The Objective-Item Bank presented covers 16 sections of four subject areas in each of four grade levels. The four areas are: Language Arts, Math, Social Studies, and Science. The four grade levels are: Primary, Intermediate, Junior High, and High School. The Objective-Item Bank provides school administrators with an initial starting point for curriculum development and with the instrumentation for program evaluation, and offers a mechanism to assist teachers in stating more specifically the goals of their instructional program. In addition, it provides the means to determine the extent to which the objectives are accomplished. This document presents the Objective Item Bank for intermediate mathematics. (CK)
INTERMEDIATE MATHEMATICS

BEHAVIORAL OBJECTIVES AND TEST ITEMS

by Dr. Marcus Lieberman, Director
Dr. Les Brown, Project Associate
Mr. William Neidlinger, Project Associate
Mrs. Linda Swanson, Project Associate

Evaluation for Individualized Instruction Project
AN ESEA TITLE III PROJECT
Administered

Downers Grove Public School District 99
BACKGROUND

The Evaluation for Individualized Instruction Project, an ESEA Title III project administered by the Downers Grove, Illinois, School District 99, has developed an Objective-Item Bank covering sixteen sectors of four subject areas in each of four grade levels.

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>LA</th>
<th>MA</th>
<th>SS</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
</tr>
</tbody>
</table>

LA = Language Arts
MA = Math
SS = Social Studies
SC = Science

1 = Primary
2 = Intermediate
3 = Junior High
4 = High School

Nearly 5000 behavioral objectives and over 27,000 test items based on these objectives were recently published as the culmination of this three-year project. The complete output of seventeen volumes totals over 4500 pages. These publications have been reproduced by the Institute for Educational Research to make them available at cost to teachers and administrators.

The objectives and items were written by over 300 elementary and secondary teachers, representing forty Chicago suburban school districts, who participated in workshops of three to nine weeks duration throughout the project. In these workshops they learned to write effective behavioral objectives and test items based on the objectives. The results of their work were edited for content and measurement quality to compile the largest pool of objectives and test items ever assembled.

PRINCIPLES AND MERITS

Unfortunately, the Objective-Item Bank is often viewed mainly as a source of test items. Although this is an important function, its greatest potential impact lies not in the availability of a multitude of test items, but rather in the ability of these items to measure carefully selected educational goals.

The almost frenetic search for test items on the part of some educators has been spurred by the current emphasis on measurement. Some educators have become so enamored with measurement that they seem more interested in obtaining a numerical index than examining what they are really trying to measure. Further, it is
not unusual for teachers to speak about a child obtaining a score of 95% on a particular test. Frequently, they encounter considerable difficulty in interpreting the real meaning of a score and are content to just accept its numeral value. A much more important question would seem to be: What are our goals of measurement? Unless we can answer this question precisely, the only real purpose that testing serves is to gather data concerning pupils to facilitate the marking of report cards. This is not to say that this function is not legitimate - it is rather to say that such a view of measurement is much too constraining. The goal of measurement should be to provide feedback both to the teacher and the child regarding the success or failure of the learning experiences in realizing specifically stated objectives.

One of the main strengths of the EII Objective and Item Bank is that all the items are directly tied to specifically stated objectives. Each group of items is designed to measure a specific objective and therefore provides the means whereby the teacher can obtain feedback on the success of the educational program.

It is disheartening to observe so many districts attacking the complex problem of curriculum development independently. One cannot help reflecting on the mammoth duplication of efforts involved. The Objective-Item Bank offers a possible alternative to this duplication. Utilizing its resources, the curriculum committee is provided with some point of departure. The efforts of three hundred teachers participating in the Evaluation Project's workshops and the thoughts of forty districts can be evaluated and utilized. This is not to suggest that any set of objectives should be viewed as the "answer" to an individual district's curricular problem but rather the efforts of others offer a convenient point of departure and may serve to stimulate diverse opinions about the direction of curricular thrust within the individual district. The words of Sir Isaac Newton seem appropriate; "If I have seen further, it is by standing upon the shoulder of giants." The efforts of others, whether we consider them giant-like or pygmyish, do offer a threshold to view the immense, complicated problem of curricular development in better perspective.

The title of an article in a recent educational journal, "If You're Not Sure Where You're Going, You're Liable to End up Someplace Else," succinctly describes a continuing dilemma in our educational system. The vagueness of our goals often promotes the idea that "anything goes." Without a guiding beacon many classrooms become activity-centered rather than goal-oriented. One educator recently compared the all-too-typical classroom with Henry Ford's observation concerning history. He defined history as, "One damned thing after another." Is this true of the succession of activities within our classrooms? Does the teacher really know the educational purpose of each activity? Perhaps, even more importantly, do the children know the purpose?

The Objective-Item Bank offers a mechanism to assist teachers in stating more specifically the goals of their instructional program and further provides the means to determine the extent to which the objectives are accomplished. The specification of goals assists the teacher in discovering whether favored activities advance learning, or are merely time fillers; whether they get the "materials" across, or are merely perfunctory exercises.
Much discussion has been devoted to the topic of "why individualized instruction?" and occasionally some dialogue has even centered on the "how." But an even more basic question is one that is often ignored: "Individualize what?"

Many school districts mention their individualized programs in reading or mathematics. What is individualized within these programs? Are certain skills definitely identified? Is the practice of pretesting to determine the child's level of proficiency when he enters the program a guideline?

The Objective-Item Bank has two potential contributions to make to all school districts embarking on or presently engaged in individualized instruction programs. These contributions are: 1. A group of well-specified objectives which could form the "what" of the program. 2. A set of items designed to provide information on the degree of mastery of the objective.

APPLICATIONS AND TECHNIQUES

The versatility of the Objective-Item Bank is evident in the value and usability by both teachers and administrators.

To the Administration the Objective-Item Bank:

1. Provides an initial starting point for curriculum development. The existence of many objectives avoids the necessity of each district duplicating the efforts of another. The task of the curriculum committee becomes one of selecting and/or rejecting objectives from the Objective - Item Bank and then supplementing them with objectives developed at the local level. Past-participants of the Evaluation Project workshops would be valuable resource people in this endeavor.

2. Provides the instrumentation for program evaluation. The selection of items from those objectives representative of the main emphases of the local district provides the framework for the evaluation of the stated goals.

To the Teacher the Objective-Item Bank:

1. Provides the pooling of talent and imagination of teachers of varied experience and interests, thus avoiding the present duplication of effort.

2. Provides resources for more highly sensitized program evaluation instead of a battery of standardized tests. Since the objectives are tailored to the program, the associated test items can be used to determine precisely the efficacy of the instructional materials.

3. Provides the means whereby the teacher can become more acutely aware of that which he is seeking to have occur in his classroom and that which he will accept as evidence of its occurrence. Hopefully, as teachers become more aware of their goals, they will share these
objectives with children and let the pupils become acutely aware of that which is expected of them, ergo allowing them to seek their own modality of instruction for the realization of the stated goals.

4. Provides the nucleus of an individualized instruction program.

a. It provides for more precise curriculum planning by differentiating those goals specific to each grade and even to each student. With the bank at their disposal, teachers are encouraged to become aware of their responsibilities in developing a set of basic objectives which every child must attain and a further set which can be pursued according to the students' abilities and interests.

b. It provides several items per objective, some of which may be used as a pre-test to discover whether a student should undertake that objective while the remainder may be employed to measure the mastery of those students who do tackle the objective.

NOTES

Several of the volumes have been reproduced from punched cards by the IBM 407, a machine which does not print all characters exactly as they appear on a typewriter. Thus:

% is actually (
Ω is actually)
O is actually ? or !
Apostrophes cannot be printed.

The number immediately after the statement of each objective represents the number of items measuring attainment of that objective.

Information on the EII publications or purchase requests can be directed to:

INSTITUTE FOR EDUCATIONAL RESEARCH
1400 West Maple Avenue
Downers Grove, Illinois 60515
INTERMÉDIAIRE DE MATHÉMATIQUES
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF THE DIFFERENT WAYS OF NAMING NUMBERS BY IDENTIFYING A NUMBER IN ANOTHER EXPRESSED FORM FROM A GIVEN LIST.

Directions: Put an (X) in front of the correct answer.

Three thousand, six hundred

a. 306
b. 30006
*c. 3600

Two million, ninety-two

a. 292
*b. 200092
 c. 200902

Ten thousand, three hundred, twelve

a. 1030012
b. 130012
*c. 10312

Eighty hundred, forty-six

a. 800046
*b. 8046
 c. 80046

Forty-three thousand, five hundred, seventy

a. 43500070
b. 4350070
*c. 43570
Eight thousand, forty-six
 a. 80046
 *b. 8046
 c. 846

Thirty-four thousand, six hundred, eighty
 *a. 34680
 b. 346380
 c. 304680

Three hundred twenty thousand two hundred
 a. 300200
 b. 30020200
 *c. 320200

Eleven million six hundred
 a. 11600
 *b. 11000600
 c. 110600

Four hundred fifty-three thousand
 a. 40053
 b. 453
 *c. 453000

100027
 a. one million twenty-seven
 *b. one hundred thousand twenty-seven
 c. ten thousand twenty-seven
60606
 a. Six hundred six thousand six
 b. Six thousand six hundred six
 *c. Sixty thousand six hundred six

1029
 *a. Ten hundred twenty-nine
 b. Ten thousand twenty-nine
 c. One thousand two hundred nine

70237
 a. Seven hundred thousand two hundred thirty-seven
 b. Seven thousand two hundred thirty-seven
 *c. Seventy thousand two hundred thirty-seven

2002092
 *a. Two million ninety-two
 b. Two million nine hundred two
 c. Two million two hundred ninety-two

3600
 a. Thirty six thousand
 *b. Thirty six hundred
 c. Three hundred sixty

7777077
 a. Seven million seven hundred seventy-seven
 *b. Seven million seven hundred seventy-seven thousand seventy-seven
 c. Seven million seven hundred thousand seventy-seven
a. Four million forty-four thousand
b. Four hundred forty thousand forty-four
*c. Four million forty thousand forty-four

26620

a. Twenty thousand six hundred twenty
*b. Twenty-six thousand six hundred twenty
c. Twenty six thousand twenty

PLACE HOLDERS AND VALUE
THE STUDENT CAN DEMONSTRATE KNOWLEDGE OF PLACEHOLDERS BY COUNTING THE PLACEHOLDERS IN THE FIRST NUMBER OF THE EXPANSION OF A GIVEN NUMBER.

In the expansion of 1234, the number 1000 is first in the list. 1000 has

a. 1 place holder
b. 2 place holders
*c. 3 place holders

Source: Elementary School Mathematics #4, 2nd Ed., Addison-Wesley, Ch. 5

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF PLACEHOLDERS BY TRANSLATING THE NUMBER OF PLACEHOLDERS IN A GIVEN NUMBER INTO POWERS OF TEN.

The number 1000 may be written, in powers of ten, as

a. \(1 \times 10^2\)
*b. \(1 \times 10^3\)
c. \(1 \times 10^1\)

Source: Elementary School Mathematics #4, 2nd Ed., Addison-Wesley Ch. 5
"Peas and Particles" Elementary Science Study, Webster, McGraw-Hill

THE STUDENT CAN DEMONSTRATE A KNOWLEDGE OF PLACE BY COUNTING THE NUMBER OF PLACES AFTER THE FIRST DIGIT IN ANY NUMBER.
The number 1.234 has

a. three places after the decimal
b. two places after the decimal
c. one place after the decimal

Source: Elementary School Mathematics #4, 2nd Ed., Addison-Wesley, Ch. 5
"Peas and Particles" Elementary Science Study, Webster, McGraw-Hill

THE STUDENT CAN DEMONSTRATE A KNOWLEDGE OF PLACE BY COUNTING THE NUMBER OF PLACES FOLLOWING THE FIRST DIGIT ON ANY NUMBER.

Look at the number 1234. The number of places after the digit (1) is

a. 1
b. 2
c. 3

Source: Elementary School Mathematics #4, 2nd Ed., Addison-Wesley, Ch. 5
"Peas and Particles" Elementary Science Study, Webster, McGraw-Hill

THE STUDENT DEMONSTRATES KNOWLEDGE OF PLACE VALUE NAMES BY CHOOSING THE CORRECT POSITIONS FOR GIVEN NUMERALS.

The number 42 can be expressed by

a. $4 + 2$
b. $40 + 2$
c. $\triangle \triangle 1$
d. 40×2

Source: Elementary School Mathematics #4, 2nd Ed., Addison-Wesley, Ch. 5
"Peas and Particles" Elementary Science Study, Webster, McGraw-Hill
Three hundreds, seven tens, three ones are:

a. 3071
 b. 300 + 7 + 3
 c. 373
 d. 3703

In the number 56031, the zero represents

a. tens
 b. hundreds
 c. thousands
 d. ten thousands

The compact or standard numeral for 30,000 + 4000 - 70 + 6 is:

a. 34076
 b. 34706
 c. 30476
 d. 34760

The compact or standard numeral for fifty-four thousand nine hundred eighty can be stated as:

a. 5980
 b. 54908
 c. 54980
 d. 50498
 e. 54098

The expanded notation for 41605 is:

a. 4000 + 16 + 5
 b. 4000 + 1000 + 600 + 50
 c. 40000 + 1000 + 600 + 5
 d. 41000 + 1000 + 600 + 5
 e. 40000 + 1000 + 600 + 50
The population of Paris in 1962 was about 2 million 8 hundred thousand. Which digits name this population?

- a. 2008000
- b. 2,800,000
- c. 2,080,000
- d. 280,000

The student shows knowledge of place value by selecting the correct place value for a given number.

Directions: Given the number 41,875,362,083 which of the following is true about place value.

The digit 2 is in which place:
- a. hundreds
- b. tens
- *c. thousands
- d. ten-thousands

The digit in the millions place is:
- a. 1
- *b. 5
- c. 2
- d. 3

The digit three is in which place:
- *a. ones
- b. ten-thousands
- c. millions
- d. ten millions
The largest place value used is:

a. ten millions
b. ten billions
c. ten thousands
d. ten trillions

Three consecutive places from smallest to largest are:

a. tens, thousands, hundreds
b. ones, hundreds, thousands
c. hundreds, ten thousands, hundred thousands
d. hundreds, thousands, ten thousands

The three places in the thousands period are

a. ones, tens, hundreds
b. tens, hundreds, thousands
c. thousands, ten thousands, hundred thousands
d. ten thousands, hundred thousands, millions

GIVEN A VARIETY OF NUMERALS THE STUDENT WILL SHOW AN UNDERSTANDING OF THE PLACE VALUES OF NUMBERS GREATER THAN ONE THOUSAND BY SELECTING THE CORRECT PLACE VALUE FOR THOSE NUMBERS.

Given a numeral circle **a** if the 6 is in ten thousands place; **b** if the 6 is in one hundred thousands place; and **c** if the 6 is in one millions place.

1,683,234	*a* b c
6,384,432	a b *c*
9,263,321	*a* b c
In the numeral 999,999 the nine in the ten thousands place is ten times as big as

- a. the nine in ones place
- b. the nine in hundreds place
- *c. the nine in one thousands place
- d. the nine in tens place

In the addition of numeral with face value each greater than nine thousand the sum will be

- a. less than ten thousand
- b. equal to ten thousand
- *c. greater than ten thousand

In the numeral 123,456 the digit which has the greatest value is in the

- *a. hundred thousands place
- b. hundreds place
- c. thousands place
- d. ten thousands place

The numeral 685,497 equals

- a. \((6 \times 100,000) + (8 \times 1,000) + (5 \times 10,000) + 497\)
- *b. \((5 \times 1,000) + (8 \times 10,000) + (6 \times 100,000) + 497\)
- c. \((6 \times 10,000) + (8 \times 100,000) + (5 \times 1,000) + 497\)

THE STUDENT WILL APPLY HIS KNOWLEDGE OF FACE VALUE, PLACE VALUE AND TOTAL VALUE BY IDENTIFYING THE MEANING OF EACH VALUE IN GIVEN EXAMPLE.

Directions: Choose the correct answer by circling the letter in front of it.
In 465 the 6 has

a. a face value of 65, a place value of 60, a total value of 60.

*b. a face value of 6, a place value of 10, a total value of 60.

c. a face value of 6, a place value of 60, a total value of 65.

In 3069 the 9 has

a. a face value of 69, a place value of 6, a total value of 60.

b. a face value of 60, a place value of 10, a total value of 9.

*c. a face value of 9, a place value of 1, a total value of 9.

In 987 the 9 has

*a. a face value of 9, a place value of 100, a total value of 900.

b. a face value of 900, a place value of 90, a total value of 90.

c. a face value of 9, a place value of 900, a total value of 987.

In 1967 the 1 has

a. a face value of 1, a place value of 100, a total value of 1900.

*b. a face value of 1, a place value of 1000, a total value of 1900.

c. a face value of 1, a place value of 1000, a total value of 1900.

In 39,765 the 3 has

a. the face value of 39, the place value of 10000, the total value of 39,000.

*b. the face value of 3, the place value of 10000, the total value of 30,000.

c. the face value of 3, the place value of 30,000, the total value of 33,000.
In 89 the 8 has

*a. a face value of 8, a place value of 10, a total value of 80.
b. a face value of 80, a place value of 8, a total value of 10.

In 7693 the 9 has

a. a face value of 90, a place value of 9, a total value of 99.
b. a face value of 10, a place value of 9, a total value of 90.
c. a face value of 9, a place value of 10, a total value of 90.

In 437 the 4 has

*a. a face value of 40, a place value of 100, a total value of 440.
b. a face value of 400, a place value of 4, a total value of 40.
c. a face value of 4, a place value of 100, a total value of 400.

In 2367 the 2 has

*a. a face value of 2, a place value of 1000, a total value of 2000.
b. a face value of 2000, a place value of 2, a total value of 4000.
c. a face value of 2, a place value of 2000, a total value of 2000.

In 54693 the 6 has

a. a face value of 60, a place value of 6, a total value of 6600.
b. a face value of 100, a place value of 6, a total value of 600.
c. a face value of 6, a place value of 100, a total value of 600.

Source: Houghton Mifflin, Pg. 12.
THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF NUMBERS BY WRITING A GIVEN NUMBER IN EXPANDED NOTATION.

The number 1234 may be written in expanded notation as

\[
\begin{align*}
\text{a.} & \quad 100 \\
& \quad 2000 \\
& \quad 30 \\
& \quad 4 \\
\text{b.} & \quad 1000 \\
& \quad 2000 \\
& \quad 3000 \\
& \quad 4000 \\
\text{c.} & \quad 1000 \\
& \quad 200 \\
& \quad 30 \\
& \quad 4 \\
\end{align*}
\]

THE STUDENT WILL APPLY HIS KNOWLEDGE OF COMPACT NUMERALS BY CHOOSING THE CORRECT EXPANDED NUMERAL FROM A GIVEN LIST.

Directions: Place an X on the line before the correct answer.

\[
\begin{align*}
3000 + 200 + 40 + 5 \text{ is the expanded numeral for} & \quad 0053 \\
\text{a.} & \quad 32045 \\
\text{b.} & \quad 30245 \\
\text{c.} & \quad 32145 \\
9000 + 900 + 90 + 9 \text{ is the expanded numeral for} & \quad 0054 \\
\text{a.} & \quad 9999 \\
\text{b.} & \quad 99099 \\
\text{c.} & \quad 9009 \\
\end{align*}
\]
500 + 70 + 2 is the expanded numeral for 0055

a. 50072
*b. 572
 c. 5702

8000 + 400 + 9 is the expanded numeral for 0056

*a. 8409
 b. 8049
 c. 849

6000 + 10 + 3 is the expanded numeral for 0057

a. 6103
*b. 6013
 c. 6013

9000 + 500 + 40 is the expanded numeral for 0058

a. 9054
 b. 9504
*i. 9540

700 + 2 is the expanded numeral for 0059

*a. 702
 b. 7002
 c. 72

4000 + 100 + 3 is the expanded numeral for 0060

a. 413
 *b. 4103
 c. 4013
8000 + 200 + 40 + 3 is the expanded numeral for
 a. 80243
 b. 820403
 *c. 8243

1000 + 400 + 20 + 5 is the expanded numeral for
 a. 10425
 *b. 1425
 c. 14025

100 + 60 + 1 is the expanded numeral for
 *a. 161
 b. 1061
 c. 1601

1000 + 20 + 9 is the expanded numeral for
 a. 10029
 b. 1209
 *c. 1029

600 + 2 is the expanded numeral for
 a. 6002
 *b. 602
 c. 62

80 + 6 is the expanded numeral for
 *a. 86
 b. 806
 c. 860
7000 + 60 + 6 is the expanded numeral for
 a. 766
 b. 7606
 *c. 7066

90 + 3 is the expanded numeral of
 a. 903
 *b. 93
 c. 930

2000 + 500 + 50 + 5 is the expanded numeral for
 *a. 2555
 b. 25005
 c. 205055

3000 + 3 is the expanded numeral of
 a. 303
 b. 33
 *c. 3003

7000 + 70 + 1
 *a. 7071
 b. 7701
 c. 70701

900 + 60 + 6
 a. 9066
 *b. 966
 c. 9606

Source: Houghton Mifflin, Pg. 49.
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF A COMPACT NUMERAL BY CHOOSING THE CORRECT NUMERAL FROM A GIVEN LIST.

Directions: Match column I with column II by placing the letter from column I on the line before the correct answer in column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thousands Hundreds Tens Ones</td>
</tr>
<tr>
<td>a</td>
<td>3 0 12 6</td>
</tr>
<tr>
<td>b</td>
<td>0 24 3 6</td>
</tr>
<tr>
<td>c</td>
<td>0 91 0 26</td>
</tr>
<tr>
<td>d</td>
<td>4 0 34 6</td>
</tr>
<tr>
<td>e</td>
<td>0 53 0 6</td>
</tr>
<tr>
<td>f</td>
<td>9 0 63 6</td>
</tr>
<tr>
<td>g</td>
<td>5 6 0 16</td>
</tr>
<tr>
<td>h</td>
<td>0 43 2 6</td>
</tr>
<tr>
<td>i</td>
<td>0 26 0 16</td>
</tr>
<tr>
<td>j</td>
<td>3 2 0 16</td>
</tr>
</tbody>
</table>

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF ROUNding BY ESTIMATING PRODUCTS USING THE RULES OF ROUNding TOW R DIGIT FACTORS TO THE NEAREST TEN, AND THREE DIGIT FACTORS TO THE NEAREST ONE HUNDRED.

The answer to 63 x 523 by estimation is closest to

* a. 30000
 b. 3500
 c. 3000
 d. 36000

If you estimate the product of 49 and 723 your closest answer would be

a. 28000
 b. 3750
 c. 2800
 * d. 35000

The closest estimation to the product of 56 and 495 is

a. 25000
 b. 2000
 c. 3000
 * d. 30000

Estimate the answer to 38 x 921 =

is approximately

a. 40000
 b. 2700
 * c. 36000
 d. 27500

GIVEN A SPECIFIC NUMBER THE STUDENT WILL APPLY HIS KNOWLEDGE OF ROUNding NUMBERS TO SELECT AN APPROXIMATE ROUNded NUMBER FOR EACH.
Directions: Select the correct answer.

6,845,478 rounded to the nearest ten.

a. 6,845,470
*b. 6,845,480
 c. 6,845,500
 d. 6,845,400

5,979,345 rounded to the nearest thousand.

*a. 5,979,000
 b. 5,980,500
 c. 5,980,000
 d. 5,979,500

8,623,892 rounded to the nearest hundred.

a. 8,623,800
 b. 8,623,000
 *c. 8,623,900
 d. 8,620,000

3,986,421 rounded to the nearest million.

a. 3,000,000
*b. 4,000,000
 c. 3,900,000
 d. 3,800,000

2,918,433 rounded to the nearest ten thousand.

a. 2,908,000
 b. 2,900,000
 c. 2,915,000
 *d. 2,920,000
4,718,629 rounded to the nearest hundred thousand.

*a. 4,720,000
b. 4,800,000
c. 4,700,000
d. 4,710,000
THE STUDENT CAN DEMONSTRATE KNOWLEDGE OF THE NUMBER LINE BY LOCATING NUMBERS ON THE GIVEN NUMBER LINE.

Select the graph which represents the whole numbers from 1 to 6, inclusive.

a. \[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

b. \[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

c. \[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

d. \[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

Select the graph which represents the numbers between 3 and 6, including 6.

a. \[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

b. \[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

c. \[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

d. \[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

THE STUDENT RECALLS NUMBER LINES AND REGIONS BY USING THEM TO EXPRESS FRACTIONS.

Using the figure on the left, the fraction that compares the shaded area to the total region is

a. \(\frac{1}{5} \)

d. \(\frac{2}{5} \)

b. \(\frac{1}{6} \)

c. \(\frac{5}{6} \)
The shaded area is ______ of the total region.

a. \(\frac{1}{2} \)
b. \(\frac{1}{7} \)
c. \(\frac{2}{10} \)
d. \(\frac{3}{7} \)

Point B would be labeled ______.

a. \(\frac{2}{4} \)
b. \(\frac{3}{8} \)
c. \(\frac{1}{3} \)
d. \(\frac{2}{3} \)

Point C would be labeled ______.

a. \(\frac{1}{4} \)
b. \(\frac{2}{4} \)
c. \(\frac{1}{3} \)
d. \(\frac{2}{8} \)
The student will demonstrate his understanding of the correlation between fractions and rational numbers by labeling points on the number line.

Directions: Choose the fraction that is indicated by the point on the number line.

Question 8

- a. \(\frac{4}{7}\)
- b. \(\frac{3}{5}\)
- c. \(\frac{2}{4}\)
- d. \(\frac{3}{5}\)

Question 9

- a. \(\frac{4}{14}\)
- b. \(\frac{4}{15}\)
- c. \(\frac{2}{15}\)
- d. \(\frac{3}{14}\)

Question 10

- a. \(\frac{5}{8}\)
- b. \(\frac{6}{7}\)
- c. \(\frac{4}{5}\)
- d. \(\frac{5}{7}\)
Directions: Choose and circle the letter of the point on the number line that names the set of equivalent fractions.

\[\frac{1}{4}, \frac{2}{8}, \frac{3}{12}, \frac{4}{16}, \ldots \]

\[\frac{1}{3}, \frac{2}{6}, \frac{3}{9}, \frac{4}{12}, \ldots \]

\[\frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24}, \ldots \]

\[\frac{2}{5}, \frac{4}{10}, \frac{6}{15}, \frac{8}{20}, \ldots \]

\[\frac{3}{8}, \frac{6}{16}, \frac{9}{24}, \frac{12}{32}, \ldots \]

Source: Addison-Wesley, Bk. 5, pp. 220-221.

THE STUDENT WILL APPLY HIS KNOWLEDGE OF RATIONAL NUMBERS TO DETERMINE THE RELATIONSHIP BETWEEN TWO POINTS ON TWO NUMBER LINES.
Directions: By looking at the number lines choose the relationship between the given points. If the first point represents a rational number larger than the second point cross out the L.; if the first point represents a rational number smaller than the second cross out the S.; if the two points represent the same rational number, cross out the E.

B, G

a. L
b. S
c. E

B, H

a. L
b. S
c. E

C, J

a. L
b. S
c. E

C, I

a. L
b. S
c. E
D, J
 *a. L
 b. S
 c. E

D, K
 a. L
 *b. S
 c. E

E, K
 *a. L
 b. S
 c. E

A, G
 a. L
 *b. S
 c. E

E, L
 a. L
 b. S
 *c. E

E, K
 *a. L
 b. S
 c. E
N, U

*a. L
b. S
c. E

0, V

a. L
*b. S
c. E

P, W

a. L
b. S
*c. E

Q, X

*a. L
b. S
c. E

Q, Y

a. L
*b. S
c. E

Y, R

a. L
*b. S
c. E
0123
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF ADDITION AND
SUBTRACTION OF FRACTIONS ON NUMBER LINES BY CHOOSING THE EQUATION
REPRESENTED BY A NUMBER LINE.

Directions: Choose the answer that correctly identifies the equation suggested by the number line.
a. \(\frac{3}{2} + \frac{5}{2} = \frac{8}{2} \)

b. \(\frac{3}{2} + \frac{5}{2} = \frac{8}{2} \)

c. \(\frac{3}{2} + \frac{2}{2} = \frac{5}{2} \)

d. \(\frac{3}{2} + \frac{5}{2} = \frac{8}{2} \)

a. \(\frac{2}{3} - \frac{4}{3} = \frac{2}{3} \)

b. \(\frac{4}{3} - \frac{2}{3} = \frac{2}{3} \)

c. \(\frac{4}{3} - \frac{2}{3} = \frac{2}{3} \)

d. \(\frac{2}{3} - \frac{2}{3} = \frac{2}{3} \)

a. \(\frac{4}{3} + \frac{4}{3} = \frac{8}{3} \)

b. \(\frac{8}{3} - \frac{4}{3} = \frac{4}{3} \)

c. \(\frac{4}{3} + \frac{5}{3} = \frac{8}{3} \)

d. \(\frac{8}{3} - \frac{4}{3} = \frac{0}{3} \)
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING THAT A NUMBER LINE CAN PORTRAY THE ADDITION OF POSITIVE AND NEGATIVE INTEGERS BY SELECTING AN EQUATION DEMONSTRATED ON A GIVEN NUMBER LINE.

Directions: Analyze the following illustrations and select the equation described.

Source: Addison-Wesley, Bk. 5, p. 238
1. \(-3 + 0 = 3 \)
2. \(-3 + -3 = 3 \)
3. \(-3 + -6 = 3 \)
4. \(-3 + 6 = 3 \)

2. \(2 - -7 = -5 \)
3. \(2 - -5 = -5 \)
4. \(-5 + 2 = -5 \)
5. \(-5 + 7 = -5 \)

3. \(-9 + 4 = -9 \)
4. \(-9 + -4 = 9 \)
5. \(-5 + -9 = ? \)
6. \(-5 + -4 = -9 \)

4. \(3 + 3 = 6 \)
5. \(6 + -3 = 3 \)
6. \(3 + -3 = 6 \)
7. \(6 + 3 = 6 \)

5. \(5 + 8 = 13 \)
6. \(-5 + 13 = 8 \)
7. \(8 + -5 = 13 \)
8. \(-5 + -8 = 8 \)
THE STUDENT WILL ANALYZE A NUMBER LINE SHOWING REPEATED SUBTRACTION IN RELATIONSHIP TO DIVISION BY CORRECTLY IDENTIFYING THE FORMULATED DIVISION EQUATION.

Which number sentence below correctly illustrates the number line?

\[a. \ 4 \times 6 = 24 \]
\[*b. \ 24 \div 6 = 4 \]
\[c. \ 24 \div 4 = 6 \]

Which number sentence below correctly illustrates the number line?

\[a. \ 4 \times 7 = 28 \]
\[b. \ 28 \div 7 = 4 \]
\[*c. \ 28 \div 4 = 7 \]

Which number sentence below correctly illustrates the number line?

\[a. \ 3 \times 6 = 18 \]
\[*b. \ 18 \div 3 = 6 \]
\[c. \ 18 \div 6 = 3 \]

Which number sentence below correctly illustrates the number line?

\[*a. \ 27 \div 9 = 3 \]
\[b. \ 27 \div 3 = 9 \]
\[c. \ 9 \times 3 = 27 \]
Which number sentence below correctly illustrates the number line?

![Number Line](image)

0141

- a. $15 \div 3 = 5$
- b. $5 \times 3 = 15$
- *c. $15 \div 5 = 3$

Which number sentence below correctly illustrates the number line?

![Number Line](image)

0142

- a. $10 \div 10 = 1$
- *b. $10 \div 1 = 10$
- c. $1 \times 10 = 10$

Which number sentence below correctly illustrates the number line?

![Number Line](image)

0143

- a. $7 \times 3 = 21$
- b. $21 \div 3 = 7$
- *c. $21 \div 7 = 3$

Which number sentence below correctly illustrates the number line?

![Number Line](image)

0144

- a. $16 \div 8 = 2$
- b. $2 \times 8 = 16$
- *c. $16 \div 2 = 8$

40

46
Which number sentence below correctly illustrates the number line?

- a. \(20 \div 10 = 2\)
- b. \(20 \div 2 = 10\)
- c. \(2 \times 10 = 20\)

Which number sentence below correctly illustrates the number line?

- a. \(2 \times 7 = 14\)
- *b. \(14 \div 7 = 2\)
- c. \(14 \div 2 = 7\)

THE STUDENT WILL ANALYZE A NUMBER LINE SHOWING THE MULTIPLICATION OF FRACTIONS, BY IDENTIFYING THE CORRECT EQUATION.

Circle the equation that correctly describes the number line below.

- a. \(1 \times 3/5 = 3/5\)
- *b. \(3 \times 1/5 = 3/5\)
- c. \(3 \times 1 = 3/5\)

Circle the equation that correctly describes the number line below.

- *a. \(3 \times 1/4 = 3/4\)
- b. \(3 \times 3/4 = 3/4\)
- c. \(3 \times 1 = 3/4\)
Circle the equation that correctly describes the number line below.

1. \[a. \quad 6 \times 1 = 6/2 \]
 \[b. \quad 6 \times 1/2 = 6/2 \]
 \[c. \quad 6 \times 6/2 = 6/2 \]

Circle the equation that correctly describes the number line below.

2. \[a. \quad 1 \times 7/5 = 7/5 \]
 \[b. \quad 1/5 \times 7 = 9/5 \]
 \[c. \quad 7 \times 1/5 = 7/5 \]

Circle the equation that correctly describes the number line below.

3. \[a. \quad \frac{1}{3} \times \frac{1}{2} = \frac{1}{6} \]
 \[b. \quad \frac{3}{1} \times \frac{1}{6} = \frac{3}{6} \]
 \[c. \quad \frac{1}{6} \times \frac{1}{2} = \frac{3}{6} \]

Circle the equation that correctly describes the number line below.

4. \[a. \quad \frac{1}{3} \times \frac{1}{4} = \frac{4}{12} \]
 \[b. \quad \frac{1}{4} \times \frac{1}{3} = \frac{1}{3} \]
 \[c. \quad \frac{1}{4} \times \frac{1}{3} = \frac{1}{12} \]

Circle the equation that correctly describes the number line below.

5. \[a. \quad 1 \times \frac{1}{2} = \frac{1}{4} \]
 \[b. \quad \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \]
 \[c. \quad \frac{1}{2} \times \frac{1}{2} = \frac{2}{4} \]
Circle the equation that correctly describes the number line below.

\[a. \, \frac{1}{2} \times \frac{1}{4} = \frac{4}{8} \]
\[b. \, \frac{1}{4} \times \frac{1}{2} = \frac{1}{2} \]
\[*c. \, \frac{1}{4} \times \frac{1}{2} = \frac{1}{8} \]

Circle the equation that correctly describes the number line below.

\[*a. \, \frac{1}{3} \times \frac{1}{5} = \frac{1}{15} \]
\[b. \, 3 \times \frac{1}{15} = \frac{1}{5} \]
\[c. \, 3 \times \frac{1}{15} = \frac{3}{15} \]

Circle the equation that correctly describes the number line below.

\[*a. \, 8 \times \frac{1}{3} = \frac{8}{3} \]
\[b. \, 1 \times \frac{1}{3} = \frac{2}{3} \]
\[c. \, 2 \times \frac{1}{3} = \frac{8}{3} \]

Source: Addison-Wesley, Elementary School Math 5, pp. 288, 289.

The student will analyze a number line showing the multiplication of a mixed number times a fraction by correctly identifying the product from a list.
The number line above shows the equation \(\frac{1}{2} \times 3\frac{1}{2} = N \). What is the product expressed as a mixed number?

\[\begin{align*} &\text{a. } 7/4 \\
&\text{b. } 1 3/4 \\
&\text{c. } 1 1/2 \end{align*} \]

The number line above shows the equation \(2 \frac{1}{2} \times 3/4 = N \). What is the product expressed as a mixed number?

\[\begin{align*} &\text{a. } 1 7/8 \\
&\text{b. } 1 15/8 \\
&\text{c. } 2 1/2 \end{align*} \]

The number line above shows the equation \(\frac{5}{6} \times 1 \frac{1}{3} = N \). What is the product expressed as a mixed number?

\[\begin{align*} &\text{a. } 20/18 \\
&\text{b. } 1 2/18 \\
&\text{c. } 1 1/9 \end{align*} \]

The number line above shows the equation \(\frac{5}{13} \times 1\frac{1}{4} = N \). What is the product expressed as a mixed number?

\[\begin{align*} &\text{a. } 1 1/3 \\
&\text{b. } 16/12 \\
&\text{c. } 1 16/12 \end{align*} \]
The number line above shows the equation \(\frac{2}{3} \times 2 \frac{1}{2} = N \). What is the product expressed as a mixed number?

a. \(\frac{10}{6} \)
* b. \(\frac{2}{3} \)
 c. \(\frac{4}{6} \)

The number line above shows the equation \(2 \frac{2}{3} \times \frac{4}{5} = N \). What is the product expressed as a mixed number?

* a. \(\frac{2}{15} \)
b. \(\frac{9}{15} \)
c. \(\frac{32}{15} \)

The number line above shows the equation \(\frac{1}{2} \times 3 \frac{2}{3} = N \). What is the product expressed as a mixed number?

a. \(\frac{1}{6} \)
* b. \(\frac{5}{6} \)
c. \(\frac{11}{6} \)

The number line above shows the equation \(2 \frac{1}{3} \times \frac{1}{4} = N \). What is the product expressed as a mixed number?

a. \(\frac{3}{12} \)
b. \(\frac{9}{12} \)
* c. \(\frac{3}{4} \)
The number line above shows the equation \(3 \frac{1}{4} \times \frac{1}{3} = N \). What is the product expressed as a mixed number?

*a. 1 \frac{1}{12}

b. 1 \frac{13}{12}

c. 3 \frac{13}{12}

The number line above shows the equation \(\frac{2}{5} \times 2 \frac{3}{4} = N \). What is the product expressed as a mixed number?

*a. 2 \frac{6}{20}

b. 3 \frac{2}{20}

*c. 1 \frac{1}{10}

Source: Merrill, Discovering Math 5, p. 314

THE STUDENT WILL APPLY HIS KNOWLEDGE OF THE NUMBER LINE BY IDENTIFYING THE RELATIONSHIP BETWEEN TWO GIVEN NUMBERS.

Directions: Circle the correct alternative.

20 is to the right of 17 on the number line:

*a. \(20 > 17 \)

b. \(20 < 17 \)

c. \(20 = 17 \)

10 is to the left of 15 on the number line:

*a. 10 > 15

*b. 15 > 10

c. 10 = 15
X is to the right of y on the number line:

a. \(x = y \)
*b. \(x > y \)
c. \(x < y \)

25 > 12
*a. 12 is to the left of 25 on the number line
b. 12 is at the same point as 25 on the number line
c. 25 is to the left of 12 on the number line

30 < 50
*a. 50 is to the right of 30 on the number line
b. 30 is to the right of 30 on the number line
c. 50 is to the left of 30 on the number line

The number that is 500 greater than 100
*a. 400
b. 500
*c. 600

The number between 600 and 800 is
*a. 700
b. 700
c. 900

The number that is 200 less than 300 is
*a. 100
b. 400
c. 500
The number that is 200 less than 800 is

a. 1000
b. 400
*c. 600

The number that is 400 greater than 100 is

a. 300
*b. 500
c. 400

THE STUDENT WILL APPLY HIS KNOWLEDGE OF INEQUALITIES BY SOLVING PROBLEMS AND SELECTING THE ANSWER FROM A LIST OF POSSIBILITIES.

Directions: Answer the problems using inequalities, circle the correct answer.

100 greater than 36 is
 a. 360
 b. 3600
 *c. 136
 d. 163

The number 100,000 greater than 837,645,246 is
 a. 837,646,264
 *b. 837,745,264
 c. 838,645,264
 d. 837,655,264

Which of the following is true
 a. 653,804 < 653,084
 *b. 653,804 > 653,084
 c. 653,804 = 653,084

The number 1,000,000 less 348,637,486 is
 a. 348,627,486
 b. 338,637,486
 c. 349,637,486
 *d. 347,637,486
THE STUDENT WILL RECALL THE MEANING OF THE SIGNS GREATER THAN, LESS THAN, EQUAL TO BY IDENTIFYING THE CORRECTLY EXPRESSED NUMBER SENTENCE.

Directions: Place an x in front of the correct alternative.

2/4 + 1/4 = 3/4
a. 1/4 > 3/4
b. 1/4 = 3/4
* c. 1/4 < 3/4

5/8 + 2/8 = 7/8
a. 5/8 > 7/8
b. 7/8 < 5/8
* c. 5/8 < 7/8

3/9 + 2/9 = 5/9
* a. 5/9 > 2/9
b. 2/9 > 5/9
c. 3/9 = 2/9

3/7 + 2/7 + 5/7
* a. 2/7 < 5/7
b. 2/7 > 3/7
c. 5/7 < 3/7

3/5 + 1/5 = 4/5
a. 4/5 < 3/5
* b. 3/5 > 1/5
c. 3/5 = 1/5
1/7 + 1/7 = 2/7

*a. 1/7 = 1/7
b. 2/7 < 1/7
c. 2/7 = 1/7

3/8 + 4/8 = 7/8

a. 7/8 = 8/8
b. 3/8 > 4/8
*c. 4/8 > 3/8

4/9 + 1/9 = 5/9

a. 1/9 > 5/9
*b. 1/9 < 4/9
c. 1/9 > 4/9

1/12 + 2/12 = 3/12

*a. 2/12 < 3/12
b. 3/12 < 1/12
c. 1/12 > 2/12

3/10 + 2/10 = 5/10

a. 5/10 < 2/10
*b. 5/10 > 3/10
c. 5/10 < 3/10

Source: Houghton Mifflin, p. 300.
EXPONENTIAL NOTATION
THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF EXPONENTIAL NOTATION BY WRITING THE MULTIPLES OF TEN IN EXPONENTIAL NOTATION.

The following series of numbers may be expressed in exponential notation. Select the lettered row below which gives the correct scientific notation for the given series. In the particular order as given. (Hint: Write scientific notations of the numbers given first).

1,000,000
1,000
0.1
100
0.01
10
1
0.001

a. 10^6, 10^{-1}, 10^3, 10^{-2}, 10^2, 10^0, 10^1, 10^{-3}
b. 10^6, 10^1, 10^3, 10^2, 10^0, 10^{-1}, 10^{-2}, 10^{-3}
c. 10^6, 10^{-3}, 10^{-1}, 10^2, 10^{-2}, 10^1, 10^0, 10^{-3}
d. 10^6, 10^2, 10^3, 10^1, 10^0, 10^{-1}, 10^{-2}, 10^{-3}

The following series of numbers may be expressed in exponential notation. Select the lettered row below which gives the correct scientific notation for the given series, in the particular order given.

100,000
0.0001
10,000
0.00001

a. 10^{-5}, 10^{-4}, 10^4, 10^5
b. 10^5, 10^{-4}, 10^4, 10^{-5}
c. 10^5, 10^4, 10^{-4}, 10^{-5}
d. 10^6, 10^{-5}, 10^{-4}, 10^4

Source: Terms, Tables, Skills, Ch. 2.
THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF THE POWERS OF TEN BY TRANSLATING THE NUMBER OF DIGITS AFTER THE DECIMAL POINT INTO POWERS OF TEN.

The number 1234 may be written as

a. 12.34×10^3

b. 123.4×10^3

* c. 1.234×10^3

Source: Elementary School Mathematics #4, 2nd Ed., Addison-Wesley, Ch. 5.
"Peas and Particles" Elementary Science Study, Webster, McGraw-Hill

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF THE PROCESS OF INTERPOLATION BY INTERPOLATING THE RELATIVE VALUE OF THE EXPONENT OF A GIVEN NUMBER BETWEEN ANY TWO POWERS OF TEN.

If a number between 100 and 1000 is to be written in exponential notation, the exponent for the powers of ten would be

a. greater than 2 and greater than 3

b. less than 2 and less than 3

* c. greater than 2 and less than 3

Source: Elementary School Mathematics #4, 2nd Ed., Addison-Wesley, Ch. 5
Holt, Rinehart, and Winston, Elementary Math Series, 4th-8th
Elementary School Mathematics #6, 2nd Ed., Addison-Wesley
"Peas and Particles" Elementary Science Study, Webster, McGraw-Hill
THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF EXPONENTS BY SOLVING PROBLEMS INVOLVING EXPONENTS, RE-STATING NUMBERS INTO A FORM WITH EXPONENTS AND TRANSLATING NUMBERS INTO SCIENTIFIC NOTATION.

\[1 \times 1 = 1\]
\[1 + 3 = 2 \times 2 = 4\]

How many more 1 unit squares must be added to again have a square?

- a. 3
- b. 4
- c. 5
- d. 6

A square with 5 units on each side will have how many units in all?

- a. 10
- b. 15
- c. 20
- *d. 25

10 is one unit of 10 or we can write \(10^1\) (ten to the first power). \(10^2\) means ten to the second power or \(10 \times 10\) or 100. \(10^3\) means

- a. \(10 + 10 + 10\)
- *b. \(10 \times 10 \times 10\)
- c. \(100 \times 10\)
- d. \(1 \times 0 \times 0 \times 0\)

A number times itself gives us the square of that number. We use the exponent 2 to tell us to square a number. \(3^2 = 3 \times 3\) or 9. Which of these statements is not true?

- a. \(4^2 = 16\)
- b. \(15^2 = 15 \times 15\)
- c. \(11^2 = 121\)
- *d. \(7^2 = 14\)

56
An exponent helps us to give an abbreviated form of a large number.

\[4 \times 10 \times 10 \times 10 = 4 \times 10^3 \]

The number 6,000,000 is shortened to 6 \(\times 10^7 \)

- a. 4
- b. 5
- c. 6
- d. 7

73 \times 10^4 \text{ is equal to }

- a. 7300
- b. 73000
- c. 730000
- d. 7300000

61 \times 10^2 \text{ is equal to }

- a. 61
- b. 610
- c. 6100
- d. 61000

53 \times 10^7 \text{ is equal to }

- a. 53000000
- b. 530000000
- c. 5300000000
- d. 53000000000

Expanded notation tells us how many in each place. The shortened form of the standard numeral for \(7 \times 10^4 + 6 \times 10^3 \times 0 \times 10^2 + 9 \times 10 \) is

* a. 76090
* b. 76190
* c. 76009
* d. 76109
The standard numeral for \(8 \times 10^5 + 7 \times 10^3 + 9 \times 10^2 + 0 \times 10 + 7\) is 87907.

- a. 87907
- b. 807907
- c. 87097
- d. 807097

6 \times 10^4 + 3 \times 10^3 + 0 \times 10^2 + 4 \times 10 + 3\) is an expanded numeral for 603043.

- a. 603043
- b. 63003
- c. 63413
- d. 63043

\[2 \times 2 \times 2 \times 2 \times 2 = 2^n\]

- n =
- a. 5
- b. 4
- c. 3
- d. 2

\[2^3 + 3^2 = n\]

- n =
- a. 10
- b. 12
- c. 13
- d. 17

\[2^2 \times 10^4 = n\]

- n =
- a. 400
- b. 44
- c. 4040
- d. 40000
The fourth power of 2 is

\[2^4 = 2^2 \times 2^2 = _] x [_]

\[6^3 = 6^1 \times 6^2 = 6 \times [_] \]

a. 12
b. 18
c. 24
*d. 36

\[4^4 = 4^2 \times 4^2 = [_] \times [_] \]

a. 8 x 8
b. 8 + 8
*c. 16 x 16
d. 40 x 40

\[3 \times 10^3 \times 4 \times 10^2 = \]

a. 12 \times 10^6
*b. 12 \times 10^5
c. 12^6 \times 10^1
d. 8 \times 10^3

\[2 \times 10^4 \times 4 \times 10^3 = \]

*a. 8 \times 10^7
b. 8 \times 10^{12}
c. 8 \times 10^9
d. 8 \times 10^1
\[3^2 \times 3^5 = 3^n\]

\[n = \]
\[a. \quad 5\]
\[b. \quad 6\]
\[c. \quad 7\]
\[d. \quad 10\]

\[3^1 \times 3^3 = \]
\[a. \quad 9\]
\[b. \quad 27\]
\[c. \quad 81\]
\[d. \quad 243\]

\[2^1 \times 3^1 \times 5^1 = \]
\[a. \quad 11\]
\[b. \quad 30\]
\[c. \quad 60\]
\[d. \quad 100\]

\[2^1 \times 2^1 = \]
\[a. \quad 31\]
\[b. \quad 292\]
\[c. \quad 33\]
\[d. \quad 58\]

\[43^1 \times 2^1 \times 4\]
\[a. \quad 86\]
\[b. \quad 49\]
\[c. \quad 344\]
\[d. \quad 46\]

\[10^4 \times 8^2\]
\[a. \quad 16000\]
\[b. \quad 16,000,000\]
\[c. \quad 64,000,000\]
\[d. \quad 640,000\]
A product can be expressed as factors to their powers.

\[2^3 \times 7^1 = \]

\[4^2 \times 1^3 \times 2^3 = \]

\[a. \ 13 \]
\[b. \ 42 \]
\[c. \ 21 \]
\[\textbf{*d. \ 56} \]

A product can be expressed as factors to their powers.

\[20 = 2^2 \times 5 \]
\[40 = 2^n \times 5 \]

\[n = \]

\[a. \ 3 \]
\[b. \ 4 \]
\[\textbf{c. \ 5} \]
\[d. \ 6 \]

The product 45 has 2 factors. They are

\[a. \ 5 \times 3^2 \]
\[b. \ 5 \times 3^3 \]
\[c. \ 5 \times 3^1 \]
\[d. \ 5 \times 3^4 \]

The product 64 is equal to 2 to which power?

\[a. \ \text{eighth} \]
\[\textbf{b. \ sixth} \]
\[c. \ \text{fifth} \]
\[d. \ \text{fourth} \]
100 is equal to 10^2 or
a. $5^2 \times 10$
b. $5^2 \times 2^1$
c. $5^2 \times 2^2$
d. $5^2 \times 10^2$

144 is the product of 12×12 or
a. $3^2 \times 4^2$
b. $6^2 \times 2^2$
c. $2^4 \times 3$
d. $2^4 \times 3^2$

The student can demonstrate understanding of scientific notation by translating a given number into a number written as a number between one and ten, times a power of ten.

<table>
<thead>
<tr>
<th>Number</th>
<th>Number Between 1 and 10</th>
<th>Power of 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>672</td>
<td>6.72</td>
<td>10^1</td>
</tr>
<tr>
<td>4378</td>
<td>4.378</td>
<td>10^3</td>
</tr>
</tbody>
</table>

If the accompanying table is correctly completed, the blanks will be filled in with
a. 6.72 and 10^1
b. 67.2 and 10^2
c. 672 and 10^3

Elementary School Mathematics #4, 2nd Ed., Addison-Wesley, Ch. 5
"Peas and Particles" Elementary Science Study, Webster, McGraw-Hill

The student can demonstrate understanding of scientific notation by translating any given number (base 10) to the correct scientific or exponential notation.
The correct scientific notations for the numbers (in the base 10) 1560 and 788 are

* a. \(1.560 \times 10^{3}\) and \(7.88 \times 10^{2}\)
 b. \(15.60 \times 10^{1}\) and \(7.88 \times 10^{1}\)
 c. \(0.1560 \times 10^{2}\) and \(78.8 \times 10^{0}\)
 d. \(156.0 \times 10^{2}\) and \(7.88 \times 10^{2}\)

The correct scientific notations for the numbers (the base 10) 0.104 and 0.00398 are

 a. \(1.04 \times 10^{-1}\) and \(3.98 \times 10^{3}\)
 b. \(1.04 \times 10^{+1}\) and \(3.98 \times 10^{-3}\)
 c. \(1.04 \times 10^{-2}\) and \(3.98 \times 10^{3}\)
 * d. \(1.04 \times 10^{-1}\) and \(3.98 \times 10^{-3}\)

Terms, Tables, and Skills, Woodruff-Silver Burdett, Ch. 2.
FRACTIONS
THE STUDENT KNOWS THE MEANING OF FRACTIONAL NUMBERS BY CONVEYING THAT MEANING THROUGH THE USE OF SETS.

Numerals for fractional numbers are

- whole numbers
- fractions
- counting numbers
- cardinal numbers

When we compare a subset of a set with that set we can use

- whole numbers
- counting numbers
- fractional numbers
- cardinal numbers

\[[a, b, c, d] \supset [a, b] \]

The cardinal numbers for the set and its subset show the relationship of

- \(\frac{2}{4} \)
- \(\frac{4}{2} \)
- \(\frac{3}{4} \)
- \(\frac{2}{3} \)

\[\{ \square \} \subset \{ \bigcirc \triangle \square \} \]

The relationship shown is

- \(\frac{4}{1} \)
- \(\frac{1}{5} \)
- \(4 - 1 \)
- \(\frac{1}{4} \)
Which choice describes the colored circle in the set?

a. the middle circle
b. one is colored
*c. one-fifth is colored
d. four aren't colored

The best description of the colored blocks in the set is

a. every other one
b. half of the set
*c. three-sixths
d. three of them

The student can demonstrate understanding of fractions by comparing the fraction named to the total region to state two fractions and stating the meaning of the terms numerator and denominator.

Denominators are always _________.

*a. counting numbers
b. whole numbers
c. fractional numbers

The denominator names the _________.

a. subset
*b. set
c. cardinal number
d. fraction

The numerator is a _________.

a. fraction
*b. whole number
c. counting number
d. set
the numerator for the colored part of the set is

- a. 1
- b. 4
- c. 5

The denominator for the colored part of the set is

- a. 1
- b. 3
- c. 4

d. 0

doctor the region is colored, the rest of the region is ________.

- a. \(\frac{1}{3} \)
- b. \(\frac{2}{3} \)
- c. \(\frac{1}{3} \)

d. 0

d. 0

doctor the region is colored, ________ are not colored.

- a. \(\frac{1}{3} \)
- b. \(\frac{2}{3} \)
- c. 0
- d. 0
- e. 0
GIVEN A LIST OF EQUATIONS THE STUDENT WILL ANALYZE THEM TO SELECT THE ASSUMPTION THAT A NUMBER MULTIPLIED BY A PROPER FRACTION EQUALS A PRODUCT LESS THAN THE ORIGINAL NUMBER.

Directions: Analyze the following equations and then select the assumption which would apply.

\[
\begin{array}{ccc}
4 \times 8 &=& 32 \\
1 \times 8 &=& 8 \\
\frac{1}{2} \times 8 &=& 4 \\
6 \times 12 &=& 72 \\
2 \times 12 &=& 24 \\
\frac{1}{4} \times 12 &=& 3 \\
4 \times 9 &=& 36 \\
2 \times 9 &=& 18 \\
\frac{1}{3} \times 9 &=& 3 \\
5 \times 20 &=& 100 \\
2 \times 20 &=& 40 \\
\frac{1}{5} \times 20 &=& 4 \\
4 \times 6 &=& 24 \\
2 \times 6 &=& 12 \\
\frac{1}{6} \times 6 &=& 1 \\
8 \times 18 &=& 144 \\
2 \times 18 &=& 36 \\
\frac{1}{6} \times 18 &=& 3 \\
\end{array}
\]

a. If you multiply a number by a proper fraction the product will be less than one.
b. If you multiply a number by a proper fraction the product will be greater than the original number.
c. If the product is greater than one you have multiplied a number by a proper fraction.
d. If the product is less than the original number you have multiplied by a proper fraction.

THE CHILD WILL DEMONSTRATE HIS UNDERSTANDING OF FRACTIONAL PARTS BY IDENTIFYING DIFFERENT FRACTIONAL PARTS.

Directions: Match the picture with the fraction that identifies the shaded part.

\[
\begin{array}{ccc}
\text{a. } \frac{3}{9} & & \text{d. } \frac{1}{2} \\
\text{b. } \frac{1}{4} & & \text{a. } \frac{1}{3} \\
\text{c. } \frac{1}{3} & & \text{b. } \frac{1}{4} \\
\text{d. } \frac{3}{4} & & \text{c. } \frac{2}{3} \\
\end{array}
\]
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF THE DIFFERENCE BETWEEN NUMERATORS AND DENOMINATORS BY IDENTIFYING THEM.

Directions: Using the given fractions; if the number given is a numerator cross out the N, if the number given is a denominator cross out the D.

1/2, 7/9, 3/5, 6/8, 4/12, 10/11

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>d</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>e</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>f</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>g</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>h</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>i</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>j</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
</tr>
</tbody>
</table>

9/13

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14/25

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>
23/11

a. N 1
b. N 11

d. 11

5/4

a. N D 5
b. N D 23

d. 23

6 2/3

a. N D 2
b. N D 3

d. 3

THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE RELATIONSHIP BETWEEN NUMERATORS AND DENOMINATORS BY DESCRIBING THIS RELATIONSHIP.

Directions: Look at the figures then select the correct response.

How many parts is the post divided into?

a. 1
b. 2
c. 3
*d. 4

The number of the fraction which tells how many parts the post is divided into will be

a. 1
b. 2
c. 3
*d. 4
The denominator of the fraction describing the part of the post not painted is

a. 1
b. 2
c. 3
*d. 4

How many parts of the post are painted?

a. 1
b. 2
*c. 3
d. 4

The number of the fraction telling how many of the parts of the post are painted is

a. 1
b. 2
*c. 3
d. 4

The numerator of the fraction telling how many parts of the post are painted is

a. 1
b. 2
*c. 3
d. 4

The numerator of the fraction telling how much of the post isn't painted is

*a. 1
b. 2
c. 3
d. 4
Which fraction identifies the whole post?

a. 1/4
b. 2/4
c. 3/4
*d. 4/4

Which fraction identifies the painted part of the post?

a. 1/4
b. 2/4
*c. 3/4
d. 4/4

Which fraction identifies the non-painted part of the post?

*a. 1/4
b. 2/4
c. 3/4
d. 4/4

Source: Addison-Wesley, Bk. 5, p. 191.

GIVEN A DIAGRAM OF FRACTIONS, THE STUDENT WILL APPLY HIS KNOWLEDGE OF FRACTIONS BY CORRECTLY SELECTING THE FRACTION WHICH CORRESPONDS TO EACH DIAGRAM.

