</th>
<th>Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21. **Was the mother of this child seen by physician, or in a clinic or hospital during pregnancy?**
 - Yes []
 - No []
 - Unknown []

 If yes, name of physician, clinic or hospital __ Dates __

 Reason __

22. **Length of pregnancy** __________ months

23. **Were there complications during pregnancy?**
 - Edema [] Yes []
 - Convulsions [] Yes []
 - Threatened abortion [] Yes []
 - Hemorrhage [] Yes []
 - Trauma [] Yes []
 - Operation [] Yes []
 - Specify __

24. **Infectious disease** [] Specify __

25. **Where born?**
 - Home []
 - Hospital []
 - Name and address __

26. **Who attended birth?**
 - Doctor []
 - Midwife []
 - Other []
 - Certificate no. __

27. **Was the general aspect of child good at birth?**
 - Yes []
 - No []

28. **Birth weight** __________

29. **Did you breast feed the child?**
 - Yes []
 - When did you start weaning? Age __________ months
 - When did you finish weaning? Age __________ months
 - No []
 - Why not? __

30. **Was other milk used?**
 - Yes []
 - At what age? __________ months or __________ days
 - Composition: Milk __________ Water __________
 - Was use of milk continued? __

31. **Was other weaning food used?** __

32. **Give age in months when foods were added:**
 - Juices: __________
 - Cereals: __________
 - Pulses: __________
 - Roots, tubers: __________
 - Leafy vegetables: __________
 - Eggs: __________
 - Poultry: __________
 - Meat: __________
 - Fish: __________

 Composition:
 - Times per week __________
 - Times per week __________

33. **At what age (in months) did child do the following:**
 - a) Raise head? __________
 - b) Seat self? __________
 - c) Stand alone? __________
 - d) Walk alone? __________
 - e) Control bladder? __________
 - f) Control bowels? __________
 - g) Feed self? __________

34. **Who cared for child most of day?**
 - Mother []
 - Grandmother []
 - Sibling (15 yrs. +) []
 - Sibling (-15 yrs.) []
 - Other relative []
 - Maid []
 - Day care []
 - Other []

35. **Has your child been vaccinated?**
 - Yes []
 - No []
 - Unknown []
 - If yes, which vaccinations __

36. **At what age in months did child have following:**
 - a) German measles? __________
 - b) Measles? __________
 - c) Chickenpox? __________
 - d) Whooping cough? __________
 - e) Mumps? __________

37. **Remarks:** __

38. **Source of information:**
 - Mother []
 - Father []
 - Other []

 Date __________

 Interviewer __________
INTER-AMERICAN INVESTIGATION OF MORTALITY IN CHILDHOOD

California Study

Death - page 1

<table>
<thead>
<tr>
<th>Name of child</th>
<th>Serial no</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date of birth | **Date of death** | **Sex** | **Age at death** | **yrs.** | **mos.** | **days** | **hrs.** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

39. During the past year, has this child been attended by a physician or in a clinic or hospital? Yes [] No [] Unknown []

<table>
<thead>
<tr>
<th>Name of physician, clinic or hospital</th>
<th>Type*</th>
<th>Dates</th>
<th>Days in hospital</th>
<th>Reason</th>
<th>Number of visits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Indicate whether clinic (health center or hospital) C, in-patient in hospital H, practicing physician P, emergency E.

40. Did the child receive medical attention before the past year? Yes [] No [] Unknown []

<table>
<thead>
<tr>
<th>Name of physician, clinic or hospital</th>
<th>Type*</th>
<th>Dates</th>
<th>Days in hospital</th>
<th>Reason</th>
<th>Number of visits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Indicate whether clinic (health center or hospital) C, in-patient in hospital H, practicing physician P, emergency E.

41. Disease

- **a)** How long was the child ill?
- **b)** How did illness start?
- **c)** What disease do you think caused the child's death?

42. Description of the disease by the mother

-
-
-
-

43. Home treatment

-
-
-
-

44. Prescriptions

-
-
-
-

45. Whom prescribed?

-
-
-
-

46. Did the mother see signs of malnutrition? (edema, loss of weight, changes in hair or skin)

-
-
-
-

47. To doctor

- **a)** Was child taken to doctor? Yes [] No []
- **b)** How many days after onset of illness?
- **c)** What condition of child? Slightly ill [] Moderately ill [] Very ill []

48. Where did child die?

- Home [] Hospital [] Name ___________________________ Other []

49. Death certificate number

- ___________________________

50. Source of information: Mother [] Father [] Other []

- Date ___________________________ Interviewer ___________________________
INTER-AMERICAN INVESTIGATION OF MORTALITY IN CHILDHOOD
California Study

Name of child
Serial no.
Date of birth
Date of death
Sex
Age at death yrs. mos. days hrs.

DATA OBTAINED FROM HOSPITAL, CLINIC OR PHYSICIAN

51. Abnormal conditions of pregnancy
- None
- Edema
- Hypertension
- Albuminuria
- Convulsions
- Hyperemesis
- Anemia
- Threatened abortion
- Placenta previa
- Other, specify

52. Conditions unrelated to pregnancy
- None
- German measles
- Tuberculosis
- Syphilis
- Operation: reason, findings
- Trauma, specify
- Other, specify

53. Delivery
- Spontaneous
- Manipulation
- Forceps
- Cesarean
- Anesthesia
- Sedation
- Other, specify

54. Length of gestation
55. Single or multiple birth

DATA ON CHILD (age in completed months in first line)

56. Age
- At birth

57. Weight

58. Nutritional status

59. Data on newborn from record

General state: Good □ Fair □ Poor □
Activity: Normal □ Abnormal □
First cry min. First breathing min. □
Movements: Normal □ Abnormal □
Muscular tone: Increased □ Normal □ Decreased □
Head - Size: Increased □ Normal □ Decreased □
Shape: Normal □ Abnormal □
Cephalohematoma □ Lacerations □
Eyes, nose, ears, mouth
Neck - Rigidity: Yes □ No □ Masses □
Chest:
First voiding hrs. First bowel movement hrs.
First feeding hrs. Type □ Acceptance □ Rejection □
Progress:

60. Principal findings in hospital and clinics, prior to illness leading to death

Source of information:
- Hospital □ Clinic □ Private M.D. □ Other □
Date □ Interviewer □
<table>
<thead>
<tr>
<th>Column</th>
<th>Question</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>Serial No.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Weight Gain In Pregnancy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. too little (less than 15 lbs.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. normal (15-25 lbs.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. excessive (more than 25 lbs.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. not recorded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E.D.C. ____________ L.M.P. _________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other Antepartum Complications: ____________________________</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Blood Serology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. not recorded</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Rh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. not recorded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibodies:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Membranes Ruptured 24 Hours Or More Before Delivery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. no</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. not recorded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Details:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Quantity Of Amniotic Fluid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. oligohydramnios</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. polyhydramnios</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. not recorded</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Color Of Amniotic Fluid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. clear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. meconium stained</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. meconium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. bloody</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. other</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. not recorded</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fever (over 99°F or 37.2°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. no</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. not recorded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Details: degree ______ duration ________</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intrapartum Course:

Details:

PH 205 Mortality Supplement 13 Jan. 70 - 80
<table>
<thead>
<tr>
<th>Column</th>
<th>Question</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-13</td>
<td>First Stage Of Labor-Duration</td>
<td></td>
</tr>
<tr>
<td>14-15</td>
<td>Analgesia-details:</td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td>Second Stage Of Labor-Duration</td>
<td></td>
</tr>
<tr>
<td>18-19</td>
<td>Analgesia-details:</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Fetal Distress During Labor 1. no 2. yes 9. not recorded</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Presentation 1. vertex 2. breech 3. other 9. not recorded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complications:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reasons for cesarean:</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Blood Loss At Delivery _______ cc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. normal (average) - up to 250 cc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. moderately excessive - 251 to 500 cc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. excessive (hemorrhage) - over 500 cc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Details:</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Placenta/Cord 1. normal 2. abnormal 9. not recorded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Details:</td>
<td></td>
</tr>
<tr>
<td>79-80</td>
<td>Deck Identification</td>
<td>1, 5</td>
</tr>
</tbody>
</table>

Deck Identification: 1, 5
<table>
<thead>
<tr>
<th>Name of child</th>
<th>Serial no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of birth</td>
<td>Date of death</td>
</tr>
</tbody>
</table>

