This booklet in the "World of the Atom" Series replaces the earlier Books on Atomic Energy for Adults and Children. It includes annotated bibliographies for children (grade level indicated) and adults. Over 60 books are classed as elementary and over 70 as advanced. These are alphabetized by title and also indexed by author. A list of publisher addresses is included along with a brief introduction to library usage. The booklet is illustrated with photographs of nuclear physicists, research installations and some applications of nuclear power. (TS)
Nuclear energy is playing a vital role in the life of every man, woman, and child in the United States today. In the years ahead it will affect increasingly all the peoples of the earth. It is essential that all Americans gain an understanding of this vital force if they are to discharge thoughtfully their responsibilities as citizens and if they are to realize fully the myriad benefits that nuclear energy offers them.

The United States Atomic Energy Commission provides this booklet to help you achieve such understanding.
A Bibliography of Basic Books on Atomic Energy

CONTENTS

INTRODUCTION .. ii
HOW TO OBTAIN INFORMATION IN A LIBRARY 2
ELEMENTARY BOOKS ... 4
ADVANCED BOOKS .. 24
AUTHOR INDEX ... 48
PUBLISHERS .. 54

United States Atomic Energy Commission
Office of Information Services

Library of Congress Catalog Card Number: 79-180874

1971
Introduction

This booklet contains two lists of atomic energy books—elementary and advanced. The elementary list has grade annotations. The lists are not all-inclusive but comprise selected books on atomic energy and closely related subjects.

Those books marked OP (out of print) can in most cases be obtained through libraries.

The books are alphabetized by title, and an author index begins on page 48. A list of publishers' addresses begins on page 54.

This booklet is one of the World of the Atom Series; others are listed on the inside back cover, along with information on how to obtain them. Each of the other booklets contains a list of references specifically related to its subject matter, including books, reports, articles, and motion pictures; the references on the pages that follow do not duplicate those in the other booklets, except for a few titles of a general nature.
The reactor vessel for Unit 2 of the Oconee Nuclear Site begins its journey from Mt. Vernon, Indiana, by water. Once complete, it will generate approximately 880,000 kilowatts.
How to Obtain Information in a Library

Persons seeking information on nuclear energy can find many sources in public or school libraries. The library card catalogue contains an alphabetical list of books filed by author’s last name, title, and subject. Each card will have a call number in one corner. This number is usually derived from the Dewey Decimal System, which classifies books in the following way:

- 000 General Works
- 100 Philosophy
- 200 Religion
- 300 Social Sciences: Sociology
- 400 Linguistics
- 500 Pure Science
- 600 Applied Sciences
- 700 Arts and Recreation
- 800 Literature
- 900 History

Books on nuclear physics would be found in the 530 group, which is the physics classification.

The Subject Guide to Books in Print, revised annually, is a good supplement to the card catalogue. This guide is especially helpful since it uses subheadings. For example, under Atomic Energy one finds subheadings such as Dictionaries, Economic Aspects, History, International Control, etc.

Encyclopedias provide a good starting point in an information search. The Encyclopedia Americana has 8 text pages under Atomic Energy in addition to a glossary, cross references, and bibliography.

The Reader’s Guide to Periodical Literature, issued monthly, lists articles by subject and author from 126 periodicals. (Titles are given only for works of fiction.)

Periodicals such as Science, Scientific American, Science Digest, Popular Science, and Science News are often sources of nuclear energy articles. The first two issue indexes.

Good general guides to information are:

The following bibliographies are also useful:

PHOTO CREDITS

Cover, PerrYGON designed by Charles O. Perry, The Museum of Modern Art, New York; 1, Babcock & Wilcox Company; 5, Stanford University; 6, U. S. Navy; 13, copyright © 1965 by Barbare Lovett Cline, reprinted from her volume The Questioners: Physicists and the Quantum Theory by permission of Thomas Y. Crowell Company, Inc., New York; 14, Institut für Radiumforschung und Kernphysik; 17, Brookhaven National Laboratory; 18, Dr. Erwin W. Mueller, The Pennsylvania State University; 21, Westinghouse Electric Corporation; 22, copyright © The National Geographic Society; 25, Ernest Orlando Lawrence Livermore Laboratory; 26, Southern California Edison Company; 29, Nobel Institute; 30, Ullstein Bilderdiest; 34, Groninger Museum voor stad en Lande; 37, National Rocket Development Station; 38, Brookhaven National Laboratory; 41, General Atomic Division, General Dynamics Corporation; 42, Los Alamos Scientific Laboratory; 45, Brookhaven National Laboratory; 46, Ernest Orlando Lawrence Livermore Laboratory; 49, Martin-Marietta Company; 55, Ernest Orlando Lawrence Livermore Laboratory.
Elementary Books

Explains the most common types of accelerators, the history of their development and the way in which each type contributes to nuclear physics.
Grades 9-12.

Principles and concepts of atomic science are defined. Included are the electrical nature of matter, the discovery of the electron and the nucleus, the meaning of quantum mechanics, wave theory of the atom, the nature of chemical bonding, the uncertainty principle, gas laws and ideal gases, and the geometry of molecules.
Grades 10-12.

A picture book of peaceful applications of atomic energy. Each application is illustrated by one or more photographs and described in a brief paragraph.
Grades 4-8.

Describes the nature and structure of the atom and presents many safe home experiments, such as producing and controlling an electron beam, photographing alpha tracks, observing scintillations, making a reactor model, and constructing a Van de Graaff generator.
Grades 8-12.

The peaceful uses of atomic energy in the U. S. and overseas are described.
Grades 8-12.
view of the 2-mile electron accelerator at Stanford University, California, and the experimental buildings and other facilities for the scientists, engineers, and other workers who study the fundamental nature of matter.
Men of the nuclear powered submarine USS Queenfish and their ship are silhouetted against the midnight sun upon their arrival at the North Pole in August 1970, 12 years after the USS Nautilus, the world's first nuclear ship, became the first submarine to sail under the Arctic ice.

A lavishly illustrated history of nuclear submarines. William Anderson was the captain of the Nautilus, the first atomic submarine. Grades 4-8.

