
EDJ)57 829

AUTHOR
TITLE
INSTITUTION

\SPONS AGENCY

REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

.LI 003 326

Hurlburt,, Cha leS E.; And Others
The/Intrex Re rieval System Softwa e.
Massachusetts Inst. of Tech., Cambridge. Electronic
Systems Lab.:
Council on Library Resources, inc., Washington, D

National Science Foundation, Washington, D.C.
ESL-R-_458;
15 Sep 71
633p.; (16 References)

MF-$0.65 HC-$23.03
*Computer PrograMs; *Computers; Data Bases;
Systems; *Programing; Programing Languages
Computer Software; ,*Project Intrex

n Line

The report describes the general structure of the
Intrex Retrieval Systems and each of the component subroutines. The
report is not an introduction to Intrex. In addition to a general
description, the report covers the following topics: (1) system

architecture, (2) softWare details (3) command control logic, (4)

list manipulation logic, (5) Intre; utilities, (6) CTSS utilities.

E

/7) data base generation, (8) supporting soft are and (9) Intrex
beyond 1971. The appendices are: (A) summary f Common References,
(3) Data Base Formats, (C) The Intrex Environ ent, (D) Message Text
(E) Subroutine Linkages (calred by), (F) Subroutine Linr.--Tes (calls),
(G) Glossarysof Intrex Terms, (H) Data Base Generation Procedure and

(I) Index to SubroAines in Chapter III. (mml



September 15, 1971 Repor ESL-R-458
4J.S. DEPARTMENT OF HEALTH.

EDUCATION &WELFARE

THE

OFFICE OF EDLICAPON
THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY As RECEIVED FROM -
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

TREk RETRIEVAL SYSTEM SOFTWARE

- by

Charles E. Hurlburt
Michael K. Molnar

and
h rles W. Therrien

The research reporte&herein was made possible through the support-
extended.the IVIassaOusetts Institute- of'TeChnology, Project Intrex at
the Electronic Systeths Laboratory under a research grant from the
Council on Library Re:3ources, Inc., designated as M. I. T. DSR Pro-
ject Number 27808 and through Grant GN774 f.rom the NationalScience
Foundation as M".1.. T. DSR Project Nuzphr 71144.

Electronic Systems Laboratory
Department of' Electrical Engineering

f Massachusetts Institute of Technology
Cambridge, Massachusetts, 02139

1



ABSTRACT

ThiS report desCribes the software of the Intrex Retrieval System.
The intent'of the report is both to expose the general structure of the
System and to describe in detail each of the component subroutines. The
report is not intended to be an introduction to Intrex.

iLl
2



ACKNOWLEDGMENT

The authors wish to express their gratitude to Messrs.R.S. Marcus
and P.Kugel for their critical review and contributions. Thanks are also
due to the publications and drafting staff of the Electronic Systems Labora-
tory and especially, to Miss Catherine Griffin who did the major part of the
typing. Finally it should be noted that the design of the Intrex Retrieval
System software is a product of many Intrex staff members, past and pre-
sent, not necessarily reflected in the authorship of this report. Those who
led the design effort were Messrs. Marcus and Kugel and Mr. R. L. Kusik,
who in addition, was responsible for much of the prograrn,implementation
before his departure frcm the project.- Any documentation of the software
would be incomplete without acknowledgment of their contributions.

lv



I.

TABLE OF CONTENTS

INTRODUCTION
1.1 General Description

1 1.1 The Augmented Catalog
1. 1.2 Free Vocabulary In-Depth Indexing
1.1.3 Stemmed Terms in an Inverted File
1.1.4 Instructional and Monitoring Facilities

1.2 Programming Techniques and Strategies
1.3 Contents of the Report

IL SYSTEM ARCHITECTURE
2.1 Overview of Software

2.1.1 Initialization
2.1. 2 Command Interpretation
2 1.3 Inverted File Search
2.1.4 Catalog Output

2.2 Examples of Command Processing
2 3 Common Structure and Variables
2.4 Data Base Strticture

2.4.1 '" Cataloi Files
2.4.2 Inverted Files
2.4.3 Reference LIst Pointers
2.4.f Fiche Direct

2.5 Overlay System
IIL SOFTWARE DETAILS*

3.1 System Control Logic
3.1.1 Supervision
3.1.2 Fixed Parameter and Data Base Initialization
3.1.3 Ses s ion Initialization
3.1.4 .Logging
3.1.5 Time Controls

Page 1

1

4

4

7.

7

9

11

11

12

15

18

20r/

21

25

26

28

32

34

3,4

35

38

40
40
42

65'
-71

78

*See also 'ISubroutines Described In Chapter III" following this table of co
tents.



3.1. 6 Monitor File Control
3.1.7 Typing Controls
3.1.8 Interrupt Controls
3.1.9 Overlay Controls
3. i .10 Error Controls

3. Z COMMAND CONTROL LopIc

Page 87

94
129
137

144

154

3.2 1 General Command Processing 154

3.2 2 Subject/Title Command Interpre a ion 165

3.2.3 Author Command Interpretation 176

3.2.4 Primary search Control 186

3.2.5 Inverted File Lookup 211

3.2.6 Search Command Play-Back 223

3.2.7 Output Command Interpretati n 232

3.2.8 Output' Command Controls 237

3.2.9 Miscellaneous Command Controls 265

3.3 LI T MANIPULATION LOGIC 277

3.3.1 Document' Selection 277

3.3.2 Naming add Restoring 282

3.3.3 Saving and Using 302

3.3.4 Boolean Operations 320

3.4 INTREX UTILITIES
3. 4:1 Free Storage 'Controls
.3.4.2 Cade ConversiOn.
3.4.3 File Manipulation
3.4 4 chatacter-String Manipula ion
3 4.5 Miscellaneous T.Ttilities

3 5 CTSS UTILITIES

5-.2 Buffered .D s1
3. 5.,;3 File:StatuS

. 3.5.4 Disk I/O Er, ors
. 5- -Coni4e
3.5.6 1)40.--C onirerp ion

3. 5.7 Miscellaneousr-Utilities

351

351
367

379
381

403

420
. 420
436
440
445
447
453
459



3. 6 AED Utilities Page 486

3.6.1 Miscellaneous Utili 486

IV. DATA BASE GENERATION 492

4.1 DRYRUN, WETRUN 493

4.2 1VLASH 501

4.3 STEMEli. SAVED 504

4.4 SORT SAVED 508

4.5 IFGEN SAVED 509

4.6 IFTEST SAVED 519

4.7 IFLIST SAVED 523

V. SURPORTING SOFTWARE 532

5.1 DIRGEN 532

/5.2
PRINTM, PRNASC 537

5.3 UPDIR 539

VA. INTREk BEYOND 1971
/ 6.1 Modifications to the Intrex System 541

6.1.1 Extended Primary Search Capability 511

6. 1. 2 Extended Output Features 543

6. 1. 3 Other Search Aids 544

6.1.4 Data Base Update 545

6.2 Exportation of Intrex 546

6. 3 Puture Generations of Intrex

APPENDICES

546

A. Summary of Common References 550

1. Parameter Option Table 550
\

2. System State Table 555.

3. Command List 557
/ I

1

B. Da a Base Formats 559i1. Catalog 559

2. Inverted Files 562

3.. List 17ointers 565
,----

4. Fiche/Direct 567
li

vii



The lntrex Environment
1. The Time-Sharing System

The AED Language

Page 568

568
570

D.fMessage Text 571

E. Subroutine Linkages (called by) 582

F. Subroutine Linkages (alls) 591

G. Glossary of 1ntrex Terms 605

H. Data Base Generation Procedure 610

I. Index to Subroutines in Chapter III 612



SUBROUTINES DESCRIBED IN CHAPTER III

3.1 ax.ILEp Control Logic
3.1.1 Supervision

3.1.1.1 SUPER
3.1.2 Fixed Parameter and Data Base Initialization

3. E 2.1 SEGINT
3.1. Z. 2 INITDB
3.1. Z. 3 INIFEK

3.1.2.4 rNITZ '

3. I. 2.5 PREP
3.1.2.6 TABLE
3.1.2.7 RPRIME
3.1.2.8 RNGNAM

LEGFLD
3.1.2.10 FLDNAM
3. i. 2.11 STANDL
3.1.2.12 FIELDS
3.1.2.13 INIVAR
3.1.2.14 IFSINT
3.1.2.15 INIEND, REND, ENDTAB

, 3.1.2.16 GIVTAB
3.1.3 Session Initialization

3,. 1.3.1 DYNAMO

1:3.2 INXCON
1.3.. 3 OPFILE, CLFILE
1.3.4 KILFAP

3.1.4 Logging
3.1.4.1k. GO

3.1.4.2 SIGNIN
3.1.4.3 EXIT
3.L4.4 QUIT



3. 1. 5 Time Controls
3. 1. 5. 1 MONINT
3.1. 5. 2 MONTIM
3. 1. 5. 3 TIME
3. 1. 5. 4 SUMOUT
3. 1. 5. 5 TRANS

3. 1.6 Monitor 'File Control
3. 1 6. a INIMON, INMON2
3, 1. 6. 2 INIDSK
3. 1. 6. 3 MONTOR ,

3. 1.6. 4 ASIDE, ASSET

3 1.7 Typing Controls
3. 1.7. I INITYP
3. 1.7.2 -TYPEIT
3.1.7. 3 LOCMES
3. 1.7.4 a3CDASC

3. 1.7. 5 INDENT
3. 1.7. 6 TINICHAR

3. 1. 7. 7 TYPASH
3. 1. 7. 8 TRASH, PuTOUT---
3. 1.7.9 -PRT12

3. 1. 8 Interrupt Controls
3. 1. 8. 1 ININT
3. 1. 8. 2 INTONE
3 1.8. 3 INTTWO
3 1.8. 4 LISTEN

3. 1. 9 Overlay Controls
3.1. 9. 1 SYSGEN
3. 1. 9. 2 CALLIT
3. 1. 9. 3 SENTRY

1. 9. 4 MAINBD
3. 1. 9. 5 LINKUP

3.1. 10 Error Controls
3. 1. 10.1 ERRGO
3. 1. 10.2 SET RTN
3.1.10.3 INXSUB



3. 2

3. 2. 1

Command C _ol Lo ic
General Command Processing

3 2. 1. 1 INICON
3. 2. 1. 2 CLP
3. 2. I . 3 GETEIN
3. 2. 1. 4 NEXITM
3. 2. 1. 5 LOOKUP

3. 2. 2 Subjec Title Command Interpretation
3. 2. Z 1 INIS. T
3. 2.2.2 SUBJ.

2. 2. 3 TITLE
. 2 . 4 S T

3. Z. 2. 5 STEM

3 Author Command Interpretation
3. 2. 3. 1 INIAUT
3. 2. 3. 2 AUTHOR
3. 2. 3.-3 GATP
3. 2. 3. 4 LN
3. 2. 3. 5 AI

3. 2. 4 Primary Search Control
3 2.4.1 SEARCH
3. 2. 4. 2 SSRCH, TSRCH, STR H
3. 2. 4. 3 ATSCRN
3. 2. 4. 4 REORD, MEADIR
3 2. 4. 5 SRCH
3 2. 4. 6 5LEANP, STCLN, ACLN
3. 2. 4. 7 DELIS T
3. Z. 4, 8 DRPDTR
3. 2. 4. 9 FC LEAN
5 Inverted File Lookup
3.2.5.1 IFSRCH
3. 2. 5. 2 EOCSEC
3. 2. 5. 3 NAM5
3. 2. 5. 4 MATAFF



3.

3.2.6 Search Command Play-Back /
3. 2. 6. 1 INIEVL
3. 2. 6. 2 EVAL
3. 2= 6. 3 GETEND

3.2.7 Output Command Interpretation
3. 2. 7 INIOUT
3.2.7.2 OUT.
3. 2. 7. 3 IN.

3. 2. 8 Output Command Controls
3. 2. 8. 1 FSO
3 2. 8. 2 NEWPT
3 2. 8. 3 INIFLD
3. 2.. 8. 4 GETINT
3. 2. 8. 5 FSOCLN
3. 2. 8. 6 GETFED
3. 2. 8. 7 GETTAB
3 8. 8 TRETRI
3. 2. 8. 9 SPCTRN
3. 2. 8. 10 TABLK
3. 2. 8. 11 STBL
3. 2. 8. 12 OTBL
3. 2. 8. 13 WRHGH
3. 2. 8. 14 INIRNG
3. 2. 8. 15 RANGE
3. 2. 8. 16 ATLCLN

2. 9 Misc llaneous Command Co ntr ols
3. 2. 9. 1 INIVRB
3. 2. 9. 2 COMENT
3. 2. 9. 3 EIBRY
3. 2. 9. 4 WRT
3. 2. 9. 5 LONG
3. 2. 9. 6 SHORT
3. 2. 9.7 INFO
3. 2. 9. 8 SEEMAT



3..3 List Manipu.latiorl_Eo_gic

1 Document Selection
3. 3. I. 1 NUMBER

3. 3. 2 Naming and Restoring
3 . . . 1 INIRES
3.3.2.2 NAME
3. 3.3TABENT
3. 3. 2. 4 CHK-fiA
3. 3.2. 5 RESTOR
3. 3. 2. 6 LIST
3. 3. 2. 7 DROP
3.3.Z..8 CONNAM

3. 3. 3 Saving and Using
3.3.3. 1 SAVE
3. 3. 3. 2 CHKSAV

. 3. 3 USE
3 3. 3. 4 MOVEIT
3. 3. 3. 5 GONDIR
3. 3. 3. 6 LISTSE
3. 3. 3. 7 EISFIL

3..4
3.
3.
3.
3.
3.
3.
3.

Boolean Operati ns
3. 4. 1 AND,
3. 4. 2 WITH.
3. 4. 3 OR.
3. 4. 4 NOT.
3. 4. 5 ANDER GET BUF
3. 4. 6 GETEIS
3. 4. 7 BUFSCN

3..4 . Intrex Utilities
3.4. 1 Free Storage Controls

3. 4. I. 1 FREE
3. 4. I. FRET
3. 4. I. 3 FREZ
3. 4. 1.4 CNTLOC
3. 4. 1. 5 SIZE
3. 4. 1 . 6 FRER
3. 4. 1. 7 FSIZE
3. 4. I. 8 FRESET
3. 4. I. 9 FTRACE
3. 4. I. 10/ FRALG



3.4.2. Code' onversion
3.4.2.1, . C. ASC
3.4. 2. Z' INLC.
3.4.2.3 MITASC
3.4.2.4 OCTASC
3.4.2. 5 TSSASC
3.4.2.6 ASCTSS
3.4.2.7 ASGIT6
3.4.2..' 8 CTSIT6
3.4.2..9 ASCITC3.4.2.10 ASCINT
3.4.2.11 CHKNUM

3.4.3 Pile Manipulation
3.4.3.1 FIL,CNT

3.4.4 Character-String Manipulati n
3.4.4.1 GET
3.4.4.2 INC
3.4.4.3 PUT
3.4.4.4 GET6
3.4.4.5 INC6
3.4.4.6 PUT6
3.4.4.7 GET12
3.4.4.8 INC12
3.4.4. 9 CORY
3.14.4.10 EasT
3.4.4.11 EIND
324.4.12 COMP R3 4.4.13 COMPUI.,
31. 4.4.14 MATCH \

1-3.4.4.15 GETSET
. 4.4.16 QETINC

3.4.4.17 PUTINC
3.4.4.18 INC1
8. 4.4.19 DEC 1
I

3.4.,5 Miscellaneous Utilities
13.4.5.1 DNSO ART

/3.4.5.2 F`APDBG3.4.5.3 NA/P/3.4.5.4 T/BSRCH
3.4.5.5 A'iSRCH

i 3.4.5.6 SHIFT
1 3.4.5.7 STR_ACC, FRS TR_A

I 3.4.5.8' TESTMO
I 3.4.5. 9 TSPOT, TRAC3.4.5.10 TIMEIN, TOUT, TO TTIM3.4.5.11 WHEN



3. 5 CTSS Utilities
3. 5. 1 Disk

3. 5. 1. 1 OPEN
3. 5. 1. 2 CLOSE
3. 5. 1. 3 BUFFER
3. 5. 1. 4 RDFYLE
3. 5. 1. 5 RDWAIT
3. 5. 1. 6 WRFILE
3. 5. 1. 7 WRWAIT
3. 5. 1. 8 TRFILE
3. 5. 1. 9 FWAIT

3. 5. 2 Buffered Disfc I 0
3. 5. 2. 1 BFOFEN
3. 5. 2. 2 BFREAD
3.5. 2. 3 BFWRIT
3. 5. 2. 4 BFCLOS

3. 5. 3 File Status
3. 5. 3. 1 CHFILE
3. 5. 3.2 DELFIE
3. 5. 3. 3 FSTATE

3. 5. 4 Disk I/0 Errors
3. 5. 4. 1 FERRTN
3. 5. 4. 2 IODIOG

3. 5. 5 Console I/0
3. 5. 5. 1 RDFEXA
3. 5. 5.2 RDPLX
3. 5. 5. 3 WRFEXA
3. 5. 5.4 WRFEX
3. 5. 5.5 SETFUL
3. 5. 5.6 SETIBCD

3. 5. 6 Data Conversion
3.5.6..1: BCDEC
3. 5. 6 DEFBC
3. 5. 6. 3 DERBC
3.. 5. 6. 4 OCABC
3. 5. 6. 5 RJU$T
3. 5..6. 6 BZEL

14



3.5_ 7 Miscellaneous Utilities
3_ 5.7.1 DORMNT
3.5.7.2 SLEEF
3.5.7.3 WAIT
3.5.7.4 GETBRK
3.5.7.5 SETBRK
3.5.7.6 SAVERK
3.5.7.7 GETMEM
3.5.7.8 SETMEM

5.7. 9 WHOAMI
5.7.10 SETW RD

3.5.7_ 11 GETWRD
3.5.7,12 SETBLP
3.5.7.13 CHNCOM
3.5.7.14 GETCOM
3.5.7.15 COMARG
3.5.7.16 LDOPT
3.5.7.17 SETSYS

5.7.18 GETSYS
3.5.7.19 GNAM
3.5.7.20 RSCLCK
3.5.7.21 JOBTM
3.5.7.22 GETIME
3.5.7.23 GETTM
3.5.7.24 SCLS
3.5.7.25 NCOM

3.6 AED Utilities
3.6. 1 Miscellaneous Utilities

3. 6. 1. 1 WELX
3. 6. 1. 2 WFEXA
3. 6. 1. 3 TS A RGV

3. 6. 1. 4 TSARG
3. 6. 1. 5 GETP
3.6.1.6 OCTTOI



L'mT OF FI- URES

1.1 Basic System Diagram for Intrex Page 3

1.2 Information Fields in the Catalog 5

1.3 GA Sample Catalog Record 6

2.1 The Initialization Module 13

Z. 2 Tasks of Initialization 14

2.3 The Command Module 17

2.4 The Search Module 18

2.5 The Output Module 21

2.6 Sequence of Subroutine Calls for the Command
"s ion particle" 22

2.7 Sequence of Subroutine Calls for the Command
"output title fiche" 23
Sequence of 'Subroutine Calls for a Combined Command 24

28
2. 9

30
31
33
36

2.8
2.9 Common File Structure
2.10 Data Base Structure
211 Catalog Record Segments
2.12 Catalog Record Format
2.13 Format of I:F. Directories
2.14 Partition.ing of Intrex Core
2.15 Flow Chart of System Generation Process
3.1 Subject/Title Search Structure
3.2 Author Search Structure
3.3 Diagram of Memory (Free Storage)
4.1 DRYRUN/WETRUN (Main Flow of Contr
4.2 Loading Sequencp
4.3 Sample Page of I.F. Listing
B. 1 Inverted File Format
B. 2 Augmented List Pointer Format

1

37
172
178
3.52
498
500
524
563
566



I. INTRODUCTION

This report describes the computer programs or software for the
Intrex Retrieval System. The purpose of the documentation is tw fold.
First, it is intended to expose the general structure of the system so that
it may serve as a model or prototype upon which other similar, but more
operational,systems can be based. Secondly, it is intended to describe
the Intrex software to a level of detail sufficient for a reader to understand
the purpose and logic of each subroutine. This detailed description is-felt
to be especially impe-rtant to the analyst or system designer who may want
to appreciate the level of complexity and hence the computational load im-
posed on a computer system by the sophisticated mode of operation of
Intrex. It is also important for those who must understand and/or main-
tan Intrex in its present implementation. In order to accomplish these
purposes, everything short of the actual program listings has been included.
It should be recognized at the outset that this report is not meant to be an
introduction to Intrex. Several other publicationsl-5 are aVailable which
serve that purpose. in order to arrive at a common starting point,however,
the present chapter does begin with some mate'rial of an introductory
nature. An attempt has been made there to highlight certain aspects which
bear particular relevance to the software of the Intrex Retrieval System.

1. 1 General Description
Intrex is an experimental, pilot-mode-4 machine-oriented bibliog-

raphic storage and retrieval system. ...he system includes a computer-
stored catalog of about fifte thousand journal articles in selected fields
of Materials-Science and Engineering and the full text of these documents
stored on microfiche. The heart of the system is the Intrex retrieval
programs whi'ch provide for searching through the data base to gather
lists of documents on topics requested by users.

The Intrex programs operate in an on-line interactive mode with
users in a dialog with the machine. Users control the actions of Intrex
by issuing typed English commands within the Intrex language. Such
commands permit the user to initiate searches of the catalog by subject
title or author, to combine lists of documents resulting for subsequent:

7



-2-

searches, to save combined lists, and to request output of information per-
tinent to documents on the lists. Intrex in turn responds to these commands
with the lists of documents found or the other requested information. In. this
way the user of Intrex designs his own search strategy from the basic func-
tions availaJale to him. The immediate feedback given the user insures that
each such design will be unique and so can be better suited to the particular
s earch.

A system diagram for Intrex is shown in Figure 1.1. The Intrex pro-
grams run on the MIT-developed CTSS time sharing system (see Appendix C).
CTSS provides for sharing the resources of an IBM7094 computer among
thirty or so online users. Each user who is exercising Intrex has his own
copy of the Intrex programs so his actions are completely independent of the

r users. The time sharing system provides for allocating central pro-
me to the users, and swapping their programs in and out of core in

Such _way that each user appears to be receiving the full attention of the
large computer. Intrex terminals also tie into the separate text-access sub-

,

/ system, which consists of the document collection on microfiche and the ma-
chinery for selecting the microfiche corresponding to a document, scanning
the fiche, and sending the image to the appropriate terminal. The text access
subsystem also provides for microfilm copy of the full text. The microfilm is
produced within 90 seconds after a request has been initiated at the user' s
terminal and so can be picked up by the user immediately following his ter-
minal session.

Several different types of terminals 6 are supported by Intrex rang-
ing f om an IBM 2741 typewriter to a specially designed remote buffered CRT
device with expanded character set and subscripting and superscripting capabil-
ity. The terMinals of this type are interfaced to CTSS and the text access sub-
system through' a Varian 620i minicomputer the software for which is to be
described in a separate report. For full-text availability, any type of ter-
minal must include a storage tube display. In the case of the Intrex "com-
bined" terminal, this display is used both for interaction with the catalog
and for the display of full teXt. Users whose terminals do not include the
special storage tube display may interact via the Intrex\programs with the
catalog alone. This type of operation is more typical at -distant locations
since the text access subsystem can currrently transmit only over rela-
tively short distances.



Fu
ll 

te
xt

 o
n

M
ic

ro
fi

ch
e

.

te
xt

-a
cc

es
s

su
bs

ys
te

m

H
fr

n
st

at
io

n

m
ic

ro
fi

lm

ou
tp

ut
dr

um
62

01
 m

in
ic

om
pu

te
r

r1
-1

10
1.

ao
m

m
o,

1

LI
I

bu
ff

er
ed

 te
rm

in
al

s

in
tr

ex
 R

et
ri

ev
ai

pr
og

ro
pm

-

ci
ss

tim
e-

sh
or

ed
 c

om
pu

te
r

Fi
g.

 1
.1

B
as

k 
Sy

st
em

 D
ia

gr
am

 f
or

 I
nt

re
x

ot
he

r 
te

rm
in

al
s



Intrex, being an experimental retrieval system, has several novel
features that distinguish it from more traditional operational retrieval sys-
tems. One of these features is the availability of full text at terminals..
Others relate more directly to the retrieval programs and so are discussed
separately below.

1.1.1 The Aisgmented Catalog
The Intrex data base consists of an augmented library catalog with

a catalog record for each document in the system.4 The catalog is stored
on the disk of the CTSS time sharing system. The catalog records contain
the fifty fields shown in Figure 1.2. These include, in addition to the usual
catalog entries, the abstract or excerpts, table of contents, and several other
items of information. Not all of these fields would necessarily be required
in a fully operational system but it is part f the Intrex experiment to de-
termine which fields are of most utility to users and which could safely be
eliminated. The fields-\starred in Figure 1.2.are used for journal records;
the remaining fields pertaining-to books, conference papers, a.nd other types
of documents. A typical catalog record is shown in Figure 1.3. The numbers
at the left between slashes are the field numbers.

The catalog records, which comprise the major part of the data base
arlid average 'about two thousand characters in length are compacted in order
to conserve disk space. The character strings are stored in a special nine-
bit cede where one code word represents wherever possible a pair of char-
acters or digram.7 When compared to standard ASCII coding of individual
characters, this scheme reduces the storage required by 31 to 45 percent.*

1.1 F ee Vocabulary In-Depth- Indexin

Intrex uses a free vocabulary indexing for documents, i.e., any words
or symbolic notation (such as H20) may be included in the index terms Note
in Figure 1.3 (Field 73) that the subject index terms are generally not just
words but entire phrases. Note also the number of such index terms, a result
of the deep indexing. The inverted file (see following Section) to the cat-
alog is constructed from the stemmed words or symbols found in the phrases.

The percent reduction depends on whether the ASCII code is packed into a
nine-bit byte or into a seven-bit byte as is possible with the 36-bit computei*"".,
word.

20



I.
C

A
T

A
L

O
G

 C
O

N
T

R
O

L
 F

IE
L

D
S

*1
.

D
oc

um
en

t N
um

be
r

*2
.

D
oc

um
en

t S
el

ec
tio

n
*3

.
In

pu
t C

on
tr

ol
*4

.
O

h-
L

in
e 

D
at

e
*5

. -
--

-M
ic

ro
fi

ch
e 

L
oc

at
io

n

II
.

PH
Y

SI
C

A
L

 D
O

C
U

M
E

N
T

 C
O

N
T

R
O

L
 F

IE
L

D
S

10
..

L
. C

. -
C

ar
d 

N
um

be
r

)

11
.

.L
ib

ra
ry

 L
oC

at
io

n
-1

2.
Se

ri
al

 H
ol

O
in

gS
-

H
I.

D
E

SC
R

IP
T

IV
E

 C
A

T
A

L
O

G
IN

G
 F

IE
L

D
S

ts
, ,

L
i.

*2
0.

*2
2;

*2
3.

C
or

po
ra

te
 N

am
es

° 
*2

 4
.

T
itl

e
-

25
.

C
od

en
 T

itl
e

26
.

E
di

tio
n 

St
at

em
en

t
.2

7.
Pu

bl
is

he
r

-

28
.