Directions: Select the fraction that is shown in each diagram.
What fraction of the area is shaded?

a. 4/6
b. 2/3
*c. 2/6
d. 2/5

What fraction of the area is not shaded?

a. 2/6
*b. 4/6
c. 1/3
d. 3/4

What fraction of the figures are circles?

a. 4/4
b. 3/7
c. 2/7
*d. 4/7

What fraction of the figures are geometric shapes?

a. 3/7
*b. 7/7
c. 4/7
d. 2/7

The numerator tells how many parts

*a. are shaded
b. in all
c. not shaded
The denominator tells how many parts

a. are not shaded
* b. in all
c. are shaded

What fraction of the area is shaded?

a. 6/6
b. 1/2
c. 0/5
*d. 0/6

Source: Addison Wesley

THE STUDENT WILL DEMONSTRATE UNDERSTANDING OF THE RELATIONSHIP BETWEEN WHOLE NUMBERS AND FRACTIONS EITHER BY EXPRESSING WHOLE NUMBERS AS FRACTIONS OR FRACTIONS AS WHOLE NUMBERS.

Directions: Express the following fractions as whole numbers.

15/5

a. 5
b. 1
*c. 3
d. 4

12/4

*a. 3
b. 4
c. 6
d. 2
Directions: Express the following whole numbers as fractions.
4

a. \(\frac{12}{4} \)
*b. \(\frac{20}{5} \)
c. \(\frac{100}{20} \)
d. \(\frac{32}{2} \)

3

*a. \(\frac{27}{9} \)
b. \(\frac{24}{6} \)
c. \(\frac{30}{15} \)
d. \(\frac{42}{3} \)

6

a. \(\frac{36}{4} \)
b. \(\frac{42}{2} \)
*c. \(\frac{6}{1} \)
d. \(\frac{12}{3} \)

15

a. \(\frac{45}{9} \)
*b. \(\frac{60}{4} \)
c. \(\frac{30}{3} \)
d. \(\frac{100}{4} \)

12

a. \(\frac{36}{4} \)
b. \(\frac{24}{1} \)
c. \(\frac{12}{2} \)
*d. \(\frac{24}{2} \)

THE STUDENT KNOWS FOR EVERY FRACTIONAL NUMBER THERE IS A SET OF EQUIVALENT FRACTIONS BY SELECTING EQUIVALENT FRACTIONS FOR A GIVEN FRACTION.
\(\frac{1}{4} \) is one fraction for a subset of the whole. Another subset equivalent to \(\frac{1}{4} \) is

a. \(\frac{1}{2} \)
b. \(\frac{2}{4} \)
c. \(\frac{2}{8} \)
d. \(\frac{6}{8} \)

\(\frac{4}{6} \) is colored. An equivalent fraction of it is

a. \(\frac{1}{3} \)
b. \(\frac{1}{2} \)
c. \(\frac{4}{12} \)
d. \(\frac{8}{12} \)

The equivalent for C and \(C(1) \) are

a. \(\frac{2}{3}, \frac{3}{6} \)
*b. \(\frac{2}{4}, \frac{6}{8} \)
c. \(\frac{2}{4}, \frac{7}{8} \)
d. \(\frac{6}{8}, \frac{10}{12} \)
The set of equivalent fractions for point B is

a. \(\frac{1}{3}, \frac{2}{6}, \frac{3}{9}, \frac{4}{12} \)
b. \(\frac{2}{3}, \frac{4}{6}, \frac{8}{12}, \frac{12}{24} \)
*c. \(\frac{3}{6}, \frac{6}{12}, \frac{9}{18}, \frac{12}{24} \)
d. \(\frac{1}{2}, \frac{2}{4}, \frac{4}{8}, \frac{8}{16} \)

Directions: Match the equivalent fraction in Column II with the right fraction in Column I.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\frac{3}{6}, \frac{4}{8}, \frac{5}{10})</td>
<td>d. (\frac{2}{3})</td>
</tr>
<tr>
<td>b. (\frac{6}{8}, \frac{9}{12}, \frac{12}{16})</td>
<td>e. (\frac{5}{6})</td>
</tr>
<tr>
<td>c. (\frac{4}{6}, \frac{6}{9}, \frac{8}{12})</td>
<td>a. (\frac{1}{2})</td>
</tr>
<tr>
<td>d. (\frac{4}{6}, \frac{6}{9}, \frac{8}{12})</td>
<td>b. (\frac{3}{4})</td>
</tr>
<tr>
<td>e. (\frac{10}{12}, \frac{15}{18}, \frac{20}{24})</td>
<td></td>
</tr>
</tbody>
</table>

A set of equivalent fractions can be developed by multiplying by fractions in which the numerator and denominator are __________.

a. opposite to each other.
b. unequal to each other.
*c. equal to each other.
d. equivalent to each other.
The smallest fraction in a set of equivalent fractions is easily found by dividing by fractions that are

a. the same as the fraction
b. equivalent to one
c. smallest you know
d. opposite of the fraction

Directions: Match the lowest fraction of a set of equivalent fractions to one of its equivalents.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. 1/4</td>
<td>a. 12/20</td>
</tr>
<tr>
<td></td>
<td>b. 12/28</td>
</tr>
<tr>
<td>f. 4/2</td>
<td>c. 15/20</td>
</tr>
<tr>
<td></td>
<td>d. 8/12</td>
</tr>
<tr>
<td>c. 3/4</td>
<td>e. 14</td>
</tr>
<tr>
<td>d. 2/3</td>
<td>f. 22/40</td>
</tr>
</tbody>
</table>

The child will use his knowledge of fractions sets in selecting fractions that are equivalent.

Directions: Select the alternate that is equivalent to the lead.
\[\frac{3}{4} = \]

- a. \(\frac{2}{3} \)
- b. \(\frac{2}{4} \)
- c. \(\frac{3}{5} \)
- d. \(\frac{4}{7} \)

\[\frac{2}{3} = \]

- a. \(\frac{4}{7} \)
- b. \(\frac{8}{11} \)
- c. \(\frac{17}{24} \)
- d. \(\frac{10}{15} \)

\[\frac{5}{8} = \]

- a. \(\frac{25}{40} \)
- b. \(\frac{36}{49} \)
- c. \(\frac{10}{17} \)
- d. \(\frac{40}{63} \)

\[\frac{8}{10} = \]

- a. \(\frac{16}{24} \)
- b. \(\frac{24}{32} \)
- c. \(\frac{4}{5} \)
- d. \(\frac{2}{3} \)
The student will demonstrate his knowledge of building sets of equivalent fractions by selecting fractions to continue equivalent sets.

Directions: Choose the alternative that continues the equivalent set.
[2/3, 4/6, 6/9, ...]

a. 12/18, 24/36, 48/72
b. 8/12, 14/20, 20/28
c. 12/15, 18/24, 24/30
d. 8/12, 10/15, 12/18

[1/4, 2/8, 3/12, ...]

a. 4/15, 5/20, 6/25
b. 4/16, 5/20, 6/24
c. 6/15, 7/23, 8/28
d. 4/16, 6/21, 7/28

[4/5, 8/10, 12/15, ...]

a. 16/20, 20/25, 24/30
b. 18/20, 24/25, 32/30
c. 24/30, 30/35, 35/40
d. 16/25, 20/30, 24/35

Directions: Choose the set that builds the given fraction.

e. 3/10

a. 10/80, 15/120, 20/160, 25/200
b. 6/16, 9/15, 12/20, 15/25
c. 6/48, 7/56, 8/64, 9/72
d. 8/24, 9/27, 10/30, 11/33
e. 6/20, 9/30, 12/40, 15/50
f. 24/40, 35/50, 42/60, 49/70
g. 6/20, 12/30, 18/40, 24/50

c. 5/40

d. 7/21

d. 7/21

e. 3/10

f. 21/30

b. 3/5
The student will analyze statements related to fractional equivalence to indicate whether the given statements are assumed or unassumed.

Directions: After reading the given equation choose the correct item. If the statement can be assumed from the given equation circle the S; if the statement is unassumed circle the U.

\[\frac{8}{10} > \frac{5}{10} \]

- \[\frac{6}{10} > \frac{5}{10} \] U

- \[\frac{7}{8} > \frac{5}{10} \] S

- \[\frac{5}{10} < \frac{7}{10} \] U

Source: Addison-Wesley, Bk. 5, pp. 199, 201.
\[
\begin{align*}
9/10 & > 5/10 & \& u & 0335 \\
4/5 & > 1/2 & \& u & 0336 \\
3/12 & < 4/12 & \& u & 0337 \\
3/12 & < 7/12 & \& u & 0337 \\
3/12 & < 1/3 & \& u & 0338 \\
1/4 & < 4/12 & \& u & 0339 \\
3/12 & < 1/8 & s \not< & 0340 \\
1/2 & < 4/12 & s \not< & 0341 \\
9/18 & > 8/18 \\
9/18 & > 4/5 & s \not< & 0342 \\
1/2 & > 8/18 & \& u & 0343 \\
5/6 & > 8/18 & s \not< & 0344 \\
9/18 & > 7/18 & \& u & 0345 \\
\end{align*}
\]
\[
\begin{align*}
1/2 &> 4/9 & U & 0346 \\
3/5 &= 15/25 \\
3/5 &> 14/25 & U & 0347 \\
2/5 &< 15/25 & U & 0348 \\
3/5 &< 27/38 & F & 0349 \\
3/5 &= 6/10 & U & 0350 \\
15/25 &= 6/10 & U & 0351 \\
4/7 &< 2/3 \\
4/7 &= 2/3 & U & 0352 \\
8/14 &< 2/3 & U & 0353 \\
2/3 &> 4/7 & U & 0354 \\
1/3 &> 4/7 & F & 0355 \\
3/3 &> 4/7 & U & 0356 \\
\end{align*}
\]
Source: Addison-Wesley, Bk. 5, pp. 226–227
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF EQUIVALENT FRACTIONS BY SELECTING THE SET OF FRACTIONS WHICH IS EQUIVALENT TO A GIVEN FRACTION.

Directions: Given a fraction, circle the set of fractions which is equivalent.

\[\frac{1}{4} \]

a. \(\left\{ \frac{1}{4}, \frac{2}{8}, \frac{3}{12}, \frac{4}{16} \right\} \)

b. \(\left\{ \frac{1}{4}, \frac{2}{8}, \frac{3}{12}, \frac{4}{16} \right\} \)

c. \(\left\{ \frac{1}{4}, \frac{2}{8}, \frac{3}{12}, \frac{4}{16} \right\} \)

d. \(\left\{ \frac{1}{4}, \frac{2}{8}, \frac{3}{12}, \frac{4}{16} \right\} \)

\[\frac{2}{3} \]

a. \(\left\{ \frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \frac{8}{12} \right\} \)

b. \(\left\{ \frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \frac{8}{12} \right\} \)

c. \(\left\{ \frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \frac{8}{12} \right\} \)

d. \(\left\{ \frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \frac{8}{12} \right\} \)

\[\frac{5}{6} \]

a. \(\left\{ \frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24} \right\} \)

b. \(\left\{ \frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24} \right\} \)

c. \(\left\{ \frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24} \right\} \)

d. \(\left\{ \frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24} \right\} \)
GIVEN AN INCOMPLETE PAIR OF EQUIVALENT FRACTIONS, THE STUDENT
WILL APPLY METHODS USED TO COMPUTE EQUIVALENT FRACTIONS BY FIND-
ing the missing numerator or denominator.

Directions: Find the missing numerator or denominator which makes the fractions equivalent.

\[
\frac{2}{3} = \frac{n}{9}
\]

- a. 2
- b. 3
- c. 6
- d. 1

\[
\frac{4}{5} = \frac{12}{n}
\]

- a. 15
- b. 5
- c. 20
- d. 10

\[
\frac{6}{10} = \frac{30}{n}
\]

- a. 10
- b. 50
- c. 30
- d. 60
The child will show his understanding of relative size of fractions by comparing given fractions and selecting the correct statement that demonstrates the comparison.

Directions: If the first fraction is larger than the second, cross out the A; if the second fraction is larger than the first cross out the B; if the two fractions are equivalent cross out the C.
\begin{align*}
A \oplus C & \quad \frac{1}{2}, \frac{5}{8} \\
\uplus B C & \quad \frac{4}{7}, \frac{1}{3} \\
\uplus B C & \quad \frac{5}{6}, \frac{7}{8} \\
\uplus B & \quad \frac{2}{3}, \frac{10}{15} \\
A \oplus C & \quad \frac{1}{8}, \frac{1}{4} \\
A \oplus C & \quad \frac{1}{8}, \frac{3}{16} \\
\uplus B & \quad \frac{1}{8}, \frac{2}{4} \\
A \oplus C & \quad \frac{5}{7}, \frac{4}{2} \\
\uplus B C & \quad \frac{7}{16}, \frac{3}{8} \\
\uplus B C & \quad \frac{1}{5}, \frac{1}{6}
\end{align*}
THE STUDENT WILL DEMONSTRATE KNOWLEDGE OF THE RELATIONSHIP BETWEEN FRACTIONS BY SELECTING THE TRUE RELATIONSHIP BETWEEN TWO FRACTIONS.

Directions: After looking at the figures select from the list below the relationship involved. Circle the letter corresponding to the answer.

A. The fraction represented by the first figure is larger than the fraction represented by the second figure.
B. The fraction represented by the first figure is smaller than the fraction represented by the second figure.
C. The fractions represented by both figures are equivalent.

Diagram:

A B ☐ the whole
A B ☐ the shaded part
A B ☐ the non-shaded part
A ☐ C two parts of each

Diagram:
A B C, the shaded parts

A \not\in C, the non-shaded parts

A B \not\in, 4 parts of R and 9 parts of S

A B C, 4 parts of R and 4 parts of S

A B C, one part of each

Diagram:

\[
\begin{array}{c}
\text{A B } \not\in, \text{ the shaded parts} \\
\text{A B } \not\in, \text{ the non-shaded parts} \\
A B C, 3 \text{ parts of each} \\
A \not\in C, 3 \text{ parts of } T \text{ and } 7 \text{ parts of } U \\
A B C, 1 \text{ part of each}
\end{array}
\]
Diagram:

A B C the shaded parts

A B C the non-shaded parts

A B C 3 parts of each

A B C 1 part of each

A B C 2 parts of D and 1 part of E

Given an equation the student will demonstrate an understanding that the multiplication of reciprocals equals one by selecting a fraction from a list which makes the equation true.

Directions: The following equations are written with unknown symbols for numbers. Use what you know about reciprocals to select a symbol that will make a true equation.

* x? = Δ ? =

a. Δ
b. *
c. Δ
d. *
THE STUDENT WILL DEMONSTRATE HIS COMPREHENSION OF RECIPROCALS BY IDENTIFYING THE CORRECT PRODUCT OF A PAIR OF FRACTIONAL NUMBERS.

What is the product of \(\frac{3}{5} \times \frac{5}{3} \)?

a. \(\frac{3}{5} \)
b. 1
c. \(\frac{5}{3} \)

d. \(\frac{8}{2} \)

What is the product of \(\frac{5}{12} \times \frac{12}{5} \)?

a. \(\frac{5}{12} \)
b. \(\frac{5}{60} \)
c. 1

d. \(\frac{9}{100} \)

What is the product of \(\frac{4}{7} \times \frac{7}{4} \)?

a. 1
b. \(\frac{4}{28} \)
c. \(\frac{7}{28} \)

d. \(\frac{9}{28} \)

What is the product of \(\frac{2}{3} \times \frac{3}{2} \)?

a. 1
b. \(\frac{6}{3} \)
c. \(\frac{3}{6} \)

d. \(\frac{9}{6} \)
What is the product of $\frac{7}{8} \times \frac{8}{7}$?

a. $\frac{8}{56}$
*b. 1
 c. $\frac{7}{56}$

What is the product of $\frac{10}{19} \times \frac{19}{10}$?

a. $\frac{19}{190}$
 b. $\frac{219}{190}$
 *c. 1

What is the product of $\frac{6}{5} \times \frac{5}{6}$?

*a. 1
 b. $\frac{6}{30}$
 c. $\frac{30}{6}$

What is the product of $\frac{7}{16} \times \frac{16}{7}$?

a. $\frac{7}{16}$
 *b. 1
 c. $\frac{16}{7}$

What is the product of $\frac{11}{9} \times \frac{9}{11}$?

a. $\frac{9}{11}$
 *b. 1
 c. $\frac{11}{9}$

What is the product of $\frac{23}{96} \times \frac{96}{23}$?

*a. 1
 b. $\frac{23}{96}$
 c. $\frac{2}{3}$

GIVEN A RATIONAL NUMBER, THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE RELATIONSHIP BETWEEN MIXED NUMERAL OR IMPROPER FRACTION BY SELECTING AN EQUIVALENT ALTERNATIVE FORM.

Directions: Find an equivalent of the given number.

1 2/3
 a. 2/3
 b. 12/3
 c. 6/3
 *d. 5/3

8/5
 a. 1 4/5
 *b. 1 3/5
 c. 2
 d. 2 2/5

2 4/6
 a. 12/6
 b. 24/2
 *c. 16/6
 d. 8/6

15/4
 a. 3
 *b. 3 3/4
 c. 4
 d. 4 3/4

4 5/12
 *a. 53/12
 b. 48/12
 c. 20/12
 d. 5/12
3/8

a. 4
b. 3 7/8
c. 4 1/8
d. 3 1/8

16 2/3

a. 32/3
b. 48/3
c. 162/3
d. 50/3

79/4

a. 40 1/4
b. 20 3/4
c. 19 3/4
d. 14 3/4

Directions: Select the fraction which is equal to the mixed numeral.

1 7/8

*a. 15/8
b. 16/8
c. 14/8
d. 17/8

GIVEN A LIST OF IMPROPER FRACTIONS, OR A LIST OF MIXED NUMERALS, THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE PROCESS OF CHANGING ONE TO THE OTHER BY SELECTING THE EQUIVALENT OF THE NUMBER GIVEN.
Directions: Select the mixed numeral which is equal to the fraction.
11/2
a. 6 1/2
b. 4 1/2
c. 3 3/2
*d. 5 1/2

19/7
*a. 2 5/7
b. 1 2/7
c. 3 2/7
d. 2 3/7

25/6
a. 3 3/6
b. 3 5/6
c. 4/7
*d. 4 1/6

43/10
a. 3 7/10
*b. 4 3/10
c. 3 4/10
d. 4 1/10
THE STUDENT CAN DEMONSTRATE A KNOWLEDGE OF NUMBER POSITION BY
PLACING A DECIMAL POINT AFTER THE FIRST DIGIT IN ANY NUMBER.

Your teacher asks you to place the decimal point after the first digit in the number 1234. After you have done this your number will look like

a. 123.4
b. 12.34
*c. 1.234

Source: Elementary School Mathematics #4, 2nd Ed., Addison-Wesley, Ch. 5.

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF DECIMAL POINTS BY
LOCATING A DECIMAL POINT AFTER THE FIRST DIGIT IN ANY WHOLE NUMBER TO THE BASE 10.

Which one of the following numbers has a decimal point after the first digit?

a. 123.4
b. 12.34
*c. 1.234

The number 1.234 has a decimal point after the

*a. first digit
b. second digit
c. third digit

Source: Elementary School Mathematics #4, 2nd Ed., Addison-Wesley, Ch. 5.
THE STUDENT WILL DEMONSTRATE HIS ABILITY TO ANALYZE GIVEN DECIMAL NOTATIONS BY APPLYING HIS CONCLUSIONS TO NEW NOTATIONS.

Directions: Given the following notations: 3.672 = 3 + 6/10 + 7/10 + 2/1000, choose the answers to questions about similar notations.

In 5.04 - the 4 means
a. 4/10
b. 4/100
*c. 4/1000

In 2.605 - the 6 means
*a. 6/10
b. 6/100
c. 6/1000

In 76.354 - the 5 means
*a. 5/10
b. 5/100
c. 5/1000

In 26.008, the 8 means
a. 8/10
b. 8/100
*c. 8/1000

In 64.7, the 7 means
*a. 7/10
b. 7/100
c. 7/1000
In 0.367 the 7 means 0.439

a. 7/10
 *b. 7/100
 c. 7/1000

In 6.079 the 0 means 0.440

* a. 0/10
 b. 0/100
 c. 0/1000

Source: Addison-Wesley, Bk. 5, pg. 271.

THE STUDENT WILL DEMONSTRATE HIS ABILITY TO RECALL DECIMAL PLACE
VALUE BY CORRECTLY SELECTING THE ANSWER FROM A LIST OF ALTERNATIVES.

Directions: Given the number 17.890325 which of the following is true about place value?

The digit 9 is in which place 0.441

a. tens
 b. tenths
 c. hundreds
* d. hundredths

The digit in the thousandths place is 0.442

a. 1
 *b. 0
 c. 3
 d. 2
The digit in the tens place is

- a. 1
- b. 8
- c. 9
- d. 0

The digit 3 is in which place

- a. thousands
- b. ten thousandths
- c. hundred thousandths
- d. hundredths

The largest decimal place used

- a. ten thousandths
- b. hundred thousandths
- c. millionths
- d. ten millionths

The decimal point is placed between

- a. tens, tenths
- b. ones, oneths
- c. tenths, oneths
- d. ones, tenths

THE STUDENT WILL SHOW UNDERSTANDING OF THE PLACE VALUE OF THE RIGHT OF A DECIMAL POINT BY SELECTING THE VALUE NAMED FROM A LIST OF ALTERNATIVES.

Directions: Circle the letter in front of the answer.
In the numeral .6834

The 3 is in the

- a. tenths place
- b. hundredths place
- *c. thousandths place
- d. ten thousandths place

The 4 is in the

- a. tenths place
- b. hundredths place
- c. thousandths place
- *d. ten thousandths place

The 6 is in the

- a. tenths place
- b. hundredths place
- c. thousandths place
- *d. ten thousandths place

In the numeral 2.3146

The 3 is in the

- a. tenths place
- b. hundredths place
- *c. thousandths place
- d. ten thousandths place

The 4 is in the

- a. tenths place
- b. hundredths place
- *c. thousandths place
- d. ten thousandths place
The 6 is in the

- a. tenths place
- b. hundredths place
- c. thousandths place
- *d. ten thousandths place

In the numeral 27.634
The three is in the

- a. tenths place
- *b. hundredths place
- c. thousandths place
- d. ten thousandths place

The 4 is in the

- a. tenths place
- b. hundredths place
- *c. thousandths place
- d. ten thousandths place

The 6 is in the

- *a. tenths place
- b. hundredths place
- c. thousandths place
- d. ten thousandths place

GIVEN A NUMBER OF EQUATIONS THE STUDENT WILL SHOW KNOWLEDGE OF PLACE VALUE OF THE DECIMAL POINT IN THE QUOTIENT BY SELECTING THE PLACE VALUE WHICH WOULD SHOW THIS.

Directions: In the following equations circle the letter which would best complete the sentence. The quotient will begin with a ____________.
THE STUDENT WILL EVALUATE GIVEN STATEMENTS BY SELECTING THE BEST CONCLUSION.
Directions: Four statements are given. From the numbered statements below these, circle the best answer.

a. True of decimals but not whole numbers
b. True of whole numbers but not decimals
c. True of both whole numbers and decimals
d. True of neither whole numbers nor decimals

In regrouping numbers to subtract you have ten times the value of the column to the right.

a.
b.
* c.
d.

Adding zeros to the left of the numeral changes the value of the number

*a.
b.
c.
d.

Adding zeros to the right of the numeral changes the value of the numeral

a.
*b.
c.
d.

In vertical multiplication one should keep the place value of each factor in a straight line.

a.
*b.
c.
d.

0461 0462 0463 0464
In division the quotient is less than the dividend.
a.
* b.
c.
d.

In multiplication the product may be less than one factor.
*a.
 b.
c.
d.

Add or subtract zero the answer equals zero
a.
 b.
c.
*d.

Multiply or divide a numeral by zero and the answer equals zero.
a.
 b.
c.
*d.

Given a rational number, the student will demonstrate his understanding of the relationship between decimals and fractions by selecting either an equivalent fraction or decimal of that number.

Directions: Given a number, find its equivalent.
4.3

a. \(\frac{43}{100} \)

b. \(\frac{43}{10} \)

c. 43

d. \(\frac{43}{100} \)

36

\(\frac{36}{100} \)

a. 3.6

b. 36

c. 3.6

d. .036

.021

a. \(\frac{21}{100} \)

b. \(\frac{21}{100} \)

c. \(\frac{21}{10} \)

d. \(\frac{21}{1000} \)

6.93

\(\frac{6.93}{1000} \)

a. 6.93

b. .693

c. 6.093

d. 6.0093
\[\begin{align*}
\text{a.} & \quad \frac{803}{10,000} \\
\text{b.} & \quad \frac{803}{1,000} \\
\text{c.} & \quad \frac{83}{10,000} \\
\text{d.} & \quad \frac{83}{1,000} \\
\hline
\text{a.} & \quad 0.72 \\
\text{b.} & \quad 0.072 \\
\text{c.} & \quad 7.2 \\
\text{d.} & \quad 72
\end{align*} \]
THE STUDENT WILL SHOW KNOWLEDGE OF THE RELATIONSHIP OF BASE TEN TO BASE FIVE BY SELECTING THE ALTERNATIVE BASE REPRESENTATION.

In whole numbers the right hand column in both base ten and base five is called

a. base
*b. ones
 c. fives
 d. tens

In whole numbers a way of finding the value of a given column is to

*a. multiply the base times the value of the preceding column.
b. add base to the value of the preceding column.
c. multiply the digit in the preceding column by ten.
d. add ten to the digit in the preceding column.

The numeral equivalent to the base ten numeral 46 is

a. 121(5)
b. 412(5)
c. 141(5)
d. 231(5)

The numeral equivalent to the base five numeral 124(5) is

a. 15
b. 39
*c. 34
 d. 54

The largest digit in either base is always

a. equal to the base.
b. one more than the base.
*c. one less than the base.
THE PUPIL WILL DEMONSTRATE HIS KNOWLEDGE OF BASES BY ANALYZING A GIVEN NUMBER IN BASE TEN AND BASE FIVE AND SELECTING AN EQUIVALENT NUMBER IN A DIFFERENT BASE.

Directions: Given an equivalent number in grid form in base ten and base five select the equivalent in the other base.

<table>
<thead>
<tr>
<th></th>
<th>Base Ten</th>
<th></th>
<th></th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10x10x10</td>
<td>10x10</td>
<td>10x10</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Base Five</th>
<th></th>
<th></th>
<th>Fives</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5x5x5x5</td>
<td>5x5x5</td>
<td>5x5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Base Two</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. 10001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 23221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*3. 11001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 11111</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Base Ten</th>
<th></th>
<th></th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10x10x10</td>
<td>10x10</td>
<td>10x10</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Base Eight</th>
<th></th>
<th></th>
<th>Fives</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2x5x5x5</td>
<td>5x5x5</td>
<td>5x5</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Base Eight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*1. 525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 791</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 1432</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 2174</td>
<td></td>
</tr>
</tbody>
</table>
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF THE CONVERSION OF BASE 10 TO 8 BY CORRECTLY IDENTIFYING THE BASE 8 NUMERAL FROM A GIVEN BASE 10 NUMERAL.

Directions: Match Column I with Column II.

<table>
<thead>
<tr>
<th>Column I Base 10</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 63</td>
<td>n 135</td>
</tr>
<tr>
<td>b. 95</td>
<td>u 121</td>
</tr>
<tr>
<td>c. 10</td>
<td>o 102</td>
</tr>
<tr>
<td>d. 87</td>
<td>67</td>
</tr>
<tr>
<td>e. 56</td>
<td>p 42</td>
</tr>
<tr>
<td>f. 44</td>
<td>83</td>
</tr>
<tr>
<td>g. 16</td>
<td>v 30</td>
</tr>
<tr>
<td>h. 89</td>
<td>f 54</td>
</tr>
<tr>
<td>i. 12</td>
<td>w 47</td>
</tr>
<tr>
<td>j. 69</td>
<td>s 100</td>
</tr>
<tr>
<td>k. 38</td>
<td>e 70</td>
</tr>
<tr>
<td>l. 88</td>
<td>y 55</td>
</tr>
<tr>
<td>m. 27</td>
<td>c 12</td>
</tr>
<tr>
<td>n. 93</td>
<td>r 73</td>
</tr>
<tr>
<td>o. 66</td>
<td>19</td>
</tr>
<tr>
<td>p. 34</td>
<td>a 77</td>
</tr>
<tr>
<td>q. 48</td>
<td>t 110</td>
</tr>
<tr>
<td>r. 59</td>
<td>q 60</td>
</tr>
<tr>
<td>s. 64</td>
<td>l 130</td>
</tr>
<tr>
<td>t. 72</td>
<td>d 127</td>
</tr>
<tr>
<td>u. 88</td>
<td>m 35</td>
</tr>
<tr>
<td>v. 24</td>
<td>b 131</td>
</tr>
<tr>
<td>w. 39</td>
<td>h 129</td>
</tr>
<tr>
<td>x. 33</td>
<td>131</td>
</tr>
<tr>
<td>y. 45</td>
<td>k 41</td>
</tr>
</tbody>
</table>

Source: Houghton Mifflin, p. 216.
THE STUDENT WILL DETECT THE PATTERN INVOLVED IN CONVERTING BASE
TEN TO BASE EIGHT AND CORRECTLY IDENTIFY THE NUMERAL FOR A UNIQUE
BASE SIX OPERATION.

Directions: Circle the correct base 6 numeral.

If base 10 numeral is 24, base 8 is 30, base 6 is
 a. 36
 *b. 40
 c. 45

If base 10 numeral is 60, base 8 is 74, base 6 is
 *a. 140
 b. 204
 c. 88

If base 10 numeral is 100, base 8 is 144, base 6 is
 a. 188
 b. 154
 *c. 244

If base 10 number is 96, base 8 is 140, base 6 is
 a. 104
 *b. 240
 c. 184

If base 10 numeral is 53, base 8 is 65, base 6 is
 a. 79
 *b. 125
 c. 52
If base 10 numeral is 13, base 8 is 15, base 6 is
 a. 21
 b. 30
 c. 17

If base 10 numeral is 86, base 8 is 126, base 6 is
 a. 166
 b. 152
 *c. 222

If base 10 numeral is 66, base 8 is 102, base 6 is
 *a. 150
 b. 138
 c. 202

If base 10 numeral is 33, base 8 is 41, base 6 is
 a. 49
 *b. 53
 c. 50

If base 10 numeral is 700, base 8 is 1274, base 6 is
 a. 1848
 *b. 3124
 c. 2033

If base 10 numeral is 338, base 8 is 622, base 6 is
 a. 822
 b. 906
 *c. 1322
If base 10 numeral is 207, base 8 is 317, base 6 is 0525
 a. 427
 *b. 543
 c. 322

If base 10 numeral is 16, base 8 is 20, base 6 is 0526
 *a. 24
 b. 28
 c. 30

If base 10 numeral is 44, base 8 is 54, base 6 is 0527
 a. 64
 b. 32
 *c. 112

If base 10 numeral is 76, base 8 is 114, base 6 is 0528
 a. 188
 *b. 204
 c. 168

If base 10 numeral is 9, base 8 is 11, base 6 is 0529
 *a. 13
 b. 17
 c. 19

If base 10 numeral is 99, base 8 is 143, base 6 is 0530
 a. 184
 b. 303
 *c. 243
If base 10 numeral is 59, base 8 is 73, base 6 is

a. 87
b. 123
*c. 135

If base 10 numeral is 80, base 8 is 120, base 6 is

*a. 212
b. 132
c. 160

If base 10 numeral is 48, base 8 is 60, base 6 is

a. 72
*b. 120
c. 54

THE STUDENT WILL SHOW KNOWLEDGE OF ADDITION AND SUBTRACTION OF BASE FIVE NUMERALS AND THE TRANSFERENCE TO BASE TEN BY SELECTING THE EQUIVALENT EQUATION.

44(5) + 32(5) =

a. 51(10)
b. 35(10)
c. 76(10)
d. 41(10)
*e. 41(10)
\[34(5) + 40(5) = \]

- a. 39(10)
- b. 70(10)
- c. 74(10)
- d. 34(10)

\[41(5) - 23(5) = \]

- a. 18(10)
- b. 13(10)
- c. 8(10)
- d. 28(10)

\[44(5) - 32(5) = \]

- a. 12(10)
- b. 7(10)
- c. 2(10)
- d. 17(10)

\[44(5) + 22(5) = \]

- a. 36(10)
- b. 66(10)
- c. 51(10)
- d. 31(10)
ROMAN NUMERALS
THE STUDENT WILL RECALL HIS KNOWLEDGE OF ROMAN NUMERALS BY MATCHING THE ROMAN NUMERAL WITH THE CORRESPONDING ARABIC NUMERAL.

Directions: Match column I with column II by placing the letter from column I on the line before the correct answer in column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. XIV</td>
<td>402</td>
</tr>
<tr>
<td>b. XXII</td>
<td>1064</td>
</tr>
<tr>
<td>c. CXX</td>
<td>602</td>
</tr>
<tr>
<td>d. MLXIV</td>
<td>16</td>
</tr>
<tr>
<td>e. XVI</td>
<td>278</td>
</tr>
<tr>
<td>f. CDLXIX</td>
<td>102</td>
</tr>
<tr>
<td>g. DLII</td>
<td>44</td>
</tr>
<tr>
<td>h. XCIIX</td>
<td>1144</td>
</tr>
<tr>
<td>i. XIX</td>
<td>89</td>
</tr>
<tr>
<td>j. LXXIV</td>
<td>66</td>
</tr>
<tr>
<td>k. MDX</td>
<td>552</td>
</tr>
<tr>
<td>l. LXVI</td>
<td>22</td>
</tr>
<tr>
<td>m. CCLXXVIII</td>
<td>33</td>
</tr>
<tr>
<td>n. MCXLIV</td>
<td>109</td>
</tr>
<tr>
<td>o. XLIV</td>
<td>469</td>
</tr>
<tr>
<td>p. XXXIII</td>
<td>120</td>
</tr>
<tr>
<td>q. DGII</td>
<td>13</td>
</tr>
<tr>
<td>r. GII</td>
<td>27</td>
</tr>
<tr>
<td>s. XXVII</td>
<td>14</td>
</tr>
<tr>
<td>t. MXX</td>
<td>19</td>
</tr>
<tr>
<td>u. MDC</td>
<td>84</td>
</tr>
<tr>
<td>v. 1090</td>
<td>1090</td>
</tr>
<tr>
<td>w. 1510</td>
<td>1510</td>
</tr>
<tr>
<td>x. 99</td>
<td>99</td>
</tr>
</tbody>
</table>

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF FACTORS BY SELECTING THOSE WHICH ARE FACTORS FROM THOSE WHICH ARE NOT.

If the numbers given are factors of 48 cross out the F; if the numbers given are not factors of 48 cross out the N.

\[
\begin{array}{lll}
F & N & 8,6 \\
F & N & 2,3,8 \\
F & N & 12,4 \\
F & N & 3,4,5 \\
F & N & 6,4,2 \\
F & N & 6,3,3 \\
F & N & 4,2,3,2 \\
\end{array}
\]

If the numbers given are factors of 72 cross out the F; if the numbers given are not factors of 72 cross out the N.

\[
\begin{array}{lll}
F & N & 6,2,6 \\
F & N & 5,3,6 \\
F & N & 3,2,2,6 \\
F & N & 3,4,5 \\
F & N & 4,3,6 \\
F & N & 2,4,9 \\
F & N & 2,2,18 \\
\end{array}
\]

Source: Addison-Wesley, B. 5, pp. 168-169.

THE STUDENT WILL DISTINGUISH BETWEEN FACTORS AND PRODUCTS BY SELECTING THOSE WHICH ARE FACTORS FROM THOSE WHICH ARE PRODUCTS.
If the number for A is a factor cross out the Y; if the number for A is a product cross out the P.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>P</td>
<td>A \times 3 = 24</td>
</tr>
<tr>
<td>Y</td>
<td>P</td>
<td>28 \div 4 = A</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>32 \times 3 = A</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>A \div 5 = 7</td>
</tr>
<tr>
<td>Y</td>
<td>P</td>
<td>13 \times A = 52</td>
</tr>
<tr>
<td>Y</td>
<td>P</td>
<td>26 \div A = 13</td>
</tr>
<tr>
<td>Y</td>
<td>P</td>
<td>4 \times A \times 3 = 48</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>72 = A \div 6</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>A = 16 \times 3</td>
</tr>
<tr>
<td>Y</td>
<td>P</td>
<td>A = 56 \div 8</td>
</tr>
</tbody>
</table>

Source: Addison Wesley, Bk. 5, p. 169.

THE STUDENT WILL APPLY HIS KNOWLEDGE OF FACTORING BY SELECTING THE CORRECT ANSWERS TO WORD PROBLEMS.

Directions: Read the problems and circle the letter of the correct answer.

Miss Bradley has 25 pupils in her class. She wants to seat them in 5 rows. How many children will sit in each row?

- a. 6
- b. 4
- *c. 5
- d. 7
A 36 member boys club is going on a camping trip. At their last meeting they raised some questions. How many tents will be needed if 4 boys sleep in each?

*a. 9
b. 12
c. 11
d. 8

If 12 boys share cooking utensils how many sets of utensils must be brought along?

*a. 4
b. 6
c. 5
d. 3

If they bring along 72 cans of food how many cans should be allotted to each boy?

*a. 3
b. 1
c. 2
d. 4

Jack and Jill carried the same number of buckets of water up the hill. Jack carried 3 buckets each trip and made 4 trips. Jill made 6 trips. How many buckets did she carry each time?

*a. 1
b. 2
c. 3
d. 4

GIVEN A WHOLE NUMBER, THE STUDENT WILL DEMONSTRATE KNOWLEDGE OF PRIME FACTORS BY CORRECTLY SELECTING THE PRIME FACTORS FOR A GIVEN NUMBER FROM A LIST.
Directions: Given a whole number, circle the alternative that shows its prime factors.

8

a. 8x1
b. 4x2
c. 2x4x1
d. 2x2x2

12

a. 3x4
b. 1x12
c. 2x3x2
d. 4x2x2

17

a. 2x3x3
b. 17x1
c. 4x2x2
d. 2x8

24

a. 2x3x2x3
b. 2x2x2x3
c. 3x3x2
d. 6x2x2

36

a. 3x2x2x3
b. 3x2x2x2
c. 3x3x3x2
d. 3x3x2
Directions: Given a whole number, if it is a common factor of a fraction circle the letter F. If the whole number is not a common factor, circle the letter N.

Given: 2

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24/24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE TERM "FACTOR" BY IDENTIFYING FACTORS IN ARRAYS.

What are the factors in the following array?

* a. 6 and 3
 b. 18 and 1
c. 12 and 6

Which equation correctly describes the following array?

* a. 18 x 1 = 18
 b. 3 x 6 = 18
c. 6 x 3 = 18
In the equation $5 \times 4 = 20$, which numbers are factors?

a. 4 and 20
* b. 5 and 4
c. 5 and 20

Name the factors in the following array.

*a. 3 and 5
b. 15 and 1
c. 9 and 6

Name the factors in the following array.

a. 3×3
*b. 6×1
c. 1×6

Which equation correctly describes the following array?

a. $7 \times 4 = 28$
*b. $28 \times 1 = 28$
c. $4 \times 7 = 28$

Name the factors in the following array.

*a. 16×1
*b. 4×4
c. 1×16

Name the factors in the following array.

*a. 2 and 5
b. 5 and 5
c. 10 and 1
Which equation correctly describes the following array?

a. $3 \times 4 = 12$
*b. $4 \times 3 = 12$
c. $12 \times 1 = 12$

Study the following array. Which number is NOT a factor?

*a. 30
b. 5
c. 6

Source: Merrill, Discovering Math 5, p. 28.

THE STUDENT WILL ANALYZE A COMPOSITE NUMBER FOR THE NUMBER OF ARRAYS THAT CAN BE ARRANGED BY CORRECTLY IDENTIFYING THE NUMBER OF ARRAYS POSSIBLE FOR THAT NUMBER.

Analyze the composite number 60 and identify the correct number of arrays possible. (SRA)

a. 6
*b. 12
c. 10
d. 8

Analyze the composite number 56 and identify the correct number of arrays possible. (SRA)

a. 4
b. 9
c. 5
*d. 8
Analyze the composite number 87 and identify the correct number of arrays possible.

- a. 5
- *b. 4
- c. 6
- d. 2

Analyze the composite number 84 and identify the correct number of arrays possible.

- *a. 12
- b. 10
- c. 8
- d. 14

Analyze the composite number 99 and identify the correct number of arrays possible.

- a. 2
- b. 8
- c. 4
- *d. 6

Analyze the composite number 36 and identify the correct number of arrays possible.

- a. 8
- b. 10
- *c. 9
- d. 7

Analyze the composite number 72 and identify the correct number of arrays possible.

- a. 9
- *b. 12
- c. 10
- d. 11
Analyze the composite number 64 and identify the correct number of arrays possible.

a. 8
*b. 7
c. 9
d. 6

THE PUPIL WILL APPLY HIS KNOWLEDGE OF USING ARRAYS FOR DETERMINING THE NUMBER OF FACTORS FOR A NUMBER BY IDENTIFYING ALL THE FACTORS OF A GIVEN WHOLE NUMBER.

From the drawing of all the possible arrays for the whole number 32, identify the complete set of factors.

a. 1, 32, 9, 14
*b. 1, 4, 8, 2, 16, 32
c. 1, 16, 32, 4
d. 2, 16, 8,

From the drawing of all the possible arrays for the whole number 36, identify the complete set of factors.

a. 36, 2, 16
b. 16, 2, 4, 6
c. 8, 12, 9,
*d. 12, 4, 3, 36, 1, 2, 6, 9,

From the drawing of all the possible arrays of the whole number 48, identify the complete set of factors.

a. 48, 1, 4, 9, 6, 3, 11, 21
*b. 48, 2, 12, 4, 8, 24, 12, 1, 36, 16
c. 2, 48, 7, 1, 9, 5, 22
d. 1, 3, 8, 12, 16
From the drawing of all the possible arrays for the whole number 25, identify the complete set of factors.

(SRA)

a. 1, 5
b. 1, 0, 5
c. 1, 5, 5, 25
d. 1, 5, 25

From the drawing of all the possible arrays for the whole number 67, identify the complete set of factors.

(SRA)

a. 1, 3, 2, 67
b. 67, 2, 3, 1
c. 67, 1
d. 1, 3, 21, 67

From the drawing of all possible arrays for the whole number 58, identify the complete set of factors.

(SRA)

a. 9, 3, 1, 58
b. 2, 58
c. 29, 1, 2, 58
d. 1, 4, 16, 58

From the drawing of all possible arrays for the whole number 86 identify the complete set of factors.

(SRA)

a. 86, 2, 1, 43
b. 1, 2, 3, 6, 12, 86
c. 3, 32, 43, 2
d. 1, 4, 21, 86

THE STUDENT WILL RECALL THAT COMPOSITE NUMBERS ARE PRODUCTS OF PRIMES BY CORRECTLY MATCHING THE PRODUCT WITH IT’S PRIME FACTORS.
Directions: Match a given product with its prime factors by placing the product in the blank beside its prime factors.

<table>
<thead>
<tr>
<th>Product</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 4</td>
<td>60 5x3x2x2</td>
</tr>
<tr>
<td>b. 75</td>
<td>2 x 7 x 3</td>
</tr>
<tr>
<td>c. 10</td>
<td>84 2 x 2 x 3 x 7</td>
</tr>
<tr>
<td>d. 48</td>
<td>72 2 x 2 x 2 x 3 x 3</td>
</tr>
<tr>
<td>e. 8</td>
<td>100 2 x 5 x 2 x 5</td>
</tr>
<tr>
<td>f. 84</td>
<td>2 x 2 x 1</td>
</tr>
<tr>
<td>g. 56</td>
<td>91 7 x 13</td>
</tr>
<tr>
<td>h. 9</td>
<td>85 5 x 17</td>
</tr>
<tr>
<td>i. 64</td>
<td>2 x 2 x 1</td>
</tr>
<tr>
<td>j. 52</td>
<td>4 x 13</td>
</tr>
<tr>
<td>k. 49</td>
<td>62 31 x 2</td>
</tr>
<tr>
<td>l. 72</td>
<td>8 2 x 2 x 2</td>
</tr>
<tr>
<td>m. 6</td>
<td>38 2 x 19</td>
</tr>
<tr>
<td>n. 100</td>
<td>75 5 x 5 x 3</td>
</tr>
<tr>
<td>o. 60</td>
<td>10 5 x 2</td>
</tr>
<tr>
<td>p. 111</td>
<td>111 3 x 37</td>
</tr>
<tr>
<td>q. 62</td>
<td>48 2 x 2 x 3 x 2 x 2</td>
</tr>
<tr>
<td>r. 85</td>
<td>64 2 x 2 x 2 x 2 x 2</td>
</tr>
<tr>
<td>s. 38</td>
<td>9 3 x 3</td>
</tr>
<tr>
<td>t. 91</td>
<td>4 2 x 2</td>
</tr>
<tr>
<td></td>
<td>56 2 x 2 x 7 x 2</td>
</tr>
<tr>
<td></td>
<td>9 3 x 1 x 3</td>
</tr>
<tr>
<td></td>
<td>6 2 x 3</td>
</tr>
<tr>
<td></td>
<td>49 7 x 7</td>
</tr>
<tr>
<td></td>
<td>135 2 x 3 x 2 x 2</td>
</tr>
</tbody>
</table>
In planning a garden, two kinds of bulbs are to be planted in alternating rows all of the same length. Tulip bulbs are to be planted 7 inches apart. Daffodils are to be planted 5 inches apart. How many bulbs will be planted in each row?

Mary says: 8 daffodils and 6 tulips
John says: 15 daffodils and 11 tulips
Bill says: 22 daffodils and 16 tulips

Who is correct? Draw a picture.

a. Mary
b. John
c. Bill
d. All of the above
e. None of the above

Mary works in a candy store. She wants to stack boxes of candy that are 4 inches long on each side next to boxes of candy that are 6 inches long on each side so that the two stacks are the same height. How can she do it?

a. It is not possible.
b. 3 of the 4 inch boxes for every 2 of the 6 inch boxes.
c. 6 of the 4 inch boxes for every four of the 6 inch boxes.
d. 9 of the 4 inch boxes for every 6 of the 6 inch boxes.
e. b, c, and d are correct.
Statements

<table>
<thead>
<tr>
<th>Statements</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. If two numbers have 5 as a factor, their product has 5 as a factor</td>
<td>a. 45 and 53 0670</td>
</tr>
<tr>
<td>b. If two numbers have 7 as a factor, their difference has 7 as a factor</td>
<td>b. 63 and 49 0671</td>
</tr>
<tr>
<td>f. If two numbers have 3 as a factor, their sum has 3 as a factor</td>
<td>c. 49 and 72 0672</td>
</tr>
<tr>
<td>h. A number that has 2, 3, and 5 as factors also has 15 as a factor</td>
<td>d. 24 and 210 0673</td>
</tr>
<tr>
<td>i. A number that has 12 and 15 as factors also has 60 as a factor</td>
<td>e. 60 and 40 0674</td>
</tr>
<tr>
<td>d. A product of 3 consecutive whole numbers has 6 as a factor</td>
<td>f. 27 and 18 0675</td>
</tr>
</tbody>
</table>

Directions: From the given list of products, select the least product that has the following factors.

<table>
<thead>
<tr>
<th>Product</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 720</td>
<td>A factor of 3 and a factor of 5</td>
</tr>
<tr>
<td>b. 40</td>
<td></td>
</tr>
<tr>
<td>c. 20</td>
<td>A factor of 4 and a factor of 5</td>
</tr>
<tr>
<td>d. 120</td>
<td></td>
</tr>
<tr>
<td>e. 24</td>
<td>A factor of 4 and a factor of 5</td>
</tr>
<tr>
<td>f. 18</td>
<td></td>
</tr>
<tr>
<td>g. 12</td>
<td>A factor of 6 and a factor of 3</td>
</tr>
<tr>
<td>h. 15</td>
<td></td>
</tr>
<tr>
<td>i. 6</td>
<td>A factor of 10 and a factor of 4</td>
</tr>
<tr>
<td>j. 15</td>
<td></td>
</tr>
<tr>
<td>k. 6</td>
<td>A factor of 30 and a factor of 24</td>
</tr>
<tr>
<td>l. 15</td>
<td></td>
</tr>
</tbody>
</table>

THE STUDENT USING HIS KNOWLEDGE OF FACTOR TREES CAN IDENTIFY THOSE WHICH ARE COMPLETED CORRECTLY FROM THOSE WHICH ARE NOT COMPLETED CORRECTLY.

Directions: If the factor tree is completed correctly circle the C; if it is not correct circle the I.

```
720
/ \   / \   / \
3 x 3 x 3
  / \ / \
9 x 3
 /   / \
27
```

0682
A prime number is a number whose factors

- are itself
- include zero
- are multiples
- are one and itself

The student can demonstrate knowledge of factors and multiples by indicating given numbers as primes, common factors or multiples.
Every set of multiples of a number

*a. includes zero
b. has a prime number
c. starts at one
d. are always even numbers

One is a factor of all numbers therefore ______ is not a prime number.

*a. zero
b. seven
c. one hundred one
d. thirteen

If 10 is a factor of a number ______ will also be a factor.

a. 0
b. 20
*c. 2
d. 4

If 17 is a factor of a number ______ will also be a factor.

a. 10
b. 7
*c. 1
d. 0

Common factors can be called the intersection of 2 sets of factors.

Set A {all factors of 15}
Set B {all factors of 30}
The common factors of A and B are

a. {1, 5, 10, 15}
b. {1, 3, 5, 15, 30}
c. {1, 3, 5, 15}
*d. {1, 2, 3, 5, 15}
A = \{\text{factors of 32}\}
B = \{\text{factors of 72}\}
A \cap B =
\begin{align*}
a. & \{1, 2, 4, 8\} \\
b. & \{1, 2, 4, 8\} \\
c. & \{2, 4, 8, 16\} \\
d. & \{0, 2, 4, 8, 16\}
\end{align*}

The greatest common factor, or the GCF, is
\begin{align*}
a. & \text{a listing of all factors} \\
b. & \text{the largest factor in the intersection} \\
c. & \text{always one} \\
d. & \text{the number common to both sets}
\end{align*}

The GCF of 10 and 15 is
\begin{align*}
a. & 1 \\
b. & 2 \\
c. & 5 \\
d. & 30
\end{align*}

The GCF of 90 and 60 is
\begin{align*}
a. & 1 \\
b. & 15 \\
c. & 30 \\
d. & 60
\end{align*}

Multiples of a number are a set of numbers formed by multiplying a number times the set of
\begin{align*}
a. & \text{counting numbers} \\
b. & \text{whole numbers} \\
c. & \text{cardinal numbers} \\
d. & \text{prime numbers}
\end{align*}
is a multiple of 6

a. 15
b. 46
c. 56
*d. 72

Common multiples are found in the intersection of 2 sets of multiples

Set A = multiples of 5
Set B = multiples of 7

Common multiples less than 5 of A and B are

a. 5, 7, 35, 70
*b. 5, 7, 35, 70
*c. 5, 70, 85
*d. 5, 35, 70

There are ______ common multiples of 3 and 8 less than 50.

a. 0
b. 1
*c. 2
*d. 4

The least common multiples or the LCM of 2 sets of multiples is

a. the largest multiple
b. one
c. zero
*d. first multiple alike

The LCM of 3 and 4 is

a. 0
*b. 12
c. 24
d. 36
The LCM of 5 and 7 is

- a. 105
- b. 70
- c. 35
- d. 0

Find the product of 2 factors. It can always be called _______ of the numbers.

- a. the LCM
- b. a common multiple
- c. a union
- d. an intersection

The prime factors of a number can be found by continually dividing by the smallest primes until only a prime number remains. For example, to find the prime factorization of 12:

2)\underline{12}

2)\underline{6}

\underline{3}

The prime factors of 12 are 2, 2, 3, or \(2^2 \times 3\).

Using this method match the prime factorizations in Column II to the numbers in Column I.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>a. (2^3 \times 67)</td>
</tr>
<tr>
<td>d</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>b. (2^5 \times 7)</td>
</tr>
<tr>
<td>e</td>
<td>536</td>
</tr>
<tr>
<td></td>
<td>c. (2^7 \times 7)</td>
</tr>
<tr>
<td>c</td>
<td>896</td>
</tr>
<tr>
<td></td>
<td>d. (2^4 \times 3^3)</td>
</tr>
<tr>
<td></td>
<td>e. (2 \times 5 \times 67)</td>
</tr>
</tbody>
</table>
The GCF and the LCM of 2 numbers can be found by using the prime factorization of each number. GCF is the product of all the factors each has in common, the LCM is the product of the factors used as many times as they appear in either factorization. Match the LCM or GCF in Column II with the numbers in Column I.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>d 36, 48</td>
<td>a $2^5 \times 11 = \text{LCM}$</td>
</tr>
<tr>
<td>e 22, 32</td>
<td>b $2^3 \times 5 = \text{LCM}$</td>
</tr>
<tr>
<td>c 14, 54</td>
<td>c $2 \times 3^3 \times 7 = \text{LCM}$</td>
</tr>
<tr>
<td></td>
<td>d $2^2 \times 3 = \text{GCF}$</td>
</tr>
</tbody>
</table>

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF PRIME NUMBERS BY SELECTING NUMBERS WHICH ARE PRIME.

Choose and circle the letter that correctly lists the prime numbers from 2 to 10.

a. 2, 3, 5, 6, 7
b. 2, 3, 4, 7
c. 2, 3, 4, 5, 7
*d. 2, 3, 5, 7
e. 2, 3, 4, 7

Choose and circle the letter of the list that contains only prime numbers between 10 and 20.

a. 11, 15, 19
b. 11, 13, 17
c. 11, 15, 17, 19
d. 11, 13, 15, 19
*e. 11, 13, 17, 19

Source: Addison Wesley, Bk. 5.
THE STUDENT WILL DEMONSTRATE KNOWLEDGE OF PRIME NUMBERS BY CORRECTLY COMPLETING FACTS ABOUT PRIME NUMBERS.

Directions: Read the problem and circle the letter of the correct answer.

What number is both an even number and a prime number?

a. 0
b. 2
* c. 3
d. 4

What two prime numbers have a difference of 1?

a. 3, 4
b. 1, 2
*c. 0, 1
* d. 2, 3

What two prime numbers have a difference of 3?

a. 4, 7
b. 6, 9
*c. 2, 5
d. 8, 11

Source: Addison Wesley, p. 172.

THE STUDENT WILL RECALL THE CHARACTERISTICS OF PRIME NUMBERS BY IDENTIFYING THE STATEMENTS PERTAINING TO PRIMES.
From the statements below select the one that does **NOT** apply to all prime numbers.

a. Prime numbers are always odd numbers.
b. Prime numbers have exactly two factors.
c. Prime numbers always have one as a factor.

Source: SRA

THE STUDENT WILL DEMONSTRATE KNOWLEDGE OF PRIME NUMBERS BY CORRECTLY IDENTIFYING FROM GIVEN ARRAYS THOSE THAT ARE PRIME NUMBERS.

Select from the arrays listed below the array that indicates a prime number.

a. 0 0 0 0 0 0 0 0 0 0
b. 0 0 0 0 0 0 0 0 0 0
c. 0 0 0 0 0 0 0 0 0 0
d. 0 0 0 0 0 0 0 0 0 0

Select from the arrays listed below, the array that indicates a prime number.

a. 0 0 0 0
b. 0
c. 0 0 0 0 0 0 0 0 0 0
d. 0 0 0 0 0 0 0 0 0 0

Select from the arrays listed below, the array that indicates a prime.

a. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Select from the arrays listed below, the array that indicates a prime.

*a. 0
b. 0
c. 0
d. 0

Select from the arrays listed below, the array that indicates a prime.

*a. 0
b. 0
c. 0
d. 0

Source: SRA

THE STUDENT WILL APPLY HIS KNOWLEDGE OF ARRAYS BY CORRECTLY IDENTIFYING A PRIME ARRAY FROM A LIST.

Select from the whole numbers listed below, the one for which only one array can be made.

*a. 51
b. 47
c. 39
d. 35

Select from the whole numbers listed below, the one for which only one array can be made.

*a. 41
b. 45
c. 48
d. 49
Select from the whole numbers listed below, the one for which only one array can be made.

a. 75
b. 56
c. 87
*d. 61

Select from the whole numbers listed below, the one for which only one array can be made.

a. 63
b. 54
c. 72
*d. 83

Select from the whole numbers listed below the one for which only one array can be made.

a. 55
b. 98
*c. 83
d. 57

Select from the whole numbers listed below, the one for which only one array can be made.

a. 0
*b. 2
c. 1
d. 4

Select from the whole numbers listed below, the one for which only one array can be made.

*a. 3
b. 9
c. 0
d. 1

Source: SRA
THE STUDENT WILL RECALL THE CHARACTERISTICS OF NOT PRIMES (COMPOSITE NUMBERS) BY IDENTIFYING THE STATEMENTS PERTAINING TO NOT PRIMES.

From the statements below select the one that does NOT apply to not prime numbers.

a. Numbers that are not primes have more than two factors.
 b. Numbers that are not primes are products of primes.
 c. Numbers that are not primes always have 1 as a factor.
 *d. Numbers that are not primes have only two factors.

Source: SRA

THE STUDENT WILL RECALL THAT WHOLE NUMBERS HAVING MORE THAN TWO FACTORS (ZERO EXCEPTED) ARE NOT PRIMES (COMPOSITE NUMBERS) BY IDENTIFYING THEM FROM A GIVEN LIST.

Select from the arrays listed below the array that indicates a not prime number.

a. 0 0 0
 b. 0 0
 *c. 0 0 0 0 0 0
 d. 0 0 0 0 0

Select from the arrays listed below the array that indicates a NOT prime number.

a. 0 0 0 0 0 0 0 0 0 0 0
 *b. 0 0 0 0 0 0 0 0 0
 c. 0 0 0 0 0 0 0 0 0 0 0 0
 d. 0 0 0 0 0 0 0 0 0 0 0 0 0
Select from the arrays listed below the array that indicates a NOT prime number.

a. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c. 0
d. 0

Select from the arrays listed below the array that indicates a NOT prime number.

a. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b. 0
c. 0
d. 0

Select from the whole numbers listed below, the one for which more than one array may be made.

a. 29
b. 73
c. 64
d. 47

Select from the whole numbers listed below the one for which more than one array may be made.

a. 97
b. 81
c. 37
d. 53

Select from the whole numbers listed below the one for which more than one array may be made.

a. 99
b. 89
c. 57
d. 79
Select from the whole numbers listed below the one for which more than one array may be made.

a. 43
*b. 40
 c. 31
 d. 37

Select from the whole numbers listed below the one for which more than one array may be made.

a. 19
b. 23
c. 17
*d. 27

Select from the whole numbers listed below the one for which more than one array may be made.

a. 11
b. 19
*c. 25
d. 29

Select from the whole numbers listed below the one for which more than one array may be made.