Explains nuclear energy and how it is used. Atomic submarines and surface ships, reactors, nuclear space vehicles, peaceful atomic explosions, and radioisotope use in industry, medicine, and agriculture are described in words and pictures. A glossary is appended. Grades 5-8.

The construction and operation of the NS Savannah are explained in simple language. Good photographs and a glossary are included. Grades 7-11.

A simply written history of nuclear energy with special sections on nuclear power and isotopes. Grades 4-6.

An elementary introduction to nuclear energy principles. Grades 3-6.

Describes applications of atomic energy in agriculture, industry, and medicine. Radioactivity and its control and the effect of bomb tests on the weather are also examined. Grades 7-11.
 A nontechnical presentation of atoms and the laws governing their behavior.
 Grades 7-9.

 The history of a carbon atom from its birth in a star billions of years ago until it becomes part of a human being. Winner of the 1965 Thomas Alva Edison Foundation Annual Children’s Book Award for the Best Children’s Science Book.
 Grades 3-7.

 A history of theoretical physics.
 Grades 9-12.

 A comprehensive and interesting discussion of the elements.
 Grades 8-12.

 Nuclear physics—its history and current uses.
 Grades 7-12.

 This interesting biography includes a brief, but very helpful, pronouncing gazetteer of the German, Swiss, and Dutch names in the text.
 Grades 7-10.

 A well-illustrated history of the chemistry of the elements.
 Grades 9-12.
thermoelectric generator (arrow) for ALSEP instruments and life support systems. (ALSEP is an acronym for 'Apollo Lunar Surface Experiments Package.') The power is generated by the radioactive decay of plutonium-238 in a sealed, long-life process. Astronaut Gordon brought its container before insertion into the lunar module.

How transuranium elements were discovered, their position in the periodic table, and predictions of further discoveries.
Grades 6-9.

A biography of the man who built the first nuclear reactor.
Grades 5-8.

A well-done biography of this famous atomic scientist. Many of the drawings illustrate theoretical ideas very well for the elementary grades. A glossary is included.
Grades 5-7.

A manual of 54 experiments that demonstrate the fundamentals and some of the applications of nuclear energy.
Grades 8-12.

This well-written and well-illustrated book gives directions for conducting experiments and building with ordinary materials an assortment of nuclear devices.
Grades 5-8.

The theory of radioisotopes and how they are used in laboratories, hospitals, and on farms.
Grades 7-10.

Frederic Joliot-Curie: The Man and His Theories. Pierre Biquard. 1966. 192 pp. Eriksson, $5.00 (hardback); Fawcett, $0.60 (paperback).

A brief account of this Nobel Laureate’s contribution to nuclear physics.
Grades 10-12.

The life and accomplishments of a great scientist.
Grades 7-12.

Describes all aspects of this "atomic heart": its structure, motion, radiation, and large-scale application.
Grades 9-12.

A well-written survey of the field.
Grades 7-12.

This sumptuously illustrated history provides an informative explanation of nuclear physics in addition to comprehensive coverage of the bomb’s development and use.
Grades 5-9.

This comprehensive, well-written text explains nuclear energy and its applications.
Grades 7-10.

The technological applications of nuclear energy.
Grades 7-12.

A nuclear reactor provides power for the "atomic energy town" of the title. A good explanation of how and why a nuclear power plant works is followed by descriptions of other peaceful uses of nuclear energy. A glossary, reference list, and a list of projects are appended.
Grades 3-6.
A biography of the woman who first correctly interpreted the fission experiments of Otto Hahn.
Grades 6-9.

Madame Curie: A Biography. Eve Curie. Translated by Vincent Sheean. 1937. 385 pp. Doubleday, $5.95 (hardback); $0.95 (paperback).
This superb biography, which won the 1937 National Book Award for Nonfiction, illustrates dramatically the full spectrum of Marie Curie's life.
Grades 8-12.

Atomic energy history is told through the work of pioneer scientists from Thales to present-day researchers.
Grades 7-9.

An exploration of the structure of matter.
Grades 2-6.

Mr. Tompkins in Paperback. George Gamow. 1967. 186 pp. Cambridge, $4.50 (hardback); $1.95 (paperback).
A reprint of the author's two books, Mr. Tompkins in Wonderland (1940) and Mr. Tompkins Explores the Atom (1944). The text has been enlarged to incorporate new information on nuclear energy.
Grades 8-12.

A substantial and interesting account of neutron physics.
Grades 7-9.

An in-depth description of atomic energy today.
Grades 8-12.

An interesting, clearly written introduction to atomic energy.
Grades 4-6.
 An exciting, suspenseful, and humorous biography of one of the pioneers in atomic energy. Includes a glossary and references.
 Grades 8-12.

 An historical account of the noble gases, which, until 1962, could not be made to combine chemically with each other or with other elements.
 Grades 8-12.

 A nonmathematical textbook written for high school students. The basic science of the nucleus is stressed.
 Grades 10-12.

Our Friend ...c Atom. Heinz Haber. 1957. 165 pp. Golden Press, OP; Dell, $0.35 (paperback).
 Atomic history and theory are presented and dramatically illustrated, using the old fairy tale of the Fisherman and the Genie as an introduction.
 Grades 7-9.

 The birth of atomic energy, early experiments to harness it, its present uses, and its fabulous future.
 Grades 4-6.

 A well-illustrated, nontechnical introduction to atomic energy for high school science students. Includes a useful glossary.
 Grades 9-12.
Concrete, which has been impregnated with the monomer, has greater compressive durability, freeze-thaw resistance, decrease resistance to corrosion by sulfate brine. Labels are placed in an infrared oven for drying.
A field-ion microscope view of atoms in a crystal, which has a diameter of four millionths (0.000004) of an inch. Each tiny white dot is a single atom, and each ring system is a crystal facet or plane.
The Questioners: Physicists and the Quantum Theory. Barbara Lovett Cline. 1965. 274 pp. Crowell, $5.00 (hardback); New American Library, $0.75 (paperback) with the title Men Who Made a New Physics: Physicists and the Quantum Theory.