PRESENT ILLNESS - EVENTS THAT LED TO DEATH OF THE CHILD

<table>
<thead>
<tr>
<th>62. Date disease started</th>
<th>63. How disease started</th>
</tr>
</thead>
</table>

64. Main symptoms

65. Description of disease

PHYSICAL EXAMINATION (at admission to hospital or first outpatient or house visit)

<table>
<thead>
<tr>
<th>66. Date</th>
<th>67. Height</th>
<th>68. Weight and arm circumference: Wt.</th>
<th>Arm circumference</th>
</tr>
</thead>
</table>

69. Nutritional status

70. Relevant physical findings

71. Evolution and treatment

72. Source of information: Hospital ☐ Clinic ☐ Private M.D. ☐ Other ☐ Date __________________________ Interviewer __________________________
INTER-AMERICAN INVESTIGATION OF MORTALITY IN CHILDHOOD
California Study

Death - page 6

<table>
<thead>
<tr>
<th>Name of child</th>
<th>Serial no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of birth</th>
<th>Date of death</th>
<th>Sex</th>
<th>Age at death yrs.</th>
<th>nos. days hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATA OBTAINED FROM HOSPITAL, OUTPATIENT SERVICE OR PHYSICIAN

73. Relevant laboratory findings

74. X-rays: Site __________ Date __________ Results

75. Other auxiliary examinations

76. Surgical procedures and findings

77. Cytology

78. Biopsy

79. CLINICAL DIAGNOSES

80. Autopsy? No [] Yes [] Date __________

81. Date hospitalized

82. Date discharged

83. Where died? Home [] Outpatient service [] Hospital less than 48 hours [] Hospital 48 hours or more [] Other []

84. Source of information Hospital [] Clinic [] Private M. D. [] Other [] Date __________ Interviewer __________

DATA OBTAINED BY HOME VISIT OF MEDICAL INTERVIEWER

85. Date disease started

86. How disease started

87. Main symptoms

88. Description of disease
INTER-AMERICAN INVESTIGATION OF MORTALITY IN CHILDHOOD
California Study

<table>
<thead>
<tr>
<th>Name of child</th>
<th>Date of birth</th>
<th>Sex</th>
<th>Age at death</th>
<th>Serial no.</th>
</tr>
</thead>
</table>

DATA OBTAINED BY MEDICAL INTERVIEWER IN HOME

<table>
<thead>
<tr>
<th>Disease</th>
<th>a) How long was the child ill?</th>
<th>b) How did illness start?</th>
<th>c) What do you think caused death?</th>
<th>d) Did someone else have same disease?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fever</th>
<th>a) Did the child have fever?</th>
<th>No</th>
<th>b) How long?</th>
<th>Little</th>
<th>Moderate</th>
<th>Very high</th>
<th>b) How long?</th>
<th>No</th>
<th>c) Did you take the temperature?</th>
<th>Yes</th>
<th>d) What was it?</th>
<th>Yes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Respiration</th>
<th>a) How was the respiration?</th>
<th>Slow</th>
<th>b) Did the sides of nose move in breathing?</th>
<th>Yes</th>
<th>c) Noise? in breathing?</th>
<th>Yes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cough</th>
<th>a) Did the child cough?</th>
<th>No</th>
<th>b) Expectoration?</th>
<th>No</th>
<th>c) Color of expectoration?</th>
<th>White</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vomiting</th>
<th>a) Did the child vomit?</th>
<th>b) What did he vomit?</th>
<th>c) How long did he vomit?</th>
<th>d) Did he lose appetite?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Feces</th>
<th>a) How were the feces?</th>
<th>Very hard</th>
<th>b) Color of the feces?</th>
<th>Yellow</th>
<th>c) How many times per day?</th>
<th>Yes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Urine</th>
<th>a) Difficulty in urination?</th>
<th>No</th>
<th>b) Retention of urine?</th>
<th>No</th>
<th>c) Eliminated calculi?</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th>a) Did the child lose weight?</th>
<th>No</th>
<th>b) The arms get thinner?</th>
<th>No</th>
<th>c) Legs?</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Edema</th>
<th>a) Did the child have swollen legs?</th>
<th>No</th>
<th>b) Swollen abdomen?</th>
<th>No</th>
<th>c) Other accident?</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Skin</th>
<th>a) Did you see anything on skin?</th>
<th>b) Appearance?</th>
<th>Yellow</th>
<th>c) Legs?</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hair</th>
<th>a) Did the child have much hair?</th>
<th>No</th>
<th>b) Pull out easily?</th>
<th>No</th>
<th>c) Other accident?</th>
<th>Yes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Neuromuscular activity</th>
<th>a) Did the child move actively?</th>
<th>Yes</th>
<th>b) All parts of body?</th>
<th>No</th>
<th>c) Other accident?</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pain</th>
<th>a) Did the child have pain?</th>
<th>No</th>
<th>b) How long?</th>
<th>Yes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Accident</th>
<th>a) Did the child have a fall?</th>
<th>No</th>
<th>b) Injury?</th>
<th>Yes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other</th>
<th>What other symptoms?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Observation</th>
<th>Provide data regarding these items before final illness.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Mother</th>
<th>Father</th>
<th>Other</th>
<th>Date</th>
<th>Interviewer</th>
</tr>
</thead>
</table>
AUTOPSY REPORT

107. Autopsy number

108. Interval from death to initiation of autopsy

109. Weight

110. Arm circumference

111. Other anthropometric measurements

112. Description of cadaver (note all positive findings, especially on nutrition)

113. Macroscopic examination of cavities and segments (positive findings of head, thorax, abdomen, pelvis, neck, limbs)

114. Macroscopic examination of organs (positive findings of appearance, surface, weight, color, consistency, etc.)

115. Microscopic examination of organs and tissues (positive findings of organs macroscopically abnormal and of those requested)

116. Positive laboratory findings from autopsy

117. Final diagnoses from autopsy: Direct cause of death:

- Principal diagnosis (underlying cause):
- Secondary diagnoses (associated causes):

118. Associated diagnoses not related with underlying cause:

Type of autopsy

- Hospital
- Verification of death
- Medico-legal
- Complete
- Partial
- Incomplete

Details

- Date:
- Interviewer:
INTER-AMERICAN INVESTIGATION OF MORTALITY IN CHILDHOOD

California Study

Death - page 9

<table>
<thead>
<tr>
<th>Name of child</th>
<th>Serial no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of birth</th>
<th>Date of death</th>
<th>Sex</th>
<th>Age at death yrs. mos. days hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

120. Medical certification of cause of death (exact copy)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I	a	
	b	
	c	

| II | |
| | |

121. SUMMARY OF INVESTIGATION

<table>
<thead>
<tr>
<th>Underlying cause</th>
<th>Basis for diagnosis</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associated causes</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation of nutrition</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medical interviewer

<table>
<thead>
<tr>
<th>Underlying cause</th>
<th>Basis for diagnosis</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associated causes</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Principal collaborator

122. ASSIGNMENT BY REFEREE

<table>
<thead>
<tr>
<th>Underlying cause</th>
<th>Basis</th>
<th>Special code for nutritional status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated causes		
-------------------	-------	
1.		
2.		
3.		

Basis for diagnosis		
---------------------	-------	
1. Autopsy		
2. Hospital		
3. Clinical, definite		
4. Clinical, questionable		
5. Interview only		
6. Death certificate only		
Appendix 3

Variables Coded From Childhood Mortality Questionnaire

1. Date of birth
2. Date of death
3. Sex
4. Age at death
5. Census tract
6. Maternal gravidity
7. Maternal parity
8. Race
9. Mother's age (in years)
10. Mother's marital status
11. Father's age (in years)
12. Father's marital status
13. Father's occupation
 0 unemployed
 1 professional, technical, managers
 2 clerical
 3 skilled
 4 semi-skilled
 5 service
 6 unskilled
 7 military service
 8 student
 9 unknown
14. Mother's 1st M.D. visit during pregnancy (by trimester)
15. Hospital of birth
16. Who attended birth
 0 no one
 1 M.D.
 2 midwife
 3 other
 9 unknown
17. Days in hospital during last year of life
 days → months
 90 not applicable
 97 never hospitalized
 98 yes, time unknown
 99 unknown
18. Hospitalization continuously from birth to death?