Pl
ac

e 
of

 P
ub

lic
at

io
n

29
.

D
at

es
 o

f 
Pu

bl
ic

at
io

n
* 

30
.

M
ed

iu
m

* 
31

.
Fo

rm
at

32
.,

Pa
gi

na
tio

n
*3

3,
Il

lu
st

ra
tio

ns
34

.
D

im
en

si
on

s
35

.
Se

ri
al

 F
re

qu
en

cy
* 

36
.

L
an

gu
ag

e 
ol

 D
oc

um
en

t

M
ai

n 
E

nt
ry

 P
oi

nt
er

Pe
rs

on
al

 N
am

es
Pe

rs
on

al
 A

ff
ili

at
io

ns

*3
7.

L
an

gu
ag

e 
of

 A
bs

tr
ac

t
-

*3
8.

Se
ri

es
 S

ta
te

m
en

t
*3

9.
..

R
ep

or
t/P

at
en

t N
um

be
rs

*4
0-

.
"c

-o
nt

ra
ct

 S
ta

te
m

en
t"

Su
pp

le
m

en
t R

ef
er

ra
l.

E
rr

at
a

*4
3.

T
he

si
s

44
.

V
ar

ia
nt

S,
45

.
T

itl
es

 o
f 

V
ar

ia
nt

s
46

.
A

rt
ic

le
 R

ec
ei

pt
 D

at
e,

--
-*

47
.

A
na

ly
tic

al
 C

ita
tio

n
48

.
A

bs
tr

ac
t S

er
vi

ce
s

49
,

C
os

t-
T

ex
t A

cc
es

s.
50

.
C

om
m

er
ci

al
 C

os
t

IV
,

. S
U

B
JE

C
T

C
O

N
T

E
N

T
. F

IE
L

D
S,

*6
5,

6u
th

or
's

 P
ur

po
se

*6
6,

le
ve

l o
f 

A
pp

ro
ac

h
*6

7.
T

ab
le

 o
f 

C
on

te
nt

s.
*6

8.
Sp

ec
ia

l F
ea

tu
re

s
*6

9.
B

ib
lio

gr
ap

hy
*7

0.
E

xc
er

pt
s

..*
71

.
A

bs
tr

ac
ts

72
.

R
ev

ie
w

s.
.

Su
bj

ec
t i

nd
ex

in
g

V
.

A
R

T
IC

L
E

 C
IT

A
T

IO
N

 F
IE

L
D

80
.

R
ef

e 
re

nc
e

C
ita

tio
ns

V
I.

U
SE

R
 F

E
E

D
B

A
C

K
 F

IE
L

D

85
.

Fi
g;

In
fo

rm
at

io
n 

Fi
el

ds
 in

 th
e 

C
at

al
og

U
se

r 
C

om
m

en
ts



I
A
/

3
6
4
4
'

/
1
2
/

A
2
4
,

1
f
5
:
/
.

1
7
5
1
-
8
5

1
/
2
1
1
/

/P
a/

t

.
1
/
4
7
/
 
-
1
,
1
1
R
V
A

v
,
J
6
1
,
n
o
.
2
,
0
9
1
0
6
7
.
,
p
p
.
3
5
0
-
3
6

.
.

'
/
p
i
/
.
 
H
e
m
p
a
t
e
a
d
 
R
o
b
e
r
t
 
D
.
 
(
T
A
)
;

:
.
-
-
7
-
-

L
a
x
,
 
M
e
l
v
i
n
 
(
I
A
)

,
.

/
/
2
2
/

B
e
l
l
 
T
e
l
a
i
h
o
n
e
 
l
a
b
o
r
a
t
b
r
i
e
s
,
 
'
M
u
r
r
a
y
 
H
i
l
l
'
,
 
'
D
.
J
.
'
)

.
.
.
,
!
,

,
U
t
i
v
e
r
s
i
t
i
o
f
 
"
I
l
l
i
n
o
l
e
,
,
%
t
b
a
n
a
%

D
e
p
t
.
.
.
o
f
 
P
h
y
s
i
c
a
;
.

!
t
e
l
l
 
T
e
l
e
p
h
o
n
e
 
L
a
b
o
r
a
t
o
r
i
e
a
,
 
'
M
u
r
r
a
y
 
H
i
l
l
'
s
.

/
I
D
/
 
M
.
I
.
T
.
,
 
'
C
a
m
b
r
i
c
i
g
e
:
,
,
'
H
a
s
i
.
"
,
(
B
T
)
;

,
.

,
a
A
m
e
r
i
c
a
n
 
P
h
y
s
i
c
a
l
 
S
o
c
i
e
t
y

e
t
t
n
g

e
v
 
U
r
i
c
;
 
1
9
6
6

1
1
2
4
1

C
l
a
s
s
i
c
a
l
 
m
o
i
s
t
,
 
p
a
r
t
 
4
;
 
n
o
i
s
e
 
i
n
 
s
e
l
f
-
s
u
s
t
a
i
n
e
d

-
n
e
a
r
 
t
h
r
e
s
h
o
l
d
"

/
/
4
3
/

2
.
0
9
i
M
a
5
5
.
 
M
.
S
.
 
(
E
l
e
c
t
r
i
c
a
l
 
E
n
g
i
n
e
e
r
i
n
g
)

/
1
3
1
/

b
b
,

/
/
4
6
1

0
1
2
8
6
3

/
1
3
6
1

'
'
/
/
3
7
/

"
.
/
1
3
3
/

l
i
l
u
s
.

,

r

11
69

1
U

(3
8,

)

o
s
c
i
l
l
a
t
o
r
a

I
n
t
r
o
d
u
c
t
i
o
n
 
(
p
.
3
5
0
)

2
.
 
T
h
e
 
L
a
n
g
e
v
i
n
'
a
n
d
 
F
I
C
h
k
e
r
T
l
a
n
c
h
,
e
q
u
a
t
i
o
n
s
 
(
p
.
3
5
2
)

.
3
.
 
T
r
a
n
s
f
o
r
i
a
t
i
o
n
 
t
o
 
p
o
l
a
r
 
c
o
o
r
d
i
n
a
t
e
s
 
(
p
.
3
5
4
)

4
.
 
I
n
t
a
g
i
a
t
i
o
n
,
o
v
e
r
 
t
h
e
 
p
h
a
s
e
:
v
a
r
i
a
b
l
e
 
(
p
.
3
5
4
)

5
4
:
S
t
e
a
d
y
-
s
t
a
t
e
 
a
m
p
l
i
t
u
d
e
 
p
r
o
b
a
b
i
l
i
t
y
 
d
i
s
t
r
i
b
u
t
i
o
n
 
(
p
.
3
5
4
)

6
.
 
C
a
l
c
u
l
a
t
i
o
n
 
o
f
 
t
h
e
:
 
p
o
w
e
r
 
s
p
e
c
t
r
a
 
(
p
.
3
5
6
)

7.
E
i
g
e
n
f
u
n
c
t
i
o
n
 
e
x
p
a
n
s
i
o
n
 
(
p
.
3
5
8
)

A
,
 
A
c
c
u
r
a
c
y
 
o
f
e
c
o
m
p
u
t
a
t
i
o
n
s
,
(
0
J
6
2
)

9
'
.
-
S
u
a
i
m
a
r
y
 
(
p
.
3
6
2
)

I
D
.
 
A
p
p
e
n
d
i
x
4
.

T
h
e
 
l
a
s
e
r
 
m
o
d
e
l
 
(
p
.
3
6
3
)

I
t
.
 
I
H
I
P
a
n
d
i
s
 
B
.

T
h
e
 
t
i
m
u
i
t
,
m
o
d
e
l
 
(
p
.
3
6
4
)

1
2
.
 
A
p
p
e
n
d
i
x
 
C
.

T
h
e
,
 
h
o
u
n
d
a
r
r
c
o
n
d
i
t
i
o
n
 
f
o
r

G
(
r
,
 
r
s
r
i
u
b
 
D
*
;
.
*
I
a
m
b
d
a
s
 
*
o
m
e
g
a
s
)
 
(
p
.
3
6
6
)

/
/
6
8
/

C
o
n
t
a
i
n
s
 
t
a
b
l
e
s
,
 
o
f
 
f
l
u
c
t
u
a
t
i
o
n
 
d
a
t
a
 
a
n
d
 
g
r
a
p
h
s
.
o
f
 
p
o
w
e
r

s
p
e
c
t
r
a
 
a
n
d
 
f
l
u
c
t
u
a
t
i
o
n
.
 
p
o
t
e
n
t
i
a
l
s
,

r

6
5
/

W
I
)
 
B
e
c
a
u
s
e
 
o
f
 
t
h
e
 
r
e
l
a
t
i
v
e
 
n
a
r
r
o
w
n
e
s
s
 
o
f
 
t
h
e
 
t
h
r
e
s
h
o
l
d
 
r
e
g
i
o
n
,
 
a

g
e
n
e
r
a
l
 
m
o
d
e
d
 
f
o
r
 
s
p
e
e
t
r
a
l
l
y
 
p
u
r
e
:
 
s
e
l
f
-
s
u
s
t
a
i
n
e
d
 
o
s
c
i
l
l
a
t
o
r
s

(
b
o
t
h
 
c
l
e
s
s
i
t
a
l
 
a
n
d
 
q
u
a
n
t
u
m
,
 
i
n
t
i
u
d
I
n
g
 
g
a
s
 
l
a
s
e
r
s
)
 
c
a
m
 
b
e

r
e
d
u
c
e
d
,
 
i
n
 
.

i
h
e
 
t
h
r
e
l
h
o
i
d
.
r
e
s
i
o
n
,
 
t
o
 
a
 
r
o
t
a
t
i
n
g
-
w
a
v
e
 
V
a
n
 
d
e
r

P
o
i
 
(
R
W
V
P
)
 
o
s
c
i
l
l
a
t
o
r
.
.
.
 
[
B
o
d
y
 
o
f
 
a
b
s
t
r
a
c
t
 
o
m
i
t
t
e
d
 
f
r
o
m
 
t
h
i
s

i
l
l
u
s
t
r
a
t
i
o
n
 
.
 
b
e
c
a
u
s
e
 
o
f
 
i
t
t
 
l
e
n
g
t
h
)
.
.
.
 
T
h
u
s
 
t
h
e
 
i
n
t
e
n
s
i
t
y

f
l
u
c
t
u
a
t
i
o
n
 
s
l
i
e
c
t
r
u
m
 
i
s
 
'
,
o
r
i
e
n
t
a
t
e
°
 
b
e
l
o
w
 
a
n
d
 
w
e
l
l
 
a
b
o
v
e
:

t
h
r
e
s
h
o
l
d
,
 
b
u
t
i
o
r
e
 
c
o
m
p
l
e
x
 
i
n
 
t
h
e
 
t
h
r
e
s
h
o
l
d
.
 
r
e
g
i
o
n
.
 
(
a
u
t
h
o
r
)

1
M
1
 
m
a
t
h
e
m
a
t
i
c
a
l
 
d
e
v
e
l
o
p
m
e
n
t
 
o
f
 
c
l
a
s
s
i
c
a
l
 
n
o
i
s
e
 
i
n
,
 
s
e
l
f
-
s
u
s
t
a
i
n
e
d

o
s
t
i
l
l
a
t
O
r
s
 
n
e
a
r
 
o
s
c
i
l
l
a
t
i
o
n
 
t
h
r
e
e
h
u
l
d
 
(
1
)
1

L
i
x
-
l
o
u
i
s
e
l
l
,
 
m
o
d
e
l
 
f
o
r
 
m
1
E
-
s
u
s
t
a
i
n
e
d
,
 
o
s
c
i
l
l
a
t
o
r
 
(
4
)
;

L
a
x
-
L
o
u
i
s
e
l
l
 
s
t
u
d
y
 
°
U
l
s
t
e
r
 
h
o
i
s
t
 
(
3
)
1

n
o
r
m
a
l
i
s
e
d
.
 
r
o
t
a
t
i
n
g
-
w
a
v
e
 
V
a
n
,
 
d
e
r
 
P
o
l
 
o
s
c
i
l
l
a
t
o
r
 
(
2
)
;

g
a
s
 
I
s
l
e
t
 
(
4
)
;

l
a
s
e
r
 
n
o
i
s
e
 
(
0
)
;

p
h
a
s
e
,
 
i
n
t
e
n
s
i
t
y
,
 
a
n
d
 
a
m
p
l
i
t
u
d
e
 
f
l
u
c
t
u
a
t
i
o
n
s
 
i
n

s
e
l
f
-
s
u
s
t
a
i
n
e
d
 
o
s
c
i
l
l
a
t
o
r
s
 
n
e
a
r
 
t
h
r
e
s
h
o
l
d
 
(
2
)
;

n
e
a
r
l
y
 
L
o
m
a
t
:
l
e
n
,
 
n
a
t
u
r
e
 
o
f
 
p
o
w
e
r
 
s
p
e
c
t
r
a
 
o
f
 
n
o
i
s
e
 
i
n

s
e
l
f
-
s
u
s
t
a
i
n
e
d
 
o
s
c
i
l
l
a
t
o
r
s
 
n
e
a
r
 
t
h
r
e
s
h
o
l
d
,
 
(
2
)
;

e
x
a
c
t
.
 
.
:
a
l
c
u
l
a
t
i
o
n
a
o
f
 
p
o
w
e
r
 
s
p
e
c
t
r
a
i
n
 
t
h
e
 
n
e
m
a
l
i
z
e
d
 
R
W
V
P

o
s
c
i
l
l
a
t
o
r
 
n
e
a
r
 
t
h
r
e
s
h
o
l
d
:
b
y
 
n
u
m
e
r
i
c
a
l

F
o
k
k
e
r
-
P
l
a
n
c
k
 
m
e
t
h
o
d
s
 
(
2
)
;
"

.
s
c
a
l
e
d
.
 
L
a
n
g
e
v
i
n
 
e
q
u
a
t
i
o
n
 
(
4
)
1
;

.

F
o
k
k
e
r
-
P
l
a
n
c
k
,
 
G
r
e
e
n
'
s
 
f
u
n
c
t
i
o
n
,
 
a
n
d
 
e
i
g
e
m
f
u
n
c
t
i
o
n

m
e
t
h
o
d
s
,
 
o
f
 
c
a
l
c
u
l
a
t
i
n
g
 
p
o
w
e
r
 
s
p
e
c
t
r
a
 
o
f
 
n
o
i
s
e
 
i
n
 
'

s
e
l
f
-
s
u
s
t
a
i
n
e
d
 
o
i
c
i
l
l
a
t
o
r
s
 
n
e
o
r
 
t
h
r
e
s
h
o
l
d
 
(
2
)
;

w
h
i
t
e
-
n
o
i
s
e
 
s
o
u
r
c
e
s
 
i
n
 
a
.
 
s
e
l
f
-
s
u
s
t
a
i
n
e
d
 
o
s
c
i
l
l
a
t
o
r
 
(
3
)
;

s
t
e
a
d
y
-
s
t
a
t
e
 
a
m
p
l
i
t
u
d
e
 
p
r
o
b
a
b
i
l
i
t
y
 
d
i
s
t
r
i
b
u
t
i
o
n
 
(
3
)
;

o
n
e
7
s
i
d
a
t
i
 
F
o
h
r
i
e
r
t
r
a
n
e
f
o
r
m
.
 
o
f
 
t
h
e
 
p
e
c
t
r
U
m
 
a
n
d
 
i
n
t
e
n
s
i
t
y

s
p
e
c
t
r
u
m
 
o
f
 
g
a
s
 
l
a
s
e
r
s
 
(
3
)
;

p
o
w
e
r
 
s
p
e
c
t
r
a
 
b
o
u
n
d
a
r
y
 
c
o
n
d
i
t
i
o
n
s
 
(
3
)
;

e
q
u
a
t
i
o
n
-
o
f
 
m
o
t
i
o
n
 
o
f
 
a
.
 
s
e
l
l
-
a
u
s
t
a
i
n
e
d
.
 
o
s
c
i
l
l
a
t
o
r
 
(
4
)
;

e
f
f
e
c
t
 
o
f
 
p
o
W
e
r
 
o
u
t
p
u
t
 
o
n
 
p
o
w
e
r
 
s
p
e
c
t
r
a
 
o
f
 
a
 
s
e
l
f
-
s
u
s
t
a
i
n
e
d
.

o
s
c
i
l
l
a
t
o
r
,
 
(
3
)
;

e
f
f
e
c
t
 
o
f
 
n
e
t
 
p
u
m
p
 
r
a
t
e
 
o
n
 
o
p
e
r
a
t
i
o
n
,
 
o
f
 
a
 
r
o
t
a
t
i
n
g
-
w
a
v
e
,

"
V
a
n
 
d
e
r
 
P
o
l
 
o
s
c
i
l
l
a
t
o
r
 
(
2
)
i

s
i
n
u
s
o
i
d
a
l
 
p
o
w
e
r
 
s
p
e
c
t
r
u
m
 
o
f
 
a
 
r
o
t
a
t
i
n
r
w
a
v
e
 
V
a
n
.
 
d
e
r
,
 
P
o
i

o
s
c
i
l
l
e
t
o
r
 
(
2
)
;

l
i
n
e
a
r
i
z
a
t
i
o
n
 
m
e
t
h
o
d
s
 
o
f
 
c
a
l
c
u
l
a
t
i
n
g
 
p
o
w
e
r
 
s
p
e
c
t
r
a
 
o
f
 
n
o
i
s
e

i
n
 
a
 
s
e
l
f
-
s
u
s
t
a
i
n
e
d
 
o
s
c
i
l
l
a
t
o
r
 
o
u
t
s
i
d
e
 
t
h
e

t
h
r
e
s
h
o
l
d
 
r
e
g
i
o
n
 
(
2
)
;

n
o
n
l
i
n
e
a
r
 
t
e
c
h
n
i
q
u
e
s
 
f
o
r
 
c
a
l
c
u
l
a
t
i
n
g
,
 
p
o
w
e
r
 
s
p
e
c
t
r
a
 
o
f
 
n
o
i
s
e

i
n
 
a
 
n
o
r
m
a
l
i
s
e
d
 
r
o
t
a
t
i
n
g
-
w
a
v
e
 
o
s
c
i
l
l
a
t
o
r
 
(
2
)
;

01
29

68
,

01
29

68
,

02
14

68
,

04
01

68
,

F
ig

. 1
.3

S
am

pl
e 

C
at

al
og

 R
ec

or
d

1;
30

-2
:2

5;
2:

40
-2

:5
6;

I 
:4

0-
1 

:5
0;

11
:3

5-
11

 ;5
00

 ;2
0-

 1
 :3

8;



77-

Due to the free voCabulary indeking, the number of postings in the inverted
file grows at a rtain fraction of the rate of growth of the data base. At our
current level of approximately 15, 000 documents that growth rate is about
four new postings for every five new catalog entries.

Documents for the data base are indexed by trained personnel who
scan the document for words and phrases indicative of the subject matter.
The extracted phrases and subject terms are classified in o five groups
or ranges which relate to their coverage of the document. Range 0 terms
refer to a general topic under wheli the document falls. -Range 1 terms
relate to the main subject of the document, range 2 terms to topics of

.=-secondary importance, 'and range 3 terms to topics of minor iportance.
Range 4 terms relate to tools or techniques which are used or eferred to
in the document. Precision of retrieval can be controlled by t e user
limiting searches to terms within particular ranges.

1. 1. Stewnied Terms in an. Inverted File

In order to avoid an exhaustive search through all the 15, 000 catalog
records for matching terms each time a search request is made, Intrex uses
an Inverted File structure, That is; the actual compilation of lists of docu-
ments corresponding to a given search term is done in advance of any search-
ing and only onceduring the so-called generation process. In compiling these
lists, the words in the search terms are first stemmed; e.g. magneFic, Mag-

8netisrn, magnetize, and magnetizability are all reduced to the root magnet.
The docurnent in which a given search term appears is added to the list of docu-
ments associated with the stemmed term. Thus when a search for documents
is later requested by a user, Intrex needs only to find the stemmed search
term in the Inverted File. From there, it directly obtains the nit of d-ocu-
rnents. From that list, it can obtain, upon further request the actual catalog
records. The structure of the Intrex Inverted File is destribed in greater de-
tail in Chapter II and Appendix B.

1. 1. 4 Instructional and Monitoring Facilities t
Because the Intrex system was intended for persons with little or no

advanced training in its use, as well as for highly trained search specialists,
a great deal of effort was expended in providing special techniques of system

tContributed by R. S. Marcus



-8-

instruction. The instruction aids include a guide to system use that is` avail-
,

able both in printed form and online in a form that is displayable in sections
under program control. In addition the system provides special in.structional
messages to guide new users and diagnostic comments to help use s detect
and correct errors.

To enable the staff to review and analyze system use, facilities for
monitoring and recording all-interactions with the system were devised.
The full dialog of each user is automatically recorded on a disk file and
printed out daily. In addition, a user can be monitored from a remote ter-
minal in real time. When in this mode the person at the monitoring console
can also communicate with the Intrex user and aid in or even control his use
of -the computer.

1.2 Programming Techni ues and Strategies j
The foregoing features of the Intrex Retrieval System influenced the

programming in several ways. The combination of certain features caused
complexities in various, routines. For example, the requirements for a
variety of in tructional messages that could easily be changed, an elaborate
monitoring facility, the ability of the user to interrupt at any pciint 'in the pro-
gram, _and the necessity to adapt to a variety of terminals with different codes
and line lengths led to a message-handling routine, TYPEIT (See Section
3.1.7.2) of considerable complexity. The importance of experimentation
led to a desire to make all programs flexible and modular si) that different
features could be easily appended and experimented With. This in turn led to
the extensive use of such devices as table-driven subroutines and a data-
structure that contains the results of command language parsing and drives
the search command modules. Because of our desire to get experiments
started as soon as possible, many routines were, initially written in a fairly
simple, straightforward way in the AED source language. Later., when an-
alysis revealed that certain routines were resulting,in system efficiencies,
some of these were rewritten in machine language'apd reasse bled in
larger units.

Some features that were originially planned to be tested have not yet
been fully implemented as part of the Intrex system. Thus there are Certain

ontributed by R. S MarcuS



-9-

structures within the system which have no current use. For example, the
eference words include parameters specifying the word position within

a phrase and the word ending. These factors could be used in the search
match algorithm. It might be added that, in this case, it was possible to
study the utility of these additional features sufficiently well by simulation
that it was not necessary to implement them directly. These features would
still be desirable however, to increase retrieval system flexibility.

The architecture of the CTSS time-sharing system affected the pro-
gramming in major ways. For example, the design of the ,CTSS file sys-
tem and the consequent inability to directly address physical\ storage loca-

\tions, and limited ability to overlap go and computation, exre critical in
our choice of file and directory organization.* The *zsi e of the programs
and the limitation or core memory to 32K words led directly to the design
of the over lay capability described in Sections 2.5 and 3.19. The 36-bit
word on the 7094 led to our choice of nine-bit ASCII and later digram codes.
The various I/O codes required by CTSS forced certain decisions regarding
the storage,of data internally and the conversion processes necessary at
output.- In addition, items not directly tied to CTSS but available on that
system influenced our programming structure. Most notably the AED source
language (see Appendix C) suggested certain particularly convenient data
structures and some generally efficient p.rocedures for use of core memory.

1.3 Contents of the Report

The remainder of this report is divided into five chapters. Chapter 11
is intended to be an overview of the Intrex programs. The purpose the re is to pro
vide a semi-detailed description of the programs on a modular level. A descrip._ .

tion of the data base is included since an understanding of that is essential to an
understanding of the processes involved in searching. Chapter III ia an in-depth
description of each subroutine of t'le Intrex retrieval programs. The intent of
that chapter is to describe the software at a level that would permit an applica-
tions programmer,analyst, or similar person,to follow the actual program list-
ings and understand the logic of each subroutine. Chapter IV deals with auxil-
iary programs used for generation and updating of the data base. Chapter V

*For a thorough discussion of this point, including design of a more nearly
optimum storage configuration on a more modern system, see Kusik9 and
also Goldschmidt.10



-10-

deals with programs that are usedein support of the retrieval programs
The level of detail for Chapters IV and V is intermediate between the
level of Chapters II and III. Chapter VI is a discussion of future plans
for the Intrex Retrieval System, as they relate both to the current pro-
grams'and to future generations of Intrex.



IL SYSTEM ARCHITECTURE

The present chapter describes the Intrex retrieval programs on a
modular level. Such a description is necessary to establish a framework
into which a m re detailed description of the modules can fit.

2.1 Overview of Software

The retrieval program consists of a 32, 768-word*core image and
four approximately 3500-word overlay segments. The current 15, 000
document data base consists of an author Inverted File of 120,000 words,
a subject Inverted File of 1,400,000words, a catalog file of 4,200,000 words,
and a microfiche directory containing 1500 addresses to the fiche locations
of documents.

Approximately 300 different subroutines, containing a total of about
30, 000 instructions, make up the retrieval program. About 150 of these
subroutines can be described as general piarpose utility procedures. They
perform such-basic functions as console and disk I/O, core storage ci.)

management, code conversion, and string manipulation. The other 150 sub-
routines aye special purpose subroutines which, by interacting with the
utility procedures and with each other, carry out the retrieval functions
of INTREX. These subroutines can be clustered functionally into four
groups: the initialization, command, search, and output modules. The
initialization module starts up the system and logs in the user. The com-
mand module accepts commands from the user and either executes them
directly or generates a data structure-which is later interrogated by the
search or output modules. The search module searches the Inverted
Files. The output module displays information from the augmented cat-
alog, the fiche directory, or the text access mechanism. The flow of con-
trol among these modules is directed by the supervisory subroutine
SUPER. 'Each of these modules is described in more detail below.

*Word size fOr the IBM 7094 is 36 bits

-11 -

2 7



-12-

2 1 1 Initi lization

Initialization takes place in three phases. The first phase ini-
tializes the subroutines in ov_ lay segments. The second phase completes
the setting of parameters which are independent of a particular retrieval
session. The third phase prepares the system for a session.

During the first phase of initialization, four loads are performed,
each of which consists of the core-resident portion of the system and one
of the four overlays. The hierarchical relation of the various subroutines
of the initialization module is depicted in Fig. 2.1. Figure 2.2 shows the
sequence of functions involved in initialization and ihe routines performing
these functions. When a subroutine has completed its task,.it returns to the
subroutine on the level just above it.' After each load, control is trans-
ferred to the main subroutine, SUPER, which in turn transfers control to
the overlay generation subroutine, SYSGEN. SYSGEN calls SEGINT, which
in turn calls initialization routines asSociated with subroutines in the over-
lay section (see Fig. 2.1). SYSGEN then writes out the overlay as a sep-
arate disk file and halts. Each of the four_segments is generated in the
same way. After the fourth segment is generated, the core image is saved.
This core image, together with the four overlay files, makes up the re-

<trieval system.
The second phase of initialization performs the remaining initialization

tasks that are independent of a particular retrieval session. This phase starts
with the execution of the core image saved at the end of the first Phase.SYSGEN
calls INITDB, which defines areas for the INTREX data structure (see Section
2.3). One word is allocated for the System State Table (SSIi), which is used
as an array of control bits. Pifty words are allocated for the Parameter Op-

,tion Table (POT), which is used to store important data elements, such as
the names of system files. Nine words are allocated for the Command List
(GE), which is the beginning of a data structure which will expand or shrink
depending on the user's commands-. SUPER then calls, INIFDC, Which allocates
seven 432 word blocks of storage to be used as I 0 buffers and calls INIT2,
PREP, TABLE, MONINT, and INIGON (See Fig. 2.2). SUPER then calls
INIVAR which transmits to the Console a request for the second names of the
Catalog Files and the Inverted Files. After these names have been entered,
INIVAR calls IFSINT, which reads into.mernory the directories for the In-
verted Files. IFSINT also calls INIEND, which initi lizes the ending table



-S
E

T
G

IN
T

1N
1T

D
B

1N
1T

2
PR

E
P

1N
IE

V
L

1N
1C

Q
N

M
O

N
1N

T
T

A
B

L
E

O
PF

IL
E

1N
1R

E
S

1N
IM

O
N

K
1L

FA
P

1N
IN

T
R

SC
L

C
K

SE
T

W
R

D
L

D
O

PT
SE

T
SY

S
1N

X
C

O
N

Fi
g.