An exceptionally well-delineated and personable account of the development of the quantum theory by physicists in the first quarter of this century.
Grades 9-12.

Fifty-one experiments for the enrichment of high school courses in biology, chemistry, and physics.
Grades 8-12.

The broad spectrum of radioisotope use is presented—ranging from determining the age of the Dead Sea Scrolls to locating a brain tumor.
Grades 7-10.

A stimulating nonmathematical account of the classic early experiments that advanced knowledge about atomic particles.
Grades 9-12.

Historical survey of nuclear physics beginning with Roentgen's discovery of X rays and concluding with the discoveries of the rare elements.
Grades 10-12.

Andrade was one of Rutherford's assistants at the University of Manchester when he conducted his investigations of radioactivity that won him the Nobel Prize in 1908.
Grades 10-12.

This outstanding history of nuclear research from Roentgen to Fermi is dramatically presented. The uncertainty of the unknown, the accidental discovery and the often lengthy and tedious research are woven into a fascinating tale. The international aspect of science is revealed in this story of scientists from around the world who pooled their knowledge and experience to unlock "the secrets of the mysterious rays".
Grades 4-8.

This introduction to nuclear energy includes science projects and experiments.
Grades 9-12.

A biography of Marie Curie's daughter, who was herself a Nobel-Prize-winning chemist.
Grades 7-10.

The complete story of radioactivity — its history, uses, and potential.
Grades 3-6.

This popular narrative concerns development of the first sustained nuclear chain reaction and of the subsequent developments to use atomic energy in war, research, and industry.
Grades 8-12.

An interesting and well-illustrated account of atomic energy from Democritus through the development of SNAP reactors. Anderson was captain of the first atomic submarine, the Nautilus.
Grades 7-12.
The 16-inch-wide Sacro Catino is in the Cathedral of San Lorenzo in Genoa, Italy. For centuries it was revered as the Holy Grail. X-ray fluorescence analysis indicates that the bowl does not fit the usual formula for Roman glass of Christ's time but is typical of later Islamic ware. During the Crusades it was acquired by Genoese sailors in Palestine and later shattered. Part of it is still missing.

This detailed biography, illustrated with line drawings, historical photographs and papers, is a fine addition to Watts' "Immortals of Science" Series.
Grades 5-8.

Dr. Frisch presents a history of nuclear energy research and provides experiments for the reader. He gives a personal account of the pioneering work in which he and Lise Meitner explained the splitting of uranium and introduced the term "nuclear fission".
Grades 9-12.

An interesting account of the history and present-day uses of this radiation.
Grades 10-12.

This book provides a history of and an introduction to nuclear energy. About half of the text covers current peaceful applications while the other half is devoted to explanations of atomic energy principles and history.
Grades 7-9.
Advanced Books

This well-written, scientifically accurate, and very interesting biography captures the excitement of Lawrence's life. Ernest Lawrence was the inventor of the cyclotron, a major member of the wartime atomic energy development, and the director of the Lawrence Radiation Laboratory.

This text, couched in a question and answer form, provides a simple explanation of nuclear energy and its applications.

Scientific and philosophic concepts concerning the physics, chemistry, and physiology of matter from the beginning of scientific research are presented eloquently.

A popular-level discussion of nuclear structure and the applications of nuclear energy.

A one-volume encyclopedia prepared for nonspecialists. The entries range from simple explanation to treatment in depth.

This source book combines the features of a dictionary and an encyclopedia. It is designed to be of value to the medical and biological professions and as a quick reference work for researchers, teachers, administrators, and students. Its entries vary from concise definitions to journal-length articles.
Ernest O. Lawrence conception.
Enraf holds a model of the cyclotron in 1930, a year after its
The San Onofre Nuclear Generating Station near San Clemente, California, has a net electrical capacity of 430,000 kilowatts and began commercial operation in 1967.
A complete account of the wartime project that developed the first nuclear weapons and of the considerations that prompted their use.

This collection of addresses and articles is a valuable contribution to the philosophy of atomic physics.

A personal narrative of the research that led to the release of atomic energy on a useful scale by a scientist who played a principal part in the atomic bomb project during World War II.

A comprehensive history of the development of atomic energy in the United States from the transfer of the government's atomic energy program to the AEC on January 1, 1947, until the end of 1952.

This book, which can be understood by anyone who has had a high school physics course, presents atomic theory development from Dalton through Bohr. It achieves a good balance between popular treatments and highly technical works without slighting the technical aspects.

A nontechnical introduction to atomic energy applications, including nuclear power and radioisotope use.

Atoms in the Family: My Life with Enrico Fermi. Laura Fermi. 1954. 267 pp. Chicago, $5.00 (hardback); $2.45 (paperback).
Laura Fermi writes about her husband, Enrico Fermi, the physicist who led the group that built the first nuclear reactor.

An account of Newton's formulation of classical physics that includes the historical events leading to this master stroke.

These interesting letters reveal the scientific and personal lives of these two atomic scientists.

Seven physics immortals—Archimedes, Galileo, Pascal, Newton, Huygens, Von Helmholtz, and Einstein—tell the stories of their discoveries.

A popular-level, well-illustrated book describing Camp Century, a scientific research station directed toward opening the polar regions for human use. This army base, constructed under the ice 800 miles from the North Pole, used a nuclear reactor to provide power, heat, and light.

This excellent collection of essays, book reviews, and profiles originally appeared in The New Yorker. Several of the outstanding ones include “A Question of Parity: T. D. Lee and C. N. Yang”, “I am this Whole World: Erwin Schrödinger”, and “Einstein and Bohr: A Debate”.

This discussion of the development of 20th century physics is designed for both scientists and laymen who are interested in modern physics as a chapter in the history of human thought. Mathematics is kept to a minimum.

This dictionary of terms also contains brief biographies of important research scientists in this field and descriptions of organizations that sponsor atomic research.
Max Born.
These definitions and explanations, given in nontechnical language as much as possible, form an admirable guide to terms used in nuclear science.

A collection of essays and reminiscences concerning Compton's life and work.

This semitechnical book describes the experimental and conceptual developments that led to the discovery of the electron.

