Basic advice for writing computer dialogs for use in science instruction is given. At the outset one should decide where within the subject area the computer dialog could offer a unique advantage over conventional teaching tools. Examples of such effective uses are remedial programs, in which a computer dialog may rapidly determine a student's particular weaknesses, and the interactive proof, where the student is allowed to demonstrate motivation and originality. In program writing, the model of human dialog is an effective tool. The goals, the style and the structure of student-computer dialogs are discussed, with samples of good dialog usage included in the appendix. (RB)
THE COMPUTER IN LEARNING--ADVICE TO DIALOG WRITERS

Alfred M. Bork

Physics Computer Development Project
University of California
Irvine, Cal. 92664

May 24, 1971
By a dialog we mean here a "conversation" between a student and a teacher, where the teacher is conducting the dialog through a medium of a computer program. Typically a dialog of this kind follows a pattern such as this. First, something will be typed to the student, possibly some information. Then the student will be asked to reply. Depending on what the student put in, a number of things might be typed to him next. Several samples with student input underlined, are included in the appendix.

Here we want to offer some crude advice to those attempting to write such student-computer dialogs. Writing a student-computer dialog is a little understood process at present, so any advice should be considered as subjective, and should not be taken too seriously! Nevertheless some tentative experience can be brought to the attention of the teacher who is working on such
material. This document attempts to do this, using the experience in the Physics project at the University of California, Irvine, as the basis.

SUBJECT AND TYPE
One early decision the dialog writer, the teacher, must face is what to write dialogs about. At present the use of computer based dialogs is experimental and untested. In many areas little concrete evidence exists to show that dialogs can do a more effective job in teaching students that other methods, although many of us believe this to be the case in some situations. Hence, the burden of educational proof is on the dialog writer. He cannot assume that simply because he puts standard existing material into dialog form in trivial ways that he is improving the teaching situation. Furthermore, the preparation of extensive dialogs is a lengthy job, putting a premium on making wise choices as to what to write a dialog about.

One way to approach the problem is to ask where one could, within the teaching of a particular subject area, gain some unusual leverage with computer dialogs. The answer to this question would perhaps be different for different areas, and could only be given by someone with an extensive knowledge both of subject and pedagogy. It does seem important to ask the question, and to concent-
The document attempts to do this, using the Physics project at the University of Fine, as the basis.

In the dialog writer, the teacher, must write dialogs about. At present the area of dialogs is experimental and in many areas little concrete evidence exists that other methods, although many of them might be the case in some situations.

One of educational proof is on the dialog assume that simply because he puts material into dialog form in trivial improving the teaching situation.

Preparation of extensive dialogs is a premium on making wise choices in making a dialog about.

The problem is to ask where one teaching of a particular subject area, leverage with computer dialogs. The question would perhaps be different for and could only be given by someone with knowledge both of subject and pedagogy. It is to ask the question, and to concentrate on making wise choices in making a dialog about.

A dialog which recreated a book, or a printed program text, or some other teaching method, is not likely to have long survival value. Perhaps when the cost of computer usages is considerably less than it is today, and when we become more knowledgeable in the use of computers, the computer may replace the text, but this is far in the future. A corollary is that it is too early to prepare a complete computerized course; we should concentrate on small segments and study their effectiveness. Innovation in many directions is still essential here.

A class of powerful dialogs are the remedial dialogs which try to determine the students' weaknesses in an area, and give him assistance just where it is needed. One useful trick is to begin by assuming that the student knows the area, giving him a series of questions which selectively test his knowledge, perhaps by working examples. These problems need not be difficult; if they are to be repeated they can be "generated" by means of a problem generating sequence. The student will only be sent into the remedial parts.
of the diagram if he cannot handle these problems after several attempts (to allow for the usual typing errors). This approach has the advantage that the student receives assistance only in those areas where he is weak, so the program can be responsive to his needs. One variant of this is the dialog which tries to assist the student who has had trouble working a problem, finding where he had trouble and giving him help.

Another area of the sciences where we think that dialog material will be particularly effective is that of the interactive proof or problem. The idea is to allow the student to try to prove some of the important results of the course partially on his own, making choices and guesses along the way, perhaps in response to suggestions in the program; thus the process of developing difficult proofs can be made on active process rather than the passive one of listening to a lecture. Similarly, a problem at the computer has advantages over a text book problem; you can, for example, make the student ask for information, rather than giving it all to him in advance as in the typical textbook problem. So he must decide what information is relevant.