 2
.1

T
he

, I
ni

tia
liz

at
io

n 
M

od
ul

e



PHASE 1

Supervise initialization

-14-

S UP ER

Generate segment SYSGEN

Initialize segment SEGINT
PHASE 2

PHASE 3

Initialize data structure and INITDB
set parameters

Initialize core-resident subroutines
Call 3 routines INIT2

Initiolize-EVAL INIETE
Initialize IN., OUT. INIOUT
Initialize SUBJ., AUTHOR

Initialize CLP
Initialize MONTOR
Initialize field names
Initialize command table

Obtain names of data base

Read in inverted-file directories

Read in ending table

Run-time initialization

INIFIX

INIS.T

MONINT
TABLE

PREP

INIVAR

IFSINT

INIEND

DYNA 0

Open files OPFILE

Choose monitor file INIRES

Initialize timing INIMON
Open monitor file INIDSK
Open message files INITYP
Initialize interrupts ININT
Set clock RSCLCK

Store password SETWRD

Set options LDOPT

Name subs;stem SETSYS

Identify console INXCON
Accept begin statement CLP

Aceept login statement SIGNIN

Fig. 2.2 Tasks Per'fonned Du jng initialization

30



-1 5-

which is used for stemming search ter"ms. INIVAR returns to SUPER
which ends the second phase of initialization by returning control to CTSS.
Once again the core image is saved.

The third phase of initialization handles those functions that are re-
lated to a particular retrieval session. This phase has one part that set;
up the retrieval system for the session and a second part that logs the user
into the system. 'rile first part is handled by DYNAMO, which calls a variety
of subroutines to complete the system initialization (see Fig. 2.2). OPFIEE
opens basic system files, including the Catalog Directory and the overlay
segments. INIRES initializes the SAVE-RESTORE package and as'signs the
system a Monitor File. INITYP reads either the long or the short message
file directory into core. INIDSK opens the Monitor File. INIMON writes
the header information in the Monitor File and ININT sets up the interrupt
handling mechanism.

The log-in process begins with SUPER asking the user to type the
word "begin". SUPER then calls CLP to await the user's response. If the
user types "begin", SUPER calls SIGNIN. SIGNIN asks. the user to log in.
If the user then types the word "log" followed by a spaCe and any non-blank
character string, SIGNIN will accept it as a legitimate log-in. SUPER trans-
fers control to CEP, which waits for a user command.

2. 1. 2 Command Interpretation

The command interpretation module of Intrex, often referred to as
the "Command Language Processor", is based upon the controlling pro-
gram CEP'. The Intrex gupervisor (SUPER) calls CEP at the outset of any
new user/system interaction. CLP, in turn, calls several other procedures
which accept and interpret the user's input.

The first routine called by CEP is GETEIN, which requests a logical
line f user input.* GETLIN informs the user that Intrex is prepared to re-
ceive a command by calling the small sub-procedure READY, which out-

*One logical line consists of allthe characters typed by a user up to
ca.rriage return which is not immediately proceded by a hyphen .

he first



-16-

puts the "R" or "Ready" message, and if the TIME mode is ON, calls.
MONTIM to output the CPU and real times used since the last call to
READY.

GETLIN then calls the CTSS system subroutine RDFLXA which
actually obtains the string of characters typed by the user up to and in-
cluding the carriage return. GETLIN then processes the character string
to -delete all characters whose removal is implied by the character-delete
(ig or back space) and line-delete A pointer showing the location and length
of the edited inrint line is returned to CLP.

CLP then extradts the first item or word from the line by calling
NEXITM. This procedure looks, for specified delimiters, such as space,
hyphen, slash, or carriage return, and returns a pointer to the string of
characters up to the next such delimiter found. The string pointed to by
this call to NEXITM will be,. in most cases, an Intrex command.

CLP calls the procedure LOOKUP to compare the first four char-
acters in the string to the list of Tntrex commands. If there is a match,
then the name of the appropriate procedure to process the command is re-
turned to CLP. CLP then calls CALLIT which uses the name as a key to
the overlay segment and location within that segment where the desired
processing routine may be found. Control is returned to CLP after execu-
tion of the command routine, and NEXITM is recalled to fetch the next com-
mand, if any, from the command line .

If the first word in t character string is not a command, it is as-
sumed that this word is an argument to the implied RESTOR command,
the name of a list to be placed in active status. This is indicated by the re-
turn from LOOKUP of an error code to CLP, which then calls the proce-
dure RESTOR. li RESTOR indicates that the name does not correspond to
any existing list, then CLP informs the user that the word is "not a legal
command". When this occurs, CLP returns im ediate1y to the supervisor
without processing the rest of the command line.

The subroutines called by CALLIT to perform the actions requested
by the user through the various Intrex commands are- shown in Fig. 2.3.
Their names generally correspond to the nam2 of the command which they
iMplement. The subroutines havabeen grouped in Fig. 2. 3 according to

32



S
E

A
R

C
H

IN
T

E
R

P
R

E
-

T
A

T
IO

N
R

O
U

T
IN

E
S

S
U

B
J

T
IT

LE

A
U

T
H

O
R

R
A

N
G

E

O
U

T
P

U
T

IN
T

E
R

P
R

E
-.

T
A

T
IO

N
R

O
U

T
IN

E
S

O
U

T
.

N
.

LI
S

T

M
A

N
IP

U
=

LA
T

IO
N

R
O

U
T

IN
E

S

N
U

M
B

E
R

N
A

M
E

S
A

V
E

D
R

O
P

LI
S

T

U
S

E

F
ig

. 2
 3

T
he

 C
om

m
In

d
M

od
 6

le

B
O

O
LE

A
N

O
P

E
R

A
T

IO
N

R
O

U
T

IN
E

S

A
N

D
.

O
R

.
W

IT
H

.
N

O
T

.

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

A
N

D
 U

T
IP

T
Y

C
O

M
M

A
N

D
R

O
U

T
IN

E
S

LO
N

G
S

H
O

R
T

T
IM

E

M
O

N
IT

O
R

C
O

M
M

E
N

T
LI

B
R

A
R

Y

IN
F

O
S

E
E

M
A

T

E
X

IT
-

Q
U

IT
B

E
G

IN



-18-

functions that they perform-for _ease of reference; this grouping implies no
particular sequence of control.

2. 1. 3 Inverted File Search

The search module depicted in Fig. 2.4 is responsible for procesing
the search data structures set up by the interpretation of a search command
issued by the user (described in Section 2.1.2). This interpretation takes
place in the "Command Processing" module which executes the routines
associated with "subject", "title", or "author" commands.

Fig. 2.4 The Search Module

A "System State Table" (SST) flag alerts SUPER that a search-has
been set up, but not yet executed. SUPER then calls the main search pro-
cedure SEARCH, which examines the three main search structure pointers
in the Command 'List -(CL). These pointers, if they exist, point to the data
structures of one or more of the three types of searches available to the
user; subject, title, and author (see Section 2.3).

The presence of a subject-search-form causes SEARCH to call a
control routine named SSRCH. Similarly, a title-search-form would prompt
SEARCH to call another control routine named TSRCH. These two procedures
merely control the mode of the more important routine STRCH which actually
pro'cesses either a subject term (ph-rase) or a title term.

3 4



-19-

The presence of an author-search-form causes SEARCH to cali
ASRCH, a procedure analogous in function to STRCH.

ASRCH is considerably less complex than STRCH since the former
must only process the author's name while the latter must process each
word of a subject or title term.

The subject- (or title) search-form constructed by the command
processing module contains a pointer to a list of pointers called the "simple
search list". Each of these in turn points' to an "Inverted File search form"
containing data relevant to one word of the search term in the user's request.
These search word data structures are in the same order as the Words that
were typed by the user. STRCH employs a routine named REORP to re-
order the pointers to the words to pla.Ee a word with a short (preferably less
than one disk record) list of references at the top to initiate the process de-
scribed below. This usually reduces the number of reference comparisons
necessary during the ensuing list intersections.

The reordered pointers are fed, One-by-one, to the lookup procedure
IFSRCH, which is the heart of the search mechanism. .With the aid of its
associated directories, IFSRCH selects the segment of the Inverted File
where it is most likely to find a list name matChing the search word in
question. An exhaustive list-by-list search of this area is then made until
either a matching list name is found or it is determined that no such list
is in the file: Either a pointer to the reference list of the matching entry
or a "search-failed" code is returned to STRCH. If a search fails on any
word, no further sea ching is done on that request since all words of a
search term must be matched for the search to be successful.

The first list pointer returned from a successful call to IFSRCH be-
comes the "current list" by being placed in one of the components of the
Command List, RRI,. !CL.). If a one-word search is being processed, this
list will remain the cUrrent list and the search is finished. If other search
words are part of the user's search request, the list pointers returned by
the subsequent calls to IFSRCH will be intersected with the "cuiirent list"_

by the ANDER proc dure. This routine produces an output list containing
only those referen es whose document and subject term numbers are found
-in the references of both the lists in question. If ANDER produces a zero

the format of list'inters,. see Section 2.4.
33



-20-

length output list (no common document and term number), the entire search
is considered a failure and is terminated. If the output list produced by
ANDER is of non-zero length, it becomes the new "current list" and the
process continues until all search words have been processed.

If an author-search is requested, ASRCH calls IFSRCH which will
process the "author-search-form". In this cage, IFSRCH will access the
Author Inverted Files, which are separate and much smaller than the Subject/
Title I verted Files. If the author-search-form contains a pointer to a set
of initials provided in the user's search request, then the procedure MATAFX
is called by, IFSRCH (if a matching last name is found) to check for a match
on the authors initials.

The results of a subject search, title search, and author search are
intersected only if these searches had been part of the same request,
given by the user in a combined search command. Should this intersection
be necessary, ANDER is called after successful creation of each of the
separate title or author lists to effect the combination. The resulting reference
list pointer is found at the end of any successful search in the Command List
component RRE. (C L. ). The number of different document numbers involved
in this list will be found in the component DCNT(CL.).

2. E 4 Catalog Output

The main purpose of the output module is to transmit three kinds of
disk-stored data to the user. These kind's of data are document numbers
obtainecrfrom the lists in the Inverted Files, catalog information extracted
from the Catalog Files, and fiche addresses pulled out of the Fiche Directory.
In addition, the output module has the function of initiating a request for text
from the text access subsystem.

As can be seen in Fig. 2.5, the subroutine FSO controls the output
process. GETLIS is first called to prepare the reference list for use. FSO

sfeps through the reference list and displays the information that the user
has requested.

FS0 calls GETINT to extract each docuMent record from the Catalog
Files and bring it into memory. F90 then calls GETFLD to extract each
requested catalog field from the catalog record. If GETFLD finds the field,
FSO uses the console I/0 package, TYPEIT, to print the following information:



1. The position number of the doc _rnent on the
reference list.

2. The INTREX- ssigned document number

3. The number and name of the requested field.

4. The contents of the field.

The character set used in the catalog is coded to represent the special
symbols .that are frequently encountered'there.11 For example, the Greek

Fig.:2.5 The Output Module

lett a is represented in the INTREXcatalog by the expression *alpha*.
However, on a console with an extended character set, such as the INTREX

e12nsole, special characters may be represented directly. In this situation,
FS0 calls the subroutine SPCTRN1Mead of TYPEIT. SPCTRN translates
any asterisk-coded expressions it encounters into the appropriate codes to
display the symbols.

In addition to conveying catalog information to the user, FSO also re-
sponds to requests for full texts of documents. If a-user asks fbr field 5 -
the location of the document in the fiche collection - FSO calls TRETRI for
this information. TRETRI looks up the address of the document in the fiche
directory_Jile--and tells the user the fiche card number and the frame positions

---or-fg-document. If the user asks to view the text immediately, (field 90),
TETRI translates this information into a special coded sequence which
activates the text access subsystem.

2.2 Examples of Command Processing

Executing a user command requires the interaction of many separate sub-
rou es; The charts in Figures 2.6, 2.7, and 2.8 illustrate the flow of control



User command: Subject ion porticle

System control

Command processing control

- 22-

Receive command line

Parse command word

Look up command word

Search command control

..cEnter specifications into data structure

Parse Specifications from command line

Look for more commands

Inverted Fil search control

SUPER

CLP

GET

NEXITM

LOOK UP

SUBJ.

S.171
NEXITM

NEXITM

SEARCH

Identify type of search
Search control

SSRCH

STRCH

Reorder words by list size REORD
A

Measure length of lists MEADIR

Search for first specification word IFSRCH

Locate segment containing list LOCS EC

Search for second list IFSRCH

Locate segment containing list LOCSEC

Combine lists ANDER

Handle I/0 for list merge GETLIS

Check for title search request
Check for author search request

Report how many docs found

Type message to user

Go back for new command

TSRCH

ARCH

EVAL

TYPEIT

CLP

Fig. 2.6 Sequence of Subroutine Calls f r the:Command "s ion particle"



-23-

User commend: Output title fiche

SUPER

Coordinate command processing CLP

Receive a line from the console GETLIN

Type the "READY" message TYPEIT

Interrogate the console RDFLXA

Parse the command line NEXITM

Find name of subroutine asked for LOOKUP,

Interpret the NOUTPU'r command OUT

Extract first argument NEXITM

Check the argument LEGFLD

Extract second argument NEXITM

Check second argument LEGFLD

Report that there are no more arguments NEXITM

Produce requested output

Obtain list of documents
Extract the document
Location of a translation table
Read catalog directory
Read catalogiecord file segment
Extract field 24 from catalog record
Print field 24
Retrieve data on field 5

Read in fiche directory

Print fiche location

Receive a new command

FSO

GETLIS

GETINT

GETTAB I I

RDWAIT

RDWAIT

GETFLD

TYPEIT

TRETRI

RDWAT1
TYPEIT

.2.7 Sequence of Subroutine Calls For the Com- nd'
"output title fiche"

30

CLP



User cc ISTI AND LIST2 E LISTWSAVE file myfile/SAVE 1I513

CLP

Accept command line GETLIN

Parse command line NEAITM

Look for subroutine LOOKUP

Make list LISTI active RESTOR

Look up address in table CHKNA117-1
Delete current list

Combine current list and 1I5T2

Extract "UkT2".from command line NEXITM

DELIST

AND.

Look up address of LIST2 CHKNAM

Cembine USTI. and LIST2 ANDER

Initialize lists GUI-711S
Add combined list to table TABENT

Type results TYPEIT

Name current lis NAME

Extract "LIST3".from command line NEXITM

See if "1I5T3" IS name af command LOOKUP

ee if 1I513 aleeody exists CHKNAM

Write 1I513 in HAMOOx FILE ANDER

Create Save File SAVE

Identify argument '''I'ile" CHKNAM

Convert file naine fo BCD code CHKNAM

:e,e if "myfilei exists, as file name CHKSAV

Write diiectorY section of myfile WRWAIT

Save LI5T3 in file myfile SAVE

Find location Of LI5T3 CHKNA1-71

Copy LIST3 into myfile WRWAIT

Sequence of Subroutine calls for-a Combined Command

40



-25-

among the m re important subroutines in response to three different com-
mands.

Figure 2.6 shows what happens when a user issues the simple sub-
ject) search command "subject ion particle" SUPER calls CLP, which
accepts the command. SUBJ. is then called to enter the search words into
the data structure. SEARCH then searches the Inverted Files for the refer-
ence lists associated with the subject search terms "ion" and "particle".
Having found the lists, SEARCH calls ANDER to combine them into a single
reference list. EVAL reports to the user how many documents were fOUnd.
Finally, SUPER calls CLP once again to wait for further commands from
the user.

Figure 2.7 shows the erents in processing the command "output title
fiche". SUPER calls CLP to accept the command and CLP in turn calls
OUT., which enters the field specifications into the data structure. FSO
transmits to the user the requested data for the documents on the currently
active reference list. Control then returns to CLP.

Figure Z.8 shows the events involved in processing a string of four
commands. The user enters the four commands as the combined sequence
LIST1 AND LISTZ NAME LIST3/SAVE FILE MYFILE/SAVE LIST3.
RESTOR is called to restore list "LISTIV AND. intersects it with LIST2.
NAME assigns a.name "LIST3" to the combined list. SAVE is called to
create a file "MYFILE" for saved lists and SAVE is ,called again to trans-
fer list "LIST3" to this.file. As in the other examples, control as re-
turned to SUPER, which returns control,to CEP.
2.3 Common Structures and Variables

The approximately 150 Intrex-written, routines share parameters, flags
and data structures through the AED. COMMON facility.13Variables in the
source program may be declared to be located in the COMMON area assigned
during compilation and thus become available to all subroutines w.hich have the
same COMMON declaration.



-26-

Intrex uses only three words of the COMMON area which serve as
pointers to three essential parts of the Intrex data structure located in
another part of core (see Fig. Z. 9). This indirect use of COMMON allows
expansion of the data structure without change in the size of the COMMON
area. The three words contain the Command List pointer (CL.), the Para-
meter Option Table pointer (POT.), and the System State Table pointhr
(SSZ-.). The corresponding areas of storage are defined as arrays in the
source file OVNEW ALGOL.

The largest of these arrays, the Parameter Option Table (hereafter
referred to as the POT) is partially filled during the s econd ini-
tialization phase of Intrex (see Section 2.1.1) with such data as systeim
file names, line lengths, buffer addresses, and so on. Other parts of the
POT are filled, as the system is executed,-with parameters obtained from
such sources as the arguments of the command line used to RESUME In-
trex, the identification number of the console being used, and so on. A
complete list of the POT parameters is given in Appendix A.

The second pointer in COMMON is the System State Table 'pointer
(SST.). The System State Table is a group of Boolean flags, each of which
indicates some state or condition of the Intrex system. These, flag bits are
set to TRUE (1) or reset to FALSE (0) during the execution of Intrex and
help control the logia1 flow of processing during user/system interactions.

The third area, the Command List, is nine words long and during ex-
ecution holds information and pointers to information pertaining to the user's
search or'output requests. These pointers are the beginning of a rather com-
plex data structure consisting of arrays and other pointers at'various lerels
wtthin the data structure. This entire structure is explained briefly in
Section 2.4 and in depth in Chapter III (Sections 3.2.2 and 3.2.3).

4 Data Base Structure

The Intrex data base consists of three main sets of files. First there
are the catalog record files and a directory CATDIR to these files. The cat-
alog record files contain catalog information for each document in the data

4 2



L
is

t o
f 

va
ri

ab
le

s
if

ie
 n

am
es

,
ba

re
r 

ad
dr

es
se

s
m

od
es

, e
tc

.

C
L

.

11
,

X
C

H
R

X
 L

I 
N

B
L

IP

T
O

T
SA

V

.M
O

D
E

G

T
E

X
T

X

V
E

R
B

O

I I
ii

...
_

Pa
ra

m
et

er
-O

pt
io

n
T

ab
le

 (
50

)

PO
T

.

SS
T

.

bi
t f

la
 s

Sy
st

em
 S

ta
te

 T
ab

le
)

M
od

e

N
am

e

un
us

ed
)

SS
L

.

( 
un

us
ed

.

M
R

L
.

Su
bj

ec
t

T
itl

e
.S

ea
rC

h 
Fo

rm
.

Se
ar

ch
 F

or
m

Fi
g.

 2
.9

St
ru

ct
ur

e 
of

 C
om

m
on

 S
to

ra
ge

.

.D
C

N
T

R
E

SU
B

R
E

FI
T

A
ut

ho
r

C
om

m
an

d 
L

is
t

9
Se

ar
ch

 F
or

m



-Z8-

base. The directory is a list of pointers to locations within the catalog
record files where catalog information pertaining to a given numbered
document can be found (see Fig. 2.10). The remaining two sets of files
are identical to each other in structure but one is used only for subject
or title searches while the other is used exclusively for author searches.
Each set consists of the Inverted File and two levels of directories to the
Inverted File contains an alphabetically ordered list of word stems (or
author names) and a corresponding list of document numbers (pointers
to CATDIR). The first directory to the Inverted File (IFDS for Subject
Title or IFDA for Author Inverted File) contains pointers to segments in
the Inverted File. (This directory has been likened to the guide words on
the pages of a dictionary.) The second Inverted File directory (IFTABS
or IFTABA) has pointers to the beginning ,of each alphabetic group in
the first directory and thiis serves as an index to the larger directory.
(This index directory can be likened to the thumb tabs in a dictionary).
In order to accelerate the search process, both directories are brought
into core during system initialization and maintained there. The logical
relation of all of these files is depicted in Fig. 2. 10. Documents are re-
trieved by starting with the index directory and proceeding to the Catalog
records corresponding to the given search term.

In addition to the files just cited which pertain to catalog retrieval,
there is a directory file to the collection of microfiche which is used for
full text access. .A..?1 understanding of the structure and format of all
these files is essential to a complete understanding of the Intrex system.
Some A the broader aspects of the files are discussed in the next three
subsections A more detailed description is contained in Appendex B and
the reader is urged to consult that part of the report.
2.4.1 Catalog Files

The formatted catalog records are stored in a-- et of segments. The

narries of the segments are of the form CRnnn Name2 vvhere nnn is a three-
,digit segment munber, and Name2 is a name cOmmon to all of the segments.

The size of the 'segments is deterrhined by a length threshold value M which

4



S
U

B
JE

C
T

/T
IT

LE
F

IL
E

S

11
F

T
M

S
)

IN
V

E
R

T
E

D
 F

IL
E

D
IR

E
C

T
O

R
Y

.
[E

D
S

 )

I N
V

R
T

E
D

 P
IL

E
 S

M
A

G

(A
T

R
IA

`

10
1 

W
I 1

01

E
T

C D
O

C
N

O

2
A

,C
T

IV
E

A
 T

T
R

1N
E

R
A

 L

C
N

O
N

1

E
S

2
A

P
P

LE
 E

N
S

M
IT

H

S
N

1D
E

01
01

11
0 

I
62

71

S
.

M
IC

R
.

I 1
S

E
C

T
IO

N
 a

N

S
K

T
IO

N
N

I
I 1i

.
57

C
A

T
M

 O
G

D
IR

E
C

T
O

R
Y

I C
A

ID
IR

 )

C
A

T
A

LO
G

S
E

C
T

IO
N

.E
C

T
 IO

N
N

 +
 I

F
ig

, 2
.1

0
D

at
a 

:a
05

e 
S

tr
uc

tu
re



is pre-stored in one of the teii reserved words of the catalog directory.
Since formatted records are not split between segments, the length of

a segment may ekceed this threshold by an amount less than the length
of its last record (see Fig. 201).

CR 001
M25100

M = Length Thr ld

CATALOG RECORD
BOUNDARY

0

SEGMENT
BOUNDARY

Fi_ 2.11 dotalog Record Segments

CR 147

Each catalog re-cord consists of a header and a body (see Fig. ,2.12).
The catalog fields of fixed length (e.g. document number, on-line date,
language) are encoded directly into the header. The other fields are c-on-

.

tained in the body in the form of digram-coded ASCII strings packed one
right after the other -Pointers in the header indicate the beginning of each__
field. Appendix_ B describes this format in greater detail.

The catalog record directory= associated with a set of catalog record
segments (i.e. CR001'Name2, CR002 Narne2, CRnName2) is named
CATDIR where Narne2 is a unique.second naMe common to each file in the
set of segments and to the directory file. The CATDIR file contains an

plic it ly-ke ye d t.able of catalog record locations (segment number,

4 b



-31-

record size, and offset in segment). In addition, the first ten words in the
directory are reserved for storing statistical information about the catalog.
Thus, the pointer for doct.Lment no. x is located at directory position x+10.
If the catalog record for document x is not yet in the catalog, its pointer
will be empty (binary zero). The exact format for items in the catalog re-
cord directory (pointers and statistics) is described in Appendix B.

7 7 7 7 7 7

Field

Field

First ASCII field

Di Second

Encoded.
Fields

Field--
Pointers

Digram-
Encoded
ASCII

Fig. 2.12 Cato Record Format



-32-

2. 4. 2 Inverted Files

The Inverted Files consist of a series of small disk files or seg-
ments which are numbered serially from 1 to n as part of the first
name of each segment. Subject/Title segments are named SIddd date
and Author segments are named Alddd date where ddd is the segment
number and date is a uniform second name. Each segment is further sub-
divided into ten "sections". Each section may contain one or more lists
of documents or only part of a list (the remainder being contained in ad-
jacent sections). For a detailed diagram and description, see Appendix B.

The name of the first list in each section appears as an entry in the
Inverted File directory (IFDS for subjeCt/title Inverted File and IFDA for
author Inver ed File). Only the first seven characters of the name are
used and these are represented in a 5-bit ASCII code. This allows each
name to be packed into one computer word. The name is related to its file
section by its position in the directory. Directory entries 1, 2, 3, etc. will
contain the names, of the first list in sections 1,2, 3, etc. of segment 1.
Directory entries 1, 11, 21, etc. will contain the names of the first list in
segments 1, 2, 3, etc. since there are 10 Sections per segment. As a fur-
ther example, the name in position 54 of the directory would be the first
list in Section 4, Segment 6. If no list starts in a given section, the name
of the previous list (which is being continued in the given section) is placed
in the corresponding directory posi ion. In these cases the sign bit of that
directory word is a one. A fence of 6 octal 7's in the le t half of the last
computer word terminates the Inverted File directory.

As mentioned earlier, an index to the Inverted File directory exists
to allow more direct searching of the /FDS or IFDA (which exceeds 2000

computer words in length). This index, IFTABS for su1-'1-ct/title fqes arid
IFTABA for author files, points to the position within IFDS or IFDA where
each alphabetic group begins (see Fig.2.13). That address is found in the
IFTABS or IFTABA position which corresponds to the six-bit ASCII code
of the letter.

The standard ASCII code requires s
by ignoring the highest order bit.

46

en bits. The six-bit code is formed



ndex8

0
1

2

21

22

23

41

42

43

IFTABS

AO

(special character
pointers)

" pointer 4)

"2" pointer
pointer

"Oil pointer (87)

" "b pointer: (207)
"c" pointer (262)

0

I

i

=NM C~

72 "z" poin er (1912) 1---%
1

1

index
10

1

2

IFDS

anomai
a I

.ftiWORfp 34
1 0

35 1 0 0 ec

*sub
88 abacus

*

207 A
1 208 c k r o
1

1

262 C*sub
263 a b

segment
section 3)

ii

1912 zero
1913 zinc

Denotes Oriusd P. tion
Computer Word

Fig. 213 Format o Inverted Fife Directories



For example, if the first name starting with the le ter "b" is in position
number 102 of the IFDS or TFDA directory, then the number 102 will
appear in position 34 = 42 (the six-bit ASCII code for b) of IFTABS or
IFTABA.