*a. 8
b. 13
c. 19
d. 11

Select from the whole numbers listed below the one for which more than one array may be made.

a. 67
*b. 78
c. 53
d. 41
Select from the whole number listed below the one for which more than one array may be made.

a. 29
*b. 39
c. 59
d. 79

Source: SRA

THE STUDENT WILL ANALYZE WHOLE NUMBERS TO CORRECTLY IDENTIFY PRODUCTS OF PRIMES.

Analyze the groups of whole numbers and correctly select the group which identifies products of primes.

a. 4, 11, 8, 6
b. 20, 15, 10, 5
*c. 8, 6, 4, 12
d. 12, 14, 9, 17

Analyze the groups of whole numbers and correctly select the group which identifies products of primes.

a. 14, 22, 23, 25
b. 26, 27, 10, 12
c. 15, 16, 29, 24
d. 30, 40, 21, 31

Analyze the groups of whole numbers and correctly select the group which identifies products of primes.

a. 42, 25, 37, 18
b. 32, 47, 45, 54
c. 63, 74, 41, 38
*d. 64, 22, 72, 75
Analyze the groups of whole numbers and correctly select the group which identifies products of primes.

a. 84, 89, 70, 73
b. 20, 59, 42, 19
c. 28, 25, 39, 61
*d. 52, 100, 49, 36

Analyze the groups of whole numbers and correctly select the group which identifies products of primes.

a. 53, 26, 18, 22
b. 81, 83, 79, 70
*c. 25, 26, 27, 28
d. 65, 67, 49, 19

Analyze the groups of whole numbers and correctly select the group which identifies products of primes.

a. 95, 96, 97, 98
*b. 62, 63, 64, 65
c. 69, 70, 71, 72
d. 41, 43, 77, 79

Analyze the groups of whole numbers and correctly select the group which identifies products of primes.

a. 22, 14, 53, 72
b. 10, 2, 8, 16
*c. 34, 27, 56, 81
d. 33, 29, 23, 32

From the group of whole numbers between 9 and 28, analyze the numbers 11, 13, 17, 19 and 23, and correctly select the phrase that identifies this group.

a. all the odd numbers
b. all the even numbers
*c. all the prime numbers
d. all the composite numbers
If 4 has exactly 3 factors, and 9 has exactly 3 factors analyze the groups of whole numbers listed below and select the group having exactly 3 factors.

- a. 10, 12, 14
- b. 15, 21, 27
- *c. 25, 49, 121
- d. 25, 36, 49

If the first four products of primes are 4, 6, 8, and 9, analyze the groups below and identify the group that identifies the next four products of primes.

- a. 11, 13, 17, 19
- *b. 10, 12, 14, 15
- c. 10, 11, 12, 13

Source: SRA

THE STUDENT WILL ANALYZE THE SIEVE OF ERATOSTHENES AND IDENTIFY ITS CHARACTERISTICS FROM A LIST.

If 11 and 13 are twin primes, and 17 and 19 are twin primes, analyze the Sieve of Erathathenes and correctly identify the number of twin primes from the list.

- a. two
- b. four
- *c. six
- d. five

Using the Sieve of Erathsthenes identify the phrase that applies to the table.

- a. All numbers ending in 1,3,5,7, or 9 are primes.
- b. All numbers are odd.
- c. There are two groups of prime triplets.
- *d. Twin primes are consecutive odd prime numbers.
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF DIVISIBILITY FACTS
BY SELECTING THE RULES FOR DIVISIBILITY.

Using the rule for divisibility by 2, identify the whole number
which does not belong in this group.

a. 24
b. 36
c. 29
d. 40

Using the rule for divisibility by 2 identify the whole number
which does not belong in this group.

a. 336
b. 459
c. 241
d. 553

Using the rule for divisibility by 2 identify the whole number
which does not belong in this group.

a. 1007
b. 2796
c. 7842
d. 5339

Source: SPA
The student will demonstrate his knowledge of the divisibility rule for 3 by identifying the numbers divisible by 3 from a given list.

Directions: Select which one of the following numbers is divisible by 3.

a. 2459
b. 3075
c. 2584
d. 1497

a. 8974
b. 7504
c. 9087
d. 5462

a. 3758
b. 4629
c. 7628
d. 8002

a. 2505
b. 3847
c. 5864
d. 3472

a. 25,846
b. 37,598
c. 43,294
d. 58,740

a. 90,709
b. 64,872
c. 83,864
d. 70,985
Directions: Select which one of the following numbers is NOT divisible by 3.

*a. 75,804
b. 86,009
c. 95,846
d. 87,235

*a. 75,097
b. 30,284
c. 27,563
*d. 85,662

*a. 84,609
b. 37,462
c. 68,072
d. 40,069

*a. 50,684
b. 30,758
*c. 77,787
d. 67,666

Directions: Select which one of the following numbers is NOT divisible by 3.

*a. 734
b. 606
c. 960
d. 348

*a. 846
b. 609
*c. 758
d. 945
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>8706</td>
<td>b.</td>
<td>4932</td>
</tr>
<tr>
<td>c.</td>
<td>6374</td>
<td>d.</td>
<td>9567</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>9654</td>
<td>b.</td>
<td>5766</td>
</tr>
<tr>
<td>c.</td>
<td>2838</td>
<td>d.</td>
<td>5042</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>97,608</td>
<td>b.</td>
<td>84,725</td>
</tr>
<tr>
<td>c.</td>
<td>76,374</td>
<td>d.</td>
<td>60,852</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>64,008</td>
<td>b.</td>
<td>98,763</td>
</tr>
<tr>
<td>c.</td>
<td>84,032</td>
<td>d.</td>
<td>75,468</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>30,009</td>
<td>b.</td>
<td>58,395</td>
</tr>
<tr>
<td>c.</td>
<td>70,608</td>
<td>*d.</td>
<td>96,541</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>46,938</td>
<td>b.</td>
<td>26,847</td>
</tr>
<tr>
<td>c.</td>
<td>59,877</td>
<td>*d.</td>
<td>89,899</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>60,597</td>
<td>*b.</td>
<td>44,444</td>
</tr>
<tr>
<td>c.</td>
<td>55,089</td>
<td>d.</td>
<td>70,698</td>
</tr>
</tbody>
</table>
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF THE DIVISIBILITY RULE FOR 6 BY IDENTIFYING THE NUMBERS DIVISIBLE BY 6 FROM A GIVEN LIST.

Directions: Select which one of the following numbers is divisible by 6.

a. 2775
b. 2864
*c. 3768
*d. 5987

a. 6074
b. 9286
c. 5875
*d. 6936

a. 758
b. 403
c. 297
*d. 798

*a. 9984
b. 4039
c. 5468
d. 2703
Directions: Select which of the following numbers is NOT divisible by 6.
<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>b.</td>
<td>c.</td>
<td>d.</td>
<td>a.</td>
<td>b.</td>
<td>c.</td>
<td>d.</td>
<td>a.</td>
<td>b.</td>
</tr>
<tr>
<td>648</td>
<td>336</td>
<td>257</td>
<td>976</td>
<td>792</td>
<td>940</td>
<td>804</td>
<td>279</td>
<td>5,706</td>
<td>3,099</td>
</tr>
<tr>
<td>9,900</td>
<td>9,090</td>
<td>6,778</td>
<td>4,068</td>
<td>6,408</td>
<td>7,668</td>
<td>6,096</td>
<td>9,786</td>
<td>8,976</td>
<td>8,066</td>
</tr>
<tr>
<td>42,756</td>
<td>80,564</td>
<td>75,306</td>
<td>89,004</td>
<td>85,800</td>
<td>90,008</td>
<td>161</td>
<td>167</td>
<td>0797</td>
<td>0798</td>
</tr>
<tr>
<td>50,634</td>
<td>80,564</td>
<td>75,306</td>
<td>89,004</td>
<td>85,800</td>
<td>90,008</td>
<td>0799</td>
<td>0800</td>
<td>0801</td>
<td>0802</td>
</tr>
<tr>
<td>0803</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>90,750</td>
<td>b.</td>
<td>82,468</td>
<td>c.</td>
<td>80,760</td>
<td>d.</td>
<td>76,806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-----</td>
<td>----------------</td>
<td>-----</td>
<td>----------------</td>
<td>-----</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>25,374</td>
<td>*b.</td>
<td>99,074</td>
<td>c.</td>
<td>60,792</td>
<td>d.</td>
<td>89,772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*a.</td>
<td>84,650</td>
<td>b.</td>
<td>64,386</td>
<td>c.</td>
<td>56,994</td>
<td>d.</td>
<td>76,788</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The student will demonstrate his knowledge of the divisibility rule for 9 by identifying the number divisible by 9 from a given list.

Directions: Select from a given list of numbers the one that is divisible by 9.

<table>
<thead>
<tr>
<th>a.</th>
<th>278</th>
<th>b.</th>
<th>465</th>
<th>*c.</th>
<th>333</th>
<th>d.</th>
<th>979</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>462</td>
<td>b.</td>
<td>306</td>
<td>c.</td>
<td>555</td>
<td>d.</td>
<td>330</td>
</tr>
</tbody>
</table>
a. 898
b. 379
*c. 469
*d. 900

*a. 171
b. 252
c. 340
d. 258

a. 8466
b. 9077
c. 7409
*d. 6381

a. 9777
b. 9563
c. 9075
*d. 9054

a. 1009
*b. 7457
*c. 8532
d. 3688

a. 40,758
*b. 66,735
c. 39,740
d. 86,299

a. 79,455
b. 85,742
*c. 38,799
d. 94,853
Directions: Select from a given list of numbers the one that is NOT divisible by 9.

a. 90,897
b. 62,575
*c. 89,667
d. 87,437

*a. 578
b. 459
c. 693
d. 702

a. 153
b. 252
c. 936
*d. 638

a. 342
b. 225
*c. 763
d. 333

a. 9990
b. 4077
*c. 6546
d. 3564

a. 6003
*b. 6078
c. 6066
d. 3303
<table>
<thead>
<tr>
<th></th>
<th>a. 6822</th>
<th>b. 5904</th>
<th>c. 9036</th>
<th>d. 3158</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. 53,478</td>
<td>b. 77,985</td>
<td>c. 90,099</td>
<td>d. 60,758</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. 72,081</td>
<td>b. 77,778</td>
<td>c. 99,999</td>
<td>d. 76,799</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. 43,758</td>
<td>b. 90,270</td>
<td>c. 58,855</td>
<td>d. 43,569</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. 39,663</td>
<td>b. 57,042</td>
<td>c. 80,145</td>
<td>d. 22,222</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF THE DIVISIBILITY RULE OF WHOLE NUMBERS BY APPLYING THE RULE TO A GIVEN LIST OF NUMBERS.

Directions: Without computing, place a check mark in the blank beside the quotients which are whole numbers.
$2805 \div 10 = 0840$

$4680 \div 3 = 0841$

$5004 \div 9 = 0842$

$6023 \div 3 = 0843$

$7809 \div 6 = 0844$

$3670 \div 10 = 0845$

$8031 \div 3 = 0846$

$500 \div 2 = 0847$

$984 \div 6 = 0848$

$4098 \div 3 = 0849$

$8471 \div 2 = 0850$

$2570 \div 10 = 0851$

173
<table>
<thead>
<tr>
<th>Fraction</th>
<th>Value</th>
<th>0852</th>
</tr>
</thead>
<tbody>
<tr>
<td>7064/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2594/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7866/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2508/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1720/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5076/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7230/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6308/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7534/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2742/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5698/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2705/10</td>
<td>168</td>
<td></td>
</tr>
</tbody>
</table>

0863
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF GREATEST COMMON FACTORS BY SELECTING THEM FROM A GIVEN LIST.

Directions: Circle the letter of the correct response.

The greatest common factor of 8 and 20 is:

a. 4
b. 5
c. 8
d. 2

The greatest common factor of 10 and 30 is:

a. 1
b. 2
c. 5
d. 10

The greatest common factor of 16 and 24 is:

a. 2
b. 4
c. 8
d. 16
Directions: Given a fraction, find the greatest common factor and put it in lowest terms.

The greatest common factor of $\frac{12}{16}$

- a. 4
- b.
- c. 3
- d. 1

$\frac{12}{16}$ in lowest terms is

- a. $\frac{12}{16}$
- *b. $\frac{3}{4}$
- c. $\frac{10}{14}$
- d. $\frac{6}{8}$

Greatest common factor of $\frac{5}{15}$

- a. 3
- b. 1
- *c. 5
- d. 15

$\frac{5}{15}$ in lowest terms is

- a. $\frac{5}{15}$
- *b. $\frac{1}{3}$
- c. $\frac{1}{5}$
- d. $\frac{3}{15}$

The greatest common factor of $\frac{18}{24}$

- a. 9
- b. 12
- c. 3
- *d. 6
18/24 in lowest terms is

- a. 3/4
- b. 6/8
- c. 18/24
- d. 9/12

The greatest common factor of 27/30

- a. 1
- b. 9
- c. 4
- d. 3

27/30 in lowest terms is

- a. 1/5
- b. 3/10
- c. 9/10
- d. 27/30

The greatest common factor is found

- a. by finding all the factors of the numerator and denominator.
- b. by multiplying numerator and denominator by 2/2.
- c. when the numerator and denominator are each less than 10.
- d. by finding the largest factor that both numerator and denominator contain.

A fraction is in lowest terms when

- a. the numerator and denominator are different numbers.
- b. the only multiple the numerator and denominator have in common is 1.
- c. the numerator is a prime number.
- d. the only factor the numerator and denominator have in common is one.
GIVEN A WHOLE NUMBER, THE STUDENT WILL SHOW ABILITY TO DISTINGUISH BETWEEN FACTORS AND MULTIPLES BY SELECTING THE FACTORS AND/OR MULTIPLES OF A GIVEN NUMBER.

Directions: Circle the answer from the list of alternatives.

The factors of 12 are
a. 0, 12, 24, 36, 48
b. 0, 1, 2, 3, 4, 6, 12
c. 1, 2, 3, 4, 6, 12
d. 1, 2, 3, 4, 6, 12

The multiples of 8 are
a. 0, 8, 16, 24
b. 1, 2, 4, 8
c. 8, 16, 24

The multiples of 6 are
a. 6, 12, 18, 24
b. 1, 2, 3, 6
c. 0, 1, 2, 3, 6
d. 0, 6, 12, 18, 24

The factors of 4 are
a. 0, 1, 2, 4
b. 1, 4, 8, 12, 16
c. 1, 2, 4
d. 1, 2, 3, 4
The multiples of 5 are

a. 0, 5, 10, 15, 20
b. 0, 5, 10, 15, 20
c. 1, 5, 10, 15, 20
d. 10, 15, 19, 23, 28

The factors of 2 are

a. 0, 1, 2
b. 1, 2, 4
c. 1, 2, 3, 4, 6, 8
d. 1, 2

The number which all whole numbers have as a factor is

a. 1
b. 0
c. 2
d. 10

The number which all whole numbers have as a multiple is

a. 1
b. 0
c. 2
d. 10

S = \{1, 2, 4, 8\}
T = \{1, 2, 3, 6\}

S \cap T = \{1, 2\}

a. all the factors of S and T
b. Common multiples of S and T
c. All the multiples of S and T
d. Common factors of S and T
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF MULTIPLES BY SELECTING THE NUMBERS THAT CONTINUE THE GIVEN SET OF MULTIPLES.

Directions: Circle the letter of the correct response.

Given 0, 6, 12, 18, 24, 30...
, select the multiples that continue the set to 60.

a. 36, 40, 46, 54, 60
b. 36, 42, 48, 54, 60
c. 36, 40, 46, 50, 56, 60
d. 36, 46, 56, 60

Given 0, 3, 6, 9, 12, 15...
, select the multiples that continue the set to 30.

a. 18, 23, 27, 30
b. 18, 20, 25, 30
c. 18, 20, 24, 28, 30
d. 18, 21, 24, 27, 30

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF MULTIPLES BY SELECTING THE MULTIPLES OF GIVEN NUMBERS.

Directions: Match the given number with its multiples by placing the correct number of the set in front of the letter.
Directions: Read the problems and select the letter of the equation appropriate for best solving the problem.

Mr. Moses donated $10 to each of 6 charities. How much did he donate?

a. \$10+\$10+\$10+\$10+\$10+\$10 = n
b. \$10 + 6 = n
*c. \$10 \times 6 = n
d. 6+6+6+6+6+6+6+6+6+6+6 = n

Mary has 4 packages of candy. There are 14 pieces in each pack. How much candy does she have?

a. 14 + 4 = m
*b. 14 \times 4 = m
c. 14 + 14 + 14 + 14 = m
d. 4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4 = m

Using his knowledge of multiples, the student can determine which equation gives the best procedure for solving word problems.
THE STUDENT WILL DEMONSTRATE HIS ABILITY TO EMPLOY MULTIPLES BY SOLVING WORD PROBLEMS INVOLVING MULTIPLES.

Directions: Read the problems and select the correct answer.

Each of 5 boys on a baseball team struck out three times during a game. How many strike-outs did they make?

a. 8
b. 10
c. 5
*d. 15

Jack has 3 insect collections with 12 bugs on each frame. How many insects does Jack have?

a. 15
*b. 36
c. 24
d. 12

Jill wants to buy 5 books that cost $1.00 each. How much must she save before she can buy them all?

*a. $5.00
b. $10.00
c. $1.00
d. $5.50

Joe has 9 quarters in his pocket. How much money does he have?

a. $2.00
*b. $2.25
c. $2.50
d. $2.75

GIVEN TWO WHOLE NUMBERS, THE STUDENT WILL DEMONSTRATE HIS ABILITY TO DISTINGUISH BETWEEN GREATEST COMMON FACTOR AND LEAST COMMON MULTIPLE BY SELECTING THE GREATEST COMMON FACTOR OR LEAST COMMON MULTIPLE OF THE TWO NUMBERS.
Directions: Using the information provided circle the letter that answers each question.

Given: \(8 = \{1, 2, 4, 8\} \quad 6 = \{1, 2, 3, 6\} \)
The greatest common factor is

\[a. \{1, 2, 8\} \]
\[b. \{1, 2\} \]
\[*c. \{2\} \]
\[d. \{8\} \]

Given: \(8 = \{0, 8, 16, 24, 32\} \quad 6 = \{0, 6, 12, 18, 24, 30\} \)
The least common multiple is

\[a. \{24\} \]
\[*b. \{0\} \]
\[c. \{12\} \]
\[d. \{16\} \]

Given: \(9 = \{1, 3, 9\} \quad 12 = \{1, 2, 3, 4, 6, 12\} \)
The least common factor is

\[a. \{3\} \]
\[b. \{9\} \]
\[c. \{12\} \]
\[*d. \{1\} \]

Given: \(9 = \{0, 9, 18, 27, 36\} \quad 12 = \{0, 12, 24, 36\} \)
The least common multiple greater than zero

\[a. \{12\} \]
\[*b. \{36\} \]
\[c. \{0\} \]
\[d. \{9\} \]
WHOLE NUMBER ADDITION
THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF MULTIPLE DIGIT ADDENDS AND SUMS BY SOLVING ADDITION PROBLEMS AND EQUATIONS INVOLVING MULTIPLE DIGIT ADDENDS AND SUMS.

In the equation \(n + n = 6 \), \(n \) is called

- a. a sum
- b. an addend
- c. a factor
- d. a product

In order to find the solution for \(n \) in the equation \(n - 3 = 12 \), you would

- a. subtract
- b. multiply
- c. divide
- d. add

Finding the sum does not mean to:

- a. have a union of sets
- b. find a missing addend
- c. solve for total members
- d. join all addends into a new set

The sum of the addends 800 + 190 + 18 will be ________ digits.

- a. two
- b. three
- c. four
- d. five

The sum of the addends 121 is

- a. 314
- b. 334
- c. 324
- d. 304
The sum of the addends 222 is
a. 1216
b. 1326
c. 1226
d. 1316

The sum of the addends 126 + 352 =
a. 467
b. 468
c. 477
d. 478

The addends are 4930 and 2190. Their sum equals
a. 7020
b. 7030
c. 7120
d. 7130

The sum is _____ digits for addends 9647 and 8355.
a. three
b. four
c. five
d. six

Find the sum of 985
830
26
914
a. 1872
b. 1962
c. 1772
d. 1862

1608 + 4634 =
a. 6232
b. 5242
c. 5232
d. 6242
$94.62 + $53.08 = \text{[Blank]}$

a. 147.60
b. 147.78
c. 147.60
d. 147.70

$70.95 + $94.63 = \text{[Blank]}$

a. 164.68
b. 165.58
c. 165.58
d. 164.58

$2.50 + 3.80 = \text{[Blank]}$

Find the sum of:

a. 12.75
b. 13.81
c. 13.71
d. 12.81

Find the sum of:

a. 7689
b. 7588
c. 7679
d. 7589

Find the sum:

a. 1023
b. 1123
c. 1223
d. 1222
27 + 8 + 65 + 97 =

- a. 164
- b. 197
- c. 186
- d. 177

= 36 + 65 + 75 + 86

- a. 262
- b. 252
- c. 242
- d. 272

Find the sum: 9915

- a. 19492
- b. 19,512
- c. 19,402
- d. 19,502

Find the sum: 5908

- a. 17871
- b. 17872
- c. 18871
- d. 18771

765 + 36 + 75 + 800 =

- a. 1676
- b. 1575
- c. 1666
- d. 1576
\[700 + 800 + 600 + 900 = \]

\[a. \ 300 \]
\[b. \ 30,000 \]
\[*c. \ 3,000 \]
\[d. \ 2900 \]

\[1600 + 190 + 13 = \]

\[a. \ 1800 \]
\[*b. \ 1803 \]
\[c. \ 1793 \]
\[d. \ 1893 \]

\[58 + 900 + 150 + 43 = \]

\[*a. \ 1151 \]
\[b. \ 1050 \]
\[c. \ 1150 \]
\[d. \ 1041 \]

\[667 - \quad = 487 \]

\[a. \ 180 \]
\[*b. \ 1154 \]
\[c. \ 260 \]
\[d. \ 1054 \]
\[e. \ 170 \]

\[468 = 342 \]

\[*a. \ 810 \]
\[b. \ 126 \]
\[c. \ 26 \]
\[d. \ 800 \]
\[e. \ 116 \]
99 = 109

a. 200
b. 100
c. 10
d. 208
e. 90

6334 - 1668 =

*a. 8002
b. 4666
c. 8000
d. 4776
e. 5666

Find the sum:

3400
17626
500

*a. 54,408
b. 43418
c. 52408
d. 43408

Find the sum:

28642
29746
22275

*a. 195024
b. 194934
c. 195034
d. 194034
Find the sum:

\[
\begin{align*}
19003 \\
6754.
\end{align*}
\]

Find the sum:

\[
\begin{align*}
28031 \\
702 \\
_5975.
\end{align*}
\]

\[
\begin{align*}
a. & \quad 59566 \\
*b. & \quad 60465 \\
c. & \quad 59466 \\
d. & \quad 60365
\end{align*}
\]

\[
\begin{align*}
4300 \\
7500
\end{align*}
\]

Find the sum:

\[
\begin{align*}
9060 \\
2735 \\
4327 \\
3800
\end{align*}
\]

\[
\begin{align*}
*a. & \quad 31722 \\
b. & \quad 30712 \\
c. & \quad 31622 \\
d. & \quad 30722
\end{align*}
\]

\[
\begin{align*}
93752 \\
16820 \\
34919 \\
58606 \\
90408
\end{align*}
\]

\[
\begin{align*}
a. & \quad 294495 \\
b. & \quad 284505 \\
c. & \quad 284495 \\
*d. & \quad 294505
\end{align*}
\]

\[
4265 + 38 + 700 + 85 =
\]

\[
\begin{align*}
a. & \quad 4088 \\
b. & \quad 4987 \\
*c. & \quad 5088 \\
d. & \quad 5078
\end{align*}
\]

\[
= 9000 + 75 + 865 + 7646 + 86
\]

\[
*a. \quad 17672 \\
b. \quad 16762 \\
c. \quad 17572 \\
d. \quad 16662
\]

186
\[3716 + 143 + 59 + 400 = \underline{5327}\]

1. a. 3318
 b. 4308
 c. 3208
 d. 4318

\[5,327 + 86 + 300 + 702 = \underline{6309}\]

1. a. 6305
 b. 6415
 c. 5415
 d. 6405

\[900 + 7081 + 63 + 126 + 39 = \underline{8209}\]

1. a. 7209
 b. 8199
 c. 8209
 d. 7109

\[\underline{0945} = 5000 + 137 + 609 + 82 + 1414\]

1. a. 6232
 b. 7242
 c. 6342
 d. 7132

Given the sum 5292, possible addends rounded off to the nearest hundred could be:

1. a. 2500 + 2000
 b. 2500 + 2500
 c. 2600 + 2600
 d. 2300 + 3000
The sum for 3 addends is 895. The addends rounded off to the nearest hundred could be:

- a. 500 + 300 + 200
- b. 600 + 300 + 100
- *c. 400 + 200 + 300
- d. 300 + 300 + 200

\[600 + 100 + 200 = \boxed{900}\]. These addends were rounded off to the nearest hundred. The possible sum could be

- a. 951
- *b. 879
- c. 849
- d. 981

\[(18 + 18) = \boxed{36} - 76\]

- a. 100
- b. 40
- *c. 112
- d. 102
- e. 50

\[946 = \boxed{898} - (38 + 149)\]

- *a. 1133
- b. 759
- c. 753
- d. 1033
- e. 769

\[(536 + 232) = \boxed{768} - 604\]

- a. 1362
- b. 164
- c. 154
- *d. 1372
- e. 64
1037 = □□□ - (859 + 36)

a. 132
b. 1932
c. 232
d. 142
e. 1832

385 = □□□ - (109 + 97)

* a. 591
b. 79
c. 189
d. 581
e. 89

(438 + 297) = □□□ - 509

a. 226
b. 1244
c. 236
d. 1234
e. 206

\[
\begin{array}{c}
- 3 8 3 \\
5 6 2
\end{array}
\]

a. 180
b. 945
c. 280
d. 844
e. 220

\[
\begin{array}{c}
- 7 0 6 \\
4 9 3
\end{array}
\]

a. 13
b. 313
c. 213
*d. 1199
e. 1193
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>1692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>1682</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>2541</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>2531</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>2633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>12386</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>11396</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>2382</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>12396</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>2396</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>4352</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>4362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>3354</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>1344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>3342</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THE CHILD WILL EVIDENCE HIS ABILITY TO DISTINGUISH BETWEEN THE BASIC PRINCIPLES OF ADDITION BY CORRECTLY CATEGORIZING A GIVEN SET OF EQUATIONS.

Directions: Look at the equation and select the principle which the equation demonstrates.

1. $\frac{7}{8} + 8 = 8 + \frac{7}{8}$
 - a. O-principle
 - *b. Commutative principle
 - c. Associative principle

2. $\frac{2}{3} + \frac{5}{6} = n$
 - *a. O-principle
 - b. Commutative principle
 - c. Associative principle

3. $\frac{3}{4} + n = \frac{6}{10} + \frac{3}{4}$
 - a. O principle
 - *b. Commutative principle
 - c. Associative principle

4. $(\frac{1}{8} + \frac{3}{8}) + \frac{5}{8} = \frac{1}{8} + (\frac{3}{8} + n)$
 - a. O principle
 - b. Commutative principle
 - *c. Associative principle

5. $\frac{5}{8} + n = \frac{5}{8}$
 - *a. O principle
 - b. Commutative principle
 - c. Associative principle
\[n + (3 + \frac{1}{3}) = (2 + 3) + \frac{1}{3} \]

a. O principle
b. Commutative principle
*c. Associative principle

\[(\frac{5}{7} + \frac{6}{7}) + n = \frac{5}{7} + (\frac{6}{7} + 3) \]

a. O principle
b. Commutative principle
*c. Associative principle

\[n + 1/3 = 1/3 + 6/5 \]

a. O principle
*b. Commutative principle
c. Associative principle

\[6/3 + 0 = n \]

*a. O principle
b. Commutative principle
c. Associative principle

\[1/10 + (6/10 + 3/10) = (n + 6/10) + 3/10 \]

a. O principle
b. Commutative principle
*c. Associative principle

Source: Addison-Wesley, Book 5, pp. 258-259.

The student will demonstrate his understanding of the addition process by analyzing an incomplete problem and selecting the correct digits that make the problem true.
Direction: Below is part of an account from a check-book. Find the numerals that are missing.

$48.3a
56.b9
8e7.62
6.d1
53e.24
1529.10

The missing numeral for a is

a. 0
b. 1
c. 4
d. 8
e. 5

The missing numeral for b is

a. 2
b. 0
c. 9
d. 4
e. 3

The missing numeral for c is

a. 7
b. 9
c. 8
d. 2
e. 3

The missing numeral for d is

a. 5
b. 6
c. 0
d. 3
e. 8
The missing numeral for e is

a. 9
b. 0
c. 1
d. 5
e. 3

The missing numeral for f is

a. 7
b. 6
c. 0
d. 3
e. 4

Source: Addison Wesley

THE STUDENT WILL APPLY HIS KNOWLEDGE OF THE ADDITION PROCESS TO DETERMINING THE CORRECTNESS OF COMPLETED GIVEN PROBLEMS.

Directions: Below is part of an account from a check book. Determine whether or not it has been added correctly.

$57.63
394.82
647.31
29.07
49.70
$1028.33

The correct answer is:

a. $1028.33
b. $1028.53
c. $1078.33
d. $1178.53
e. $1128.53
The correct answer is:

a. $8958.97
b. $9958.97
c. $8947.87
d. $8857.97
e. $9948.97

THE STUDENT WILL DEMONSTRATE UNDERSTANDING THAT YOU CANNOT CARRY A NUMERAL AS LARGE AS THE NUMBER OF ADDENDS BY SELECTING A STATEMENT THAT REFLECTS THIS RULE.

Directions: Circle the letter in front of the numeral which correctly completes the sentence.

Given two addends the greatest number that could be carried to hundreds column is

a. 0
b. 1
c. 2
d. 3

Given four addends the greatest number that could be carried to tens column is

a. 1
b. 2
c. 3
d. 4
Given five addends the greatest number that could be carried to thousands column is

- a. 2
- b. 3
- c. 4
- d. 5

Given four addends the greatest number that could be carried to hundreds column is

- a. 2
- b. 3
- c. 4
- d. 5

Given three addends the greatest number that could be carried to millions column is

- a. 2
- b. 3
- c. 4
- d. 5

Given five addends the greatest number that could be carried to tens column is

- a. 2
- b. 3
- c. 4
- d. 5

The student will apply his knowledge of the "Put In, Take Out" game to add negative numbers.

Directions: Given: A bag containing an unknown number of bottle caps and many more caps lying loose on a table next to the bag. Solve the following problems to find if you have more or less in the bag than when you started.
put in 5, take out 3

*a. +2
 b. -2
 c. 0
 d. +5

put in 3, take out 1

 a. +3
*b. +2
 c. 0
 d. -2

put in 4, take out 5

 a. +1
 b. 0
 c. +9
*d. -1

put in 6, take out 6

 a. +12
*b. 0
 c. -12
 d. +1

put in 3, take out 7: +3 + -7 =

 a. +4
 b. 0
*c. -4
 d. +3

put in 5, take out 4: +5 + -4 =

 a. +5
 b. 0
 c. -4
*d. +1
\[+6 + -9 = \]

- a. \(-3 \)
- b. \(6 \)
- c. \(0 \)
- d. \(-9 \)

\[+6 + -5 + -3 = \]

- a. \(+1 \)
- b. \(-2 \)
- c. \(+4 \)
- d. \(0 \)

\[+3 + -7 + +1 + -2 = \]

- a. \(-5 \)
- b. \(-4 \)
- c. \(-3 \)
- d. \(0 \)

\[+5 + -4 + +3 + -4 = \]

- a. \(+1 \)
- b. \(-4 \)
- c. \(-1 \)
- d. \(0 \)

\[-3 + -4 + -2 + -2 = \]

- a. \(+1 \)
- b. \(-1 \)
- c. \(0 \)
- d. \(-1 \)

Source: Dr. A. Hart.
WHOLE NUMBER SUBTRACTION
THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF MULTIPLE DIGIT NUMBERS BY SOLVING SUBTRACTION PROBLEMS AND EQUATIONS INVOLVING MULTIPLE DIGIT NUMBERS.

In order to solve for n in the equation n + 16 = 40, you

a. add
b. subtract
c. divide
d. multiply

If you know the sum and one addend you _______ to find the other addend.

a. add
b. subtract
c. multiply
d. divide

Solving a subtraction problem does NOT involve

a. multiple addends
b. differences
* c. factors
d. sums

Solve for the difference: 710

a. 609
b. 519
c. 629
d. 509

Find the difference: 128

*a. 56
b. 200
c. 190
d. 50
e. 66
619
The difference for: \(-342\) is:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>961</td>
</tr>
<tr>
<td>b.</td>
<td>375</td>
</tr>
<tr>
<td>c.</td>
<td>951</td>
</tr>
<tr>
<td>d.</td>
<td>277</td>
</tr>
<tr>
<td>e.</td>
<td>267</td>
</tr>
</tbody>
</table>

813
\(-242\) is equal to:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>571</td>
</tr>
<tr>
<td>b.</td>
<td>1155</td>
</tr>
<tr>
<td>c.</td>
<td>1265</td>
</tr>
<tr>
<td>d.</td>
<td>471</td>
</tr>
<tr>
<td>e.</td>
<td>351</td>
</tr>
</tbody>
</table>

6113
The difference for \(-965\) is:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>7098</td>
</tr>
<tr>
<td>b.</td>
<td>6998</td>
</tr>
<tr>
<td>c.</td>
<td>5238</td>
</tr>
<tr>
<td>d.</td>
<td>5228</td>
</tr>
</tbody>
</table>

1610
Solve for the difference in \(-905\)

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>2515</td>
</tr>
<tr>
<td>b.</td>
<td>708</td>
</tr>
<tr>
<td>c.</td>
<td>1605</td>
</tr>
<tr>
<td>d.</td>
<td>605</td>
</tr>
</tbody>
</table>

7614
\(-836\) equals:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>7440</td>
</tr>
<tr>
<td>b.</td>
<td>6878</td>
</tr>
<tr>
<td>c.</td>
<td>6778</td>
</tr>
<tr>
<td>d.</td>
<td>7888</td>
</tr>
</tbody>
</table>
The difference for 1006 is:

a. 1493
b. 1503
c. 610
d. 509
e. 513

The answer to 9274 is:

* a. 8882
b. 9666
c. 8982
d. 8676

If 653 - 278 = _, then _ =

* a. 375
b. 931
c. 385
d. 821
e. 485

If 967 = 78 = _, then _ =

a. 1045
b. 999
c. 889
* c. 879
d. 879

If 823 - 59 = _, then _ =

a. 882
* b. 764
c. 774
d. 762
e. 862
If $7013 - 967$, then 7046.

If $12.93 - 3.04 = 9.89$, then 13.05.

Subtract 14.69 from 94.25

$70.13 - 9.25$ equals:

$96.78 - 2.62$ equals:
$9000 - 65 = \triangle \triangle \triangle \triangle$

- a. 8935
- b. 9065
- c. 8945
- d. 9045

$\triangle = 6010 - 671 \triangle \triangle$

- a. 5949
- b. 6681
- c. 5349
- d. 5339

If $\triangle = 2589 - 198$, then $\triangle =

- a. 2391
- b. 2787
- c. 2491
- d. 2397

If $5067 - 268 = \triangle$, then $\triangle =

- a. 4899
- b. 5335
- c. 4799
- d. 4809

$47357 - 19266$ is:

- a. 28091
- b. 38191
- c. 28191
- d. 27091
- e. 37091
37622
- 393 equals:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>38915</td>
<td>b</td>
<td>37229</td>
</tr>
<tr>
<td>c</td>
<td>37339</td>
<td>d</td>
<td>38015</td>
</tr>
</tbody>
</table>

gives:

50091
- 3487 equals:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>46614</td>
<td>b</td>
<td>47614</td>
</tr>
<tr>
<td>c</td>
<td>53578</td>
<td>d</td>
<td>46604</td>
</tr>
<tr>
<td>e</td>
<td>47604</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

gives:

730064
- 5072 equals:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>735143</td>
<td>b</td>
<td>724985</td>
</tr>
<tr>
<td>c</td>
<td>734995</td>
<td>d</td>
<td>735133</td>
</tr>
<tr>
<td>e</td>
<td>725085</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

gives:

900064
- 395 equals:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>899669</td>
<td>b</td>
<td>900459</td>
</tr>
<tr>
<td>c</td>
<td>900359</td>
<td>d</td>
<td>890779</td>
</tr>
<tr>
<td>e</td>
<td>899679</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

gives:

603942
- 10864 equals:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>613806</td>
<td>b</td>
<td>592988</td>
</tr>
<tr>
<td>c</td>
<td>593078</td>
<td>d</td>
<td>593178</td>
</tr>
</tbody>
</table>
The difference for 105660 - 99052 is:

- a. 6608
- b. 16608
- c. 6618
- d. 204712
- e. 194712

5,975 from 160,033 is:

- a. 155058
- b. 165168
- c. 166008
- d. 154058

If 9673 - 7456 = □□□□, then □□□□ =

- a. 2227
- b. 2239
- c. 2217
- d. 2229

If □□□□ = 5629 - 3043, then □□□□ =

- a. 2566
- b. 2586
- c. 2686
- d. 2666

If □□□□ = 6502 - 1795, then □□□□ =

- a. 4707
- b. 5817
- c. 7297
- d. 4817

If 3003 - 1905 = □□□□, then □□□□ =

- a. 2098
- b. 4908
- c. 1108
- d. 1098
If $7049 - 1209 = \square$, then $\square = a. 8258$
b. 6830
c. 5840
d. 6840
e. 8248

If $8096 - 4307 = \square$, then $\square = a. 12303$
b. 3789
c. 4781
d. 12403
e. 3799

If $4205 - 1092 = \square$, then $\square = a. 3113$
b. 3293
c. 3213
d. 3193

If $7007 - 1070 = \square$, then $\square = a. 6937$
b. 8077
c. 5937
d. 8137

e. 8847

If $396 + \square = 500$, then $\square = a. 896$
b. 296
c. 104
d. 214
If $J + 257 = 296$, then $\underline{\hspace{2cm}} = $

a. 553
b. 61
c. 39
d. 43
e. 453

If $532 + \underline{\hspace{2cm}} = 703$, then $\underline{\hspace{2cm}} = $

a. 1235
b. 275
c. 171
d. 231
e. 1231

If $\underline{\hspace{2cm}} + 406 = 629$, then $\underline{\hspace{2cm}} = $

a. 1023
b. 223
c. 235
d. 1035

If $5.28 + \underline{\hspace{2cm}} = 13.45$, then $\underline{\hspace{2cm}} = $

a. 817
b. 1873
c. 8.17
d. 18.73

e. 7.25

If $\underline{\hspace{2cm}} + $17.15 = 24.30, then $\underline{\hspace{2cm}} = $

* a. 7.15
b. 715
c. 715
d. 7.25
e. 725
If $6321 + _ = 7099$, then $_ = \:\\n\nIf $_ + 136 = 8105$, then $_ = \:\\n\nIf $_ + 743 = 1069$, then $_ = \:\\n\nIf $9826 + _ = 17602$, then $_ = \:\\n\nIf $_ + 36 = (571 - 403)$, then $_ = \:\\n
If \(24 + \boxed{} = (178 - 64)\), then \(\boxed{} = \)

- a. 90
- b. 100
- c. 40
- d. 80

\((75 - 16) + \boxed{} = 300\)

- a. 61
- b. 359
- c. 59
- d. 241

\(\boxed{} + (65 - 18) = 800\)

- a. 753
- b. 847
- c. 883
- d. 747

\(\boxed{} + 76 = (96 - 3)\)

- a. 110
- b. 17
- c. 100
- d. 27
- e. 7

\((681 - 392) + \boxed{} = 295\)

- a. 584
- b. 16
- c. 474
- d. 6
- e. 289
\[
\begin{align*}
\phantom{\text{ answers: }} &+ (1043 - 867) = 475 \\
\text{a.} & 299 \\
\text{b.} & 651 \\
\text{c.} & 300 \\
\text{d.} & 176
\end{align*}
\]

\[
\begin{align*}
5642 + & = (9550 - 3550) \\
\text{a.} & 600 \\
\text{b.} & 11642 \\
\text{c.} & 358 \\
\text{d.} & 908
\end{align*}
\]

\[
\begin{align*}
1357 + & = (4620 - 974) \\
\text{a.} & 2289 \\
\text{b.} & 3646 \\
\text{c.} & 5003 \\
\text{d.} & 1380
\end{align*}
\]

\[
\begin{align*}
(8061 - 7143) & = ÷ 759 \\
\text{a.} & 159 \\
\text{b.} & 918 \\
\text{c.} & 1677 \\
\text{d.} & 269
\end{align*}
\]

\[
\begin{align*}
\frac{176}{27} & = \\
\text{a.} & 193 \\
\text{b.} & 149 \\
\text{c.} & 203 \\
\text{d.} & 159
\end{align*}
\]
\[
\begin{array}{c}
\begin{array}{c}
3 & 8 & 7 \\
\hline
1 & 1 & 9 \\
\end{array}
\end{array}
\]
equals:

\begin{itemize}
\item[a.] 268
\item[b.] 506
\item[c.] 496
\item[d.] 278
\end{itemize}

\[
\begin{array}{c}
\begin{array}{c}
8 & 5 & 6 \\
\hline
3 & 6 & 5 \\
\end{array}
\end{array}
\]
equals:

\begin{itemize}
\item[a.] 1211
\item[b.] 511
\item[c.] 1121
\item[d.] 491
\end{itemize}

\[
\begin{array}{c}
\begin{array}{c}
7 & 0 & 3 \\
\hline
6 & 7 \\
\end{array}
\end{array}
\]
equals:

\begin{itemize}
\item[a.] 746
\item[b.] 770
\item[c.] 636
\item[d.] 646
\end{itemize}

\[
\begin{array}{c}
\begin{array}{c}
9 & 2 & 6 \\
\hline
6 & 7 & 9 \\
\end{array}
\end{array}
\]
equals:

\begin{itemize}
\item[a.] 1595
\item[b.] 247
\item[c.] 1605
\item[d.] 357
\end{itemize}

\[
\begin{array}{c}
\begin{array}{c}
5 & 0 & 7 & 0 \\
\hline
1 & 9 & 7 & 1 \\
\end{array}
\end{array}
\]
equals:

\begin{itemize}
\item[a.] 3099
\item[b.] 7041
\item[c.] 4109
\item[d.] 3199
\end{itemize}
THE STUDENT CAN DEMONSTRATE KNOWLEDGE OF GENERAL OPERATIONS IN SOLVING SUBTRACTION PROBLEMS.

If you substitute 1 for the unknown, which of these equations is NOT true?

a. \(n + n = 2\)

b. \(n + \frac{1}{2} = 2 - n\)

c. \(2 - n = n\)

d. \(n = (1 + 1) - n\)

\#e. \(n = n - 2\)

\((36 - 22) + \boxed{} = 195\)

\boxed{} does NOT equal:

a. \([(10 \times 10) + (9 \times 9)]\)

b. \(9200 - 19)\)

\#c. \([9 \times (10 \times 10) + 1]\)

d. \([(90 \times 2) + 1]\)

e. \((10^2 + 9^2)]\)
\[\boxed{_ _ _} + (782 - 93) = 946 \]

\[\boxed{_ _ _} \text{ does not equal:} \]

a. \((10^2 \times 2) + (2 \times 5^2) + 7\)
b. \((50 \times 40) + 50 + 7\)
c. \(300 - [(6 \times 7) + 1]\)
d. \((10 \times 10 \times 2) + (5 \times 5 \times 2) - 7\)
e. \((5 \times 50) + (2 \times 3) + 1\)

One addend on the cash register receipt is missing:

\[
\begin{align*}
&\$3.25 \\
&16.08 \\
&100.57 \\
&???.?? \\
&\$135.98
\end{align*}
\]

The addend is:

a. $3.25
b. 16.08
c. 100.57
d. 35.41
e. 19.33

Find the missing addend on the sales receipt.

\[
\begin{align*}
&\$65.22 \\
&4.75 \\
&73.80 \\
&206.39 \\
&???.?? \\
&\$369.95
\end{align*}
\]

a. $20.00
b. 18.81
c. 19.79
d. 21.16
The missing item is:

- a. $35.18
- b. 34.88
- c. $43.08
- d. $40.28

The sale missing is:

- a. $48.03
- b. $57.08
- c. $58.01
- d. $47.93

THE STUDENT WILL DEMONSTRATE HIS ABILITY TO CHANGE MIXED NUMERALS TO A DIFFERENT FORM IN ORDER TO COMPLETE SUBTRACTION BY SELECTING THE MISSING NUMBER.

Directions: Choose the number that makes the numerator correct.

9\(\frac{1}{2}\) = 9 5/10 = 8 n/10

- a. 6
- b. 15
- c. 13
\[\frac{74}{12} = \frac{7 \cdot 3}{12} = \frac{6}{12} \]
\[a. \ 4 \]
\[b. \ 10 \]
\[*c. \ 15 \]

\[3 \cdot \frac{1}{3} = 3 \cdot \frac{3}{9} = \frac{2}{9} \]
\[*a. \ 12 \]
\[b. \ 6 \]
\[c. \ 5 \]

\[5 = 5 \cdot \frac{0}{8} = \frac{4}{8} \]
\[a. \ 0 \]
\[b. \ 5 \]
\[*c. \ 8 \]

\[8 \cdot \frac{5}{6} = \frac{8 \cdot 15}{18} = \frac{7}{18} \]
\[a. \ 16 \]
\[b. \ 30 \]
\[*c. \ 33 \]

\[1 = 1 \cdot 0 = \frac{n}{10} \]
\[*a. \ 10 \]
\[b. \ 1 \]
\[c. \ 0 \]

\[4 \cdot \frac{3}{8} = \frac{3}{16} \]
\[a. \ 11 \]
\[*b. \ 22 \]
\[c. \ 34 \]
THE STUDENT WILL DEMONSTRATE HIS ABILITY TO WORK RATIONAL NUMBER SUBTRACTION PROBLEMS WHICH REQUIRE BORROWING BY CHOOSING THE CORRECT ANSWER.

Directions: Choose the correct answer.

8 1/3 - 2 5/6 = n, n =

 a. 6 4/3
* b. 5 1/3
 c. 6 3/6

9 2/3 - 6 5/6 = n, n =

 *a. 2 5/6
 b. 3 1/6
 c. 3 3/6

Source: Addison-Wesley Bk. 5 - p. 262.
\[6 \frac{7}{9} - 5 = n, \quad n = \]
\begin{itemize}
 \item[a.] \(\frac{10}{9} \)
 \item[b.] 1
 \item[c.] \(\frac{17}{9} \)
\end{itemize}

\[8 \frac{5}{6} - 7 \frac{7}{8} = n, \quad n = \]
\begin{itemize}
 \item[a.] \(\frac{12}{2} \)
 \item[b.] \(\frac{23}{24} \)
 \item[c.] \(\frac{35}{48} \)
\end{itemize}

\[19 \frac{2}{3} - 5 \frac{11}{12} = n, \quad n = \]
\begin{itemize}
 \item[a.] \(\frac{13}{3/4} \)
 \item[b.] \(\frac{14}{9/15} \)
 \item[c.] \(\frac{13}{9/11} \)
\end{itemize}

\[36 \frac{1}{3} - 29 \frac{17}{18} = n, \quad n = \]
\begin{itemize}
 \item[a.] \(\frac{7}{16/15} \)
 \item[b.] \(\frac{67/18}{} \)
 \item[c.] \(\frac{616/18}{} \)
\end{itemize}

\[83 - 42 \frac{7}{8} = n, \quad n = \]
\begin{itemize}
 \item[a.] \(\frac{40}{1/8} \)
 \item[b.] \(\frac{41/7/8}{} \)
 \item[c.] \(\frac{40/7/8}{} \)
\end{itemize}

\[61 \frac{4}{5} - 39 \frac{9}{10} = n, \quad n = \]
\begin{itemize}
 \item[a.] \(22\frac{1}{2} \)
 \item[b.] \(22 \frac{1}{10} \)
 \item[c.] \(21 \frac{9}{10} \)
\end{itemize}
86 7/15 - 58 9/10 = n, n =

*a. 27 17/30
b. 28 2/15
c. 28

93 - 39 9/10 = n, n =

a. 52 1/10
b. 52 9/10
c. 53 1/10

Source: Addison-Wesley Bk. 5. p. 262.
THE STUDENT CAN APPLY THE PROPERTIES OF ADDITION AND SUBTRACTION BY SOLVING GIVEN PROBLEMS.

There is one false statement. It is

*a. 3 - 2 = 2 - 3
b. 3 + (2 + 1) = (3 + 1) + 2
c. (4 + 5) + 2 = (4 + 5) + 2
d. 14 + 2 = 2 + 14
e. 15 - 7 = 8 + 0

Commutative pertains to order. Which of the following equations shows a true commutative statement?

*a. 6 - 3 = 3 - 6
b. 63 ÷ 7 = 7 x 9
c. (3 + 6) + 2 = (2 + 6) + 3
d. 6 + 3 = 3 + 6

The zero principle of addition is shown best when

*a. the answer is zero
b. one addend is unknown
c. the sum equals other addend
d. one addend is zero

The number line that proves the commutative property of addition is:

*a.
*b.
*c.
*d.
The associative property

a. commutes addends
b. shows order of addends
c. has several addends
d. regroups addends

One equation shows the associative property of $9 + 9 = 8 + 10$

*a. $(8+1) + 9 = 8 + (1 + 9)$
b. $9 + 3 + 6 = 8 + 9 + 1$
c. $(3\times3) + (3\times3) = 9 + (3 \times 3)$
d. $(3+6) + 9 = (3+5) + 10$

Match the equations in Column I with the equation in Col. II that best show the associative properties of the first equations.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. $6+5 = 7+4$</td>
<td>a. $7 + (3+1) = (7 + 3) + 1$</td>
</tr>
<tr>
<td>d. $7 + 4 = 8 + 3$</td>
<td>b. $7 + (4+1) = (7 + 4) + 1$</td>
</tr>
<tr>
<td>a. $7+4 = 10 + 1$</td>
<td>c. $6 + (1+4) = (6 + 1) + 4$</td>
</tr>
<tr>
<td></td>
<td>d. $7 + (1+3) = (7 + 1) + 3$</td>
</tr>
</tbody>
</table>

The student will demonstrate his comprehension of equations by choosing the correct equation for solving a given word problem.

Directions: Circle the letter of the correct equation needed to solve each word problem.

You gave away 9 apples and have 6 left. How many apples did you have at the start?

a. $9 - 6 = 3$
*b. $6 + 9 = 15$
c. $6 + 3 = 9$
Jane and Sue each had 10 cents, Mary had 9 cents. How much money did the girls have all together?

*a. 10 + 9 + 10 = 29
b. 20 - 9 = 11
c. 9 + 10 = 19

John has 13 cents. He wants to buy a 25¢ toy. How much more money does he need?

a. 12 + 13 = 25
b. 25 - 12 = 13
*c. 25 - 13 = 12

Karen has 20 crayons, Joan has 12 crayons, Mary has 10 crayons. How many more crayons have Karen and Mary than Joan?

*a. 20 + 10 - 12 = 18
b. 20 + 12 - 10 = 22
c. 10 + 12 - 20 = 2

Terry broke 6 of her 12 crayons, Jean broke 3 of her 9 crayons, Beth broke 4 of 8 crayons. How many crayons were broken?

a. 12 + 9 + 8 = 29
b. 9 + 4 + 6 = 19
*c. 6 + 3 + 4 = 13

Sue has 19 pieces of candy if she gives a piece to each of her 4 girl friends and 5 boys. How many pieces will she have left?

*a. 19 - 10 = 9
b. 19 - 5 = 14
*c. 19 + 5 + 4 = 28
Laurie has 30 cents if she buys a 5 cent eraser, a 10 cent pad of paper. How much change should she receive?

a. $5 + 10 + 30 = 45$

b. $30 - 10 = 20$

*c. $30 - 15 = 15$

Jane bought 12 red apples, 6 oranges, 3 pears, 6 green apples and 4 plums. How many apples did Jane buy?

*a. $12 + 6 = 18$

b. $6 + 3 + 4 = 13$

c. $12 + 6 + 3 + 4 = 25$

John's dad drove 125 miles on Tuesday, 130 miles on Wednesday and 150 miles on Thursday. How many more miles did he drive on Thursday than he drove on Tuesday?

a. $125 + 130 - 150 = 105$

*b. $150 - 125 = 25$

c. $150 - 130 = 20$

Kathy went shopping and bought 2 skirts for 10 dollars, a pair of shoes for 15 dollars, 2 dozen eggs for 1 dollar 30 cents and a dozen oranges for 65 cents. How much did she spend on clothing?

a. $1.30 + 65 = 1.95$

b. $25.00 + 1.95 = 26.95$

*c. $10.00 + 15.00 = 25.00$

Cindy went to the store and bought 2 dozen eggs at 60 cents a dozen, 3 lbs. of coffee at 79 cents a pound. How much was her bill?

a. $(2 + 60) + (3 + 79) = 81.44$

*b. $(2 x 60) + (3 x 79) = 83.97$

c. $60 + 79 = 139$

SIMPLIFICATION OF FRACTIONS
THE STUDENT WILL DEMONSTRATE KNOWLEDGE OF LOWEST TERM FRACTIONS BY SELECTING THOSE FRACTIONS IN LOWEST TERMS.

Directions: If the fraction is in lowest terms cross out the L; if the fraction is not in lowest terms cross out the H.

L H 5/15 1114
L H 2/3 1115
L H 17/23 1116
L H 4/7 1117
L H 14/7 1118
L H 21/39 1119
L H 3/2 1120
L H 1/16 1121
L H 7/49 1122
L H 2/2 1123

Source: Addison-Wesley, Bk. 5, p. 207.

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF REDUCING FRACTIONS TO LOWEST TERMS BY SELECTING THE GREATEST COMMON FACTOR OF THE NUMERATOR AND DENOMINATOR.
Directions: Choose the greatest common factor of the numerator and the denominator for each fraction.

12/18
 a. 2
 b. 6
 c. 4
 d. 3

15/45
 a. 15
 b. 3
 c. 5
 d. 9

50/100
 a. 2
 b. 5
 c. 25
 d. 50

8/12
 a. 1
 b. 2
 c. 4
 d. 8

1/9
 a. 0
 b. 1
 c. 3
 d. 9
THE STUDENT WILL DEMONSTRATE KNOWLEDGE OF FRACTIONS IN LOWEST TERMS BY SELECTING THE LOWEST TERM FRACTION FOR A GIVEN FRACTION.

Directions: Select the lowest termed fraction for the fraction given.

6/21

a. 3/7
b. 2/11
*c. 2/7
d. 6/21

16/40

a. 4/10
b. 8/20
*c. 2/5
d. 16/40

Source: Addison-Wesley, Bk. 5, p. 208.
42/60
a. 21/30
*b. 7/10
c. 6/9
d. 42/60

28/45
a. 4/9
b. 7/11
c. 14/22
*d. 28/45

42/72
a. 21/36
*b. 7/12
c. 4/7
d. 42/72

90/120
a. 9/12
*b. 3/4
c. 45/60
d. 90/120

36/54
a. 6/9
b. 3/4
*c. 2/3
d. 36/54
GIVEN A LIST OF FRACTIONS, THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF LOWEST TERM FRACTIONS BY SELECTING THE ONE WHICH IS IN LOWEST TERMS.

Directions: Given a list of fractions, if a fraction is in lowest terms circle L; if it is not circle N.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>N</td>
<td>4/9</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>2/4</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>4/6</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>5/7</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>6/12</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>11/13</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>12/18</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>16/28</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>9/26</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>17/21</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>6/9</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>24/33</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>15/16</td>
<td></td>
</tr>
</tbody>
</table>

Source: Addison-Wesley, Bk. 5, pp. 210, 212.
THE STUDENT WILL APPLY HIS KNOWLEDGE OF SIMPLIFYING A FRACTION BEFORE MULTIPLYING BY CORRECTLY IDENTIFYING THE NUMBER BY WHICH THE NUMERATOR AND DENOMINATOR HAVE BEEN DIVIDED.

Study the following fractional equation: \(\frac{1}{3/4} \times \frac{5/6}{N} \). The numerator and denominator have been divided by

\[
\begin{align*}
\text{a.} & \quad 2 \\
\text{b.} & \quad 6 \\
\text{*c.} & \quad 3
\end{align*}
\]

\(\frac{1}{4/1} \times \frac{7/9}{N} \). In this fraction the numerator and denominator have been divided by

\[
\begin{align*}
\text{a.} & \quad 1 \\
\text{*b.} & \quad 7 \\
\text{c.} & \quad 3
\end{align*}
\]

\(\frac{3/1}{1} \times \frac{12/13}{N} \). In this fraction the numerator and denominator have been divided by

\[
\begin{align*}
\text{a.} & \quad 3 \\
\text{b.} & \quad 1 \\
\text{*c.} & \quad 4
\end{align*}
\]

\(\frac{1}{2/3} \times \frac{5/7}{N} \). In this fraction the numerator and denominator have been divided by

\[
\begin{align*}
\text{*a.} & \quad 3 \\
\text{b.} & \quad 1 \\
\text{c.} & \quad 9
\end{align*}
\]
\[\frac{4}{11} \times \frac{5}{3} \]. In this fraction the numerator and denominator have been divided by

a. 4
b. 2
c. 3

\[\frac{1}{4} \times \frac{1}{7} \]. In this fraction the numerator and denominator have been divided by

a. 3 and 5
b. 4 and 1
c. 3 and 1

d. 3 and 2

\[\frac{1}{3} \times \frac{1}{2} \]. In this fraction the numerator and denominator have been divided by

a. 3 and 2
b. 5 and 2
c. 5 and 3

d. 6

\[\frac{3}{2} \times \frac{7}{2} \]. In this fraction the numerator and denominator have been divided by

a. 6
b. 2
c. 4

d. 3

e. 2

c. 6

\[\frac{8}{11} \times \frac{5}{3} \]. In this fraction the numerator and denominator have been divided by

a. 3
b. 2
c. 6
\[
\frac{5}{7/8} \times \frac{10/15}{4}
\]
In this fraction, the numerator and denominator have been divided by

\begin{align*}
\text{a. } & 4 \\
\text{b. } & 5 \\
\text{c. } & 2
\end{align*}

Source: Merrill, Discovering Math 5, p. 312

The student will apply his knowledge of simplifying a fraction before multiplying by correctly identifying the product of two simplified fractions.