MECHANISM

How should the dialog writer work? As with matters of style this is very individualistic, and further will be
cannot handle these problems (to allow for the usual typing)
each has the advantage that the
stance only in those areas where
program can be responsive to his
of this is the dialog which tries
it who has had trouble working a
re he had trouble and giving him

sciences where we think that dialog
ticularly effective is that of the
problem. The idea is to allow the
ove some of the important results
ly on his own, making choices and
y, perhaps in response to suggest-
: thus the process of developing
be made on active process rather
of listening to a lecture. Simi-
the computer has advantages over a
you can, for example, make the
formation, rather than giving it all
in the typical textbook problem.
at information is relevant.

As with matters of
individualistic, and further will be

heavily dependent on the facilities available. All
that is attempted here is to mention and comment on some
of the possibilities.

After the basic area has been chosen the author will
make at least a brief outline of his "mainline"
approach, showing the material to be covered. A one-
page outline is often useful.

Some authors will develop the mainline almost fully,
with the messages that will be typed to the student in
full detail. Then they will go back and fill in bad
branches and loops, or other mainlines. However, some
teachers prefer to work on a "frame by frame" basis,
outlining the principle development briefly, and then
going sequentially through the program branches along
the way. My own preference is for the second style,
although with very complex dialogs the sequential
approach may present a problem in keeping straight as
to where one is along the process! The second approach
has a psychological advantage in that it makes the
teacher think all along as to how to respond to the
student who is confused or who does not know hat he is
doing, while the mainline approach may lead one to be
impatient in filling in the details.

Another aspect is the author's relation to programming
language or languages involved in the final preparation
of the material. A good many variants are possible. First there is what might be termed the "Coursewriter approach", the one the original developers of the Coursewriter language in IBM seemed to have in mind. This involves the author, the teacher, in using the language itself in writing the dialog, writing statements directly in that language as he thinks his way through the program. Many such languages exist, but most have seen little usage; Coursewriter has seen wide use.

A second approach is for the teacher to work in developing the dialog in a (modified) flow chart form, in a way that does not depend on the details of computer mechanism to be used; a variant is to use decision tables. The teacher sketches out the conversation by a series of boxes, divided lines, and other graphic aids, showing what he wants to "say" to the student, what responses he wants to handle, the messages typed or displayed for each response, etc.

A third possibility is the use of a facility that prompts the instructor, sitting at a terminal, for the various pieces of the dialog that will be necessary, like the Scholar-Teach system or the Ditran system developed by Noah Sherman at the Lawrence Hall of Science at Berkeley.
Again I briefly state that my own preference is for the second way, both because it removes the teacher from the computer details and also because it allows his maximum freedom to do what he wants to do within the program without worrying about how to do it.

Either typing at a terminal or key punching is possible, depending on the computer system employed. Since dialogs are to be used on time-sharing systems it is advisable to use the often powerful editing capabilities of such systems to assist in the preparation of the dialog material; so on-line entering and correction of programs is desirable except where it is ruled out by financial considerations or by system unvailiability.

The ideal individual for typing or keypunching seems to be the trained secretary, rather than a programmer, a student, or a teacher. Programmers and teachers in general are not good typists. Anyone who is acquainted with dialogs knows that a vast amount of time must be spent in typing the material, since much of it is the text to be shown to the student. It is not difficult to train secretaries to use computer terminals and to work in well-designed programming languages and editing systems.
GOALS
Perhaps some brief comments should be offered concerning short term versus long term goals: in any teaching activities we should decide what we are trying to do. If we consider a science course, there may be a factual piece of information at a point in the course that the student is to learn—the standard theories that already exist in the area, the mathematical techniques that go along with these theories, etc. But our interest in science teaching is not all archival, intended to persuade people to look admiringly at these lovely mental structures of past science. Rather we hope to produce people who can go ahead and use this information in one way or another, modestly in developmental work or in great creative leaps beyond the present situation in science. Teaching factual material is one task, but being able to use it is often a different matter. The moment of truth for a student in a science course comes when he is asked to work difficult problems, problems which demand that he take the information and techniques presented and obtain new information. The long range goal of most science courses is to produce people who can make some of these developments themselves.