The thirty-two words preceding the first alphabetic entry in the
index directories are used to point to names in the Inverted File Direc-
tory beginning with numerals or other non-alphabetic characters.

Z 4 Reference List Pointers
A list of reference words may be obtained, either through a search

of the Inverted File data base or through use of the DOCUMENT command.
Once obtained the list may be altered by other operations, such as RE-
STRICT, AND, OR, and NOT. Lists may also be saved temporarily (dura-
tion of/current lIntrex session) by the NAME command, cor saved more per-
manently (on the disk) via the SAVE command. Lists may be completely
stored in core (if they are small enough); they may be written into a "Du- p

-; File" if they result from a Boolean operation or an'attribute screen; or
they may be deposited into a. "Name File", if assigned a name by the user
via the NAME command. BeCause of this variety of list types and condi-
tions, an elaborate three-part pointer was designed (called an "augmented
pointer") to hold all the vital data about the list to which it is related. These
pointers are retained in an in-core table after being constructed by the op-
erating program segment.

Procedures which refer to referencelists use single-word pointers
o one of the-Se word augmented pointers.. The most important of these is

the pointer currently in the Resultant Rgference Lisk component of the
command List, RRL.(CL.), which points to the augmented pointer of the
currently active list.

The format of the augmentd pointers is shown and discussed in

Append& B.

4 4 Fiche Direct

Fiche Direct gives the locations within the text access subsystem, of
the ,fullexts of documents in the data base. The directory is ordered by docu-

,

ment number: word n of the directory gives the location ot document n. Each

50



-35-

word contains four fields: fiche number, first frame position, last frame
position and document number. If the full text of a document is not on
microfiche, the fiche number field is zero and the first frame position
has a special code (see Appendix B for a more detailed description).

An overlay system has been implemented so that the INTREX sys-
tern will not be' restrictedby the size of core memory. The system uses
a pre-assigned area of core, into which one of four segments of subroutines
and data can'be read as needed. The segments exist as separate disk files
in loaded and initialized form: address adjustment has been performed and
initialization procedures, such'as INIAUT,- have been executed.

Core is partitioned into three major areas: the resident area, the
segment area, and the free storage area (see Fig. 2.14). The resident area

contains the control subroutine, SUPER, utility subroutines such as FREE

and TYPEIT, and the overlay generation and linkage mechanisms, SYSGEN
and CALLIT. These programs remain in core at all times.* The segment
area contains one of the four segments, eadh of which consists of a group
of closely related procedures, together with the overlay generation and link
age mechanisms LINKUP, SENTRY, and SEGINT. The free storage arealis

A
available for use by subroutines in both the main.body and the segments.

Two tables are central to the overlay mechanism. One table, which
exists both as a part of SfSGEN and as the disk file, sysnam...TBLE.
specifies how many segrn/ents there are in the svstern and in what segment
or segments a particuhr procedure may be found. The other has four ver-
sions, one associated with the subroutine SENTRY in each of the four over-

lays. This table lists the entry points into the.segment with whichit is asso-
ciat d

SYSGEN, LINKUP, SENTRir and SEGINT are used in gen9rating the
overlay system. (See also Section 2 1 ). ,SYSGEN rep.ds sysnam .TB

More precisely these programs remain in the coie image of an Intrex user
ori CTSS. CTSS swaps core images in and out of physical core in the pro-

1cess of time-sharing.

DI



32,767

Segment i

- 36-

SEQINT

SENTRY

LINKUP

CALLIT

SYSGEN

SUPER

Free Storage Area

Segment Area

Resident Area

Fig 2.14 Partitioning of.intrex Cor'e Memory



-37-

and fills it in with information that it finds in the table contained in SENTRY.
SYSGEN calls SEGINT, which in turn calls initialization procedures for
subroutines within the segment. SYSGEN then writés, out sy.Snam. TELE.
and the segment as a file sysnam SGMTnn, where nniis the nmnber of the
segment and sysnarn is the name given to this -version of-Intrex (see Fig.
2.15). LINKUP merely provides linkage between SYSGEN and SENTRY.

f

Start

Load Care
Resident Procedures
and Segment Procedures

Generate
Segment

ments

nc

ic Core
mage

IExecute

Fig. 2.15 Flow Chart of System Generation Process

CALLIT, LINKUP,. and SENTRY are used during execution. -. A
procedure in the core-resident area transfers to a procedure, PROC, in
a segment by making a call of the form X = CALLIT (.bcd/PROC/, argl,
arg2.), where argl, arg2 are argumentS of PROC and X is its value.
CALLIT looks up PROC in the incore copy of sysnam. TELE.. and reads
in the needed segment, if it is nt already in core. It then transfers to
LINKUP, which transfers to SENTRY SENTRY looks up PROC in its own
table ahd transfers directly to it passing on argl and arg2.



III. SOFTWARE DETAILS

The objeEtive of this chapter is to provide the reader with an under-
standing of the purpose and the operation of each subroutine or procedure
of the Intrex retrieval programs. Included in this chapter is a statement of
the fundamental strategies and goals of each system component. Also in-
chided is the detailed information that allows a reader to follow the program
listings and understand the exact operation of each procedure of the Intrex re-
trieval programs.

The description .of each routine program has been broken down into
eleven parts. Part A "Operation" gives a step-by-step account of the logical
flow, explaining alternative branches as they occur. This part could be used
in conjunction with the program listings by a reader who requires an in-depth
understanding of the programs. The other parts, B through K, provide various
other types of information pertinent to the subroutine. For example, Part
lists all files which could be created, deleted, or used by the routine ,in ques-

,tion. Part J cites the file name where the Program can be found.
Some of the conventions employed in this chapter may need a few words

of explanation.
In general the following conventions are observed with regard to names.

1. Names of precedures, components and specific files are-ex-
pressed in all capital letters (e.g. SUPER,RRE. (CL.
SAVED DIRECT).
Optional (may or may not be used) arguments are represented
in lower case characters with a hyphen on both sides of the word.
(e.g. -mode-, -wordno-)

3. Variable file names or portions thereof which must be present are
represented in lower case without h :hens. (e. g. file ,SInnn, date).

The abbreviations chosen to represent the arguments of the procedure
call in Part E and at the beginning of Part A are intended to be indicative of
the role they play in the call but are not always the same as those used in the
program listings.

All messages which can possibly originate from the procedure are
listed in Part H and nuinbered. Parenthesized numbers in Part A (Opera ion)

4
-38 -



-39-

appearing after references to messages produced by the procedure refer to
the position of the message in this list. Each message is enclosed in quota-
tion marks in the list, although not in actuality, and followed by the label(s)
or routine(s) which is (are )used to generate the text. Vari- ble parts of the
messages are represented by symbolic tags and either underlined or foot-
noted to indicate their meaning.

We have attempted, especially in Part A, to provide an,e tensive
amount of cross-referencing to other procedures which relate to the one
being described. Should additional cross-referencing be required, the reader
may refer to the alphabetic index of procedures to find the location of the sec -
tion.describing the needed procedure.

In order to aid the reader in finding particular subroutine descrj,.p-
tions, each such description (subsection) begins on a new page. The sub-
section number is printed at the top of each page to facilitate locating the
subsection.



3. I. 1. 1 -40-

3. I. 1
S stern Control LOgiti:
Su ervision

3, 1 . 1 1 SUPER

Purpose

To supervise Intrex 1 gic flow

Description

SUPER is the original entry point into the retrieval system. It is
al o the routine to which control returns after the basic modules of the
system have performed their tasks.

A. Operation: SUPER( )
1. SUPER calls routines to initialize the INTREX System.

a. SYSGEN is the first routine c lled. After it does its work
it calls _DORMNT.

b. When the systern is resumed, SYSGEN returns control to
SUPER, whith calls the initia ization routines INIFIX and
INIVAR, arid then calls DORM T.

c. When the system is resumed once again, SUPER calls
DYNAMO

SUPER asks that the user type begin and then c lls SYSGEN
which introduces the user to the system.

Depending on the settings of bits in t e System State Table (SST.),
SUPER will call the following roulin
a. CLP is called to accept a command line from the user.
b. SEARCH is called to carry out a search of the Monitor File
c. EVAL is called to summarize the esalts of a search.
d. F 0 is called to print catalog info mation.

4.. SUPER makes c lls to the free storage monitor FSIZE and the
timing monitor MONTIM. The values r ported by these routines
are written in the Monitor File by mears of ASIDE.

Procedures ca1ling SUPER:
SUPER is the original ent y point of the retrieval system.

Pro _edures Called by SUPER:
.

ASIDE FS0 SIGNIN
CLP. INIFDC SYSGEN
DORMNT INIVAR TYPEIT
DYNAMO MONTIM,
EVAL SEARCH

56



D. COMMON References:
Name

STM(POT.)
FSONX(SST.)
GCE(SST.)
ISI(SST.)
RRLE(SST.)
SNX(SST.)
IBEG (SST.)

Arguments:
None

.

F. Values:
None

G. Error Codes:
None

-41-

Meaning
System time monitor
FSO not executed
Go command exists
In sign-in
Resultant reference
Search not executed
In begin state

H. Messages:
1. "Please type the wor

(/begmes/)
2.

Interrogated? Changed9

x

list exists x

begiiifollowed by a carriage return."

"You may make a new search by dropping some of your search
words or by chosingkether search words, or you may make
some other request of INTREX (see Part J.. )" (/op10.

"You have no current active list for which to provide outp-ut.
You must perforrn a new search or restore a saved (named) lis
( super )

Length:
4408 or 288. words

Source:
SUPER ALGOL

Files Referenced:
None



3.1.2.1 -42

3.1.2 Fixed-Parameter and Data Base Initialization
3.1.2.1 SEGINT

Purpose
To initialize an overlay segment

Description

A. Operation:
A different version of SEGrNT is contained in each segment.

SEGINT calls individual initialization routines' for procedures in a par-
.

ticular overlay segment. SYSGEN calls SEGINT before writing out the

segment.

B. Procedures calling SEGINT:
SYSGEN

C. Procedures called by SEGINT:
INIVRB,

D. _COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

INIRNG, INIAUT, INMON2

I. Length:
10-20 words

J. Source:
nSENT ALGOL (where n is 1,2,3, or 4)

K. N,Files Referenced:
None



-43 3 . 1. 2. 2

3. 1. 2. 2 INITDB

Purpos e

To initialize COMMON parameters

Description
A. Operation INITDB( )

INITDB is called by SYSGEN dUring fixed-parameter initialization.
INITDB contains, as arrays, the areas used for the command list (CL),

the parameter option table (POT.) and.the system state table pointer (SST.)

with the addresses of these areas. These three words are in COMMON

storage.
INITDB sets certain POT parameters, such as the length of out-

put lines, and sets up free storage arrays for the output request list
(Section 3.2.7.2) and field search list (Section 3.2.7.3). The addresses

of these arrays are stored in the appropriate component of the command

list array.
B. Procedures Calling INITDB:

SYSGEN

C. Procedures Called by INITDB:
FREZ

D. COMMON References:
Name

ORL.(CL.)
FSE.(CL.)
STM.(POT.)
RTM.(POT.)
MAXCHR(POT.)
MAXLIN(POT.)
VERBOS(POT.)
RAM(POT.)
DYSN1(POT.)
DFLN1(POT.)
M.AXCIN(POT.)

E. Arguments:
None

Values:
None

p.

Meaning lat_erted? Changed?

Output Reqi ,...,t'-':List x
Field Search LiSt x
System TimeiMonitor 71:

Ready Time MOnitcir x
Max. chars. per< oUtput line x
Max. lines per.command x
Typeit message mode x
Residual author mode . : x
Short messg. file name 1 x
Long messg., file name 1 k
Max. chars. per input line x

5 9



3. I. 2.2

G. Error Codes:
None

H. Messages:
None

I. Length:
548 or 44 words10

J. Source:
OVNZW ALGOL

K. Files Referenced:
None

4.

60

-44-



-45- 3.1. 2. 3

3.1.2.3 INIFIX

Purpose
To initialize fixed parameters

Description
INIFIX, like SYSGEN, is called by SUPER to carry out the fixed

parameter phase of the initialization of the retrieval systhm. INIFIX

generates relatively stable parameters for the system, such as char-

acter strings and table- entries.

A. Operation
INIFIX calls for a large block of free sto-age and divides it

among common buffers 1 through 6 in 432 word blocr.s. Common buffer

0 is assigned to the top of core. INIT2 is called next. INIT2 calls the

following initialization routines:

INIENTL,
INIOUT,
INIS. T,

which initializes EVAL (Section 3.2.6. 1),
which initializes INOUT (Section ''.2.7.1),
which 'initializes S T (SectiOn 2. 2. I).

INIFIX then calls:
PREP, which reads in COMMAND TABLI
TABLE, Which reads in FIELDS TABLE
MONINT, which initializes MONTIM
INICON, 'which initializes CLP

In the course of calling these
ory bound five times,

(Section 3.1.2.5),
(Section 3.1.2.6),
(Section 3.1.5.1),
(Section 3.2-. 1.1).

routines, INIFIX prints out the mem-

as a way of monitoring the utilization of free storage.
INIFIX calls FRALG to give its coding space over to free storage before re-
turning to SUPER.

B.

C.

Procedures CallinlINIFIX:--
SUPER

Procedures Called by IN1FIX:

FRET, INICOJ INIT2, MONINT, PREP, SIZE,
TABLE, TYPEIT



3. ! . 2. 3

D. COMMON References:
Name

COMBFO(POT.)
COMBF1(POT.)
COMBF2(POT.)
COMBF3(POT. )
COMBF4(POT.)
COMBF5(POT.)
COMBF6(POT. )
COMTB.(POT.)

E. Arguments
None

F. Values:
None

G. Error Codes:
None

H. Messages:
1. "Top of Intrex is X" (LOCMES)
2. "After Init2 X" (LOCMES)
3. "After Prep -X" (LOCMES)
4. "After Table X" (LOCMES)
5. "After Inifix X" (LOCMES)

-46-

Meaning
Common buffer 0
Common bulier 1
Common buffer 2
Common bUffer 3
Common buffer 4
Common buffer 5
Common buffer 6
Command Table

I. Length:
1538 or 10710 words

J. Source:
INITLY ALGOL

K. Files Referenced:
None

62

Interrogated? Changed?



-47- 3.1.Z.4

3 . 1. . 4 INITZ

Purpose
To call initializing procedures

Description

A. Operation INIT2( )

"INITZ is called by INIFIX. INIT2 is used as a convenient place
to put calls to initialization routines of procedures which are in the core-
resident section of the system. INIT2 currently calls:

INIEVL, which initializes EVAL (Section 3.2.6, 1),
INIOUT, which initializes INOUT (Section 3. Z. 7 . 1),
INIS. T, which initializes S. T. (Section 3. 2. 2. 1).

B. Procedures Calling INIT2:
INIF DC

C. Procedures Called by INITZ:
INIEVL, INIOUT, ENIS. T

D. COMMON References:
None

"L. E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:

6 words

J. Source:
OVNEW ALGOL

K. -Files Referenced:
None

63



3. 1. 2. 5 -48-

3. 1. 2. 5 PREP

Purpose

To construct command table

Description
PREP constructs the INTREX command table. This table asso-

ciates the INTREA commands with their interpretive subroutines. The

table consists of two word entries: the first word contains the first four

letters of an INTREX command in ASCII and the' second word contains the

associated subroutine name, written in 6-bit BCD, LOOKUP uses

VSRCH to find the second element of an entry by searching the table for

a match on the first element.

A. Operation: Ptr r: PREP( )

PREPreads theline-mark file COMMAND TABLE into core mem-

ory. An area equal to 2/3 the length of this file is allocated for the table

that PREP is to construct. Each line,of the file contains the first four

letters of a command, followed by a tab, followed by a procedure name.

Using the tab as a delimiter, PREP extracts the four letter string, con-

verts it to ASCII and stores it in word n of the table. The 6-bit proce-

dure name is stored in word n + 1. When the table has been filled, PREP

returns a poifiter to the table, where the decrement contains the number

of 2-word elements, rather than the nuMber of words.

B. Procedures Calling PREP:
INIFIX (via CALLIT)

C. Procedures Called by PREP:

ASCITC DORMNT FRET
BFCLOS FILCNT GET6
BFOPEN FRALG LOCMES
BFREAD FREE PUT6

TYPEIT

D. COMMON References:
Name Meaning Interrogated? Changed?

COMTB(POT. ) Command table Ptr.
'r

E. Arguments
None

6



-49-- 3.1.2. 5

F. Values:
Ptr-z-- Bits 3-18: number of 2-word elements

Bits 21-35: location of table

G. Error Codes:
None

H. Messages:
1. "File error in PREP" (LOCMES)
Z. "PREP command over 4 characters . . .Fatai error." (LOCMES)

I. Length:
400Q or 25610 words

J. Source:
PREP ALGOL

K. Files Referenced:
COMMAND TABLE



3.1.2.6 -50-

3.1.2.6 TABLE

Purpose
To generate field name and range name tables

TABLE is used to create four tables:

(1) A table of point---s to the ASCII names of all the catalog
fields. Each word of thr: table corresponds to a field num-
ber. If there is no field n, the nth word of the table is
'Zero. This table is used in two ways: to determine if a
field specified by a user is a legitimate field, and to asso-
ciate the field number of a field with the name of the field.

A table of pointers to the ASCII names of the RANtE attri-
bute. This table is completely analogous to the field names
table.

(2)

(3) A simple list of all the field numbers, one number per word.
This list is used by FSO when the user requests "oatput all".

(4) A simple list of the field numbers of the standard fields. This
is used by FSO when the user requests "o" or "o standard".

A. Operation: TABLE( )

TABLE creates these four tables by using the data it finds in the

file FIELDS TABLE. This is an ASCII file and has on each line the

catalog field number followed by a tab -and the field name. A

p1us(-1--) sign following a field name signifies that this field is to be used in

the standard field list. The RANGE attributes follow the catalog fields and

have the same format.
INIFLX calls TABLE via CALLIT. TABLE allocates a 91-word

array for the the fiela names table and a 5-word array for the range attri-

butes. TABLE reads FIELDS TABLE into memory, counts the total num-

ber of fields and the subset of standard fields and allocates memory for the

cornplete fields list and the standard fields list. TABLE proceeds to copy

the ASCII field names into -free storage, inserting a pointer in the field

names table and adding the binary equivalent of the field number to the

field list. After TABLE has gone through the same proc-Idure for the range

names, TABLE calls RPRIME. RPRIME is an initialization procedure for

the subroutines RNGNAM, LEGFLD, FLDNAM, FIELDS and STANDL.

6 6



-51- 3. 1. 2. 6

These subroutines supply system routines with information about the

tables, irdormation which they receive from TABLE via RPRIME.

B. Procedures Calling TABLE:
INIF IX

C. Procedures Called by TABLE:

ASCINT
BFCLOS
BFOPEN
BFREAD
COPY
DORMNT

FILCNT
FRALG
FREE
FREZ
INC
rivc 1

D. COMMON References:

Name
COMBF1(POT.)
COMBF2(POT.)

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

LOCMES
NEXITM
PUT
RPRIME
TYPEIT

Meaning
Common buffer 1
Common buffer 2

H. Messages:
1 "Error in TABLE" (preset)

I. Length:
10068 or 51810 words

J. Source:
TABLE1 ALGOL

K. Files Referenced:
FIELDS TABLE

6 7

Interrozated? ed?



3. I. 2.7

3.).. 2. / RPRIME

Purpose
"To Initialize poibte"rs to tables

-52-

Des c ription

A. Operation: RANGE (Range, Range. 1, Name, All. field, All. len,
Stand, Stand. len)

RPRIME initializes RNGNA/vI, LEGELD, FEDNAM, FIELDS.

and STANDL by transferring parameters to these routines from TABLE.

- Procedures Calling RPRIME:
TABLE

Procedures Called by RPRIME:
NOne

COW`
,N

Arguments:
RANGE:
RANGE. L:
NAME:

ALL. FIELD:
ALL. LEN:
STAND:
STAND. LEN:

Values:

noes:

location of array of pointers to RANGE names.
length of RANGE array.
location of array of pointers to names

of catalog fields.
location of list of all of the fields.
length of list of fields.
location of list of standard fields.
length of standard field list

Messages:
None

Length:
308 or 24 0 words

1
/-Source:

TABLE2 ALGOL
Files Referenced:\

None



3. 1. 2. 8 RNGNAM

PurpoSe

-53- 3. 1. 2 . 8

To rc.eturn pointer to range names pointers
Description
A. Operation: Ptr = RNGNAM( ) .

RNGNAM returns a pointer to a list of the pointers to the ASCII
names of the RANGE attributes. The document of the pointer-contains
the length of the List in words.
B. Procedures Calling RNGNAM:

RANGE, EVAL
C. Procedures called by

None

D. '-'-'COMMON References:
None

E. Arguments:
None

F. Values: (
Ptr = word pointer to list of ASCII pointers

G. Error Codes:
None

H. Mess agest
None

I. Length:
'6 words

J. Source:
TABLEZ ALGOL

K. Files RF-ferenced:
-None

-

69.



3. I. 2. 9 -54-

3. 1. a. 9 LEGFLD

Purpose
To check for legal field number

Description

A. Operation: Boolean = LEGFED(Fldno)

LEGFLD uses the field number "field" to index the array of
pointers to the names *of catalog fields. If "field" is greater than zero
and less than 91 and the word indexed by "field" contains a pointer,
LEGFLD returns a value of true.

B. Procedures Calling LEGFLD:
IN., OUT.

C. Procedures Called by LEGFLD:
None

D. COMMON References:-
None

E. Arguments:
Fldno: field number (binary)

F. Values:
Boolean = true or, false

G. Error Codes:
None

H. Messages:
None

I. Length:
108 or 810 words

J. Source:
TABLEZ ALGOL

K. Files Referenced:
tione

7 0



\
\,1

-55- 3. 1. 10

3l.Z.lO FLDNAM
Purpose
To return pointer to field names pointers

7/ *Des c ription

A. Operation.: Ptr = FLDNAM ( )

FLDNAM returns a word pointer to an artay of pointers to the
ASCII names of all of the fields. The pointer to the field name of field n

is in word n of the array. If there is no field n, word n is zero.

B. Procedures Calling FLDNAM:
FeVAL, FSO

C. Procedures Called by FLDNAM:
None

D. COMMON References:
None

E. Arguments:
None

.7"

F. Values:
Ptr word pointer to array of pointerF

G. Error Codes:
None'

FL Messages:
None

L Length:
6 words

J. Source:
TABLE2 ALGOL

K. Files Referenced:
None

If



3.1.2.11 -56-

3. I. 2. 11 STANDL

Purpose
To return pointer to list of field numbers

Description

A. Operation Ptr :--- STANDL( )

Sn)ND,L returns a word pointer to the list of standard fields.

This list is j4 words long and contains the numbers 24, 21, 23, and 47.

B. Procedures alling STANDL
FSO

C. Procedures Called by STANDL
None

D. COMMON References:
None

E. Arguments:
None

F. Values:
Ptr = word pointer to array containing standard fields

G. Error Codes:
None

I-1. Messages:
None

I. Length: \\

108 or 810 words

J. Source:
TABLE2 ALGOL

K. Files Referenced:
None

J



-57- 3. 1. 2. 12

3. 1. 3. 12 FIELDS

Purpose
To return a pointer to a list of field numbers

Description
A. Operation: Ptr = FIELDS( )

FiELDS returns a prAnter to a 50-word array containing all of

the field numbers. The length of the array is in the decrement of the
pointer. Each word of the array contains one field number in binary.

B. Procedures Calling FIELDS:
FSO

C. Procedures Called by F ,LDS:

None

D. COMMON Reierences:
None

E. Arguments:
None

Values:
Ptr =

G. Error Coiles:
None

H. Messages:
None

ointer

I. Length:
128 or 10 10 words

J. Source:
TABLE2 ALGOL

K. Files Referenced:
None

^



3.1.2.13 -58-

3.1.2.13 INIVAR

Purpose
To link the retrieval system to a particular data base.

Descri tion
A. Operation: INIVAR( )

SUPER calls INIVAR after INIFIX returns control to it. SUPER

also calls INIVAR if DYNAMO indicates to SUPER that the user has typed

'RENEW' in his command line. INIVA_R asks the user to type the last

names of the catalog files and tile invertedfiles** . These names are

stored in CATS2(POT.) and LFS2(POT.) respectively. Nexl., INIVAR

calls IFSINT, which reads tha inverted file directories and calls INIEND,

which will initialize the ending table that is used by the stemming mech-

anism INIVAR closes al/ files before returning to SUPER.

B. Procedur,es Calling INIVAR:
SUPER

C. Procedures Called by INIVAR
COMARG RTIFLXA RET
T -,.17F'11. Lk SINT CLOSE.
LOCMES FREE

D. COMMON References:
Name Meanins Interrogat ? Changed?

SYSNAM(POT.) System name
CATS2(POT.) Last name of catalog files
IFS2(POT.) Last name of inverted files

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
1. "Please enter last name of catalog files", (L OCMES)

2. "Please enter last name of inverted files", L-OCMES)

Footnmtes:
* 1. "INTREX"

** 2. the date of creation of the files: mmddyy.
7 4



I. Length:
758 or 6110

J. Source:
INITLY ALGOL

K. File References:
None

-

41

-59- 3.1.2.13

75

,



3.1.2.14 -60-

3. 1. 2. 14 IFSINT

Purpose

To initialize search module
Description

The- procedure IFSINT must be called once prior to the first use
of the 'Inverted File lookup routine IFSRCH. IFSINT is called from
INIVAR during the data base initialization phase and handles the reading
of the Inverted File directories and "ending table". Although IFSINT is
closely related to IFSRCH, it is compiled in a separate source file and
communicates with IFSRCH by means of the sub-procedure IFSET.

A. Operation: IFSINT( )

IFSINT first calls the procedure INIEND (see next section)
which reads a file of common word endings into core and constructs a
table of pointers to ending subsets (grouped by length) for use by the
stemming procedure STEM during the processing of user search requests.
INIEND returns to IFSINT with the core address of the ending pointer
table. This address is then passed to the module containing STEM by
calling the procedure GIVTAB (Section 321.2.16) with the address in the
argument.

Next, the last name of the current Inverted File is extracted
from IFS2(POT.) (where it was placed earlier by INIVAR). The size
(number of computer words) of both the subject file directory and the
author file directory is obtained and the directories are read into these
two a'reas via RDWAIT.

If no directories with this last name are cound on the disk, an
error message (1) is typed and CHNCOM is called, terminating the ini-
t-talization process.