This book, which describes the role of the government in science education and information, was one of the Atomic Energy Commission presentation volumes at the 1964 Geneva Conference.

A brilliant biography that reveals the richness of Einstein's life and work and the tremendous impact he made upon physics.

These researches won for Millikan the Nobel Prize for Physics in 1923. An introduction by an associate of the author puts the discoveries in perspective.

An account of the basic properties of particles and the experimental techniques used to study them.

Dr. Yang was a co-winner of the Nobel Prize along with Dr. Tsung-Dao Lee for suggesting the experiments that led to the downfall of the conservation of parity principle. Here he provides a general outline for laymen of the history of elementary particle research during the last 60 years.

This biography tells of Enrico Fermi's intellectual history, achievements, and his scientific style. The scientific problems faced or solved by Fermi are explained in layman's terms. Emilio Segrè was a friend and scientific collaborator of Fermi's for many years.

Traces the steps from the mechanical view of the universe held by the classical physicists through subsequent developments that led to quantum mechanics.

A well-illustrated and interesting account of desalination today with a section on nuclear energy applications.

A popular-level, well-written study of genetics and the effects of radiation.

The German nuclear research program during the Second World War.

An explanation of the structure of the atom and the amazing discoveries in recent years about its nucleus.
This painting, originally believed to be the work of the Dutch artist Frans Hals (1580–1666), is a fake. Measurements of the naturally radioactive isotopes, polonium-210 and radium-226, in lead white from the paint proved that it was no more than 50 years old.

This textbook was written for college humanities students.

Isotope use in industry, science, medicine, and agriculture is discussed in nontechnical language.

A short biography of one of the major figures in 19th century chemistry. Berzelius discovered new elements and determined the weights of 43 of the then 49 known elements. He contributed evidence in support of Dalton's hypothesis of the atom.

This biography, written by J. J. Thomson's son, describes his research at the famed Cavendish Laboratory in Cambridge, England.

A biography for the general reader and the high school science student. Dalton is famous for his development of chemical combinations based on atomic theory. This provided the basis for modern structural theories of chemistry.

The drama of Dalton's life—his rigorous self-teaching, scientific work, and struggle to overcome class barriers in 19th century England—are well presented. Quotations from letters, diaries, and published works give a clear picture of Dalton's atomic theory research and his time.

Provides a spectrum of the present and future uses of nuclear energy that can create a better world with cleaner cities, more productive agriculture, desalted seawater, etc.
Manhattan Project: The Untold Story of the Making of the Atomic Bomb. Stephane Groueff. 1967. 372 pp. Little, $7.95 (hardback); Bantam, $1.25 (paperback).

A very complete account of all branches of the wartime Manhattan Project, which culminated in the construction of the first atomic bomb.

Man-made Transuranium Elements. Glenn T. Seaborg. 1963. 120 pp. Prentice-Hall, $6.95 (hardback); $2.95 (paperback).

The discovery, properties, and applications of elements heavier than uranium are considered in this book, which is designed as an introduction to the subject. Seaborg was co-discoverer of 9 of the 12 transuranium elements.

These essays on physics, which include the author's Nobel Prize speech, were written by one of the pioneers in quantum mechanics.

A history of atomic pioneers and their work. American wartime development of the nuclear weapon and subsequent accomplishments of the peaceful atom are also discussed.

One of the original members of the AEC, later its Chairman, recalls his experiences in a lifetime of public service.

A nontechnical history of atomic energy.

The achievements of the Manhattan Project, the formulation of national and international policy on atomic energy, and the legislative origins of the AEC.
Model of a nuclear rocket engine, producing 11-14 tons of thrust and approximately...
one that will produce 60,000 megawatts of power.
The tank of this solar neutrino detector, located 4850 feet underground in the Homestake Gold Mine at Lead, South Dakota, contains 100,000 gallons of perchloroethylene.
The Neutrino: Ghost Particle of the Atom, Isaac Asimov, 1966. 223 pp. Doubleday, $5.50 (hardback); Dell, $1.95 (paperback).

The author traces a century-long chain of events that proved, to the surprise of scientists, that a strange little particle called the neutrino actually exists and is produced in astronomical numbers inside the sun and other stars.

Newnes Concise Encyclopaedia of Nuclear Energy, D. F. Barnes et al., advisory editors. 1962. 886 pp. Wiley, OP.

This encyclopedia is designed to be of use to both scientists and others. In addition to the nuclear items, entries are included from other technical fields with which nuclear energy is interrelated.

An articulate and scholarly biography by the friends and co-workers of this outstanding atomic pioneer.

An interesting biography of one of the pioneers in the study of the internal structure of the atom.

The history of the wartime atomic energy effort as told by its director.

These papers, taken from a conference at the University of Minnesota, concern the scientific, social, and political issues involved in the use of nuclear power plants and their impact on man and his environment.

This book, which surveys the U. S. progress in the development of peaceful uses of atomic power, was one of the Atomic Energy Commission presentation volumes at the 1964 Geneva Conference.

This source book was prepared for commercial shippers, port authorities, regulation officials, construction and design engineers, writers and other interested persons. A substantial portion of the book is devoted to discussions of the NS Savannah, the first commercial nuclear ship, which is no longer in service.

This book, which describes the scope and pace of nuclear research, was one of the Atomic Energy Commission presentation volumes at the 1964 Geneva Conference.

A nontechnical story about the city where enriched uranium was produced for the first nuclear weapons: selection of the site, construction of the facilities, and community life.

Robert Oppenheimer's work as a scientist, teacher, and public servant is told in the personal recollections of his colleagues and friends.

Autobiography of the man who discovered that the atom could be split.

Otto Hahn, winner of the 1944 Nobel Prize for his work in atomic fission, reviews the pioneer days in which a new science was created, and the role he played in its development.

Out of My Later Years. Albert Einstein. 1950. 276 pp. Greenwood, $11.00 (hardback); Littlefield, $1.95 (paperback).

A collection of essays ranging over such topics as "Convictions and Beliefs", "Science and Life", and "Public Affairs".
A pulsing reactor emits a bright blue flash at the instant of intense radiation.
Enormous machines and complex equipment, such as the Scyllac machine shown above, are required for nuclear fusion research.