Long range teaching goals should be kept in mind by the dialog writer, and stressed in whatever way possible. It is very easy to ignore them, because they present much greater teaching difficulties than the more
should be offered concerning goals; in any teaching that we are trying to do. The, there may be a factual fact in the course that the hard theories that already mathematical technique that go. But our interest in archival, intended to single at these lovely science. Rather we hope to add and use this information only in developmental work yond the present situation material is one task, but a different matter. The in a science course comes difficult problems, problems information and techniques formation. The long range is to produce people who themselves. Presentation of information. Teaching students to successfully tackle difficult problems is a hard task. The heuristic strategies involved in problem solving, for example, are seldom discussed with the students (a glowing exception is George Polya's book, How to Solve It).

Although these comments on goals are directed toward science courses, the consideration is important in curriculum development in all areas.

STYLE

It is unwise to be doctrinaire about style, even more so than in the rest of this discussion, because style is so individualistic. It seems reasonable that dialogs should not always be in the same style; different people have different ways of writing.

One tendency is to approach the problem of writing student-computer dialogs as if writing a text or a paper. But the difficulties are really greater with dialog material, and the style of the dialog should reflect these differences and difficulties. With a text most of the concern is with the "main line"; the right way of handling the developing material. Usually only one main line is considered, although occasionally alternate proofs may be given. A dialog may not only
include multiple main lines, to react to different ways the students may proceed, but it must also spend a great amount of energy and effort in sections that never appear in texts--wrong approaches, mistakes which you should respond to in some reasonable way, remedial assistance for a student who is having mathematical difficulty: If computer-student dialog is to prove valuable it will need to be more responsive to student needs than a static text book. This means that the non-main line sequences are extremely important for the dialog; much of the time typical students are likely to be in these areas of the program.

Most of us feel that dialogs should resemble a conversation in some way: The name dialog suggests the model of the student conversing with the teacher in his office; the teacher asks questions which are designed to help the student learn the material. Clearly we cannot fully realize with the computer, the model of the office conversation and some people object to trying to make a computer dialog look like a student-teacher discussion. However, it seems possible to follow this model to some extent; my own tendency is to believe this is a viable approach.

The model of human dialog suggests that computer dialog style should be more like that of a conversation, and less like that of a book. Talking is more informal than
The main lines, to react to different
texts may proceed, but it must also spend
of energy and effort in sections that
texts-wrong approaches, mistakes which
end to in some reasonable way, remedial
a student who is having mathematical
computer-student dialog is to prove
need to be more responsive to student
atic text book. This means that the
sequences are extremely important for the
the time typical students are likely to
as of the program.

that dialogs should resemble a conver-
way: The name dialog suggests the model
conversing with the teacher in his
cher asks questions which are designed
ent learn the material. Clearly we
alize with the computer, the model of
eration and some people object to trying
ater dialog look like a student-teacher
however, it seems possible to follow this
xtant; my own tendency is to believe
le approach.

man dialog suggests that computer dialog
more like that of a conversation, and
of a book. Talking is more informal than
writing, and often more redundant. Humor, and light
touches, are desirable and welcome, although experience
shows that not everybody agrees as to what is humorous!
Informal language, as opposed to elaborately structured
and carefully formulated sentences, is desirable. While
some people talk in long and involved sentences, the
type that one sees in learned articles, this is rather
are rare, even among college instructors!

Another issue in which dispute exists, but little
empirical evidence, is the question of the use of a
first person style. Most of the dialogs developed at
Irvine have used the first person style, while most of
those from Berkeley on the Irvine system have not. The
Irvine students, when queried about the first person
style, supported its use. But this does not demonstrate
that such a style is necessarily desirable. More
information is needed, perhaps through psychological
studies, as to whether the computer should be typing
"I". Currently we are running one dialog with two
branches, randomly chosen, one of which uses the first
person, one not.

The student has a number of ways of interpreting such
an "I" in a computer dialog. He may think of it as the
author of the program, rather than the computer itself.
You can, if you want to in your dialogs, identify who
you are, and this might make "I" more natural.
More generally the question of how style influences student response is undetermined. It has been suggested that relatively small changes in style, for example technical vocabulary, may have considerable influence on student output, but no evidence exists; again this year we are running a randomly chosen two branch dialog to explore this question.