B. Procedures Calling IFSINT
INIVAR

C. Procedures Called by
INIEND, GWTAB,
RDWAIT, CLOSE,

IFSINT
FILCNT, FREE, FRET; OPEN,
TYPEIT, LOCMES, CHNCOM

7 6'



-61- 3.1.2.14

D. COMMON References:
Name Meaning Interrogated? Changed?

IFS2(POT.) Inverted File Name-Two

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:

1. "No subject inverted file.",

I. Length:
5048 or 32410 words

J. Source:
IFSINT ALGOL

K. File Reference:
IFTABA - date
IFTABS - date
IFDA - date
IFDS - date

(LOCMES)



3. 1. 2. 15 -62

3. 1. 2. 15 INIEND, REND(E. F) ENDTA B

Purpose
To initialize the Ending Table

Description
A list of word-endings exists in a disk file name ENDING TEST2

which must be read and formatted into an ending-table by Intrex during

A. Operation: TAB = INIEND( ), REND(E, F), ENDTAB(S, T)

INIEND is called by IFSINT during "fixed" initialization and by

GETEND when EVAL is reconstructing the user's subject or title search
term (see descriptior of GETEND in Section 3. Z. 6.3), INIEND's main

function is to return the address of the ending pointer table to the calling

program. If that address has already been inserted into the local variable

named TAB, then INIEND merely returns with this address as its value.

If TAB is empty, INIEND calls a sub-procedure named REND

which will read the ending file from the disk. REND accepts two argu-
mentsthe names of the ending file (currently ENDING TEST 2) - and

calls FSTATE on this file to get its length. An array of free-storage of

this length is obtained by calling FREZ. Two I/0 buffers are also so
obtai.ried and the file is opened for buffered reading. An error in opening

the file will result in an error message (1) and an abort via CHNCOM.

Then,the contents of the file are read into the allocated area, the

file is closed and the I/0 buffers a/a returned to free-storage. An error
while reading the file will also produce an error message (2) and a call

to CHNCOM.
At the top of the ending list is a group of "relative-location

pointers" to the various ending-length subsets. This is converted to

a table of absolute-location pointers by calling a subprocedure of REND

named ENDTAB. This procedure accepts two arguments containing the

address of the core-stored ending/pointer list and the address of an array
set aside to hold the new pointers. ENDTAB then extracts each relative

pointer, adds the address of the top of the ending list to the relative
address, and stores the modified pointer into the corresponding slot of

the new pointer array. 7 8



-63- 3_ I. 2.

When all pointers have been constructed and stored, the address

of this table is passed back to REND, from there to INIEND, and from

INIEND to the original calling routine.

B. Procedures Galling INIEND:
IFS1NT, GETEND

C. Procedures Called by INIEND:

(through REND) F1LCNT, FREZ, BFOPEN, FBREAD, BFCLOS,
FRET, TYPEIT, LOCMES, CHNCOM

D. COMMON References:
None

E. Arguments:
INIEND - None; REND E.F: ending file; ENDTAB -5:

endings address, T: table address

F. Values:
TAB = address of ending pointer table

G. Error Codes:
None

H. Messages:
1. "bf routine error", (LOCMES)

Z. 'error in reading endings" (LOCMES)

Length:
2538 or 171 lo

J. Source:
STEMZA ALGOL

K. File Ref1/4-irences:
ENDING TEST2

79



3. 1. 2. 16

3. 1. 2 16 GIVTAB

-64-

Purpose .

To pass Ending Table address

Description
A. Operation: GIVTAB(TABVAL)

GIVTAB's only task is to accept an argument containing the -

ending table address as passed from IFSINT and deposit it into the local
variable so that it is available to STEM.

B. Procedures Galling GIVTAB:
IFSINT

C. Procedu e Called by GIVTAB:
None

D. COMMON References:
None

E. Arguments:
TABVAL add ess Pointer

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
108 or 810

J. Source:
STEMIA ALGOL

K. File References:
None



-65- 3. 1. 3. 1

3, 1. 3 Session Initialization

3. 1. 3. 1 DYNAMO

Purpose
To initialize system for a user session

Description
DYNAMO is the first procedure that SUPER calls when the INTREX

retrieval system is invoked in a user session. DYNAMO process)es any
arguments that the user has typed on the command line and performs the

kind of initialization (such as the opening of files) that must be done at the

beginning of a retrieval session.

A. Operation: Code = DYNAMO ( )

DYNAMO looks for the following arguments in the CTSS com-

mand line.

(a) Sysnam: If the name of the RESUMED system is not "INTREX"
or "INTNEW" or "INXTST" then TESTIT (SST.) is set
to true. In the TESTIT mode, no monitor file is written.

(b) "SHORT" "LONG": VERBOS(POT.) is set to either 0 or
The default value is 1 (long mode).

(c) "BEG": If this argument is found, the system will not ask the
user to type "BEGIN".

(d) "SKIP": This will cause the entire signin procedure to be
skipped.

(e) "HOLD" password: The syirem will not return to CTSS level
unless the password is typed along with the quit command.

(f) "RENEW": Dynamo returns to SUPER with a value of -1.SUPER
responds to this value by calling INIVAR to re-initialize the data
base.

After processing the command line, DYNAMO proceeds to set up the

system for execution by calling the following initialization routines:

(a) OPFILE: The overlay segments are opened.
(b) 1NIMON: MONTOR is initialized
(d) KILFAP: if TESTIT(SST.) is false, FAPDBG'is returned

to free storage.
(e) INITYP: The typeit message directory'is read into core
(f) ININT: The interrupt mechanism is initialized,
(g) RSCLCK: The B-core CPU clock is initialized ;

81



3. 1. 3. 1 -66-

(h) SETWRD------T-he password is stored in A-core.
(i) LDOPT: TheA---core supervisor is told under what circum-

stances the INTREX subsystem should be invoked.
(j) SETSYS: The A-core supervisor is told the name of the

INTREX subsystem.
(k) INXCON: The type of the terminal is cl,i!termined.

DYNAMO returns to SUPER with a value of 0. SUPER goes on

to log the user in unless in SKIP mode.

B. Procedures Calling DYNAMO:
SUPER

C. Procedures Called by DYNAMO:
CLOSE INIRES
COMARG
INIMON
INIDSK
ININT

D. COMMON References:

INXCON
KILFAP
LDOPT

Name
ESCODE(POT.)
CATS2(POT.)
BYTEC(POT.)
SYSNAM(POT.)
MAXCHR(POT.)
DFSN1(POT.)
DFLN1(POT.)
PFNi(POT.)
VERBOS(POT.)
CLAMP(SST.)'
IBEG(SST.)
SPEC 1 (SST .)
SKIPS(SST.)
TESTIT(SST.)
CAT11(SST.)

OPEN
OPFILE
RSCLCK
SETSYS
SETWRD

Meaning Interrogated?
Escape code
Name 2 of catalog
Byte count
System name
Line length for output
Short message file
Long message file
Password file
Long/short mode
Hold mode
In begin stage
Special switch #1
Skip signin
Testing rnocie
Catalog off-line

E. Arguments:
None

F. Values:
Code = 0 normal return

- 1 renew option requested

G. Er ror Codes:
None

82

Changed?



H. Messages:
None

I. Length:
5618 or 36910

J. Source:
INITLY ALGOL

words

K. Files Referenced:
CATDIR
(Sysnarn)
(Sysnam)
(Sysnam)
(Sysnam)

INTREX
SGMT 01
SGMT 02
SGMT 03
SC.:MT 04

-67-

83-

3. 1. 3. 1



3.1,3.2 -68-

3.1.3.2 INXCON

PluTose
To identify type of console
Description

A. Operation: Bool = INXCON( )

INXCON sets the value of BLIP(POT.) and returns a value of
true or false depending on the type of console the system is interacting
with. This determination is made by notin,g the page length supplied by
the procedure GETP (Section 3.6.1.5). The values are set according
to the following rules:

Type of Console Value of INXCON Value of blik(pot.)_

2741 false space-backspace

ARDS false 0

INTREX Console 0true

B. Procedure Calling INXCON:
DYNAMO

C. Procedures Called By INXCON:
GETP, WHOAMI

D. COMMON References:
Name Meanin& Interrogated? Changed?

BLIP(POT.) blip characters

E. Arguments:
None

F. Values:
Bool = TRUE if INTREX console, FALSE otherwise

G. Error Codes:
None

H. Mes sages:
None

I. Length:
45 or 3710 words

8

J. Source:
INITLY ALGOL

K. Files Referenced:
None



-69-

3. 1. 3. 3 OPFILE, CLFILE
Purpose
To open and close overlay segments

Sasscription

3. 1. 3. 3

A. Operati.on: OPFILE( '), CLFILE( )

These routines open the overlay segments and close them.OPFILE
cails SETWRD with an argument of "STOP" so that an I/O error on
openitg, a segment will not put the system into a loop. After all 4 seg-

ments have been successfully opened, OPFILE calls SETWRD with an

argument of ESCOD(POT.).

B. Procedures Calling OPFILE and CLFILE:
DYNAMO, GETLIN

C. Procedures Called by OPFILE and CLFILE:
OPEN, CLOSE, SETWRD

D. COMMON References:
Name

ESCODE(POT.)

Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

Meaning
Escape Code

I. Length 1138 or 7510 words

J. Source:
INIT2 ALGOL

K. Files Referenced:
(Sysnarn)
(Sysnarn)
(Sysnam)
(Sysnam)

SGMT 01
SGMT 02
SGMT 03
SGMT 04

85

Interrogated? Changed?



3. 1. 3. 4

3. 1.3.4 KILFAP
'Purpose
To return FAPDBG to free s orage

Description

A. Operation KILFAP( )

KILFAP returns FAPDBG to free storage. It fi ticls the begin-

ning of FAPDBG by means of a transfer vector and returns to free stor-
age a block of 125208 words beginning at this point. This routine is only
usedin versions of INTREX which actually have FAPBG. Those versions
which do not have FAPDBG use a dummy version of KILFAP,

-70-

B. Procedures Calling KILFAP:
DYNAMO

C. Procedures Called by KILFAP:
FRET

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

Length:
148 or 1210 words

J. Source:
SYSGEN FAP

K. Files Referenced:
None

86



-71-
3. 1. 4 Logging

3. 1. 4. 1 GO

Purpose
To start retrieval session
Description

A. Operation: Code = GO ( )

CLP transfers to GO when it detects the command "BEGIN" in

the user's command line. If the user is in the begin stage of INTREX

(i.e., if IBEG(SST.) is true), GO will set IBEG(SST.) to false, thereby

letting the user out of the begin stage. If the user ,is not in the begin stage,
but is operating in HOLD mode, (i.e. CLAMP(SST.) is true), GO will call

QUIT to end the session and force the system to recycle. If the user is
neither in the begin stage nor in HOLD mode, GO will return with a value

of -1.
B. Procedures Calling GO:

CLP (via CALLIT)

C. Procedures Called by GO:
QUIT

D. COMMON References:
Name Meaning Interrogated? Changed?

IBEG(SST.) In begin stage x x
CLAMP(SST.) In HOLD mode x

E. Arguments:
None

F. Values:
Code = 0

G. Error 4odes:
Code = -1: BEGIN command inappropriate

8 7



3.

1-1,.

I.

j.

K.

1. 4. 1

Messages:
None

Length:
378 or 3110 words

Source:
VERBOS ALGOL

Files Referenced:
None

-72

88



-73 - 3. 1. 4. 2

3. 1. 4. 2 S/GNIN

Purpose

To log in an INTREX usc-,r

Descriptioa

A. Opera tion: SIGNIN( )

SUPER calls SIGNIN to welcome the user to INTREX. If the argu-
ment SKIP had been given when INTREX was resumed, SIGNIN will bounce
back to SUPER without doing anything. Otherwise, SIGNIN will print a
message on the consolie asking the user to log in and will then call GETLIN
to receive the user's response. If the user types something other than
LOG, LOGIN, or QUIT, SIGN1N will repeat its request. If the user types
QUIT, SIGNIN will call the subroutine QUIT. If the user correctly types
LOG ox LOGIN, but did not follow this word with his name, SIGNIN will
complain and then repeat its request. When SIGNIN receives the sequence
LOG(IN)-space-character. string, it will capitalize the first letter of the
character string and use it as the user's name in its final message.SIGNIN
calls FRALG (Section 3_4.1.10) to give up the SIGNIN area to free stor-
age before returning to SUPER.

B. Procedures Calling SIGNIN:
SUPER(via CALLIT)

C. Procedures Called by SIGNIN:
CTSIT6, FRALG, GET, NEXITM,

P
PUT, TYPEIT

COMMON References:
Name Meaning Interrogated? Changed?

ISI(SST.) In sign-in

E. Arguments:
None

F. Value 3 :

None

G. Error Codes:
None

8 9



3. 1. 4. 2

H. Messages:

-74-

1. "Intrex could not understand your log statement" ($BEGER1$)

Z. "Please log in by typing the word LOG followed by a space and
your name and address as in following example, log smith,
rj; mit13-5251; ext7234.
Note that your log statement should end with a carriage return."
("Please log in by typing the word LOG followed by your name
and address:1 ($beger2$)

3. "Intrex could not find your name in your log statement."
($beger3$)

4. "Greetings': This is Intrex. Please log in by typing the word
LOG folloWed by a space and your name and address as in the
following example:
log smith, rj; mit 13-5251; ext 7234
Note that your log in statement should end with a carriage re-
turn." ("Please log in.") ($sinl$)

5. "Welcome to lntrex M. xxxxx. If your already know how to
use Intrex, you may go ahead and type in commands. (Remem-
ber, each command ends in a carriage return.) Otherwise,
for information on how to make simple searches of the catalog,
type info2
or, to see the table of Contents (Part 1) of Intrex Guide which
will direct you- to other parts of the Guide explaining how to
make more detailed searches, type
info 1" ("Welcome M. xxxx") (/sin2a/, /sin2/)

I. Length:
1508 or 10410 words

J. Source:
SQUIRE ALGOL

K. Files Referenced:
None

90



-75- 3. 1. 4. 3

3.1.4.3 EXIT

PurRose
To tell the user how to exit from INTREX

Description

A. Operation: Code = EXIT( )

EXIT prints a message to the user suggesting that he make
some comments about the system before he terminates his retrieval
session.
B. Procedures Calling EXIT:

CLP (via CALLIT)
C. Procedures Called by EXIT:

TYPEIT

D. COMMON References:
None

E. Arguments:
None

F. Values:
Code = 0

G. Error Codes:
None

H. Messages:
1. "We would appreciate your commeats on the Intrex system. For

information on how to make comments, see Part 13 of Guide or
type.
info 13
You may also make additional service requests of the Intrex con-
sultant. If you do not wish to make any other comments or re-
quests, type
quit." ("Please comment or quit.") (/exmes/)

I. Length:
238 Or l910words

J. Source:
SQUIRE ALGOL

K. Files Referenced:
None 91



3. 1. 4. 4 -76-

3. 1. 4. 4 QUIT
Purpose
To exit from INTREX

Description
QUIT terminates an INTREX session and returns the user to CTSS

command level. If the INTREX system is in HOLD mode (i. e., CLAMP
(SST.) = TRUE), --the subsystem INXSUB will take control and return the

user to INTREX.
A. Operation QUIT(Ptr)

Quit is called by three different subroutines: CLP, SIGNIN, and
GO. ^When a'user terminates a retrieval session by typing-QUIT, CEP
calls the procedure QUIT. If a user responds to SIGI\fIN's request to log
in by typing QUIT, SIGNIN will call QUIT. Finally, a user can terminate
a retrieval session by typing BEGIN, which will cause CLP to transfer con-
trol to GO, which will transfer control to QUIT. The inner workings of
QUIT are as follows:

1. If the argument Ptr of QUIT is a pointer, the string that it
points to is compared with ESCODE(POT.). If they are equal,
the HOLD mode is turned off by setting CLAMP(SST.) to zero. ,--'
In either case, the message "Password received
(PASSWORD)" is printed.

2. The Dump File DUM00x FILE, is tl-uncated to zero.
3. If the monitor is on, a timing summary is added to

Monitor File and to the file TIMING SUMARY by means of
a call to "SUMOUT.

4. CATDIR is closed.
5. If control has not passed to QUIT from GO (the argument of

QUIT will be a 1 if it has) the message "Thank you for using
INTREX" will be typed.

6. If the system is not in HOLD mode, the A-core option register
is set to zero and DORMNT is called.

7. If the system is in HOLD mode, the Password File is extended
by one word. If QUIT was called by GO, CHNCOM is called;
otherwise, DORMNT 'is called.

QUIT communicates information to the INTREX subsystern INXSUB,
(Section 3. 1. 10. 3) in two different ways:

1. QUIT lengthens the password file to 3 words. This indicates to

9 2



-77- 3.1.4.4

INXSUB that control was deliberately returned by means of a QUIT or

BEGIN command, rather than by means of a system error.

Z. QUIT returns to CTSS via CHNCOM if the user has typed QUIT, or via

DORMNT if the user typed BEGIN. INXSUB can distinguish between the

two by examining the bits in the subsystem condition code.

B. Procedures Called By QUIT:
BCDASC, BUFFER, BZEL, CHNCOM, CLOSE, CTIT6, DORMNT,
FRET, LDOPT, NEXITM, RJUST, SETSYS, SETWRD, SUMOUT,
TRFILE, TYPEIT, WRWAIT

C. Procedures Calling QUIT:
CLP (via CALLIT), SIGNIN, GO

D. COMMON References.:
Name

PFN1(POT.)
COMBFO(POT.)
CATS2(POT.)
MFUN1(POT.)
DFN1(POT.)
ESCODE(POT.)
CLAMP(SST.)

E. Arguments:
Ptr:

Meanirw Interrogated? Changed?
Namel of password fEe
Common buffer 0
Name2. of catalog
Name]: of monitor file
Name 1 of dump file
Escape code
Hold mode

ASCII pointer if called by CLP or SIGNIN,
binary 1 if called by GO

F. Values:
None

G. Error Codes:
None

H. Messages:
1. "Error in writing password file. No automatic

($passer$)
2. "Password receivedpass." ($passok$)
3. "Thank you for using Intrex'.' ($outmes$)

I. Length:
2778 or 191

J.
SQUIRE ALGOL

K. Files Referenced:

words

CATDIR
DUMOOx
PASO Ox

INTREX
FILE
FILE 9 3

resumption of Intrex."



3. 1 . 5. 1

3. 1. 5 Time Controls

3. 1. 5. 1 MONINT

-78-

Purpose
To initialize MONTIM, TRANS, SUMOUT

Description

A. Operation: MONINT( )

MONINT is called by INIFIX to initialize MONTIM, TRANS
and SUMOUT. MONINT generates a number of short ASCII strings by
calls to .C.ASC. Three 'eleven-word arrays are set up to hold timing
data. Their locations are deposited in the common words MODS(POT.),
CPUS(POT.) and REAS(POT.). MODS(POT.) points to an array con-
taining counts of tire frequency of calls to various modules. The array
pointed to by CPUS(POT.) contains central processor times and
REAS(POT.) refers to real times. MONINT calls FRALG befare re-
turning to INLFDC.

B. Procedures Calling MONINT:
INIFDC

C. Procedures Called by MONINT:
FRALG, PREZ, . C . ASC

D. COMMON References:
Name Meaning Interrogated? Changed?

MODS(POT.) Module call count
CPUS(POT.) CPU Times
REAS(POT.) Real Times

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Mes sages :
None

9 4



I. Length:
1108 or 7210 words

J. Source:
MONTIM ALGOL

K. Files Referenced:
None



3. 1. 5. 2 -80-

3. 1. 5. 2 MONT IM

Purpose

To monitor computer and user times

Description

A. Operation: MONTIM(Mode, T.array, Label)
MONTIM updates the timing array pointed to by T. array. De-

pending on the value of Mode, it will also update the summation arrays,
write a message on the console, or write a message in the Monitor File.

The second argument of MONTIM, T.array, is a pointer to a

four word timing array. If the first word of this array is zero, MONTIM

is being called for the first time for that array. In this case, MONTIM

calls JOBTM to place the total CPU time in the first and third words of

the array. The current time of day, obtained from GETIME, is placed

in the second and fourth words, and MONTIM returns to its calling pro-

gram.
If the array has already been initialized, MONTIM uses the array

to compute the following:

1. The total elapsed CPU Time
2. The total elapsed Real Time

3. The elapsed CPU time since the last update of the array
4. The elapsed Real Time since the last update of the array

The third word of the array is replaced with the current CPU
Time and the fourth word with the current Real Time,

If Mode has a value of one, timing data will be printed on the con-

sole in the following format:

Time Used 3.18/105.65
The first number is the elapsed CPU time since MONTIM last

referenced T. array, and 105.65 is the total CPU time since the timing

process began.
If Mode has a value other than one, the following line is written

in the Monitor File.

96



-81- 3. 1. 5. 2

TIME (label) 0. 18/10. 80 2. 10/208. 32

The string represented by (label) is given to MONTIM by its
second argument. The second pair of numbers represents the incre-
mental and the total Real Time.

If Mode is 2, the summary arrays are updated. The last 6

bits of label are used to index the arrays,

B. Procedures Calling MONTIM:
CALLIT, GETLIN, INIMON, MONTOR, SUPER,
TYPEIT

C. Procedures Called by MONTIM:
\ASIDE, GETIME, JOBTM, TRANS, TYPEIT

D. COMMON References
Name

MFUN1(POT.)
MFUN2(POT.)

Meaning Interrogated? Changed?
Monitor File Name 1
Monitor File Name 2

E. Arguments:
Mode = 0: write timing message in monitor file

= 1: write timing message on console.
= 2: write timing message in monitor file and up-

date summation arrays.
T. array : location of four-word array

Label : TYPEIT message label - last six bits are used as
index for timing summation arrays.

F. Values:
None

G. Error Codes:
None

I-I. Messages:

1. "TIME USOD 3.18*/106.65 **

I. Length:
5068 or 32610 words

Elapsed CPU time since timing array was last r:eferenced

** Total CPU time since first reference

97



3. 1. 5, 2

J. Source:
MONTIM ALGOL

K. Files Referenced:
None

-82-

9 8



-83-

3.1.5.3 TIME

Purpose
To carry out user's time request
Descriptibn

3.1.5.3

A. Operation: Code = TIME (Ascptr)
The subroutine TIME is called by CLP in response to the user's

command "time". If the command is followed by the argument "on" or no

argument at all, TIME will set TIMES(SST.) to TRUE. The the command

is followed by "off",. TIMES(SST.) is set to FALSE. If the command is

followed by some other character string, an error message is printed.

B. Procedures Calling TIME:
cLip (via CALLIT)

Procedures Called by TIME:
COMPUL, LOCMES, NEXITM, TYPEIT

C.

D. COMMON References:
Name Meaning Interrogated? Changed?

TIMES(SST.) Timing mode

E. Arguments:
Ascptr: ASCII pointer to user comma,nd line

F. Values:
Code = 0

G. Error Codes:
None

H. Messages:

1. "Improper time request" (LOCMES)

Length:
3108 or 20010 words

J. Source:
MONTIM ALGOL

K. Files Referenced:
None 9 3



3. 1. 5.4

3.1.5.4 SUMOUT

Purpose

To write timing summation

Description

A. Operation:

-84-

SUMOUT ( )

SUMOUT is used to write out a summary of timing data into the
Monitor File at the end of a retrieval session. It is called by MONTOR or
QUIT in response to the user commands "monitor off" or "quit".

SUMOUT performs the following steps:

1. The Monitor File is closed by the call INIDSK(0).

2. A temporary file "NEW SUMARY" is opened via INIErK
3. The following information is written (via ASIDE) into !NEW

SUMARY"

Summary File for Intrex system--012571 monitor .file-mon001 file
total cpu time is -- 109.73 secs
total real time is-- 927.16 secs

module no pertotal opu avp. cpu tot real ave real per real
name calls _UAL

signin 19 5.87 0.30 5 88.74 4.65 9

sign2 19 7.03 0.36 6 7.41 0.38 0

clp 16 29.42 1.83 26 516.11 32.24 55

fso 4 47.91 11.97 43 172.94 43.23 18

eval 7 6.49 0.91 5 21.40 3.05 2

search 8 11.74 1.45 10 12.80 1.60 1

intl 1 1.25 1.25 1 107.69 107.69 11

int 2 1 8.61 8.61 6 36. 28 36.28 0

This tat)le is an wiample of the type which is constructed using the
data that has accumulated in_ the arrays MODS(POT.), cPus(Porr.) and
P EAS( PO T .)

4. The file NEW SUMARY is appended to the end of the Monitor
File and TIMING SUMARY.

5. NEW SUMARY is deleted.
100



-85-

B. Procedures Calling SUMOUT:
MONTOR, QUIT

C. Procedures Called by SUMOUT:
ASIDE, BCDASC, BFWRIT, BUFFER, CLOSE, DELFIL,
INIDSK, LOCMES, OPEN, R.DWAIT, TYPEIT, WRWAIT

D. COMMON References:
Name Meaning Interrogated? Changed?

COMBFI(POT.) Common buffer x
MFUN1(POT.) Monitor Filename I x
MFUN2(POT.) Monitor File name 2 x
MFN1(POT.) Monitor File name 1 x

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:

1. "Error in writing summary file. Error code x" (LOCMES)

2. "Error in adding timing summary to Monitor File" (LOCMES)

I. Length:
7028 or 45010 words

J. Source:
MONTIM ALGOL

K. Files Referenced:
TIMING SUMARY
MONnnn FILE
NEW SUMARY



3. 1. 5. 5 -86 -

3_ 1_ 5.5 TRANS

Purpose
To convert binary times to ASCII minutes

Description

A. Operation: Ptr = TRANS(Time)
TRANS is used by MONTIM and SUMOUT to convert binary-coded

decimal representation. TRANS returns two values: a pointer to the
number of seconds (or minutes) represented by Time and a
pointer to the number of hundredths of a second (or minute) beyond the
first value that are represented by Time. The first pointer is expressed
as the value of TRANS; the second pointer is a variable (Rptr), held in
common with TRANS, MONTIM, and SUMOUT.

B. Procedures Calling TRANS:
MONTIM, SUMOUT

C. Procedures Called by TRANS:
COPY, DEC1, INC, INC 1, INTASC, PUT

D. COMMON References:
None

E. Arguments:
Time: time expressed in 60th's of a second (binary value).

F. Values:
Ptr = pointer to ASCII representation

G. Error Codes:
None

H. Messages:
None

I. Length:

2178 or 14310 words

J. Source:
MONTIM ALGOL

K. Files Referenced:
None

102



-87 -
Q Monitor File Control

3.1-6-1 INMON2, INIMON

Purpose
To initialize MONTOR and TIME

Description

A. Operation: INMONZ( ), INIMON( )

INMCN2 and INIMON initialize the routines MONTOR and TIME.

INMON2 is called during the overlay initialization phase and is called by
SEGINT. INIMON starts up the timing and monitoring process. It is

called by DYNAMO during the session intialization phase.

B. Procedures Calling INMON2, INIMON:

SEGINT (INMONZ)
DYNAMO (INIMON).

C. Procedures Called by INMON2, INIMON:

- C. ASC (INMONZ)
GETTM, MONTIM, MONTOR (INIMON)

D. COMMON References:
/Name

STM. (POT.)
RTM. (POT.)
TESTIT(SST.)

E. Arguments:
None

F. Values:
None

G. Error Godes:
None

H. Messages:
None

J.