19. Days in hospital prior to last year of life
 days → months
 90 not applicable
 97 never hospitalized
 98 yes, time unknown
 99 unknown

20. Hospital of death
 hospital code number
 98 not in hospital

21. Abnormal conditions of pregnancy?
 a. edema
 b. hypertension
 c. albuminuria
 d. convulsions
 e. hyperemesis
 f. anemia
 g. threatened abortion
 h. placenta previa
 i. other

22. Conditions unrelated to pregnancy
 a. german measles
 b. pulmonary Tbc
 c. syphilis
 d. other infectious disease
 e. operation
 f. trauma
 g. other

23. Delivery
 a. spontaneous
 b. manipulation
 c. forceps
 d. cesarean section
 e. anesthesia
 f. sedation
 g. other

24. Length of gestation (by number of weeks)

25. Single or multiple birth?

26. Birth weight
27. Nutritional status
 00 normal, according to weight
 01 malnutrition I according to weight
 02 malnutrition II according to weight
 03 malnutrition III according to weight
 04 normal, without weight
 05 malnutrition, slight, without weight
 06 malnutrition, moderate, without weight
 07 malnutrition, severe, without weight
 08 premature - normal nutrition status
 09 malnourished, without qualification
 10 malnourished, either premature or postmature
 99 not specified

28. Weight at approximate time of onset of illness

29. Age at time weight was taken

30. General state of newborn
 1 good
 2 fair
 3 poor
 9 unknown

31. Congenital anomalies at birth
 1st
 2nd
 total number

32. Interval from recorded onset of illness to death

33. Age at time of onset of illness

34. How disease started
 1 suddenly, abruptly or accidentally
 2 progressively or insidiously
 9 unknown

35. Hospital of transfer
 88 not transferred

36. Laboratory examinations
 0 not performed (so stated)
 1 performed (results recorded)
 9 blank (not specified)

37. X-ray

38. Surgical procedures
 0 not performed
 1 major
 2 umbilical catheter
 3 major and umbilical catheter
 9 blank
 1st
 2nd
 3rd

40. Total number of diagnoses

41. Days in hospital prior to death (with condition which led to death)

42. Autopsy
 0. none
 1. hospital, complete
 2. hospital, partial
 3. hospital, incomplete
 4. hospital, not specified if complete
 5. verification of death
 6. medicolegal complete
 7. medicolegal other
 8. type not specified - complete
 9. performed, no specification at all

43. Underlying cause of death from death certificate

44. Underlying cause of death assigned by study group and basis for assignment
 0. not relevant
 1. clinical history, confirmed by autopsy
 2. clinical history, more specific than autopsy, with or without home interview
 3. clinical history available, but autopsy only basis for diagnosis
 4. autopsy only (no other information available)
 5. well defined clinical picture - no autopsy, medical record available
 6. questionable clinical picture - no autopsy
 7. medical interview at home and autopsy
 8. no information, insufficient or unreliable information
 9. death certificate only

45. First component and basis for assignment

46. Second component and basis for assignment

47. First, second, and third consequential causes of death and basis for assignment

48. First, ... to fifth contributory causes of death and bases for assignment

49. Nutritional status as part of final diagnosis

50. Congenital anomalies, enumerated, at time of death
51. Preventability of death
 0 non-preventable
 1 possibly preventable
 2 preventable
 3 undetermined or unknown

52. Responsibility, primary and secondary, for death
 0 family
 1 medical
 2 community
 3 unassignable
 9 not applicable

53. Assessment of death certificate
 0 none noted
 1 error - medical
 2 error - clerical
 3 error - both medical and clerical
Appendix 4

Childhood Accident Mortality in the
San Francisco Bay Area,
1969-1970

Jonathan D. Leavitt, M.D.
CHILDHOOD ACCIDENT MORTALITY IN THE SAN FRANCISCO BAY AREA, 1969-1970

Data from the World Health Organization\(^1\) indicate that accidents account for a significant portion of childhood deaths throughout the industrialized world, and probably throughout the developing countries as well. It has been estimated\(^2\) that fifteen thousand children under the age of 15 years die annually from accidents in the U.S.A.; one-third of these are pre-school children. The State of California has a significant number of childhood accidents according to exhaustive studies done in 1953-1957\(^3\) and 1962-1967\(^4\).

There is increasing evidence that the natural history of childhood accidents varies widely from country to country, and from city to city within these countries. For example, a study in Southwestern Nigeria showed a pattern of childhood accidents quite different from the typical pattern of industrialized countries\(^5\). Studies done in New York City in 1969\(^6\),\(^7\) brought to light a type of childhood accident endemic to that city, with an appreciable mortality, but relatively rare in the western U.S.A. -- falls from heights. A study of swimming pool accidents\(^8\) shows, as would be expected, a wide geographic variation.

This present study of accident mortality in children under five years was undertaken to reveal the pattern of fatal accidents in the San Francisco Bay Area. This is one of the most diverse urban and suburban areas in the U.S.A. in terms of housing, terrain, socioeconomic status, and ethnic groups. The population of children under five includes inner-city slum dwellers and inhabitants of elegant hilltop villas. There are children descended from immigrants originating from all the countries of Europe, with a sizable proportion
descended from Africans, Mexicans, Chinese, and Japanese. The landscape includes coastal plains, waterfronts, hills, and sheer cliffs. With such a background it could be expected that childhood accidents in the Bay Area would take many diverse forms.

Prior to the study, four hypotheses were presented for testing:

1. More than one-tenth of all deaths of children under five years in the San Francisco Bay Area are due to accidents.
2. Certain kinds of accidental deaths in children are especially prevalent.
3. Attack rates in children vary significantly according to race and geographical location of residence.
4. A demographic analysis of childhood accident victims and their families will show significant differences according to the ethnic (i.e., cultural) background of the child.

Materials and Methods

Specific data on childhood mortality due to external causes were obtained in conjunction with the Inter-American Investigation of Mortality in Childhood. This study involved accumulation of data on all deaths of children under five years of age within a designated study area.

County health departments from four counties forwarded death certificates monthly, and these certificates were checked against listings of all deaths provided by the California State Department of Health.
The study area was entirely within the San Francisco-Oakland Standard Metropolitan Statistical Area, and included all of San Francisco County and the urban and more heavily populated suburban areas of three surrounding counties, San Mateo, Contra Costa, and Alameda. The total population covered by the study area (all ages, adults included) was 2,751,000, dispersed over 2625 square miles.

Death certificates were included in the study if the address of the deceased was within the study area, and if the death occurred during the twelve-month period from June 1, 1969 through May 30, 1970 inclusive. Data from medical records and coroners' reports were abstracted onto a questionnaire modified from that drawn up by the Pan American Health Organization for the Inter-American Investigation. Additional data, if needed, were obtained by a pediatrician (the first study director) from medical records and from interviews with the deceased's physician. Underlying causes of death were carefully determined on the basis of all the evidence, and were coded according to the Inter-National Classification of Diseases, Eighth Edition. In some cases the final diagnosis was not that recorded on the death certificate.

Data analysis involved the use of an IBM 1130 Computer and Conversational Computer Statistical System (CCSS). Printouts were obtained for all cases of death due to external cause (ICD code number 800 or higher). Relevant demographic data were obtained and subjected to statistical analysis.

The populations at risk were determined from preliminary 1970 census statistics combined with birth statistics for the study period. These figures were broken down by sex, age, and race; and suitable
denominators for mortality rates were calculated.

Results

Accidental deaths and accident mortality rates per hundred thousand population at risk are summarized in Table I and Table II of the Appendix. There were 898 deaths of children under 5 years in the study area during the twelve-month study period. Of these, 73 were due to external causes, giving an accident mortality rate of 35.7 per hundred thousand population under five years of age.

There were slight differences between mortality rates of males and females, but none of these sex differences was statistically significant.

When mortality rates were compared for whites and non-whites, the rates for non-whites were consistently higher at all ages (Table II). The overall accident mortality rate was 66.1 per 100,000 for non-whites as opposed to 26.6 for whites. This difference is statistically significant to less than the 0.01 level (t=3.97).

In the overall population, there is a higher accident mortality rate during the first year of life than during the next four years (61.5 per 100,000 as compared with 29.0). This difference is statistically significant (t=3.15).

Table III describes the leading causes of accidental death as determined by the study. (Note that the term "accidental" is herein defined as synonymous with "due to external cause" so that intent, either on the part of the victim or another person, does not exclude a victim from the study.) Deliberate injury to a child resulting in death (homicide) is classified as a separate accident category. Four types of accident (motor vehicle traffic accidents, fires, drownings,
and food aspirations) account for more than half of the total, or 57.5%. "Abuse" cases, including known homicide (7) and "undetermined whether accidentally or purposefully inflicted" (3) account for more than one-eighth or 13.7%.