Perhaps one of the hardest things for the teacher to keep in mind in preparing a dialog is that he has very limited facilities at his disposal for analyzing the student response. Even a carefully organized and prepared dialog will often miss the meaning of what the student is typing, even though the dialog has already been improved from past student usage. The computer is not a person, and does not have all the resources for dealing with the students' comments of an actual teacher. Largely we identify responses by string matches, looking for key words or letters in the input. Even with elaborate care for different types of string matches, we cannot react accurately to everything the student says, and certainly we cannot currently approach the capabilities of human beings. Care in how the questions are stated is valuable, but does not do the entire job.

This weakness indicates that a degree of humility and modesty is required in the response to student comments,
question of how style influences undetermined. It has been lively small changes in style, in vocabulary, may have considerable output, but no evidence exists; are running a randomly chosen two explore this question.

Hardest things for the teacher to caring a dialog is that he has very at his disposal for analyzing the even a carefully organized and often miss the meaning of what the even though the dialog has already past student usage. The computer does not have all the resources students' comments of an actual identify responses by string key words or letters in the input. care for different types of string react accurately to everything the certainly we cannot currently approach human beings. Care in how the is valuable, but does not do the

particular the comments which we have been unable to analyze and which we presume to be wrong. To tell the student unequivocally that he is wrong is often dangerous, except in environments where the response is carefully controlled by the situation, or where extremely detailed analysis of the input is made. Your program may be missing an unusual variant of a right answer.

Along with the previous suggestions a pedagogical point seems reasonable. A tendency exists, particularly with impatient individuals, to be scornful of the students lack of success in a particular place in the program. I think it fair to argue that abusive language, or language which questions the student's intelligence, is seldom desirable in a teaching situation, either in direct conversation, text, problem grading, or dialog. Thus it is not desirable or reasonable to call a student "stupid" because he did not put in the response you were looking for at a particular place.

A tendency exists in employing technological aids to education to allow the technology to control. This seems to be a mistake; the teaching aims and teaching purposes should always be in the forefront. Thus in applying computers to physics one should resist the temptation of being guided by the facilities available. Rather the primary emphasis should be on what you want
to teach and how you want to teach it, the pedagogical aspects. Ideally the author should develop the dialogs without much regard to the details of how they are going to be put on the machine, although he needs to have some background of what is possible with the computer. Pedagogy should take precedence over technology in all cases.

A stylistic tendency noticeable in some new writers of computer based teaching material is to spend too much time in talking with the students, accepting only trivial responses and typing long messages. We might call this the "textbook disease". There are places where one does want to type long messages, or interact only minimally, but a dialog which does only this is not worth putting on the computer, since it becomes a book typed to the student. A dialog writer should ask how he can involve the student in a different way than a book would involve him, getting him to make meaningful responses which contribute toward learning. Interesting sidelines involving much typing can be made optional; thus, in a physics dialog, historical discussion of the issues may not be of interest to all students, but may interest some. Letting the students make a choice in such situations seems reasonable, and increases the flexibility of the material. Similarly, a review might be optional for the student who has done well, but automatic for the student who has not.
you want to teach it, the pedagogical
the author should develop the dialogs
to the details of how they are going
machine, although he needs to have some
t is possible with the computer.
ake presidence over technology in all
ency noticeable in some new writers of
taching material is to spend too much
ith the students, accepting only
 typting long messages. We might
textbook disease". There are
aces want to type long messages, or interact
ut a dialog which does only this is
on the computer, since it becomes a
student. A dialog writer should ask
ve the student in a different way than
olve him, getting him to make meaning-
ich contribute toward learning. Inter-
volving much typing can be made
 in a physics dialog, historical discus-
es may not be of interest to all
y interest some. Letting the students
uch situations seems reasonable, and
ibility of the material. Similarly,
optional for the student who has done
onotic for the student who has not.

In many instances it is reasonable to allow a student
several attempts at the answer, perhaps even a large
umber of attempts. There should, however, be an
eventual exit in all cases, to avoid having the student
trapped at some point and not knowing what to do to get
out of the trap. Setting of counters and testing on
counters can allow flexible looping for additional
tries. You can have a series of hints, successive
pieces of advice, which can be given to students not
putting in the expected results.