Werner Heisenberg, a Nobel Prize physicist, presents his autobiography in the form of conversations with such men as Max Planck, Albert Einstein, Niels Bohr, Ernest Rutherford, Otto Hahn, and Enrico Fermi.

An account of the program in controlled nuclear reactions carried out by the AEC during the period 1951–1958.

Introduces the student or layman to the principles of atomic physics and biology and their interplay, with emphasis on the impact of radiation on human and animal life.

A careful popular-level discussion on the genetic effects of radiation.

This book, which surveys the major advances in the use of radioisotopes and radiation in medicine, agriculture, and industry, was one of the Atomic Energy Commission presentation volumes at the 1964 Geneva Conference.

Relativity for the Million. Martin Gardner. 1962. 182 pp. Macmillan, $6.95 (hardback); Pocket Books, $0.95 (paperback).

A popular introduction to a complex subject. Includes a glossary and supplemental references.

A readable encyclopedic record that surveys the field from Roentgen’s time to the present.

An excellent reference work, written for both scientists and the general public.

A complex subject is presented in a clear and fascinating way in this beautifully written book. Philosophical as well as scientific implications of quantum mechanics are discussed. A glossary and a well-annotated reference list are included.

Oppenheimer's complex personality is delineated in this well-written biography. In the bibliography is a list of books that Oppenheimer felt "had done the most to shape his vocational attitude and philosophy of life".

The development of the quantum theory presented in nontechnical language.

This book, based on lectures delivered by the author at Yale in 1957, covers the plutonium story, chemical properties of the actinide elements, nuclear properties of the transuranium elements, and future synthetic elements.

Understanding Physics. 3 volumes. Isaac Asimov. 1966. 768 pp. Walker, $6.95 each (hardback); New American Library, $0.95 each (paperback).

Surveys the development and growth of the physical sciences in terms that the general reader can grasp. Volume I deals with motion, sound, and heat; Volume II with light, magnetism, and electricity; Volume III with the electron, proton, and neutron.
The striking effect of radiation in preserving foods is demonstrated above. The bottom potato was exposed to 20,000 rads of gamma radiation; the top one was not treated. Both were stored for 16 months and then this picture was taken. The irradiated potato was still firm, fresh-looking, edible, and had no sprouts.
The first pure californium, magnified about 70 times, was isolated in 1960. The crystals are lodged in a capillary tube. Californium is one of the transuranium elements.

The progress of physics from the Greek philosophers through classical physicists to Einstein, dealing with the tools of physics, methods of discovery, electricity, magnetism, light, general relativity, the puzzle of time, the birth of galaxies and planets, radioactivity, energy quanta, lasers, and many other subjects.

A brief and simple presentation of this field.

Contains the actual text of landmark documents in the history of atomic physics, each preceded by commentary that places it in the context of the discoverer's personal life and in the conditions prevailing in science and in society in his time.

This presentation elucidates the new theory of the universe based on atom-smashing experiments that reveal symmetry in the production of particles and antiparticles. This new cosmology is based on the complete symmetry between matter and antimatter.
Author Index

ADLER, Irving
Inside the Nucleus, 32

ADLER, Irving and Ruth
Atoms and Molecules, 7

ALFVÉN, Hannes
Worlds-Antiworl ds: Antimatter in Cosmology, 47

AMALDI, Genestra
The Nature of Matter: Physical Theory from Thales to Fermi, 36

ANDERSON, David L.
The Discovery of the Electron: The Development of the Atomic Concept of Electricity, 31

ANDERSON, Oscar E. Jr.
(see Hewlett)

ANDERSON, William R., James Baar, and William E. Howard
Atomic Submarines, 7

ANDERSON, William R., and Vernon Pitzer
The Useful Atom, 20

AIDRADE, Edward N. da C.
Rutherford and the Nature of the Atom, 19

ASIMOY, Isaac
Building Blocks of the Universe, 8
Inside the Atom, 12
The Neutrino: Ghost Particle of the Atom, 39
The Noble Gases, 16
Understanding Physics, 44

AUERBACH, Charlotte
Genetics in the Atomic Age, 32

BAAK, James
(see Anderson, William R.)

Newnes Concise Encyclopaedia of Nuclear Energy, 39

BEELER, Nelson F., and Franklyn M. Branley
Experiments with Atomics, 11

BENTINCK, Henry
Anyone Can Understand the Atom, 24

BERGER, Melvin
Atoms, 7

BERNSTEIN, Jeremy
A Comprehensible World: On Modern Science and Its Origins, 28

BQUARD, Pierre
Frederic Joliot-Curie: The Man and His Theories, 11

BISHOP, Amasa S.
Project Sherwood: The U. S. Program in Controlled Fusion, 43

BLOW, Michael
The History of the Atomic Bomb, 12

BOHR, Niels
Atomic Physics and Human Knowledge, 27

BOORSE, Henry A., and Lloyd Motz
The World of the Atom, 47

BRANLEY, Franklyn M.
(see Beeler)

BRONOWSKI, Jacob, and Millicent E. Selsam
Biography of an Atom, 8

CHASE, Grafton D., Stephen Rituper, and John W. Sulcoski
Experiments in Nuclear Science, 11

CHILDs, Herbert
An American Genius: The Life of Ernest Orlando Lawrence, 24

CLINE, Barbara Lovett
The Questioners: Physicists and Quantum Theory, 19

COHEN, Bernard L.
The Heart of the Atom: The Structure of the Atomic Nucleus, 12
Above is the first nuclear-powered weather buoy. Located in the center of the Gulf of Mexico, this weather station, which is part of the U.S. Navy's NOMAD system, is on a barge 10 feet x 20 feet, and is anchored in 12,000 feet of water. (NOMAD is an acronym for Navy Oceanographic Meteorological Automatic Device.)