Meaning Interrogated?
System time monitor
Ready message time

monitor
Test mode

Length
1408 or 9610

words

Source:
MONPAK ALGOL

K. Files Referenced:
None .103,

Chang-ed?

de'



3. 1. 6. 2 -88-

3. 1. 6. 2 1NIDSK

Purpose
To direct output stream onto disk or console
Description
A. Operation: INIDSK(Namel, Name2, Mode-)

1NIDSK can be called with one, two or three arguments. If
INIDSK has one argument with a value of 0, the Monitor File is closed.
If the argument is not 0, an error message is printed. If INIDSK has
two arguments, the console is turned ON.If the arguments are non-zero,

/they are used as the names of a Monitor File, which is opened. If
INIDSK has three argurnfmts, the first .two are used as the name of a
Monitor File to be opened. If argument one and twn are zero, the
Monitor File is closed. The third-a.rgun-ient will turn off the data flow
to the console if it is set to zero and will turn the console on if it is set
to one.
B. Procedures Calling INIDSK:

DYNAMO, FSO, GETLIN, MONTOR, SUMOUT

C. Procedures Called by INIDSK:
BFCLOS, BFOPEN, FSTATE, LOCMES, SETWRD
TYPASH

D. COMMON References:
Name Meaning Interrogated? Changed?

MONBF1(POT.) Monitor buffer 1 x
MONBF2(POT.) Monitor buffer 2 x

,_

E. Arguments:
Name 1:
Name 2:
Mode:

F. Values:
None

G. Error Codes:
None

1st name of Monitor File
Znd name of Monitor File
0- console off, 1-console on



-89- 3.1.6_ 2

H. Messages:
1. "Error in opening disk output file." (LOCMES)
2. "Error in closing disk output file."
3. "Improper Inidsk arguments."

I. Length:
2178 or 14310 words

J. Source:
TYPINT ALGOL

K. Files Referenced:
MONnnn FILE
CATII OUTPUT

(LOCMES)



3. 1. 6. 3 -90-

3.1.6.3 MONTOR
Purpose
To open or close Monitor File

Description

A. Operation: Code = MONTOR (Ascptr)
MONTOR is called by CLP in response to the user command

"monitor". If there is no argument following the command, or if the
command is followed by "ON", the Monitor File is opened and a header
is written. If the command is followed by "off", it is closed. If some
other character string follows the command, an error message is printed.

MONTOR opens the Monitor File by calling INIDSK (Section
3.1.6.2) with the .argurnents "MFN1 (POT .), FILE, 1", If the Monitor
Filc is a 7 c.ady open, INIDSK will do nothing. MONTIM is called with a
mode 0, which causes a message like the following 'to be written in the
Monitor File:

TIME rnonom O. 13/0..13 0.00/00
This line is followed by a form feed and a message of the follow-

ing type:
"Today's date is 021671
32 past 14 T0289 6162 MIT8B7 0VL900008
No holding password"
This message can be explained as follows:

T0289 6162:
MIT8137:

OVL:
900008:
No holding
Password:

problem number and programmer number
name o-r. the CTSS operating system currently in use

Name of the current INTREX system
Address of console

Printed if user has not typed a password, x. If
he has, the message "Password is x" appears.

B. Procedures Calling MONTOR:
CLP (via CALLIT)



-91 3.1.6.3

C. Procedures Called by MONTOR:
ASCIT6, ASIDE, BCDASC, COMPUL, INIDSK, MONTIM,
NEXITM, SUMOUT, TYPEIT, WHEN, WHOAMI

D. COMMON References:
Name

MFUN1(POT.)
MFUN2 (POT .)
STMJPOT.)
ME-N1(POT.)
SYSNAM(POT.)
CLAM*P(SST.)

Meaning
Monitor File Name 1
Monitor File Name 2
System Time Monitor
Monitor File Name 1
System name
Hold mode

Interrogated? Changed?

E. Arguments:
ASCPTR: ASCII pointer to user command line

F. Values:
Code = 0

G. Error Cddes:
None

Messages:
1. "Improper monitor.request"

H.

I. Length:
3248 or 21210 words

Source:
MONPAK ALGOL

K. Files Referenced:
None

107

(LOCMES)



3.1. 6. 4 -92-

3. 1. 6. 4 ASIDE, ASSET

Purpose
To write data in Monitor File
Description
A. Operation: ASIDE (Argl, . Argn), ASSET(

ASIDE is a Means of writing data into the Monitor File without also
writing it on the console. A procedure callsASIDE with the same sort
of arguments a call to TYPEIT would have. ASIDE saves the contents

rof index register 4, which contains the location of the call to ASIDE.
ASIDE ;then calls ASSET, which is associated with TYPEIT. ASSET
turns on a flag, which puts TYPEIT into the "aside" mode. After re-
gaining control from ASSET, ASIDE restores the contents of index reg-
ister four and transfers control to the entry point of TYPEIT. As far as
TYPEIT can tell, it is being called directly from the subroutine which
called ASIDE. TYPEIT transmits the message specified by the argu-
ment list, turns off the "aside mode" flag, and transfers control back to
the program which called aside.
B. Procedures Calling ASIDE, ASSET

ASIDE: GETLIN, LISTEN, MONTIM, MONTOR, PUTS,
SEARCH, SUMOUT, SUPER, TYPEIT, WRT

C. Procedures Called by ASIDE, ASSET
ASIDE: ASSET, TYPEIT
ASSET: None

D. COMMON References:
None

E. Arguments:
Argl... Argn: see description of TYPEIT (Section 3.1.7.2)

F. Values:
None

G. Error Codes:
None

108



-93 - 3. 1. 6. 4

H. Messages:
None

I. Length:
10 words (5 each)

J. Source:
TYPINT ALGOL, (ASSET), ASIDE FAB (ASIDE)

K. Files Referenced:
None

103



3. 1. 7. 1 -94-

3. 1. 7 Typing Controls

3. 1. 7. 1 INITYP

ca2se__

To initialize TYPEIT

Des c ription

Before the main typing procedure TYPEIT can be used in the
mode that accepts a (core-or-disk-stored) message label as an argu-
ment and outputs the corresponding message, a Mes3age File and Direc-
tory must be generated by DIRGEN (see Section 5.1). DIRGEN creates a
Message Directory File and Message or "text"File from a disk-stored ASCII
file containing messages (or message segments). These files are activated by INITYP.

2,5 Operation: INITYP(NAME1)
INITYP reads the Message Directory into core into an array

obtained from free-storage. If a subsequent call to INITYP is made to
change Message Files, the old storage area is returned before a new one
is obtained. This is accomplished by using local variables to store the
address and length of the current directory and setting a flag (named IN)
to indicate that a directory is stored. When the presence of this flag is
detected on entering IN1TYP, the indicated area is returned to free stor-
age via FRET and the current text file is closed by the CTSS procedure
CIOSE.

Before attempting to open the new files, the special word in the
CTSS supervisor (which Intrex uses to control the e4ror-recOvery sub-
system) is set to the "stop" code o prevent resumption of Intrex if an
I/0 error occurs. First the CTSS procedure, GETWRD, is called to ex-
tract and save the current contents of the A-core word. Then the word
is set to "stop" by the routine SETWRD.

Now the length of the message directory, whose first name is
supplied in the argument of the call to INITYP and wl.;ose last name rnust_be
DIRTAB, is obtained by calling FSTATE. Unless the data, from ESTATE
shows that the file is already open, the directory file and the text file
(whose first name is the same and whose last name is TEXT) are both
opened for reading via the CTSS pi-ocedure, OPEN.

no



-95- 3. 1. 7. 1

Next, the storage area for the directory is obtained by a call to
FREE, with the directory length as an argument. IF FREE returns an
error code instead of an addres-t; (indicating thatnot enough storage
available), the address parameter is set to the top of core to force a
protection violation to occur when RDWAIT attempts to read the direc-
tory into core at that address. This causes the I/0 error mechanism to
take the standard exit through EREXIT in INIRES (see Sections 3.1.10
and 3.3.2.1).

If no such error has occurred, the directory is read into core via
RDWAIT starting at the address provided by FREE. If.an I/O error occurs,
the system will automatically transfer to EREXIT as predetermined by

calling the CTSS procedure FERRTN during the initialization phase of
Intrex (Section 3.1.10.2). If an end-of-file marker is encountered, then
a discrepancy exists between the directory length reported by FSTATE

and the number of records attempted to be read by RDWAIT. Transfer, in
this case, is automatically made to a local error exit where an explan-
atory message (1) is printed before calling DORMNT (which terminates
the program).

When the reading of the directory and core-stored message text is
properly completed, SETWRD is again called to return the supervisor
word to its original value. The Message Directiz-y is then closed (but

not the Message File) and the flag IN is set which indicates that a
current directory exists in core. The name of this file is aaved in a
local variable for possible future calls to CLOSE from INITYP.

Finally, . )ther flag, TYPE, is set which will be Used by
TYPEIT tO determine if the message it is constructing is to be output at
the console (as opposed to written onto the disk).

B. Procedures Calling INITYP:
DYNAMO, GET LIN, INFO, LONG, SHORT, T YPEIT

C. Procedures Called by INITYP:
FRET, CLOSE, GETWRD, SETWRD, FSTATE, OPEN,
RDWALT, FREE.

D. COMMON References:
None

1 11



3.1,7.1 -96-

E. Arguments:
NAME 1:

F. Valuei:
, None

G. Error Codes:
None

BCD file name

H. Messages:

1. "Premature end-of-file reading rnessage directory. Computer
words read = N (LOCMES, integer)
NOTES:

(Note: The actual number of computer words read is given by N, )

I. Length:
1208 or 8010 words

J. Source:
TYPINT ALGOL

.112
0



-97- 3. 1. 7. 2

3. 1. 7. 2 TYPEIT

Purpose

To. output messages, both on-line and off-line
Description

TYPEIT is a basic routine supporting the system/user dialog. It
prints messages to users in upper and lower case and is called with a
sequence of arguments that represent the message to be typed. These
arguments can include the following:

1. Message fragments which may be disk or core stored identified
by symbolic names.

Z. Locally declared or constructed ASCII messages pointed tu by
standard All pointers.

3. Integers given by their binary values.
4. BCD variables specified by a single computer word BCD string

declared in the calling program.
5. Mode codes that govern general features of the output.

The following comments correspond to the numbers and types of
arguments listed above.

(1) Message fragments may be pre-store'd in core or on the disk and
symbolically referenced by (.BCD. declared) labels in the calling
program. This allows changes in the message text without re-
compiling the calling program.
The .BCD. integers used as message labels mu4t be left-justified.
The labels may consist of one to six characters, )the first of which
must be alphabetic.

(2)

(3)

An ASCII pointer to a locally declared . C. character string may be
created by using the sub-procedure LOGMES (see Section 3.1.7.3)
which converts the . C. string to ASCII and rcturns a pointer that
may be used as an argument to TYPEIT.

Binary numbers (within the range +7777778 = + 26214310) are con-
verted automatically by T YPEIT to ASCII codes and made part
of the composite-message string.

The number -0 may not be typed since it has a special me aning .

(See special mofles.)

113



3.1.7.2 -98-

(4) . BCD. variables which are not message labels (such as file
names) may be printed as ASCII strings by using the sub-
procedure BCDASC (See Section 3.1.7.4).

(5) The special modes control the format of the output produced
by TYPEIT. Before listing these modes and their descri7;tions,
we first present information about the output formats.

(OUTPUT FORMATS)
In the standard mode, the composite message string which

TYPEIT generates from its arguments is printed on the CTSS con-
sole according to the following formatting rules:

1. Carriage return codes in the message string are changed to
space codes, except when Z r more appear in sequence. When
n consecutive carriage returns appear, TYPEIT will retain
n-1 of them.

2. Carriage returns are inserted after the last word before a limit
of n characters is exceeded on a line.

n = 75 for 2741 or ARDS
n = 55 for Intrex console

(These two rules allow text formatted for any iine length to be
output at a different line length.)

3. A space is added after each message element.

4. A carriage return is inserted at the end of the complete message.

5. Wherever conversion to ASCII is performed (by LOCMES or
BCDASC) all letters will become lower case except those pre-
ccded by a $.

(SPECIAL MODES)

1. ASIS: If a pointer or label argument (type 1 or 2) is preceded
by a -0, that message element will not be formatted in the ways
described by 1 and 2 above, but will be printed "as is".

2. EDGE: If a TYPEIT argument is preceded by an argument con-
sisting of the BCD. variable "EDGE", then rules 1 and 3 above
will not apply but rule 2 will apply when needed. Thus, the
EDGE mode combines the carriage return controls of both the
normal and the ASIS modes and is used to output the tubular format
of such catalog fields as authors or subjects.

SPACE OMISSION: If onc or more TYPEIT arguments are pre-
ceded by an argument consisting of the . BCD. variable "SMON",
then rule 3 will not apply until either an argument of . BCD.
"SMOFF" is seen or until all the arguments of that call are pro-
cessed.

114



-99- 3. 1. 7 . 2

4. CONTINUED CALLS: If a call to TYPEIT contains the . BCD.
riable "CONT" anywhere in the string of argurnents, the

characters-per-line counter is saved to be Used by the next
call to TYPEIT. The saved counter is incremented further
by the new call. If a CONT argument is contained in the new
call, the count is again passed along to the next call. Each
CONTINUED call causes the text produced by it to be printed
terminated by a space unless the maximum line length is
reached. Thus, format modification 4 (ending c. r) is by-
passed.
Note: If the space omission mode described in 3 above is in
use in conjunction with the CONT mode, the space mode will
not automatically be turned off at the end of the call to TYPEIT
Fut only by a SMOFF argument.

(MONITOR FILE CREATION)
TYPEIT allows the writing or output onto a disk file (in ASCII) tor

later or off-line printing. Such output may or may not be printeci simul-
'caneously on the console. The writing and/or printing is controlled by
calling a sub-procedure named INIDSK. This procedure is described ir
Section 3. 1. 6.2 which covers "Monitor File Control".

A. Operation: TYPEIT(ARGI, ARG2, ---ARGn)
As described in Section 3. 1. 8 (Interrupt Controls), the occur-

rence of an interrupt, caused by the user pressing the ATTN buttn to
halt the printing (or display) of output or mesSage text, is not detected
by Intrex until the next call to TYI-5.:IT. If the interrupt occurs during
the processing of a TYPEIT call, it will probably be detected during the
execution of that call. This possibility is discussed later in this section
(see PUTS). .i

TYPEIT's first task is to check the indicator set (see INTONE,
-

Section 3.1.8.2) when an interrupt occurs at level one, that is, outside
#`-

of TYPEIT. If this flag, INT1(SST.), is set, the TYPEIT ca0 is not
process ed. Instead,.transfer is made to a sectionof TYPEIT which will
record the interrupt address and time in the Moni 1,or File and reset the
interrupt flag. A CTSS procedure named GETBAK (Section 3. .7.4) is
used to obtain the core location where the prograM was operating when
the interrupt took place. ASIDE (Section 3.1.6.4) is then used to write

115



3. 1. 7. 2 -100-

the interrupt message (1) into the Monitor File.
Before- MONTIM (Section 3.1.5.2) can be called to record the

time of_ the interrupt, TYPEIT must a.scertain that the Message File,
not the Guide File, is currently active. It does this by comparing the
name last saved by INTYP to the first name of the Guide File. If the
names match, VERBOS(POT.) determines whether the long or the short
Message File and Directory should be re-activated by another call to
INITYP. If this switch of directories is dclne here in TYPEIT, the flag
set by the INFO command (see Section 3. .9.7),.INFOX(SST.), is reset to

nt an unnecessary repeat of this action later in the syStern.

Now MONTIM is called with one of the argUments containing a '
message label whose text is "INT1" to tag this timing-message in the
Monitor File.

Transfer back to the Intrex supervisor is made by calling the prr_N-
cedure LISTEN, which is compiled with the "main routine" of Intrex in
the source file, SUPER ALGOL. The function of LISTEN and its con-
nection to the sUpervisor is described in Section 3.1.8.4.

If the interrupt flag is not found to be set upon entering TYPEIT,.
then another indicator, ASIDEM, is examined to determine if this call to
TYPEIT is from the procedure ASIDE (see Section 3.1.6.4). ASIDE is
designed.for entering messages into the Monitor File without allowing
them to be typed on the console. ASIDE precedes its call to TYPEIT by
a call to ASSET, a small procedure within TYPEIT which sets the above--
mentioned mode indicator, ASIDEM. When TYPEIT sees that ASIDEM
is set, it resets the typing flag, TYPE. This will later pre\;-ent TYPASH
from being called (see PUTS below), thus inhibiting console output.

If the Monitor File has been "turned off" either by the user through
a MONITOR OFF command, 'or by resuming Int7ex in a "test session"
mode (see DYNAMO in Section 3.1.3.1), then the WRITE flag will be off.
If both WRITE and TYPE are off, then TYPEIT returns immediately to..the _

calling program.
If TYPEIT passes the above tests, the inter-rupt level is raised to

2 by calling the CTSS procedure SETBRK (Section 3.5.7.5) with the

116



-101- 3.1.7.2

address of ;lie procedure INTTWO passed as an argument. SETBRK

allows the programmer to specify where he wants control transferred
when the ATTN key is pressed. Level 2 will then mean "interrupted
from within TYPEIT".

TYPEIT uses two counting parameters, CHARCT and OLDCNT,

to keep track of the number of characters placed in the message buffer
an array within TYPEIT which is used to hold the constrActed ASCII mes-

sage string for outriuting. OLDGNT, used primarily in the "CONT"
mode where lines may be constructed from multiple calls. to TYPEIT,
is set now to contain the old contents of CHARCT (from the previous
TYPEIT call) before CHARCT is reset to zero to process the present

Next, the maximum line length is extracted from the POT and de-
posited into the local parameter MAXLEN.

TYPEIT now proceeds to store the arguments passed to it by the
calling program into a fixed-length array called MESLIS. Up to fifteen
arguments may be given to TYPEIT on any single call. After argument
one is placed in the first location of MESLIS, the AED procedure
ISARGV (Section 3.6. 1.3) is called repetitively to obtain the next argu-
ment and deposit it into the next location of MESLIS until the argument-
terminator, a word containing all octal 7's, is found. The number of
arguments found and stored is saved in a 1 oc'21 parameter named N. The

argument counter,. I, used in counting and indexing MESLIS 'storage,

is then reset to ,..ero in preparation for counting the arguments as they are
selected from MESLIS and processed.

Setup*

An array named MESSTG is used to hold the assembled characters
of the message. Its starting address is stored in two pointers, MESSPT
which will point to the next byte of MESSTG to "oe filled or examined and
PNTPTR which will d&-.errnine the number of characters from MESSTG
to be typed on each line of output.

This and subsequent heach igs relate to program labels and are given
to provide the reader with reference points in the lengthy description.

117



3.1. 7. 2 -102-

The next task for TYPEIT is to determine if indentation is neces-
sary and, if so, supply the specified number of spaces. The sub-procedure
INDENT (Section 3.1.7.5) sets a local parameter named TAB to the num-
ber of spaces desired for indentation as supplied to INDENT in its argu-
ment. It also sets a flag named DENT to inform TYPEIT that indentation
is required. If DENT is TRUE and CHARCT is still zero, TYPEIT will in-

sert the number of spaces indicated by TAB into MESSTG via use of the
string-utility procedure, PUT (Section 3.4.4.3). The pointer, MESSPT, is

moved up after each PUT by another utility procedure called INC1 (Section

3.4.4.18) and the character count, CHARCT, is also incremented by one.

Next
The next argument to be selected from MES.LIS (as indexed by

I) is examined to determine its type. First, it is tested to see if it is a
negative zero by calling an Intrex utility procedure named TESTMO
(Section 3.4.5.8). An argument of -0 means that the ASIS mode is to be

used. Therefore, the ASIS indicator is set and the messaL buffer is
emptied to start the new message on a new line. If the buffer is already

empty (CHARCT =0), then the character count is raised to one and the
message pointer is moved up one nine-bit byte .to allow for the insertion of

a carriage return. TYPEIT then transfers ahead to PREND wlie.fe the

buffer contents are printed (in case previous arguments had stored some
text). This is usually the area of TYPEIT which terminates processing
of the proceOu
SETUP.

e, but in this case (ASIS set) TYPEIT will come back to

If the argun-,ent being processed is not a -0, a second test
made to see if it is an integer. The left-most eighteen bits of the w )rd

are checked, and if they are not filled, the argument is assumed to b,
an integer, which is then converted from binary to ASC1 10 by a call to
INTASr; (Section 3.4.2.3), which returns a pointer. The internal sub-

procedure MOVEIN is then called to copy those codes into the message
buffer. TYPEIT then transfers 10 "More", where the argument count is
incremented and tested against N to see if any more remain to be proc-
essed.

118



-103- 3. 1. 7.2

If the argument fails the integer test, it is tested to see if it is an
ASCII pointer to an in-core string of characters. Two tests must be
made to distinguish ASCII pointers from message labels. A message
label must begin with an alphabetic character to ensure that the left-most
octal digit will be non-zero. This means that, if the argument is a rnes-
sage label, the sign bit and/ or bits 1 and 2 will be a one. Bits 1 and 2
are tested by masking, but the sign bit must be tes'cc for a negative condi-
tion to determine if the bit is on. If none of these t. re on, the argu-
ment is assumed to be an ASCII pointer. This pointer is then passed to the
sub-procedure, MOVEIN which copies the characters pointed to into ti-le
message buffer. Having done this,TYPEn ti:ansfers to "More .

When any of the bits 0-2 are one, the argument is assumed to be
a message label or a special, BCP mode 'r:ode. A series of tests is made
next to determine if it is a mode.

If the argument is the word CONT, the indicator RUNON is set -atid
TYPEIT transfers to "More".

If the argument is the word EDGE, the indicator DUAL is set and
TYPEIT tranGfers to "More".

If the argument is the word SMON, the indicator NOSPAC is set
and TYPEIT transfers to the statement just beyond "More", skipping the

---
logic that resets the ASIS indicator.

If the argument is 'the word SMOFF, the indicator NOSPAC is re-
set and TYPEIT transfers to after "_vlore", as SMON.

If the argnment is none of these things, it is assumed to be a mes-
sage label and is passed to GETE_A B for lookup in the Message Directory.

CTetlab

GETLAB compares the argument pasE,--(7-1 to it by TYPEIT with the
BCD-coded labels in the Message Directory. The mess:2,4e Directory cor--
tains pairs of words consisting of a and a po C-j the corre-
sponding messag text. When a matcriii_g I x. the directory,
the pointer in the next word is extracted, disected, aria tested to see
whether it is c_ore or disk-stored. If it is a core-stored message, the
text is at the end of the directory and it is distinguisheq by the presence of a
one in bit 2 of the pointer: The address portion. of the pointer contains the
relative location or "offset" of the text, either within the Message File or
within tile core-stored directory. If it is core-stored, this relative
address is deposited into a parametc_.r co.-nrnon to TI'PEIT(REL) and the



3. I. 7.2 -104-

top of the directory storage area is used as the base address of the mes-
sage text. The byte address and length are contained in the pointer which,
minus the bit which flagged it as "core-stored", is returned as a value to
TYPEIT.

If the pointer indicates a disk- stored message ( ze -o in bit 2),
common buffer three is used as the base address of the me2sage text, and

the offset or relative address (REL) is set to 0. One full record (432
words) of the Message File is re;-,,e1 into this buffer, starting at the file
address found in the address of the pointer. Since no message or Guide
Section should contain more text than can be contained in one record, this
single read should be sufficient to put the entire message in core. If the

length (number of characters) in the decrement shows that there is more
than one record-full, then the length is truncated. This truncation is in-
dicated to the calling program (most likely, INFO) by placing a 1 in the

first argument of the call. The text pointer is then returned as a value

from GETLAB to TYPEIT.
If the label passed to GETLAB is not found in the directory, an

error message (4) is printed via the procedures LOCMES and TYPASH.

An exceptional case is Made when the call to TYPEIT is from the proce-
dyre INFO, Mdicated by the fact that the first name of the Message File

will be GUIDE. In 1..-.)s case, no message is typed but the first argument
of the call to TYPEIT is changed to zero,. In both cases, TYPEIT trans-
fers, ahead to the final clean-up area, "Frit", which terminates this caii.

Upon successful return from GETLAB, the base address and off-
set are added and inserted i)(io the address portion of the pointer pro-
vided by GETEA13. This :plet, the text pointer v\ eich is now passed
to the sub-procedure MOVEIN, wilich copies the text into the message
buffer at the point dictated by MESSPT. TYPEIT then transfers to

lovein
This sub-procedure is called by TYPEIT whenever a string oi

ASCII characters is ready to be copied into the message buffer. A
pointer to the string is passed as an a rgument to MOVEIN, which saves
it in a local variable named DATAPT before beginning to process the
codes. The decrement of the pointer, containing the number of codes to

120



-105- 3. 1 . 7.2

be transferred, is also extractedand saved in parameters MT and

NCHARS.- -,fhese two counts will control the deliosit of characters
into the message buffer to prevent its overflow.. If more characters are
about to be added to the buffer th-an it,can hold, then MT is reduced to a
number withih the boundS of the buffer size. MT is then used as the
terminating value of a rather large loop which stores MT characters
into the,message buffer. When this group of ckaracte-s has been de-
-posited (and possibly emptied via CHKEND), NCHARS is reduced by MT

and the new value of NCHARS is deposited back into MT. If NCHARS is

not yet reduced to zero, MOVEIN transfers back to the test above, which

determines if NCHARS, plus the current CHARCT, is greater than the
capacity Of the message buffer. This loop is repeated until NCHARS is

reduced to zero, at which time MOVEIN returns to TYPEIT.
This is a broad overview of.how MOV1Z.ENT cycles through the char-

acters to be added to the message buffer and :,riserts them. Room to in-

sert the next batch is ensured by the calls to CHKEND which are made at

least at the end of each batch-insertion, and sometimes more often as ex-
plained below. CHKEND, described later in this section, cheCks to see
if more characte-rs have been stored in the message buffer than the length

of one output line (as determined by MAXLEN). If this is the ca--3e, a

carriage returni .:s inserted at an apprOpriate word break and that amount
of text is output. The remaining characters of the message buffer are
then shifted down to the start of the buffer, making room for more. A de-

k
tailed description of the characte -storing loop now follows:

First, the utility procedure GET (Ser.tion 3. 4. 4. 1). is called to
take the next character from the string being deposited, as pointed to by
DATAP t!, and to leave that ('haracter in a lo.-al wor(I CODE. If CODE is

a carriage return, it is changed to,a space unless the special mode ASIS

or J. ')GE is in lize, or the multiple carriage return ilag, CARMUL, i rct .

If the cari age return is changed to a space, CARMUL is set in case more
carriar.e returns follow. If the code ,,s. not a carriage return, CARMUL is

,et.
haracter in CODL is now inserted at the message buffer by

the utility procedure PUT (Section 3.4.4. 3)at the byte pointed to by
MESSPT., The character count, CHARCT, is incremented by one.

121



3. 1. 7. 2 -1 -

If the code is not a carriage return, the two pointers MESSPT and
DATAPT are both pdated to the next byte b-- procL:dure INCI
(Section 3.4.4. l,, and one cycle through the loop is completed. Xf, on
the other hand, the code is a carriage return, then cm: of the special
moi :s may be assumed to be on. If the mode is EDGE, indicated by the
DUAL indicator being set, or if CARMUL is set, then the message buffer
checking procedure, CHKEND, is called to see if any previous carriage
returns need to be ins rted earlier in the buffer because of exteasion be-
yond the maximum line length. If neither of the above modes are in use,
then the A.S.ES mode must be. Thi:3 mode Is unconcerned about line lengths
or about inserting additional carriage returns". The current number of
stored characters is placed in the decrement of PNTPTR and the output
sub-procedure, PUTS, is called to print andforwrite into the Monitor
File the contents of the message buffer up that point. PUTS (described
below after CHKEND) will empty the buffer. Therefore, upon return to
MOVEIN, the message buffer pointer MESSPT is reset to the first byte
of the buffer and the character count is reset to zero. If the indentation
flag DENT is set, TiAB-2 spaces are deposited into the buffer via PUT.
(The first line of output in any TYPEIT call is indented two spaces less
than are subsequent lines).