You can give advice particularly tailored to things that
the student is typing that seem to be wrong. For
example, if you are expecting an equation and the
student is not entering an equal sign or some equivalent
word, then you could stress that you are looking for an
equation, and not identifying it in his input. You may
expect a formula or equation that contains certain
symbols, but those symbols are not present; hence based
on the information about what is missing it may be useful
for the student to try the question again. If the student
has part of the answer, but is missing some things he can
be asked to enter only the aspects previously missing;
don't require more typing than is necessary.
In looking for verbal input, it is often a good policy to look for only part of each key word, thus bypassing some of the problems of bad spelling or bad typing. You might also look for likely spellings; this is much easier to do when you are revising the dialog.

The amount of retries and specialized advice can of course vary from place to place within the dialog. With some important results it may be good to give the student many many attempts, but in other cases it may be unreasonable to do this. The dialog author can spend an infinite amount of time on any one question in the program in an attempt to analyze the student response. But he should use judgement as to where a point of diminishing return is reached, usually a pedagogical decision. The author should also be prepared for the fact that if he has an extremely complicated analysis at a particular spot, involving many tries, and many pieces of specialized advice for wrong inputs from students, programming errors become more and more likely as the complexity grows.

It is not always necessary to do an analysis of the student's input. In some situations the program can simply accept the input and go on. Thus, it might be that you will want to get the student to think about the material, and to have some pause in between sections of material. Or you may want him to make an input but...
input, it is often a good policy of each key word, thus bypassing of bad spelling or bad typing. For likely mispellings; this is when you are revising the dialog.

Additional specialized advice can of place within the dialog. If results it may be good to give attempts, but in other cases it to do this. The dialog author the amount of time on any one questi- an attempt to analyze the but he should use judgement as to finishing return is reached, usually ion. The author should also be that if he has an extremely at a particular spot, involving pieces of specialized advice for students, programming errors become as the complexity grows.

necessary to do an analysis of the some situations the program can put and go on. Thus, it might be to get the student to think about have some pause in between sections may want him to make an input but you may intend to say the same thing no matter what he enters. Another situation in which the nonanalyzed input is of value is with student comments. Dialogs should usually invite long comments from the student at the end, and presumably these may be too complex to allow any immediate reply. Another related valuable device, useful in providing feedback to the teacher as to the teaching success of the program, is to ask for a long verbal description or summary of the situation being studied. Thus, in a dialog involving standing waves on a string, we can ask the student to describe what a standing wave is, and what types of standing waves are possible; if the program has worked him through the first normal mode he can for example describe the second normal mode. Such a long entry, involving many lines, could not presently be analyzed in a very meaningful way, although one might still choose to respond to some key words. But the teacher can examine these detailed comments and determine if they do in fact indicate that most students understand the material that he has tried to cover. This mechanism can also be used for getting feedback to the students. A student can be asked to sign his questions or queries, with the promise that the reply will be coming soon.

One stylistic question on which there is not universal agreement is the necessity for what the behavioral
psychologist calls "positive reinforcement". A view which is supported by many psychologists and teachers is that when a student makes the right response he should always be told that he is right. However, others argue that we do not do this in normal conversation, and so are not willing to do it at all times. One can of course have compromise positions, sometimes responding favorably to correct answers, sometimes not. I tend to believe that it should be done frequently but not all of the time.

A place in dialog writing where imagination tends to be limited is the constant need to say the same basic thing over and over, but in different ways. The typical situation is "try again", the response that the student should attempt the question at least one more time. Congratulating him on a right answer is another similar situation, reinforcing his response. It is convenient to have built in facilities to vary the choice here.

One of the most important aspects of the dialog is the ability to respond reasonably to the wrong answers. If a student says something which is wrong and you can tell him why it is incorrect, and perhaps give him another try, then the dialog is serving an interactive function. In thinking about the possible responses for every question the teacher needs to consider what the student can say.
"positive reinforcement". A view by many psychologists and teachers ant makes the right response he d that he is right. However, others do this in normal conversation, ing to do it at all times. One can promise positions, sometimes y to correct answers, sometimes not. hat it should be done frequently but t.

riting where imagination tends to constant need to say the same basic s, but in different ways. The typical pair", the response that the student question at least one more time. on a right answer is another similar ing his response. It is convenient cilities to vary the choice here.

tant aspects of the dialog is the reasonably to the wrong answers. If thing which is wrong and you can tell rect, and perhaps give him another g is serving an interactive function. he possible responses for every r needs to consider what the student can say that is not right, and what response is reasonable. This is not necessarily easy, and some discussion with others may help. Good dialogs often devote more of the program to respond to wrong answers than to the mainline material, sometimes dramatically more. Don't worry about how the professionals can slip by; the dialogs are written for students.