The incidence of fatal accidents is shown in Table IV according to the month in which the death occurred. There is a peak in July and a low point in May, but there is not distinct seasonal pattern.

Discussion

The data reveal that 73 out of 893 deaths of children under five years, or 3.1% were due to external causes. This is slightly less than the 10% predicted prior to the study.

As was predicted, certain kinds of accidental deaths are especially prevalent, namely, those resulting from motor vehicle traffic accidents, fire, drowning, and food aspiration. However, there does not appear to be an accident type that could be considered a "typical Bay Area accident" in the sense that falls from heights are typical of New York City.

As was predicted, mortality rates varied significantly according to race.

No evidence was elucidated to support the hypothesis that demographic characteristics of accident victims varied according to culture.

Summary

Of 898 children under five years of age who died from June 1, 1969, through May 30, 1970, 73 died as a result of accidents and homicide. Mortality rates were significantly higher for non-whites compared to whites. There was no significant difference in mortality
rates on the basis of sex. Motor vehicle traffic accidents, fires, drownings, and food aspiration were the leading causes of accidental death. Homicides and possible abuse accounted for 13.7% of the total. There was no seasonal pattern.

Table I

Accidental Deaths and Accident Mortality Rates of Children Under Five Years, By Age and Sex, San Francisco Bay Area, 1969-1970 (Rates per 100,000 Population At Risk Given In Parentheses)

<table>
<thead>
<tr>
<th>Age</th>
<th>Both Sexes</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st - 5th Years</td>
<td>73</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>36.7</td>
<td>38.4</td>
<td>32.9</td>
</tr>
<tr>
<td>1st Year</td>
<td>26</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>61.5</td>
<td>60.7</td>
<td>62.4</td>
</tr>
<tr>
<td>2nd - 5th Years</td>
<td>47</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>29.0</td>
<td>32.6</td>
<td>25.1</td>
</tr>
</tbody>
</table>

Table II

Accidental Deaths and Accident Mortality Rates of Children Under Five Years, By Age and Race, San Francisco Bay Area, 1969-1970 (Rates per 100,000 Population At Risk Given In Parentheses)

<table>
<thead>
<tr>
<th>Age</th>
<th>All Races</th>
<th>White</th>
<th>Non-White</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st - 5th Years</td>
<td>73</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>35.7</td>
<td>26.6</td>
<td>66.1</td>
</tr>
<tr>
<td>1st Year</td>
<td>26</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>61.5</td>
<td>55.1</td>
<td>83.5</td>
</tr>
<tr>
<td>2nd - 5th Years</td>
<td>47</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>29.0</td>
<td>19.2</td>
<td>61.7</td>
</tr>
</tbody>
</table>
Table III

Leading Causes of Accidental Death in Children Under Five Years, San Francisco Bay Area, 1969-1970 (Rates Per 100,000 Population At Risk)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>Number of Deaths</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motor Vehicle Traffic</td>
<td>13</td>
<td>6.4</td>
</tr>
<tr>
<td>2</td>
<td>Fires</td>
<td>11</td>
<td>5.4</td>
</tr>
<tr>
<td>3</td>
<td>Drownings</td>
<td>9</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>Food Aspiration</td>
<td>9</td>
<td>4.4</td>
</tr>
<tr>
<td>4</td>
<td>Homicide</td>
<td>7</td>
<td>3.4</td>
</tr>
<tr>
<td>5</td>
<td>Mechanical Suffocation</td>
<td>5</td>
<td>2.4</td>
</tr>
<tr>
<td>5</td>
<td>Poisonings</td>
<td>5</td>
<td>2.4</td>
</tr>
<tr>
<td>5</td>
<td>Iatrogenic</td>
<td>5</td>
<td>2.4</td>
</tr>
<tr>
<td>6</td>
<td>Falls</td>
<td>4</td>
<td>2.0</td>
</tr>
<tr>
<td>7</td>
<td>Undetermined Whether Accidentally of Purposefully Inflicted</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>Struck By Object</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>Month</td>
<td>Number of Deaths</td>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>January-December</td>
<td>73</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>8</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>7</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>7</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>7</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>2</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>4</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>10</td>
<td>13.7</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>7</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>6</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>4</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>8</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>3</td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>
References

Appendix 5

LIVE CHILD SAMPLE

INTER-AMERICAN INVESTIGATION OF MORTALITY IN CHILDHOOD

California Study

1. **Interviewer**

2. **Interviewer**

Month of Sample

Date Assigned

Household Number

- **Primary Schedule**
- **Secondary Schedule**

Address

Apt. Number

Census Tract

RECORD OF CALLS

<table>
<thead>
<tr>
<th>Call No.</th>
<th>Date</th>
<th>Hour</th>
<th>Result of Call</th>
<th>Int. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Telephone Number

- **None**

By Observation: 1. W 2. N 3. MA 4. Or 5. Other

Time Began

3m-10, '69 Rev. (N2799L)
9. **OCCUPATION**

9a. Would you give me the names of everyone in the household who is currently employed. Please include any child who might be a paperboy or regular babysitter.

9b. What kind of work does he/she do?

9c. What kind of business is that?

9d. How long has he/she done this kind of work?

9e. What was the total family income for the last twelve months? RECORD INCOME TO NEXT LOWEST THOUSAND DOLLARS. E.G. $4,500 recorded as $4,000.

5 - 7 How many rooms do you have here counting the kitchen, but not counting the bathrooms? (FILL OUT ITEMS 5 - 7. OMIT ITEMS 3 - 4.)

VITAL EVENTS IN PAST TWELVE MONTHS

10a. Has anyone in this family been pregnant in the past year or is there anyone who is presently pregnant?

1. Yes
2. No

FOR EACH WOMAN WHO HAS BEEN OR IS PREGNANT ASK AND RECORD IN ITEM 10 "LIVE BIRTHS"

10b. Who is that?

10c. How many times have/has you/she been pregnant this past year?

10d. Is/are _______ presently pregnant?

ASK FOR EACH PREGNANCY:

10e. Was that baby born in good health?

FOR ALL LIVE BIRTHS, RECORD NAME AND DATE OF BIRTH FROM ENUMERATION.

11a. Has anyone in this family died since DATE (1 year prior to interview)? FOR EACH DEATH ASK AS NECESSARY AND RECORD IN ITEM 11, Deaths:

11b. What was (his)(her) name?

11c. How old was (he)(she)?

11d. Was that a (boy)(girl) (man)(woman)?

11e. Exactly when (date) did (he)(she) die?

11f. Did (he)(she) die at home or in a hospital or elsewhere? What hospital?

13. **RECORD SOURCE OF INFORMATION**

IF THERE ARE NO CHILDREN IN HOUSEHOLD UNDER FIVE TERMINATE INTERVIEW.
Intro. - Hello. I'm from the Survey Research Center. We're doing a study of families in North and South America. May I ask you some questions?

8. Enumeration

8a. First I'd like to get an idea of who lives in this house/apt. Would you start with the adults giving me the name of the head of the household first.

8b. I'd like the names of the children in order of age beginning with the oldest.

8c. Is there anyone else who usually lives here like a roomer or a boarder?

8d. How is _______ related to the head of this household?

8e. His/her age? (RECORD SEX)

8f. Is _______ now married, widowed, separated or never married?

IF OTHER THAN A SIMPLE FAMILY WITH NO CHILDREN OVER 14 ASK:

8g. Do any of the people I have listed live or eat separately from the rest of the household?
 1. Yes 2. No SKIP TO Q. 8j

 ↓

 IF YES:

 8h. Who is that? (Person Numbers _________________________)

 8i. Do you usually prepare and share food together or separately.

 1. Together 2. Separately

 □ PRIMARY FAMILY □ SECOND SCHEDULE(s) REQUIRED

FOR EACH PERSON LISTED IN THE FAMILY ASK:

8j. What was the highest year in school ______ completed?

 (INDICATE AS "TOTAL YEARS" E.G. 2 YEARS COLLEGE=14 YEARS.)

 IF R INDICATES EDUCATION BEYOND SECONDARY SCHOOL ASK:

8k. Is/was that a Trade, Technical or Business school?

 CODE THIS AS: (P) = PRIMARY = 1-8 (S) = SECONDARY = 9-12
 T = TECHNICAL (Business school, Trade school, etc.)
 U = J.C., COLLEGE or UNIVERSITY.

 DETERMINE # OF YEARS COMPLETED IN LAST TYPE OF SCHOOL ATTENDED.

8l. How long have you lived in ____________________________.