Study the simplification of the following fraction. Circle the correct product.

\[
\frac{1}{4/3} \times \frac{1}{2/6} = N
\]

\begin{align*}
\text{a. } & 1/2 \\
\text{b. } & 1/3 \\
\text{c. } & 2/4
\end{align*}

Study the simplification of the following fraction. Circle the correct product.

\[
\frac{1}{5/6} \times \frac{5}{10/13} = N
\]

\begin{align*}
\text{a. } & 1/3 \\
\text{b. } & 15/18 \\
\text{c. } & 5/18
\end{align*}

Study the simplification of the following fraction. Circle the correct product.

\[
\frac{2}{1/13} \times \frac{3}{2/13} = N
\]

\begin{align*}
\text{a. } & 6/13 \\
\text{b. } & 42/13 \\
\text{c. } & 3/13
\end{align*}
Study the simplification of the following fraction. Circle the correct product.

\[
\frac{2}{5/6} \times \frac{2}{1/5} = N
\]

a. 2/15
b. 4/8
*c. 4/15

Study the simplification of the following fraction. Circle the correct product.

\[
\frac{4}{2/3} \times 12 = N
\]

a. 12/1
*b. 8
c. 2/1

c. 2/1

Study the simplification of the following fraction. Circle the correct product.

\[
\frac{2}{1/6} \times \frac{1/6}{1} = N
\]

*a. 2
b. 2/4
c. 1/2

c. 1/2

Study the simplification of the following fraction. Circle the correct product.

\[
\frac{2}{1/6} \times \frac{2/5}{1} = N
\]

a. 2/15
b. 6/5
*c. 2/5
Study the simplification of the following fraction. Circle the correct product.

\[
\frac{3}{5} \times \frac{1}{10} = N
\]

* a. \(\frac{3}{5}\)
 b. \(\frac{3}{50}\)
 c. \(\frac{7}{5}\)

Study the simplification of the following fraction. Circle the correct product.

\[
\frac{1}{2} \times \frac{2}{5} \times \frac{2}{7} = N
\]

a. \(\frac{10}{28}\)
 b. \(\frac{5}{28}\)
 * c. \(\frac{5}{14}\)

Study the simplification of the following fraction. Circle the correct product.

\[
\frac{1}{2} \times \frac{1}{7} \times \frac{1}{3} = N
\]

* a. \(\frac{1}{6}\)
 b. \(\frac{1}{5}\)
 c. \(\frac{1}{9}\)

Given a group of unlike denominators the student will demonstrate his understanding of the least common denominator by selecting it from a list of alternatives.

Directions: Choose the least common denominator for each group of denominators.
\[
\frac{n}{3}, \frac{n}{4}, \frac{n}{6} \\
\begin{array}{lll}
\text{a.} & 10 \\
\text{b.} & 24 \\
\text{c.} & 18 \\
\text{d.} & 12 \\
\end{array}
\]

\[
\frac{n}{5}, \frac{n}{2}, \frac{n}{4} \\
\begin{array}{lll}
\text{a.} & 10 \\
\text{b.} & 8 \\
\text{c.} & 20 \\
\text{d.} & 12 \\
\end{array}
\]

\[
\frac{n}{2}, \frac{n}{4}, \frac{n}{6} \\
\begin{array}{lll}
\text{a.} & 48 \\
\text{b.} & 12 \\
\text{c.} & 10 \\
\text{d.} & 24 \\
\end{array}
\]

\[
\frac{n}{5}, \frac{n}{2}, \frac{n}{7} \\
\begin{array}{lll}
\text{a.} & 14 \\
\text{b.} & 35 \\
\text{c.} & 70 \\
\text{d.} & 140 \\
\end{array}
\]

\[
\frac{n}{18}, \frac{n}{12}, \frac{n}{9} \\
\begin{array}{lll}
\text{a.} & 24 \\
\text{b.} & 18 \\
\text{c.} & 72 \\
\text{d.} & 36 \\
\end{array}
\]
\[\frac{3}{6} \quad \frac{6}{15} \]

\[
\begin{array}{l}
\text{a.} & 20 \\
\text{b.} & 45 \\
\text{c.} & 60 \\
\text{d.} & 30 \\
\end{array}
\]

\[\frac{7}{9} \quad \frac{12}{42} \]

\[
\begin{array}{l}
\text{a.} & 378 \\
\text{b.} & 126 \\
\text{c.} & 294 \\
\text{d.} & 2,646 \\
\end{array}
\]
ADDITION OF FRACTIONS
THE STUDENT KNOWS THAT CERTAIN FRACTIONS ADDED TOGETHER FORM A WHOLE BY INDICATING WHICH SETS OF FRACTIONS FORM A WHOLE.

\[\frac{1}{4} + \frac{1}{4} = \frac{2}{4} \]

\[\frac{1}{2} + \frac{2}{4} = \frac{3}{4} \]

\[\frac{2}{4} + \frac{2}{4} = 1 \]

If \(\frac{3}{4} + \frac{1}{4} = a \), then \(a \) is

* a. 1
* b. 4
* c. 8
* d. 0

If \(\frac{2}{3} + b = \frac{3}{3} = c \), then \(b \) and \(c \) are

* a. \(b = \frac{1}{3}, c = 1 \)
* b. \(b = \frac{2}{3}, c = 1 \)
* c. \(b = \frac{3}{3}, c = 1 \)

The fraction that names a whole is

* a. \(\frac{1}{2} \)
* b. \(\frac{3}{2} \)
* c. \(\frac{4}{2} \)
* d. \(\frac{3}{3} \)
THE STUDENT WILL APPLY HIS KNOWLEDGE OF COMMON DENOMINATORS BY ADDING FRACTIONS WITH UNLIKE DENOMINATORS.

Directions: Find the sums of the following addition problems.

1/2 + 2/6 =

a. 3/8
b. 3/12
*c. 5/6
d. 3/6

2/3 + 1/4 =

a. 3/12
*b. 11/12
c. 3/4
d. 2/4

2/5 + 2/4 =

a. 4/10
b. 4/20
c. 4/9
*d. 18/20

4/7 + 3/4 =

*a. 37/28
b. 12/28
c. 7/11
d. 7/28
7/18 + 2/9 =
 a. 14/162
 b. 9/36
 c. 14/36
 *d. 11/18

8/18 + 5/24 =
 a. 20/24
 b. 9/24
 *c. 17/24
 d. 32/24

The student will apply his knowledge of the addition and subtraction of mixed numerals by computing given equations which use these processes.

Directions: Compute the following equations and select the answer from the given list.

3 \(\frac{4}{9} + \frac{1}{6} + \frac{3}{2/3} = \)
 a. 7 13/18
 b. 7 17/18
 *c. 8 5/18
 d. 8 3/18

15 \(\frac{1}{4} - \frac{8}{2/3} = \)
 a. 7 7/12
 b. 7 1/12
 c. 6 5/12
 *d. 6 7/12
11 1/3 - 8 3/4 =

a. 2 7/12
b. 3 2/12
c. 2 5/12
d. 3 1/12

5 2/5 + 4 1/3 + 3 5/6 =

a. 13 17/30
b. 12 8/30
c. 12 29/30
d. 13 16/30

6 5/7 - 1 2/3 =

a. 5 3/7
b. 5 1/7
c. 4 1/7
d. 4 3/7

2 3/8 + 4 1/2 + 5 2/3 =

a. 11 6/24
b. 12 11/24
c. 11 11/24
d. 12 13/24

8 4/5 + 2 1/4 + 5 1/6 =

a. 15 6/60
b. 16 13/60
c. 15 6/60
d. 16 13/30
11 7/15 - 2 9/10

a. 9 7/30
b. 8 7/30
*c. 8 17/30
d. 9 17/30

2 1/3 - 4 5/6 =

*a. 19 5/6
b. 19 1/6
c. 20 5/6
d. 20 1/6

9 2/11 + 2 1/2 + 5 3/4 =

a. 16 17/44
b. 16 19/44
c. 17 17/44
*d. 17 19/44
ADDITION AND SUBTRACTION OF FRACTIONS
The student can demonstrate understanding of fractions by adding or subtracting fractions with common denominators.

Directions: Match the equation in Column II with the correct fraction in Column I.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>e 1 4/15</td>
<td>a. 2/15 + 9/15 = n</td>
</tr>
<tr>
<td>a 11/15</td>
<td>b. 5/15 + 2/15 = n</td>
</tr>
<tr>
<td>d 13/15</td>
<td>c. 14/15 + 6/15 = n</td>
</tr>
<tr>
<td>b 3/15</td>
<td>d. 3/15 + 10/15 = n</td>
</tr>
<tr>
<td></td>
<td>e. 9/15 + 10/15 = n</td>
</tr>
</tbody>
</table>

Directions: Choose the correct fraction in Column II to solve the equation in Column I.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>b 1 - 3/8 = n</td>
<td>a. 1 7/8</td>
</tr>
<tr>
<td>c 1 2/6 - 2/6 = n</td>
<td>b. 5/8</td>
</tr>
<tr>
<td>e 5/6 + 2/6 = n</td>
<td>c. 1</td>
</tr>
<tr>
<td>a 6/8 + 1 1/8 = n</td>
<td>d. 1 2/6</td>
</tr>
<tr>
<td></td>
<td>e. 1 1/6</td>
</tr>
<tr>
<td></td>
<td>f. 8/8</td>
</tr>
</tbody>
</table>

245 251
\[
\begin{align*}
1 \frac{5}{6} & + 2 \frac{2}{6} \\
& = \quad a. \quad 4 \frac{5}{6} \\
& \quad b. \quad 4 \frac{6}{6} \\
& \quad c. \quad 5 \frac{1}{6} \\
& \quad d. \quad 5 \frac{7}{6} \\
\end{align*}
\]

Subtract
\[
\begin{align*}
3 \frac{6}{11} & - 2 \frac{1}{11} \\
& = \quad a. \quad 5 \frac{7}{11} \\
& \quad b. \quad 1 \frac{7}{11} \\
& \quad c. \quad 5 \frac{5}{11} \\
& \quad d. \quad 1 \frac{5}{11} \\
\end{align*}
\]

Add
\[
\begin{align*}
16 \frac{2}{3} & + 5 \frac{1}{3} \\
& = \quad a. \quad 21 \frac{3}{6} \\
& \quad b. \quad 21 \frac{1}{3} \\
& \quad c. \quad 22 \frac{3}{3} \\
& \quad d. \quad 22 \\
\end{align*}
\]

Subtract
\[
\begin{align*}
43 \frac{1}{7} & - 40 \frac{6}{7} \\
& = \quad a. \quad 2 \frac{2}{7} \\
& \quad b. \quad 3 \frac{2}{7} \\
& \quad c. \quad 3 \frac{7}{7} \\
& \quad d. \quad 43 \frac{7}{7} \\
& \quad c. \quad \text{Not shown} \\
\end{align*}
\]
\[(3/5 + 4/5) - 2/5 = n\]

- a. 9/5
- b. 4/5
- c. 1
- d. 1 4/5

\[3/6 + 4/6 + 1/6 = n\]

- a. 7/6
- b. 1 1/6
- c. 1 2/3
- d. 1 1/3

Directions: An improper fraction in Column II is to be paired with its simplest form in Column I.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/4</td>
<td>a. 16/5</td>
</tr>
<tr>
<td>5 1/2</td>
<td>b. 23/8</td>
</tr>
<tr>
<td>3 1/5</td>
<td>c. 42/8</td>
</tr>
<tr>
<td>2.5/8</td>
<td>d. 18/4</td>
</tr>
<tr>
<td></td>
<td>e. 33/6</td>
</tr>
<tr>
<td></td>
<td>f. 15/2</td>
</tr>
</tbody>
</table>

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF FRACTIONS BY ADDING OR SUBTRACTING FRACTIONS WITH UNLIKE DENOMINATORS AND PUTTING THE ANSWERS INTO THE SIMPLEST FORM.

In order to add or subtract fractions the ________ must be

- a. numerator, same
- b. denominator, equivalent
- c. numerator, equivalent
- d. denominator, same
Directions: The fractions in Column I are the solutions for the equations in Column II. Select the correct letter and place it in front of the number of the solution.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. 9 1/2</td>
<td>a. 3 1/3 + 3 5/8</td>
</tr>
<tr>
<td>a. 6 23/24</td>
<td>b. 13 5/6 - 5 1/3</td>
</tr>
<tr>
<td>e. 4 3/8</td>
<td>c. 11 1/2 - 3 5/6</td>
</tr>
<tr>
<td>c. 7 2/3</td>
<td>d. 6 7/6 - 3 1/2</td>
</tr>
<tr>
<td></td>
<td>e. 2 1/4 + 2 1/8</td>
</tr>
</tbody>
</table>

Solve

2/3
1/6
3/8

| a. 6/24 | b. 6/17 | c. 1 5/24 | d. 1 6/24 |

Solve the equation

2/3 + 1/6 + 3/10 =

| a. 6/39 | b. 6/15 | c. 1 6/15 | d. 1 2/15 |

2 1/2
3 3/8
4 1/8

| a. 9 5/8 | b. 9 10/8 | c. 10 11/8 | d. 10 3/8 |
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE ADDITION AND SUBTRACTION OF FRACTIONS BY SOLVING EQUATIONS.

Directions: Select the correct response.

\[\frac{2}{3} + \frac{3}{3} = n, \quad n = \]

a. \(\frac{5}{6}\)
b. \(\frac{6}{9}\)
*c. \(\frac{5}{3}\)
d. \(\frac{6}{3}\)

\[\frac{7}{8} + \frac{2}{8} = n, \quad n = \]

a. \(\frac{14}{8}\)
*b. \(\frac{9}{8}\)
c. \(\frac{9}{16}\)
d. \(\frac{5}{8}\)

\[\frac{7}{4} - \frac{2}{4} = n, \quad n = \]

a. \(\frac{5}{0}\)
b. \(\frac{9}{4}\)
c. \(\frac{5}{8}\)
*d. \(\frac{5}{4}\)

\[\frac{9}{10} + \frac{1}{10} = n, \quad n = \]

*a. \(\frac{10}{10}\)
b. \(\frac{10}{20}\)
c. \(\frac{9}{10}\)
d. \(\frac{9}{20}\)
\[
\frac{7}{16} + \frac{11}{16} = n, \quad n = \]

- a. \(\frac{18}{16}\)
- b. \(\frac{18}{32}\)
- c. \(\frac{4}{16}\)
- d. \(\frac{4}{32}\)

\[
\frac{8}{4} - \frac{3}{4} = n, \quad n = \]

- a. \(\frac{11}{4}\)
- b. \(\frac{5}{4}\)
- c. \(\frac{5}{8}\)
- d. \(\frac{5}{0}\)

\[
\frac{18}{2} - \frac{1}{2} = n, \quad n = \]

- a. \(\frac{19}{4}\)
- b. \(\frac{17}{4}\)
- c. \(\frac{17}{0}\)
- d. \(\frac{17}{2}\)

\[
7 + \frac{3}{8} = n, \quad n = \]

- a. \(\frac{10}{8}\)
- b. \(\frac{10}{15}\)
- c. \(7 \frac{10}{8}\)
- d. \(7 \frac{3}{8}\)

\[
4\frac{2}{3} - 1\frac{1}{3} = n, \quad n = \]

- a. \(\frac{5}{3}\)
- b. \(4 \frac{1}{0}\)
- c. \(4 \frac{1}{3}\)
- d. \(1\frac{1}{3}\)
THE STUDENT WILL DEMONSTRATE HIS ABILITY TO ADD AND SUBTRACT FRACTIONS BY ANALYZING A VARIETY OF GIVEN PROBLEMS WHICH CONTAIN ERRORS TO FIND THE STEP AT WHICH THE INITIAL ERROR WAS MADE.

Directions: Each of the problems given below is incorrect. Analyze the problem to find the step at which the error first occurs.

a. Step 1
 \[\frac{3}{4} = \frac{9}{12} \]
 \[\frac{1}{2} = \frac{5}{12} \]

b. Step 2
 \[\frac{1}{10} = \frac{2}{10} \]
 \[\frac{8}{10} = \frac{4}{5} \]

c. Step 3
 \[\frac{14}{18} \]
 \[\frac{24}{18} \]

*5/5 + 1/5 = n, n =

a. 6/10
b. 6/5

*5/5 + 1/5 = 1

Source: Addison-Wesley, Bk. 5,, pp. 240-241.
a. Step 1
*b. Step 2
 \[\frac{5}{9} = \frac{20}{36} \]
 \[\frac{3}{4} = \frac{-9}{36} \]
 \[\frac{29}{36} = \frac{29}{36} \]
 \[\frac{29}{36} = \frac{29}{36} \]

c. Step 3
d. Step 4

a. Step 1
b. Step 2
 \[\frac{4}{5} = \frac{12}{15} \]
 \[\frac{-2}{3} = \frac{-10}{15} \]
 \[\frac{2}{15} = \frac{2}{15} \]
 \[\frac{1}{5} = \frac{1}{5} \]

c. Step 3
d. Step 4

*a. Step 1
b. Step 2
 \[\frac{3}{4} = \frac{21}{28} \]
 \[\frac{-3}{7} = \frac{-12}{28} \]
 \[\frac{10}{28} = \frac{10}{28} \]
 \[\frac{5}{14} = \frac{5}{14} \]

c. Step 3
d. Step 4

*a. Step 1
b. Step 2
 \[\frac{7}{10} = \frac{20}{30} \]
 \[\frac{-4}{15} = \frac{8}{30} \]
 \[\frac{12}{20} = \frac{12}{20} \]
 \[\frac{3}{5} = \frac{3}{5} \]

c. Step 3
d. Step 4

*a. Step 1
b. Step 2
 \[\frac{8}{9} = \frac{16}{18} \]
 \[\frac{-3}{6} = \frac{6}{18} \]
 \[\frac{10}{18} = \frac{10}{18} \]
 \[\frac{5}{9} = \frac{5}{9} \]

c. Step 3
d. Step 4

*a. Step 1
b. Step 2
 \[\frac{14}{16} = \frac{42}{48} \]
 \[\frac{-9}{12} = \frac{-36}{48} \]
 \[\frac{6}{48} = \frac{6}{48} \]
 \[\frac{2}{19} = \frac{2}{19} \]

c. Step 3
d. Step 4
ADDITION AND SUBTRACTION OF DECIMALS
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE ADDITION OF DECIMALS BY SELECTING THE CORRECT ANSWER TO GIVEN ADDITION PROBLEMS.

Directions: Choose the correct total.

.6 + .5 =
 a. .11
 *b. 1.1
 c. 11

.7 + .7 =
 *a. 1.4
 b. 14
 c. .14

.2 + .8 =
 a. .10
 *b. 1.0
 c. .010

3.7 + .8
 a. 45
 b. 4.5
 *c. 4.5

7.6 + 8.9 =
 a. 16.5
 b. 1.65
 *c. 16.5
.632 + .819 =

*a. 1.451
*b. 1.431
c. 145.1

7.28 + 6.95 =

*a. 14.23
*b. 14.23
*c. 142.3

98.4 + 48.9

*a. 147.3
*b. 147.3
*c. 147.3

4.58 + 7.6 =

*a. 12.18
*b. 12.18
*c. 11.64

Source: Addison-Wesley Bk. 5, p. 275, 276.

THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF SUBTRACTION OF DECIMALS BY SELECTING THE CORRECT ANSWER TO GIVEN SUBTRACTION PROBLEMS.

Directions: Solve the problems and select the correct answer.
\[
6.4 - 2.8 = \\
\begin{align*}
a & \approx 3.6 \\
*b & \approx 3.6 \\
c & \approx .36
\end{align*}
\]

\[
2.3 - .9 = \\
\begin{align*}
a & \approx .14 \\
b & \approx 1.4 \\
*c & \approx 1.4
\end{align*}
\]

\[
.92 - .65 = \\
\begin{align*}
a & \approx 2.7 \\
*b & \approx .27 \\
c & \approx 27
\end{align*}
\]

\[
.76 - .09 = \\
\begin{align*}
*a & \approx .67 \\
b & \approx 6.7 \\
c & \approx .067
\end{align*}
\]

\[
6.82 - .63 = \\
\begin{align*}
a & \approx .52 \\
*b & \approx 6.19 \\
c & \approx .619
\end{align*}
\]

\[
6.95 - 2.9 = \\
\begin{align*}
*a & \approx 4.05 \\
b & \approx 6.66 \\
c & \approx 4.5
\end{align*}
\]
\[0.832 - .57\]

\begin{align*}
a. & \quad .775 \\
*b. & \quad .262 \\
$c. & \quad 2.62 \\
\end{align*}

\[59 - .58\]

\begin{align*}
a. & \quad .01 \\
b. & \quad 58.58 \\
*c. & \quad 58.42 \\
\end{align*}

Source: Addison-Wesley, Bk. 5, p. 277.
MULTIPLICATION AND DIVISION
WHOLE NUMBER MULTIPLICATION
THE STUDENT WILL APPLY HIS KNOWLEDGE THAT MULTIPLICATION IS A SHORT CUT TO ADDITION WHEN ALL THE ADDENDS ARE ALIKE BY REPHRASING ADDITION PROBLEMS AS MULTIPLICATION EQUATIONS.

Which number sentence correctly expresses this addition -

\[4 + 4 + 4 + 4 = 16 \]?

a. \(8 \times 2 = 16 \)
*b. \(4 \times 4 = 16 \)
c. \(16 \times 1 = 16 \)

Examine the addition problem shown on the number line below. Which number sentence expresses the same problem?

*a. \(4 \times 6 = 24 \)
b. \(24 \times 1 = 24 \)
c. \(6 \times 4 = 24 \)

Which number sentence below correctly rephrases the addition problem - \(8 + 8 + 8 = 24 \)?

a. \(8 \times 3 = 24 \)
b. \((8 \times 2) + (8 \times 1) = 24 \)
*c. \(3 \times 8 = 24 \)

Which number sentence below correctly rephrases the addition problem \(5 + 5 + 5 + 5 + 5 = 30 \)?

*a. \(6 \times 5 = 30 \)
b. \(5 \times 6 = 30 \)
c. \((3 \times 5) + (3 \times 5) = 30 \)
Which number sentence below correctly rephrases the addition problem 3 + 3 + 3 = 9?

a. $3 \times 3 \times 1 = 9$

b. $(3 \times 2) + (3 \times 1) = 9$

* c. $3 \times 3 = 9$

Which equation below is represented by the number line?

*a. $7 \times 3 = 21$

b. $3 \times 7 = 21$

c. $21 \times 1 = 21$

Which equation below is represented by the number line?

a. $4 \times 7 = 28$

b. $28 \times 1 = 28$

* c. $7 \times 4 = 28$

Which number sentence correctly rephrases the following addition problem: $7 + 7 + 7 + 7 + 7 = 35$

a. $35 \times 1 = 35$

* b. $5 \times 7 = 35$

c. $7 \times 5 = 35$

Which number sentence correctly rephrases the following addition problem? $50 + 50 + 50 = 150$

*a. $3 \times 50 = 150$

b. $50 \times 3 = 150$

c. $(50 \times 2) + (50 \times 1) = 150$
Which number sentence correctly rephrases the following addition problem? $9 + 9 + 9 + 9 + 9 = 54$

a. $9 \times 6 = 54$
*b. $6 \times 9 = 54$
 c. $(9 \times 3) + (9 \times 3) = 54$

THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF MULTIPLICATION AS REPEATED ADDITION BY RENAMING ONE FACTOR OF A MULTIPLICATION PROBLEM AS TWO ADDENDS.

Which equation below correctly renames the "9" of the number sentence $7 \times 9 = 63$?

a. $(7 \times 9) + (7 \times 1) = N$
*b. $(7 \times 5) + (7 \times 4) = N$
 c. $(7 \times 4) + (1 \times 5) = N$

Which equation does NOT correctly rename the "14" in the number sentence $7 \times 14 = N$?

a. $(7 \times 10) + (7 \times 4) = N$
 b. $(7 \times 7) + (7 \times 7) = N$
 *c. $(7 \times 14) + (7 \times 1) = N$

Underline the equation which shows the correct renaming of the factor "13".

a. $(4 \times 13) + (4 \times 1) = N$
 *b. $(4 \times 10) + (4 \times 3) = N$
 c. $(4 \times 13) + (4 \times 0) = N$
Which equation correctly renames the "12" in the equation $12 \times 9 = N$?

a. $(8 \times 9) + (4 \times 9) = N$

b. $(8 \times 9) + (1 \times 9) = N$

c. $(12 \times 9) + (1 \times 9) = N$

Which equation correctly renames the "9" in the equation $12 \times 9 = N$?

a. $(6 \times 9) + (6 \times 1) = N$

b. $(12 \times 9) + (12 \times 1) = N$

c. $(12 \times 5) + (12 \times 4) = N$

Which equation correctly renames the "16" in the equation $5 \times 16 = N$?

a. $(10 \times 5) + (6 \times 5) = N$

b. $(16 \times 5) + (16 \times 5) = N$

c. $(16 \times 5) + (1 \times 5) = N$

Which equation does NOT correctly rename the "15" in the equation $7 \times 15 = N$?

a. $(7 \times 9) + (7 \times 5) = N$

b. $(7 \times 10) + (7 \times 5) = N$

c. $(7 \times 7) + (7 \times 8) = N$

Which equation correctly renames the "19" in the equation $11 \times 19 = N$?

a. $(11 \times 19) + (11 \times 1) = N$

b. $(11 \times 8) + (11 \times 9) = N$

c. $(11 \times 10) + (11 \times 9) = N$
Which equation correctly renames the "17" in the equation $5 \times 17 = N$?

- a. $(5 \times 17) + (5 \times 1) = N$
- *b. $(5 \times 10) + (5 \times 7) = N$
- c. $(3 \times 17) + (2 \times 17) = N$

Which equation correctly renames the "5" in the equation $9 \times 5 = N$?

- a. $(9 \times 5) + (9 \times 1) = N$
- b. $(5 \times 5) + (4 \times 5) = N$
- *c. $(9 \times 2) + (9 \times 3) = N$

Source: Merrill, *Discovering Math 5*, pp. 55 and 56, (2-6).

The student will demonstrate his understanding of the multiplication-addition principle by "breaking apart" one factor of an equation.

Which equation correctly illustrates the multiplication-addition principle?

- a. $6 \times 11 = (6 \times 11) + (6 \times 1)$
- *b. $6 \times 11 = (6 \times 10) + (6 \times 1)$
- c. $6 \times 11 = (3 \times 10) + (3 \times 1)$

Underline the equation below which correctly "breaks apart" one factor of the equation.

- a. $8 \times 17 = (8 \times 7) + (8 \times 1)$
- b. $8 \times 17 = (4 \times 10) + (4 \times 7)$
- *c. $8 \times 17 = (8 \times 10) + (8 \times 7)$
Which equation does NOT illustrate the multiplication-addition principle?

*a. 9 x 7 = 7 x 9
b. 9 x 7 = (6 x 7) + (3 x 7)
c. 6 x 35 = (6 x 30) + (6 x 5)

Which equation illustrates the multiplication-addition principle?

*a. 6 x 35 = (6 x 30) + (6 x 5)
b. 6 x 35 = 35 x 6
c. 6 x 35 = 3 x 2 x 35

Which equation correctly "breaks apart" one factor of the equation?

*a. 7 x 7 = (5 x 7) + (2 x 7)
b. 7 x 7 = (4 x 7) + (3 x 7)
c. 7 x 7 = (5 x 2) + (2 x 5)

Which equation correctly "breaks apart" one factor of the equation?

*a. 4 x 16 = (4 x 16) + (4 x 1)
b. 4 x 16 = (4 x 10) + (4 x 6)
c. 4 x 16 = (4 x 16) + (4 x 0)

Which equation correctly "breaks apart" one factor of the equation?

*a. 7 x 23 = (7 x 20) + (7 x 3)
b. 7 x 23 = (7 x 19) + (7 x 5)
c. 7 x 23 = (7 x 20) + (7 x 3)

Which equation correctly "breaks apart" one factor of the equation?

*a. 6 x 9 = (5 x 9) + (1 x 9)
b. 6 x 9 = (6 x 9) + (1 x 9)
c. 6 x 9 = (3 x 9) + (4 x 9)
Which equation "breaks apart" two factors of the equation?

a. \(5 \times 12 = (5 \times 10) + (5 \times 2)\)
b. \(5 \times 12 = (3 \times 12) + (2 \times 12)\)
c. \(5 \times 12 = (3 \times 10) + (2 \times 2)\)

Which factor has been "broken apart" in the following equation?

\(8 \times 17 = (8 \times 10) + (8 \times 7)\)

a. 17
b. 8
c. 10

Source: Addison-Wesley Elementary School Math 5, p. 27.

The student will demonstrate his comprehension that multiplication is repeated addition by correctly identifying number sentences shown on a number line.

Which number sentence below is shown on the number line?

\(5 \times 3 = 15\)
\(15 \times 1 = 15\)
c. \(3 \times 5 = 15\)

Circle the number sentence below which is shown on the following number line.

\(5 \times 4 = 20\)
\(4 \times 5 = 20\)
c. \(20 \times 1 = 20\)
Circle the multiplication sentence shown on the following number line.

a. $3 \times 8 = 24$
*b. $8 \times 3 = 24$
 c. $24 \times 1 = 24$

Which number sentence below is shown on the number line?

a. $5 \times 4 = 20$
*b. $4 \times 5 = 20$
 c. $1 \times 20 = 20$

Which number sentence below is shown on the number line?

a. $2 \times 7 = 14$
*b. $14 \times 1 = 14$
 c. $7 \times 2 = 14$

Which number sentence below is shown on the number line?

*a. $6 \times 5 = 30$
 b. $1 \times 30 = 30$
 c. $5 \times 6 = 30$

Which number sentence below is shown on the number line?

*a. $4 \times 3 = 12$
 b. $3 \times 4 = 12$
 c. $12 \times 1 = 12$
Which number sentence below is shown on the number line?

\[a. \ 1 \times 32 = 32 \\
\] \[b. \ 4 \times 8 = 32 \\
\] \[c. \ 8 \times 4 = 32 \\
\]

Which number sentence is shown correctly on the number line?

\[a. \ 1 \times 12 = 12 \\
\] \[b. \ 12 \times 1 = 12 \\
\] \[c. \ 1 \times 6 \times 2 = 12 \\
\]

Which number sentence below is shown on the number line?

\[a. \ 6 \times 1 = 6 \\
\] \[b. \ 4 \times 2 \times 1 = 6 \\
\] \[c. \ 1 \times 8 = 6 \\
\]

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF A TABLE TO INDICATE THE FUNCTION INVOLVED IN COMPUTING A PRODUCT BY NAPIER RODS.

This is an example of multiplication invented by Napier, called the Lattice Method.
Given this lattice, the answer will be

\[
\begin{array}{c|c|c|c}
1 & 3 & 0 & 6 \\
\hline
0 & 7 & 1 & 7 \\
\end{array}
\]

\begin{itemize}
 \item a. 72142
 \item b. 9142
 \item c. 7304
 \item d. 9106
\end{itemize}

Compu

\[
\begin{array}{c|c|c|c}
2 & 4 & 7 & 3 \\
\hline
\end{array}
\]

t on this lattice. The product is

\[
\begin{array}{c|c|c|c}
\hline
2 & 4 & 7 & 3 \\
\end{array}
\]

\begin{itemize}
 \item a. 16645
 \item b. 160745
 \item c. 15635
 \item d. 156745
\end{itemize}

Complete the lattice and a, b, c. The solution will be

\[
\begin{array}{c|c|c|c|c}
\hline
a & b & 7 \\
\hline
1 & 3 & 0 & 4 & 2 & 6 \\
2 & 4 & 6 & 3 & c \\
\end{array}
\]

\begin{itemize}
 \item a. a = 3, b = 5, c = 9, 24,633
 \item b. a = 4, b = 6, c = 7, 23,123
 \item c. a = 2, b = 5, c = 8, 20,533
 \item d. a = 3, b = 5, c = 9, 23,533
\end{itemize}
THE STUDENT CAN APPLY THE CONCEPTS OF MULTIPLICATION TO INDICATE THE PROPERTIES INVOLVED IN GIVEN OPERATIONS.

The operations of multiplication can be described. Which one of these does not describe multiplication?

a. operation of factors gives a product
b. joining of equivalent sets
c. addition of equal addends
d. cross product of two sets
*e. joining of equal sets

Which one of the following is incorrect for multiplication?

Multiplication:
a. is commutative
*b. has zero as the identity element
c. is associative
d. is distributive
e. has one as the identity element

Multiplication has an inverse (opposite) operation. It is to

a. subtract
b. add
*c. divide
d. multiply

The joining of these sets is not described by:

a. 3 x 3
b. 3 + 3 + 3
c. n (A) + n (B) + n (C)
d. A \cup B \cup C
*e. (A \cup B) \times C
Four sets of six and three sets of six can be expressed as:

- \(a. \ (4 + 3) \times 6\)
- \(b. \ (4 + 6) \times (3 + 6)\)
- \(c. \ (3 \times 6) \times (4 \times 6)\)
- \(d. \ 6 + 6 + 3 + 4\)

Five sets of three and 6 sets of three does NOT equal:

- \(a. \ 33\)
- \(b. \ (5 + 6) \times 3\)
- \(c. \ (3 \times 6) + (5 \times 3)\)
- \(d. \ (5 + 3) \times (6 + 3)\)

THE STUDENT DEMONSTRATES KNOWLEDGE OF MULTIPLICATION BY INDICATING THAT IT IS THE MATCHING OF ONE TO MANY OR USING THE CONCEPT OF RATE.

If there are always 16 strawberries per pint, how many strawberries will there be in 6 pints?

- \(a. \ 72\)
- \(b. \ 86\)
- \(c. \ 96\)
- \(d. \ 22\)

If there are 8 marbles per bag, 7 bags will have

- \(a. \ 40 \text{ marbles}\)
- \(b. \ 54 \text{ marbles}\)
- \(c. \ 63 \text{ marbles}\)
- \(d. \ 56 \text{ marbles}\)
- \(e. \ 64 \text{ marbles}\)

If there are 5 school days per week, in one nine week period there will be

- \(a. \ 45 \text{ school days}\)
- \(b. \ 5 \text{ school days}\)
- \(c. \ 95 \text{ school days}\)
- \(d. \ 9 \text{ school days}\)
Last week the grocery store charged 15¢ per pound potatoes. 4 lbs. would cost:

- a. $ 0.30
- b. $ 0.45
- c. $ 0.60
- d. $ 0.65

If there are 26 books per each library shelf, 4 shelves will hold how many books?

- a. 104
- b. 84
- c. 90
- d. 106

If plums cost 39¢ a pound, 3 pounds of plums cost

- a. 97¢
- b. $1.17
- c. $ 0.72
- d. $1.07

If there are 12 doughnuts per box, 6 boxes will contain how many doughnuts?

- a. 72
- b. 60
- c. 68
- d. 78

The team usually made 7 hits per game. In 9 games we could expect

- a. 16 hits
- b. 57 hits
- c. 61 hits
- d. 63 hits
THE STUDENT DEMONSTRATES KNOWLEDGE OF MULTIPLICATION BY MULTIPLYING A 1, 2, OR 3-PLACE FACTOR TIMES A 2, 3, 4 OR 5-PLACE FACTOR.

6 sets of 52 are:

* 312
 b. 302
 c. 32
 d. 320

7 groups of 346 are:

a. 2202
 *b. 2422
 c. 2382
 d. 2412

9 times 309 is:

a. 2763
 b. 2090
 c. 2789
 *d. 2781

(400 + 60 + 3) multiplied by 3 is:

*a. 1389
 b. 1209
 c. 1299
 d. 1399

6 • 6 • 6 is NOT equal to:

*a. 3 x 6
 b. 6² x 6
 c. 36 x 6
 d. 216
<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
</tr>
</thead>
</table>
| (5) \((6 + 4) =\) | a. 44
b. 34
* c. 50
d. 60 |
| If \(\frac{1}{16} = 4\), then \(\square =\) | a. 4
b. 60
* c. 64
d. 20 |
| If \(\square = 35 \times 35\), then \(\square =\) | a. 70
* b. 1325
c. 290
d. 425 |
| If \(17 \times 52 = \square\), then \(\square =\) | a. 119
* b. 884
c. 69
d. 894 |
| If \(n = (3 \times 5)(100)\), then \(n =\) | * a. 1500
b. 800
c. 115
d. 15,000 |
| If \(8 \times 16 \times 4 \times 5 = n\), then \(n =\) | a. 44
b. 1880
c. 148
* d. 2560 |
Multiply

The product of 747 is
\[\times 8 \]

*a. 5976
b. 6006
c. 5866
d. 5826

392 equals
\[\times 6 \]

*a. 2352
b. 2242
c. 1842
d. 2346

564 equals:
\[\times 7 \]

*a. 3528
b. 3848
c. 4008
d. 3948

6091 is:
\[\times 9 \]

*a. 54729
b. 54809
c. 54819
d. 54189

4358 is:
\[\times 5 \]

*a. 20650
b. 21790
c. 21580
d. 20690
Solve 8567
\[\times 9 \]
\[\begin{array}{l}
\text{a. } 77103 \\
\text{b. } 75894 \\
\text{c. } 76963 \\
\text{d. } 77032 \\
\end{array} \]

Solve 80
\[\times 36 \]
\[\begin{array}{l}
\text{a. } 116 \\
\text{b. } 720 \\
\text{c. } 2880 \\
\text{d. } 2406 \\
\end{array} \]

Multiplication

70
\[\times 28 \]
equals
\[\begin{array}{l}
\text{a. } 1960 \\
\text{b. } 98 \\
\text{c. } 700 \\
\text{d. } 1480 \\
\end{array} \]

If 60 \times 49 = _
\[\text{then } _
\]
\[\begin{array}{l}
\text{a. } 2940 \\
\text{b. } 264 \\
\text{c. } 2810 \\
\text{d. } 294 \\
\end{array} \]

50
\[\times 77 \]
equals
\[\begin{array}{l}
\text{a. } 395 \\
\text{b. } 3850 \\
\text{c. } 375 \\
\text{d. } 3550 \\
\end{array} \]
If $43 \times 37 = \square$, then $\square = $

- a. 1571
- b. 430
- c. 80
- *d. 1591

If $\square = 59 \times 41$, then $\square =$

- a. 2009
- *b. 2419
- c. 100
- d. 619

If $60 \times 28 = \square$, then $\square =$

- *a. 1680
- b. 88
- c. 600
- d. 1280

If $\square = 24 \times 37$, then $\square =$

- a. 61
- b. 292
- *c. 888
- d. 768

If $43 \times 28 = \square$, then $\square =$

- *a. 1204
- b. 430
- c. 1184
- d. 61

If $\square = 94 \times 37$, then \square is

- a. 940
- b. 131
- *c. 3478
- d. 3358

277

283
If $53 \times 45 = \square$, then \square is.

- a. 2385
- b. 2275
- c. 277
- d. 2015

If $\square = 36 \times 42$, then \square is.

- a. 1508
- b. 1212
- c. 78
- d. 1512

If $(37)(14) = \square$, then \square is.

- a. 518
- b. 51
- c. 185
- d. 328

If $\square = (24)(62)$, then \square is.

- a. 372
- b. 1488
- c. 128
- d. 86

If $15(48) = \square$, then \square is.

- a. 720
- b. 288
- c. 440
- d. 700

If $\square = 25(46)$, then \square is.

- a. 950
- b. 71
- c. 1150
- d. 830
Multiplication

Solve: \[957 \times 73 \]

a. 67,761
b. 69,961
c. 68,761
d. 66,661

826
\[\times 52 \]
equals

a. 42052
b. 42952
c. 42052
*d. 42952

638
\[\times 49 \]
equals

a. 30242
*b. 31262
c. 30152
d. 31162

Solve: \[781 \times 64 \]

*a. 49,984
b. 50,004
c. 49,064
d. 49,774

Solve: \[382 \times 97 \]

a. 72,954
b. 73,044
c. 72,944
*d. 73,054
Solve 853
\[\times 68 \]

a. 57,904
*b. 58,004
c. 58,904
d. 57,004

Solve: 457
\[\times 83 \]

a. 37,831
b. 37,911
*c. 37,931
d. 37,311

THE STUDENT CAN APPLY HIS ABILITY TO MULTIPLY BY 2 OR 3 PLACE NUMBERS TO SOLVE PROBLEMS EXPRESSED IN A LINEAR EQUATION.

Directions: Solve for the unknown, in the following equations.

\[\square = 25 \times 409 \]

a. 434
b. 10125
c. 2863
d. 10225

\[304 \times 65 = \square \]

*a. 19760
b. 3344
c. 20760
d. 3244
\[a = 40 \times 349 \]

1. 12960
2. 12660
3. *c. 13960
4. d. 13660

\[267 \times 80 = \square \]

1. 21360
2. 16860
3. *c. 20260
4. d. 22160

\[a = 435 \times 90 \]

1. 40000
2. *b. 39150
3. c. 36850
4. d. 38050

\[782 \times 50 = \square \]

1. 40160
2. *b. 35000
3. c. 39100
4. d. 39000

\[416 \times 314 = x \]

1. 5824
2. *a. 6072
3. c. 129524
4. *d. 130624
\[x = 719 \times 613 \]

* a. 440747
b. 429647
c. 439647
d. 430747

\[246 \times \$4.98 = n \]

a. 122508
b. $1225.08
c. $122508
d. $122508

\[n = \$6.89 \times 200 \]

a. $137800
b. $137800
c. $137800
d. $137800

The student can demonstrate knowledge of multiplication by multiplying with three place numbers.

Solve

634
\times 123

a. 76,682
b. 62,682
c. 72,782
d. 77,982

Solve

496
\times 214

* a. 106,144
b. 98,264
c. 104,014
d. 99,284
Solve

823
\times 613

\begin{align*}
a. & \quad 500,509 \\
*b. & \quad 504,499 \\
c. & \quad 503,869 \\
d. & \quad 502,389
\end{align*}

Solve

417
\times 223

\begin{align*}
a. & \quad 90,781 \\
b. & \quad 83,451 \\
c. & \quad 89,571 \\
*d. & \quad 92,991
\end{align*}

THE STUDENT DEMONSTRATES UNDERSTANDING OF MULTIPLICATION BY STATING WHEN TO MULTIPLY TO SOLVE LINEAR EQUATIONS.

Directions: In the following equations, solve for the unknown.

\[
\square \div 45 = 726
\]

\begin{align*}
a. & \quad 16,1 \\
*b. & \quad 32,670 \\
c. & \quad 16,09 \\
d. & \quad 31,600
\end{align*}

\[
837 = \square \div 58
\]

\begin{align*}
a. & \quad 14,43 \\
b. & \quad 14,5 \\
*c. & \quad 48,546 \\
d. & \quad 47,546
\end{align*}
\[\begin{align*}
27 & = 925 \\
\text{a.} & = 24,975 \\
\text{b.} & = 34,25 \\
\text{c.} & = 24,765 \\
\text{d.} & = 34,19 \\
\end{align*} \]

\[\begin{align*}
628 & = \frac{a}{39} \\
a. & = 16.2 \\
b. & = 16.103 \\
c. & = 24,492 \\
d. & = 24,472 \\
\end{align*} \]

\[\begin{align*}
833 & = \frac{a}{26} \\
a. & = 21,658 \\
b. & = 32,045 \\
c. & = 20,878 \\
d. & = 32,04 \quad \text{?} \\
\end{align*} \]

\[\begin{align*}
54 & = 627 \\
a. & = 32,648 \\
b. & = 11.61 \\
c. & = 11.72 \\
d. & = 33,858 \\
\end{align*} \]

\[\begin{align*}
781 & = \frac{a}{563} \\
a. & = 1.38 \\
b. & = 439,704 \\
c. & = 1.403 \\
d. & = 438,704 \\
\end{align*} \]

\[\begin{align*}
329 & = 468 \\
a. & = 143,972 \\
b. & = 1.42 \\
c. & = 153,972 \\
d. & = 1.319 \\
\end{align*} \]
\[853 = \frac{\square}{472} \]

- a. 1.80
- *b. 4.02,616
- c. 1.79
- d. 400,606

\[\square \div 518 = 962 \]

- a. 1.84
- b. 2.08
- c. 497,216
- *d. 498,316

\[\frac{830}{20} = \square \]

- a. 41 1/2
- b. 41.5
- *c. 16600
- d. 1660

\[560 = \frac{\square}{30} \]

- a. 18 2.3
- *b. 16800
- c. 18.666
- d. 1680

\[\frac{\square}{480} = 50 \]

- a. 104
- b. 9.6
- c. 2400
- *d. 24000

285
THE STUDENT CAN DEMONSTRATE KNOWLEDGE OF EQUATIONS BY EXPRESSING THE FOUR BASIC EQUATIONS INVOLVING TWO ONE-DIGIT FACTORS AND THEIR PRODUCT.

The factors 6 and 9 would not be expressed

a. 54 ÷ 9 = 6
b. 9 × 6 = 54
*c. 6 ÷ 9 = 54
d. 6 × 9 = 54

The following number line expresses the equation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a. 5 × 5 = n
b. 15 × 3 = n
*c. 15 ÷ 5 = n
d. 0 + 15 = n
For the equation $18 \div 6 = n$ the number line would be

- \(a \)
- \(b \)
- \(c \)
- \(d \)

The family of facts for 7 and 8 would not include

- \(a \) 7 \times 8 = 56
- \(b \) 56 \div 7 = 8
- \(c \) 8 \times 7 = 56
- \(d \) 8 \div 56 = 7/

The student will apply knowledge of multiplying by multiples of 10 by selecting the correct answer to given story problems.

Directions: Solve the following story problems.

At birth, a gorilla weighed 6 lbs. He now weighs 100 times as much. How much does he weigh?

- \(a \) 106
- \(b \) 60
- \(c \) 6100
- \(d \) 600
A mother whale gave birth to a 25 foot baby that weighed 1,600 lbs. As an adult it weighs 30 times more than birth. How much does the adult whale weigh?

- a. 16,000
- b. 48,000
- c. 4,800
- d. 38,000

If a farmer plants 350 corn seeds in each row, and he has 3,000 rows. How many seeds did he plant?

- a. 950,000
- b. 350,000
- c. 1,050,000
- d. 3,350

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF THE BASIC MULTIPLICATION FACTS TO 81 BY RECALLING THE CORRECT PRODUCT FROM A GROUP OF POSSIBLE PRODUCTS.

Circle the correct product for the fact: 6 x 3 = N

- a. 12
- b. 18
- c. 24

Circle the correct product for the fact: 5 x 9 = N

- a. 45
- b. 54
- c. 40

Circle the correct product for the fact: 7 x 8 = N

- a. 54
- b. 56
- c. 40
Circle the correct product for the fact: $3 \times 9 = N$

a. 27
b. 24
c. 36

Circle the correct product for the fact: $8 \times 4 = N$

a. 24
b. 12
c. 32

Circle the correct product for the fact: $8 \times 5 = N$

a. 40
b. 32
c. 40

Circle the correct product for the fact: $6 \times 7 = N$

a. 42
b. 45
c. 49

Circle the correct product for the fact: $9 \times 5 = N$

a. 40
b. 36
c. 45

Circle the correct product for the fact: $8 \times 7 = N$

a. 56
b. 45
c. 54
Circle the correct product for the fact: \(9 \times 8 = N \)

a. 81
*b. 72
*c. 56

Circle the correct product for the fact: \(6 \times 8 = N \)

a. 42
*b. 48
*c. 54

Circle the correct product for the fact: \(9 \times 4 = N \)

a. 42
b. 27
* c. 36

Circle the correct product for the fact: \(9 \times 9 = N \)

*a. 81
b. 64
c. 72

Circle the correct product for the fact: \(6 \times 9 = N \)

*a. 54
b. 56
c. 64

Circle the correct product for the fact: \(8 \times 8 = N \)

a. 81
*b. 64
c. 56

Source: Addison-Wesley. Elementary School Math, 5. Pg. 316.
THE STUDENT WILL ANALYZE A MULTIPLICATION PROBLEM SHOWING THE PLACE
VALUE OF THE 2-DIGIT FACTOR BY IDENTIFYING THE CORRECT RENAMING OF
A FACTOR.

In the multiplication problem below, what 2 factors gave you "120"?

\[
\begin{array}{c}
37 \\
x4 \\
\hline
28 \\
120 \\
148
\end{array}
\]

a. 4 x 7
b. 4 x 30
c. 4 x 3

In the multiplication problem below, what 2 factors gave you "35"?

\[
\begin{array}{c}
67 \\
x5 \\
\hline
35 \\
300 \\
335
\end{array}
\]

a. 5 x 7
b. 5 x 60
c. 5 x 6

In the multiplication problem below, what 2 factors gave you "24"?

\[
\begin{array}{c}
84 \\
x6 \\
\hline
24 \\
480 \\
504
\end{array}
\]

a. 6 x 8
b. 6 x 4
c. 6 x 80
In the multiplication problem below, what 2 factors gave you "450"?
\[
\begin{array}{c}
& 52 \\
\times & 9 \\
\hline
& 13 \\
& 450 \\
& 468 \\
\end{array}
\]

a. 9 \times 50

b. 9 \times 2

c. 9 \times 5

In the multiplication problem below, what 2 factors gave you "20"?
\[
\begin{array}{c}
& 95 \\
\times & 4 \\
\hline
& 20 \\
& 360 \\
& 380 \\
\end{array}
\]

a. 4 \times 90

b. 4 \times 9

c. 4 \times 5

In the multiplication problem below, what 2 factors gave you "490"?
\[
\begin{array}{c}
& 79 \\
\times & 7 \\
\hline
& 63 \\
& 490 \\
& 553 \\
\end{array}
\]

a. 7 \times 7

b. 7 \times 9

c. 7 \times 70

In the multiplication problem below, what 2 factors gave you "320"?
\[
\begin{array}{c}
& 46 \\
\times & 8 \\
\hline
& 320 \\
& 368 \\
\end{array}
\]

a. 8 \times 4

b. 8 \times 40

c. 8 \times 6
In the multiplication problem below, what 2 factors gave you "24"?

\[
\begin{array}{c}
38 \\
\times 3 \\
\hline
24 \\
90 \\
\hline
114
\end{array}
\]

*a. 3 x 8
b. 3 x 30
c. 3 x 3

In the multiplication problem below, what 2 factors gave you "240"?

\[
\begin{array}{c}
38 \\
\times 8 \\
\hline
64 \\
200 \\
\hline
304
\end{array}
\]

*a. 8 x 30
b. 8 x 8
c. 8 x 3

In the multiplication problem below, what 2 factors gave you "180"?

\[
\begin{array}{c}
37 \\
\times 6 \\
\hline
42 \\
180 \\
\hline
222
\end{array}
\]

a. 6 x 3
b. 6 x 7
*c. 6 x 30

Source: Merrill, Discovering Math. 5e, page 58.
THE STUDENT WILL APPLY HIS UNDERSTANDING OF THE PROCESS OF MULTIPLYING A TWO-DIGIT FACTOR BY A ONE-DIGIT FACTOR BY IDENTIFYING THE CORRECT PRODUCT FROM A LIST OF PRODUCTS.

Directions: Work each of the following problems on scratch paper carefully. DO NOT guess. Then circle the correct product.

6 x 58 = N

a. 3048
b. 348
* c. 308

3 x 17 = N

*a. 51
b. 321
c. 41

7 x 27 = N

*a. 189
b. 149
c. 1449

5 x 45 = N

a. 205
b. 225
*c. 305

9 x 43 = N

a. 367
b. 388
*c. 387
$4 \times 57 = N$

a. 208
b. 228
c. 2028

$7 \times 68 = N$

a. 474
b. 426
c. 476

$8 \times 96 = N$

a. 768
b. 755
c. 728

$4 \times 95 = N$

a. 380
b. 362
c. 360

$9 \times 49 = N$

a. 378
b. 441
c. 421

THE STUDENT WILL APPLY HIS UNDERSTANDING OF THE PROCESS OF MULTIPLYING A TWO OR THREE DIGIT FACTOR BY A ONE-DIGIT FACTOR BY IDENTIFYING THE CORRECT PRODUCT FROM A LIST OF PRODUCTS.

Directions: Work each of the following problems on scratch paper carefully. DO NOT guess. Then circle the correct product.

5 x 84 = N

a. 400
*b. 420
c. 4020

8 x 76 = N

a. 644
b. 568
*c. 608

2 x 58 = N

a. 161
*b. 116
c. 106

6 x 94 = N

*a. 564
b. 582
c. 544

3 x 952 = N

a. 2956
*b. 2856
c. 2756

296 362
5 × 795 = N
 a. 3925
 b. 4002
 c. 3975

3 × 708 = N
 a. 2124
 b. 234
 c. 2154

7 × 698 = N
 a. 4895
 b. 4886
 c. 4286

9 × 319 = N
 a. 2881
 b. 2808
 c. 2871

4 × 346 = N
 a. 1384
 b. 1308
 c. 1264

Source: Elementary Math 5th, Harcourt, Brace, p. 332.

The student will analyze equations using multiplication by tens, hundreds, and thousands by correctly identifying completed equations.
Circle the number that stands for N in the equation:
430 = N x 10

a. 430
b. 43
* c. 4

Circle the number that stands for N in the equation:
3800 = N x 100

*a. 38
b. 3800
c. 380

Circle the number that stands for N in the equation:
67,000 = N x 1000

*a. 67
b. 6700
c. 670

Circle the number that stands for N in the equation:
7584 = (758 x N) + 4

a. 100
b. 10
c.* 1000

Circle the number that stands for N in the equation:
42,647 = (4264 x N) + 7

*a. 10
b. 100
c. 1000

298 304
Circle the number that stands for N in the equation:
$67,000 = N \times 10$

a. 670
b. 67
*c. 6700

Circle the number that stands for N in the equation:
$7584 = (7 \times N) + 584$

a. 100
*b. 1000

c. 10

Circle the number that stands for N in the equation:
$42,647 = (42 \times N) + 647$

*a. 1000

b. 10

c. 100

Circle the number that stands for N in the equation:
$7584 = (75 \times N) + 84$

a. 10
*b. 100

c. 1000

Source: Elementary School Math 5, Addison Wesley, p. 56.
400 x 3 x 100 = 120,000
\[400 \times N = 120,000\]

a. 300
b.* 30
c.* 3

700 x 6 x 100 = 420,000
\[N \times 600 = 420,000\]

a.* 60
b.* 70
c. 700

500 x 5 x 100 = 250,000
\[500 \times N = 250,000\]

a. 500
b.* 50
c.* 100

600 x 8 x 100 = 480,000
\[600 \times N = 480,000\]

a.* 80
b.* 400
c. 800

800 x 7 x 100 = 560,000
\[800 \times N = 560,000\]

a.* 70
b.* 700
c.* 7000

900 x 5 x 100 = 450,000
\[900 \times N = 450,000\]

a.* 5
b.* 50
c. 500
6 \times 10 \times 3 \times 100 = 24,000 \quad \text{a} \times 300 = 24,000

a. 60
b. 600
c. 30

9 \times 100 \times 6 \times 10 = 48,000 \quad N \times 60 = 48,000

a. 600
b. 900
c. 90

3 \times 10 \times 6 \times 100 = 24,000 \quad 30 \times N = 24,000

a. 80
b. 800
c. 300

6 \times 100 \times 8 \times 10 = 18,000 \quad 8 \times N = 18,000

a. 60 \times 800
b. 600 \times 80
c. 80 \times 600

Source: Elementary School Math 5, Addison-Wesley, p. 59.

The student will analyze multiplication algorithms by identifying the "error" from a list of errors.

Which partial product is incorrect in the following algorithm?

\[
\begin{array}{c}
367 \\
\times 4 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
28 \\
210 \\
120 \\
\hline
301 \\
\end{array}
\]

a. 120
b. 28
c. 240
Which partial product is incorrect in the following algorithm?

\[
\begin{array}{c}
143 \\
\times 4 \\
\hline
? \\
21 \\
300 \\
\hline
c. 300 \\
b. 9 \\
* a. 21 \\
\end{array}
\]

Which partial product is incorrect in the following algorithm?

\[
\begin{array}{c}
839 \\
\times 7 \\
\hline
63 \\
210 \\
560 \\
\hline
a. 210 \\
b. 63 \\
*c. 560 \\
\end{array}
\]

Which partial product is incorrect in the following algorithm?

\[
\begin{array}{c}
709 \\
\times 7 \\
\hline
63 \\
490 \\
\hline
a. 63 \\
*b. 490 \\
c. neither \\
\end{array}
\]

Which partial product is incorrect in the following algorithm?

\[
\begin{array}{c}
576 \\
\times 8 \\
\hline
16 \\
56 \\
4000 \\
\hline
*a. 56 \\
b. 16 \\
*c. 4000 \\
\end{array}
\]
Which partial product is incorrect in the following algorism?

\[
\begin{array}{c}
3276 \\
\times \quad 2 \\
\hline
12 \\
140 \\
400 \\
600 \\
\hline
\end{array}
\]

a. 140
*b. 400
*c. 600
d. 12

Which partial product is incorrect in the following algorism?

\[
\begin{array}{c}
5843 \\
\times \quad 9 \\
\hline
120 \\
240 \\
15000 \\
\hline
\end{array}
\]

*a. 240
b. 15000
c. 9
d. 120

Which partial product is incorrect in the following algorism?

\[
\begin{array}{c}
1765 \\
\times \quad 6 \\
\hline
30 \\
360 \\
420 \\
6000 \\
\hline
\end{array}
\]

a. 6000
b. 360
c. 30
*d. 420
Which partial product is incorrect in the following algorithm?

\[\begin{array}{c}
8439 \\
\times 4 \\
\hline
36 \\
120 \\
1600 \\
3200 \\
\end{array} \]

a. 36
b. 3200
c. 120
d. 1600

Which partial product is incorrect in the following algorithms?

\[\begin{array}{c}
5976 \\
\times 7 \\
\hline
42 \\
490 \\
6300 \\
3500 \\
\end{array} \]

a. 42
b. 3500
c. 490
d. 6300

Source: Addison-Wesley, Elementary School Math 5, p. 97.

THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE MULTIPLICATION ALGORITHM BY IDENTIFYING THE MISSING PARTIAL PRODUCT FROM A GROUP OF PRODUCTS.

Circle the number which is missing in the algorithm below.

\[\begin{array}{c}
375 \\
\times 5 \\
\hline
25 \\
350 \\
\end{array} \]

a. 150
b. 1500
c. 15000
Circle the number below which is missing in the algorithm.