Feedback
It has already been suggested several times that feedback from student use of the dialogs can be important in improving the dialogs for later groups of students. This is indeed a very powerful tool, one of the main hopes in producing dialogs which will be an effective teaching device. Dialogs as initially written, even the best ones available today, are not very successful in dealing with student response, so feedback is critical.

The question of what feedback is wanted from student use of the dialog, and how the feedback is to be used, should be carefully considered in advance. The dialog should be consciously planned to give internally the kind of information that is useful in analyzing students' responses, using this information to improve the next version. One must be careful not to bury oneself under too much information, for example, but to get that information that is relevant to improving the dialog.
Normally in the physics conversations developed at Irvine we have found it reasonable not to save all student responses, because with large student usage so many of these would be obtained that they could not be analyzed successfully. What is usually helpful in improving the conversation are responses that could not be responded to either favorably or unfavorably. Some of these responses may be right answers, but answers that your matching program was too crude to find. Others may give further suggestions as to what students are likely to say that is wrong, and that should be commented on. The saved responses may also indicate areas in the program which are extremely weak, and which need to be extended, or may indicate ambiguous terminology in the question being put to the student, or a poor stylistic approach. They can even indicate that the student's use of the English language is at variance with the teacher's uses. In saving responses it is valuable to store also information which allows you to identify the responses by who entered them. Thus some insight into the problems of the dialog may be obtained by watching the progress of individual students.

The author should also consider whether he wants to keep a numerical record or performance during the dialog--how many things the student got right, which
physics conversations developed at

found it reasonable not to save all

ses, because with large student usage

would be obtained that they could

ed successfully. What is usually helpful

the conversation are responses that could

ed to either favorably or unfavorably.

responses may be right answers, but

our matching program was too crude to

ay give further suggestions as to what

likely to say that is wrong, and that

ented on. The saved responses may also

in the program which are extremely weak,

be extended, or may indicate ambiguous

the question being put to the student, or

ic approach. They can even indicate that

use of the English language is at vari-

teacher's uses. In saving responses it

store also information which allows you

es by who entered them. Thus

into the problems of the dialog may be

aching the progress of individual

uld also consider whether he wants to

al record or performance during the

ny things the student got right, which

loops he got into, etc. Again, some thought in

advance as to what information should be gathered

during the student performance, and how that informa-
tion is going to be analyzed, is important.

The author needs access to convenient sorting programs

in handling these responses, sorting both on the loca-
tion within the program at which the input was obtained

and on the inputs associated with each student. The

results, with a large class will be extensive; with this

output the author can then set to work on the next, and

better, generation of the dialog.
APPENDIX

SAMPLES OF DIALOG USAGE

Student input underlined.
Physics Quiz

The following questions (20 in all) are concerned with the directional properties of magnetic forces and magnetic fields.

If you do not know the answer to a question and don't want to guess, type a carriage return.

When ready to proceed, hit "return".

Part I (Questions 1-5) Bar magnets and compasses.

1. Two bar magnets are arranged as shown here.

 X --------------- X
 | |
 | \ |
 | \ |
 | \ |
 | \ |
 | | X
 | | |
 | | |

 Does the magnet on the left experience
 A. No net force
 B. A net force to the right
 C. A net force to the left
 D. It is caused to rotate
 E. Counterclockwise

 Please respond with a single letter: A, B, C, D, or E.

2.

No. Real life magnets, not identical, and not perfectly aligned, might tend to rotate. Our ideal magnets are identical and perfectly aligned. Try again.

3.

No. Hit F17 if F1 is to the right, the closer, F1.1 if F17 is unlike and attract.
DO THE MAGNETS ATTRACTION, REPEL, OR TEND TO ROTATE?

REPEL. I THINK.

RIGHT.

THE MAGNETS REPEL. THE PRINCIPAL EFFECTS COME FROM THE LIKE POLES CLOSEST TOGETHER.