 Name of City

 IF LESS THAN FIVE YEARS ASK:

8m. Did you live on a farm before moving here? (PROBE: TO DETERMINE HOW MANY OF LAST FIVE YEARS WERE URBAN AND HOW MANY RURAL.)
Household Information

1. **Address**

2. **Sector or Division**

3. **Neighborhood**

4. **Type of housing**

5. **Number of rooms**

6. **Water:**
 - Piped water
 - Other

7. **Toilet:**
 - Flush
 - Other
 - None

Sample - Page 1

Census Tract

Enumeration

<table>
<thead>
<tr>
<th>Ind. no.</th>
<th>Name</th>
<th>Relation to head</th>
<th>Date of birth</th>
<th>Age</th>
<th>Sex</th>
<th>Marital status</th>
<th>Total education</th>
<th>Last type</th>
<th>Length of residence</th>
<th>Last 5 years</th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Note: Date of birth for children under 6 years.

Occupation

<table>
<thead>
<tr>
<th>Ind. no.</th>
<th>Name</th>
<th>Currently employed</th>
<th>Occupation</th>
<th>Kind of Business</th>
<th>Time in Occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Family Income

Vital Events in Past 12 M os.

<table>
<thead>
<tr>
<th>Ind. no.</th>
<th>Name</th>
<th>Number of pregnancies</th>
<th>Abortions and stillbirths</th>
<th>Live Births</th>
<th>Pregnant now?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of deceased</th>
<th>Age</th>
<th>Sex</th>
<th>Date</th>
<th>Home Hospital</th>
<th>Name of hospital</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source of Information:

Name

Indiv. no.

Date

Interviewer
INTERVIEW PAGE 3

IF MORE THAN ONE MOTHER WITH ELIGIBLE STUDY CHILD IN HOUSEHOLD USE SEPARATE FORMS FOR EACH. NUMBER ADDITIONAL FORMS WITH SAME ID NUMBER AS PRIMARY FORM.

14. DATA ON PARENTS

If father and mother listed in enumeration, transcribe individual number, and ask date of birth. If father or mother not listed in enumeration, complete appropriate line of item 14. Do not use this space for stepparents or foster parents. RECORD "unknown" WHERE APPROPRIATE.

15. PREGNANCY HISTORY OF (NATURAL) MOTHER

15a. Was ___________ your (first/second ...) pregnancy?

1. Yes
 IF YES:
 RECORD CHILD'S NAME, AGE AND SEX FROM ENUMERATION AND ASK ABOUT NEXT CHILD. IF NO MORE CHILDREN DETERMINE IF THERE HAVE BEEN ANY OTHER PREGNANCIES. IF SO ASK Q. 15b.

2. No
 IF NO:
 15b. What happened to that (1st, 2nd, etc.) pregnancy? PROBE IF NECESSARY: Miscarriage, stillbirth, child died, etc. RECORD THIS RESPONSE ON CHART UNDER FULL NAME. IF CHILD DIED ASK FOR NAME AND SEX AND AGE AT DEATH.

15c. Are you (mother) presently using any method of birth control?

IF YES:

15d. What method are you using?

THE FOLLOWING QUESTIONS ARE TO BE ASKED FOR EACH STUDY CHILD.

16 - 19 On schedule. (OMIT BIRTH CERTIFICATE NUMBER.)

20. POSTPONE TO END OF INTERVIEW
14. DATA ON PARENTS

<table>
<thead>
<tr>
<th>Ind. No.</th>
<th>Name</th>
<th>Live here?</th>
<th>Date of birth</th>
<th>Age</th>
<th>Marital Status</th>
<th>Education</th>
<th>Employed now?</th>
<th>Occupation</th>
<th>Business</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

15. PREGNANCY HISTORY OF MOTHER

Record once only for each mother of a study child

<table>
<thead>
<tr>
<th>Order</th>
<th>Indiv. No.</th>
<th>Date pregnancy ended</th>
<th>Abortion?</th>
<th>Stillbirth?</th>
<th>Live Births</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Name of Child</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15c. Mother's current use of contraception.
Informant not mother ☐ Mother not using contraception ☐
Mother is sterile ☐ Mother using contraception ☐

15d. Type (check)
- Oral (pill) ☐ I.U.D. ("Coil", "Loop") ☐ Rhythm ☐
- Diaphragm ☐ Jellies, creams, foam, etc. ☐ Injections ☐
- Condom ☐ Abstinence ☐ Withdrawal ☐
- Other ☐

THE FOLLOWING QUESTIONS ARE TO BE ASKED FOR EACH STUDY CHILD

16. Was the mother of this child seen by physician, or in a clinic or hospital during her pregnancy with this child?
Yes ☐ No ☐ Unknown ☐

If yes, name of physician, clinic or hospital ___________________________
Reason ___________________________
Number of visits ___________________________

17. Length of pregnancy _______ months
Unknown ☐

18. Where was this child born?
Home ☐ Hospital ☐ Other ☐

Hospital name and city where born ___________________________

19. Who attended birth?
- Doctor ☐ Midwife ☐ Other ☐

Birth Certificate No. ___________________________

20. Weight and arm circumference:
- Weight: At birth _______ Present _______
- Arm circumference: At birth _______ Present _______
ON SCHEDULE

24a. What other foods did you give the baby?
 CHECK FOODS NAMED

24b. At what age did you start to give _____? How often did you give it? ASK FOR EACH FOOD CHECKED.

24c. Did you ever give ________? ASK FOR ALL FOODS NOT CHECKED. IF "YES", REPEAT QUESTION 24b.

ON SCHEDULE

27a. Has _________ had any shots yet?

27b. How about DPT?

27c. How about polio vaccine?

27d. How about the measles vaccine?

27e. How about mumps?

27f. Any others?

28a. Has _________ had any of the following illnesses? CIRCLE LETTER ON CHART.
 a. German measles? (three-day measles) b. red measles c. chicken pox
 d. whooping cough e. mumps

 FOR ALL CIRCLED, ASK:

28b. How old was _________ when (he)(she) had _________? RECORD AGE IN MONTHS.

ON SCHEDULE. RECORD STARTING WITH MOST RECENT.

29a. Is ________ covered by health insurance?
 1. Yes 2. No

IF YES

29b. What kind of insurance is it?
 Is it Kaiser, Blue Cross-Blue Shield or some other private insurance company?
 (IF OTHER SPECIFY)

ON SCHEDULE

29. ASK BIRTH WEIGHT. IF CHILD OVER 1 WEEK, WEIGH AND MEASURE ARM CIRCUMFERENCE. RECORD.

ASK FOR TELEPHONE NUMBER. THANK RESPONDANT.
INTER-AMERICAN INVESTIGATION OF MORTALITY IN CHILDHOOD
California Study

Household no.

<table>
<thead>
<tr>
<th>Name of child</th>
<th>Individual no.</th>
<th>Date of birth</th>
<th>Sex</th>
<th>Age yrs. mos. days</th>
</tr>
</thead>
</table>

21. Did you breast feed the child? Yes ☐
When did weaning start? Age __ months
Reason ____________________________
When did weaning end? Age __ months
No ☐ Why not ______________________

22. Principal Milk Formula. Was formula used? No ☐ Yes ☐
Age started __ months or ____ days.
Times per day ________________
Type of milk ______________________
Proportion of milk to water: milk ____ water ____
Was use of milk continued? Yes ☐ No ☐

23. Was other weaning food used? _______
Was weaning food continued? ________

24. FRUITS: mos.
JUICES: mes.
CEREALS: mos.
LEGUMES: mos.
ROOTS, TUBERS: mos.
LEAFY VEGETABLES: mos.
EGGS: mos.
Poultry: mos.
MEAT: mos.
FISH: mos.

<table>
<thead>
<tr>
<th>Time per week</th>
<th>Times per week</th>
<th>Time per week</th>
<th>Time per week</th>
<th>Time per week</th>
</tr>
</thead>
</table>

25. At what age (in months) did child do the following:
A) raise head? ___ b) seat self? ___ c) stand alone? ___
d) walk alone? ___ e) control bladder? ___ f) control bowels? ___
g) feed self? ___

26. Who cares for child most of day:
Mother ☐ Grandmother ☐ Sibling (15 yrs. +) ☐ Sibling (-15 yrs.) ☐
Other relative ☐ Maid ☐ Day Care ☐ Other ☐

27. Has child been immunized? Yes ☐ No ☐
If yes, which vaccines? _______
Mumps vaccine? Yes ☐ No ☐
Measles vaccine? Yes ☐ No ☐

28. At what age in months did child have following:
a) German measles? ___ b) measles? ___ c) chickenpox? ___
d) whooping cough? ___ e) mumps? ___

29. During the last year, has this child been attended by a physician or in a clinic or hospital? Yes ☐ No ☐ Unknown ☐

<table>
<thead>
<tr>
<th>Name of physician, clinic or hospital</th>
<th>Type a</th>
<th>Dates</th>
<th>Days in hospital</th>
<th>Reason</th>
<th>Number of visits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Indicate whether clinic (health center or hospital) C, inpatient in hospital H, practicing physician P, emergency E,
dentist D, well child visit W.