1478

\[
\begin{array}{c}
532 \\
\times \frac{4}{8} \\
\hline
2000 \\
\end{array}
\]

a. 120
b. 1200
c. 12

1479

\[
\begin{array}{c}
487 \\
\times 0.7 \\
\hline
560 \\
2800 \\
\end{array}
\]

a. 9
b. 49
c. 490

1480

\[
\begin{array}{c}
832 \\
\times 6 \\
\hline
120 \\
\end{array}
\]

a. 48
b. 480
c. 1800

1481

\[
\begin{array}{c}
293 \\
\times 6 \\
\hline
180 \\
540 \\
\end{array}
\]

a. 1200
b. 12
c. 120

311
Circle the number below which is missing in the algorism.

1482

\[
\begin{array}{c}
675 \\
\times 4 \\
\hline
280 \\
2400 \\
\end{array}
\]

a. 0
b. 20
c. 200

1483

\[
\begin{array}{c}
637 \\
\times 8 \\
\hline
56 \\
\hline
1800 \\
\end{array}
\]

a. 2400
b. 24
c. 240

1484

\[
\begin{array}{c}
518 \\
\times 8 \\
\hline
80 \\
4000 \\
\end{array}
\]

a. 64
b. 4
c. 640

1485

\[
\begin{array}{c}
869 \\
\times 4 \\
\hline
36 \\
240 \\
\hline
\end{array}
\]

a. 320
b. 32
c. 3200
Circle the number below which is missing in the algorism.

683
x 9
27
5400

a. 72
b. 7200
*c. 720

Source: Merrill, Discovering Math, 5, p. 59.

THE STUDENT WILL ANALYZE THE SECOND STEP IN A MULTIPLICATION ALGORISM TO DETERMINE WHAT FACTORS ARE BEING MULTIPLIED, BY IDENTIFYING THE CORRECT FACTORS FROM A LIST.

Study the following algorism. Circle the two factors for the partial product "2150".

43
x 56
258
2150
2408

a. 56 x 43
b. 5 x 43
*c. 50 x 43

Study the following algorism. Circle the two factors for the partial product "1040".

52
x 26
312
1040
1352

*a. 20 x 52
b. 2 x 52
c. 26 x 52
Study the following algorism. Circle the two factors for the partial product "3420".

\[
\begin{array}{c}
38 \\
\times 94 \\
\hline
152 \\
2420 \\
3572 \\
\end{array}
\]

a. 94 x 38
b. 9 x 38
*c. 90 x 38

Study the following algorism. Circle the two factors for the partial product "2280".

\[
\begin{array}{c}
76 \\
\times 38 \\
\hline
608 \\
2280 \\
2888 \\
\end{array}
\]

a. 3 x 76
*b. 30 x 76
c. 38 x 76

Study the following algorism. Circle the two factors for the partial product "4270".

\[
\begin{array}{c}
61 \\
\times 75 \\
\hline
305 \\
4270 \\
4375 \\
\end{array}
\]

*a. 70 x 61
b. 75 x 61
c. 7 x 61
Study the following algorism. Circle the two factors for the partial product “6640”.

\[\begin{array}{c}
83 \\
\times 83 \\
\hline
581 \\
6640 \\
\hline
7221
\end{array} \]

a. 87 x 83
b. 8 x 83
*c. 80 x 83

Study the following algorism. Circle the two factors for the partial product “5700”.

\[\begin{array}{c}
95 \\
\times 67 \\
\hline
665 \\
5700 \\
\hline
6365
\end{array} \]

*a. 60 x 95
b. 6 x 95
c. 67 x 95

Study the following algorism. Circle the two factors for the partial product “5130”.

\[\begin{array}{c}
57 \\
\times 98 \\
\hline
456 \\
5130 \\
\hline
5586
\end{array} \]

a. 9 x 57
*b. 90 x 57
c. 98 x 57
Study the following algorithm. Circle the two factors for the partial product "3900".

\[
\begin{array}{c}
78 \\
\times 52 \\
\hline
156 \\
2900 \\
\hline
4056 \\
\end{array}
\]

- a. \(52 \times 78\)
- b. \(50 \times 78\)
- c. \(5 \times 78\)

Study the following algorithm. Circle the two factors for the partial product "960".

\[
\begin{array}{c}
16 \\
\times 69 \\
\hline
144 \\
960 \\
\hline
1104 \\
\end{array}
\]

- a. \(6 \times 16\)
- b. \(69 \times 16\)
- c. \(60 \times 16\)

Source: Merrill, Discovering Math, 5, p. 63.

THE STUDENT WILL APPLY HIS KNOWLEDGE OF MULTIPLYING WITH A TWO-DIGIT MULTIPLIER BY IDENTIFYING THE CORRECT PRODUCT FROM A LIST OF PRODUCTS.

Work this problem on paper. Then circle the answer below.

\[
\begin{array}{c}
26 \\
\times 54 \\
\hline
a. 234 \\
b. 1384 \\
c. 1404 \\
\end{array}
\]
Work this problem on paper. Then circle the answer below.

78
×23

*a. 1794
b. 390
c. 1774

Work this problem on paper. Then circle the correct product below.

54
×37

*a. 1998
b. 540
c. 1978

Work this problem on paper. Circle the correct product below.

76
×26

a. 1876
*b. 1976
. c. 608

Work this problem on paper. Circle the correct product below.

*a. 2499
b. 294
*c. 2099

Work this problem on paper. Circle the correct product below.

902
×57

a. 10,914
*b. 10,124
*c. 51,414

311
317
Work this problem on paper. Circle the correct product below.

\[
\begin{array}{c}
792 \\
\times 48
\end{array}
\]

*a. 38,016
*b. 9,204
c. 52,006

Work this problem on paper. Circle the correct product below.

\[
\begin{array}{c}
256 \\
\times 25
\end{array}
\]

*a. 6400
*b. 1792
c. 6200

Work this problem on paper. Circle the correct product below.

\[
\begin{array}{c}
379 \\
\times 36
\end{array}
\]

*a. 12,544
*b. 13,644
c. 3411

Work this problem on paper. Circle the correct product below.

\[
\begin{array}{c}
526 \\
\times 34
\end{array}
\]

*a. 3682
*b. 17,784
*c. 17,884

Source: Addison-Wesley, Elementary School Math 5, p. 98.
THE STUDENT WILL ANALYZE THE PRINCIPLE OF MULTIPLYING WITH THREE-DIGIT MULTIPLIER BY IDENTIFYING THE CORRECT RENAMING OF THE FACTOR AS ADDENDS.

In the equation $435 \times 571 = N$, the "435" can be renamed as

- a. $40 + 3 + 5$
- b. $4 + 30 + 5$
- c. $400 + 30 + 5$

In the equation $287 \times 146 = N$, the "287" can be renamed as

- a. $200 + 80 + 7$
- b. $2 + 800 + 7$
- c. $20 + 87$

In the equation $479 \times 736 = N$, the "479" can be renamed as

- a. $40 + 70 + 9$
- b. $40 + 700 + 9$
- c. $400 + 70 + 9$

In the equation $597 \times 584 = N$, the "597" can be renamed as

- a. $5 + 900 + 7$
- b. $500 + 90 + 7$
- c. $50 + 9 + 7$

In the equation $351 \times 167 = N$, the "351" can be renamed as

- a. $30 + 50 + 1$
- b. $3 + 500 + 1$
- c. $300 + 50 + 1$
In the equation $684 \times 278 = N$, the "684" can be renamed as

*a. $600 + 80 + 4$
*b. $60 + 8 + 4$
*c. $6 + 80 + 4$

In the equation $575 \times 329 = N$, the "575" can be renamed as

*a. $500 + 70 + 5$
*b. $50 + 7 + 5$
*c. $500 + 70 + 5$

In the equation $499 \times 495 = N$, the "499" can be renamed as

*a. $400 + 90 + 9$
*b. $400 + 90 + 9$
*c. $40 + 9 + 9$

In the equation $463 \times 247 = N$, the "463" can be renamed as

*a. $400 + 60 + 3$
*b. $40 + 6 + 3$
*c. $40 + 60 + 3$

In the equation $516 \times 643 = N$, the "516" can be renamed as

*a. $500 + 10 + 6$
*b. $50 + 10 + 6$
*c. $500 + 10 + 6$

Source: Merrill, Discovering Math, 5, p. 198

THE STUDENT WILL APPLY HIS KNOWLEDGE OF MULTIPLICATION WITH A THREE-DIGIT MULTIPLIER BY IDENTIFYING THE CORRECT PRODUCT FROM A LIST OF PRODUCTS.
Work the problem on paper. Circle the correct product below.

1517

\[
\begin{array}{c}
679 \\
\times 843 \\
\end{array}
\]

a. 9,585
\hspace{1cm} b. 77,517
\hspace{1cm} c. 572,397

Work the problem on paper. Circle the correct product below.

1518

\[
\begin{array}{c}
526 \\
\times 126 \\
\end{array}
\]

a. 66,276
\hspace{1cm} b. 4,734
\hspace{1cm} c. 18,936

Work the problem on paper. Circle the correct product below.

1519

\[
\begin{array}{c}
509 \\
\times 673 \\
\end{array}
\]

a. 8144
\hspace{1cm} b. 342,557
\hspace{1cm} c. 41,057

Work the problem on paper. Circle the correct product below.

1520

\[
\begin{array}{c}
725 \\
\times 497 \\
\end{array}
\]

a. 40,600
\hspace{1cm} b. 360,325
\hspace{1cm} c. 370,295
Work the problem on paper. Circle the correct product below.

865
\[\times 700 \]
\[\begin{align*}
865 & \\
\times 700 & \\
505,500 & \\
6,055 & \\
605,500 & \\
\end{align*} \]

Work the problem on paper. Circle the correct product below.

928
\[\times 248 \]
\[\begin{align*}
928 & \\
\times 248 & \\
a. & 13,472 \\
b. & 228,684 \\
\text{**c.} & 230,144 \\
\end{align*} \]

Work the problem on paper. Circle the correct product below.

548
\[\times 257 \]
\[\begin{align*}
548 & \\
\times 257 & \\
a. & 17,536 \\
b. & 137,186 \\
\text{**c.} & 140,836 \\
\end{align*} \]

Work the problem on paper. Circle the correct product below.

872
\[\times 436 \]
\[\begin{align*}
872 & \\
\times 436 & \\
a. & 11,336 \\
\text{**b.} & 380,192 \\
c. & 358,782 \\
\end{align*} \]

Work the problem on paper. Circle the correct product below.

436
\[\times 217 \]
\[\begin{align*}
436 & \\
\times 217 & \\
a. & 16,132 \\
\text{**b.} & 94,612 \\
c. & 93,372 \\
\end{align*} \]
Work the problem on paper. Circle the correct product below.

\[
\begin{array}{c}
231 \\
\times 322 \\
\end{array}
\]

*a. 74,382
*b. 1,617
*c. 11,712

Merrill, *Discovering Math, 5*, p. 199.

THE STUDENT WILL DEMONSTRATE HIS COMPREHENSION OF MULTIPLICATION AS APPLIED TO STORY PROBLEMS BY IDENTIFYING THE CORRECT ANSWER TO THE PROBLEM.

Don helped his father pack blueberries in crates. There were 18 crates with 24 pints of blueberries in each crate. How many pints of blueberries did they pack?

*a. 332
*b. 432
*c. 42

A peach orchard on Jerry's farm has 18 rows of trees with 16 trees in each row. How many peach trees are in the orchard?

*a. 288
*b. 248
*c. 126

The paper boy collects $2.45 every month from each of his 87 customers. How much money does he collect in one month?

*a. $36.75
*b. $213.15
*c. $177.85
Mrs. Steele bought thirty-five cots for her day nursery. Each cot cost $8.79. How much did the cots cost all together?

- a. $70.32
- b. $295.65
- **c. $307.65**

Fifty new dictionaries were bought for Jean's school. Each dictionary cost $2.75. What was the total cost of the dictionaries?

- a. $135.50
- **b. 137.50.**
- c. $13.75

A newsstand receives 175 newspapers each day. How many newspapers are delivered to the newsstand in 310 days?

- **a. 54,250**
- b. 7,000
- c. 6,900

Nine hundred seven adult tickets were sold for the senior play. Each ticket cost $1.25. How much money was received from the sale of the adult tickets?

- a. $323.75
- b. $121.25
- **c. $1133.75**

The planes of one airline made 750 trips between two cities in one year. The cities were 930 air miles apart. How many miles did these planes fly between the two cities?

- **a. 697,500**
- b. 69,750
- c. 90,000
The drugstore in the West Side Plaza has an average of 537 customers each day. Last year, it was open 359 days. About how many customers visited the store last year?

a. 47,793
*b. 192,783
 c. 9,129

At one store, play tents sold for $3.98 each. During one season, 236 tents were sold. What was the total amount of money collected from the sale of play tents?

a. $909.28
b. $202.88
*c. $939.28

GIVEN A LIST OF MULTIPLICATION PROBLEMS, THE STUDENT WILL APPLY HIS KNOWLEDGE OF MULTIPLYING POSITIVE AND NEGATIVE NUMBERS BY EITHER SELECTING THOSE WHICH HAVE A POSITIVE PRODUCT OR THOSE WHICH HAVE A NEGATIVE PRODUCT.

Directions: If the equation has a positive product circle P, if a negative product circle N.

P N -3 x + 2
 N +4 x +6
 P -7 x +6
 N -8 x -9
 N +3 x +4
 P +2 x -1
GIVEN A STORY PROBLEM, THE STUDENT WILL DEMONSTRATE UNDERSTANDING OF MULTIPLICATION OF POSITIVE AND NEGATIVE NUMBERS BY CORRECTLY SELECTING THE EQUATION USED.

Directions: From your knowledge of the postman story, select the equation described below.

The postman brought 3 checks for $3.00 each.

* a. +3 x +3
 b. +3 x -3
 c. -3 x +3
 d. -3 x -3

The postman brought 2 bills for $8.00 each.

 a. +2 x +8
 b. -2 x +8
* c. +2 x -8
 d. -2 x -8
The postman made an error yesterday, today he took away 4 checks for $5.00 each.

a. 4×-5
*b. $-4 \times +5$
 c. -4×-5
 d. $+4 \times -5$

The postman brought 4 bills for $6.00 each.

a. $-4 \times +6$
 b. $+4 \times +6$
 *c. $+4 \times -6$
 d. -4×-6

The postman made an error yesterday, today he took away 2 bills for $7.00 each.

a. $+2 \times -7$
 b. $-2 \times +7$
 c. $+2 \times +7$
 *d. -2×-7

The postman brought 3 checks for $1.00 each.

a. $+3 \times -1$
 *b. $+3 \times +1$
 c. -3×-1
 d. $-3 \times +1$

Source: Dr. A. Hart.
WHOLE NUMBER DIVISION
THE STUDENT WILL DEMONSTRATE AN UNDERSTANDING OF THE RELATIONSHIP BETWEEN DIVISION AND REPEATED SUBTRACTION BY IDENTIFYING THE NUMBER OF TIMES A GIVEN DIVISOR CAN BE SUBTRACTED FROM A GIVEN DIVIDEND.

How many times can 3 be subtracted from 42?

- a. 7
- b. 14
- c. 13

How many times can 6 be subtracted from 24?

- a. 4
- b. 6
- c. 8

How many times can 4 be subtracted from 28?

- a. 7
- b. 6
- c. 8

How many times can 9 be subtracted from 72?

- a. 7
- b. 9
- c. 8

How many times can 7 be subtracted from 49?

- a. 8
- b. 5
- c. 7
How many times can 5 be subtracted from 75?

*a. 15
b. 10
c. 7

How many times can 10 be subtracted from 90?

a. 8
b. 7
*c. 9

How many times can 9 be subtracted from 63?

a. 8
*b. 7
c. 6

How many times can 8 be subtracted from 40?

*a. 5
b. 4
c. 7

How many times can 6 be subtracted from 54?

a. 8
b. 7
*c. 9

THE STUDENT WILL VIEW THE OPERATION OF REPEATED SUBTRACTION IN RELATIONSHIP TO DIVISION BY IDENTIFYING A CORRECTLY FORMULATED DIVISION EQUATION.
If you can subtract 32 from 4 eight times, this tells you that

a. $4 \times 8 = 32$

*b. $32 \div 4 = 8$

c. $32 \div 8 = 4$

If you can subtract 56 from 8 seven times, this tells you that

*a. $56 \div 8 = 7$

b. $56 \div 7 = 8$

c. $8 \times 7 = 56$

If you can subtract 30 from 5 six times, this tells you that

*a. $30 \div 5 = 6$

b. $6 \times 5 = 30$

c. $30 \div 6 = 5$

If you can subtract 261 from 87 three times, this tells you that

a. $261 \div 3 = 87$

*b. $261 \div 87 = 3$

c. $3 \times 87 = 261$

If you can subtract 45 from 135 three times, this tells you that

a. $135 \div 3 = 45$

b. $3 \times 45 = 135$

*c. $135 \div 45 = 3$

If you can subtract 304 from 76 four times, this tells you that

a. $76 \times 4 = 304$

b. $304 \div 4 = 76$

*c. $304 \div 76 = 4$
If you can subtract 92 from 239 twice, with a number remaining, this tells you that

- a. \(239 = (2 \times 92) + 55 \)
- b. \(239 \div 55 = 92 \)
- c. \(239 \div 92 = 2 \)
- d. \(239 \div 92 = 2 \text{ r. } 55 \)

If you can subtract 87 from 522 six times, this tells you that

- a. \(522 \div 6 = 87 \)
- b. \(522 \div 87 = 6 \)
- c. \(87 \times 6 = 522 \)

If you can subtract 95 from 415 four times with a number remaining, this tells you that

- a. \(415 \div 95 = 4 \text{ r. } 35 \)
- b. \(415 = (4 \times 95) + 35 \)
- c. \(415 \div 4 = 95 \text{ r. } 35 \)
- d. \(415 \div 95 = 4 \)

If you can subtract 52 from 281 five times with a number remaining, this tells you that

- a. \(281 = (5 \times 52) + 21 \)
- b. \(281 \div 5 = 52 \)
- c. \(281 \div 52 = 5 \text{ r. } 21 \)
- d. \(281 \div 5 = 52 + 21 \)

THE STUDENT CAN APPLY HIS KNOWLEDGE OF THE PROPERTIES OF DIVISION TO SOLVE PROBLEMS WITH MULTIPLE DIGITS IN THE DIVIDEND OR DIVISOR OR IN BOTH.
The answer to a division problem is called

- dividend
- divisor
- remainder
- quotient

Division problems can be expressed in different ways. Which of these is not division?

- a. $3)99$
- b. $99 \div 3 = n$
- c. $n \times 3 = 99$
- d. $\frac{99}{n} = 3$
- *e. $\frac{n}{99}$

If you know the number of elements in each set and the total number of elements, what must you do to find the number of equivalent sets?

- a. add
- b. subtract
- c. multiply
- *d. divide

Find the quotient $\frac{2842}{7}$

- a. 406
- b. 46
- c. 45 r 6
- d. 405 r 6

Solve for the unknown $\frac{535}{5} = \square$

- a. 17
- *b. 107
- c. 16
- d. 106

327

333
Solve \(\frac{436}{4} = \square \)

a. \(18 \text{ r } 4 \)
b. \(19 \)
c. \(108 \)
d. \(109 \)

Solve \(\square = 648 \div 8 \)

*a. \(81 \)
b. \(810 \)
c. \(90 \)
d. \(801 \)

Solve \(\square = \frac{810}{9} \)

a. \(9 \)
b. \(99 \)
c. \(90 \)
d. \(109 \)

Solve by division \(6 \div 162 \)

*a. \(27 \)
b. \(12 \)
c. \(26 \)
d. \(32 \)

Solve for the quotient \(\frac{462}{7} \)

a. \(68 \)
b. \(56 \)
c. \(76 \)
d. \(66 \)

Solve \((24 \div 8) \div 1 = n \)

n = a. \(1 \)
b. \(2 \)
c. \(3 \)
d. \(4 \)
Solve \[(54 \div 6) \div 3 = n\]

\[n = \]

\[\text{a. } 3\]
\[\text{b. } 2\]
\[\text{c. } 1\]
\[\text{d. } 0\]

\[54 \div (6 \div 3) = n\]

\[n = \]

\[\text{a. } 3\]
\[\text{b. } 2\]
\[\text{c. } 8\]
\[\text{d. } 27\]

\[(48 \div (6 \div 2)) = n\]

\[n = \]

\[\text{a. } 3\]
\[\text{b. } 6\]
\[\text{c. } 12\]
\[\text{d. } 16\]

\[72 \div (9 \div 3) = n\]

\[n = \]

\[\text{a. } 8\]
\[\text{b. } 24\]
\[\text{c. } 27\]
\[\text{d. } 34\]

\[876 \div 6 = \]

\[\]

\[\text{a. } 129\]
\[\text{b. } 136\]
\[\text{c. } 146\]
\[\text{d. } 148\]

\[= 630 \div 6\]

\[\text{a. } 105\]
\[\text{b. } 15\]
\[\text{c. } 16\]
\[\text{d. } 106\]
THE STUDENT RECALLS THE PROPERTIES OF DIVISION BY SELECTING THE PROPERTY IN A GIVEN ILLUSTRATION.

Division has

* a. identity element of one
 b. commutative properties
 c. identity element of zero
 d. associative properties

Division is the inverse operation of ____________.

 a. addition
 b. subtraction
 *c. multiplication
 d. mathematics

When one factor and the product are the same, the other factor is ____________.

 a. same
 b. other
 *c. one
 d. product

If zero is the product we know one of the factors is ____________.

 a. one
 b. any number
 *c. zero
 d. impossible to know
If one is a factor, the other factor and the product will be.

\[\text{a. the opposite} \]
\[\text{b. one} \]
\[\text{c. zero} \]
\[\text{d. the same} \]

When we know the number of equivalent subsets in a given set we can find the

\[\text{a. elements in each subset} \]
\[\text{b. product of all subsets} \]
\[\text{c. number of subsets} \]
\[\text{d. cardinal number of the set} \]

Given the equation \((a + b) \div c = (a \div c) + (b \div c)\) tells us division is usually

\[\text{a. associative} \]
\[\text{b. commutative} \]
\[\text{c. distributive} \]

Which term does not belong to the language of division?

\[\text{a. subtrahend} \]
\[\text{b. divisor} \]
\[\text{c. dividend} \]
\[\text{d. quotient} \]

Division is not closed because often you have a

\[\text{a. remainder} \]
\[\text{b. quotient} \]
\[\text{c. divisor} \]
\[\text{d. dividend} \]
The number sentences \(a \div b = q + r, (q \times b) + r, \text{ or } a - (q \times b) = r \) tells us "a"

- a. is an even whole number
- b. is an odd whole number
- c. cannot be divided evenly
- d. is the remainder

If \(a \times b = c \) is a true statement, then it can also be written

- a. \(a + b = c \)
- b. \(c - a = b \)
- c. \(c \div a = b \)
- d. \(a \div c = b \)

7 \(\div 0 = \)

- a. 0
- b. 7
- c. 1
- d. no answer

What operation can you use to find the number of equivalent disjoint subsets of 6 elements each formed from a set of 54 elements?

- a. addition
- b. subtraction
- c. multiplication
- d. division

Using the distributive property of division over addition, \(360 \div 8 \) would be

- a. \((320 + 40) \div 8 \)
- b. \((360 - 40) \div 8 \)
- c. \((360 \times 40) \div 8 \)
- d. \((360 \div 8) + 40 \)
Circle the equation which correctly completes the open sentence $56 \div 8 = N$

a. $56 \div 8 = 70$
*b. $56 \div 8 = 7$
c. $56 \div 8 = 9$

Circle the equation which correctly completes the open sentence $400 \div 5 = N$

*a. $400 \div 5 = 80$
b. $400 \div 5 = 8$
c. $400 \div 5 = 800$

Circle the equation which correctly completes the open sentence $270 \div 3 = N$

*b. $270 \div 3 = 90$
b. $270 \div 3 = 9$
c. $270 \div 3 = 900$

Circle the equation which correctly completes the open sentence $5400 \div 9 = N$

a. $5400 \div 9 = 60$
b. $5400 \div 9 = 6$
*c. $5400 \div 9 = 600$

Circle the equation which correctly completes the open sentence $490 \div 7 = N$

a. $490 \div 7 = 700$
*b. $490 \div 7 = 70$
c. $490 \div 7 = 7$
Circle the equation which correctly completes the open sentence
2400 ÷ 6 = N

*a. 2400 ÷ 6 = 400
b. 2400 ÷ 6 = 40
c. 2400 ÷ 6 = 4

Circle the equation which correctly completes the open sentence
210 ÷ 7 = N

*a. 210 ÷ 7 = 300
b. 210 ÷ 7 = 30
c. 210 ÷ 7 = 3

Circle the equation which correctly completes the open sentence
240 ÷ 60 = N

*a. 240 ÷ 60 = 40
b. 240 ÷ 60 = 400
c. 240 ÷ 60 = 4

Circle the equation which correctly completes the open sentence
1800 ÷ 20 = N

*a. 1800 ÷ 20 = 900
b. 1800 ÷ 20 = 90
*c. 1800 ÷ 20 = 90

Circle the equation which correctly completes the open sentence
2700 ÷ 30 = N

*a. 2700 ÷ 30 = 90
b. 2700 ÷ 30 = 90
*c. 2700 ÷ 30 = 900

Source: Discovering Math, Merrill, p. 42.
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF THE BASIC FACTS OF DIVISION BY RECALLING THE CORRECT QUOTIENT FROM A GROUP OF QUOTIENTS, WHEN GIVEN THE DIVIDEND AND DIVISOR.

Circle the correct quotient for the fact: $63 \div 7 = N$

a. 8
b. 7
*c. 9

Circle the correct quotient for the fact: $72 \div 9 = N$

*a. 8
b. 9
c. 6

Circle the correct quotient for the fact: $35 \div 7 = N$

*a. 5
b. 7
c. 6

Circle the correct quotient for the fact: $49 \div 7 = N$

a. 8
*b. 7
c. 9

Circle the correct quotient for the fact: $32 \div 4 = N$

a. 7
*b. 8
c. 6
Circle the correct quotient for the fact: \(24 \div 6 = N \)

- a. 6
- b. 4
- c. 8

Circle the correct quotient for the fact: \(0 \div 5 = N \)

- a. 0
- b. 5
- c. 1

Circle the correct quotient for the fact: \(27 \div 3 = N \)

- a. 7
- b. 3
- c. 9

Circle the correct quotient for the fact: \(56 \div 8 = N \)

- a. 8
- b. 9
- c. 7

Circle the correct quotient for the fact: \(25 \div 5 = N \)

- a. 5
- b. 6
- c. 4

Circle the correct quotient for the fact: \(36 \div 4 = N \)

- a. 6
- b. 9
- c. 5
Circle the correct quotient for the fact: \(32 \div 8 = N\)
- a. 3
- b. 9
- *c. 4

Circle the correct quotient for the fact: \(45 \div 9 = N\)
- *a. 5
- b. 4
- c. 6

Circle the correct quotient for the fact: \(42 \div 6 = N\)
- a. 6
- b. 9
- *c. 7

Circle the correct quotient for the fact: \(64 \div 8 = N\)
- a. 9
- *b. 8
- c. 6

Circle the correct quotient for the fact: \(40 \div 5 = N\)
- a. 6
- b. 9
- *c. 8

Circle the correct quotient for the fact: \(54 \div 9 = N\)
- *a. 6
- b. 8
- c. 7
Circle the correct quotient for the fact: $45 \div 5 = N$

- a. 9
- b. 6
- c. 8

Circle the correct quotient for the fact: $15 \div 5 = N$

- a. 1
- b. 5
- c. 3

Circle the correct quotient for the fact: $20 \div 5 = N$

- a. 5
- b. 4
- c. 3

Circle the correct quotient for the fact: $28 \div 7 = N$

- a. 3
- b. 9
- c. 4

Circle the correct quotient for the fact: $48 \div 8 = N$

- a. 6
- b. 8
- c. 5

Circle the correct quotient for the fact: $21 \div 7 = N$

- a. 4
- b. 3
- c. 2
Circle the correct quotient for the fact: \(5 \div 0 = N \)

*a. 5
b. 0
c. 1

Circle the correct quotient for the fact: \(30 \div 5 = N \)

a. 5
b. 7
*c. 6

Source: Merrill, Discovering Math, 2, p. 39.

THE STUDENT WILL ANALYZE A NUMBER LINE PRESENTING DIVISION WITH A REMAINDER BY CORRECTLY IDENTIFYING A FORMULATED DIVISION EQUATION.

Study the number line carefully. Circle the equation which is pictured on the number line.

\[
\begin{align*}
a. & \quad 14 \div 4 = 3 \\
*b. & \quad 14 \div 4 = 3r2 \\
c. & \quad 14 \div 3 = 4r2
\end{align*}
\]

Study the number line carefully. Circle the equation which is pictured on the number line.

\[
\begin{align*}
a. & \quad 9 \div 2 = 4 \\
*b. & \quad 9 \div 2 = 4r1 \\
c. & \quad 9 \div 4 = 2r1
\end{align*}
\]
Study the number line carefully. Circle the equation which is pictured on the number line.

\[a. \ 17 \div 6 = 5r2 \\
 b. \ 17 \div 6 = 5 \\
 c. \ 17 \div 6 = 2r5 \]

Study the number line carefully. Circle the equation which is pictured on the number line.

\[a. \ 13 \div 5 = 2r3 \\
 b. \ 13 \div 5 = 2 \\
 c. \ 13 \div 5 = 3r2 \]

Study the number line carefully. Circle the equation which is pictured on the number line.

\[a. \ 7 \div 3 = 2 \\
 b. \ 7 \div 3 = 3 \\
 c. \ 7 \div 3 = 3r1 \]

Study the number line carefully. Circle the equation which is pictured on the number line.

\[a. \ 19 \div 3 = 6r1 \\
 b. \ 19 \div 3 = 6 \\
 c. \ 19 \div 6 = 3 \]
Study the number line carefully. Circle the equation which is pictured on the number line.

*a. \(\frac{15}{5} \times 4 = 6 \times 3 \)
*b. \(\frac{15}{3} \times 3 = 4 \times 3 \)
*c. \(\frac{15}{4} \times 3 = 3 \)

Study the number line carefully. Circle the equation which is pictured on the number line.

*a. \(\frac{18}{6} \times 4 = 4 \times 2 \)
*b. \(\frac{18}{4} \times 4 = 4 \)
*c. \(\frac{18}{5} \times 4 = 4 \times 4 \)

Study the number line carefully. Circle the equation which is pictured on the number line.

*a. \(\frac{20}{3} \times 3 = 6 \)
*b. \(\frac{20}{6} \times 3 = 3 \)
*c. \(\frac{20}{3} \times 3 = 6 \times 2 \)

Study the number line carefully. Circle the equation which is pictured on the number line.

*a. \(\frac{8}{4} \times 1 = 5 \times 3 \)
*b. \(\frac{8}{5} \times 5 = 1 \times 3 \)
*c. \(\frac{8}{1} \times 1 = 8 \)

Source: Discovering Math 5, Merrill, p. 40.
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE RELATION SIGN AS A PREPARATION FOR DIVISION, BY IDENTIFYING A CORRECTLY FORMULATED EQUATION.

Choose the largest whole number that makes the sentence true.

\(N \times 5 \leq 48 \)

a. 6
*b. 9
c. 12

Choose the largest whole number that makes the sentence true.

\(N \times 9 \leq 78 \)

*a. 8
b. 9
c. 7

Choose the largest whole number that makes the sentence true.

\(N \times 6 \leq 45 \)

a. 6
b. 8
*c. 7

Choose the largest whole number that makes the sentence true.

\(N \times 8 \leq 55 \)

*a. 6
b. 7
c. 5
Choose the largest whole number that makes the sentence true.

\[N \times 6 \leq 287 \]

a. 30
b. 50
*c. 40

Choose the largest whole number that makes the sentence true.

\[N \times 9 \leq 55 \]

*a. 6
b. 8
c. 7

Choose the largest whole number that makes the sentence true.

\[N \times 3 \leq 294 \]

a. 80
b. 100
*c. 90

Choose the largest whole number that makes the sentence true.

\[N \times 5 \leq 144 \]

a. 70
*b. 80
c. 90

Choose the largest whole number that makes the sentence true.

\[N \times 7 \leq 4307 \]

*a. 600
b. 800
c. 700
Choose the largest whole number that makes the sentence true.

\[N \times 8 \leq 7732 \]

a. 800
b. 700
* c. 900

Source: Discovering Math. 5, Merrill, p. 78.

THE STUDENT WILL APPLY HIS KNOWLEDGE OF DIVISION WITH ONE-DIGIT DIVISORS WHERE THERE IS A REMAINDER IN THE QUOTIENT BY CORRECTLY IDENTIFYING QUOTIENTS.

Compute the problem carefully on paper. Circle the correct quotient below.

\[7)29 \]

*a. 4r1
b. 3r2
c. 4r2

Compute the problem carefully on paper. Circle the correct quotient below.

\[9)68 \]

a. 8r1
b. 7r3
* c. 7r5

Compute the problem carefully on paper. Circle the correct quotient below.

\[8)44 \]

a. 5r2
* b. 5r4
c. 7r2
Compute the problem carefully on paper. Circle the correct quotient below.

\[\begin{array}{c}
1727 \\
\underline{\times 7} \\
12099 \\
\underline{+ 73} \\
1727 \\
\end{array} \]

a. 73r7
b. 74r1
*c. 75r3

Compute the problem carefully on paper. Circle the correct quotient below.

\[\begin{array}{c}
97754 \\
\underline{\div 9} \\
8973 \\
\underline{+ 8} \\
97754 \\
\end{array} \]

*a. 83r7
b. 83r8
c. 93r2

Compute the problem carefully on paper. Circle the correct quotient below.

\[\begin{array}{c}
87487 \\
\underline{\div 8} \\
60r7 \\
\underline{+ 8} \\
87487 \\
\end{array} \]

a. 60r6
b. 80r7
*c. 60r7

Compute the problem carefully on paper. Circle the correct quotient below.

\[\begin{array}{c}
97293 \\
\underline{\div 9} \\
43r5 \\
\underline{+ 3} \\
97293 \\
\end{array} \]

*a. 43r5
b. 32r5
c. 32r5

Compute the problem carefully on paper. Circle the correct quotient below.

\[\begin{array}{c}
875030 \\
\underline{\div 8} \\
629r6 \\
\underline{+ 6} \\
875030 \\
\end{array} \]

*a. 628r6
b. 629r2
c. 628r4
Compute the problem carefully on paper. Circle the correct quotient below.

5) \[3641\]

- a. 727r6
- b. 728r3
* c. 728r1

Compute the problem carefully on paper. Circle the correct quotient below.

8) \[31254\]

* a. 3906r6
- b. 396r6
- c. 395r8

Source: Discovering Math. 5, Merrill, p. 78.
Elementary School Math 5, Addison-Wesley, pp. 107, 109, 113.

The student will analyze the renaming of a dividend by identifying the correctly renamed dividend.

In the problem 1296 \(\div 3\), the "1296" can be renamed

- a. 1200 + 96
* b. 1200 + 90 + 6
- c. 12 + 9 + 6

In the problem 936 \(\div 3\), the "936" can be renamed

* a. 900 + 30 + 6
- b. 93 + 6
- c. 90 + 36

In the problem 1869 \(\div 3\), the "1869" can be renamed

- a. 18 + 69
* b. 1800 + 60 + 9
- c. 186 + 9
In the problem $216 \div 7$, the "216" can be renamed

a. $210 + 6$
b. $200 + 16$
c. $200 + 10 + 6$

In the problem $427 \div 7$, the number "427" can be renamed

a. $400 + 20 + 7$
b. $400 + 27$
c. $420 + 7$

In the problem $328 \div 4$, the number "328" can be renamed

a. $320 + 8$
b. $300 + 20 + 8$
c. $300 + 28$

In the problem $186 \div 2$, the number "186" can be renamed

a. $100 + 80 + 6$
b. $18 + 86$
c. $180 + 6$

In the problem $6822 \div 2$, the number "6822" can be renamed

a. $6000 + 800 + 22$
b. $6000 + 800 + 2$
c. $6000 + 320 + 2$

In the problem $1569 \div 5$, the number "1569" can be renamed

a. $1500 + 60 + 9$
b. $150 + 69$
c. $1500 + 6 + 9$
In the problem 286 ÷ 2, the number "286" can be renamed.

- \(280 + 6\)
- \(200 + 80 + 6\)
- \(200 + 86\)

Source:
Merrill, Discovering Math, 2, p. 62

The student will demonstrate his understanding of a two-place divisor by identifying a correctly formulated equation.

Choose the largest whole number that makes the sentence true.

\[N \times 30 \leq 265\]

- a. 7
- b. 8
- c. 9

Choose the largest whole number that makes the sentence true.

\[N : 40 \leq 252\]

- a. 6
- b. 7
- c. 9

Choose the largest whole number that makes the sentence true.

\[N : 70 \leq 420\]

- a. 7
- b. 3
- c. 6

Choose the largest whole number that makes the sentence true.

\[N \times 50 \leq 273\]

- a. 5
- b. 3
- c. 4

354
Choose the largest whole number that makes the sentence true.

N x 70 \leq 654

*a. 9
b. 7
c. 8

Choose the largest whole number that makes the sentence true.

N x 40 \leq 314

a. 9
b. 8
*c. 7

Choose the largest whole number that makes the sentence true.

N x 90 \leq 360

*a. 4
b. 5
c. 3

Choose the largest whole number that makes the sentence true.

N x 50 \leq 487

a. 7
*b. 9
c. 8

Choose the largest whole number that makes the sentence true.

N x 90 \leq 731

*a. 8
b. 9
c. 7
Choose the largest whole number that makes the sentence true.

\[N \times 70 \leq 434 \]

* a. 6
 * b. 7
 * c. 9

Source: Merrill, Discovering Math. 5, p. 89, 88

The student will apply his knowledge of division with a two-place divisor ending in zero by identifying the correct quotient to a given problem.

Compute the problem on paper. Circle the correct quotient below.

\[70 \div 560 \]

* a. 8
 * b. 80
 * c. 7

Compute the problem on paper. Circle the correct quotient below.

\[40 \div 240 \]

* a. 60
 * b. 70
 * c. 6

Compute the problem on paper. Circle the correct quotient below.

\[60 \div 340 \]

* a. 7
 * b. 70
 * c. 9
Compute the problem on paper. Circle the correct quotient below.

50)200

a. 8
b. 4
* c. 40

Compute the problem on paper. Circle the correct quotient below.

60)480

*a. 8
b. 70
c. 7

Compute the problem on paper. Circle the correct quotient below.

40)287

a. 77
*b. 7 r 7
c. 70 r 7

Compute the problem on paper. Circle the correct quotient below.

90)830

a. 90 r 2
b. 92
*c. 9 r 20

Compute the problem on paper. Circle the correct quotient below.

70)674

a. 90 r 44
*b. 9 r 44
c. 94 r 4
Compute the problem on paper. Circle the correct quotient below.

\[
80)517 \\
\hline \\
\text{a. } 63 \text{ r } 7 \\
\text{b. } 60 \text{ r } 37 \\
\text{c. } 6 \text{ r } 37
\]

Source: Merrill, *Discovering Math*. 5, pp. 88 and 89.

THE STUDENT WILL APPLY HIS UNDERSTANDING OF DIVISION WITH A TWO-PLACE DIVISOR ENDING IN ZERO, WHEN PRESENTED IN A STORY PROBLEM BY IDENTIFYING THE CORRECT ANSWER TO THE PROBLEM.

There are 257 washers in a box. If 30 washers are put in each package, how many packages will there be? How many extra washers?

\[
\text{a. } 7 \text{ packages and } 47 \text{ washers.} \\
\text{b. } 81 \text{ packages and } 7 \text{ washers.} \\
\text{c. } 8 \text{ packages and } 17 \text{ washers.}
\]

463 baseball cards were divided among 70 boys. Each boy received the same number of cards. How many cards did each receive?

\[
\text{a. } 6 \\
\text{b. } 7 \\
\text{c. } 60
\]

There are 30 children in a class. The sum of all their spelling scores is 2610. Find the average score.

\[
\text{a. } 78 \\
\text{b. } 85 \\
\text{c. } 87
\]
A passenger coach on a train holds 70 people. In the year 1810, the population of the state of Michigan was 4,760. How many passenger coaches would have been needed to hold all of the people in the state of Michigan?

- a. 26
- *b. 68
- c. 93

If an auto averages 50 miles per hour, how long will it take to go 1,850 miles?

- *a. 37 hrs.
- b. 370 hrs.
- c. 39 hrs.

A bus holds 60 children. There are 645 children in a school. How many busses will be needed to take all the children to the zoo?

- a. 10 busses
- *b. 11 busses
- c. 11½ busses

There are 2,780 books in the school library. If each shelf holds 50 books, how many shelves will be needed?

- a. 50
- b. 45
- *c. 55

A man works 50 weeks in a year. If he earns $8,750 in a year, how much does he earn each week?

- a. $175
- *b. $175.00
- c. $115.00
Twenty children are filling candy boxes for the school fair. If they fill 800 boxes, how many did each child average?

*a. 40 boxes
b. 4 boxes
c. 400 boxes

Some snails can go 50 yards per hour. How many hours will it take a snail to go 495 yards?

a. 9 hrs.
b. 10 hrs.
c. almost 10 hrs.

Source: Addison-Wesley, Elementary School Math, 5, no. 117, 127.

THE STUDENT WILL DEMONSTRATE AN UNDERSTANDING OF ROUNDED OFF DIVISORS AS AN AID TO DIVISION BY IDENTIFYING A CORRECTLY ROUNDED DIVISOR.

In the problem 365 / 58, would you round 58 to

*a. 50
b. 60
*c. 55

In the problem 268 / 48, would you round 48 to

*a. 50
b. 45
c. 40

In the problem 201 / 29, would you round 29 to

*a. 30
b. 20
c. 25
In the problem 434 ÷ 67, would you round 67 to
 a. 65
 b. 60
 *c. 70

In the problem 643 ÷ 79, would you round the 79 to
 a. 70
 *b. 80
 c. 75

In the problem 453 ÷ 42, would you round the 42 to
 a. 50
 b. 45
 *c. 40

In the problem 990 ÷ 43, would you round the 43 to
 *a. 40
 b. 50
 c. 30

In the problem 506 ÷ 97, would you round the 97 to
 *a. 100
 b. 90
 c. 95

In the problem 214 ÷ 49, would you round the 49 to
 a. 45
 b. 40
 *c. 50
In the problem 253 ÷ 53, would you round the 53 to

*a. 50
b. 60
c. 55

Source: Merrill, Discovery Math. 5, p. 91

THE STUDENT WILL APPLY HIS KNOWLEDGE OF DIVIDING WITH A TWO-PLACE DIVISOR BY IDENTIFYING THE MISSING FACTOR IN AN EQUATION.

In the open sentence 241 = (26x9) + N, the "N" is

*a. 7
b. 4
c. 6

In the open sentence 187 = (Nx7) + 5, the "N" is

a. 24
b. 30
*c. 26

In the open sentence 380 = (Nx31) + 8, the "N" is

*a. 12
b. 11
c. 8

In the open sentence 262 = (43x6) + N, the "N" is

*a. 3
*b. 4
*c. 5
In the open sentence $2,073 = (32 \times 64) + N$, the "N" is
\begin{itemize}
 \item a. 35
 \item b. 20
 \item *c. 25
\end{itemize}

In the open sentence $333 = (N \times 4) + 1$, the "N" is
\begin{itemize}
 \item *a. 83
 \item b. 81
 \item c. 84
\end{itemize}

In the open sentence $1,894 = (N \times 54) + 4$, the "N" is
\begin{itemize}
 \item a. 30
 \item b. 25
 \item *c. 35
\end{itemize}

In the open sentence $294 = (5 \times 58) + N$, the "N" is
\begin{itemize}
 \item a. 3
 \item *b. 4
 \item c. 5
\end{itemize}

In the open sentence $3,222 = (76 \times 42) + N$, the "N" is
\begin{itemize}
 \item a. 20
 \item b. 35
 \item *c. 30
\end{itemize}

In the open sentence $1,789 = (N \times 81) + 7$, the "N" is
\begin{itemize}
 \item *a. 22
 \item b. 23
 \item c. 32
\end{itemize}

THE STUDENT WILL APPLY HIS KNOWLEDGE OF DIVIDING WITH A TWO-PLACE Divisor BY CORRECTLY IDENTIFYING THE Quotients TO GIVEN PROBLEMS.

Compute the problem on paper. Circle the correct quotient below.

59)253

a. 41 r 7
b. 40 r 17
*c. 4 r 17

Compute the problem on paper. Circle the correct quotient below.

88)723

*a. 8 r 19
b. 81 r 9
c. 8 r 29

Compute the problem on paper. Circle the correct quotient below.

49)214

*a. 4 r 18
b. 41 r 8
c. 4 r 8

Compute the problem on paper. Circle the correct quotient below.

79)643

*a. 81 r 1
*b. 8 r 11
c. 8 r 12

Compute the problem on paper. Circle the correct quotient below.

98)724

a. 7 r 28
b. 8 r 8
*c. 7 r 38
Compute the problem on paper. Circle the correct quotient below.

1737

\[73 \overline{)4563} \]

a. 623 r 7
b. 62 r 37
c. 62 r 7

1738

\[53 \overline{)4937} \]

* a. 93 r 8
 b. 92 r 18
 c. 93 r 18

1739

\[92 \overline{)2147} \]

* a. 23 r 31
 b. 231 r 1
 c. 23 r 3

1740

\[72 \overline{)1498} \]

a. 20 r 59
 b. 21 r 8
* c. 20 r 58

1741

\[63 \overline{)5740} \]

a. 91 r 17
* b. 91 r 7
 c. 9 r 17

Source: Merrill, Discovering Math. 5, p. 99.
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF AN EXACT QUOTIENT BY IDENTIFYING A CORRECT QUOTIENT WITH A FRACTIONAL REMAINDER.

Seven cup cakes are to be shared equally by two boys. Each boy will receive

- a. 4 cupcakes
- *b. 3½ cupcakes
- c. 2 1/3 cupcakes

Seven small pies are to be shared equally by 3 girls. Each girl will receive

- *a. 2 1/3 pies
- b. 3 1/2 pies
- c. 2 1/2 pies

8 candy bars are to be shared equally by 3 boys. Each boy will receive

- a. 2 1/3 bars
- b. 2 1/2 bars
- *c. 2 2/3 bars

Five boys are to share 12 sheets of art paper. Each boy will receive

- *a. 2 2/5
- b. 2 1/5
- c. 2 1/12

Fourteen cookies are to be equally divided among 3 girls. Each girl will receive

- a. 4 1/2 cookies
- b. 4 2/14 cookies
- *c. 4 2/3 cookies
Five cupcakes are to be equally divided among 4 girls. Each girl will receive

a. 1 1/5 cupcake
*b. 1 1/4 cupcake
 c. 1 1/2 cupcake

Twenty-five strings of licorice are to be equally divided between 2 boys. Each boy will receive

*a. 12 1/2 strings
b. 12 1/12 strings
c. 12 1/4 strings

Ten bars of candy are to be divided equally between 3 girls. Each girl will receive

a. 3 2/3
b. 3 1/2
*c. 3 1/3

Twenty-four doughnuts are to be shared equally by 16 boys. Each boy will receive

a. 2 1/2 doughnuts
b. 1 1/4 doughnuts
*c. 1 1/2 doughnuts

Twelve yards of material is to be shared by 8 girls equally. Each girl will receive

a. 1 1/8 yards
*b. 1 1/2 yards
c. 1 1/12 yards

Source: Harcourt, Brace, Elementary Math. 5, p. 308
THE STUDENT WILL ANALYZE SITUATIONS REGARDING A DIVISOR IN THE LIGHT OF THE PRACTICALITY OF DIVIDING THE REMAINDER INTO FRACTIONAL PARTS, BY IDENTIFYING A SITUATION WHERE THE REMAINDER SHOULD NOT BE DIVIDED.

In which situation described below would it NOT make sense to divide the remainder?

a. 5 cupcakes shared by 2 boys
*b. 10 roses shared by 3 girls
c. 24 doughnuts shared by 16 boys

In which situation described below would it NOT make sense to divide the remainder?

a. $21.00 shared by 6 boys
b. 10 cupcakes shared by 3 girls
*c. 16 theater tickets shared by 5 girls

In which situation described below would it NOT make sense to divide the remainder?

a. 12 yds. of material shared by 8 girls
b. 4 bars of candy shared by 3 boys
*c. 50% shared by 8 girls

In which situation described below would it NOT make sense to divide the remainder?

*a. 25¢ shared by 3 boys
b. 17 doughnuts shared by 4 boys
c. 5 bars of candy shared by 3 girls

In which situation described below would it NOT make sense to divide the remainder?

*a. 15 in. ribbon cut into 2 pieces
b. 7 marbles divided among 3 boys
c. 16 oz. orange juice divided among 5 boys
In which situation described below would it NOT make sense to divide the remainder?

a. 3 packs of gum divided among 3 girls
b. 3 ice cream bars divided between 2 girls
*c. 37 children divided into 2 groups

In which situation described below would it NOT make sense to divide the remainder?

*a. 5 books divided among 4 boys
b. 25 pieces of candy divided among 3 girls
c. 17 cookies divided among 4 boys

In which situation described below would it NOT make sense to divide the remainder?

*a. 12 baseballs divided among 5 boys
b. $15.00 divided among 4 girls
c. 7 candy bars divided among 3 girls

In which situation described below would it NOT make sense to divide the remainder?

a. 21 doughnuts divided among 4 boys
*b. 17 boys divided into 3 teams
c. $17.00 divided among 4 girls

In which situation described below would it NOT make sense to divide the remainder?

a. 3 ice cream bars divided between 2 girls
b. 10 yds. of ribbon divided among 4 girls
*c. 7 baseball bats divided between 2 teams

Source: Harcourt, Brace, Elementary Math. 5, p. 310
THE STUDENT WILL APPLY HIS KNOWLEDGE OF FRACTIONS USED AS REMAINDERS IN DIVISION BY CORRECTLY IDENTIFYING GIVEN QUOTIENTS.

Compute the following problem. Circle the correct quotient below.

24)1236

a. 51 3/4
*b. 51 1/2
c. 51 12/24

Compute the following problem. Circle the correct quotient below.

40)1490

a. 37 1/2
b. 37 10/37
*c. 37 1/4

Compute the following problem. Circle the correct quotient below.

16)1324

a. 82 12/16
*b. 82 3/4
c. 82 16/12

Compute the following problem. Circle the correct quotient below.

45)1685

*a. 37 4/9
b. 37 20/45
c. 37 4/5

Compute the following problem. Circle the correct quotient below.

54)3357

a. 62 1/7
b. 62 9/54
*c. 62 1/6
Compute the following problem. Circle the correct quotient below. 1767

\[
\frac{27}{21} \overline{1584}
\]

a. 58 \(\frac{27}{18} \)
*b. 58 \(\frac{2}{3} \)
 c. 58 \(\frac{18}{27} \)

Compute the following problem. Circle the correct quotient below. 1768

\[
\frac{25}{21} \overline{1220}
\]

*a. 48 \(\frac{4}{5} \)
b. 48 \(\frac{25}{20} \)
 c. 48 \(\frac{20}{25} \)

Compute the following problem. Circle the correct quotient below. 1769

\[
\frac{56}{42} \overline{1296}
\]

a. 23 \(\frac{1}{9} \)
b. 23 \(\frac{8}{23} \)
 *c. 23 \(\frac{1}{7} \)

Compute the following problem. Circle the correct quotient below. 1770

\[
\frac{42}{72} \overline{1785}
\]

a. 42 \(\frac{21}{42} \)
*b. 42 \(\frac{1}{2} \)
 c. 42 \(\frac{1}{3} \)

Compute the following problem. Circle the correct quotient below. 1771

\[
\frac{72}{132} \overline{132}
\]

*a. 18 \(\frac{1}{2} \)
b. 18 \(\frac{36}{72} \)
 c. 18 \(\frac{1}{3} \)

Source: Merrill, Discovery Math. 5, p. 222.
THE STUDENT WILL DEMONSTRATE HIS COMPREHENSION OF THE PARTS OF A
DIVISION PROBLEM BY IDENTIFYING SPECIFIC PARTS FROM A GIVEN EXAMPLE.

Directions: Circle the correct answer.

34) \[\frac{640}{340} \]
\[\frac{300}{272} \]
\[\frac{28}{8} \]

The quotient for this example is
a. \(28 \div 18\)
b. \(18 \div 28\)
c. \(10 \div 28\)

30) \[\frac{392}{300} \]
\[\frac{92}{20} \]
\[\frac{13}{2} \]

The remainder for this example is
a. 392
b. 13
c. 2

25) \[\frac{782}{750} \]
\[\frac{32}{25} \]
\[\frac{1}{31} \]

The dividend for this example is
a. 25
b. 782
c. 31
The divisor for this example is
\[\frac{a. 863}{b. 44} \]
\[c. 63 \]

The remainder in this example is
\[*a. 13 \]
\[b. 17 \]
\[c. 56 \]

The quotient in this example is
\[*a. 25 r 1 \]
\[b. 1 r 25 \]
\[c. 33 \]
The remainder in this example is

a. 7
b. 17
*c. 6

The divisor in this example is

a. 29
*b. 23
c. 13

The quotient in this example is

a. 100 r 4
b. 4 r 100
*c. 10 r 4

WHOLE NUMBER MULTIPLICATION AND DIVISION
THE STUDENT WILL ANALYZE AREAS SHOWING DIVISION AS THE INVERSE OF MULTIPLICATION BY CORRECTLY IDENTIFYING NUMBER SENTENCES FROM A LIST.

Study the following division array, and choose the number sentence that describes it.

\[\begin{align*}
\text{a. } 18 \div 3 &= 6 \\
\text{b. } 18 \div 6 &= 3 \\
\text{c. } 6 \div 3 &= 2 \\
\end{align*} \]

Study the following division array, and choose the number sentence that describes it.

\[\begin{align*}
\text{a. } 4 \times 5 &= 20 \\
*\text{b. } 20 \div 4 &= 5 \\
\text{c. } 20 \div 5 &= 4 \\
\end{align*} \]

Study the following division array, and choose the number sentence that describes it.

\[\begin{align*}
*\text{a. } 28 \div 7 &= 4 \\
\text{b. } 28 \div 4 &= 7 \\
\text{c. } 4 \times 7 &= 28 \\
\end{align*} \]

Study the following division array, and choose the number sentence that describes it.

\[\begin{align*}
\text{a. } 3 \times 4 &= 12 \\
*\text{b. } 12 \div 4 &= 3 \\
\text{c. } 12 \div 3 &= 4 \\
\end{align*} \]
Study the following division array and choose the number sentence that describes it.

a. $15 \div 5 = 3$

b. $3 \times 5 = 15$

c. $15 \div 3 = 5$

Study the following division array and choose the number sentence that describes it.

*a. $21 \div 7 = 3$

b. $21 \div 3 = 7$

c. $3 \times 7 = 21$

Study the following division array and choose the number sentence that describes it.

*a. $30 \div 5 = 6$

b. $30 \div 6 = 5$

c. $5 \times 6 = 30$

Study the following division array and choose the number sentence that describes it.

a. $2 \times 7 = 14$

*b. $14 \div 2 = 7$

c. $14 \div 7 = 2$
Study the following division array and choose the number sentence that describes it.

\[\begin{array}{ll}
\text{a. } 2 \times 5 & = 10 \\
\text{b. } 10 \div 5 & = 2 \\
\text{c. } 10 \div 2 & = 5 \\
\end{array} \]

Circle the statement below which is NOT true.

\[\begin{array}{ll}
\text{a. Division is the inverse of multiplication.} \\
\text{b. Division is repeated subtraction.} \\
\text{c. Division is the opposite of addition.} \\
\end{array} \]

Source: Merrill, *Discovering Math. 5*, pg. 37.

\[\text{The student will apply his knowledge of division as the inverse of multiplication by identifying sentences related to a given division sentence.} \]

Circle the number sentence below which is related to the following sentence: \(56 \div 8 = 7 \).

\[\begin{array}{ll}
\text{a. } 56 \times 1 & = 56 \\
\text{b. } 2 \times 28 & = 56 \\
\text{c. } 8 \times 7 & = 56 \\
\end{array} \]

Circle the number sentence below which is related to the division sentence \(54 \div 9 = 6 \).

\[\begin{array}{ll}
\text{a. } 27 \times 2 & = 54 \\
\text{b. } 9 \times 6 & = 54 \\
\text{c. } 3 \times 18 & = 54 \\
\end{array} \]
Circle the number sentence below which is related to the division sentence 63 ÷ 9 = 7.

a. 3 x 21 = 63
b. 21 x 3 = 63
* c. 9 x 7 = 63

Circle the number sentence below which is related to the division sentence 24 ÷ 6 = 4.

*a. 6 x 4 = 24
b. 3 x 8 = 24
c. 2 x 12 = 24

Circle the number sentence below which is related to the division sentence 40 ÷ 5 = 8.

a. 2 x 20 = 40
b. 4 x 10 = 40
*c. 5 x 8 = 40

Circle the number sentence below which is related to the division sentence 48 ÷ 8 = 6.

a. 4 x 12 = 48
*b. 6 x 8 = 48
c. 2 x 24 = 48

Circle the number sentence below which is related to the division sentence 32 ÷ 4 = 8.

*a. 8 x 4 = 32
b. 2 x 16 = 32
c. 1 x 32 = 32

Circle the number sentence below which is related to the division sentence 72 ÷ 9 = 8.

a. 4 x 18 = 72
*b. 9 x 8 = 72
c. 3 x 24 = 72

373
Circle the number sentence below which is related to the division sentence $36 ÷ 4 = 9$.

- a. $12 \times 3 = 36$
- b. $6 \times 6 = 36$
- *c. $9 \times 4 = 36$

Circle the number sentence below which is related to the division sentence $45 ÷ 5 = 9$.

- a. $3 \times 15 = 45$
- b. $1 \times 45 = 45$
- *c. $9 \times 5 = 45$

Source: Merrill, Discovering Math. 5, pg. 76.

The student will apply his knowledge that multiplication is the inverse of division by computing division problems using zero.

Directions: Solve the following division problems to find n. Apply your knowledge that multiplication is the inverse of division.

$9 ÷ 0 = n$

- a. any whole number
- b. 1
- *c. 0
- d. no solution

$5 ÷ 0 = n$

- a. any whole number
- b. 5
- c. 0
- *d. no solution
0 ÷ 5 = n
a. any whole number
*b. 0
c. 5
d. no solution

THE STUDENT WILL VIEW THE RELATIONSHIP BETWEEN MULTIPLICATION AND DIVISION BY IDENTIFYING THE CORRECTLY FORMULATED EQUATION.