YES. HOW WE ARRANGE OUR IDENTICAL MAGNETS IN THIS FASHION. IS THERE ANY NET FORCE BETWEEN THEM?

YES.

CORRECT.

IS THE NET FORCE ATTRACTIVE OR REPULSIVE?

ATTRACTION.

THAT'S RIGHT.

THE UPPERCASE PAIR OF UNLIKE POLES ATTRACT, AND SO DO THE LOWER PAIRS. INCIDENTALLY, AS THE MAGNETS ARE DRAWN TOGETHER, DO THEY ROTATE?

NOT IN THE IDEAL CASE.

THAT'S RIGHT.

THERE IS NO NET FORCE.

DOES IT EXPERIENCE A NET FORCE?

YES.

IT EXPERIENCES THE EQUAL AND OPPOSITE FORCES.

SECOND, DOES THE MAGNET EXPERIENCE TORQUE?

YES.

IT EXPERIENCES THE TORQUE, THAT TO ALIGN ITS NORTH POLE IS AT THE RIGHT OR BOTTOM?

STOP.

USE THE SAME IDENTIFICATION NEXT YOU USE THIS PROGRAM.

YOUR IDENTIFICATION WAS ALFRED GOODBYE.
FIRST, DOES THE MAGNET EXPERIENCE A NET FORCE?

No, it does not.

In fact, it tends to rotate.

Because of the torque, the magnet tends to rotate itself in the field until its north pole is at the top-left.

SECOND, DOES THE MAGNET EXPERIENCE A NET FORCE?

Yes, it tends to rotate.

Use the same identification next time you use this prompt.

Your identification was Alfred Goodbyes.

Goodbye.
LET'S LOOK AT THE ALGEBRA OF COMPLEX NUMBERS.

WHAT IS

(1+2*i) + (7-3*i)

EQUAL TO?

-5 + 8

LOOKS FINE....

NOW LET'S TRY SOME MULTIPLICATION OF COMPLEX NUMBERS.

WHAT IS:

(4+2*i)*(-2+3*i)

EQUAL TO?

-12-8i

I DON'T FOLLOW YOU. TRY AGAIN.

WHAT IS:

(6+2*i)*(-2+3*i)

EQUAL TO?

7-13+6i

I CAN'T RECOGNIZE YOUR RESPONSE. MULTIPLICATION OF COMPLEX NUMBERS IS VERY SIMILAR TO MULTIPLICATION OF POLYNOMIALS.

(a+b)*(c+d) = ac + ad + bc + bd

O.K. NOW TRY AGAIN.

WHAT IS:

(4+2*i)*(1-2+3*i)

EQUAL TO?

-10+8i

'10'S IT!
MULTIPLY

COMPLEX NUMBERS. LET'S EXPLORE A
FEN OF THEIR PROPERTIES.

NOTE: I WILL USE THE NOTATION

\[e^x \]

TO DENOTE THE NUMBER \(e \) RAISED TO THE
POWERS WHERE \(e \) IS THE NATURAL LOGARITHM
BASE: \(e \approx 2.71828 \ldots \)

CAN YOU ENTER THE REAL PART OF THE
COMPLEX NUMBER:

\[e^{(\pi i)} \]

WHERE \(\pi \) EQUALS THE USUAL 3.14159 \ldots
AND \(i = \sqrt{-1} \).

NO

ARE YOU FAMILIAR WITH COMPLEX
EXPONENTS?

NO

THE FUNDAMENTAL RELATION WE NEED IS

\[e^{(\pi i)} = \cos(\pi) + i \sin(\pi) \]

I'M GOING TO ASK YOU TO ACCEPT THIS AS
A MATHEMATICAL FACT WITHOUT PROOF....
LETS PRACTICE USING IT HOWEVER.

WHAT IS:

\[e^{(\pi i)} \]

EQUAL TO?

STOP

USE THE SAME IDENTIFICATION NEXT TIME
YOU USE THIS PROGRAM.
YOUR IDENTIFICATION WAS ALFRED
COODE
"LET مجله
TAI "Program Name" JAVA.

PLEASE TYPE AN IDENTIFICATION
7 CHARACTERS OR LESS

HAT IDENTIFICATION HAS BEEN USED BEFORE.
AS IT BY YOU?