29a. Health insurance or other coverage Na ☐ Yes ☐

<table>
<thead>
<tr>
<th>Type</th>
<th>Medi-Cal (Welfare, Title XIX)</th>
<th>Kaiser</th>
<th>Blue Cross-Blue Shield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Private insurance</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

30. Source of information:
Mother ☐ Father ☐ Other ☐

Date ____________________________
Interviewer ____________________
NON-INTERVIEW INFORMATION

Reason for non-interview in occupied dwelling unit:

Check one:

☐ No one ever at home in four calls.

☐ Respondent never at home in four calls; other household member seen.

☐ Direct refusal. (Respondent or other household member said they would not cooperate.) INDICATE REASON IF GIVEN:

☐ Indirect refusal. Always "too busy," two or more broken appointments, etc. EXPLAIN:

☐ Inaccessible respondent and no alternative available. EXPLAIN (e.g.: out of town for extended stay, hospitalized, too ill to be interviewed):

☐ Other. EXPLAIN:

Result of attempted conversion by second interviewer:

Interviewer# ___

☐ Refusal. INDICATE REASON IF GIVEN:

☐ Could not find respondent at home in two calls.

☐ Inaccessible respondent.

☐ Other. EXPLAIN:

__

__

__

__

__

__
Appendix 6

Variables Coded From Live Child Questionnaire

1. Household

A. Facilities

1. Number of rooms

2. Plumbing
 a. Water
 piped water inside
 piped water outside
 other
 unknown
 b. Toilet
 flush
 none
 other
 unknown

B. Members

1. Race

2. Family income

3. Number of deceased persons
 (for 1st deceased person)
 a. Age, Sex, Year of death
 b. Place of death
 hospital
 home
 other
 unknown

4. Total number of persons in household

5. For each member of household
 a. Age
 b. Sex, Marital status
 (if female)
 1) Total number of pregnancies this last year
 2) Number of livebirths
 3) Number of stillbirths and abortions
 4) Is woman pregnant now?
c. Education
 1) Years completed
 2) Last type of education and years in it
 - primary
 - secondary
 - technical (business, trade)
 - college or university
 - other (incl. music school, bible school, home school)
 - none
 - unknown
 - preschool

 d. Length of residence in community

e. Occupation and length of time in it
 - professional, technical, managers
 - clerical, sales
 - skilled craftsmen, foremen
 - semi-skilled, operatives
 - service
 - unskilled
 - military service
 - unknown

f. Relation to household
 - head of household
 - spouse
 - child, stepchild
 - grandchild
 - parent, parents-in-law
 - other relative
 - other, non-relative
 - no answer, unknown

II. Study Children in Household

A. Number for each child eligible

1. Age, sex, birthdate

2. Is father in household
 - yes
 - no
 - dead
 - unknown

3. Father's age, marital status, education, occupation
4. Is mother in household?
 yes
 no
 dead
 unknown

5. Mother's age, marital status, education, occupation

6. Pregnancy history of mother
 a. Total number of pregnancies
 b. Number of abortions and stillbirths
 c. Number of liveborn children
 number of males
 number of females
 d. Number of liveborn children who subsequently died
 e. Is mother using contraception?
 f. Did mother receive medical attention during pregnancy with study child?
 1) Where
 public hospital or clinic, incl. military
 private doctor or group
 Kaiser
 unknown
 2) Reason for visit
 normal prenatal care
 antepartum problem
 unknown, don't remember
 other
 3) Months pregnant at first visit
 number of visits
 4) Length of pregnancy (in months)

III. Study Child Data

A. Birth information
 1. Where was child born
 2. Who attended birth
 3. Weight at birth
B. Feeding

1. Milk products
 a. Breast fed?
 yes
 no
 unknown
 (reason not breast fed)
 health of mother, incl. mental
desire of mother
no milk or poor quality
health of child, incl. prematurity
unknown
other

b. When weaning started and ended

c. Was formula used?
 1) Age at which started
 2) Formula feedings per day
 number
 7 or more
 not applicable, no formula
 not known or given on demand

d. Type of milk used
 cow
 evaporated
 prepared formula
 special (soy milk, goat milk)
 not applicable
 unknown

 1) Was use of milk continued?

2. Other Foods
 fruits, juices, cereals
 leafy vegetables, roots, tubers
 legumes, eggs, poultry, meat, fish

 a. Age when given
 b. Times per week
 c. Was information given "spontaneously" or
 was "probing" necessary
3. Who cares for child?
 - mother
 - grandmother
 - sibling (15 yrs. or over)
 - sibling (under 15 yrs.)
 - other relative
 - maid
 - day care, incl. nursery school
 - other, incl. neighbor
 - no answer

C. Health Care

1. Has child been immunized against:
 - a. DPT
 - b. polio vaccine
 - c. smallpox
 - d. rubella
 - e. measles
 - f. mumps
 - g. other vaccine, incl. flu shot, typhoid

2. Age at which child had:
 - a. chickenpox
 - b. whooping cough
 - c. mumps
 - d. roseola

3. Health insurance or other coverage
 - yes
 - no
 - unknown
 - a. Type
 - MediCal
 - Welfare
 - Kaiser
 - Blue Cross
 - private insurance
 - other
 - unknown

D. Child's recent medical history

1. Medical attention during past year
 - yes
 - no
 - unknown
a. Number of times
 (for 1st visit)
 1) Type of care
 clinic, hospital or health center
 inpatient in hospital
 practicing physician
 emergency
 dentist
 well-child visit
 unknown
 no answer

2. Reason
 well-baby care, incl. immunizations
 emergency care, incl. stitches
 illness, incl. rash, cold, infection
 dental
 unknown
 no answer

3. Number of visits

4. Days in hospital
 number
 none
 unknown
 (for 2nd time attended)
 type of care
 reason
 number of visits
 days in hospital

E. Source of information
 mother
 father
 mother and father together
 other
 unknown
Appendix 7

Ages of Mothers of Deceased Children at Birth of Child by County

<table>
<thead>
<tr>
<th>County</th>
<th>High</th>
<th>Low</th>
<th>Mean</th>
<th>Known Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>44</td>
<td>14</td>
<td>24.6</td>
<td>349</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>41</td>
<td>14</td>
<td>23.9</td>
<td>158</td>
</tr>
<tr>
<td>San Mateo</td>
<td>45</td>
<td>16</td>
<td>25.7</td>
<td>133</td>
</tr>
<tr>
<td>San Francisco</td>
<td>44</td>
<td>15</td>
<td>25.1</td>
<td>223</td>
</tr>
</tbody>
</table>
Appendix 8

Ages of Fathers of Deceased Children at Birth of Child by County

<table>
<thead>
<tr>
<th>County</th>
<th>Father's Age</th>
<th>Known Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Alameda</td>
<td>56</td>
<td>16</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>San Mateo</td>
<td>52</td>
<td>17</td>
</tr>
<tr>
<td>San Francisco</td>
<td>71</td>
<td>19</td>
</tr>
</tbody>
</table>
Appendix 9

Birth Orders of Deceased Children by County

<table>
<thead>
<tr>
<th>County</th>
<th>High</th>
<th>Low</th>
<th>Mean</th>
<th>Known Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>12</td>
<td>1</td>
<td>2.5</td>
<td>350</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>9</td>
<td>1</td>
<td>2.3</td>
<td>153</td>
</tr>
<tr>
<td>San Mateo</td>
<td>12</td>
<td>1</td>
<td>2.4</td>
<td>130</td>
</tr>
<tr>
<td>San Francisco</td>
<td>12</td>
<td>1</td>
<td>2.5</td>
<td>217</td>
</tr>
</tbody>
</table>
Appendix 10