If 4 x 9 = 36, and 36 ÷ 9 = 4, then 36 ÷ 4 =

*a. 4
*b. 9
c. 36

If 6 x 3 = 18, and 18 ÷ 3 = 6, then 18 ÷ 6 =

*a. 3
b. 6
c. 18

If 3 x 5 = 15, and 15 ÷ 3 = 5, then 15 ÷ 5 =

*a. 5
*b. 3
c. 15

If 6 x 4 = 24, and 24 ÷ 6 = 4, then 24 ÷ 4 =

*a. 6
b. 4
c. 24
If $8 \times 6 = 48$, and $48 \div 6 = 8$, then $48 \div 8 =$

- a. 8
- b. 48
- *c. 6

If $5 \times 4 = 20$, and $20 \div 4 = 5$, then $20 \div 5 =$

- *a. 4
- b. 5
- c. 20

If $9 \times 7 = 63$, and $63 \div 7 = 9$, then $63 \div 9 =$

- a. 9
- b. 63
- *c. 7

If $9 \times 6 = 54$, and $54 \div 9 = 6$, then $54 \div 6 =$

- a. 6
- *b. 9
- c. 54

If $7 \times 3 = 21$, and $21 \div 7 = 3$, then $21 \div 3 =$

- a. 3
- b. 21
- *c. 7

If $5 \times 8 = 40$, and $40 \div 5 = 8$, then $40 \div 8 =$

- *a. 5
- b. 40
- c. 8

Source: Discovering Math. 5, Merrill, p. 76.
THE STUDENT WILL VIEW THE RELATIONSHIP BETWEEN MULTIPLICATION AND DIVISION WITH TWO-PLACE FACTORS, BY IDENTIFYING THE CORRECTLY FORMULATED QUOTIENT.

If \(40 \times 80 = 3200\), then \(3200 \div 80 = \)

a. 4
b. 400
* c. 40

If \(80 \times 60 = 4800\), then \(4800 \div 60 = \)

* a. 80
b. 8
c. 800

If \(90 \times 90 = 8100\), then \(8100 \div 90 = \)

a. 9
* b. 90
c. 900

If \(90 \times 50 = 4500\), then \(45 \div 50 = \)

a. 500
* b. 90
c. 9

If \(70 \times 70 = 4900\), then \(4900 \div 70 = \)

a. 700
b. 7
* c. 70
If $32 \times 81 = 2592$, then $2592 \div 81 = \text{ ?}$

- a. 3200
- b. 320
- c. 32

Source: Merrill, Discovering Math. 2, pp. 97 & 99.

THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF DIVISION AND MULTIPLICATION BY DETERMINING WHICH PROCESS TO USE IN THE SOLVING OF PROBLEMS.
Jerry paid 60¢ for a box of candy bars. There are 12 bars in the box. How can you find out how much each bar cost him?

a. multiply
 *b. divide
 c. multiply and divide

Racing cars sell for 25¢ for 2 cars. How can you find out how much 6 racing cars will cost?

a. add
 b. multiply
 *c. divide and multiply

Oranges sell for 10¢ for 3 oranges. How can you find out how much 1 1/2 doz. oranges will cost?

*a. divide and multiply
 b. multiply
 c. divide

Jean saves 40¢ a week. How can you find out how many weeks it will take her to save 2 dollars?

a. multiply
 *b. divide
 c. multiply and divide

George has 15 problems to solve for homework. It has taken him 8 minutes to do five of them. How can you find out how many more minutes it will take George to finish solving the problems?

a. divide
 b. multiply
 *c. divide and multiply

Whistles cost 96¢ a dozen. How can you find out how much the hiking club will have to pay for 21 whistles?

*a. divide and multiply
 b. divide
 c. multiply
Twenty-one girl scouts plan to sell 364 boxes of cookies. The scout leader wishes to give each girl the same number of boxes to sell. How can you find out how many boxes she should give each girl?

a. multiply
b. divide
c. multiply and divide

A candy bar costs 60. How much will 5 candy bars cost?

a. multiply
b. multiply and divide
c. divide

On a jet plane there are 5 seats in each row. How can you find out how many passengers are on board if 9 rows are filled?

a. divide
b. divide and multiply
c. multiply

If John knows that there are 52 weeks in a year, how can he find out how many years 988 weeks make?

a. multiply
b. divide
c. multiply and divide

THE STUDENT WILL APPLY HIS KNOWLEDGE OF MULTIPLICATION AND DIVISION BY CORRECTLY IDENTIFYING THE ANSWER TO A GIVEN PROBLEM, USING ONE OF THE TWO PROCESSES.
Mr. Jones planted a new orchard. He planted 7 trees in each row. He had 3 rows of peach trees and 4 rows of apricot trees. How many trees did he plant in all?

a. 21
b. 28
*c. 49

John had a collection of 336 coins. He put 6 coins in each row in his coin book. How many rows of coins did John have?

*a. 56
b. 2016
c. 51

Mark works as a stock boy at the supermarket. One day, he unpacked boxes of cereal from a carton. It contained 3 layers of boxes, and each layer was 6 boxes wide and 3 boxes high. How many boxes were in the carton?

a. 18
*b. 54
c. 6

Mrs. Lane pays Ralph $2.75 to mow her lawn. If he mows the lawn 15 times during the summer, how much will he make from his job?

a. $19.00
b. $20.50
*c. $41.25

On her birthday, Judy took six guests bowling. Her mother paid $5.95 for the bowling party. What was the cost for each of the seven girls?

*a. $.85
b. $.99
c. $3.57
Paul delivers packages for the drugstore. Last month he worked 24 days and made an average of 18 deliveries each day. How many deliveries did he make in all?

a. 432
b. 1 1/3
c. 108

The pupils in the 5th grade gave an operetta. The director said that the cost had rehearsed 405 minutes in all. If 9 rehearsals were held, what was the average time of each rehearsal?

a. 81 minutes
b. 45 minutes
c. 48 minutes

The operetta was given 3 times. In all, 762 people saw the performances. About how many people saw each performance?

a. 254
b. 330
c. 231

Mr. Stevens had 864 bottles of soft drinks in cases on his truck. If each case held 24 bottles, how many cases were on the truck?

a. 35
b. 72
c. 36

One month Bob sold 21 chickens. He received $19.74 for them. On the average, how much was this for each chicken?

a. $.94
b. $.93
c. $1.94

Source: Merrill, *Discovering Math. 5*, pp. 86, 107, 223
THE STUDENT WILL ANALYZE A PROBLEM INVOLVING MULTIPLICATION OR DIVISION BY CORRECTLY IDENTIFYING INFORMATION UNNECESSARY TO THE SOLVING OF THE PROBLEM.

An ocean liner 209 feet long averages about 34 miles per hour. About how many hours would it take this ship to travel 2924 miles? The unnecessary figure in this problem is

- a. 209
- b. 2924
- c. 34

An express train weighing 340 tons averages about 73 miles per hour. About how long would a 1387 mile trip take? The unnecessary figure in this problem is

- a. 1387 miles
- b. 73 miles
- c. 340 tons

If a 1970 Buick travels 705 miles at an average speed of 47 miles per hour, how long would this take? The unnecessary information in this problem is

- a. 47 miles
- b. 705 miles
- c. 1970 Buick

A man drove 385 miles at a speed of 55 miles per hour and 300 miles at a speed of 60 miles per hour, on a 65 mile per hour highway. How far did the man drive? What figure is unnecessary?

- a. 60 mph
- b. 65 mph
- c. 55 mph

If a jet plane carrying 98 passengers flies 2528 miles in 4 hours, how fast is it traveling? What is the unnecessary figure in this problem?

- a. 98
- b. 4
- c. 2528

369
If a jet plane carried 98 passengers on each flight how many flights would it take to transport 3430 passengers a distance of 2573 miles? What is the unnecessary figure in this problem?

a. 2573
b. 3430
c. 98

Mr. Jones used 8 gallons of gasoline to go 216 miles at 60 miles per hour. How many miles did he travel on one gallon of gas? What is the unnecessary figure in this problem?

a. 216
b. 60
*c. 8

A classroom containing 33 desks measures 17 feet by 17 ft. by 9 ft. How many cubic feet of air does the room contain? What figure is unnecessary in this problem?

a. 17
b. 33
c. 13
d. 9

One week Peter worked 5 hours and 15 minutes in Mr. Ramon's garden, which measures 16 ft. by 20 ft. Mr. Ramon agreed to pay him 40¢ an hour. How much should he pay Peter for the week's work? What is the unnecessary figure in this problem?

a. 40¢
b. 5 hrs. 15 min.
c. 16 ft.
d. 16 ft. by 20 ft.
Mrs. Bunch drove 1/4 miles in 15 min. at a rate of 60 miles per hour. At that rate, how far could she drive in 1 1/2 hours? What is the unnecessary figure in this problem?

*a. 60 mph
b. 15 min.
c. 1/4 miles
d. 1 1/2 hrs.

Source: Addison-Wesley, Elementary School Math. 5, pp. 132-133
Harcourt, Brace, Elementary Math. 5, p. 373.

The student will demonstrate his comprehension that division is the inverse operation of multiplication by identifying the corresponding multiplication equation with a given division equation.

Directions: Match column I with column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 54 ÷ 9 = 6</td>
<td>f. 7 x 9 = 63</td>
</tr>
<tr>
<td>b. 56 ÷ 7 = 8</td>
<td>g. 7 x 9 = 7</td>
</tr>
<tr>
<td>c. 49 ÷ 7 = 7</td>
<td>s. 9 x 2 = 18</td>
</tr>
<tr>
<td>d. 18 ÷ 6 = 3</td>
<td>h. 4 x 8 = 32</td>
</tr>
<tr>
<td>e. 9</td>
<td>9</td>
</tr>
<tr>
<td>f. 763</td>
<td>t. 6 x 8 = 48</td>
</tr>
<tr>
<td>g. 772</td>
<td>o. 9 x 3 = 27</td>
</tr>
<tr>
<td>h. 832</td>
<td>1</td>
</tr>
<tr>
<td>i. 42 ÷ 6 = 7</td>
<td>e. 9 x 9 = 81</td>
</tr>
<tr>
<td>j. 20 ÷ 4 = 5</td>
<td>m. 3 x 5 = 15</td>
</tr>
<tr>
<td>k. 64 ÷ 8 = 8</td>
<td>k. 8 x 8 = 64</td>
</tr>
<tr>
<td>l. 28 ÷ 7 = 4</td>
<td>c. 7 x 7 = 49</td>
</tr>
<tr>
<td>m. 3</td>
<td>3</td>
</tr>
<tr>
<td>n. 540</td>
<td>p. 3 x 4 = 12</td>
</tr>
<tr>
<td>o. 327</td>
<td>q. 3 x 8 = 24</td>
</tr>
</tbody>
</table>
p. 4)12
q. 24 ÷ 3 = 8
r. 36 ÷ 6 = 6
s. 18 ÷ 9 = 2
t. 48 ÷ 6 = 8

b. 7 x 8 = 56
r. 6 x 6 = 36
a. 9 x 6 = 54
n. 8 x 5 = 40
d. 6 x 3 = 18
z. 9 x 8 = 72
i. 6 x 7 = 42

MULTIPLICATION OF FRACTIONS
Directions: Circle the letter in front of the terms which fill in the blanks.

In multiplying fractions multiply the numerator times ___ and the denominator times the ___.

a. numerator, product
b. denominator, numerator
*c. numerator, denominator
d. product, numerator

To reduce fractions ___ the numerator and the denominator by ___.

*a. divide, a number equal to one
b. multiply, a number equal to one
c. divide, a number smaller than one
d. multiply, a number smaller than one

If the product of an equation is an improper fraction the ___ may be divided by the ___.

a. denominator, numerator
b. denominator, denominator
*c. numerator, denominator
d. numerator, numerator

An easier way to multiply fractions with large numbers is to ___ in the equation and then ___.

a. divide, multiply
b. multiply, reduce
c. multiply, divide
*d. reduce, multiply
If the product has a numerator greater than the denominator we know that the number

\[\text{a. can be divided by an even number} \]
\[\text{b. is greater than one} \]
\[\text{c. is less than one} \]
\[\text{d. can be divided by an odd number} \]

If we change the order of the factors to multiply fractions we have used the ________.

\[\text{a. ones principle} \]
\[\text{b. zero principle} \]
\[\text{c. commutative principle} \]
\[\text{d. associative principle} \]

In the multiplication of two fractions if the first factor is less than one the product will be ________.

\[\text{a. less than the second factor} \]
\[\text{b. greater than the second factor} \]
\[\text{c. less than one} \]
\[\text{d. greater than one} \]

The product of an equation is said to be in its best form when ________.

\[\text{a. the numerator is smaller than the denominator} \]
\[\text{b. the denominator is smaller than the numerator} \]
\[\text{c. it has been changed to a mixed number} \]
\[\text{d. it has been reduced to lowest terms} \]

To change a mixed number to an improper fraction, ________ the whole number by the ________ of the fraction and ________ the ________ of the fraction.

\[\text{a. add; denominator; multiply; numerator} \]
\[\text{b. multiply; denominator; add; numerator} \]
\[\text{c. add; numerator; multiply; denominator} \]
\[\text{d. multiply; numerator; add; denominator} \]
If we multiply a fraction by a fraction which is equal to one we have changed the _____ but not the _____ of the fraction.

*a. form; value
 b. value; form
 c. order; value
 d. order; form

THE STUDENT WILL APPLY HIS UNDERSTANDING OF THE PRINCIPLES OF MULTIPLICATION OF FRACTIONS BY SELECTING A FACTOR THAT WOULD MAKE AN EQUATION APPLICABLE TO A GIVEN ASSUMPTION.

Directions: Select the fraction that would apply to the given assumption.

The product is greater than the first factor.

\[
\frac{3}{4} \times _____ =
\]

a. \(\frac{6}{8}\)
 *b. \(\frac{4}{3}\)
 c. \(\frac{4}{4}\)
 d. \(\frac{6}{7}\)

The product is equal to the first factor.

\[
\frac{8}{9} \times _____ =
\]

a. \(\frac{3}{4}\)
 *b. \(\frac{6}{8}\)
 c. \(\frac{7}{7}\)
 d. \(\frac{9}{8}\)

The product is less than the second factor.

_____ \(\times \frac{11}{12} =
\]

a. \(\frac{9}{8}\)
 b. \(\frac{7}{6}\)
 c. \(\frac{5}{5}\)
 *d. \(\frac{3}{4}\)
The product is equal to the second factor.

\[_ \times \frac{7}{8} = \]

a. \(\frac{3}{2} \)
b. \(\frac{8}{9} \)
c. \(\frac{3}{4} \)
*d. \(\frac{6}{6} \)

The product is less than the first factor.

\[\frac{4}{5} \times _ = \]

*a. \(\frac{4}{5} \)
b. \(\frac{3}{2} \)
c. \(\frac{8}{7} \)
d. \(\frac{2}{2} \)

The product is greater than the second factor.

\[_ \times \frac{6}{7} = \]

a. \(\frac{2}{3} \)
b. \(\frac{4}{4} \)
*c. \(\frac{12}{6} \)
d. \(\frac{3}{4} \)

The student will analyze regions demonstrating the multiplication of fractions by identifying the correct equation.

Study this region carefully.

The region above shows

a. \(\frac{1}{3} \) of \(\frac{1}{4} = \frac{1}{12} \)
*b. \(\frac{1}{4} \) of \(\frac{1}{3} = \frac{1}{12} \)
c. \(\frac{3}{4} \times \frac{1}{3} = \frac{1}{12} \)
Study this region carefully. It shows

*a. $\frac{1}{2}$ of $\frac{2}{3} = \frac{2}{6}$
*b. $\frac{2}{3}$ of $\frac{1}{2} = \frac{2}{6}$
*c. $\frac{2}{6}$ of $6 = 1$

Study this region carefully. It shows

*a. $\frac{1}{2}$ of $\frac{3}{8} = \frac{1}{8}$
*b. $\frac{3}{4}$ of $\frac{1}{2} = \frac{1}{8}$
*c. $\frac{3}{4} \times \frac{1}{2} = \frac{3}{8}$

Study this region carefully. It shows

*a. $\frac{2}{3} \times \frac{2}{4} = \frac{4}{12}$
*b. $\frac{2}{4} \times \frac{2}{3} = \frac{2}{12}$
*c. $\frac{2}{3} \times \frac{2}{4} = \frac{2}{12}$

Study this region carefully. It shows

*a. $\frac{4}{5} \times \frac{1}{3} = \frac{2}{15}$
*b. $\frac{1}{3} \times \frac{4}{5} = \frac{2}{15}$
*c. $\frac{1}{3} \times \frac{4}{5} = \frac{4}{15}$
Study this region carefully. It shows

*a. \(\frac{2}{4} \times \frac{1}{3} = \frac{2}{12} \)
*b. \(\frac{1}{3} \times \frac{2}{4} = \frac{4}{12} \)
*c. \(\frac{2}{4} \times \frac{1}{3} = \frac{12}{12} \)

Study this region carefully. It shows

*a. \(\frac{3}{4} \times \frac{4}{5} = \frac{12}{20} \)
*b. \(\frac{3}{4} \times \frac{4}{5} = \frac{12}{20} \)
*c. \(\frac{4}{5} \times \frac{3}{4} = \frac{12}{20} \)

Study this region carefully. It shows

*a. \(\frac{1}{3} \times \frac{1}{6} = \frac{10}{18} \)
*b. \(\frac{1}{6} \times \frac{1}{3} = \frac{10}{18} \)
*c. \(\frac{1}{6} \times \frac{1}{3} = \frac{1}{18} \)
Study this region carefully. It shows

a. $\frac{1}{4} \times \frac{1}{2} = \frac{3}{8}$
*b. $\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$
*c. $\frac{1}{2} \times \frac{1}{4} = \frac{3}{8}$

Study this region carefully. It shows

a. $\frac{1}{3} \times \frac{1}{5} = \frac{7}{15}$
*b. $\frac{1}{5} \times \frac{1}{3} = \frac{8}{15}$
*c. $\frac{1}{3} \times \frac{1}{5} = \frac{1}{15}$

Source: Merrill, Discovering Math. 5, pp. 308-309
Addison-Wesley, Elementary Math. 5, pp. 286-287.

THE STUDENT WILL ANALYZE THE MULTIPLICATION OF A MIXED NUMBER BY A WHOLE NUMBER OPERATION BY IDENTIFYING THE ERROR IN COMPUTATION.

Carefully examine the equation below. Circle the ERROR you find.

$5 \times (2 + \frac{3}{4}) = N$
$(5 \times 2) + (2 \times \frac{3}{4}) = N$

a. 5×2
*b. $2 + \frac{3}{4}$
*c. $2 \times \frac{3}{4}$
Ilorefully examine the problem below. Circle the ERROR you find.

\[
\frac{\frac{5}{3}}{15} = \frac{3.1/3}{12}
\]

* a. 18
b. 15
c. 3 1/3

Carefully examine the equation below. Circle the ERROR you find.

\[
7 \times 3 \frac{1}{2} = N
\]
\[
(7 \times 3) + (7 \times 1/2) = N
\]
\[
21 + 7/2 = N
\]

* a. 7/2
b. 21
c. 7 \times 1/2

Carefully examine the equation below. Circle the ERROR you find.

\[
2 \frac{2}{3} \times 5 = N
\]
\[
(2 \times 5) \div (2/3 \times 5) = N
\]
\[
7 + 3 \frac{1}{3} = N
\]

a. 3 1/3
b. 2/3 \times 5
*c. 7

Carefully examine the problem below. Circle the ERROR you find.

\[
8 \frac{3}{4} \div 6
\]
\[
\frac{86}{48}
\]
\[
\frac{6}{54}
\]

* a. 6
b. 48
c. 54
1905

Carefully examine the problem below. Circle the ERROR you find.

\[\frac{3}{4} \div 7 \]
\[\frac{21}{49} \]
\[\frac{63}{70} \]

- a. 21
- b. 49
- c. 70

1906

Carefully examine the equation below. Circle the ERROR you find.

\[2 \times 5 \, \frac{3}{4} = N \]
\[(2 \times 5) + (2 \times 3/4) = N \]
\[10 + 2 \, \frac{1}{2} = N \]
\[12 \, \frac{1}{2} = N \]

- a. 2 \, \frac{1}{2}
- b. 10
- c. 2 \times 5

1907

Carefully examine the equation below. Circle the ERROR you find.

\[4 \times 2 \, \frac{3}{5} = N \]
\[(4 \times 2) + (4 \times 3/5) = N \]
\[8 + 2 \, \frac{2}{5} = 16 \, \frac{2}{5} \]

- a. 2 \, \frac{2}{5}
- b. 16 \, \frac{2}{5}
- c. 4 \times \frac{3}{5}

1908

Carefully examine the problem below. Circle the ERROR you find.

\[\frac{2}{1/4} \]
\[\frac{2}{1/2} \]
\[\frac{20}{1/2} \]

- a. 18
- b. 2 \, \frac{1}{2}
- c. 20 \, \frac{1}{2}
Carefully examine the problem below. Circle the ERROR you find.

\[
\begin{array}{c}
15 \\
\times 3 \frac{4}{5} \\
\hline
45 \\
20 \\
\hline
55
\end{array}
\]

a. 55
b. 45
c. 20

Source: Merrill, *Discovering Math. 5,* p. 315.

THE STUDENT WILL APPLY HIS KNOWLEDGE OF MULTIPLYING A MIXED NUMBER BY A MIXED NUMBER BY IDENTIFYING THE CORRECT PRODUCT.

Compute the problem on paper. Circle the correct product.

\[
2 \frac{1}{2} \times 3 \frac{2}{3} = N
\]

a. 9 \frac{1}{6}
b. 11
c. 7

Compute the problem on paper. Circle the correct product.

\[
2 \frac{1}{4} \times 2 \frac{1}{3} = N
\]

a. 9
b. 8 \frac{1}{2}
c. 5 \frac{1}{4}

Compute the problem on paper. Circle the correct product.

\[
3 \frac{1}{2} \times 1 \frac{1}{7} = N
\]

a. 4
b. 9
c. \frac{5}{7}

397
Compute the problem on paper. Circle the correct product.

1913

\[\frac{5}{2/3} \times \frac{3}{3/5} = N \]

a. 39 1/2
*b. 20 2/5

*c. 38 1/4

1914

\[\frac{8}{3/4} \times \frac{3}{1/5} = N \]

a. 28 1/10
b. 24 3/10
*c. 28

1915

\[\frac{3}{3/7} \times \frac{4}{2/3} = N \]

*a. 16
b. 28
*c. 33 3/5

1916

\[\frac{2}{4/7} \times \frac{4}{2/3} = N \]

a. 9
*b. 12
*c. 4 2/7

1917

\[\frac{4}{1/6} \times \frac{4}{4/5} = N \]

a. 4 1/15
b. 16 2/3
*c. 20
Compute the problem on paper. Circle the correct product.

1918

3 3/8 x 3 5/9 = N

a. 12
b. 31
c. 9 1/12

Compute the problem on paper. Circle the correct product.

1919

5 1/6 x 2 2/5

a. 4 1/15
b. 3 1/10
c. 12 2/5

Source: Merrill, Discovering Math. 5, p. 316.

THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE MULTIPLICATION OF FRACTIONAL NUMBERS BY CORRECTLY IDENTIFYING THE PRODUCT IN GIVEN EQUATIONS.

\[\frac{3}{4} \times \frac{5}{9} = \frac{3 \times 5}{4 \times 9} = N \]

1920

a. 8
b. \(\frac{15}{36} \)
c. \(\frac{8}{12} \)

\[\frac{5}{6} \times \frac{3}{4} = \frac{5 \times 3}{6 \times 4} = N \]

1921

a. \(\frac{15}{24} \)
b. \(\frac{8}{24} \)
c. \(\frac{8}{10} \)
\[
\frac{2}{3} \times \frac{3}{5} = \frac{2 \times 3}{3 \times 5} = N. \quad \text{"N" is} \\
\]
\[
a. \quad \frac{6}{8} \\
b. \quad \frac{5}{8} \\
*c. \quad \frac{6}{15}
\]

\[
\frac{5}{9} \times \frac{3}{10} = \frac{5 \times 3}{9 \times 10} = N. \quad \text{"N" is} \\
\]
\[
*a. \quad \frac{15}{90} \\
b. \quad \frac{8}{90} \\
c. \quad \frac{8}{19}
\]

\[
\frac{3}{8} \times \frac{1}{6} = \frac{3 \times 1}{8 \times 6} = N. \quad \text{"N" is} \\
\]
\[
a. \quad \frac{3}{12} \\
b. \quad \frac{1}{48} \\
*c. \quad \frac{2}{48}
\]

\[
\frac{1}{9} \times \frac{6}{7} = \frac{1 \times 6}{9 \times 7} = N. \quad \text{"N" is} \\
\]
\[
*a. \quad \frac{6}{63} \\
b. \quad \frac{6}{16} \\
c. \quad \frac{1}{63}
\]
\[
\frac{7}{10} \times \frac{3}{5} = \frac{7 \times 3}{10 \times 5} = N. \ "N" \ is \ \frac{21}{50}.
\]

\[a. \ \frac{21}{50} \]

\[b. \ \frac{10}{15} \]

\[c. \ \frac{10}{50} \]

\[
\frac{2}{x} \div \frac{2}{x} = \frac{\frac{2}{x}}{\frac{2}{x}} = \frac{1}{1} = N. \ "N" \ is \ \frac{200}{120}.
\]

\[a. \ \frac{20}{120} \]

\[b. \ \frac{10}{24} \]

\[c. \ \frac{3}{12} \]

\[
\frac{5}{8} \times \frac{2}{3} = \frac{5 \times 2}{8 \times 3} = N. \ "N" \ is \ \frac{20}{24}.
\]

\[a. \ \frac{7}{24} \]

\[b. \ \frac{10}{24} \]

\[c. \ \frac{7}{11} \]

\[
\frac{5}{3} \div \frac{4}{5} = \frac{\frac{5}{3}}{\frac{4}{5}} = N. \ "N" \ is \ \frac{20}{15}.
\]

\[a. \ \frac{20}{15} \]

\[b. \ \frac{3}{15} \]

\[c. \ \frac{20}{8} \]

Source: Harcourt, Brace, Elementary Math. 5, p. 298.
THE STUDENT WILL APPLY HIS KNOWLEDGE OF THE MULTIPLICATION OF FRACTIONS BY IDENTIFYING THE CORRECT PRODUCT OF TWO RATIONAL FACTORS.

In the fraction $\frac{2}{3} \times \frac{1}{4} = N$, "N" is NOT

a. $\frac{2}{12}$

b. $\frac{2}{7}$

c. $\frac{1}{6}$

In the fraction $\frac{5}{6} \times \frac{2}{4} = N$, "N" is NOT

* a. $\frac{8}{24}$

b. $\frac{15}{24}$

c. $\frac{5}{8}$

In the fraction $\frac{2}{5} \times \frac{2}{4} = N$, "N" is NOT

a. $\frac{6}{20}$

* b. $\frac{5}{20}$

c. $\frac{3}{10}$

In the fraction $\frac{5}{9} \times \frac{6}{7} = N$, "N" is NOT

a. $\frac{30}{63}$

b. $\frac{10}{21}$

* c. $\frac{11}{63}$
In the fraction $\frac{3}{4} \times \frac{2}{3} = N$, "N" is NOT 1934

*a. $\frac{5}{12}$
*b. $\frac{1}{2}$
*c. $\frac{6}{12}$

In the fraction $\frac{2}{4} \times \frac{2}{5} = N$, "N" is NOT 1935

a. $\frac{2}{10}$
b. $\frac{6}{20}$
*c. $\frac{5}{20}$

In the fraction $\frac{4}{5} \times \frac{1}{4} = N$, "N" is NOT 1936

a. $\frac{4}{20}$
*b. $\frac{4}{9}$
c. $\frac{1}{5}$

In the fraction $\frac{1}{8} \times \frac{2}{3} = N$, "N" is NOT 1937

a. $\frac{1}{12}$
b. $\frac{2}{24}$
*c. $\frac{2}{11}$
In the fraction $\frac{5}{9} \times \frac{3}{10} = N$, "N" is NOT

- a. $\frac{1}{6}$
- b. $\frac{6}{90}$
- c. $\frac{15}{90}$

1938

In the fraction $\frac{3}{8} \times \frac{1}{6} = N$, "N" is NOT

- a. $\frac{3}{14}$
- b. $\frac{1}{16}$
- c. $\frac{3}{48}$

1939

Source: Merrill, Discovering Math. 5, p. 309
MULTIPLICATION AND DIVISION OF FRACTIONS
THE STUDENT WILL VIEW THE RELATIONSHIP BETWEEN MULTIPLICATION OF FRACTIONS AND DIVISION OF FRACTIONS BY IDENTIFYING THE CORRECTLY FORMULATED EQUATION.

If \(\frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \), then \(\frac{1}{8} \div \frac{1}{4} = N \)

a. \(\frac{1}{8} \)
b. \(\frac{1}{4} \)
*c. \(\frac{1}{2} \)

If \(\frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \), then \(\frac{1}{8} \div \frac{1}{2} = \)

a. \(\frac{1}{8} \)
b. \(\frac{1}{2} \)
*c. \(\frac{1}{4} \)

If \(\frac{3}{8} \times \frac{2}{3} = \frac{6}{24} \), then \(\frac{6}{24} \div \frac{2}{3} = \)

*a. \(\frac{3}{8} \)
b. \(\frac{2}{3} \)
c. \(\frac{6}{24} \)

If \(\frac{1}{8} \times \frac{5}{6} = \frac{5}{48} \), then \(\frac{5}{48} \div \frac{1}{8} = \)

a. \(\frac{1}{8} \)
b. \(\frac{1}{48} \)
*c. \(\frac{5}{6} \)

If \(\frac{7}{10} \times \frac{1}{2} = \frac{7}{20} \), then \(\frac{7}{20} \div \frac{1}{2} = \)

a. \(\frac{1}{2} \)
*b. \(\frac{7}{10} \)
c. \(\frac{1}{20} \)
If \(\frac{1}{10} \times \frac{3}{4} = \frac{3}{40} \), then \(\frac{3}{40} \div \frac{1}{10} = \)

a. \(\frac{1}{10} \)
b. \(\frac{1}{40} \)
c. \(\frac{3}{4} \)

If \(\frac{7}{12} \times \frac{1}{3} = \frac{7}{36} \), then \(\frac{7}{36} \div \frac{1}{3} = \)

a. \(\frac{7}{3} \)
b. \(\frac{1}{8} \)
c. \(\frac{3}{4} \)

If \(\frac{5}{8} \times \frac{4}{7} = \frac{20}{56} \), then \(\frac{20}{56} \div \frac{5}{8} = \)

a. \(\frac{10}{5} \)
b. \(\frac{1}{8} \)
c. \(\frac{4}{7} \)

If \(\frac{2}{4} \times \frac{2}{3} = \frac{6}{12} \), then \(\frac{6}{12} \div \frac{2}{3} = \)

a. \(\frac{1}{2} \)
b. \(\frac{3}{4} \)
c. \(\frac{2}{3} \)

If \(\frac{3}{5} \times \frac{1}{2} = \frac{3}{10} \), then \(\frac{3}{10} \div \frac{1}{2} = \)

a. \(\frac{1}{5} \)
b. \(\frac{1}{2} \)
c. \(\frac{3}{5} \)

Source: Addison-Wesley, Elementary School Math, 5, p. 294

The student will apply his knowledge of division as the inverse of multiplication to aid him in dividing a fraction by a fraction, by identifying the correct quotient.
Directions: Remember that $9/16 \div 3/4 = \frac{9}{16} \times \frac{4}{3} = 9/16$. Keeping this in mind, identify the correct quotient for the following division problems.

$4/12 \div 2/3 = N$. "N" is

a. $8/4$

b. $2/6$

*c. $2/4$

$9/18 \div 3/9 = N$. "N" is

a. $3/8$

*b. $3/2$

c. $27/3$

$54/100 \div 6/10 = N$. "N" is

a. $7/10$

b. $5/10$

*c. $9/10$

$72/4 \div 12/2 = N$. "N" is

a. $8/2$

*b. $6/2$

c. $6/8$

$60/33 \div 6/3 = N$. "N" is

*a. $10/11$

b. $12/11$

c. $10/33$

$15/54 \div 5/6 = N$. "N" is

*a. $3/9$

b. $5/6$

c. $3/6$
100/46 \div 10/2 = N. "N" is

a. 90/46
b. 90/23
c. 10/23

56/60 \div 28/15 = N. "N" is

a. 3/4
b. 2/4
c. 2/6

49/35 \div 7/7 = N. "N" is

*a. 7/5
b. 7/35
c. 49/7

45/15 \div 9/3 = N. "N" is

a. 4/3
b. 9/15
c. 5/5

GIVEN A CHART THE STUDENT WILL APPLY HIS KNOWLEDGE OF FINDING PERCENT BY SOLVING SUCH PROBLEMS.

Directions: Use the information on the chart to compute the percentage. Circle the correct answer.

<table>
<thead>
<tr>
<th></th>
<th>Salary</th>
<th>Food</th>
<th>Saves</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>$50</td>
<td>$10</td>
<td>$20</td>
<td>$20</td>
</tr>
<tr>
<td>Sally</td>
<td>$45</td>
<td>$10</td>
<td>$20</td>
<td>$15</td>
</tr>
<tr>
<td>Mark</td>
<td>$55</td>
<td>$15</td>
<td>$30</td>
<td>$10</td>
</tr>
<tr>
<td>Tom</td>
<td>$40</td>
<td>$8</td>
<td>$20</td>
<td>$12</td>
</tr>
</tbody>
</table>

What percent does Jane save?

a. 50
b. 30
c. 25
*d. 40

What percent does Tom save?

*a. 50
b. 30
c. 25
d. 40

What percent does Mark spend on food?

a. 17 2/3
*b. 27 3/11
c. 25 17/55
d. 30 11/12
What percent does Sally spend on miscellaneous? 1963

- *a.* 33 1/3
- b. 16 2/3
- c. 45
- d. 50

What percent does Jane spend on food? 1964

- a. 30
- b. 25
- *c.* 20
- d. 45

What percent does Mark save? 1965

- *a.* 54 6/11
- b. 17 2/3
- c. 30 3/13
- d. 18 2/11

What percent does Sally spend on food? 1966

- a. 33 1/3
- b. 44 3/4
- c. 16 1/2
- *d.* 22 2/9

What percent does Tom save? 1967

- a. 12 1/2
- b. 40
- *c.* 50
- d. 16 2/3
Sally's salary is what percent of Jane's?

a. 60\%
b. 95\%
c. 80\%
d. 90\%

Tom's salary is what percent of Mark's?

a. 66 2/3
b. 87 1/2
c. 74 8/11
d. 72 8/11

GIVEN SEVERAL WORD PROBLEMS THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF WRITING AN EQUATION TO SOLVE PERCENT PROBLEMS BY CHOOSING AN APPLICABLE EQUATION FROM A LIST.

Directions: Choose an equation that would apply to the word problem.

25% of what number is 8.

a. \(N \times 8 = 25\% \)
b. \(8 = 25\% \div N \)
c. \(8 = N \div 25\% \)
d. \(25 \times N = 8 \)

What percent of 25 is 5?

a. \(N \times 5 = 25 \)
b. \(5 = 25 \times N \)
c. \(n = 25 \div 5 \)
d. \(N \times 5 = 25 \)
10% of what number is 15?

- a. $10\% \times N = 15$
- b. $N \times 15 = 10\%$
- c. $10\% \times 15 = N$
- d. $15 \div N = 10\%$

7 1/2 is 50% of what number?

- a. $N = 50\% \times 7 \frac{1}{2}$
- b. $7 \frac{1}{2} = 50\% \times N$
- c. $50\% \times 7 \frac{1}{2} = N$
- d. $50\% \times 7 \frac{1}{2} = 7 \frac{1}{2}$

6 is what percent of 16?

- a. $N \times 6 = 16$
- b. $16 = N \times 6$
- c. $6 = N \times 16$
- d. $16 \div 6 = N$

Kay had $20. She spent $2.50. What percent of her money did she spend?

- a. $20 + 2.50 = N$
- b. $N + 2.50 = 20.00$
- c. $2.50 \times 20.00 = N$
- d. $20.00 \times N = 2.50$

Jane bought a mini skirt. It was on sale for $9. She received a 25% discount. What was the original price?

- a. $N = 9 \times 25\%$
- b. $25\% = 9 \times N$
- c. $25\% \times N = 9$
- d. $9 \times 25\% = N$
John lost 5 marbles. He now has 80% of his original number. How many did he have before he lost any?

*a. 5 = 80% \times N
b. N = 80% \times 5
c. 80% = 5 \times N
d. 80% = N + 5

Source: Addison-Wesley.
APPLICATIONS OF WHOLE NUMBERS
THE STUDENT WILL ANALYZE NUMERICAL EQUATIONS BY SELECTING THE SIGN THAT WILL NOT WORK IN A GIVEN EQUATION.

Directions: Given an incomplete equation choose the sign that would not make it true.

X ____ 5 = 15, if X is larger than 5:
 a. +
 b. -
 *c. x
 d. /

y ____ 1 = 6, if y is 6 or larger:
 *a. +
 b. -
 c. x
 d. /

27 ____ 3 = Z, if Z is less than 27:
 *a. +
 b. -
 c. x
 d. /

150 ____ 10 = S, if S is more than a two digit number:
 a. +
 b. -
 c. x
 *d. /
49. **t = 7**, if **t** is a positive number.

 *a. +
 b. -
 c. x
 d. \(\frac{t}{t} \)

1000. **10 = r**, if **r** uses only the digits 0 and 1

 a. +
 *b. -
 c. x
 d. \(\frac{t}{t} \)

n. **n = r**, if **r** is not a place holder.

 a. +
 *b. -
 c. x
 d. \(\frac{t}{t} \)

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF PUNCTUATION MARKS BY USING THEM CORRECTLY IN MATHEMATICS.

Simplify \((6 \times 8) - (3 \times 2)\)

 *a. 42
 b. 60
 c. 90
 d. 12

Simplify \((80 \div 8) - (4 \div 2)\)

 a. 3
 *b. 8
 c. 20
 d. 40

425
THE STUDENT KNOWS THE DIFFERENCE BETWEEN THE TYPES OF NUMBER
SENTENCES - OPEN, CLOSED, TRUE OR FALSE CLOSED SENTENCES AND THE
FUNCTIONS OF THESE SENTENCES BY INDICATING THE TYPE A GIVEN
SENTENCE REPRESENTS.

6 = n = 9 is an open sentence because n:
 a. has no value
 b. has different values
 c. tells you nothing
 d. is a placeholder for a number solution

We cannot tell if n = 15 + 4 is true or false because:
 a. the solution of 15 + 4 is unknown
 b. it is an open sentence
 c. it is a closed sentence
 d. the number for n is the solution

The symbol > would be correct for:
 a. 9 3 + 6
 b. 9 5 + 4
 c. 9 4 + 4
 d. 9 3 + 9

There are more objects in set A than in Set B:
This is shown by:
 a. N (A) = N (B)
 b. N (A) < N (B)
 c. N (A) ∝ N (B)
 d. N (A) > N (B)

The set of positive integers for n < 4 are:
 a. {0, 1, 2, 3}
 b. {5, 6, 7, 8}
 c. {0, 1, 2, 3, 4}
 d. {4, 5, 6, 7}
 e. {0, 1, 2, 3, 4 ...}
The set of integers for \(n > 4 \) and \(n < 11 \) are:

- a. \(\{4, 5, 6, 7 \ldots \} \)
- b. \(\{5, 6, 7\ldots \} \)
- c. \(\{5, 6, 7, 8, 9, 10 \} \)
- d. \(\{4, 5, 6, 7, 8, 9, 10, 11 \} \)

Directions: The universal set for each inequality is \(0, 1, 2, 3, \ldots \). Match each pair of number sentences with its solution set.

- b. \(n > 8 \) and \(n < 12 \)
- e. \(n > 5 \) and \(n < 9 \)
- a. \(n < 13 \) and \(n > 11 \)
- d. \(h > 5 \) and \(h < 8 \)

The one statement that is true is

- a. \(\frac{12}{6} < 5 \times 2 \)
- b. \(3 \times 4 < 5 \times 2 \)
- c. \(63 \div 9 = 3 \times 3 \)
- d. \(6 \times 8 < 9 \times 5 \)
- e. \(13 - 8 = 3 + 1 \)

The false statement is

- a. \(16 - 7 \neq 3 + 5 \)
- b. \(9 > 2 + 5 \)
- c. \(5 \times 4 = 3 \times 6 \)
- d. \(14 = 4 + 10 \)
- e. \(4 + 7 < 2 \times 6 \)

The inequality is \(6 + n = 14 \). The solution of \(n \) could **not** be any numbers

- a. less than eight
- b. more than eight
- c. equal to eight
- d. other than eight
Given these digits and signs 2, 3, 8, 9, 12, +, -, =, the proper equation would be

a. 2 + 3 + 8 - 9 = 12
b. 9 + 8 - 3 - 2 = 12
c. 2 + 9 - 3 + 12 = 8
d. 9 + 3 - 8 - 2 = 12
e. 9 + 8 + 2 - 12 = 3

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF NUMBER SENTENCES BY CHOOSING A NUMBER SENTENCE WHICH BEST EXPRESSES A RELATIONSHIP EXPRESSED VERBALLY.

Jim had 3 bags with 3 rolls in each. Sue had 4 bags with 6 rolls in each. Which number sentence expresses the number of rolls (n) they had altogether?

*a. (3 x 3) + (4 x 6) = n
b. 6 + 10 = n
c. 6 x 10 = n
d. (3 + 3) + (4 + 6) = n

The brown hen laid 3 dozen eggs last month. The white hen laid 4 dozen eggs in the same period. Which number sentence best expresses the number of eggs both hens laid?

a. (3 x 12) x (4 x 12)
*b. (3 x 12) + (4 x 12)
c. (3 x 12) x 4
d. (3 + 12) x (4 + 12)

Mary likes the crayons with 16 colors per box. She bought 6 boxes for party favors. Her mother bought 2 boxes with 64 crayons for prizes. The number of crayons they bought is expressed as a number sentence in which of the following?

*a. (6 x 16) + (2 x 64) = n
b. n = 8 x (16 + 64)
c. (16 x 6) x (64 x 2) = n
d. (64 + 64) + (16 + 6) = n
Solve for the unknown

\[
\frac{(3 \cdot 15) + (28 - 13)}{6} \times 2 = n
\]

a. 6
b. 12
c. 10
d. 20

The answer to

\[
\frac{(6 \cdot 120)(2 \times 0)}{(43 - 23)} = n
\]

a. 0
b. 62
c. 66
d. 216

GIVEN A PROBLEM SITUATION THE CHILD WILL IDENTIFY THE CENTRAL PROBLEM FROM A LIST OF ALTERNATIVES.

Directions:
Read the information supplied and choose the sentence that best states the problem to be solved.

10 children, 8 are girls.

a. How many children in all?
b. How many girls?
c. How many boys?

Hiked 6 miles this morning, 5 miles this afternoon.

a. Will hike how far tomorrow?
b. How many miles hiked today?
c. How many hours spent hiking?
THE STUDENT CAN APPLY HIS ABILITY TO COMPUTE IN THE 4 BASIC PROCESSES TO SOLVE PROBLEMS THAT INVOLVE COMBINATIONS OF THESE PROCESSES.

Compute and solve for \(n \)
\[
(8 \times 7) - (9 \times 4) = n
\]

\(a. \) 20
\(b. \) 24
\(c. \) 82
\(d. \) 92

Find the value of \(x \)
\[
x = \frac{9 \times 8 \times 4}{2}
\]

\(a. \) 12
\(b. \) 72
\(c. \) 144
\(d. \) 288

Work carefully to solve for \(n \)
\[
\frac{(5 + 7(6 \times 3))}{6} = n
\]

\(a. \) 9
\(b. \) 30
\(c. \) 36
\(d. \) 216
The "General Sherman" tree contains enough wood to build $\frac{3}{5}$ small 5 room houses. Lumber company has 24 such trees.

a. How many rooms can be built?
* b. How many houses can be built?
 c. How many more houses than trees?

Dan bought a baseball glove for $14.95 and a football for $5.00. He received 50¢ in change.

a. How much did he spend?
 b. How much more did he pay for the glove than the football?
 * c. How much money did he start with?

Jan is 3834 days old. Fran is 4015 days old. Nan is 3923 days old.

a. Who is the oldest of the three?
 b. How much older than Jan and Nan is Fran?
 * c. What is the average age of Jan, Fran and Nan?

Source: Addison-Wesley, Bk. 5, pp. 46, 79, 93, 111, 213

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF THE BASIC MATH TERMS BY MATCHING THE TERM WITH ITS DEFINITION.

Directions: Circle the alternative that answers each question.

In which of the following equations is the numeral 6 an addend?

a. $5 \times 6 = 30$
 b. $72 \div 6 = 12$
 c. $98 - 6 = 92$
 * d. $85 + 6 = 91$
In which of the following equations is the numeral 6 a factor?

*a. 5 \times 6 = 30
b. 72 \div 6 = 12
c. 98 - 6 = 92
d. 85 + 6 = 91

In which of the following equations is the numeral 36 a sum?

a. 36 \div 1 = 36
b. 46 - 10 = 36
c. 6 \times 6 = 36
*d. 14 + 12 = 36

In which of the following equations is the numeral 36 a product?

a. 36 \times 1 = 36
b. 46 - 10 = 36
*c. 6 \times 6 = 36
d. 14 + 12 = 36

In which of the following equations is the numeral 36 a difference?

a. 36 \div 1 = 36
*b. 46 - 10 = 36
c. 6 \times 6 = 36
d. 14 + 12 = 36

Given a variety of word problems, the student will demonstrate his ability to employ the correct process by selecting from a list the process necessary to solve the problem.

Directions: Choose the process necessary to compute the problems.
John and Mike shared expenses for a day in Chicago. Together they spent ___ dollars. How much did each boy spend?

a. add
b. subtract
c. multiply
d. divide

Jack spent ___ at one store. He went to another store and spent ___ more. How much did Jack spend in all?

a. add
b. subtract
c. multiply
d. divide

Mary wanted a new sweater. She had ___ dollars but the sweater was ___. How much more money did she need?

a. add
b. subtract
c. multiply
d. divide

Jack, Tim, and Larry each had ___. They wanted to buy a ball and bat which was ____ more than they had all together. How much did the bat and ball cost?

a. add
b. subtract
c. multiply
d. divide

If the length is ____ and the width is ____, what is the area?

a. add
b. subtract
c. multiply
d. divide
Susan and Mary were playing a game in which red sticks were worth ______ points. Mary won by ______ points. How many more red sticks did Mary have?

a. add
b. subtract
c. multiply
*d. divide

Twenty boys went to a baseball game. Each boy gave the leader an average of ______ for expenses. How much money was the leader holding?

a. add
b. subtract
*c. multiply
d. divide

The length of the rectangle is ______. The width is ______. What is the perimeter?

*a. add
b. subtract
c. multiply
d. divide

Jane ran the 50 yd. dash in ______. Sharon ran it in ______. How much faster did Sharon run?

a. add
*b. subtract
c. multiply
d. divide

A ______ of pencils cost ______. How much does one pencil cost?

a. add
b. subtract
c. multiply
*d. divide
Directions

Use the cross multiplication method to find the pair of equivalent fractions.

<table>
<thead>
<tr>
<th></th>
<th>a. 3/4 = 12/16</th>
<th>b. 6/8 = 10/12</th>
<th>c. 2/3 = 4/5</th>
<th>d. 1/3 = 2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 5/6 = 6/5</td>
<td>b. 1/3 = 2/9</td>
<td>*c. 2/4 = 3/6</td>
<td>d. 6/7 = 8/9</td>
<td></td>
</tr>
<tr>
<td>a. 1/4 = 3/8</td>
<td>b. 2/5 = 6/16</td>
<td>c. 2/6 = 3/12</td>
<td>*d. 1/3 = 3/9</td>
<td></td>
</tr>
<tr>
<td>a. 2/4 = 3/9</td>
<td>b. 1/2 = 2/2</td>
<td>*c. 2/5 = 6/15</td>
<td>d. 1/4 = 6/16</td>
<td></td>
</tr>
<tr>
<td>a. 5/9 = 10/20</td>
<td>*b. 2/3 = 6/9</td>
<td>c. 3/4 = 6/9</td>
<td>d. 5/7 = 15/14</td>
<td></td>
</tr>
<tr>
<td>a. 1/3 = 6/9</td>
<td>b. 1/2 = 14/18</td>
<td>c. 1/5 = 10/55</td>
<td>*d. 1/6 = 5/30</td>
<td></td>
</tr>
</tbody>
</table>
THE STUDENT WILL DEMONSTRATE HIS COMPREHENSION OF EQUIVALENT FRACTIONS, DETERMINED BY CROSS MULTIPLICATION, BY IDENTIFYING MISSING FACTORS IN GIVEN RATIOS.

Directions: Using a cross multiplication equation, determine which number below each ratio is equal to the unknown factor (N).

5/8 = N/32 "N" is

*a. 20
b. 15
c. 4

3/4 = 9/N "N" is

*a. 27
b. 36
*c. 12

2/3 = N/18 "N" is

*a. 9
b. 6
*c. 12

3/5 = N/25 "N" is

*a. 5
*b. 15
c. 6

1/3 = N/27 "N" is

*a. 9
b. 3
c. 1
$\frac{7}{8} = \frac{N}{64}$ "N" is

a. 8
b. 54
*c. 56

$\frac{8}{9} = \frac{56}{N}$ "N" is

a. 7
*b. 63
c. 54

$\frac{5}{6} = \frac{45}{N}$ "N" is

a. 9
*b. 54
c. 56

$\frac{2}{7} = \frac{18}{N}$ "N" is

a. 36
b. 14
*c. 63

$\frac{6}{7} = \frac{36}{N}$ "N" is

*a. 42
b. 36
c. 45

Source: Merrill, *Discovering Math.* 5, p. 300.

THE STUDENT WILL APPLY HIS KNOWLEDGE OF THE MULTIPLICATION OF FRACTIONS IN EVERY DAY PROBLEMS BY IDENTIFYING THE CORRECT ANSWER TO A GIVEN PROBLEM.
Harvey needs 1 2/3 yds. of wire screening to cover each window in his clubhouse. If the clubhouse has 4 windows, how many yards of screening does he need?

a. 6 1/3 yds.
b. 10 yds.
c. 6 2/3 yds.

If frozen dog food costs $0.40 a pound, how much will 6 3/8 pounds cost?

a. $2.55
b. $2.30
c. $6.80

A jet airliner is traveling at an average speed of 480 miles per hr. At this rate, how far will the airliner travel in 4 4/5 hours?

a. 576 mi.
b. 2284 mi.
c. 2304 mi.

How far will an airliner travel in 4 4/5 hours if its average speed is 520 miles per hour?

a. 2496 mi.
b. 624 mi.
c. 3120 mi.

There was 3/4 of a chocolate pie in the refrigerator. Bill ate 2/3 of what was there. How much of the whole pie did Bill eat?

a. 5/7
b. 1/2
c. 6/7
A recipe calls for 3/4 cup of butter. If you make only 1/2 of the recipe, how much butter do you need?

a. 1/2 cup
b. 1/3 cup
c. 3/8 cup

John lives 5/8 of a mile from school. One morning his dog followed him 2/3 of the way to school before John sent him home. How far did John's dog follow him?

a. 5/6
b. 7/24
c. 5/12 of a mile

For a meat loaf, Mrs. Hunt bought 2 3/4 pounds of ground meat at 64 cents a pound. How much did the meat cost?

a. $1.76
b. $1.26
c. $5.03

took Tom 1 3/4 hours to mow the grass. His father paid him 40 cents an hour. How much money did Tom earn?

a. $.80
b. $1.70
c. $2.23

Sally bought a piece of cheese that weighed 2 1/2 pounds. At 72 cents a pound, how much did Sally pay for the cheese?

a. $1.75
b. $1.44
c. $1.60

Source: Discovering Math, 5, Merrill, p. 317.
Greater Cleveland Math, Program 5, SRA, pp. 50, 51, 52.
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF PROCESS INVOLVED IN COMPUTING FRACTIONS BY ANALYZING EQUATIONS AND SELECTING THE PROCESS WHICH WOULD MAKE IT A TRUE EQUATION.

Directions: Select the process which would be necessary to make a true equation.

\[\frac{4}{5} \square \frac{2}{3} = \frac{2}{15} \]

a. add
b. subtract
c. multiply
d. divide

\[\frac{2}{4} \square \frac{1}{6} = \frac{11}{12} \]

*a. add
b. subtract
c. multiply
d. divide

\[1 \frac{3}{4} \square 2 \frac{1}{3} = 3 \frac{1}{9} \]

a. add
b. subtract
*c. multiply
d. divide

\[4 \frac{2}{3} \square \frac{5}{6} = 5 \frac{3}{5} \]

a. add
b. subtract
c. multiply
*d. divide
\[
\frac{4}{9} \left(\frac{2}{3}\right) = 1 \frac{1}{9}
\]

*a. add
b. subtract
c. multiply
d. divide

\[
\frac{2}{3} \left(\frac{3}{2}\right) = 1
\]

a. add
b. subtract
*c. multiply
d. divide

\[
\frac{3}{4} \left(\frac{2}{3}\right) = 1
\]

a. add
b. subtract
c. multiply
*d. divide

\[
\frac{16}{3} \left(\frac{12}{3}\right) = 1 \frac{1}{3}
\]

a. add
*b. subtract
c. multiply
d. divide

\[
3 \frac{2}{3} \left(1 \frac{1}{3}\right) = 7 \frac{1}{3}
\]

a. add
b. subtract
c. multiply
d. divide
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF FRACTIONS BY SOLVING WORD PROBLEMS.

Directions: Read the problems and select the correct answer.

Red Sox 7, White Sox 5. What fraction of the runs did the White Sox score?

a. 1/5
b. 5/7
*c. 5/12
d. 7/12

What fraction of the runs did the Red Sox score?

a. 1/7
b. 5/7
*c. 7/12
d. *7/12

20 children, 15 are boys. What fraction are boys?

*a. 3/4
b. 3/5
c. 5/6
d. 4/5

What fraction are girls?

a. 1/5
b. 1/6
*c. 1/4
d. 1/3
10-foot rope. Climb up 6 feet. How far?

a. 1/6
b. 3/6
* c. 3/5
d. 1/10

Climb up 9/10 of the way. How far?

*a. 9 feet
b. 6 feet
c. 10 feet
d. 1 foot

Climb up 1/6 of the way. How far?

a. 1 foot
b. 2 feet
*c. 5 feet
d. 7 feet

Climb up 2/5 of the way. How far?

a. 2 feet
b. 5 feet
*c. 4 feet
d. 7 feet

Source: Addison-Wesley, Bk. 5, p. 213.

The student will display his ability to distinguish between facts that are relevant and facts that are not relevant in the solving of fraction word problems.

Directions: Below each problem several phrases are presented. If the information given in the phrase is relevant to the problem solving cross out the R; if the information given in the phrase is non-relevant to the problem solving cross out the N.
Jack and Ann left at 9:00 a.m. on an 8 hour bicycle ride. They averaged 10 miles per hour. For every 60 minutes they rode they rested for 5 minutes.

What fraction of each hour is rest time?

What fraction of an hour is the total rest time?

A 7 year old camel weighs 1000 lbs. A 10 year old moose weighs 900 lbs.

What fraction of a ton does the camel weigh?
What fraction of the two animals weight does the camel weigh?

\[
\begin{array}{ll}
R & \mathbf{N} \text{ age of camel} \\
K & \mathbf{N} \text{ weight of camel} \\
R & \mathbf{N} \text{ age of moose} \\
K & \mathbf{N} \text{ weight of moose} \\
\end{array}
\]

Source: Addison-Wesley, Bk. 5, p. 213, 230.
LENGTH, AREA AND VOLUME
THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF BASIC GEOMETRIC
MEASUREMENT FORMULAS BY ANALYZING GIVEN DATA AND SELECTING THE
ALTERNATIVE THAT PROVIDES ENOUGH INFORMATION TO SOLVE THE PROBLEM.

Directions: Given the data below, select the one which provides enough information to solve the problem.

Find: Volume of a swimming pool

a. The maximum number of people the pool holds is 15.
b. The pool is 20 feet long and 8 feet wide.
c. Every two hours 30 gallons of water is filtered.
d. The pool is 10 feet deep and has an area of 120 square feet.

Find: The perimeter of a parking lot

a. 12 gallons of white paint were used to paint the parking guide lines.
b. The area of the parking lot is 800 square feet.
c. The parking lot is square in shape with each side 20 feet long.
d. The parking lot is rectangular in shape; it is 20 feet long.

Find the area of the stage on which Simon and Garfunkle perform.

a. The stage is 5 feet high and can hold 1600 pounds.
b. The stage is 45 feet long and 20 feet wide.
c. The perimeter of the stage is 170 feet.
d. The volume is 560 cubic feet.

THE STUDENT WILL SHOW ABILITY TO FIND AREA, PERIMETER, AND VOLUME
BY COMPUTING SEVERAL OF THESE MEASURES.

Directions: Compute the following equations and select the answer.
Find the area of a rectangle whose dimensions are \(L = 64 \) and \(W = 12 \).

a. 252
b. 92
c. 3940
d. 768

Find the perimeter of a square whose length is 18.

a. 304
b. 36
c. 72
d. 27

Find the volume if the length is 12, the width is 8 and the height is 4.

a. 384
b. 24
c. 144
d. 100

Find the volume if the length, width and height is 100.

a. 100,000
b. 10,000
c. 1,000,000
d. 1,000

Find the area of a square whose length is 33.

a. 333
b. 1089
c. 1099
d. 132
Find the area of a triangle with a base of 48 and a height of 9.

- a. 114
- *b. 216
- c. 214
- d. 108

Find the perimeter of a desk whose length is 42 and whose width is 36.

- a. 1512
- b. 756
- c. 422
- *d. 156

Find the volume of an object whose dimensions are 6 by 8 by 2.

- a. 32
- b. 48
- *c. 96
- d. 106

Find the perimeter of an object whose dimensions are 10 x 24.

- *a. 68
- b. 86
- c. 240
- d. 480
Given a graph resembling city blocks with all one-way streets, the student will analyze the graph to find the least number of blocks it would take to go from one point to another.

Directions: Given a graph of city blocks with all one-way streets, find the least number of blocks (1 block is moving from intersection to intersection) it would take to move from one point to another.

\((-2, -2)\) to \((0, 1)\)

a. 9
b. 7
c. 5
d. 12

\((-3, 2)\) to \((2, -1)\)

a. 12
b. 9
c. 10
d. 15
The least amount of moves from (-4,-3) to (1,2) is 10. How many different ways could achieve the same number of moves.

a. 1
b. 3
*c. 5
d. 6
BILL AND COINS
THE STUDENT DEMONSTRATES KNOWLEDGE OF THE VALUES OF BILLS AND COINS IN DAILY USE TODAY BY MATCHING COIN VALUES AND SOLVING ADDITION OR SUBTRACTION PROBLEMS INVOLVING MONEY.