"YES,

I WILL CONTINUE FROM WHERE YOU LEFT OFF

"I PROGRAMMED TO DISCUSS HARMONIC OSCILLATORS
AND THEIR EQUATIONS OF MOTION", BUT FIRST
I WOULD LIKE TO DISCUSS THE FORCES EXERTED BY
SPRINGS. IF YOU FEEL THAT THIS ISN'T NECESSARY
"GO ON" AND WE WILL PROCEED WITH THE
HARMONIC OSCILLATOR PROGRAM. IF YOU ARE NOT
FAMILIAR WITH SPRINGS JUST PRESS "RETURN".

"GO ON.

A HELICAL SPRING IS A CLASSIC EXAMPLE OF
A PHYSICAL SYSTEM THAT CEES HOOKE'S LAW.
THE FORCE EXERTED BY THE SPRING WHEN
IT IS STRETCHED AN AMOUNT x IS tHE FORCE
PER UNIT STRETCH (THE SPRING CONSTANT),
WITHE AN EQUATION EXPRESSING HOOKE'S LAW:
F = K x.

IF THE SPRING IS STRETCHED TO THE RIGHT,
HE RESTORING FORCE IS TO THE LEFT.
TRY AGAIN
F = - K x.

VERY GOOD, THE MINUS SIGN IS QUITE
IMPORTANT.

\[F = -Kx \]

IF YOU FEEL THAT THIS ISN'T NECESSARY
"GO ON" AND WE WILL PROCEED WITH THE
HARMONIC OSCILLATOR PROGRAM. IF YOU ARE NOT
FAMILIAR WITH SPRINGS JUST PRESS "RETURN".

"GO ON.

A HELICAL SPRING IS A CLASSIC EXAMPLE OF
A PHYSICAL SYSTEM THAT CEES HOOKE'S LAW.
THE FORCE EXERTED BY THE SPRING WHEN
IT IS STRETCHED AN AMOUNT x IS tHE FORCE
PER UNIT STRETCH (THE SPRING CONSTANT),
WITHE AN EQUATION EXPRESSING HOOKE'S LAW:
F = K x.

IF THE SPRING IS STRETCHED TO THE RIGHT,
THE RESTORING FORCE IS TO THE LEFT.
TRY AGAIN
F = - K x.

VERY GOOD, THE MINUS SIGN IS QUITE
IMPORTANT.

\[F = -Kx \]

"DO YOU KNOW THAT EQUATION IS QUITE
GOOD. I'M LOOKING FOR AN EXAMPLE OF
THE LAWS OF MOTION TO OUR PARTICIPANT
PROBLEM. WHAT IS THE EQUATION FOR
F = Mx?

"OK, SOMEONE HAD IT RIGHT.
RIGHT, SO FOR OUR PARTICULAR PROBLEM
WE COULD WRITE F = Mx.

"DO YOU KNOW THE EQUATION EXPRESSED FOR THE
FORCE DUE TO THE SPRING?
WRITE AN EQUATION FOR THE ACCELERATION?

EXCELLENT. I HOPE I'VE BEEN INTERPRETING YOU
CORRECTLY. I'VE BEEN PROGRAMMED TO
RECOGNIZE THAT I'M PROGRAMMED TO
RECOGNIZE THAT".

\[a = \frac{F}{m} \]

AND

\[a = \frac{Mx}{m} \]
Now, the force exerted by a stretched spring could be used to accelerate something. For example, he could imagine one end of the spring clamped to a rigid wall and a mass m attached to the other. Suppose he displaces the mass a distance x to the right, say, and releases it. An equation can be written that allows us to predict the subsequent motion of the mass. Write such an equation.

$$F = ma$$

But that equation is quite general. However, I'm looking for an adaptation of the laws of motion to our particular problem. What is the equation for the force?

$$F = -kx$$

Right.

So for our particular problem he could write $F = -kx$.

But look here: x measures both the change in length of the spring and the displacement of the mass. So for the velocity he could write $v = dx/dt = x$.

Write an equation for the acceleration:

$$a = \frac{dv}{dt} = x$$

Excellent.

I hope I've been interpreting you correctly. I've been programmed to recognize that

$$a = \frac{dx}{dt} = x$$

And

$$a = \frac{dv}{dt} = x$$