Number and Percent of Abnormal Conditions Unrelated to Pregnancy

During Pregnancy With Study Child

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Neonatal</th>
<th></th>
<th>Postneonatal</th>
<th></th>
<th>Preschool</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>german measles</td>
<td>3</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>tuberculosis</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>syphilis</td>
<td>3</td>
<td>0.5</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>other infections</td>
<td>1</td>
<td>0.2</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>operation</td>
<td>7</td>
<td>1.2</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>trauma</td>
<td>2</td>
<td>0.4</td>
<td>2</td>
<td>0.9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>All Deaths</td>
<td>570</td>
<td></td>
<td>213</td>
<td></td>
<td>115</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 11

Number and Percent of Conditions Grouped as Toxemia and As Antepartum Hemorrhage

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Neonatal</th>
<th>Postneonatal</th>
<th>Preschool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Toxemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>edema</td>
<td>18</td>
<td>3.2</td>
<td>5</td>
</tr>
<tr>
<td>hypertension</td>
<td>22</td>
<td>3.9</td>
<td>2</td>
</tr>
<tr>
<td>albuminuria</td>
<td>3</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>convulsions</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Antepartum Hemorrhage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>placenta previa</td>
<td>18</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td>threatened abortion</td>
<td>19</td>
<td>3.3</td>
<td>4</td>
</tr>
<tr>
<td>All Deaths</td>
<td>570</td>
<td>213</td>
<td>115</td>
</tr>
</tbody>
</table>
Appendix 12

Incidence of Low Birth Weight Among Mothers With Abnormal Conditions Related To Pregnancy

<table>
<thead>
<tr>
<th>Conditions</th>
<th>2500 grams</th>
<th></th>
<th>2501 grams</th>
<th></th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>toxemia</td>
<td>19</td>
<td>44.2</td>
<td>24</td>
<td>55.8</td>
<td>43</td>
<td>100.0</td>
</tr>
<tr>
<td>anemia</td>
<td>15</td>
<td>88.2</td>
<td>2</td>
<td>11.8</td>
<td>17</td>
<td>100.0</td>
</tr>
<tr>
<td>antepartum hemorrhage</td>
<td>36</td>
<td>87.8</td>
<td>5</td>
<td>12.2</td>
<td>41</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Appendix 13

Initiation of Prenatal Care Among Mothers of Deceased Children by Race

<table>
<thead>
<tr>
<th>Race</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Care Time</th>
<th>No Care</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>White</td>
<td>353</td>
<td>58.0</td>
<td>135</td>
<td>22.2</td>
<td>30</td>
<td>4.9</td>
<td>16</td>
</tr>
<tr>
<td>Black</td>
<td>101</td>
<td>41.9</td>
<td>82</td>
<td>34.0</td>
<td>10</td>
<td>4.2</td>
<td>26</td>
</tr>
<tr>
<td>Other</td>
<td>21</td>
<td>43.7</td>
<td>14</td>
<td>29.2</td>
<td>1</td>
<td>2.1</td>
<td>3</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>475</td>
<td>52.9</td>
<td>231</td>
<td>25.7</td>
<td>41</td>
<td>4.6</td>
<td>33</td>
</tr>
</tbody>
</table>
Appendix 14

Initiation of Prenatal Care Among Mothers of Deceased Children by Age of Mother

<table>
<thead>
<tr>
<th>Maternal Age</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Care Time</th>
<th>No Care</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>14 - 19 yrs.</td>
<td>81</td>
<td>61</td>
<td>14</td>
<td>44.8</td>
<td>33.7</td>
<td>7.7</td>
<td>181</td>
</tr>
<tr>
<td>20 - 29 yrs.</td>
<td>306</td>
<td>123</td>
<td>18</td>
<td>60.1</td>
<td>24.2</td>
<td>3.5</td>
<td>509</td>
</tr>
<tr>
<td>30 - 34 yrs.</td>
<td>60</td>
<td>25</td>
<td>4</td>
<td>54.5</td>
<td>22.7</td>
<td>3.6</td>
<td>110</td>
</tr>
<tr>
<td>35 yrs. & over</td>
<td>27</td>
<td>22</td>
<td>5</td>
<td>42.2</td>
<td>31.4</td>
<td>3.6</td>
<td>64</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2.9</td>
<td>0</td>
<td>5.9</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>475</td>
<td>231</td>
<td>41</td>
<td>52.9</td>
<td>25.7</td>
<td>4.6</td>
<td>898</td>
</tr>
</tbody>
</table>

Appendix 14

Initiation of Prenatal Care Among Mothers of Deceased Children by Age of Mother

<table>
<thead>
<tr>
<th>Maternal Age</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Care Time</th>
<th>No Care</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>14 - 19 yrs.</td>
<td>81</td>
<td>61</td>
<td>14</td>
<td>44.8</td>
<td>33.7</td>
<td>7.7</td>
<td>181</td>
</tr>
<tr>
<td>20 - 29 yrs.</td>
<td>306</td>
<td>123</td>
<td>18</td>
<td>60.1</td>
<td>24.2</td>
<td>3.5</td>
<td>509</td>
</tr>
<tr>
<td>30 - 34 yrs.</td>
<td>60</td>
<td>25</td>
<td>4</td>
<td>54.5</td>
<td>22.7</td>
<td>3.6</td>
<td>110</td>
</tr>
<tr>
<td>35 yrs. & over</td>
<td>27</td>
<td>22</td>
<td>5</td>
<td>42.2</td>
<td>31.4</td>
<td>3.6</td>
<td>64</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2.9</td>
<td>0</td>
<td>5.9</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>475</td>
<td>231</td>
<td>41</td>
<td>52.9</td>
<td>25.7</td>
<td>4.6</td>
<td>898</td>
</tr>
</tbody>
</table>
Appendix 15

Initiation of Prenatal Care Among Mothers of Deceased Children by Maternal Parity

<table>
<thead>
<tr>
<th>Parity</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Time</th>
<th>No Care</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para 1</td>
<td>159</td>
<td>55.2</td>
<td>76</td>
<td>26.4</td>
<td>17</td>
<td>5.9</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>142</td>
<td>57.5</td>
<td>63</td>
<td>25.5</td>
<td>11</td>
<td>4.5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>57.8</td>
<td>40</td>
<td>24.9</td>
<td>6</td>
<td>3.7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>51.9</td>
<td>23</td>
<td>29.9</td>
<td>2</td>
<td>2.6</td>
<td>3</td>
</tr>
<tr>
<td>5+</td>
<td>29</td>
<td>37.2</td>
<td>27</td>
<td>34.6</td>
<td>5</td>
<td>6.4</td>
<td>1</td>
</tr>
<tr>
<td>unknown</td>
<td>12</td>
<td>25.5</td>
<td>2</td>
<td>4.3</td>
<td>0</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>475</td>
<td>52.9</td>
<td>231</td>
<td>25.7</td>
<td>41</td>
<td>4.6</td>
<td>33</td>
</tr>
</tbody>
</table>
Appendix 16

Initiation of Prenatal Care Among Mothers of Deceased Children
by Marital Status of Mother

<table>
<thead>
<tr>
<th>Marital Status</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Care Time</th>
<th>No Care</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>married to father of deceased child</td>
<td>407</td>
<td>59.9</td>
<td>161</td>
<td>23.7</td>
<td>21</td>
<td>3.1</td>
<td>30</td>
</tr>
<tr>
<td>single</td>
<td>33</td>
<td>34.4</td>
<td>34</td>
<td>35.4</td>
<td>13</td>
<td>13.5</td>
<td>0</td>
</tr>
<tr>
<td>other</td>
<td>12</td>
<td>44.5</td>
<td>8</td>
<td>29.6</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>unknown</td>
<td>23</td>
<td>23.9</td>
<td>28</td>
<td>29.2</td>
<td>7</td>
<td>7.3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>475</td>
<td>52.9</td>
<td>231</td>
<td>25.7</td>
<td>41</td>
<td>4.6</td>
<td>33</td>
</tr>
</tbody>
</table>
Appendix 17

Initiation of Prenatal Care Among Mothers of Deceased Children by Occupation of Father

<table>
<thead>
<tr>
<th>Father's Occupational Group</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Care Time Unknown</th>
<th>No Care</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>I</td>
<td>149</td>
<td>68.7</td>
<td>42</td>
<td>19.4</td>
<td>4</td>
<td>1.8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>58.6</td>
<td>55</td>
<td>21.5</td>
<td>13</td>
<td>5.1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>44.5</td>
<td>57</td>
<td>34.8</td>
<td>16</td>
<td>9.8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>39.5</td>
<td>77</td>
<td>29.5</td>
<td>8</td>
<td>3.1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>475</td>
<td>52.9</td>
<td>231</td>
<td>25.7</td>
<td>41</td>
<td>4.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>5.1</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>217</td>
<td>100.0</td>
<td>256</td>
<td>100.0</td>
<td>164</td>
<td>100.0</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>898</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 18