When you pay for an item in a store you have several ways of putting the proper coins together. Match the total price in column I with the proper coins in column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>d 33¢</td>
<td>a. 1 dime, 1 nickel, 2 pennies 2114</td>
</tr>
<tr>
<td>b 47¢</td>
<td>b. 1 quarter, 2 dimes, 2 pennies 2115</td>
</tr>
<tr>
<td>a 17¢</td>
<td>c. dime, 3 nickels, 2 pennies 2116</td>
</tr>
<tr>
<td>c 27¢</td>
<td>d. 2 dimes, 2 nickels, 3 pennies 2117</td>
</tr>
</tbody>
</table>

The total value of 4 pennies, 1 nickel, 1 dime, 2 quarters is 2118

a. 56¢
b. 1.06¢
*c. 69¢
d. 67¢

The total value of 3 pennies, 3 dimes, 3 half dollars is 2119

a. $1.05
b. $1.53
c. $1.33
*d. $1.83

The total value in cents for 2 pennies, 3 nickels, 3 dimes, 1 dollar is 2120

*a. 147¢
b. 135¢
c. $1.42
d. $1.37
e. $1.47
The total value of 3 pennies, 8 dimes, 3 one-dollar bills, and 1 five dollar bill is

a. $4.83
b. $5.38
c. $8.38
d. $8.83

Express the sum of 87%, 16%, and 3% in dollars and cents

a. 106 cents
b. One dollar sixteen cents
c. $1.06
d. One hundred three cents

Express the sum of 17%, 24%, 28% in dollars and cents

a. 283%
b. 2.88%
c. 2 hundred 88 cents
d. $2.88

The sum of $1.43 is

a. $3.21
b. 2.21
c. 3.01
d. 2.01

The cash register records these sales,

$.16
.09
1.52
4.29
.39
.29

The sum is

a. $6.66
b. $6.74
c. $6.68
d. $6.64
Solve
\[\begin{align*}
&\text{a. } 2.14 \\
&\text{b. } 2.04 \\
&\text{c. } 2.04 \\
&\text{d. } 2.14
\end{align*} \]

Solve
\[\begin{align*}
&\text{a. } 11.18 \\
&\text{b. } 12.28 \\
&\text{c. } 23.14 \\
&\text{d. } 22.04
\end{align*} \]

Mary was going to buy something at the toy store. Mary had $5.10. What is the most number of different items she could buy at these prices?

- Bush balls 29¢
- Balloons 25¢ per package
- Dolls $3.95
- Stuffed toys $3.00
- Doll clothes 79¢
- Jump rope 19¢
- Game $1.75
- Coloring Books 17¢
- Crayons 10¢

\[\begin{align*}
&\text{a. } 3 \\
&\text{b. } 5 \\
&\text{c. } 7 \\
&\text{d. } 9
\end{align*} \]
THE STUDENT DEMONSTRATES KNOWLEDGE OF THE CONCEPT AVERAGE BY CALCULATING AVERAGES OR CARDINAL NUMBERS FROM GIVEN INFORMATION.

Set A = \{2, 4, 6, 8, 10\}
The average of the numbers in Set A is

a. 30
b. 15
c. 12
*d. 6

Set B = \{364, 487, 563, 718\}
The average of the numbers in Set B is

a. 2132
b. 500
c. 1066
*d. 533

\{2, 4, 6, 7, 8, 9\}
The average of the set of numbers is

a. 36
b. 12
c. 18
*d. 6

Fred ate 6 cookies, Mary ate 5 cookies and Sue ate 7 cookies. The average number eaten was

a. 3
*d. 6
b. 9
c. 18
The baseball team kept this record of its hits.

<table>
<thead>
<tr>
<th>Game</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

The average number of hits for the games recorded is

a. 3
b. 4
c. 6
d. 12
e. 24

Mr. Brown drove 127 miles in a week. The average number of miles driven each day was

a. 309
b. 261
c. 26
d. 90

There are 6 girls in the Blue Patrol. They sell an average of 12 boxes each during the candy sale. How many boxes were sold?

a. 2
b. 18
c. 72
d. 72

The Thomas family drove an average of 225 miles each day of their 15-day vacation. How many miles did they drive?

a. 3375
b. 75
c. 3300
d. 15
The student demonstrates knowledge of the median of a set of numbers by indicating the median for a given set.

Median can best be described as

- a. number in set
- b. average of numbers in set
- *c. middle number in set
- d. sum of numbers in set

\{45, 60, 95, 105, 150\}

The median of the set is

- a. 91
- *b. 95
- c. 100
- d. 97

\{11, 16, 17, 19, 24, 29\}

The median for the set is

- *a. 18
- b. 17
- c. 19
- d. 19 r 2

\{205, 222, 226, 230, 243\}

The median for the set is

- a. 222
- b. 225 r 1
- *c. 226
- d. 230
The median for the set is

a. 17
b. 19
c. 20
d. 22

Find \(n \)
\[n = \frac{20 + 4}{8 + 4} \]
a. 4
b. 5
c. 7
d. 8

Solve \(63 \div (6 \div 3) = n \)

c. 1
b. 7
c. 9
d. 12

Solve for \(r \)
\[r = \frac{1,400}{1,000 + 2} \]

c. 20
b. 1.4
c. 7
d. 2

\(\phi \cap \phi = \Phi \). The reason this equation could be a true statement is

a. identity element of 1
b. multiplication is the inverse operation
c. identity element of 0
d. division is commutative
Given the equation \(5641 \div 7 = \frac{1}{2}\), we think of the dividend as 58 hundreds and 41. The best estimate for the quotient would be:

- a. \(7 \times 7\) hundreds < 58 hundreds
- b. \(7 \times 8\) hundreds < 58 hundreds
- c. \(7 \times 9\) hundreds < 58 hundreds
- d. \(7 \times 10\) hundreds < 58 hundreds

In the equation, \(2162 \div 9 = n\), the dividend can be thought of as 84 hundreds and 62. Estimating the quotient we would choose:

- a. \(9 \times 7\) hundreds < 84 hundreds
- b. \(9 \times 8\) hundreds < 84 hundreds
- c. \(9 \times 9\) hundreds < 84 hundreds
- d. \(9 \times 10\) hundreds < 84 hundreds

The dividend is 53 tons and \(1\). For an estimate of the quotient we would choose:

- a. \(21 \times 1\) ton < 53 tons
- b. \(21 \times 2\) tons < 53 tons
- c. \(21 \times 3\) ton < 53 tons
- d. \(21 \times 4\) tons < 53 tons

The dividend is 31, tons and \(3\). The best choice for an estimate of the quotient is:

- a. \(19 \times 0\) tons < 31 tons
- b. \(19 \times 1\) ton < 34 tons
- c. \(19 \times 2\) tons < 35 tons
- d. \(19 \times 3\) tons < 38 tons

The dividend is 71 hundreds an estimate of the quotient would be:

- a. \(73 \times 10\) hundreds < 71 hundreds
- b. \(73 \times 9\) hundreds < 71 hundreds
- c. \(73 \times 8\) hundreds < 71 hundreds
- d. \(73 \times 7\) hundreds < 71 hundreds
9653 ÷ 56 = n. The dividend is 96 hundreds and 53. An estimate of the quotient would be

a. 56 x 1 hundred < 96 hundreds
b. 56 x 2 hundreds < 96 hundreds
c. 56 x 3 hundreds < 96 hundreds
d. 56 x 4 hundreds < 96 hundreds

Solve \[\underline{5676} \div 33 \]

a. 164 r 4
b. 172
c. 180 r 6
d. 171 r 26

Solve 36)4504

a. 133 r 16
b. 140 r 4
b. 132 r 34
d. 143 r 6

d. 250 r 10

7600 = \underline{25} \times \underline{30}

a. 25 r 31
b. 250 r 10
c. 252 r 40
d. 253 r 10

92 = \underline{38}

a. 29
b. 35
c. 38
d. 41

7458 ÷ 80 = n

a. 90
b. 925 r 6
c. 92 r 78
d. 91
\[
\square = 3502 \div 20
\]

\[a. \quad 175 \quad r \quad 2
\]
\[b. \quad 174 \quad r \quad 2
\]
\[c. \quad 170
\]
\[d. \quad 125 \quad r \quad 2
\]

\[
\frac{2913}{70} = \square
\]

\[a. \quad 40 \quad r \quad 13
\]
\[b. \quad 41 \quad r \quad 43
\]
\[c. \quad 41 \quad r \quad 33
\]
\[d. \quad 416 \quad r \quad 1
\]

\[
\square = \frac{3628}{40}
\]

\[a. \quad 91 \quad r \quad 8
\]
\[b. \quad 90 \quad r \quad 28
\]
\[c. \quad 81 \quad r \quad 8
\]
\[d. \quad 90 \quad r \quad 18
\]

\[
30)4562
\]

\[a. \quad 118 \quad r \quad 22
\]
\[b. \quad 114 \quad r \quad 2
\]
\[c. \quad 152 \quad r \quad 2
\]
\[d. \quad 153 \quad r \quad 2
\]

\[
44)3598
\]

\[a. \quad 70 \quad r \quad 2
\]
\[b. \quad 60 \quad r \quad 42
\]
\[c. \quad 81 \quad r \quad 42
\]
\[d. \quad 81 \quad r \quad 32
\]
2963 ÷ 23 = []

- a. 15 r 23
- b. 151 r 5
- c. 102 r 7
- d. 105 r 23

[] = 5850 ÷ 54

- a. 13 r 18
- b. 106 r 16
- c. 103 r 18
- d. 150 r 3

2163

2164

2165

2166
22 \times \boxed{} = 896

- a. 19712
- b. 18502
- c. 41
- d. 40 r 16

\boxed{} \times 41 = 1694

- a. 62 r 12
- b. 41 r 13
- c. 68354
- d. 69454

45 \times \boxed{} = 540

- a. 10
- b. 12
- c. 23100
- d. 24300

\boxed{} \times 39 = 723

- a. 28197
- b. 27197
- c. 23 r 26
- d. 18 r 11

306 = 34 \times \boxed{}

- a. 20 r 26
- b. 23 r 24
- c. 27304
- d. 27404

653 = \boxed{} \times 27

- a. 17631
- b. 18531
- c. 20 r 13
- d. 24 r 5
$16 \times a + b = 908$

a. $a = 56 \ b = 12$

b. $a = 506 \ b = 12$

c. $a = 14524 \ b = 16$

d. $a = 14424 \ b = 16$

$427 = (a \times 14) + b$

a. $a = 30 \ b = 7$

b. $a = 37 \ b = 9$

c. $a = 5958 \ b = 14$

d. $a = 5979 \ b = 14$

$(20 \times a) + b + 1680$

a. $a = 80 \ b = 20$

b. $a = 84 \ b = 0$

c. $a = 32600 \ b = 0$

d. $a = 33600 \ b = 20$

$763 = (a \times 32) + b$

a. $a = 23316 \ b = 32$

b. $a = 24416 \ b = 12$

c. $a = 23 \ b = 27$

d. $a = 24 \ b = 5$

$14 \times [\square] = \frac{1240}{60}$

a. 280

b. 28

c. 1 r 6

d. 14 r 4

$45 \times [\square] = \frac{650}{5}$

a. 20 r 5

b. 130

c. 5850

d. 2 r 40
\((764 - 4) = _ \times 26\)

\[a. \quad 4966 \]
\[b. \quad 191 \]
\[c. \quad 7 \text{ r } 9 \]
\[d. \quad 8 \text{ r } 22 \]

\[(15 - 3) = _ \times _ = 800\]

\[\quad a. \quad 160 \]
\[b. \quad 400 \]
\[c. \quad 4000 \]
\[d. \quad 16 \]

\[780 = _ \times \frac{45}{3}\]

\[\quad a. \quad 11700 \]
\[\quad b. \quad 52 \]
\[\quad c. \quad 1070 \]
\[\quad d. \quad 50 \text{ r } 5 \]

\[\frac{20}{5} = _ \times \frac{427}{7}\]

\[\quad a. \quad 15 \text{ r } 1 \]
\[\quad b. \quad 244 \]
\[\quad c. \quad 241 \]
\[\quad d. \quad 14 \text{ r } 5 \]

\[\frac{36}{4} = _ \times \frac{580}{10}\]

\[\quad a. \quad 522 \]
\[\quad b. \quad 6 \text{ r } 4 \]
\[\quad c. \quad 64 \text{ r } 4 \]
\[\quad d. \quad 502 \]
Mode can best be described as ________________.

- a. the average of a set of numbers.
- b. the most frequently used in a set of numbers.
- c. the middle number in a set of numbers.
- d. the sum of a set of numbers.
Tom received these grades on 6 math tests: 65, 75, 80, 80, 90, 78. The mode for this set of scores is

- a. 79
- b. 80
- c. 78
- d. 65

The record of the scores of the Cougar football team showed out of the last 7 games they made 10, 17, 21, 21, 10, 10, 17 points. The mode for this set of scores is

- a. 21
- b. 17
- c. 10
- d. 11

The student knows the definition of range by computing the range of a set of numbers.

In a set of numbers the range is _________.

- a. the difference between the highest and the lowest.
- b. the sum of the elements.
- c. the middle element.
- d. the sum of the elements divided by the number of elements.

The 6 P.M. temperature was recorded for 7 days.

<table>
<thead>
<tr>
<th>Date</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>58</td>
</tr>
</tbody>
</table>

The range is

- a. 58 degrees
- b. 70 degrees
- c. 82 degrees
- d. 24 degrees
The set of numbers above are the scores on a test ten students took. The range of the set is

\[\{100, 75, 98, 68, 72, 85, 100, 88, 70, 80\} \]

- a. 83
- b. 32
- c. 100
- d. 68
FINITE-INFINITE
A finite number system is

a. base 10
b. clock arithmetic
c. ordered numbers
d. finite numbers

In a finite system based on the numbers on the clock we do not use

a. zero
b. seven
c. eight
d. twelve

In the finite system seven the set of numbers is

a. \{1, 2, 3, 4, 5, 6, 7\}
b. \{0, 1, 2, 3, 4, 5, 6, 7\}
c. \{0, 1, 2, 3, 4, 5, 6\}
d. \{2, 3, 4, 5, 6\}

The equation in Column II can be paired with an answer in Column I.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>11</td>
</tr>
<tr>
<td>d</td>
<td>9</td>
</tr>
<tr>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
</tbody>
</table>

a. \(3 + 7 = n\)
b. \(8 + 6^{12} = n\)
c. \(10 - 11^{12} = n\)
d. \(10 + 11^{12} = n\)
e. \(9 - 6^{12} = n\)
Multiplication in a finite system is based on successive additions of addends

\[2 \times 8 = 16 \]

therefore

\[5 \times 10 = 50 \]

\[50 \]

\[0 \]

\[2 \]

\[5 \]

In finite 7 these equations in Column II are correct for which answers in Column I.

<table>
<thead>
<tr>
<th>Column II</th>
<th>Column I</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. 6</td>
<td>a. 6 + 3 = ___</td>
</tr>
<tr>
<td>c. 0</td>
<td>b. 5 + 4 = ___</td>
</tr>
<tr>
<td>d. 4</td>
<td>c. 3 + 4 = ___</td>
</tr>
<tr>
<td>a. 2</td>
<td>d. 5 + 6 = ___</td>
</tr>
<tr>
<td>e. 2 + 3</td>
<td>e. 2 + 3 = ___</td>
</tr>
</tbody>
</table>

Match the equations in Column II with the proper answers in Column I.

<table>
<thead>
<tr>
<th>Column II</th>
<th>Column I</th>
</tr>
</thead>
<tbody>
<tr>
<td>f. 4</td>
<td>a. 4 \times 5 = ___</td>
</tr>
<tr>
<td>a. 6</td>
<td>b. 2 - 4 = ___</td>
</tr>
<tr>
<td>e. 0</td>
<td>c. 5 - 6 = ___</td>
</tr>
<tr>
<td>c. 6</td>
<td>d. 3 \times 4 = ___</td>
</tr>
<tr>
<td>b. 5</td>
<td>e. 6 \times 6 = ___</td>
</tr>
<tr>
<td></td>
<td>f. 3 \times 6 = ___</td>
</tr>
</tbody>
</table>

A finite number system cannot have

a. distributive properties
b. multiplication property of one
c. associative properties
*d. multiplication property of zero
e. commutative property

471
THE STUDENT RECALLS THE DEFINITION OF FINITE SETS AND INFINITE SETS BY USING THE CARDINAL NUMBER TO DETERMINE WHETHER GIVEN SETS ARE FINITE OR INFINITE.

An example of an infinite set is a set in which

a. all members can be listed
b. a cardinal number can be given
*c. a series of dots shows additional elements
d. the last element follows three dots

The best example of a finite set is a set in which

a. a series of dots is given for some of the elements
b. all members are listed
c. a cardinal number can be given for the elements
d. the elements are always seen

Which of the sets is NOT a finite set?

a. dog, cat
b. a, b, c, ...
*c. 1, 2, 3, ...

Which of the sets is a finite set?

a. the counting numbers
b. the polygons that can be drawn
*c. the animals in Brookfield Zoo
d. all the odd numbers

The magic computer scans the universe. It would NOT be able to count

a. the grains of sand on the beaches
b. the fish in all the waters
c. the sounds that can be made
d. brick houses in the cities
THE STUDENT RECALLS FACTS ABOUT NUMBER PAIRS BY STATEING THAT THEY ARE NOT COMMUTATIVE.

The best description of number pairs is they have:

a. associative properties
b. commutative properties
c. unrelated digits
*d. a definite order
e. a mathematical function

Everytime Mary's pet hen laid an egg she added 3 pennies to her bank. Which of those sets of number shows the correct pennies for each egg?

*a. (1,3)
b. (3,1)
c. (1,4)
d. (4,1)
e. (2,5)

THE STUDENT CAN APPLY THE ASSOCIATIVE PROPERTY TO SOLVE A MULTIPLICATION PROBLEM.

The factors 6 x 810 are not equal to:

*a. (6 x 90) + (6 x 50)
b. (6 x 800) + (6 x 10)
c. 4800 + 60
d. 6 x (800 + 10)

The factors 7 x 340 are not equal to:

a. (7 x 800) + (7 x 40)
b. 7 x (800 + 40)
c. 7 x (7 x 120)
d. (7 x 800) + 40
Another way of expressing the factors 6 x 1800 is

a. $6 \times (180 + 10)$
b. $6 \times (180 + 100)$
c. $6 \times (18 \times 100)$
d. $(6 \times 18) + (6 \times 100)$
e. $6 \times (100 + 800)$

THE STUDENT WILL ANALYZE 3-DIMENSIONAL ARRAYS TO DEMONSTRATE THE ASSOCIATIVE PROPERTY OF MULTIPLICATION BY IDENTIFYING THE CORRECT EQUATION SHOWN BY THE ARRAY.

Which equation correctly describes this array?

a. $2 \times 4 = 8$
b. $8 \times 1 = 8$
c. $2 \times 4 \times 1 = 8$

diagram of array

Which equation correctly describes the following array?

*a. $3 \times 4 \times 2$
b. $(4 \times 2) \times (3 \times 2)$
c. $12 \times 2 \times 1$

diagram of array

Which equation describes the following array?

*a. $(5 \times 3) + (5 \times 1)$
b. 5×5
c. $3 \times 5 \times 1$

diagram of array
Which equation describes the following array?

a. \((2 \times 3) (2 \times 1)\)

b. \(2 \times 3 \times 1\)

c. \(3 \times 3\)

Which equation describes the following array?

a. \(4 \times 5 \times 1\)

b. \(5 \times 6\)

c. \(5 \times 5 \times 1\)

Which equation does NOT describe the following array?

a. \(2 \times 5 \times 2\)

b. \((2 \times 2) (2 \times 5)\)

c. \(2 \times 2 \times 5\)

Which equation does NOT describe the following array?

a. \(3 \times 3 \times 2\)

b. \(3 \times 2 \times 3\)

c. \(5 \times 3 \times 2\)
Using the array, identify the equation which correctly describes it.

*a. 3 x 3 x 2
b. 5 x 5
c. 5 x 3 x 2

Which equation correctly identifies the following array?

*a. 4 x 4 x 1
b. 5 x 5 x 1
c. 5 x 4 x 1

Which equation correctly identifies the following array?

*a. 4 x 5 x 3
b. 4 x 8 x 3
c. 4 x 5 x 3

Source: Discovering Math 2, Merrill, pp. 68-69.

The student will demonstrate his understanding of the associative principle of multiplication by identifying equations using this principle.
Directions: Select the correct answer.

Which number sentence below correctly illustrates the associative principle of multiplication?

a. \(4 \times 6 = 6 \times 4\)
*b. \(4 \times (3 \times 6)\)
c. \((2 \times 3) + (2 \times 3)\)

Which number sentence below illustrates the associative principle of multiplication?

*a. \((7 \times 2) \times 4\)
b. \(7 \times 4 = 4 \times 7\)
c. \((3 \times 2) + (4 \times 2)\)

Which phrase below refers to the associative principle of multiplication?

a. Changing order of factors
*b. Pairing neighboring factors
c. Breaking apart a factor

Which number sentence below does NOT illustrate the associative principle of multiplication?

a. \(4 \times (8 \times 9)\)
b. \((4 \times 8) \times 9\)
*c. \(2 \times 3 = 3 \times 2\)

Which number sentence below illustrates the associative principle of multiplication?

*a. \((64 \times 39) \times 21\)
b. \((60 \times 39) \times (4 \times 39)\)
c. \(64 \times 39 = 39 \times 64\)
Which number sentence below illustrates the associative principle of multiplication?

*a. (391 x 426) x 100
b. (300 x 426) + (91 x 426)
c. 391 x 426 = 426 x 391

Which number sentence below illustrates the associative principle of multiplication?

a. (a x b) + (c x b)
*b. (a x b) x c
c. a x b = b x a

Which number sentence below does NOT illustrate the associative principle of multiplication?

a. 4 x (2 x 3)
b. (4 x 2) x 3
*c. (4 x 2) + (2 x 2)

Which number sentence below illustrates the associative principle of multiplication?

*a. (6 x 3) x 4
b. 6 x 4 = 4 x 6
c. (6 x 3) + (6 x 3)

Which number sentence below illustrates the associative principle of multiplication?

a. 5 x 6 = 6 x 5
b. (5 x 3) + (5 x 3)
*c. (5 x 6) x 2

Source: Merrill, Discovering Math 5, p. 31.
Harcourt, Brace, Elementary Math 5, p. 47.
THE STUDENT WILL DEMONSTRATE AN UNDERSTANDING OF THE ASSOCIATIVE PRINCIPLE AS APPLIED TO THE MULTIPLICATION OF FRACTIONS BY IDENTIFYING ONE FACTOR IN AN EQUATION.

(1/3 x 1/5) x 1/2 = N x 1/2. N is

a. 1/8
b. 2/15
*c. 1/15

(5/1 x 3/2) x 1/2 = N x 1/2. N is

a. 15/1
*b. 15/2
c. 8/2

(2/7 x 1/3) x 3/5 = N x 1/3. N is

*a. 2/21
b. 2/10
c. 1/21

(3/1 x 2/1) x 5/1 = N x N. N is

a. 5/16 x 5/1
b. 16/1 x 1/1
*c. 6/1 x 5/1

(4/5 x 2/3) x 1/3 = N x 1/3. N is

a. 6/8
b. 6/15
*c. 8/15
(\(2/7 \times 1/5\) \(\times 2/3\) = \(\text{N} \times 2/3\). \(\text{N}\) is

*a. \(2/35\)
*b. \(2/12\)
*c. \(1/12\)

(\(4/5 \times 2/7\) \(\times 3/1\) = \(\text{N} \times 3/1\). \(\text{N}\) is

*a. \(6/45\)
*b. \(8/14\)
*c. \(8/45\)

\(6/5 \times (1/2 \times 2/1) = 6/5 \times \text{N}\). \(\text{N}\) is

*a. \(2/2\)
*b. \(1/2\)
*c. \(1\)

\(5/1 \times (3/2 \times 1/2) = 5/1 \times \text{N}\). \(\text{N}\) is

*a. \(1/4\)
*b. \(3/4\)
*c. \(1/2\)

\(4/5 \times (2/9 \times 3/1) = 4/5 \times \text{N}\). \(\text{N}\) is

*a. \(6/9\)
*b. \(5/9\)
*c. \(3/9\)

Directions: Match column I with its correct solution in column II by placing the letter of the problem from column I on the line in front of its solution in column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 8 + 9 = 8 + 5 + 4 = 8 + (5 + _) = 8 + ___ 8 + 9 = ___</td>
<td>g. 7, 4, 11 2252</td>
</tr>
<tr>
<td>b. 2 + 14 = 2 + 8 + 6 = 8 + (2 + _) = 8 + ___ 2 + 14 = ___</td>
<td>i. 2, 10, 18 2253</td>
</tr>
<tr>
<td>c. 7 + 3 + 3 = 7 + 6 3 + (7 + _) = 3 + ___ = 7 + 6</td>
<td>— 3, 5, 7 2255</td>
</tr>
<tr>
<td>d. 8 + 4 = 5 + 5 + 2 = 5 + (___ + 2) = 5 + ___ 8 + 4 = ___</td>
<td>a. 4, 9, 17 2257</td>
</tr>
<tr>
<td>e. 6 + 10 = 8 + 4 + 2 + 2 = (4 + ____) + (8 + 2) = ___ + 10 6 + 10 = ___</td>
<td>h. 4, 10, 19 2259</td>
</tr>
<tr>
<td>f. 5 + 3 + 3 = 5 + 6 (5 + 3) + ___ = ___ + 3 = ___ = 5 + 6</td>
<td>c. 3, 10, 13 2260</td>
</tr>
<tr>
<td></td>
<td>b. 6, 8, 16 2261</td>
</tr>
</tbody>
</table>
THE STUDENT CAN APPLY THE COMMON FACTOR PROPERTY OR THE DISTRIBUTIVE PROPERTY TO SOLVE MULTIPLICATION EQUATIONS.

If we were to find the sum of 12 addends of 7 we could write the equation

\[a. \quad 12 + 7 = \]
\[b. \quad (5 \times 7) \times (7 \times 7) = \]
\[c. \quad (5 + 7) \times 12 = \]
\[d. \quad 7 \times (5 + 7) = \]
The equation for 5 sets of 8 and six sets of 8 is

a. \((5 \times 8) \times (6 \times 8) = \)
b. \(8 \times (5 + 8) = \)
*c. \((5 \times 6) \times 8 = \)
d. \(30 + 64 = \)

Eight sets of nine could not be expressed

a. \(6 \times 9 = n \)
b. \((5 + 3) \times 9 = n \)
*c. \((5 \times 9) \times 3 \times 9 = n \)
d. \(45 + 27 = n \)

THE *STUDENT* *WILL* *ANALYZE* *ARRAYS* *DEMONSTRATING* *THE* *DISTRIBUTIVE*
PROPERTY *OF* *MULTIPLICATION* *BY* *CORRECTLY* *IDENTIFYING* *THE* *BROKEN*
FACTOR.

Identify the distribution of a factor in the following array.

```
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
```
a. \(7 = 3 + 4 \)
*b. \(12 = 10 + 2 \)
c. \(84 = 70 + 14 \)

Identify the distribution of a factor in the following array.

```
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
```
*a. \(10 = 7 + 3 \)
b. \(8 = 4 + 4 \)
c. \(60 = 56 + 2* \)
Name the factor which is "distributed" in the following array.

a. 5
b. 60
*c. 12

Name the factor which is distributed in the following array.

*a. 5
b. 6
c. 30

Identify the distribution of a factor in the following array.

a. \(2 + 2 = 4\)
b. \(3 + 2 = 5\)
c. \(12 + 8 = 20\)

Name the factor which is distributed in the following array.

*a. 5
b. 4
c. 20
Name the factor which is distributed in the following array.

*a. 6
b. 18
c. 3

Which number sentence shows a broken factor in the following array?

*a. $3 + 2 = 5$
b. $4 + 2 = 6$
c. $20 + 10 = 30$

Which number sentence shows a broken factor in the following array?

*a. $7 + 2 = 9$
b. $35 + 10 = 45$
c. $3 + 2 = 5$

Name the factor which is distributed in the following array.

*a. 7
b. 35
c. 5

Source: Discovering Math, 5, Merrill, pp. 60-61.
The student will apply his knowledge of the distributive principle of multiplication by using this principle in a horizontal outline.

Circle the number below which is missing in the outline.
14 x 16 = N
(10 + 4) x 16 = N
(10 x 16) + ? x 16 = N
 a. 10
 *b. 4
 c. 14

Circle the number below which is missing in the outline.
13 x 18 = N
(10 + 3) x 18 = N
(10 x 18) + (3 x ?) = N
 *a. 18
 b. 10
 c. 3

Circle the number below which is missing in the outline.
15 x 15 = N
(10 + 5) x 15 = N
(10 x 15) + (5 x 15) = N
150 + ? = N
 a. 65
 b. 150
 *c. 75

Circle the number below which is missing in the outline.
12 x 15 = N
(10 + 2) x 15 = N
(10 x 15) + (? x 15) = N
 *a. 2
 b. 10
 c. 15
Circle the number below which is missing in the outline.

16 \times 17 = N
(10 + ?) \times 17 = N

a. 10
b. 17
*c. 6

Circle the number below which is missing in the outline.

14 \times 16 = N
(10 + 4) \times (10 \times ?) = N

a. 16
*b. 6
c. 4

Circle the number below which is missing in the outline.

14 \times 16 = N
(? + 4) \times (10 + 6) = N

*a. 10
b. 4
c. 6

circle the number below which is incorrectly computed in the following outline.

18 \times 16 = N
(10 + 8) \times (10 + 6) = N
(10 \times 10) + (10 \times 6) + (8 \times 10) + (8 \times 6) = N
100 + 600 + 80 + 48 = N

a. 100
b. 48
*c. 600
Circle the number below which is missing in the outline.

\[15 \times 12 = N \]
\[(10 + 3) \times (10 + 2) = N \]
\[(10 \times 10) \div (10 \times 2) \div (1 \times 10) \div (3 \times 2) = N \]
\[100 + 20 + 30 + 6 = ? \]

- a. 256
- b. 210
- *c. 156

The student will apply his knowledge of the distributive principle of division by identifying missing numbers in given distributive outlines.

Which number below is the missing number in the outline:

\[28 \div 4 = N \]
\[(80 + 4) \div 4 = N \]
\[(80 \div ?) + (4 \div 4) = N \]

- a. 80
- *b. 4
- c. 2

Which number below is the missing number in the outline:

\[36 \div 3 = N \]
\[(30 + 6) \div 3 = N \]
\[(30 \div ?) \div (6 \div 3) = N \]

- *a. 3
- b. 6
- c. 2

Which number below is the missing number in the outline:

\[216 \div 3 = N \]
\[(210 + ?) \div 2 = N \]

- a. 16
- b. 3
- *c. 6
Which number below is the missing number in the outline:
328 ÷ 4 = N
(320 + 8) + h = N
(? ÷ 4) + (6 ÷ 4) = N

a. 328
b. 8
c. 320

Which numbers below are the missing numbers in the outline:
186 ÷ 2 = N
(?) + (?) ÷ 2 = N

a. 62 and 124
b. 180 and 6
c. 100 and 86

Which numbers below are the missing numbers in the outline:
427 ÷ 7 = N
(? + ?) ÷ 7 = N

*a. 420 and 7
b. 400 and 27
c. 300 and 120

When we rename a dividend as two addends, those addends must be

a. round numbers
b. sum of the dividend
c. divisible by the given divisor

Which number below is the missing number in the outline:
1296 ÷ 3 = N
(1200 + ? + 6) ÷ 3 = N

a. 96
b. 90
c. 9
Which number below is the missing number in the outline:

936 ÷ 3 = ?
(? + 30 + 6) ÷ 3 = N

a. 9
b. 90
*c. 900

Which number below is the missing number in the outline:

1869 ÷ 3 = N
(60 + 9) ÷ 3 = N

a. 180
*b. 1800
c. 18

Source: Discovering Math_5, Merrill, p. 80,32.

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF THE COMMUTATIVE PRINCIPLE OF MULTIPLICATION BY IDENTIFYING EQUATIONS USING THIS PRINCIPLE.

Which equation below shows the commutative principle of multiplication?

*a. 3 x (2 x 4)
*b. 2 x 4 = 4 x 2
c. (5 x 4) + (5 x 3)

Which equation below shows the commutative principle of multiplication?

*a. 5 x 4 = 4 x 8
b. (8 x 4) + (8 x 2)
c. (4 x 2) x 3
Which equation below does NOT show the commutative principle of multiplication?

a. $8 \times 9 = 9 \times 8$

b. $13 \times 11 = 11 \times 13$

#c. $2 \times (3 \times 4)$

Which equation below does NOT show the commutative principle of multiplication?

a. $13 \times 4 = 4 \times 13$

b. $(10 \times 4) + (10 \times 4)$

c. $9 \times 10 = 10 \times 9$

Which equation below shows the commutative principle of multiplication?

*a. $6 \times 8 = 8 \times 6$

b. $(4 \times 3) \times 6$

c. $(10 \times 2) + (4 \times 2)$

Which equation below shows the commutative principle of multiplication?

*a. $(2 \times 5) \times 2$

*b. $2 \times 5 = 5 \times 2$

c. $(5 \times 2) \div (5 \times 2)$

Which equation below shows the commutative principle of multiplication?

*a. $(13 \times 5) \times 5$

*b. $13 \times 5 = 5 \times 13$

c. $(10 \times 5) \div (3 \times 5)$
Which phrase expresses the principle of commutation?

- a. Order principle
- b. Grouping principle
- c. Multiplication-addition principle

Which equation below shows the commutative principle of multiplication?

- a. \((a \times b) \times c\)
- b. \((a \times c) + (b \times c)\)
- c. \(a \times b = b \times a\)

Which equation below shows the commutative principle of multiplication?

- a. \((23 \times 4) \times 7\)
- b. \((20 \times 4) + (3 \times 4)\)
- c. \(23 \times 4 = 4 \times 23\)

Source: Harcourt, Brace, *Elementary Math, 5th* p. 47, 56 (1)
Merrill, *Discovering Math, 5th* p. 29.

THE STUDENT WILL SHOW HIS KNOWLEDGE OF THE BASIC PROPERTIES FOR WHOLE NUMBERS BY MATCHING A PRINCIPLE WITH A DEFINITION.

Directions: Place the letter of the definition on the line in front of each principle.

- a. you can change the order of addends and the sum in the same
- b. any whole number multiplied by one equals that whole number
- c. you can change the grouping and the product is the same
- d. you can change the order of factors and the product is the same
- e. to any whole number add zero, the sum equals that whole number
- f. you can change the grouping and the sum is the same
- g. you can change the grouping of a subtraction problem and the difference is the same
THE STUDENT WILL APPLY KNOWLEDGE OF THE BASIC PROPERTIES FOR WHOLE NUMBERS BY SELECTING THE PROPERTY IN A GIVEN SITUATION.

Directions: If the equations show the principle stated circle the letter P; if it does not apply to the stated principle circle the letter N.

Which of the following equations show the Commutative principle?

\[a. \quad 36 - 29 = 29 - 36 \quad P \quad N \]
\[b. \quad 23 \times 0 = 0 \quad P \quad N \]
\[c. \quad 21 \times 6 = 6 \times 21 \quad \star P \quad N \]
\[d. \quad 32 \times 7 = 7 \times 32 \quad \star P \quad N \]
\[e. \quad 14 \times (3 + 9) = (14 + 3) \times 9 \quad \star P \quad N \]
\[f. \quad 6 \times 6 = 8 \times 6 \quad \star P \quad N \]

Which of the following equations show the Associative principle?

\[a. \quad 34 \times (7 + 6) = (34 \times 7) = 6 \quad \star P \quad N \]
\[b. \quad 8 \times (16 \times 5) = (8 \times 16) \times 5 \quad \star P \quad N \]
\[c. \quad 17 \times (6 - 7) = (17 - 6) \times 3 \quad \star P \quad N \]
\[d. \quad 14 \times 8 = 8 + 14 \quad \star P \quad N \]
\[e. \quad 26 \times (5 \times 9) = (26 + 5) \times 9 \quad \star P \quad N \]
\[f. \quad 30 \times 20 = 20 \times 30 \quad \star P \quad N \]
RATIONAL-IRRATIONAL
THE STUDENT WILL APPLY HIS KNOWLEDGE OF RATIONAL NUMBERS BY SELECTING THE CORRECT ASSUMPTION FROM A PROBLEM SITUATION.

Directions: Read the problem presented and choose the proper assumption.

The sack of candy on the scale weighs 5/16 pound.

a. It weighs more than 1 lb.
* b. It weighs less than 1 lb.
c. It weighs 6 ounces.
d. It weighs 7 ounces.

A cup is 3/4 full. To make it 5/8 full you would

a. do nothing
b. add liquid
*c. take liquid out

d. take liquid out

The length of a shoe is 13/36 yard. The shoe is

*a. more than 1/3 yard
b. less than 1/3 yard
c. less than a foot
d. equal to 1/3 yard

Joe ran 50 yards in 1/6 of a minute. Tom ran 50 yards in 12/60 of a minute.

a. Joe and Tom took the same time to run the 50 yards.
b. Tom ran faster than Joe.
c. Joe ran slower than Tom.
*d. Joe ran faster than Tom.
The length of a knife A is 5/12 foot. The length of a second knife B is 1/2 foot.

- a. knife A is longer than knife B
- b. knife B is longer than knife A
- c. knife B is shorter than knife A
- d. both knives are the same length

Source: Addison-Wesley Bk. 5, p. 230.

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF RATIONAL NUMBER SIZE BY LISTING FRACTIONS FROM SMALLEST TO LARGEST.

Directions: List the fractions in order from smallest to largest.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>7/2</td>
</tr>
<tr>
<td>b</td>
<td>4/2</td>
</tr>
<tr>
<td>c</td>
<td>3/2</td>
</tr>
<tr>
<td>d</td>
<td>5/2</td>
</tr>
<tr>
<td>e</td>
<td>8/12</td>
</tr>
<tr>
<td>f</td>
<td>12/2</td>
</tr>
<tr>
<td>g</td>
<td>9/2</td>
</tr>
<tr>
<td>h</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Directions: List the fractions in order from smallest to largest.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5/6</td>
</tr>
<tr>
<td>b</td>
<td>1/3</td>
</tr>
<tr>
<td>c</td>
<td>7/6</td>
</tr>
<tr>
<td>d</td>
<td>2/3</td>
</tr>
<tr>
<td>e</td>
<td>5/3</td>
</tr>
</tbody>
</table>
Directions: List the fractions in order from smallest to largest.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 8/8</td>
<td>h. 0/8</td>
</tr>
<tr>
<td>b. 1/2</td>
<td>e. 5/8</td>
</tr>
<tr>
<td>c. 3/8</td>
<td>f. 1/8</td>
</tr>
<tr>
<td>d. 3/4</td>
<td>g. 1/4</td>
</tr>
<tr>
<td></td>
<td>h. 0/8</td>
</tr>
</tbody>
</table>

Directions: List the fractions in order from smallest to largest.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2/3</td>
<td>h. 0/8</td>
</tr>
<tr>
<td>b. 1/2</td>
<td>e. 5/8</td>
</tr>
<tr>
<td>c. 5/6</td>
<td>f. 1/8</td>
</tr>
<tr>
<td>d. 1/3</td>
<td>g. 1/4</td>
</tr>
<tr>
<td>e. 1/6</td>
<td>h. 0/8</td>
</tr>
<tr>
<td></td>
<td>h. 0/8</td>
</tr>
</tbody>
</table>

Source: Addison-Wesley, Dk. 5, p. 235.

THE STUDENT WILL USE HIS KNOWLEDGE OF FRACTIONS IN SELECTING THE RATIONAL AND WHOLE NUMBERS THAT ARE EQUIVALENT.
Directions: Match the whole number with their equivalent rational number.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>7</td>
<td></td>
<td>a.</td>
<td>12/3</td>
<td></td>
<td>2360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td></td>
<td>b.</td>
<td>25/5</td>
<td></td>
<td>2361</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td></td>
<td>c.</td>
<td>22/2</td>
<td></td>
<td>2362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>9</td>
<td></td>
<td>d.</td>
<td>28/4</td>
<td></td>
<td>2363</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>8</td>
<td></td>
<td>e.</td>
<td>14/7</td>
<td></td>
<td>2364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>6</td>
<td></td>
<td>f.</td>
<td>54/6</td>
<td></td>
<td>2365</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>6</td>
<td></td>
<td>g.</td>
<td>24/8</td>
<td></td>
<td>2366</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>3</td>
<td></td>
<td>h.</td>
<td>54/9</td>
<td></td>
<td>2367</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>4</td>
<td></td>
<td>i.</td>
<td>48/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Directions: Match the whole number with their equivalent rational number.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>1</td>
<td></td>
<td>a.</td>
<td>50/12</td>
<td></td>
<td>2368</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td></td>
<td>b.</td>
<td>7/1</td>
<td></td>
<td>2369</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>7</td>
<td></td>
<td>c.</td>
<td>15/5</td>
<td></td>
<td>2370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>2</td>
<td></td>
<td>d.</td>
<td>40/10</td>
<td></td>
<td>2371</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>5</td>
<td></td>
<td>e.</td>
<td>7/7</td>
<td></td>
<td>2372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td></td>
<td>f.</td>
<td>44/10</td>
<td></td>
<td>2373</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>g.</td>
<td>75/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h.</td>
<td>24/12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Addison-Wesley, Bk. 5, p. 235.
THE STUDENT, APPLYING HIS KNOWLEDGE OF THE ADDITION AND SUBTRACTION OF FRACTIONS, WILL SELECT THE CORRECT SOLUTION FOR WORD PROBLEMS.

Directions: Read the problem and choose the correct answer.

The grapes on a scale weigh 8/10 lb. Another bunch weighing 7/10 lb. was added to them. What was the total weight?

- a. 15 oz.
- b. 1 lb.
- c. 15/20 lb.
- d. 1 1/2 lb.

Larry rode his bike 2 9/10 miles before lunch and 4 2/10 miles after lunch. How far did he ride?

- a. 5 11/20 miles
- b. 17/10 miles
- c. 7 1/10 miles
- d. 7 11/20 miles

Jane and Sue walked to their grandmother's house. It took them 3/4 hour to get there and the same time to get back home. They visited for 3/4 of an hour.

How much time did they spend walking?

- a. 1 hr.
- b. 1 1/2 hr.
- c. 2 hr.
- d. 6/8 hr.

How long were they gone?

- a. 2 hr.
- b. 2 1/4 hr.
- c. 2 1/2 hr.
- d. 3 hrs.
Butter comes in 1/4 lb. sticks.

How much would 10 sticks of butter weigh?

a. 4 lb.
b. 3 1/4 lb.
c. 2 1/2 lb.
d. 2 lb.

How much would 17 sticks of butter weigh?

a. 4 1/4 lb.
b. 3 1/2 lb.
c. 3 lb.
d. 2 3/4 lb.

Source: Addison-Wesley Bk. 5, p. 243.

THE STUDENT WILL DEMONSTRATE HIS ABILITY TO RECOGNIZE RATIONAL NUMBER PROBLEMS Whose SOLUTION requires FINDING a COMMON DENOMINATOR FROM THOSE WHICH CAN BE SOLVED AS presented BY IDENTIFYING THOSE NEEDING COMMON DENOMINATORS.

Directions: In each of the following, one of the four equations cannot be solved unless a common denominator is found. Select that item.

a. 1/2 + 3/2 = n
b. 4/5 - 2/5 = n
c. 2/3 + 5/6 = n
d. 1/4 + 3/4 = n

a. 3/4 + 1/8 = n
b. 3/8 - 2/8 = n
c. 4/5 + 2/5 = n
d. 4/7 - 2/7 = n
Directions:
Choose the fact following the given equation that is nonrelevant to its solution.

<table>
<thead>
<tr>
<th>a.</th>
<th>6/14 + 8/14 = n</th>
<th>b.</th>
<th>6/9 + 4/7 = n</th>
<th>c.</th>
<th>5/8 + 3/8 = n</th>
<th>d.</th>
<th>5/12 - 1/12 = n</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>6/13 = 1/14 = n</td>
<td>b.</td>
<td>7/10 - 5/10 = n</td>
<td>c.</td>
<td>2/8 + 7/8 = n</td>
<td>d.</td>
<td>5/9 + 3/9 = n</td>
</tr>
<tr>
<td>a.</td>
<td>9/13 + 2/13 = n</td>
<td>b.</td>
<td>1/4 + 3/4 = n</td>
<td>c.</td>
<td>5/7 + 3/7 = n</td>
<td>d.</td>
<td>8/9 - 4/19 = n</td>
</tr>
<tr>
<td>a.</td>
<td>7/8 + 5/8 = n</td>
<td>b.</td>
<td>2/3 + 5/6 = n</td>
<td>c.</td>
<td>12/25 + 6/25 = n</td>
<td>d.</td>
<td>19/36 + 7/36 = n</td>
</tr>
<tr>
<td>a.</td>
<td>4/9 - 1/9 = n</td>
<td>b.</td>
<td>7/13 - 6/13 = n</td>
<td>c.</td>
<td>9/25 - 2/5 = n</td>
<td>d.</td>
<td>5/8 = 5/8 = n</td>
</tr>
</tbody>
</table>

The student will display his ability to distinguish between facts that are relevant and facts that are not relevant to the solution of a rational number problem by correctly identifying the non-relevant fact.
\[
\frac{5}{6} + \frac{3}{4} = n
\]

a. \(\frac{5}{6} = \frac{10}{12}\)
b. \(\frac{3}{4} = \frac{6}{8}\)
c. \(\frac{3}{4} = \frac{9}{12}\)

\[
\frac{1}{2} - \frac{1}{3} = n
\]

a. \(\frac{1}{2} = \frac{2}{4}\)
b. \(\frac{1}{3} = \frac{2}{6}\)
c. \(\frac{1}{2} = \frac{3}{6}\)

\[
\frac{7}{8} + \frac{5}{12} = n
\]

a. \(\frac{5}{12} = \frac{10}{24}\)
b. \(\frac{7}{8} = \frac{14}{16}\)
c. \(\frac{7}{8} = \frac{21}{24}\)

\[
\frac{1}{8} + \frac{1}{4} = n
\]

a. \(\frac{1}{8} = \frac{1}{8}\)
b. \(\frac{1}{4} = \frac{1}{4}\)
c. \(\frac{1}{4} = \frac{2}{8}\)

\[
\frac{1}{3} + \frac{1}{6} = n
\]

a. \(\frac{1}{3} = \frac{2}{6}\)
b. \(\frac{1}{6} = \frac{1}{6}\)
c. \(\frac{1}{6} = \frac{2}{12}\)

\[
\frac{3}{4} - \frac{2}{3} = n
\]

a. \(\frac{2}{3} = \frac{8}{12}\)
b. \(\frac{3}{4} = \frac{6}{8}\)
c. \(\frac{3}{4} = \frac{9}{12}\)
THE STUDENT WILL DEMONSTRATE HIS ABILITY TO SOLVE RATIONAL NUMBER PROBLEMS WITH UNCOMMON DENOMINATORS BY SELECTING THE CORRECT ANSWER.

Directions: Choose the correct answer.

5/6 + 1/3 =

a. 6/9
b. 6/6
c. 6/3
d. 7/6

Source: Addison-Wesley, Bk. 5, p. 245.
1/8 + 1/4 =
 a. 2/12
 b. 2/8
 c. 3/8
 d. 1/12

1/2 + 1/3 =
 a. 2/5
 b. 5/6
 c. 2/6
 d. 1/5

5/8 - 1/4 =
 a. 4/4
 b. 3/8
 c. 4/8
 d. 6/12

3/4 - 7/12 =
 a. 1/6
 b. 4/8
 c. 4/12
 d. 2/6

1/8 + 1/3 =
 a. 2/11
 b. 11/24
 c. 2/24
 d. 2/5
7/9 + 1/18 =
 a. 8/27
 b. 8/18
 c. 8/9
 *d. 15/18

1/4 + 3/10 =
 a. 4/14
 b. 4/10
 *c. 11/20
 d. 12/40

5/8 - 1/12 =
 a. 4/4
 b. 4/8
 c. 7/12
 *d. 13/24

Source: Addison-Wesley, Bk. 5, p. 246, 250.

THE STUDENT WILL USE HIS KNOWLEDGE OF ADDITION AND SUBTRACTION OF RATIONAL NUMBERS WITH UNLIKE DENOMINATORS TO SOLVE FRACTION WORD PROBLEMS.

Directions: Read the word problem and choose the correct answer.

Walked 7/10 mile. Ran 1/2 mile. How far altogether?

*a. 1 1/5 mile
b. 8/12 mile
c. 11/10 mile
d. 12/20 mile
3/8 inch of rain. Another 1/4 inch of rain. How much rain?

a. 4/12 inch
b. 4/8 inch
*c. 5/8 inch
d. 11/16 inch

Recipe: 3/4 cup of milk, 2/3 cup of water. How much liquid?

a. 1 1/2 cup
b. 1 1/4 cup
c. 1 1/3 cup
*d. 1 5/12 cup

3/4 yd. of blue material, 5/6 yd. of yellow material. How much more yellow than blue material?

*a. 1/12
b. 1/6
c. 1/4
d. 3/24

5/8 of a picture is pink. 1/6 of the picture is blue. The rest is not colored. What part of the picture is colored?

a. 6/14
b. 14/16
*c. 19/24
d. 35/48

How much more is pink than blue?

a. 7/16
*b. 11/24
c. 25/48
d. 4/14
What part is not colored?

a. 13/48
b. 7/12
c. 11/16
d. 5/24

Source: Addison-Wesley, Bk. 5, p. 257.

THE STUDENT WILL DEMONSTRATE HIS UNDERSTANDING OF THE THREE BASIC PRINCIPLES OF RATIONAL NUMBER ADDITION BY RECOGNIZING THE DEFINITION OF EACH.

Directions: Choose the correct explanation for each rational number addition principle.

0 principle

a. When you choose a rational number and add 0, the sum is 0.
b. When you choose a rational number and add 0, the sum is the number you chose.

Commutative principle

a. When you add two rational numbers, the order of the addends affects the sum.
b. When you add two rational numbers, the order of the addends does not affect the sum.

Associative principle

* a. When you add rational numbers, you can change the grouping and get the same sum.
b. When you add rational numbers, you cannot change the grouping and get the same sum.
THE STUDENT WILL DEMONSTRATE HIS ABILITY TO DRAW INFERENCEs BY EVALUATING STATEMENTS BASED ON INFERENCEs FROM DECIMAL WORD PROBLEMS.

Directions: Read the decimal word problem and the statements below the problem. If the statement can be assumed true, cross out T; if the statement cannot be assumed true, cross out the U.

Sue went to the grocery store. She spent $7.58 on meat, $2.75 on fresh fruits and vegetables, and $9.24 on other groceries.

Sue eats balanced meals \(T \) \(U \)

Sue spent more on meat than vegetables. \(U \)

Sue went over her budget. \(T \) \(U \)

Sue spent $20 on food. \(T \) \(U \)

Sue received $19.57 worth of S & H stamps. \(T \) \(U \)

A gallon of pure water weighs 8.345 lb. A gallon of gasoline weighs about 5.675 lb. And a gallon of oil weighs about 7.511 lb.

Water is heavier than gasoline \(T \) \(U \)

Water is heavier than oil \(U \)

Gasoline is heavier than oil. \(T \) \(U \)

Gasoline is lighter than water. \(U \)

Oil weighs less than gasoline. \(T \) \(U \)
THE STUDENT WILL DEMONSTRATE HIS ABILITY TO DRAW CONCLUSIONS ABOUT TIME, RATE AND DISTANCE BY SELECTING THE PROPER CONCLUSION AFTER READING A GIVEN PARAGRAPH.

Directions: Read the paragraph and then decide if the statements following it are true, false, or can't say.

Each of three airplanes travel at the rate of 500 mph if there were no wind. An airplane that has a 40 mph head wind travels only 460 mph. An airplane that has a 40 mph tail wind travels 540 mph.

Planes travel slower with a tail wind.

- a. true
- b. false
- c. can't say

Planes travel fastest with no wind.

- a. true
- b. false
- c. can't say
Wind has a definite effect on the speed of airplanes.

*a. true
b. false
c. can't say

On a 2400 mile trip a plane with a head wind leaving before a plane with a tail wind would arrive first.

a. true
b. false
*c. can't say

The first successful gas-powered car went 9 mph.
The Queen Elizabeth, one of the largest ocean liners, usually travels about 32 mph. The longest straight railroad in the world averages 82 mph. Charles Lindbergh averaged about 109 mph in his flight across the Atlantic.

The Queen Elizabeth traveled as far in one day as the first car went in four days.

*a. true
*b. false
c. can't say

If Lindbergh races the railroad across the Atlantic he would beat it by 15 hours.

*a. true
*b. false
c. can't say

It would take the Queen Elizabeth about 3 times longer to cross the ocean than Lindbergh.

*a. true
b. false
c. can't say
If the gas car had a head start of 24 hours it would take the train 3 hours to catch it.

*a. true
b. false
c. can't say

THE STUDENT WILL DEMONSTRATE HIS ABILITY TO DISTINGUISH BETWEEN FACT AND OPINION BY IDENTIFYING EACH.

Directions: Think about the sentence. If it tells a fact, cross out the F; if it gives an opinion cross out the O.

<table>
<thead>
<tr>
<th></th>
<th>Arithmetic is difficult.</th>
<th>4 pecks equal 1 bushel.</th>
<th>a * b * c = (a * b) * c = a * (b * c)</th>
<th>The use of a compass is harder than a ruler.</th>
<th>To divide you must know how to multiply.</th>
<th>To subtract you must know how to add.</th>
<th>All boys dislike arithmetic.</th>
<th>All rational numbers are fractions.</th>
<th>It is impossible to write the largest numbers.</th>
<th>All yardsticks are 36 inches long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>O</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448
Zero isn't a good number to use.

Graphing is fun.

The student will demonstrate an understanding of the multiplication of rational numbers through the use of the associative principle, by selecting the correct missing number of a fractional equation.

\[
\frac{3}{2} \times \frac{2}{5} = (\frac{3}{1/2}) \times (\frac{2}{1/5}) = a \times b = N
\]
If "a" is 6, then "b" is

a. \(\frac{2}{10}\)

*b. \(\frac{1}{10}\)

*c. \(\frac{6}{10}\)

\[
\frac{4}{5} \times \frac{2}{3} = (\frac{4}{1/5}) \times (\frac{2}{1/3}) = a \times b = N
\]
If "b" is \(\frac{1}{15}\), then "a" is

*a. 8

b. 6

c. 2

\[
\frac{3}{4} \times \frac{5}{2} = (\frac{3}{1/4}) \times (\frac{5}{1/2}) = a \times b = N
\]
If "a" is 15, then "b" is

*a. \(\frac{1}{8}\)

b. \(\frac{1}{6}\)

c. \(\frac{1}{2}\)

\[
\frac{2}{7} \times \frac{4}{3} = (\frac{2}{1/7}) \times (\frac{4}{1/3}) = a \times b = N
\]
If "a" is 6, then "b" is

a. \(\frac{1}{10}\)

b. \(\frac{1}{7}\)

*c. \(\frac{1}{2}\)
\[
\frac{3}{5} \times \frac{3}{2} = \left(\frac{3}{1} \times \frac{1}{5}\right) \times \left(\frac{3}{1} \times \frac{1}{2}\right) = a \times b = N
\]

If "a" is 9, then "b" is

\[\begin{array}{c}
a. \quad \frac{1}{5} \\
*b. \quad \frac{1}{10} \\
c. \quad \frac{1}{7}
\end{array}\]

\[
\frac{4}{7} \times \frac{2}{5} = \left(\frac{4}{1} \times \frac{1}{7}\right) \times \left(\frac{2}{1} \times \frac{1}{5}\right) = a \times b = N
\]

If "a" = 8, and "b" = 1/35, then N is

\[\begin{array}{c}
*a. \quad \frac{8}{35} \\
b. \quad 8 \ 1/5 \\
c. \quad 8 \ 1/35
\end{array}\]

\[
\frac{4}{5} \times \frac{3}{8} = \left(\frac{4}{1} \times \frac{1}{5}\right) \times \left(\frac{3}{1} \times \frac{1}{8}\right) = a \times b = N
\]

If "a" = 12, and "b" = 1/40, then N is

\[\begin{array}{c}
*a. \quad \frac{12}{40} \\
b. \quad 12 \ 1/40 \\
c. \quad 12 \ 1/40
\end{array}\]

\[
\frac{5}{8} \times \frac{3}{2} = \left(\frac{5}{1} \times \frac{1}{8}\right) \times \left(\frac{3}{1} \times \frac{1}{2}\right) = a \times b = N
\]

If "a" = 15, and "b" = 1/16, then N is

\[\begin{array}{c}
a. \quad 15 \ 1/16 \\
b. \quad 15 \ 1/6 \\
*c. \quad 15/16
\end{array}\]

\[
\frac{5}{6} \times \frac{2}{3} = \left(\frac{5}{1} \times \frac{1}{6}\right) \times \left(\frac{2}{1} \times \frac{1}{3}\right) = a \times b = N
\]

If "a" = 10 and "b" = 1/18, then N is

\[\begin{array}{c}
a. \quad 10 \ 1/8 \\
*b. \quad 10/18 \\
c. \quad 10 \ 1/8
\end{array}\]
\[
\frac{3}{7} \times \frac{7}{2} = (3 \times \frac{1}{7}) \times (\frac{7}{1} \times \frac{1}{2}) = a \times b = N
\]

If "a" is 21, and "b" = \(\frac{1}{14}\), then \(N\) is

* a. \(\frac{21}{14}\)
 b. \(21 \frac{1}{14}\)
 c. \(21 \frac{1}{4}\)

THE STUDENT WILL APPLY HIS KNOWLEDGE OF THE MULTIPLICATION OF RATIONAL NUMBERS BY IDENTIFYING THE CORRECT PRODUCT TO A GIVEN EQUATION.

\[
\frac{3}{2} \times \frac{2}{5} = N. \quad N \text{ is}
\]

 a. \(\frac{5}{7}\)
 *b. \(\frac{6}{10}\)
 c. \(\frac{5}{10}\)

\[
\frac{3}{4} \times \frac{5}{2} = N. \quad N \text{ is}
\]

 a. \(\frac{8}{6}\)
 *b. \(\frac{15}{8}\)
 c. \(\frac{8}{8}\)

\[
\frac{4}{7} \times \frac{2}{5} = N. \quad N \text{ is}
\]

 *a. \(\frac{8}{35}\)
 b. \(\frac{6}{35}\)
 c. \(\frac{8}{12}\)

\[
\frac{5}{6} \times \frac{2}{3} = N. \quad N \text{ is}
\]

 *a. \(\frac{10}{18}\)
 b. \(\frac{7}{9}\)
 c. \(\frac{7}{18}\)
\[
\frac{3}{4} \times \frac{2}{5} = N. \quad N \text{ is }
\]
\begin{align*}
a. & \quad \frac{6}{9} \\
b. & \quad \frac{5}{9} \\
c. & \quad \frac{6}{20}
\end{align*}

\[
\frac{5}{6} \times \frac{3}{8} = N. \quad N \text{ is }
\]
\begin{align*}
a. & \quad \frac{8}{14} \\
b. & \quad \frac{8}{48} \\
c. & \quad \frac{15}{48}
\end{align*}

\[
\frac{3}{4} \times \frac{5}{8} = N. \quad N \text{ is }
\]
\begin{align*}
a. & \quad \frac{15}{32} \\
b. & \quad 8/12 \\
s. & \quad \frac{15}{28}
\end{align*}

\[
\frac{4}{7} \times \frac{7}{4} = N. \quad N \text{ is }
\]
\begin{align*}
a. & \quad \frac{11}{28} \\
b. & \quad \frac{28}{11} \\
c. & \quad \frac{28}{28}
\end{align*}

\[
\frac{0}{7} \times \frac{3}{8} = N. \quad N \text{ is }
\]
\begin{align*}
* & \quad \frac{0}{56} \\
b. & \quad \frac{3}{56} \\
c. & \quad \frac{3}{15}
\end{align*}

\[
\frac{5}{4} \times \frac{3}{5} = N. \quad N \text{ is }
\]
\begin{align*}
a. & \quad \frac{8}{20} \\
c. & \quad \frac{8}{9}
\end{align*}

Source: Addison-Wesley, *Elementary School Math 5*, p. 293.
INTRODUCTION
THE STUDENT WILL RECALL THE WORDS RELATED TO SETS OF ANIMALS BY IDENTIFYING THE CORRECT WORD FROM A LIST.