COHEN, I. Bernard
The Birth of the New Physics, 28

COLBY, C. B.
The Atom at Work: How Nuclear Power Can Benefit Man, 4

COMPTON, Arthur H.
Atomic Quest, 27

CORLISS, William R.
(see Seaborg)

CRAWFORD, Deborah
Lise Meitner, Atomic Pioneer, 15

CREWE, Albert V., and Joseph J. Katz
Nuclear Research: Knowledge for the Future, 40
CURIE, Eve
Madame Curie: A Biography, 15

DAUGHERTY, Charles Michael
City Under the Ice: The Story of Camp Century, 28

DAVIS, George E.
Radiation and Life, 43

DE BROGLIE, Louis Victor
Matter and Light: The New Physics, 36

DEL VECCHIO, Alfred
Concise Dictionary of Atomics, 28

DEBNER, Bern
Wilhelm Rontgen and the Discovery of X Rays, 23

DOBZHANSKY, Theodosius
(see Wallace)

DIBNER, Bernard
Wilhelm Rontgen and the Discovery of X Rays, 23

DOMANICS, Theodosius
(see Wallace)

DOMANICS, Theodosius
(see Wallace)

DUNCAN, Francis
(see Hewlitt)

EINSTEIN, Albert
Out of My Later Years, 40

EINSTEIN, Albert
The Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta, 32

ESTERER, Arnulf K.
Discoverer of X Rays: Wilhelm Conrad Roentgen, 8

ETTER, Lewis E.
The Science of Ionizing Radiation, 43

FABER, Doris
Enrico Fermi: Atomic Pioneer, 11

FERMI, Laura
Atoms in the Family: My Life with Enrico Fermi, 27

FORD, Kenneth W.
The World of Elementary Particles, 47

FOREMAN, Harry
Nuclear Power and the Public, 39

FRANK, Philipp
Einstein: His Life and Times, 31

FRID, David H., and Alan M.
The Annikie

FRISCH, Otto R.
Working with Atoms, 23

GAINES, Matthew
Atomic Energy, 4

GAMOW, George
The Atom and Its Nucleus, 24
Biography of Physics, 8
Mr. Tompkins in Paperback, 15
Thirty Years That Shook Physics: The Story of Quantum Theory, 44

GARDNER, Martin
Relativity for the Million, 43

GLASSTONE, Samuel
Sourcebook on Atomic Energy, 44

GOODFIELD, June
(see Toulmin)

GREENAWAY, Frank
John Dalton and the Atom, 35

GREY, Vivian
The Invisible Giants: Atoms, Nuclei, and Radioisotopes, 12
Secret of the Mysterious Rays: The Discovery of Nuclear Energy, 20

GROUEFF, Stephane
Manhattan Project: The Untold Story of the Making of the Atomic Bomb, 36

GROVES, Leslie R.
Now It Can Be Told: The Story of the Manhattan Project, 39

GUILLEM, Victor
The Story of Quantum Mechanics, 44

HABER, Heinz
Our Friend the Atom, 16

HAIN, Otto
Otto Hahn: A Scientific Autobiography, 40

Otto Hahn: My Life, 40
HALACY, Daniel S.
X Rays and Gamma Rays, 23

HARPER, Dorothy
Isotopes in Action, 35

HECKMAN, H. H., and P. W. Starring
Nuclear Physics and the Fundamental Particles, 16

HEISENBERG, Werner
Physics and Beyond: Encounters and Conversations, 45

HELLMAN, Hal
High Energy Physics, 12

HERMIAS, Sister Mary, and Sister Mary Joecile
Radioactivity: Fundamentals and Experiments, 19

HEWLETT, Richard G., and Francis Duncan

HEWLETT, Richard G., and Oscar E. Anderson, Jr.

HOGERTON, John F.
The Atomic Energy Deskbook, 24 (see Zinr.)

HOWARD, William E.
(see Anderson, William R.)

HUGHES, Donald J.
The Neutron Story, 15

HYDE, Margaret O.
Atoms Today and Tomorrow, 7

INFELD, Leopold
(see Einstein)

IRVING, David
The German Atomic Bomb: The History of Nuclear Research in Nazi Germany, 32

JAWORSKI, Irene D., and Alexander Joseph
Atomic Energy: The Story of Nuclear Science, 4

JOECILE, Sister Mary
(see Hermias)

JOHNSTON, Marjorie
The Cosmos of Arthur Holly Compton, 31

JOPES, R. E.
Jacob Berzelius: His Life and Work, 35

JOSEPH, Alexander
(see Jaworski)

KATZ, Joseph J.
(see Crewe)

KELMAN, Peter, and A. Harris Stone
Ernest Rutherford: Architect of the Atom, 11

KOGAN, Philip
The Cosmic Power: Foundations of Nuclear Physics, 8

KOHN, Bernice
The Peaceful Atom, 16

KRAMER, A. W.
Nuclear Propulsion for Merchant Ships, 40

LAPP, Ralph E.
Roads to Discovery, 19

LARSEN, Egon
Atoms and Atomic Energy, 7

LAWRENCE, John H., Bernard Manowitz and Benjamin S. Loeb
Radioisotopes and Radiation: Recent Advances in Medicine, Agriculture, and Industry, 43

LAWRENCE, William
Men and Atoms, 36

LEVINGER, Joseph S.
Secrets of the Nucleus, 20

LITTAUER, Raphael
(see Wilson)

LLORDET, Antonio
(see Musset)
LOEB, Benjamin S.
(see Lawrence, John H.)

McCUE, John J. G.
An Introduction to Physical Science: The World of Atoms, 35

McKOWN, Robin
She Lived for Science: Irene Joliot-Curie, 20
The Fabulous Isotopes: What They Are and What They Do, 11
Giant of the Atom: Ernest Rutherford, 12

MANN, Martin
Peacetime Uses of Atomic Energy, 16

MANOWITZ, Bernard
(see Lawrence, John H.)