Initiation of Prenatal Care Among Mothers of Deceased Children by Type of Abnormal Condition Related to Pregnancy

<table>
<thead>
<tr>
<th>Abnormal Conditions Related to Pregnancy</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Care Time Unknown</th>
<th>No Care</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>toxemia</td>
<td>21</td>
<td>48.8</td>
<td>17</td>
<td>39.5</td>
<td>2</td>
<td>4.7</td>
</tr>
<tr>
<td>anemia</td>
<td>8</td>
<td>47.0</td>
<td>7</td>
<td>41.2</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>antepartum hemorrhage</td>
<td>19</td>
<td>50.0</td>
<td>12</td>
<td>31.6</td>
<td>1</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Appendix 19

Number and Percent of Cases of Sudden Infant Death Syndrome Among Deceased Children by Race

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>Sudden Infant Death</td>
<td>41</td>
<td>71.9</td>
<td>15</td>
<td>26.3</td>
</tr>
<tr>
<td>All Other Deaths</td>
<td>568</td>
<td>67.5</td>
<td>226</td>
<td>26.9</td>
</tr>
<tr>
<td>Total</td>
<td>609</td>
<td>67.8</td>
<td>241</td>
<td>26.8</td>
</tr>
</tbody>
</table>
Appendix 20

Number and Percent of Cases of Sudden Infant Death Syndrome Among Deceased Children by Sex

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>male</th>
<th>female</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Sudden Infant Death</td>
<td>34</td>
<td>59.6</td>
<td>23</td>
</tr>
<tr>
<td>All Other Causes</td>
<td>504</td>
<td>59.9</td>
<td>337</td>
</tr>
<tr>
<td>Total</td>
<td>538</td>
<td>59.9</td>
<td>360</td>
</tr>
</tbody>
</table>
Appendix 21

Number and Percent of Cases of Sudden Infant Death Syndrome Among Deceased Children by Maternal Parity

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5+</th>
<th>Unk.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Sudden Infant Death</td>
<td>18</td>
<td>31.6</td>
<td>16</td>
<td>28.1</td>
<td>11</td>
<td>19.3</td>
<td>5</td>
</tr>
<tr>
<td>All Other Deaths</td>
<td>269</td>
<td>32.0</td>
<td>231</td>
<td>27.5</td>
<td>151</td>
<td>18.0</td>
<td>72</td>
</tr>
<tr>
<td>Total</td>
<td>287</td>
<td>32.0</td>
<td>247</td>
<td>27.5</td>
<td>162</td>
<td>18.0</td>
<td>77</td>
</tr>
</tbody>
</table>
Appendix 22

Number and Percent of Cases of Sudden Infant Death Syndrome
by Winter and Summer Months

| Cause of Death | winter | | summer | | total | |
|----------------------|--------|------------|--------|------------|--------|
| | # | % | # | % | # | % |
| Sudden Infant Death | 35 | 61.4 | 22 | 38.6 | 57 | 100.0 |
| All Other Deaths | 423 | 50.3 | 418 | 49.7 | 841 | 100.0 |
| Total | 458 | 51.0 | 440 | 49.0 | 898 | 100.0 |
Appendix 23

Probability Sample of Live Children of Population of Study Area

by Race, Age, and County of Residence

<table>
<thead>
<tr>
<th>Age</th>
<th>County</th>
<th>White</th>
<th>Black</th>
<th>Other Races</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alameda</td>
<td>Contra Costa</td>
<td>San Mateo</td>
<td>San Francisco</td>
<td></td>
</tr>
<tr>
<td>under 1 year</td>
<td>49</td>
<td>28</td>
<td>7</td>
<td>18</td>
<td>102</td>
</tr>
<tr>
<td>1 to 4 years</td>
<td>165</td>
<td>126</td>
<td>62</td>
<td>62</td>
<td>415</td>
</tr>
<tr>
<td>5 to 12 years</td>
<td>429</td>
<td>317</td>
<td>159</td>
<td>152</td>
<td>1,057</td>
</tr>
<tr>
<td>13 to 19 years</td>
<td>354</td>
<td>278</td>
<td>180</td>
<td>143</td>
<td>955</td>
</tr>
<tr>
<td>20 to 24 years</td>
<td>276</td>
<td>148</td>
<td>111</td>
<td>152</td>
<td>687</td>
</tr>
<tr>
<td>25 to 34 years</td>
<td>405</td>
<td>211</td>
<td>147</td>
<td>289</td>
<td>1,082</td>
</tr>
<tr>
<td>35 to 44 years</td>
<td>342</td>
<td>250</td>
<td>153</td>
<td>220</td>
<td>965</td>
</tr>
<tr>
<td>45 to 64 years</td>
<td>754</td>
<td>408</td>
<td>323</td>
<td>535</td>
<td>2,110</td>
</tr>
<tr>
<td>65 years & over</td>
<td>404</td>
<td>134</td>
<td>98</td>
<td>306</td>
<td>942</td>
</tr>
<tr>
<td>unknown</td>
<td>19</td>
<td>22</td>
<td>10</td>
<td>19</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td>3,197</td>
<td>2,042</td>
<td>1,250</td>
<td>1,896</td>
<td>8,385</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under 1 year</td>
<td>18</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>1 to 4 years</td>
<td>78</td>
<td>16</td>
<td>1</td>
<td>22</td>
<td>117</td>
</tr>
<tr>
<td>5 to 12 years</td>
<td>146</td>
<td>46</td>
<td>18</td>
<td>65</td>
<td>275</td>
</tr>
<tr>
<td>13 to 19 years</td>
<td>124</td>
<td>27</td>
<td>9</td>
<td>42</td>
<td>202</td>
</tr>
<tr>
<td>20 to 24 years</td>
<td>52</td>
<td>9</td>
<td>5</td>
<td>35</td>
<td>101</td>
</tr>
<tr>
<td>25 to 34 years</td>
<td>84</td>
<td>22</td>
<td>13</td>
<td>64</td>
<td>183</td>
</tr>
<tr>
<td>35 to 44 years</td>
<td>83</td>
<td>15</td>
<td>3</td>
<td>59</td>
<td>160</td>
</tr>
<tr>
<td>45 to 64 years</td>
<td>120</td>
<td>23</td>
<td>23</td>
<td>89</td>
<td>255</td>
</tr>
<tr>
<td>65 years & over</td>
<td>41</td>
<td>2</td>
<td>8</td>
<td>18</td>
<td>69</td>
</tr>
<tr>
<td>unknown</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>750</td>
<td>167</td>
<td>81</td>
<td>408</td>
<td>1,406</td>
</tr>
<tr>
<td>Other Races</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under 1 year</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>1 to 4 years</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>5 to 12 years</td>
<td>27</td>
<td>5</td>
<td>9</td>
<td>47</td>
<td>88</td>
</tr>
<tr>
<td>13 to 19 years</td>
<td>11</td>
<td>4</td>
<td>6</td>
<td>49</td>
<td>70</td>
</tr>
<tr>
<td>20 to 24 years</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>36</td>
<td>50</td>
</tr>
<tr>
<td>25 to 34 years</td>
<td>22</td>
<td>13</td>
<td>4</td>
<td>45</td>
<td>84</td>
</tr>
<tr>
<td>35 to 44 years</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td>38</td>
<td>62</td>
</tr>
<tr>
<td>45 to 64 years</td>
<td>28</td>
<td>11</td>
<td>11</td>
<td>51</td>
<td>101</td>
</tr>
<tr>
<td>65 years & over</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>unknown</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>127</td>
<td>49</td>
<td>39</td>
<td>307</td>
<td>524</td>
</tr>
</tbody>
</table>

Total Population					
under 1 year	71	32	7	32	142
1 to 4 years	248	146	63	100	557
5 to 12 years	602	368	186	264	1,420
13 to 19 years	489	309	195	234	1,227
20 to 24 years	340	159	116	223	838
25 to 34 years	511	276	164	398	1,349
35 to 44 years	437	272	161	317	1,187
45 to 64 years	902	532	357	675	2,466
65 years & over	450	138	110	337	1,035
unknown	24	26	11	33	94
Total	4,074	2,258	1,370	2,613	10,315