Directions: Put an x in front of the letter of the correct answer.

Which of the following identifies a set of puppies?

a. yoke
b. litter
x c. flight

Which of the following identifies a set of cattle?

x a. yoke
x b. flight
c. herd

Which of the following identifies a set of fish?

x a. flock
b. school
c. train

Which of the following identifies a set of camels?

x a. train
b. group
c. yoke

Which of the following identifies a set of people?

x a. train
b. litter
c. group

THE STUDENT WILL RECALL THE WORDS RELATED TO SETS OF ANIMALS BY MATCHING THE CORRECT WORD IN COLUMN I WITH THE IDENTIFYING WORD IN COLUMN II.

Directions: Place the letter from Column I on the line before the identifying word in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. yoke</td>
<td>d. camels</td>
</tr>
<tr>
<td>b. litter</td>
<td>e. people</td>
</tr>
<tr>
<td>c. drove</td>
<td>b. cats</td>
</tr>
<tr>
<td>d. train</td>
<td>f. fish</td>
</tr>
<tr>
<td>e. flight</td>
<td>g. geese</td>
</tr>
<tr>
<td>f. school</td>
<td>h. sheep</td>
</tr>
<tr>
<td></td>
<td>i. horses</td>
</tr>
<tr>
<td></td>
<td>j. oxen</td>
</tr>
</tbody>
</table>

THE STUDENT WILL DEMONSTRATE HIS COMPREHENSION OF MEMBERS OF A SET BY CORRECTLY IDENTIFYING THE MEMBERS OF A SET FROM A GIVEN LIST.

Directions: Underline the correct answer.

In a classroom the children were seated as follows:

<table>
<thead>
<tr>
<th>Set 1</th>
<th>Set 2</th>
<th>Set 3</th>
<th>Set 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>Jane</td>
<td>Sally</td>
<td>Cindy</td>
</tr>
<tr>
<td>Joe</td>
<td>Mary</td>
<td>Denise</td>
<td>Joan</td>
</tr>
<tr>
<td>Debbie</td>
<td>Bill</td>
<td>Pete</td>
<td>Eric</td>
</tr>
<tr>
<td>John</td>
<td>Sue</td>
<td>Laurie</td>
<td>Mike</td>
</tr>
</tbody>
</table>
Which student is NOT a member of Mary's set?

a. Jane
b. Bill
c. Sue
*d. Cindy

Which girl is a member of Pete's set?

a. Joan
b. Debbie
*c. Denise
d. Mary

Which set of girls contains the names of the members of Mike's set?

*a. Cindy and Joan
b. Jane and Sue
c. Denise and Laurie
d. Sue and Mary

Which set of boys is made up of the boys from Debbie's set?

a. Bob, Mike, John
b. Joe, Bill, Eric
c. Mike, Pete, John
*d. John, Bob, Joe

Which set of girls make up the members of Pete's set?

a. Laurie, Debbie, Sue
b. Cindy, Mary, Joan
*c. Denise, Laurie, Sally
d. Jane, Denise, Laurie
Which boy is a member of Sue's set?

a. Pete
b. Eric
c. Bob
*d. Bill

Which set has equal sets of girls and boys?

a. Set 1
b. Set 2
c. Set 3
*d. Set 4

The student will demonstrate his comprehension of members of a set by correctly identifying the description of the members of given set.

Directions: Place the letter of the set in Column I on the line before the correct description in Column II.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Jane, Sue, Ellen</td>
<td>d. the first five even whole numbers</td>
</tr>
<tr>
<td>b. ounce, pound, ton</td>
<td></td>
</tr>
<tr>
<td>c. horses, cows, goats</td>
<td></td>
</tr>
<tr>
<td>d. 0, 2, 4, 6, 8</td>
<td></td>
</tr>
<tr>
<td>e. man, woman, child</td>
<td></td>
</tr>
<tr>
<td>f. breakfast, lunch, dinner</td>
<td></td>
</tr>
<tr>
<td>g. penny, nickel, dime, quarter, half-dollar</td>
<td></td>
</tr>
<tr>
<td>h. apple, orange, banana</td>
<td></td>
</tr>
<tr>
<td>i. V, W, X, Y, Z</td>
<td></td>
</tr>
<tr>
<td>j. summer, winter, fall, spring</td>
<td></td>
</tr>
<tr>
<td>k. Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday</td>
<td></td>
</tr>
<tr>
<td>l. I, m, n, o, p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the middle letters of the alphabet</td>
</tr>
<tr>
<td></td>
<td>the holiday season</td>
</tr>
<tr>
<td></td>
<td>the days of the week</td>
</tr>
<tr>
<td></td>
<td>the first five prime numbers</td>
</tr>
<tr>
<td></td>
<td>the seasons of the year</td>
</tr>
<tr>
<td></td>
<td>the unit of time measurement</td>
</tr>
<tr>
<td></td>
<td>the coins of the U.S.A.</td>
</tr>
</tbody>
</table>
THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF BASIC SET NOTATIONS BY SELECTING THE CORRECT NOTATION FOR A GIVEN TERM.

Directions: Using the information provided circle the letter that answers each question.

Given: \(A = \{1,3,5,7,9\} \) and \(B = \{1,3,6,9\} \),

\(A \cap B = \)

\(a. \ \{1,3,5,6,9\} \)
\(b. \ \{3\} \)
\(c. \ \{1,3,6,9\} \)
\(d. \ \{1,3,9\} \)

Given: \(A = \{1,3,5,7,9\} \) and \(B = \{1,3,6,9\} \),

\(A \cup B = \)

\(a. \ \{1,3,5,7,9\} \)
\(b. \ \{3\} \)
\(c. \ \{1,3,5,7,9\} \)
\(d. \ \{1,3,9\} \)
Given: \(A = \{1, 3, 5, 7, 9\} \) and \(B = \{2, 4, 6, 8, 10\} \)

\(A \cup B = \)

- a. \(\{1, 3, 5, 7, 9\} \)
- b. \(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \)
- c. \(\emptyset \)
- d. \(\{2, 4, 6, 8, 10\} \)

Given: \(A = \{1, 3, 5, 7, 9\} \) and \(B = \{2, 4, 6, 8, 10\} \)

\(A \cap B = \)

- a. \(\{1, 3, 5, 7, 9\} \)
- b. \(\{2, 4, 6, 8, 10\} \)
- c. \(\emptyset \)
- d. \(\{1, 2, 3, 4, 5, 6, 7, 8, 10\} \)
CARDINAL NUMBER

531
THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF CARDINAL NUMBERS BY GIVING A CARDINAL NUMBER FOR ANY GIVEN SET OR GIVING A SET FOR A GIVEN CARDINAL NUMBER.

The cardinal number of set A is:

A = dog, cat, bird

*a. n(A) = 3
b. n(A) = 4
c. n(A) = 6
d. n(A) = 2
e. n(A) = 5

n(A) = 4. Which of the following are the elements of set A?

a. 1, 2, 4, 8, 10
*b. w, x, y, z
c. rose, violet, daisy, peony, lily, zinnia
d. horse, cow, sheep, pig, chicken, duck
e. b, c, d, f, g, h, j, k

THE STUDENT CAN APPLY ARITHMETIC METHODS TO ILLUSTRATE THE CONCEPT THAT EVERY SET CAN BE REPRESENTED BY A CARDINAL NUMBER.

B = \{1, 2, 3, 5, 7\} \hspace{1cm} C = \{1, 2, 4, 6, 8, 10, 12\}

The cardinal number of set B is how much more or less than set C?

a. 0
*b. 1
c. 2
d. 3
e. 4
The student demonstrates knowledge of empty sets by choosing its symbolic representation and its relationship to all other sets.

Which of the following is an empty set?

- a. \{a, e, i, o, u\}
- *b. \{}*
- c. \{0\}
- d. \{1,... 100\}
- e. \{u, f, o\}

A = \{1, 3, 5, 7\}
B = \{2, 4, 6, 8\}

The union of sets A & B are counting numbers. If set A intersects set B, the intersection is:

- a. \{1, 2, 3\}
- b. \{4, 5, 6, 7\}
- *c. \{}*
- d. \{45, 46, 47\}
- e. \{......\}
If we list the subsets of set A, which of these is NOT a subset of A.

\[A = \{ \emptyset, \triangle, \star \} \]

\[\text{a. } \{ \} \]
\[\text{b. } \{ \triangle, \star \} \]
\[\text{c. } \{ \star \} \]
\[\text{d. } \{ \emptyset \} \]
\[\text{e. } \{ \triangle, \star \} \]

\[A = \{ a, c, d \} \]
\[B = \{ e, f, \beta \} \]
\[C = \{ c, o, m \} \]

One of the following is NOT an empty set.

\[\text{a. } \emptyset \]
\[\text{b. } A \cap C \]
\[\text{c. } \emptyset \]
\[\text{d. } \emptyset \]
\[\text{e. } A \cap B \]

Two sets whose intersection is an empty set are disjoint sets.

\[A = \{ \text{days of the week} \} \]
\[B = \{ \text{months of the year} \} \]
\[C = \{ \text{words beginning with J} \} \]

Which of the following symbolizes disjoint sets:

\[\text{a. } A \cap C \]
\[\text{b. } A \cap B \]
\[\text{c. } A \cap C \]
\[\text{d. } B \cap C \]
\[\text{e. } C \cap B \]
A = \{\text{Sam}\} \quad D = \{\text{Tom, Bill}\}

B = \{\text{Tom}\} \quad E = \{\text{Sam, Tom, Bill}\}

C = \{\text{Sam, Bill}\} \quad F = \{\text{Bill}\}

All sets can be joined in several ways. One of these is **NOT** true.

\begin{enumerate}
 \item E - A = D
 \item D - B = F
 \item B \cap C = E
 \item D - A \cap B = F
 \item E - F = A \cap B
\end{enumerate}
THE STUDENT DEMONSTRATES KNOWLEDGE OF EQUIVALENCE BY STATING THAT TWO OR MORE SETS ARE EQUIVALENT IF N FOR THE SETS ARE EQUAL.

Match the following equivalent sets by placing the letter from Column II in front of number of Column I.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>🐕, 🐱, 🐶, 🐭</td>
<td>🍃, 🌾, 🌿, 🌿</td>
</tr>
<tr>
<td>🤔, 🤔, 🤣, 🤣</td>
<td>🧐, 🧐, 🧐, 🧐</td>
</tr>
<tr>
<td>🏾, 🏾, 🏾, 🏾</td>
<td>🏾, 🏾, 🏾, 🏾</td>
</tr>
<tr>
<td>🐖, 🐖, 🐖, 🐖</td>
<td>🐖, 🐖, 🐖, 🐖</td>
</tr>
<tr>
<td>🍃, 🌿, 🌿, 🌿</td>
<td>🌿, 🌿, 🌿, 🌿</td>
</tr>
</tbody>
</table>

Which of the following sets is equivalent to A?

- a. 🍃, 🌿, 🌿, 🌿
- b. 🍃, 🌿, 🌿, 🌿
- c. 🍃, 🌿, 🌿, 🌿
- d. 🍃, 🌿, 🌿, 🌿
- e. 🍃, 🌿, 🌿, 🌿

Which of the following is not correct?

- a. 5 + 5 = n(A, B)
- b. n(A) = n(B)
- c. n(A) = 10
- d. 10 = n(A) + n(B)
- e. 10 - (n(A)) = n(B)

Which of the following symbols correctly shows the relationship between sets A and B?

- a. ≠
- b. ≠
- c. >
- d. ≥
- e. <
THE STUDENT KNOWS IF THERE IS ONE TO ONE CORRESPONDENCE BETWEEN
THE MEMBERS OF 2 SETS, THE SETS ARE EQUAL ONLY IF THE 2 SETS CONTAIN
THE SAME MEMBERS AND THEY ARE EQUIVALENT IF ELEMENTS ARE DIFFERENT
BY NAMING GIVEN PAIRS OF SETS AS EQUAL OR EQUIVALENT.

A = \{1,2,3,4,5\}
B = \{a,b,c,d,e\}

These sets are:
 a. =
 b. \neq
 c. \equiv
 d. \subset
 e. A < B
 f. A > B
 g. A = B

A = \{a,e,i,o,u\}
B \subset sink, stove, spoon, strainer

One of the following is NOT true about sets A & B:
 a. \text{A} \cup \text{B} = 9
 b. \text{A} \cap \text{B} = \{ \}
 c. \text{A} \cup \text{B} = 5 - 4
 d. 5 + 4 = n(\text{A} \cup \text{B})
 e. n(\text{A}) - n(\text{B}) = 1
 f. \text{A} \not\subset \text{B}
 g. \text{A} \not\supset \text{B}
A = hour numbers on a clock
B = counting numbers through 12

Which statements are true about sets A & B

a. $A \neq B$
b. $A \cup B = 12$
c. $A \cap B = 24$
d. $A \notin B$
e. $n(A) = n(B)$

Two equal sets each have four members. Their union is a set that has ______ members.

a. 8
b. 0
c. 4
d. 6
e. 1

Two sets each having the same number of members but different members. Their union is expressed by:

*a. $A \cap B$
b. $A = B$
c. $A \cup B = 8$
d. $A \cup B = n(A) - n(B)$
e. $A \notin B$

THIS STUDENT, APPLYING HIS KNOWLEDGE OF HOW EQUIVALENT SETS ARE BUILT, WILL SELECT THE FIRST FRACTION IN A SET.

Directions: Choose the letter of the fraction necessary to begin the set.
Directions: Choose the letter of the fraction necessary to begin the set.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>2/4, 3/6, 4/8, ...</td>
<td>b</td>
<td>6/16, 9/24, 12/32, ...</td>
<td>a</td>
<td>8/6, 12/9, 16/12, ...</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>6/16, 9/24, 12/32, ...</td>
<td>c</td>
<td>2/10, 3/15, 4/20, ...</td>
<td>e</td>
<td>8/6, 12/9, 16/12, ...</td>
<td>f</td>
</tr>
<tr>
<td>a</td>
<td>8/6, 12/9, 16/12, ...</td>
<td>d</td>
<td>2/10, 3/15, 4/20, ...</td>
<td>f</td>
<td>2/20, 3/30, 4/40, ...</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>2/10, 3/15, 4/20, ...</td>
<td>e</td>
<td>8/6, 12/9, 16/12, ...</td>
<td>f</td>
<td>2/20, 3/30, 4/40, ...</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>2/20, 3/30, 4/40, ...</td>
<td>g</td>
<td>2/5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Directions: Underline the correct equal set.

Tom, Dick, Harry

a. Tom, Dick, Joe
b. Harry, Tom, Dick
* c. Tom, Don, Harry

horse, cow, goat

*a. cow, horse, goat
b. horse, pig, cow
c. goat, cow, sheep

Source: Addison-Wesley, Bk. 5, p. 207.

THE STUDENT WILL DEMONSTRATE HIS KNOWLEDGE OF EQUAL SETS BY CHOOSING EQUAL SETS FROM A GIVEN LIST.
1, 2, 3, 4
 a. 3, 1, 5, 4
 b. 2, 4, 6, 8
 *c. 3, 2, 4, 1

210, 410, 510
 a. 210, 310, 410
 *b. 410, 510, 210
 c. 510, 410, 110

glass, dish, bread
 a. dish, spoon, bread
 b. cup, dish, spoon
 *c. dish, bread, glass

dog, cat, car, bicycle
 *a. cat, car, dog, bicycle
 b. cat, dog, bicycle, train
 c. bicycle, cat, train, car

a b c
 a. b c c
 *b. c b a
 c. d a c

5, 4, 3, 2, 1
 a. 5, 4, 1, 6, 6
 b. 0, 2, 4, 6, 8
 *c. 3, 1, 5, 4, 2
skirt, blouse, shoes

 a. blouse, pants, skirt
 *b. shoes, skirt, blouse
 c. skirt, tie, shoes

brush, comb, hair

 *a. comb, hair, brush
 b. curler, hair, brush
 c. shampoo, hair, brush

SUBSETS AND SUPERSETS
A = \{1, 2, 3, 4\}

The relationship of the Element \(E\) to set \(A\) can be shown in different ways. One of these is **NOT** correct.

- a. \(1 \in \{A\}\)
- b. \(1 \notin \{1, 2, 3, 4\}\)
- c. \(\{1\} \supset \{1\}\)
- d. \(\{1\} \subset \{1\}\)
- e. \(A \subseteq \{1\}\)
- f. \([1, 2, 3, 4]\) \(\neq \{1\} = \{2, 3, 4\}\)
- g. \([1] \cup [2, 3, 4]\) \(= A\)

The Universal sets in Column I can be paired with the sets in Column II. Mark the letter of the proper set in front of the number of its universal set.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (U) = airplanes</td>
<td>a. ({a, b, c, d, e, f, g})</td>
</tr>
<tr>
<td>b. (U) = counting numbers</td>
<td>b. ({\text{jet}})</td>
</tr>
<tr>
<td>c. (U) = notes of a musical scale</td>
<td>c. ({\text{\textit{?}}})</td>
</tr>
<tr>
<td>d. (U) = boys who jump 20 ft. high</td>
<td>d. ({\text{planets, asteroids, stars, moons}})</td>
</tr>
<tr>
<td>e. (U) = celestial bodies</td>
<td>e. ({1, 2, 3, 4, 5, 6})</td>
</tr>
<tr>
<td>f. (U) = celestial bodies</td>
<td>f. ({0, 1, 2, 3 \ldots })</td>
</tr>
</tbody>
</table>

The element 7 is a subset of the counting numbers greater than 5 and less than 10. Which does **not** express this?

- a. \(\{7\} \subseteq \{6, 7, 8, 9\}\)
- b. \(\{7\} \cup \{6, 8, 9\} = \{6, 7, 8, 9\}\)
- c. \(7 \in \{6, 7, 8, 9\}\)
- d. \(\{7\} > \{6, 7, 8, 9\}\)
- e. \(\{6, 7, 8, 9\} \supset \{7\}\)
Which of the following is NOT a subset of \(\mathcal{U} \):

- a. \[\{ \} \]
- b. \{ counting numbers to 6 \}
- c. \{ first 3 odd numbers \}
- d. \{ even numbers less than 5 \}
- e. \{ 0 \}

The student can demonstrate knowledge of subsets by joining subsets of a set to name a new subset of that set or if he knows the number of equivalent subsets being joined he can multiply to find the new subset.

A new subset would be \(\{ \triangle, \Delta \} \) found by:

- a. \(\frac{1}{4} + \frac{1}{4} = \frac{2}{4} \)
- b. \(\frac{1}{5} + \frac{1}{5} = \frac{2}{5} \)
- c. \(\frac{1}{5} - \frac{2}{5} = \frac{3}{5} \)
- d. \(\frac{2}{5} + \frac{5}{5} = \frac{7}{5} \)

The best expression for the area of the shaded portion of the circle is:

- a. \(\frac{1}{4} \)
- b. \(3 \times \frac{1}{4} \)
- c. \(3 \times \frac{1}{4} \)
- d. \(\frac{3}{3} \)

The numerator of the new fraction for \(4 \times \frac{1}{5} \) is:

- a. 5
- b. 4
- c. 3
- d. 1
The new fraction for $6 \times \frac{1}{7}$ is

- **a.** $\frac{6}{7}$
- b. $\frac{5}{7}$
- c. $\frac{7}{7}$
- d. $\frac{1}{7}$

$5 \times \frac{1}{10}$ is

- a. one-fifth
- b. four tenths
- c. five-tenths
- d. one-tenth
- e. six-tenths

If $\frac{1}{6} + \frac{1}{6} + \frac{1}{6} = n$, then n is

- a. one-sixth
- b. three-sixths
- c. six-sixths

THE STUDENT WILL APPLY HIS KNOWLEDGE OF SUBSETS BY CHOOSING THE CORRECT SUBSET THAT IS LOCATED WITHIN A GIVEN SET.

Directions: Circle the correct subset for each example.

U = [all the boys of the world]

- a. = [Jane and Sue]
- b. = [Joe and Mike]
- c. = [Joe and Jane]

U = [all the even numbers]

- a. = [1, 2, 3, 4]
- b. = [1, 3, 5, 7]
- c. = [2, 4, 10, 12]
U = [all the animals of the world]
 a. = [cat, dog, mouse]
 b. = [tomatoe, giraffe, camel]
 c. = [giraffe, towel, kitten]

U = [all the fruits of the world]
 a. = [oranges, elms, bananas]
 b. = [apple, peach, corn]
 c. = [grapes, oranges, lemons]

U = [all the trees of the world]
 a. = [cotton, maple, corn]
 b. = [maple, elm, fir]
 c. = [redwood, cucumber, birch]

U = [all the girls of the world]
 a. = [Jane, Jeanne, Joyce]
 b. = [Mary, Bob, Betty]
 c. = [Marya, Mark, Marie]

U = [all the vegetables of the world]
 a. = [tomatoe, potatoe, lemon]
 b. = [peas, orange, lettuce]
 c. = [corn, beans, radishes]

U = [all of the religions in the world]
 a. = [Catholic, Chinese, Moslem]
 b. = [Protestant, Catholic, Baptist]
 c. = [Spanish, German, Irish]
U = [all of the prime numbers]
 a. = [0, 1, 3, 5]
 b. = [6, 7, 8, 9]
 *c. = [3, 5, 7, 11]

U = [all of the even numbers]
 *a. = [0, 12, 16, 8]
 b. = [1, 2, 3, 4]
 c. = [3, 5, 7, 11]

Source: Houghton Mifflin, p. 27.
THE STUDENT DEMONSTRATES KNOWLEDGE OF ADDITION IN TERMS OF SETS BY SELECTING IT FROM A LIST.

The subsets are being joined. Which equation correctly names the cardinal numbers.

a. $2 + 4 = 6$
b. $3 + 4 = 7$
c. $2 + 5 = 7$
*d. $3 + 5 = 8$
e. $4 + 5 = 9$

The subsets are being joined. Which is the correct numerical equation for this union.

*a. $0 + 5 = 5$
b. $0 + 6 = 6$
c. $5 + 5 = 5$
d. $0 = 4 + 0$
e. $0 = 5 + 9$

THE STUDENT DEMONSTRATES THAT HE KNOWS THAT THE UNION (U) OF 2 OR MORE SETS IS A NEW SET CONTAINING ALL ELEMENTS OF THE JOINING SETS AND COMMON ELEMENTS ARE ONLY LISTED ONCE BY SELECTING THE CORRECT REPRESENTATION OF A UNION.

$A = \{0, 2, 4, 6, 8\}$

$B = \{1, 3, 5, 6, 7\}$

The union of sets $A \& B$ will contain

a. $\cup = \{2, 3, 4, 5, 6, 7\}$
b. $\cup = \{1, 2, 3, 4, 5, 6, 7, 8\}$
c. $\cup = \{0, 2, 3, 4, 5, 8\}$
*d. $\cup = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
e. $\cup = \{\text{counting numbers to} \ 8\}$
A = \{a, e, o\} \quad B = \{b, c, d\}

The \(\cup\) of sets A and B is:

a. \(\{a, e, o, b, c, d\}\)
b. \(\{b, a, d\}\)
c. \(\{c, o, b\}\)
d. \(\{b, a, d, e, o\}\)
e. \(\{a, e, o, b, d\}\)

A = \{chair, table, lamp\} \quad B = \{lamp, rug, bed\}

The \(\cup\) of A and B is

a. \(\{chair, table, rug, bed\}\)
b. \(\{chair, lamp, lamp, rug, bed\}\)
c. \(\{chair, rug, bed, lamp table\}\)
d. \(\{bed, chair, table, rug\}\)
e. \(\{lamp\}\)

A \(\cup\) B = \{Al, Ann, Amos, Andy\}

Set A and Set B could be represented by:

a. A = \{Al\} \quad B = \{Al, Amos, Ann\}
b. A = \{Ann, Amos, Al\} \quad B = \{Al, Amos, Andy\}
c. A = \{Al, Andy\} \quad B = \{Ann, Andy, Al\}
d. A = \{Al, Ann, Amos\} \quad B = \{3\}
e. A = \{Al, Ann, Andy\} \quad B = \{Ann, Andy\}

A \(\cup\) B = \{0, 1, 2, 3, 4, \ldots\}

One of the following is NOT true of sets A, B, or the A \(\cup\) B

a. A \(\cup\) B = \{counting numbers\}
b. A \(\cup\) B = \{the whole numbers\}
c. A = \{even numbers\}
d. B = \{numbers divisible by two\}
e. A = \{odd numbers\}
THE STUDENT WILL APPLY HIS KNOWLEDGE OF THE UNION OF SETS BY IDENTIFYING THE CORRECT NEW SET FROM A GIVEN EXAMPLE.

Directions: Put an x in front of the correct G set.

Example 1:

E = (Jane, Sue, Mary)
F = (Joe, Tom, Ed)

If E ∪ F = G

a. G = (Jane, Sue, Mary, Tom, Joe, Bill)
 *b. G = (Jane, Tom, Sue, Mary, Bill, Ed)
 *c. G = (Tom, Ed, Mary, Sue, Joe, Jane)

Example 2:

E = (car, bus, bicycle, scooter)
F = (boat, train, car, bus)

If E ∩ F = G

a. G = (train, bicycle, scooter, car, bus)
 *b. G = (bicycle, car, scooter, train, boat, bus)
 c. G = (bicycle, scooter, boat, train)

Example 3:

E = (0, 5, 10, 15, 20, 25)
F = (0, 10, 20, 30, 40, 50, 60)

If E ∩ F = G

a. G = (60, 50, 40, 30, 10, 0)
 *b. G = (0, 5, 15, 25, 30, 40, 50, 60, 0)
 *c. G = (40, 50, 60, 0, 5, 10, 15, 30, 25, 20)

Example 4:

E = (13, 3, 11, 5, 17, 7)
F = (14, 2, 12, 4, 10, 6)

If E ∩ F = G

a. G = (12, 3, 4, 0, 17, 15, 13, 9, 8, 10)
 *b. G = (4, 5, 6, 7, 13, 15, 17, 3, 2, 11, 12, 10)
 c. G = (2, 3, 4, 13, 15, 17, 9, 10, 7, 8, 12, 6)
\[E = \text{red, purple, pink} \]
\[F = \text{blue, pink, yellow} \]

If \(E \cap F = G \)

- a. \(G = \text{pink, purple, blue, red, pink} \)
- b. \(G = \text{purple, yellow, pink, red, blue} \)
- c. \(G = \text{yellow, purple, red, blue, purple} \)

\[E = \{ \Box, \bigtriangleup, \Box, \bigcirc \} \]
\[F = \{ \bigcirc, \Box, \times, \otimes \} \]

If \(F \cap E = G \)

- a. \(G = \{ \bigtriangleup, \Box, \bigcirc, \bigcirc, \bigcirc, \Box, \bigcirc, \times \} \)
- b. \(G = \{ \times, \Box, \bigcirc, \bigcirc, \bigcirc, \Box, \bigcirc, \bigcirc, \bigtriangleup \} \)
- c. \(G = \{ \bigcirc, \Box, \times, \Box, \bigcirc, \bigtriangleup, \bigcirc, \bigtriangleup, \Box \} \)

If \(E \cap F = G \)

- a. \(G = \text{blouse, shoes, shirt, skirt, slip, tie, pants} \)
- b. \(G = \text{skirt, shirt, shoes, slip, shoes, pants, blouse} \)
- c. \(G = \text{pants, blouse, tie, shirt, skirt, slip, socks} \)

\[E = 1,2,3,4,5 \]
\[F = 2,3,4,5,6,7 \]

If \(E \cap F = G \)

- a. \(G = 1,6,7 \)
- b. \(G = 7,6,5,4,2 \)
- c. \(G = 7,6,5,4,3,2,1 \)
E = (Kirk, Cindy, Sue, Kent)
F = (Denise, Keith, Kirk, Nancy)

If E \cap F = G

a. G = (Kirk, Kent, Keith, Kerry)
* b. G = (Denise, Cindy, Sue, Nancy, Kent, Kirk, Keith)
 c. G = (Cindy, Sue, Denise, Nancy)

E = (s + u)
F = (a b c d e)

If E \cap F = G

*a. G = (a, b, c, s) + (u, d, e)
 b. G = (a b c d e s t u)
 c. G = (u, t, s, d, v, c, a, e)

THE STUDENT CAN APPLY THE DEFINITION OF INTERSECTION OF SETS TO SOLVE A SITUATION WHERE ALL INFORMATION OR THE CONCLUSION IS NOT GIVEN.

"Y" is an element in Set A. Set A does not intersect Set B. We therefore know Set B,

a. has many members
* b. has no members in common with set A.
 c. is larger than Set A.
 d. Union Set A has twice as many members as Set A.
There are 25 boys and girls in Room 7 of Marshall School. Jane is the only member of her class in Girl Scouts. Sue and Jane are secretary and treasurer of the Science Club of 15 class members. Bob is president of the class and the Science Club. Sam doesn't like clubs. The intersection of all these sets would be:

a. Sam
b. Jane
c. Bill
d. Jane and Sue
e. Jane, Sue and Bill

Source: Modern School of Math 4, Houghton-Mifflin, pg. 100-103
Modern School of Math 5, pgs. 100-101, 134, 139
Modern School of Math 6, pgs. 8-9, 42

THE STUDENT WILL APPLY HIS KNOWLEDGE OF THE UNION AND INTERSECTION OF SETS BY IDENTIFYING THE UNION AND INTERSECTION OF GIVEN SETS.

Directions: Given two sets, answer the question by circling the letter of the correct answer.

What identifies $S \cup T$?

a. d, e, f, g, h
b. a, b, c, f, g, h
c. a, b, c, d, e, f
d. a, b, c, d, e, f, g, h

What identifies $S \cap T$?

a. a, b, c, d, c, f, g, h
b. a, b, c
c. d, e
d. f, g, h
What identifies $TA \cap S$?

a. 1,2,3,4
b. 2,3,4
c. 1,2,3
d. 2,3

What identifies $S \cup T$?

*a. 1, 2, 3, 4
b. 2, 3, 4
c. 1, 2, 3
d. 2, 3

What identifies $Z \cup R$?

a. 11, 12, 13
b. 13, 14
c. 11, 12, 13, 14
d. 12, 13, 14

What identifies $R \cap Z$?

a. 11, 12, 13
b. 13
c. 13, 14
d. 11, 12, 13, 14

Source: Addison-Wesley, pp. 174-175.
The student can demonstrate knowledge of cross product by stating that the cross product (or Cartesian set) is the matching of all members of one set with all members of another.

Given the sets A and B,

\[A = \{1,2,3\} \]
\[B = \{a,b\} \]

the total number of cross products of sets A and B is:

- a. 2
- b. 4
- **c. 6**
- d. 8
- e. 10

Given the sets A and B, where

\[A = \{1,3\} \]
\[B = \{a,b,c\} \]

which of the following is NOT a cross product of sets A and B?

- a. (1,1)
- **b. (a,b)**
- c. (a,3)
- d. (b,3)
- e. (c,1)

The student recalls cross product notation by selecting it from a list.

Which of the following statements asks you to find the cross products:

- a. \(A \cup B \)
- b. \(A \cap B \)
- c. \(A=B \)
- **d. \(A \oslash B \)**
- e. \(A \otimes B \)
The student applies the concept of cross products of 2 sets to solve a problem using arithmetic methods.

There are 6 cross-products of Set A and Set B. Which of the following would be the possible sets.

a. A = \{1,2\} B = \{3\}
*b. A = \{a,b\} B = \{1,2,3\}
 c. A = \{a\} B = \{a\}
 d. A = \{a\} B = \{1,2,3,4,5\}

Your mother has baked a cherry, an apple, and a plum pie. She has four kinds of ice cream, vanilla, chocolate, strawberry, fudge ripple. The number of different combinations would be:

a. 2
b. 3
c. 4
d. 6
*e. 12
VENN DIAGRAMS
THE STUDENT DEMONSTRATES KNOWLEDGE OF VENN DIAGRAMS BY EXPRESSING UNION AND INTERSECTION OF SETS IN TERMS OF SUCH DIAGRAMS.

M = \{4, 5\}
N = \{5, 6\}
O = \{3, 5, 7\}

M \cup N \cap O =

a. \{5\}
b. \{3, 4, 5\}
c. \{4, 5, 6\}
d. \{3, 4, 5, 6, 7\}
e. \{4, 5, 6, 3, 5, 7\}

M \cap N \cap O =

a. \{3, 4, 5\}
b. \{4, 5\}
c. \{5\}
d. \{3, 5, 7\}
e. \{3, 4, 5, 6, 7\}

Using the Venn diagram which of the following is true

a. M - N = 0
b. n(O) - n(M) = 1
c. N \cap M
d. M = N
e. O \cap M
One of the following does NOT name the set of children with red hair, brown eyes, that have freckles

a. $A \cap B \cap C$

b. $\{x\}$

c. $\{m, x, y\}$

d. $A = \{i, j, k, m\}$

e. $B \cap C = \{y\}$

THE STUDENT WILL APPLY HIS KNOWLEDGE OF FRACTIONS AND SETS TO TRANSLATE SETS INTO FIGURES.

Directions: Choose the correct answer after examining the set of figures.

What fraction of the figures are shaded?

a. $5/7$

b. $2/7$

c. $2/5$

What fraction of the figures are triangles?

a. $4/7$

b. $3/7$

c. $3/5$

What fraction of the figures are not triangles?

a. $4/7$

b. $3/7$

c. $3/5$
What fraction of the set is one figure?

a. $\frac{1}{2}$
b. $\frac{1}{5}$
c. $\frac{1}{7}$

Directions: Choose the correct answer after examining the set of figures.

What fraction of the figures are shaded?

*a. $\frac{1}{3}$
b. $\frac{2}{3}$
c. $\frac{3}{3}$

What fraction of the figures are squares?

a. $\frac{1}{3}$
b. $\frac{2}{3}$
c. $\frac{3}{3}$

What fraction of the figures are not larger than another?

a. $\frac{0}{3}$
*b. $\frac{1}{3}$
c. $\frac{2}{3}$

What fraction of the figures are not shaded?

a. $\frac{1}{3}$
*b. $\frac{2}{3}$
c. $\frac{3}{3}$

Source: Addison-Wesley, Bk. 5, pp. 188.
GIVEN SPECIFIC DATA, THE STUDENT WILL APPLY HIS KNOWLEDGE OF SETS BY SELECTING A VENN DIAGRAM THAT ACCURATELY USES INFORMATION PROVIDED.

Directions: Circle the letter of the diagram that uses all the given information.

Given: \(A = \{5, 9, 10\} \), \(A \cap C = \{5, 9\} \), \(B \cap C = \{5, 6\} \)

\[
a. \quad \begin{array}{c}
\includegraphics[width=2cm]{a.png}
\end{array}
\]

\[
b. \quad \begin{array}{c}
\includegraphics[width=2cm]{b.png}
\end{array}
\]

\[
c. \quad \begin{array}{c}
\includegraphics[width=2cm]{c.png}
\end{array}
\]

Given: \(A \cup B = \{1, 3, 5, 7, 9, 11, 13\} \), \(B = \{1, 3, 5, 7, 9, 13\} \)

\[
a. \quad \begin{array}{c}
\includegraphics[width=2cm]{a.png}
\end{array}
\]

\[
b. \quad \begin{array}{c}
\includegraphics[width=2cm]{b.png}
\end{array}
\]

\[
c. \quad \begin{array}{c}
\includegraphics[width=2cm]{c.png}
\end{array}
\]
LOGARITHMS AND EXPONENTIALS
THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF COMPUTATIONAL SEQUENCE TO SOLVE A GIVEN MATHEMATICAL RELATIONSHIP INVOLVING AT LEAST THREE DIFFERENT OPERATIONS, SUCH AS MULTIPLYING, DIVIDING, RAISING TO A POWER OF, EXTRACTING A ROOT.

The logarithmic value of the expression \(1560 \times 788\) is 1978

\[
\begin{align*}
a. & \quad 10.7912 \\
b. & \quad 3.7388 \\
c. & \quad 4.7388 \\
d. & \quad 9.7912
\end{align*}
\]

The numerical value of the expression \(1560 \times 788\), determined using logarithms and the anti-logarithms.

\[
\begin{align*}
*a. & \quad 5.48 \times 10^4 \\
b. & \quad 6.18 \times 10^10 \\
c. & \quad 5.48 \times 10^3 \\
d. & \quad 6.18 \times 10^9
\end{align*}
\]

Source: Terms, Tables & Skills, CA5. Bobbie J. Woodruff, p. 148-149.
The student can demonstrate understanding of the relation between logs and exponents by translating the exponent of a number expressed in scientific notation to the characteristic of the logarithm of that number.

The characteristics of the logarithms of the numbers (base 10) 1560 and 788, in this order are

- a. 1 and 1
- b. 3 and 2
- c. 1 and 2
- d. 2 and 3

The characteristics of the logarithms of the numbers (to the base ten) 0.104 and 0.00398 are

- a. 1 and 2
- b. 1 and 3
- c. 2 and 3
- d. 1 and 3

The characteristics of the logarithm of the numbers (base 10) 0.104 and 0.00398 may be written as

- a. 9 and 3
- b. 1 and 7
- c. 8 and 3
- d. 9 and 7

Source: Terms, Tables, and Skills, Ch. 5.

The student can demonstrate understanding of the log table by determining the fractional portion of an exponent used to express the power of ten in any given number, which lies between two successive numbers which are even powers of ten, by using a table of mantissas known on a logarithm table.
The fractional portion of the exponent of the numbers 123, which
is between 100 and 1000, would be

a. \(0.0532\)
b. \(0.0399\)
c. \(0.2636\)

Source: Basic Tables and Skills, Silver Burdett

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF A LOG TABLE BY LOCATING
THE MANTISSA OF THE LOGARITHM OF ANY THREE PLACE NUMBER (TO BASE 10)
IN A LOGARITHM TABLE.

Directions: Using the log table in the back of your book, determine
the mantissas for the following numbers. (Circle the
correct answer.)

1569 and 732

\(\begin{align*}
a. & 0.1931 \text{ and } 0.0564 \\
b. & 0.1771 \text{ and } 0.5965 \\
c. & 0.1931 \text{ and } 0.5965 \\
d. & 0.1701 \text{ and } 0.4354 \\
\end{align*}\)

Source: Basic Tables, Skill, Ch. 5 and p. 16C,
Bobbie J. Berkstress
Silver Burdett and Co.

THE STUDENT CAN DEMONSTRATE UNDERSTANDING OF LOGARITHMS BY WRITING
THE COMPLETE LOGARITHM OF ANY THREE PLACE NUMBER TO THE BASE 10.
Directions: The complete logarithms of the following numbers are listed in the adjoining table. Circle the correct answer.

1. \(15.0 \times 2.5\)
 - a. \(1.1951 \) and \(2.0295\)
 - b. \(3.1561 \) and \(2.0295\)
 - c. \(2.1831 \) and \(2.0295\)
 - d. \(2.1831 \) and \(0.0085\)

2. \(0.15 \times 0.00325\)
 - a. \(0.0375 \) and \(0.0995\)
 - b. \(0.0370 \) and \(0.0979\)
 - c. \(1.0750 \) and \(3.0759\)
 - d. \(0.0372 \) and \(3.5879\)

"Let it be noted, the student may demonstrate the process of finding logs by i. plotting the logarithms of the product of two numbers using common or the logarithm quotient of two numbers being evaluated."

The logarithmic product of multiplying 15.00 and 250 is expressed in logarithms as

- a. 0.3369
- b. 0.3365
- c. 5.0463
- d. 5.0665

The logarithmic quotient of dividing 15.00 by 750 is expressed in logarithms as

- a. 6.0595
- b. 0.2106
- c. 0.6471
- d. 1.7014
Using a log table, the student can demonstrate understanding of the log table to determine the number product of two numbers or the number quotient of two numbers using the logarithms and antilogarithms.

The number product of multiplying 1560 and 730 using logarithms is:

- a. 1.193×10^6
- b. 1.152×10^6
- c. 1.229×10^5
- d. 1.23×10^5

The number quotient of dividing 1560 by 730 is:

- a. 2.161
- b. 1.59
- c. 2.03
- d. 0.215

Source: Trues, Tables and Tables, Ch. 5
Given the graph:

```
  3
  |
  |
  |
  |
  |
  2
  |
  A
  |
  1
  B
  0
  1   2   3
```

The number pair for point A is (1,2). Point B would be:

a. 0,2
b. 2,0
c. 0,0
d. 3,0
e. 1,3

The number pairs for a graph are (1,1), (2,2), (3,1), (1,1)

If a continuous line connected all points graphed p would be revealed.

a. square
b. triangle
c. rectangle
d. circle
Using this graph,

Point A would be:

- (1,3)
- (2,3)
- (3,3)
- (3,1)
- (3,2)

(0,1) (1,3) (3,2) (0,3) (3,3)

Using the graph and the number pairs above, you will spell

- a. Boxes
- b. Bikes
- c. Birds
- d. Bands

Remove the letters of numbers pairs (4,1) (4,3) (1,4) from the graph above. PAIMERD will spell:

- a. rate
- b. date
- c. team
- d. pear
- c. ream
Using the graph, football spelled in number pairs will be:

a. \((3,1)(3,4)(3,5)(4,5)(0,2)(0,1)(2,3)(92,3)\)

b. \((2,1)(3,5)(3,5)(b,2)(1,2)(1,1)(3,2)(3,2)\)

c. \((1,3)(5,3)(5,4)(2,1)(1,1)(2,3)(2,3)\)

d. \((1,3)(5,3)(5,3)(5,4)(1,2)(1,1)(3,2)(3,2)\)

Given a linear equation, the student will apply his knowledge of graphing to select the diagram that correctly graphs the equation.

Directions: Given an equation, find the diagram that correctly graphs it.

\[x + 2 = y \]
$3x - 2 = y$
\[2x + -4 = y\]
THE STUDENT WILL DEMONSTRATE HIS ABILITY TO APPLY FUNCTION RULES IN GIVEN EQUATIONS BY SELECTING THE CORRECT RULE FROM A GIVEN LIST.

Directions: Use the function rule given to select the correct answer.

Function Rule $8x(n+5)$.

$n = 6$

- a. 53
- b. 72
- c. 96
- *d. 88

Function Rule $n + 219$ \(n = 225\)

- a. 34
- *b. 44
- c. 45
- d. 35

Function Rule $594 - n$ \(n = 18\)

- *a. 576
- b. 566
- c. 476
- d. 469

Function Rule \((n ÷ 3) + 8\) \(n = 144\)

- a. 46
- b. 24
- c. 49
- *d. 56

Function Rule \((n \times 8) + 4\) \(f(n) = 68\)

- a. 4
- b. 9
- *c. 8
- d. 5
Function Rule \((12 + n) - 12\) \(f(n) = 10\)

\[\begin{align*}
\text{a.} & \quad 10 \\
\text{b.} & \quad 12 \\
\text{c.} & \quad 0 \\
\text{d.} & \quad 24
\end{align*}\]

Function Rule \((100 \div n) + 21\) \(f(n) = 25\)

\[\begin{align*}
\text{a.} & \quad 100 \\
\text{b.} & \quad 21 \\
\text{c.} & \quad 25 \\
\text{d.} & \quad 4
\end{align*}\]

Function Rule \((n \times 9) - 9\) \(f(n) = 81\)

\[\begin{align*}
\text{a.} & \quad 7 \\
\text{b.} & \quad 10 \\
\text{c.} & \quad 9 \\
\text{d.} & \quad 8
\end{align*}\]

When number pairs are given in a definite order, the student knows some function occurs to the first number resulting in the second number by indicating that function.

The second number in a number pair cannot be found until we know the:

\[\begin{align*}
\text{a.} & \quad \text{function} \\
\text{b.} & \quad \text{answer} \\
\text{c.} & \quad \text{sign} \\
\text{d.} & \quad \text{name} \\
\text{e.} & \quad \text{order}
\end{align*}\]

The student demonstrates understanding of functions when given the first number and the function, the student can compute the second number or given the number pairs he can compute for the function.
5 is added to the first number. Which is the correct set of number pairs?

a. (1,5)(2,10)(3,15)
*b. (2,7)(3,8)(4,9)
c. (1,6)(2,11)(3,16)
d. (5,1)(10,2)(15,3)
e. (7,2)(8,3)(9,4)

The second number in a number pair is 18. It is 6 greater than the first. The first number is:

a. 1
b. 3
c. 6
d. 9
*e. 12

The number pairs are (0,a)(1,b)(2,c)(3,e). If 7 is added to the first number which group of numbers can be substituted for the letters?

a. 0, 6, 5, 4
b. 0, 8, 9, 10
*c. 7, 8, 9, 10
d. 0, 7, 14, 21

The equation is x + 11 = y. A set of number pairs would be:

a. (3,11)(4,22)(5,33)
b. (2,22)(3,33)(4,44)
*c. (4,15)(5,16)(6,17)
d. (1,11)(2,12)(3,13)

Given this set of number pairs, name the function. (5,13)(6,14)(8,16)

a. x + 6 = y
b. x x 6 = y
c. x + 7 = y
*d. x + 8 = y
e. x x 8 = y
The number pair is (3, 18). Other members belonging to this set could be:

a. (4, 20)(5, 21)(6, 22)
* b. (4, 19)(5, 20)(6, 21)
c. (4, 21)(5, 22)(6, 23)
d. (4, 22)(5, 23)(6, 24)

The function is \(x - 7 = y \). is a number pair that uses this function.

a. (6, 0)
b. (7, 1)
c. (18, 17)
d. (10, 17)
*e. (21, 14)

The number pairs (53, 49)(22, 18)(11, 7) tell us the function performed is

a. \(x - 2 = y \)
b. \(x - 3 = y \)
*c. \(x - 4 = y \)
d. \(x - 5 = y \)

Every time John plays marbles he loses 3 marbles. One numbered pair would be

a. (m, 3)
b. (3, 1)
c. (b, 2)
*d. (7, 4)
e. (8, 3)
The Panama Canal crosses Central America to connect the Atlantic and Pacific Oceans. It was completed in 1914 and officially opened in 1920. Before the canal was built ships sailing from New York to San Francisco traveled about 13,000 miles. After the canal was built the same trip was 5200 miles. The canal is about 50 miles long and it takes 8 hours to pass through it. In 1962, 10,866 ships passed through the canal.

A √ The Panama Canal was built in 6 years.
X U The Panama Canal saves ships sailing time.
X U The Panama Canal saves shipers money.
A √ The Panama Canal was dedicated by President Wilson.
A √ The canal is 250 feet wide and 50 miles long.
A √ Ships can only pass through the canal during the day.
A √ Ships no longer sail around South America to get from the Atlantic to the Pacific Oceans.
X U Over 10,000 ships passed through the canal in 1962.
A √ Only commercial vessels pass through the canal.
A √ The Panama Canal is still in use.
X U The speed of a ship moving through the canal is 6.25 mph.

Source: Addison-Wesley, Bk. 5, p. 233.
Index

Addition
- Fractions 35-37
- Integers 37-38
- Negative Numbers 196-198
- Whole Numbers 179-190, 192-196

Advanced Topics
- Functions 572-576
- Graphing 566-571
- Logarithms and Exponentials 560-565

Applications and Problem Solving
- Advanced Topics 560-576
- Drawing Conclusions 510-512
- Drawing Inferences 578
- Fact-Opinion Statements 512-513
- Identifying Central Problem 423, 425
- Number sentences 420-423
- Which Process Should I Use 426-428

Area, measurement of 443-445

Associative property 191-192, 221-222, 473-494, 506

Bases (10, 8, 5, 3, 6) 113-120

Basic Facts of Division 335-339, 366-368

Cardinal numbers 525-526

Commutative Property 191-192, 221-222, 473-494

Composite Numbers 148-152

Decimals
- Number position, place value 101-103
- Relationship with fractions 109-112

Decimals
- Addition of 254-255
- Applications 509-510
- Subtraction of 255-257

Distributive property 191-192, 221-222, 473-494

Divisibility, rules for 155-169

Division
- As inverse of multiplication 370-380, 385-386
- As repeated subtraction 323-327
- Basic facts 335-339, 366-368
- Employing number line 339-341
- Fractional remainders 360-365
- Multiples of 10 332-334
- Practice 457-465, 527-530, 344-346, 358-359
- Properties of 330-332, 489-491

Relation sign in 342-344, 348-350

Renaming in 346-348

Rounding off divisors 351-356

Word Problems 352-354, 380-384

Zero in dividend 350-352

Division as repeated subtraction 39-41

Drawing conclusions 510-512

Drawing inferences 578

Empty set 527-530

Equivalent fractions 76-92, 131-432

Equivalent sets 531-537

Expanded notation 10-12, 18-21

Exponential notation 9, 54-62

Exponentials 560-565

Exponents in Multiplication 57-63

Finding average 453-457

Finite-infinite system 469-472

Fractional remainder in Division 360-365

Fractions
- Addition and subtraction of 35-37, 217-219, 238-252, 506
- Applications 429-440, 495-506
- As whole numbers 74-76
- Division of 404-409
- Equivalent 76-92
- Meaning 64-69
- Mixed and improper 96-99, 215-217
- Multiplication of 388-404, 513-516
- Reciprocals 92-95
- Simplification of 225-237
- Word Problems 437-438

Graphing 566-571

Properties of 330-332, 489-491
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater than, less than, equal to</td>
<td>46-47, 51-52, 83-85</td>
</tr>
<tr>
<td>Greatest Common factor</td>
<td>169-175</td>
</tr>
<tr>
<td>Improper fractions</td>
<td>96-99, 215-217</td>
</tr>
<tr>
<td>Inequalities</td>
<td>50</td>
</tr>
<tr>
<td>Integers</td>
<td>37-38</td>
</tr>
<tr>
<td>Lattice Method</td>
<td>268-269</td>
</tr>
<tr>
<td>Length, measurement of</td>
<td>443-445</td>
</tr>
<tr>
<td>Linear equations in multiplication</td>
<td>283-286</td>
</tr>
<tr>
<td>Linear functions</td>
<td>572-576</td>
</tr>
<tr>
<td>Logarithms and Exponentials</td>
<td>560-565</td>
</tr>
<tr>
<td>Lowest common multiple</td>
<td>176-178</td>
</tr>
<tr>
<td>Lowest term fraction</td>
<td>226-231</td>
</tr>
<tr>
<td>Maps, measurement of</td>
<td>447-448</td>
</tr>
<tr>
<td>Measurement</td>
<td></td>
</tr>
<tr>
<td>Length, area, volume</td>
<td>443-445</td>
</tr>
<tr>
<td>Maps</td>
<td>447-448</td>
</tr>
<tr>
<td>Money</td>
<td>449-452</td>
</tr>
<tr>
<td>Statistics</td>
<td>453-457, 465-467</td>
</tr>
<tr>
<td>Median</td>
<td>453-457, 465-467</td>
</tr>
<tr>
<td>Mixed number</td>
<td>96-99, 215-217</td>
</tr>
<tr>
<td>Mode</td>
<td>465-467</td>
</tr>
<tr>
<td>Multiplication of fractions</td>
<td>41-46</td>
</tr>
<tr>
<td>Multiplication</td>
<td></td>
</tr>
<tr>
<td>Employing concept of rate</td>
<td>271-272</td>
</tr>
<tr>
<td>Facts to 81</td>
<td>288-290</td>
</tr>
<tr>
<td>Lattice Method</td>
<td>268-269</td>
</tr>
<tr>
<td>Linear equations in multiplication</td>
<td>283-286</td>
</tr>
<tr>
<td>Long Multiplication</td>
<td>273-283</td>
</tr>
<tr>
<td>Multiples of 10,100,1,000</td>
<td>287-288, 297-301</td>
</tr>
<tr>
<td>Negative numbers in Practice</td>
<td>319-322</td>
</tr>
<tr>
<td>Properties of</td>
<td>294-299, 301-308</td>
</tr>
<tr>
<td>Renaming of a factor</td>
<td>270-271, 291-293, 309-316</td>
</tr>
<tr>
<td>Repeated addition</td>
<td>260-268</td>
</tr>
<tr>
<td>Word problems</td>
<td>317-319</td>
</tr>
<tr>
<td>Negative numbers in multiplication</td>
<td>319-322</td>
</tr>
<tr>
<td>Negative numbers</td>
<td>196-198</td>
</tr>
<tr>
<td>Notation, set builder</td>
<td>523-524</td>
</tr>
<tr>
<td>Number line</td>
<td></td>
</tr>
<tr>
<td>Locating numbers</td>
<td>28, 46-48</td>
</tr>
<tr>
<td>Locating regions</td>
<td>28-29</td>
</tr>
<tr>
<td>Number sentences</td>
<td>420-423</td>
</tr>
<tr>
<td>Number system</td>
<td>469-472</td>
</tr>
<tr>
<td>Numbers</td>
<td></td>
</tr>
<tr>
<td>Compact numerals</td>
<td>22</td>
</tr>
<tr>
<td>Different ways to name numbers</td>
<td>4-7, 425-426</td>
</tr>
<tr>
<td>Expanded notation</td>
<td>9, 54-62</td>
</tr>
<tr>
<td>Face value, place value, total value</td>
<td>14-16</td>
</tr>
<tr>
<td>Placeholders</td>
<td>9</td>
</tr>
<tr>
<td>Place value, up to 100,000,000</td>
<td>12-14</td>
</tr>
<tr>
<td>Rounding off, up to 10,000,000</td>
<td>24-26</td>
</tr>
<tr>
<td>Using the number line</td>
<td>28, 46-48</td>
</tr>
<tr>
<td>Numeration</td>
<td></td>
</tr>
<tr>
<td>Bases (10, 8, 5, 3, 6)</td>
<td>113-119</td>
</tr>
<tr>
<td>Adding and subtracting</td>
<td>119-120</td>
</tr>
<tr>
<td>Decimals</td>
<td>101-112</td>
</tr>
<tr>
<td>Fractions and the number line</td>
<td>30-31, 65-67</td>
</tr>
<tr>
<td>Equivalent</td>
<td>31-35, 76-85</td>
</tr>
<tr>
<td>Properties and operations</td>
<td>191-192, 221-222, 473-494</td>
</tr>
<tr>
<td>Roman numerals</td>
<td>122</td>
</tr>
<tr>
<td>Per Cent</td>
<td>410-415</td>
</tr>
<tr>
<td>Place value</td>
<td>12</td>
</tr>
<tr>
<td>Positive integers</td>
<td>37-38</td>
</tr>
<tr>
<td>Prime factorization</td>
<td>134-147</td>
</tr>
<tr>
<td>Prime numbers</td>
<td>147-148</td>
</tr>
<tr>
<td>Properties of numbers</td>
<td>191-192, 221-222, 473-494, 508</td>
</tr>
<tr>
<td>Rate, in multiplication</td>
<td>271-272</td>
</tr>
<tr>
<td>Reciprocals</td>
<td>92</td>
</tr>
<tr>
<td>Renaming a factor</td>
<td>291-293, 309-316</td>
</tr>
<tr>
<td>Repeated addition</td>
<td></td>
</tr>
<tr>
<td>Roman numerals</td>
<td>122</td>
</tr>
<tr>
<td>Rounding off</td>
<td>24-26</td>
</tr>
<tr>
<td>Using estimating</td>
<td>24</td>
</tr>
<tr>
<td>Category</td>
<td>Pages</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Sets</td>
<td></td>
</tr>
<tr>
<td>Cardinal numbers</td>
<td>525-526</td>
</tr>
<tr>
<td>Empty</td>
<td>527-530</td>
</tr>
<tr>
<td>Equivalent</td>
<td>531-537</td>
</tr>
<tr>
<td>Introduction</td>
<td>519-523</td>
</tr>
<tr>
<td>Notation</td>
<td>523-524</td>
</tr>
<tr>
<td>Operations with</td>
<td>544-553</td>
</tr>
<tr>
<td>Subsets and supersets</td>
<td>538-543</td>
</tr>
<tr>
<td>Venn Diagrams</td>
<td>554-558</td>
</tr>
<tr>
<td>Sieve of Eratosthenes</td>
<td>154</td>
</tr>
<tr>
<td>Simplifying fractions</td>
<td>231-235</td>
</tr>
<tr>
<td>Statistics</td>
<td>453-457, 465-467</td>
</tr>
<tr>
<td>Subtraction</td>
<td></td>
</tr>
<tr>
<td>Basic operations</td>
<td>200-215</td>
</tr>
<tr>
<td>Rational numbers</td>
<td>217-219</td>
</tr>
<tr>
<td>Venn Diagrams</td>
<td>554-558</td>
</tr>
<tr>
<td>Volume, measurement of</td>
<td>443-445</td>
</tr>
<tr>
<td>Which Process?</td>
<td>426-428</td>
</tr>
</tbody>
</table>