MASSEY, Harrie S. W., and Arthur R. Quinton
Basic Laws of Matter, 8

MAWSON, Colin A.
The Story of Radioactivity, 20

MICHELMORE, Peter
The Swift Years: The Robert Oppenheimer Story, 44

MILLIKAN, Robert Andrews
The Electron: Its Isolation and Measurement and the Determination of Some of Its Properties, 31

MOORE, Ruth
Niels Bohr: His Science, and the World They Changed, 39

MOTZ, Lloyd
(see Boorse)

MUSSET, Paul, and Antonio Lloret
Concise Encyclopedia of the Atom, 31

NOURSE, Dr. Alan E.
Universe, Earth and Atom: The Story of Physics, 47

PAIS, Abraham
(see Serber)

PATTERSON, Elizabeth C.
John Dalton and the Atomic Theory: The Biography of a Natural Philosopher, 35

PITTMAN, Frank K.
(see Zinn)

PIZER, Vernon
(see Anderson, William R.)

FOLKING, Kirk
Let's Go to an Atomic Energy Town, 12

POTTER, Robert D., and Robert C.
Young People's Book of Atomic Energy, 23

QUINTON, Arthur R.
(see Massey)

RADI LAUER, Edward and Ruth S.
Atoms Afloat: The Nuclear Ship Savannah, 7

RITUPER, Stephen
(see Chase)

ROBINSON, George O., Jr.
The Oak Ridge Story, 40

ROMER, Alfred
The Restless Atom, 19

ROSS, Frank Jr.
Superpower: The Story of Atomic Energy, 20

ROZENTAL, S.
Niels Bohr: His Life and Work as Seen by His Friends and Colleagues, 39

SCHONLAND, Basil
The Atomists, 27

SEABORG, Glenn T.
Man-made Transuranium Elements, 36
The Transuranium Elements, 44
(see Serber)

SEABORG, Glenn T., and William R. Corliss
Man and Atom: Shaping a New World Through Nuclear Technology, 35

SEABORG, Glenn T., and Daniel M. Wilkes
Education and the Atom, 31

SEABORG, Glenn T., and Evans G. Valens
Elements of the Universe, 11
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEGRE, Emilio</td>
<td>Enrico Fermi, Physicist, 32</td>
</tr>
<tr>
<td>SELSAM, Millicent E.</td>
<td>(see Bronowski)</td>
</tr>
<tr>
<td>SERBER, Robert, Victor F.</td>
<td>Weisskopf, Abraham Pais, and Glenn T. Seaborg</td>
</tr>
<tr>
<td>SHILLING, Charles W.</td>
<td>Atomic Energy Encyclopedia in the Life Sciences, 2, 27</td>
</tr>
<tr>
<td>SILVERBERG, Robert</td>
<td>Men Who Mastered the Atom, 15</td>
</tr>
<tr>
<td>Slater, John C.</td>
<td>Concepts and Development of Quantum Mechanics, 28</td>
</tr>
<tr>
<td>SMITH, E. Sheldon</td>
<td>The Atom and Beyond: A New Introduction to Modern Physical Science, 4</td>
</tr>
<tr>
<td>SMYTH, Henry D.</td>
<td>Atomic Energy for Military Purposes, 27</td>
</tr>
<tr>
<td>STARRING, P. W.</td>
<td>(see Beckman)</td>
</tr>
<tr>
<td>STOKLEY, James</td>
<td>The New World of the Atom, 15</td>
</tr>
<tr>
<td>STONE, A. Harris</td>
<td>(see Kelman)</td>
</tr>
<tr>
<td>STRAUSS, Lewis L.</td>
<td>Men and Decisions, 36</td>
</tr>
<tr>
<td>SULCOSKI, John W.</td>
<td>(see Chase)</td>
</tr>
<tr>
<td>THOMSON, George</td>
<td>J. J. Thomson: Discoverer of the Electron, 35</td>
</tr>
<tr>
<td>THORNDIKE, Alan M.</td>
<td>(see Frisch, David H.)</td>
</tr>
<tr>
<td>TOULMIN, Stephen, and June Goodfield</td>
<td>The Architecture of Matter, 24</td>
</tr>
<tr>
<td>VALENS, Evans G.</td>
<td>(see Seaborg)</td>
</tr>
<tr>
<td>VICTOK, Edward</td>
<td>Molecules and Atoms, 15</td>
</tr>
<tr>
<td>WALLACE, Bruce, and Theodosius Dobzhansky</td>
<td>Radiation, Genes, and Man, 43</td>
</tr>
<tr>
<td>WEEKS, Mary E.</td>
<td>Discovery of the Elements, 8</td>
</tr>
<tr>
<td>WEISSKOPF, Victor F.</td>
<td>(see Serber)</td>
</tr>
<tr>
<td>WILKES, Daniel M.</td>
<td>(see Seaborg)</td>
</tr>
<tr>
<td>WILSON, Robert R., and Raphael Littauer</td>
<td>Accelerators: Machines of Nuclear Physics, 4</td>
</tr>
<tr>
<td>WOLFF, Peter</td>
<td>Breakthroughs in Physics, 28</td>
</tr>
<tr>
<td>WOODBURN, John H.</td>
<td>Radioisotopes, 19</td>
</tr>
<tr>
<td>WOODBURY, David O.</td>
<td>Atoms for Peace, 27</td>
</tr>
<tr>
<td>Fresh Water from Salty Seas, 32</td>
<td>The New World of the Atom, 15</td>
</tr>
<tr>
<td>YANG, Chen Ning</td>
<td>Elementary Particles: A Short History of Some Discoveries in Atomic Physics, 32</td>
</tr>
</tbody>
</table>
Publishers

AAAS
American Association for the Advancement of Science
1515 Massachusetts Avenue N.W.
Washington, D.C. 20005

ABELARD-SCHUMAN
Abelard-Schuman, Ltd.
257 Park Avenue South
New York, N.Y. 10010

ADDISON-WESLEY
Addison-Wesley Publishing Company Inc.
Reading, Massachusetts 01867

ALA
American Library Association
50 East Huron Street
Chicago, Illinois 60611

AMERICAN HERITAGE
American Heritage Publishing Company, Inc.
551 Fifth Avenue
New York, N.Y. 10017

ATHENEUM
Atheneum Publishers
122 East 42nd Street
New York, N.Y. 10017

BANTAM
Bantam Books, Inc.
666 Fifth Avenue
New York, N.Y. 10019

BARRON'S
Barron's Educational Series, Inc.
113 Crossways Park Drive
Woodbury, N.Y. 11797