Finally, DATAPT is updated to the next character in the input
string and the cycle through the storage loop is complete.

When all the characters are stored, the procedure CHKEND is
called in case the buffer has been filled to the point where one or more
output lines should be flushed.

ChkenA
Themaintask of CHKEND is to test for the p,-)ssibility of the mes-

sage buffer Containing more output characters than are allowed ,,n one
printed line. This cheeic is made by comparing CI-IARCT witi MAXLEN.
When. CHARCT is greater and the ASLS flag is not set, then CHKENIi
must find a place to terminate the Line and output it. This is not done

122



-1 07 -

when the ASIS mode is in e because no new carriage returns ar 1owed

in that mode.
If the character count has not yet reached a line Ic_i6th, a space is

inserted, via PUT, into the next byte of the buffer, to separate inessag,
components. This necessitates updatng the buffer pointer MESSPT and

incrementing the character count CHARCT. This space is not added if
the NOSPAC, DUAL, or CARMUL flag is set. In aLl cases where CHARCT.

is 1e,s than MAXLEN, an early exit is de from CHKENL.

wilen the line length has been exced (CHARCT > MAXLEN) the

function of CHKEND is less trivial. It must scan back over the mes-
sage buffer looking for a space code (or hyphen) which might provide ai

approF -iate place to terminate the line. The distance it will look back de-

pends on whether or not CONT (continued line) mode is being used. In

CONT Mode, the scan may go all the way back through the s'tring of chr-
acters insc.rted by the current call. to TYPEIT, if necessary. If not in

CONT mode, the scan is ended about one-fifth of a line frorr the begin-
ning of the buffer. As soon as a word delimiter is found, the number of

characters, K, scanned thus far is subtracted from the number in the

buffer, and the difference is tested to see if it is still greater than

MAXLEN. If so, the scan continues back toward the beginning of the

buffer, l.--,oking for another s.pace. If the allowed scanning distance is

covered x/ithout finding a space, then a carriage return must be in-

serted in a less appropriate place. In the CONT mode, where the scan

has moved the message pointer all the way back to the front of the buffer,

the problem is handled rather simply. PNTPTR, which controls the out-

put, is temporarily changed 'Co noint to a single carriage return. PUTS

is then called to outrat the carriage return, PNTPTR is r*set to point

to the br inning of the. message buffer, and both CHARCT ;-ind Ni.ESPT

are reset to-'reflect only the current contents of the buffer.

In other than CONT mode, a line break must be made in the midst

o.)f the unusually long string of characteis containing no word delimiters.
The decrement of PNTPTR is set to put out one full line of text and PUTS is

called to output it. Then the ca,criage return is put out as describe-d above

for the CONT mode. The adjustment of the pointers and counters this

ti-ne is much more -omplicated. ii rst, th' rnossage pointer, which hz_1



3. I. 7..,; -los-

been moved back almost to the front of the z_iuffr, is moved up again

to the next non-output character. Then K, which reflects the number
of characters scanned in the searcly for a place to TT'ut the carrn, e return,
is adjusted to frie nun-iber of non-output codes left in the buffer. It is

then useu t ) set the decrement of MESSPT which, in turn, controls a
call to COPY to move the remaining characters down to the front of the

buffe
This same push-down technique is used when a word delimiter is

found during the scan back. Of course, if the delimiter is located at a
position in the buffer still beyon-I a maximum line, then the scar is con-
tinued. When a good position is found, the delimiter is replaced by a
carriage return via l'UT. The decrement of PNTPTR is then set to the
number of characters from the front of the buffer to this point, and PUTS
is called to output this amount. He.. as mentioned above, K is used
to set up MESSPT for the transfer of the remaining text to the front by
`..he procedure COPY (Section 3.4.4.9). At this point, the message buf-

fer pointers are reset to the front of the buffer. MESSPT is t 1 -ad-

vanced K ytes to the next available byte for incoming characters and
CHARCT is adjusted t.,) reflect the length of the current string.

Upon completion of any of the above described out a. - push-clown

operations, CHKEND transfers back to its opening test the current
length of the buffer contents. It is possible that several such cycles will
be necessary before the remaining text is less than one output line in

length.
On detail not mentioned in thc, above description is the possibility

of indentation after each line is output. Whenever a carriage return is
put forth, the DENT flag rnu0t be tested. Li the flag is s,t, the proper
:ndentation, presciibed q TAB, is output by i.,ointing PNTPTR at
string of pre-ct spaces and t llu PUTS. This makes it necessary to in-
ilude TAB In any comp,itations involving the character counts.

:Lats
The basic function of PUTS is to in.e the ASCII pointer in PNTPTR

to output the specified nunther of characters on the consol (if TYPE is
krid onto thc .A.c. (if WRITE is set.), S PUTS is the ti f14-:;er for

.124



output, it is a most appropr:e t e:_--st for interrupts. An

interrupt br the Intrex user while ONeQussixIg is being carried on

within TYPEIT will cause cuntrol /V setit to the procedure :NTTWO

(Section 3.1.8.3), where the Sys"i) "kte Tr.-ble flag, INT.?., will be set.

PUTS first tests this flag before a))1.14iti-g to produce any output. If

the flag is set , it is reset and PUT"' Proceedc, to reset the parameters

of TYPEIT, such as the character ,P-ters arid mode indicators. Any

free storage used by the special cc,NA-Oion routines associated with

TYPEIT, viz. ,LOCMES and BCIYAO, is returned by calling the

procedure FRETIT (rlescribed bel-4\//), The address of the interrupt

point is now obtained br calling the GET13RK (Section

3. 4). This address bec omes A.,;,tst, Of the rnesage (2) written into

the Monitor File by a call to ASID. Ovtion 3,1.6.4), The procedure

MONTIM (Section 3.1. 5. 2) is thell 11c.ci with an argument containing

a label of "INT2" to tag the timirq`kOsage in, the Monitor File. As

the ca.e of interrupts at level onei tAcisfer i5 made to the LISTEN proce-

dure of the supervisor.

If no interrupt has set INTZ(Vt checks to see if it should

write the output text onto the disk f oNanlinirig the WRITE flag

(set and reset by INIDSK, descrir)j iP SeQtion 3. 1.6.2). If WRITE is

set, the CTSS procedure FSTATt (Gtiori 3.5,3.3) is called to de-

termine if the Monitor File, whoh rn)e is found in the POT, is open

for writing. If it is not, then the is OPened by a call to BFOPEN

n(Section 3.5.2. I). _he message fVff vvord currently pointed to by

MESSPT is saved in a local storaA 631ress SAVEND , and the poirter

itself is saved in another address '1 if4 prepares ior

the following process of zeroing alt the bytes of the)last buffer-word

to be written which are not inclucli ill the outPut. The;e bytes must be

blanked'because only \vhole word4 60 written onto the disk via the

CTSS procedure BFWRIT (Sectiol y Tbe tag of MESSPT is

used to determine how many non-,714tfq byt,s remain in the last word.

PUT is called to deposit a null L.A of these bytes as pointed to by

IULLPT. The worci will be restPk,A tc) its original contents at the end

of PUTS' output tasks.

"1.2



Q 1 7 9 -11 0-

The number of computer words to be written is con;puted by

dividing the number of characters in the decrement of PNTPTR by
four. If the call to BEWRIT results in an I/0 error, transfer is made
to an error exit within TYPEIT. Here, an error message (3) is printed
(via LOCMES and TYPASH). the A-core suLystem control word is set
to STOP by a call to SETWRD, and processing is terminated by calling
DORMNT .

If writing onto the disk is successful (or not called for) the TYPE
flag is examined. If tnis flag is set, the .._unsole typing procedure
T2-'ASH is called with an argument containing PNTPTR. This procedure,
described in the following section, will convert the ASCII codes in the mes-
sage buffer to 12-bit BCD codes and cL_use them to be printed en the type-
writer console or displayed on the CRT.

Before PUTS returns, the last buffer word to be. written is re-
stored so that no characters will be omitted from the next gn,up to be
output.

More
As each argument to TYPEIT is processed, a check must be made

to see if any unprocessed ones remain in the storage area, MESLIS. Most

cornpleted arguments will cause a transfer directly to "More", where the
first step is to reset the ASIS mode flag (because ASIS mode can apply to
only one argument at a time). Mode arguments, which produce no actual
text, are finished by transferring past this resetting of ASIS directly to

the incrementation of t.he argument counter I. After I is increased by
one, it is compared to the argument total in N. II I is still less than
N, TYPEIT transfers back to "Next" to fetch the next argument.

Prend
The details of pointer ,Ind counter adjustments, mode tests, and the

resulting switche 1 branches of logic in thin area of TYPEIT have grown

so complex as ,i.fevolvd into an aln,ust all-purpose output device,
that any attempt at a detailed explanation would be very involved. A better
approach might be to present a more general explanation of the operation...
First, the message buffer pointer MESSPT is adjusted back one byte or
not, depending on whether or not a space was added a-rteJ- the last
argurrnt was processed andthepointer was moved up to the next availab byte.

126



SOme b as NOSPAC mode, this lc, n-at

Second, a carriage return is added :o the current :-1-lessage ba:

to complete the output from this use of TYPEIT, unless the RUNON _ag

indicates that CONT mode is being used.. In any case, -he current c a-

tents of the buffer are output by setting PNTPTR to the lery,th dictated

by CHARCT (minus any previous continuation characters counted by

OLDCNT) and calli-ag PUTS.
Next, un" ess in CONT mode, the NOSPAC flag is reset to FALSE,

and the character counters are reset to-zero. In CONT moae, these
parameters are not reset but RUNON is reset to FALSE.

Now the ASIS flag is tested and, if found to be set, argument
counter I is incremented and compared to N. If I is still less than N,
TYPEIT tbcansfers back to "Setup" to pr pare the next argument for pro-

cessing.
If ASIS is FALSE or all argumen , have been processed, then

TYPEIT is ready to terminate its task. Before wrapping up, however,
it examines the level-two interrupt flag again to see if an interrupt has
occurred since the last call to PUTS. If INT2(SST.) is set, transfer is
made to the top of PUTS where the action previously des,:ribed is taken.
Otherwise, TYPEIT finishes by (1) resetting the ASIS and DUAL (EDGE

mode) flags; (2) checking ASIDEM and, if set, resetting it and setting

the TYPE flag which it had previously made FALSE; "(3) calling the sub-
procedure FRETIT to return any free storage used by the cor.,rersion

routines LOCMES and BCDASC (see below); and (4) calling the CTSS

procedure SAVBRK (Section 3.5.7.6) to lower the interrupt level to 1.

Fretit
The BCD-to-ASCLI conver1;ion procedure, ASCITC, used by both.

LOCMES and BCDASC, uses free-storage to }- ld the ASCII characters

it produces. The pointers to these areas are saved by those routines in

an array called FREPTS (declared within TYPEIT) . FRETIT then ex--

arnines the index of this array, 1-), to ss-e if any pointer :. have been sa\ eel

since the last call to TYPEIT. LI P is ion-zero, the- pointers are ex-
tracted from FREPTS, one-b7-one, and the area pointedto is returned

to free-storage by calling FRET (Section 3. 4. 1. 2). When all areas have

127



'3. 1. 7. 2 -112-

been returned, P is reset to zero and FRETIT returns to TYPEIT.

B. Procedures Calling TYPE1T:
ANDER, AND., AUTHOR , CHKNUM, CLP, CONNAM,
DROP, ERRGO, EVAL, EXIT, FSO, GETFLD, GETLIN,
IFSINT, IFSRCH, INFO, INIFIX , INIVAR, ThL, LISFIL,
LIST, LISTSL, MONTIM, MONTOR, NAME, NUMBER,
OUT., PREP, QUIT, RANGE, REND, SEARCH,
SEEMAT, SHORT, SIGNIN SIGN2, SPCTRN, SUBJ.,
SUMOUT, SUPER, S. T, TABENT, TABLE, TIME, TITLE, USE.

C. Procedures Called by TYPEIT:
ASIDE, BCDASC, BFOPEN, BFWRIT, COPY, DEC1,

DORMNT, FRET, FSTATE, GET, GETBRK, INC,
INC 1 , INITYP, INTASC, TSARGV, LISTEN, LOCMES,
MONTIM, OCTASC, PUT, PUTS, RDWAIT, SAVBRK,
SETBRK, SETWRD, TESTMO, TYPASH.

D. Common References:

F.

H.

Narne
INT 1(SST .)
MAXCHR(POT.)
VERBOS(POT.)
DFSN1(POT.)
DFLN1(POT.)
INFOX(SST.)
ST M (POT .)
COMBF3(POT.)
INTZ(SST.)

Meaning Inte r -
rooated?

inter, level-one flag
max. line length
dialog rncde indicator
Message File (short) name one x
Message File (long) name one x
INFO command flag
system time monitor array
common buffer three
inter, level-two flag

Arguments: (any of the following types)
ARG:

Values:
None

Changed?

integer (treat ed as decimal integer), ASCII
pointer, BCD-codes label or mode code

1. ''Interrupt at level 1 at location .

2. "Interrupt at level 2 at location
3. "Error in writing disk output file .

4. "Label in call to Typeit not found
in directory

Length:
17428 or 99,1 10

12 8

:'(LOCMES)
(LOCMES)

2'(LOCMES)

"(LOCMES)



J. Source:
T Y P 1 \:-T ALGOL

K. Files Reierenc
MONOOn FILE (l< n < 10)_



1.7, :-1 -114-

3.1.7.3 LOCMES

Purpose
T Fenerate a "local" ASCII message string
De s c ription

When no disk-stored or core-stored messageexists to provide the
desired message text, LOCMES provides a convenient means of gener-
ating an in-core ASCII string and providing a pointer to this string which
can be passed on to TYPEIT for outputting.

A. Operation: PTR LOCMES CC. /STRING/)
The AED language provides a means of declaring variable-length

strings of BCD-coded characters. This facility, known as the .0. con-
vention, is activated by the presence in the source code of the characters,
. C. The next character must be a space and the character following the space
will be considered by AED to be the string delimiter. All characters be-
tween this delimiter and the next appearance of the same delimiter will
be set up by AED as packed (six codes to a computer word) BCD char-
acter codes. The number of such codes is stored in the decrement compo-
nent of the address immediately before the string. A pointer to the ad-
dress of the first character is generated by AED and, in this case, used
as the argument in the call to LOCMES.

LOC.MES extracts the character count from the word before the
string and inserts it into the decrement of a local pointer, BCDPTR.
The address of the string is copied from the argument to the address of
BCDPTR, which is then passed to the utility conversion procedure ASCITC
(Section 3.4.2-9). This procedure returns a pointer to the converted
ASCII string. The converted codes will be all in lower case unless pre-
ceded by a $ in the .C, string. (One $ makes one ASCII character upper
case.)

Since the ASCII codes are stored by ASCITC in an area obtained
from free-storage, the pointer to this string is saved in an array local to
both TYPEIT and LOCMES named FREPTS. The index of this array is
another parameter, P, shared by TYPEIT. It is incremented by LOCMES
at each call and reset to zero at the end of a TYPEIT execution. This
allows multiple uses of LOCMES as arguments to TYPEIT and prevents

L30



-115- 3. 1.7. 3

the waste of free-storage by enabling TYPEIT to continually
areas after they have been used.

B. Procedur,os CaLling LOCMES:

return these

ANDER, IFSINT, IFSRCH, INIDSK, INIFIX, INIVAR, LISTEN,
MONTOR, POT., PREP, REND, SHORT, STRCH, SUMOUT,
TABLE, TYPEIT.

C. Procedures Called by LOCMES:
ASCITC

D. COMMON References:
None

E. Arguments:
.C. /STRING/: .C. Pointer

F. Values:
PTR = ASCII Pointer

G. Error Codes:

None

H. Messages:
None

I. Length:
418 or 33 words10

J. Source:
TYPINT ALGOL

K. Files Referenced:
None

L31



3. 1. 7. 4

1.7. 4 BCDASC

Furzose:

To convert a BCD word to ASCII
Description:

Narnes

-116-

of disk files and other CT`. orienteditems are expressed in six-bit
BCD codes packed into a single computer word. These are generally de-
fined and created by . BCD. declaration in the AED source code of the
various Intrex modules. BCDASC provides a convenient method a con-
verting such a BCD string into ASCII where it can be printed by TYPEIT.
A. Operation: PT R BC DASC ( BC DVA R)

The BCD word which was preset by the AED compiler is passed te
IICDASC as an ;- rgurnent. BCDASC c reates a pointer to thi:- rd it .1 a

length of six (maximum number of BCD codes in one word) in the decre-
ment. This pointer is passed to ASCITC which converts the codes to lower
case ASCII. Again, as in LOCMES above, the pointer to the ASCII string
is stored in the array named FREPTS for return of free-storage later by
TYPEIT.

B. Procedures Calling BCDASC:
DROP, ERRGO, IFSRCH, LISFIL, LIST,
LISTSL, MONTOR, QUIT, SUMOUT, USE

C.

D.

Procedures Called by BCDASC:
ASCITC

COMMON Refe renc es :

None

E. Arguments:
BCDVAR: a BCD-coded integer

F. Values:
Ptr ASCII Pointer

G. Error Codes:
None

H. Messages:
None

3 2



I. Length:
31s )-r 2:;10 ,,vorcls

j. Source:
YPINT ALGOL

K. Files Referenced:
None

i33



ht.: r -It, r, , r ex. s (ie

In a presontable -forat. lt-'Ltr-t a:: this iorn-lat ,,IltZ

th,.- L; rL,b L.! a mount ,,t in(iontation I rom the leit rarn. Th nentio1
presently eti-,p1,,ved is to indent the :irst lino 01 a field t,.%0 spa,:es and sub-

c.0 nt lii. ii .L:1\ ,
12 he 1NL)ENf pro ,. eclure is des iy

cl,t Sill 1i100 ntat.L)b. ,Lrid ommunicate its \sulue to

_ Y llIl by v. LV 0: a (_ ornmoniv shared ':ariahle.

Operation: IN; L:)ENT( ':\11

pr0, I7\:1)1'LN I i ompilec: in the same file as the main

tvin 0u1rol ,Hun: L. .1 PHI tihu inc., It to share the sLime integer
,ic ii Lti lN1)1.7:\:1' takes the ontents ot the areumeht t ;_ind -opies

1nt0 the 1,(i parame.ter alled P.). It L\f is non-::ero, the number

it c0nt.ilhH; ., ill 1,e the ..riumber al a hn h TYPEIT will insert it the
start ot eich ne\\ line to, ,r,itplit (ext. ept the Ii rst line produced by the (all,
which will be two loss). In this case, a Iocl flag ( DENT), also common

to TyPEIT, \kin, be set to 'fRUE.
1ff A B is /ero, the indentation murie is turned oft by resetting

DENT to FALiL.

13, Procedures Calling INDENT:
Fso, FSOCLN

C. Procedures Called by INDENT:
None

D. COMMON References:
None

Argurbents:

M:

F. Values:
None

integer

1_34



Error Cudes:

H. Messaoes:
None

I. Length:

N.

4- U r

Sourye:
T Y PINT

10
rcls

_ALGOL

Piles Ref e renced:
None

135



3. 1. 7. t

3.1.7.r INCHAR

Purpose

T. increment character counter (TyPEIT)

Descr.)tion:
The procedure SPCTRN (Section 3.3.S.c0 controls out ut

catalog fields on the special Intrei console and allows the display of

special characters, such as Greek letters and superscripts and subscripts.
This procedure must produce tk1n inc odes for changing type fonts, etc.
which are not output via TYPE:IT. They are produced b calling a CTSS

procedure nail ed (i-ectjon 3. 2.6.13). Since these codes a r e

counted in the character counting logic ot the Varian 62CI , they must also
be counted by the TYPEIT line control counter. INCHAR provides SPCTRN
with the necessary access to TY PT:,2T"T' s <_,untor, CITARCT.

A. Operation: INC ITA R(N)

"The irgunient, N, is dded to the local pi rameter, CliARCT,
hich is connnon with TYPEIT. ,A test of the new sic.e ol CEARCT is then

made to deterinine ii thc friaaiiiiuni line length has been exi ceded. If it

has, a carriage return is put out via a call to the TYPEIT sub-procedure,
PUTS. In this case, CIIARCT is reset to the number found in the argu-
ment N.

If the DENT flag is set, meaning indentation is required after each
carriage return, then the PUTS procedure is again used, this time to pro-
duce the required number of spaces of indentation. This number, speci-
fied by the parameter, TAB, is then added to CHARCT, which counts the
accumulated total of characters in the line, and to OLDCNT, which con-
tains the number of characters in this line previously put out in calls to
TYPEIT which use the continuation (CONT) mode.

B. Procedures Calling INCHAR:
SPCTRN

C. Procedures Called by INCHAR:
Purrs

136



D. nr")%11ON Re-ferenL-Es:

E. Argurr,ents:
N:

VaLies:
Yone

G. Error Codes:
None

H. 'Messages:
None

Length:
or -101( words

j. Source:
TYPINT ALGOL

K. Files Referonced:
None

-121-

i37



3. I. 7.7 -122-

3.1.7.7 TYPASH

Purpos e:

To type ASCII characters on console

Des c ription:

The remote consoles used to communicate with the CTSS corn-
puter use either six-bit or twelve-bit BCD codes for printing. Since the
main output procedure, TYPEIT, handles mostly ASCII data from the
Intrex catalog, it constructs all of its message data in ASCII. TYPASH is
used by TYPEIT (see Section 3.1.7.2) to convert the ASCII message
characters to twelve-bit BCD and to transmit these characters.

A. Operation: T YPASH(ASCPTR)
The argument passed to TYPASH contains a pointer o an ASCII

character string which begins at the address and byte position indicated
by the address and tag of the pointer. The length of the string (in char-
acters) is found in the decrement of this pointer and used to compute
the number of computer words being employed to hold the string. If the length
of the string is zero, TYPASH returns immediately to the calling program.

The amount (xi- free t(-)rage needed to hold the converted 12-bit
codes would normally I-, irnber of words used by the ASCII string.
To allow room for han( .L.,itj untranslatable codc (which are
printed as triplets of octal digits).-- an area twice the size of the input
array is attempted to be obtained from free storage by calling the proce-
dure FRER (Section 3.4.1.6). If FRER returns a zero value, that
amount of free storage is not available. In this case, only the minimum
amount of 4/3 the size of the input string is requested. If even this is un-
available, an error message (1) is printed via WFLX (Section 3.6.1.1)
and processing is terminated by calling DORMNT.

If a free storage block is obtainable via the procedure FREE
(Section 3.4.1.1), the address of that block is stored in the local para-
meters named CUTAD and OUT. The address just beyond the end of this
output array is computed and saved in a parameter labelled ENDBUF.

The translation of codes is then performed by calling a procedure
named TRASH (see next section), using the TYPASH argument ASCPTR
and the pointer in OUT as arguments to TRASH.

138



9 3 - 3. I. 7 .

Upon return from TRASH, the level two interrupt flacr (INT?, of
SST.) is examined to see if an interrupt has occurred since the previous
test of this fiDg. If it has, IYPASH skips ahead to merely return the out-
put area to free storage and return control to the calling program.

If no interrupt has called for a cessation of typing, the pointer in
OUT, which now contains in its decrement the length of the converetd
12-bit string, is passed to the procedure PRT12 (Section 3. 1. 7 . 9) where
the output of these codes will be finally accomplished.

The details of the code conversion and printing are described in the
following two sections.

As each output string is printed, its free storage area is returned
for repeated use by calling the procedure FRET (Section 3.4.1.2). TYPASH
then returns to the calling program.
B. Procedures Calling TYPASH:

TYPEIT

C. Procedures Called by TYPASH:
FRER, FREE, FRET, TRASH, PRT12, WFLX, DORMNT

ID. COMMON References:
None

Arguments:
ASCPTR: AS II pointer

F. Values:
None

Cr. Error Codes:
None

H. Messages:
1. "FREE STORAGE NOT AVAILABLE TO CONVERT OUTPUT

FOR CONSOLE." (WFLX)

I. Length:
1548 or 10810

J. Source:
TYPASH ALGOL

K. File References:
None

1.3-9



3.1.7.8 -124-

3.1.7.8 TRASH, PUTOUT

Purpose:

To convert to BCD and store

Description:

These sub-procedures operate in conjunction with TYPASH, de-
scribed in the preceding section, to perform the conversion from ASCII
to 12-bit BCD codes and pack the converted codes into consecutive bytes
of the output array.

A. Ope ration: TRASH(ASCPTR, OUT)
TRASH initializes itself by copying the pointers found in the argu-

ments into local parameters so that they may be incremented without dis-
turbing the original pointers. A character counter (to keep trAck of out-
put codes) named CNT12 is reset to zero, and the number of characters
to be converted is copied from the decrement of the first argument to a
local parameter named NOCHAR.

NOCHAR is used to terminate a loop which takes each ASCII code
from the input string (via GET and INC described in Section 3.4.4) and
converts it to 12-bit BCD by calling a procedure named ASCTSS (Section
3.4.2.6). If the conversion is successful (not illegal code), then the
BCD code is passed to a procedure named PUTOUT, along with the
pointer to the output area.

PUTOUT checks the address of the current position of thc .L1t

pointer against the end-of-buffer address computed and saved by TYPASH.
If the pointer has reached this address, then this attempt at conversion is
abandoned. The (insufficient) free storage array is returned by calling
FRET and an attempt is made to increase the size of the output area by
returning to TYPASH at the point where free storage is requested. If the
end of the output area has not been reached, the 12-bit code is stored
into it at the current byte position via two calls to PUT6 (Section
3.4.4. 6) and two calls to INC6 (Section 3.4.4.5). Half of the 12-bit
code is stored by each PUT6. (It was never considered worth-while to
write a PUT12 procedure.) As each 12-bit code is stored, the counter
CNT12 is incremented by one. The two calls to INC6 update the output

140



-125-- 3. 1.7. 8

pointer to the next available storage byte.
TRASH detects illegal codes in two ways. If the input (ASCII) is

greater than ,:ctal 200, it is beyond ASCII range and 2--..SCTSS is not even

called. If the code returned by ASCTSS is a BCD "null" code and the

ASCII input code was not a null, then the ASCII code has no corresponding

BCD equivalent. In either of these cases, the ASCII code is put out in its
octal form as three octal digits enclosed in angle brackets (e.g., <345>).
This involves storing five 12-bit BCD codes via PUTOUT. In normal Intrex
operation, this situation should never occur.

When all input codes, as governed by NOCHAR, have been processed,
the number of output codes (in CNT12) is inserted into the decrement of
the pointer to the output string. Any unused bytes in the last word of the
output string are padded out with null codes (empty bytes will cause zeroes
to be printed in BCD).

TRASH then returns to the calling program.