BASIC BOOKS
Basic Books, Inc., Publishers
404 Park Avenue South
New York, N.Y. 10016

BLAISDELL
Ginn/Blaisdell
A Xerox Company
275 Wyman Street
Waltham, Massachusetts 02154

BURGESS
Burgess Publishing Company
426 South 6th Street
Minneapolis, Minnesota 55415

CALIFORNIA
University of California Press
2223 Fulton Street
Berkeley, California 94720

CAMBRIDGE
Cambridge University Press
32 East 57th Street
New York, N.Y. 10022

CHEMICAL EDUCATION
Chemical Education Publishing Company
20th and Northampton Streets
Easton, Pennsylvania 18042

CHICAGO
University of Chicago Press
5750 Ellis Avenue
Chicago, Illinois 60637

CHILDRENS PRESS
Childrens Press
1224 West Van Buren Street
Chicago, Illinois 60607

CORNELL
Cornell University Press
124 Roberts Place
Ithaca, New York 14850

COWARD-McCANN
Coward-McCann, Inc.
200 Madison Avenue
New York, N.Y. 10016

CROWELL
Crowell Collier and Macmillan, Inc.
866 Third Avenue
New York, N.Y. 10022

CROWN
Crown Publishers, Inc.
419 Park Avenue South
New York, N.Y. 10016
This "hall of mirrors" helps physicists photograph tracks of nuclear particles passing through spark chambers. The dotted lines in the mirrors are particle tracks. Analysis of these tracks enables scientists to gather new information on the behavior and structure of matter.
DAY
The John Day Company, Inc.
257 Park Avenue South
New York, N. Y. 10010

DELACORTE
The Delacorte Press
750 Third Avenue
New York, N. Y. 10017

DELL
Dell Publishing Company, Inc.
750 Third Avenue
New York, N. Y. 10017

DOBLERDAY
Doubleday and Company, Inc.
277 Park Avenue
New York, N. Y. 10017

DOVER
Dover Publications, Inc.
180 Varick Street
New York, N. Y. 10014

DUTTON
E. P. Dutton and Company, Inc.
201 Park Avenue South
New York, N. Y. 10003

ERIKSSON
Paul S. Eriksson, Inc.
119 West 57th Street
New York, N. Y. 10019

FAWCETT
Fawcett World Library
67 West 44th Street
New York, N. Y. 10036

FOLLETT
Follett Publishing Company
201 North Wells Street
Chicago, Illinois 60606

FREEMAN
W. H. Freeman and Company,
Publishers
660 Market Street
San Francisco, California 94104

GEBN
Ginn and Company
Statler Building
Back Bay P. O. 191
Boston, Massachusetts 02117

GOLDEN PRESS
Golden Press, Inc.
850 Third Avenue
New York, N. Y. 10022

GPO
Superintendent of Documents
U. S. Government Printing Office
Washington, D. C. 20402

GREENWOOD
Greenwood Press, Inc.
51 Riverside Avenue
Westport, Connecticut 06880

GROSSET
Grosset and Dunlap, Inc.
51 Madison Avenue
New York, N. Y. 10010

HALE
E. M. Hale and Company
1201 South Hastings Way
Eau Claire, Wisconsin 54701

HARCOURT
Harcourt Brace Jovanovich, Inc.
757 Third Avenue
New York, N. Y. 10017

HARPER
Harper and Row, Publishers
49 East 33rd Street
New York, N. Y. 10016

HERALD
Herald Books
P. O. Box 63T
Bronxville, New York 10708

HERDER
Herder and Herder, Inc.
232 Madison Avenue
New York, N. Y. 10016

HOLIDAY
Holiday House, Inc.
18 East 56th Street
New York, N. Y. 10022
The World of the Atom Series of educational booklets explains many aspects of nuclear technology and research. These booklets are listed below by subject category.

<table>
<thead>
<tr>
<th>General Interest</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS-009 Atomic Energy and Your World</td>
<td>WAS-401 Accelerators</td>
</tr>
<tr>
<td>WAS-002 A Bibliography of Basic Books on Atomic Energy</td>
<td>WAS-403 Controlled Nuclear Fusion</td>
</tr>
<tr>
<td>WAS-004 Computers</td>
<td>WAS-404 Direct Conversion of Energy</td>
</tr>
<tr>
<td>WAS-006 Nuclear Terms, A Glossary</td>
<td>WAS-406 Lasers</td>
</tr>
<tr>
<td></td>
<td>WAS-407 Microstructure of Matter</td>
</tr>
<tr>
<td></td>
<td>WAS-411 Power from Radioisotopes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Environment</th>
<th>Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS-414 Nature's Invisible Rays</td>
<td>WAS-302 Cryogenics, The Uncommon Cold</td>
</tr>
<tr>
<td>WAS-204 Nuclear Power and the Environment</td>
<td>WAS-306 Radioisotopes in Industry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuclear Reactors</th>
<th>Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS-502 Atomic Power Safety</td>
<td>WAS-102 Atoms in Agriculture</td>
</tr>
<tr>
<td>WAS-513 Breeder Reactors</td>
<td>WAS-105 The Genetic Effects of Radiation</td>
</tr>
<tr>
<td>WAS-503 The First Reactor</td>
<td>WAS-107 Radioisotopes in Medicine</td>
</tr>
<tr>
<td>WAS-505 Nuclear Power Plants</td>
<td>WAS-109 Your Body and Radiation</td>
</tr>
<tr>
<td>WAS-507 Nuclear Reactors</td>
<td></td>
</tr>
<tr>
<td>WAS-508 Radioactive Wastes</td>
<td></td>
</tr>
</tbody>
</table>

Librarians may obtain free a complete set of the booklets. Teachers may obtain free those categories of booklets most applicable to the courses they teach. These requests should be made on school or library stationery. All others may generally obtain free, single copies of six titles of their choice. Those wishing to obtain larger quantities may purchase them if stocks are available. Orders for booklets and inquiries on prices and availability should be directed to:

USAEC—Technical Information Center, P. O. Box 62, Oak Ridge, TN 37830

Comments are invited regarding this booklet and others in the series.