B. Procedures Calling TRASH:
TYPASH

C Procedures Called by TRASH, PUTOUT:
ASCTSS, INC, GET, INC6, PUT6

ID. COMMON References:
None

E. Arguments:

ASCPTR:
OUT:
CHAR12:
BUF12:

F. Values:
None

G. Error Codes:
None

H. Messages:
None

ASCII pointer
BC.D pointer
12-bit code
BCD pointer

41

(TRASH)
(TRASH)
(PUTOUT)
(PUTOUT)



3. 1. 7. 8 -126--

I. Length:

2558

J. Source:

or 17310

TYPASH ALGOL

K. File References:
None

142



-197- 3. 1. 7. 9

PRT12

Purpose:

To print 12-bit characters

Desc iption:

This is the lowest level typing control procedure written by Intrex
personnel. It accepts a pointer to the output string converted by TRASH
(as described in the previous section) and passes this output string in
small groups of computer words to the basic CTSS printing procedure
WRFLXA.

A. Ope ration: PRT12(OUTPU'r)
The number of 1Z-bit BCD codes to be printed is contained in the

decrement of the pointer found in the argument to PRT12. This number
is used to compute the number of computer words utilized by this string
of characters, which is packed with three codes to a word. The number
of words is saved in a parameter, WORD1Z, which is common to the in-
terrupt procedures contained in this sarne sour file (se-.. Sectiori 3.1.8.3).

Before beginning the printing process, the switch which controls
the print-mode governing whether 6 bit or 12-bit codes will be interpretted
is set to the 12-bit mode by a call L the CTSS procedure SETFUL (Section
3.5.5,5),

The string is printed in 28-word segments. After each call to
Witr.LXA (where characters finally are produced on the console), a

check is made of INTZ(SST.) to see ii the interrupt button was
during the printing of that group of characters. If the interrupt flag is set,
no further calls to WRFLXA are made.

Before returning to the calling program TYPASH, PRT12 calls
SETB D (Section 3.5,5,6) to switch the console back to the normal 6-bit
triode and resets the parameter WORD1Z to zero as an indication to the in-
terrupt pror.edure INT TWO that no typing is now in progress (shouki an
interrupt occur before the next call to PRT12).
B. Procedures Calling PRT12:

TRASH

C. Procedures Called by PRT12:
SETFUL, SETBCD, WRFLXA



3. 1. 7. -128-

D. COMMON Referonces:
None

E. Argurnents:
OUTPUT:

Values:
None

G. Error Codes:
None

Messages:
None

I. Length:
1148 or 801

0

J. Source:
TYPASH ALGOL

K. File References:

None

12-bit BCD pointer

144



-12 4-

"S. I err ',rut S

3. 1. _

Puroo- .

lo lize interru,t von`_ruls

Des c r :

The c-rs:7; of tw,L rtz: til ows the ttiln,, r nitro' the
action when toe system detects. that u. o,-;er i press,_A( AT-F:\ r
BREAK key (sometimes reter.reci tu in this document tion o!-;

terrupt button''),Intrex uses two interrupt pro( t.(ures to direct ontrol
of the Intrex system. The--;e two prucedure-; orrej,,,rict to two 'intcrrcict

Lcv et (_1-1(. I ti ciefined. to be anywhere the :ntre.-..
vsi7.hin I y P En . Leh,: cs t u ch_qint.:(1 Any-where ...vithin the
T`i PEIT or the procedures ailed by T'L

1INT is cd.11ed duriniz, the session initialittion ohase I IntreY.
op,!ration (DYNAMO, eh:scribed in Section .3. I. S. I) to et th,' intC rriii,t
controls of CTSS to transfer to the level one proceduro., INTONI':, if the
user presses the ATTN key.
A Operation: ININT( )

The address of the fir!-;t instruction at the procedure IN'LONE (nexit
section) is placed in the DOI' in a ovation ,boled INT lArx POT.) where
1 t

1 ladle to any mc, lule of the Intrex system. This ichlres-: is
then passed as an argument to the CTSSprocedureSETBRK (Section
3.5.7.5) which will route logical flow to this address in the event of an
inter rupt.

B. Procedures Calling ININT:
DYNAMO

C, Procedures Called by ININT:

D. COMMON Re fe cone es
Name Meaning

INT1AD(POT.)

E. Arguments:
None

INTONE aciclress

115

inter roo cited Chanqycl'



K.

e rr12, th:

; r 17
1 (_)

r cis

i A L.C7,01_

I'M 1 U t rt 1L cs :

4 6



Purpo,e:

ONE:

To control interrupt levei one

Description:
The .tddress at whi h Intrex was ,pe..r ting when the interrupt was

detected by CTss is obtan-ed and returned to atter a flay is set in the
tern State -Fable to indicate thL.tt an interrupt has occurred. No turtner
:ic-tion is taken on the interrupt until the tlag is ciete ted upun the Ile. xt call
to T

A. CThe'rLition: INTONE( )

Three in)portant n-1;.chine onditions immediat, LV S\OL upon
enterino INTONE via the C--ITSS interrupt mechanism. -rhe% the

L ontent i the ,icL.umulator, the c.ultents P index cstor I (used In
idexrnoclifud ac.ldrssnng, and the contents regis te r 4 (used in

sub- routino linkage).
Because of the time lag between the C PU's execution of output

mands and the rernote terminal's actuation of that output, it is possible for
output (the main concern here is the printing of the READY message) to
be processed by the CPU but not vet printed by the console when the in-
terrupt occurs. To circumvent this problem, a flag, GETFLG(SST.), is
set upon entering the procedure GETLIN (which produces the READY mes-
sage just before waiting for input from the user). If INTONE finds this flag
set, control is sent back to the procedure LISTEN in the Intrex supervisor.
This causes a new call to the Command Language Processor (CLP) and a
repeat of the READY message.

If GETFLCASST.) is not found to be set upon reaching INTONE, the

flag INT l(SST.) is set to TRUE.
The address of the point of interruption is obtained by calling the

CTSS procedure GETBRK (Section 3,9.7.4) which returns this athlress as
value INTONE stores this address in a local parameter labeled RETAD.

Since the transfer of control must be made "indirectly" throug h RETAD,

and since AED provides no means of indirect transfer except through proce-
dure calls, the "machi" facility of AED is used to implement the transfer
in machine language

14-7



Before leaving INTONE (either to LISTEN or to the Point nter-
1-1_-ion the interrupt level, -.hich was cirpoed back to zer autornaricaliy

when the ATTN key was pressed, must oe raised again to one by a call
to SETBRK.

Before returning to the point ot interruption, INTONE restores the
index registers and accurnulator saved upon entrance to the procedure.

B. Procedures Calling INTONE:
None (called by CTSS interrupt logic)

C. Procedures Called by INTONE:
SETBRK, LISTEN, GETBRK

D. COMMON References:
Name Meaning Interrogated? Changed'?

GETFLG(SST.) GETLIN Flag x
INTJA D(FOT.) Inter, level one address x
INTI(SST.) Inter, one flag

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
54 or 4410

8
words

J. Source:
TYPASH ALGOL

K. File Referencc:
None

14 .6



Purpc,e:

To control -interrupt le7el tw,

Description:

As in interrupt el one, ontrol is returned to the pw_rat ot 111-

interruption after a flak is set by INTTWO to indicate a level two in-
terrupt. This can occur only when a TYPEIT call is being, processed
when the ATTN key is pressed. There are several points within TYPEIT
where the flag set by INTTWO is tested to determine if processing of out-
put should be halted

Operation: INTTWO( )

As in INTONE, the uc curnulator and index registers one and
four are saved for restoration when INTTWO is ready to return. The flag,
INT2(SST.), is set to TRITE and the address of the interrupt is obtained via
GETBRK aLLd saved in RETAD.

A parameter called WORD12, which is shared with PRT12 (Section
3.1.7.9) is examined to see if the interrupt occurred during the execution
of PRTIL, where the output buffer is actually written via RDFLXA. If

WORD12 is not zero, it contair-: the number of computer words of buffer
space currently being written. These words are then filled with null codes
by INTTWO so that no further characters will be printed when NTTWO re-
turns to PRT12.

The accumulator and index registers are restored and INTTWO

transfers "indirectly" through RETAD. This is done using machine
language instructions via the "machi" feature of AED.

B. Procedures Calling INTTWO:
None (called by CTSS interrupt logic)

C, Procedure Called by INTTWO:
CET BRK

D. COMMON Reference's
Narne

INT2(SS1.)
Meaning

inter. two tiag

4

Interrogated? Changed?



3. 1. 8. 3 -134-

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
508 or 4010 words (approx.)

J Source:
TYPASH ALGOL

K. File References:
None



3. 1. 8. 4 LISTEN

-1:35-

To provide a Supervisor entry point
Des c ription:

3. 1. 8. 4

A. Operation: LISTEN( )

The procedure LISTEN acts as a switching station within the
Intrex supervisor, directing the flow of processing according to system
conditions at the time LISTEN is called.

If the ISI(SST.) flag is set, indicating that Intrex is in "sign-in"
mode, control is transferred to that early section of SUPER where the
procedure SIGNIN is called to ask the user to identify himself. This has
the effect of causing the sign-in request to be repeated if the user in-
terrupts it before it is finished.

If the flag GETFLG(SST.) is set, this means that LISTEN was
called by the procedure INTONE and that the interrupt took place after
GETLIN had called READY (see 3. 2. 1. 3 and 3. 1. 8.2). This is some-
what of a special case in which the usual rnessage about the interrupt is
not written into the Monitor File by TYPEIT. It must, therefore, be
written by LISTEN. To accomplish this, LISTEN calls GETBRK (to
obtain the address of the interrupt point), OCTASC (to convert the
address to octal ASCII digits), ASIDE (to write the message, "interrupt
at level 1 at location "), and MONTIM (to write the timing rnes
sage).

If GETFLG(SST.) is FALSE, instead of the above procedure calls,
FSOCLN is called to rest any conditionsleftbyan interrupted call to FSO
or GETFLD.

If IBEG(SST.) is set, then the user is in the pre-sign-in stage of
Intrex where he is being asked to type the word BEGIN. An interrupt at
this stage will cause LISTEN to loop back to the point in SUPER where the
user is again asked to type BEGIN.

If none of the above flags are set, LISTEN transfers to the point
in SUPER where the con-It-nand Language Processor (CLP) is called to pre-
pare to accept the user's next command.
B. Procedures Calling LISTEN:

INTONE, TYPEIT

L5.1.



3. 1, 8, 4 -136-

C Procedures Called by LISTEN:
GETBRK, OCTASC, ASIDE, MONTIM, LOCMES,
FOSCLN (via CALLIT)

D. COMMON
Name

References:

ISI(SST. )
IBEG(SST.)
GETFLG(SST.)
STM.(POT.)

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
1308

Meaning
In sign-in flag
In begin flag
In-GETLIN flag
System time array

or 8810 words

J. Source:
SUPER ALGOL

K. File References:
None

1.52

Interrogated? Changed?



-137- 3. 1. 9. 1

;3.1. 9 Overlay Controls

3.1. 9. 1 SYSGEN

Purpos

To generate and initialize overlay system segments

Description:
SYSGEN is called by SUPER to initialize an o-erlay segment.

SYSGEN updates the overlay table, (sysnarn) .TBLE., iLializes a

segment and writes it out as (sysnarn) SGMTOn.

A. Operation SYSGEN( )

See explanation of overlay rnechanisnm (Section 2.5)

B. Procedures Calling SYSGEN:
SUPER

C. Procedures Called by SYSGEN:
BCDEC FRALG GETCOM RJUST
BUFFER FREE INITDB SEGINT
CHFILE FRESET LINKUP SETMEM
CHNCOM FRET OCABC SENTRY
CLOSE FERRTN OPEN WRFLX
DELFIL FC LEAN RDFLX WRFLXA
DORMNT FSTATE RDWAIT WRWAIT

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
"Type system name"
"New segment or replacement"
"Type number of segment to be replaced"
"Is it a new system"

(WRFLXA)



3. 1. 9. 1 -138-

".tble. file not found"
"Old tble. is too short"
"Segment not in segment table"
"addrl Linkup new Addr2"
''Proc not found in system directory "
"Segment exceeds old memory bound"
"Main must be re-initialized"
"Error reading (MOVIE TABLE)'
"Linkup not found in (MOVIE TABLE)"
''SEGMTOn starts at Addrl ends at Addr2'
"D base is now Addrl Sysnarn is dormnt-"

I. Length:
7708 or 50410

J. Source:
SYSNEW FAP

K. Files Referenced:
s ysnarn
sysnarn
sysnam
sysnam
sys narn
(MOVIE

words

.TBLE.
SGMT01
SGMT02
SGMT03
SGMT04

TABLE)

154

(WRFLXA)



3. 1. 9.2.

3.1, 9,2 CALLIT

Purpose:

To call procedures in overlay segments
Desc ription:

CALLIT is used to transfer corol from a procedure in the main
body to one in a segment. It can still be used if the called procedure is
moved to the core-resident portion of the system.

A. Ope ration: Value = CALLIT (. BCD. /PROC/, Arg 1 , Arg2)
Procedures in overlay segments that are called via CALLIT

ATLCLN DYNAMO INFO LISTSL RANGE SIGN2
AUTHOR EXIT INIFIX LONG SAVE TABLE
BUFSCN FSO INI MONTOR SEARCH TIME
CHKSAV FSOCLN INIVAR OPFILE SEEMAT
COMENT GETLIN LIBRY PREP SHORT
CONDIR GO LISFIL QUIT SIGNIN

Procedures in the core-resident portion of the system that ar--t called
via CALLIT

AND. FCLEAN OR.
ASCINT IN. OUT.
CHKNUM IOUT RESTOR
CLEANP LIST SUBJ.
DROP NAME TITLE
EVAL NUMBER USE
FAPDBG NOT WITH.

B. Procedures Calling CALLIT
SUPER (Proc INIVAR, DYNAMO, SIGNIN, FSO,

EVAL, SEARCH, SEEMAT)
LISTEN (Proc FSOCLN)
INIFD( (Proc =-- PREP, TABLE)
CLP (Proc = GETLIN, any command interpretor)
NUMBER (Proc = GLEANP)
ANDER (Proc = BUF'SCN)
RESTOR (Proc = GLEANP)
DROP (Proc = GHKSAV, CONDIR)
LIST (Proc = CHKSAV, LISFIL, LISTSL)
USE (Proc CHKSAV, MOVEIT, GONDIR)



C. .idures r-AT T

LINEUP, MON Rt.-7-

9. COMON Refer-- es:
Name Mea ninQ

STM. (POT.)

E. A rguments:

Interrogatec;' c ha

System Time Mcinitor

BCD. PROC : procedure name, expressed in bit 13CD

Argl. Arg argument of cali to procedure PROC

F. Values:
Value = value returned (if any) by PROC

G. Error Codes:
None

H. Messages:

1. "PROC not in table" (preset)
2. "PROC is not linked" (preset)

I. Length:
4308

J. Source:

or 28010 Wc)rds

SYSGEN RAP or SYSNEW RAP

K. Files Referenced:
(sysnarn)
(sysnarn)
(sysnarn)
(sysnarn)

SGMTO1
SGMT02
SGMT03
SGMT04

15G



1

7r- r

entry

Descrintion:

0.1_,er at:Lon: H ENT RY(

:-;;KTRY i erl in the over.L...,,, tL, obtain the
names of the entry points within a porticur se,rnent. In the
efecution phase, CA LLIT passes to SENTRY the name of a oro( edure,
tc; v;h1c.h SENTRY posset; uontrol.

B. Pro,_edures timfl HENTRY.
LINKUP

C. Pr(3ced.ures CtLeHb l-ETRY:
WKETLX

D. COMMON References:
None

Arguments:
None

F Values:
None

G. Error Codes:
None

Mes s ages :

1. "PROC not found for segment nn (preset)
I. Length:

10 80 words

,ource:
riS ENT RAP

Files Referenced:
None

L)7



5 r

(;:)c r Loo N'1,-"\INT.31)( )

retdrns as its 11O thy t(F 5 O the beginning of the
erhiv ltliU Lt s L.1H e L.)'; C. AHC uctermin,:-

.1 an area ma V hs returned to tree 5 f e.

D.

Procedure5

Pro,,..hiure5 CalHh: by MAI.N.I3D:

COMMON Role ronc cs:
None

K. Arguments:
None

V;ilues:
beginning looation of segment area, in binary

P. Error Codes:
None

Messages:
None

Length:
words

Sour( e:
YSGHN P, S YSN LW FA P

K. Files Referenced:
None

158



LINKUP( )

LINNI..,1--) 1,-; tilt.: L-ntr'," point into 0.11 :t

the tirt r tinu in senrent and ,-;inL C It I 1(it'ntutir,20 in tit seL,-

Inent.s, the 1,.,L Lttion of it ,4ntry pf.-)int i the

LINEUP:
T. IT

tr:

1 R

D, COM10N Ref erenc
NO1-1('

E. Arguments:
None

VLtluos:
None

Cr, Error Cocles:
None

IL Message:
None

I. Length:

1 wo.rd

;--;ourLe:
P l'' A I-)

K. r Peferenyed:
None



^

.1.1 .1 EP.F.C10

:

a entralized err,Dr exitPr

DescrilJtion:

ERRGO ess from any point in Intrex to the standard

error exit to which roust I/0 errors are routed itOtiOLtL(Otll. Thoe
not autum tically sent there by the CTSS error loL21a. ( s set

durin initialization of Intrex by a ;all to FERRTN, ciesc ribed in

SeL non ERRGO. 'fhis provides the opportunity to
t-irit error dianusfl, data and , lose the Monitor File. (Note: ERRC10

is internal to INIRES, desc ribed in Section 3.3.2..1).

Operation: ERIZGO (

"Fhe irst program statement of ERRGO is labeled EREXIT This

label is used as the error condition-transfer point fur any I/O error pro-
duced by a procedure call which does not specify local error returns.
This first statement is a call to IODLAG, a CTSS utility (Section 3.5.4 .2)

which stores various data about the I/0 error in a local array. This data

is then typed and recorded in the Monitor File by calling TYPEIT with the

various elements of data as arguments. This produces a message of the
form shown in Part H.

Having recorded the error data, the Monitor File is closed and
DORMNT is called to return control to CTSS level. Lt Intrex is in the
HOLD mode, the subsystem, INXSUB (Section 3.1. 10. 3) will then take

control.

B. Pro( edures Ca1tin ERROO:

I FSROH

Procedures Called by P:PRC10:
TYPF[T, BC; DASC, OCTASO, hi..0 LOS, DO RMNT

D. COMMON Referenc es:

None



e s :

Error Codes:
None

Messages:
1 ,2 6

1. "Error '.ode N call to3 ROUT 4 at lu ation 5 AAAAA in
volVin tile1, NAMEi NAME?8"
Notes:

Length:

$ICERR1$
Code found in IODIAG array Drd 3
SIOERR2.S.,
Procedure CarCe found in IODI_AG array word

ICD ERR3
Address found in IODIACT array word 1
$10ERR4$
File namne.s fodnd in IODIAG array words 5 and 6

1 02.8 dr 66 10
words (included in INIRES)

J. Source:
RESLIS ALGOL

K. Files Refereiced:
Monitor File



3. 1. 10. 2 -146-

3. 1. 10.2 SETRTN

Purpos e

To set up error return address
Description:

The CTSS utility procedure FERRTN (Section 3. 5.5.1) allows
specification of a standard or central I/0 error return. The format of the
call to FERRTN, however, requires that the argument specifying the
labeled address to be used as the error return be of the form PZE LABEL
rather than TXH LABEL. This necessitates writing the calling sequence
in machine language rather than in AED. SETRTN is called from the AEID-
compiled procedure INIRES (Section 3.3.2.1) and in turn calls FERRTN
with the proper machine instructions.

A. Operation: SETRTN(EREXIT)
SETRTN is compiled as an AEID procedure (in an ALGOL file)

but consists of only two machine language instructions using the "rnachi"
facility of AED.

The two machine instructions are:
TSX FERRTN, 4
PZE EREXIT
The AED compiler sets up the necessary instructions for inserting

the proper argument address into the PZE location, and for generating the
return transfer instructions.
B. Procedures Calling SETRTN:

INIRES

C. Procedures Called by SETRTN:
FERRTN

D. COMMON References:
None

E. Arguments:
EREXIT: Label

F. Values:
None

162



G. Error Codes:
None

H. Messages:
None

I. Length:

118 or 9
1 0

WORDS

J. Source:
SETRTN ALGOL

K. File References:
None

-1-17

£63

3_ 1. 10. 2



3. 1. 10. 3 -148-

3. 1. 10. 3 INXSUB

Purpose

To control recycling of intrex
Description:

Intrex tries to prevent the user from reaching CTSS command level
as each session is concluded. By immediately and automatically restart-
ing Intrex, users are prevented from using CTSS for other operations
and are relieved from resuming Intrex to start each session.

Intrex also tries to recover automatically from error exits and re-
fuses to allow the user to quit via the ATTN key and issue other CTSS com-
mands (except for a select few such as RSTART).

This control ov.er the user's activities is made possible by the CTSS
subsystem logic. This system allows the specification of a given SAVED
program file to be used by CTSS whenever normal program operation is
terminated by certain conditions, such as: program stop, call to DORMNT,
call to CHNCOM, or I/0 error.

When any of these conditions are encountered, CTSS will then auto-
matically initiate execution of the specified subsystem in this case,
INXSUB. The subsystem then examines a condition code to determine the
reason it was called, and takes the appropriate action. Usually this action
involves an automatic resumption of Intrex, though not necessarily at the
Log -in stage.

A. Operation:
1. The first step of INXSUB is to turn off the "blip" _feature (in case
a search was being performed at the time of an Intrex failure. This is done
by calling SETBLP (Section 3.5.7.12) with arguments of zero.
Z. INXCON is called (Section 3.1.3.2) to determine if an Intrex console
is being used. If so, the line length must be re-set to the shorter 55 char-
acter length limitation of the Intrex console. This is done by calling the
procedure SETLIN (a sub-procedure of a general-purpose version of
TYPEIT designed for non-Intrex use) which changes the line length used
by TYPEIT when it produces messages to the user from the subsystem.



-149- 3.1. 10. 3

3. A local :_,rray is filled with identification data by calling the CTSS
utility procedure WHOAMI (Section 3.5.7.9).

4. The condition code word is obtained from CTSS by calling GETSYS
(Section 3.5.7.18). Another special A-core word is obtained by calling
GETWRD (Section 3.5.7.11). This word is used to communicate one
of several possible pieces of information (to be discussed later) from
Intrex to the subsystem.

5. The left-most eighteen bits of the condition code are extracted and
examined. The individual bits of this half-word will indicate which condi-
tion caused the subsystem to be employed. A 1 in this half-word in-
dicates that the subsystem was trapped by the issuance of a new CTSS com-
mand, meaning that the user quit via the ATTN key and tried to use a
CTSS command other than RSTART. In this case, TYPEIT is called to
print a message (1) telling the user what he did and that Intrex is being
resumed at the point of interruption. A core-image of Intrex at the point
where the ATTN key was pressed is automatically SAVED by CTSS before
the subsystem is called. This core image is given a first name consisting
of the programmer number. The command buffer is then set to contain
the programmer number obtained from WHOAMI as a RESUME command
argument. When the core image file is resumed, the user continues
where he was before he quit.

6 . Before testing for other conditions which might have called INXSUB
into action, the A-core word mentioned above is examined to see if it is
the word "STOP". This word is inserted by Intrex before execution of cer-
tain vital I/0 operations. If one of these operations triggers an error, it
is fruitless for the subsystem to attempt to restart Intrex. Therefore, if
this word is found, the subsystem prints a message (2) telling the user
that Intrex is unable to continue and that he should inform Intrex personnel
of the error condition. The core-image of Intrex, saved by the CTSS
logic as -PROGNO --SAVED, is renamed BOMB -time- and given a perma-
nent mode via CHFILE (Section 3.5.3.1) for future post-mortems. The
time of day, obtained via GETTM (Section 3.5.7.23) is used as the last

* See footnotes at end of section.



T. 1. 10. 3 -150--

name of the permanent core-image. The option bits which control CTSS's
communication with INXSUB are set to zero via LDOPT (Section 3.5.7.16)
and DORMNT is called to return to CTSS command level.
7. If the A-core word is not "STOP", it is assumed to be either the first
name of a Password File or the dialog mode (LONG or SHORT). If the
Intrex system was started up in the HOLD mode (see Sections 3.1.3.1 and
3.3.2.1), the holding password and the dialog mode will be contained in a
Password File whose name has been obtained by INXSUB via the above-
mentioned call to GETWRD. This mode is detected by calling the proce-
dure FILCNT (Section 3.4.3.1) with the A-c-)re word as the first argu-
ment and FILE as the second argument. If a file by the name of -word-
-PILE exists, the value returned from FILCNT wilt be the lengthof that file. If no such file exists, the value returned is zero. If the
latter is the case, HOLD mode is not in use so the A-core word is assumed
to be the dialog mode and INXSUB jumps ahead to the system-error-alert
logic mentioned below (Paragraph 9).
8. If the file exists, it is opened for buffered reading using the CTSS
utilities OPEN (Section 3. 5. 1. 1) and BUFFER (Section 3. 5, 1. 3). The
first word of the file is read into a local password location, and the second
word is read into a mode location. The file is then closed via CLOSE
(Section 3.1.5.2). If an I/0 error occurs while reading the file, an error
message (4) is printed and DORMNT is called.
9. If the Password File is only two words long, this indicates that the
subsystem was called because of an error condition within Intrex. In this
case, INXSUB prints a message (3) to the user informing him of a system
error. Since the STOP was not found in the A-core word, this error is
probably of a less critical nature. INXSUB, therefore, resumes Intrex
from the beginning in 'hopes that a fresh start will allow the user to continue
his session. The command buffer of CTSS is set up to contain the command

3arguments; INTREX, SKIP, -MODE-2, HOLD, PWORD- 4 Here again,
the core-image is renamed and and saved for post-morterns by calling
GETTM and CHFILE as described above.

166



-151- 3.1.10.3

10. If the Password File contains three rather than two words, the third
word was written by the QUIT command logic of Intrex. This means that
Intrex has not encountered an error condition but is merely re-cycling.
In this case, the CTSS command buffer is set up to contain the arguments;
rNTREX, LONG, HOLD3, -PWORD-4 BEGIN.

11. The BEGIN argument is included only if the condition code contains
a 4 (4 is CHNCOM call indication,). A subsystem trap caused by calling
CHNCOM at the completion of the Intrex QUIT ro.ftine (Section 3.1.4.4)
indicates that the user typed BEGIN during an Intrex session (without a
prior QUIT). When this occurs. QUIT is called internally and automa-
tically (from GO, Section 3.1.4.1) and ends with a call to CHNCOM.
A trap caused by CHNCOM forces the BEGIN argument to be included
in the "resume Intrex" command, which skips the request for the user
to type BEGIN and goes right to the LOGIN request (see Sections 3.1.3.1
and 3.1.1.1).
12. If a call to DORMNT (the usual exit from the QUIT procedure) is
the cause of the subsystem being called, the BEGIN argument is omitted
from the "resume Intrex" command so that the user will be asked to type
BEGIN to start the next session.

13. In all cases of Intrex being resumed (either continued or restarted),
one central exit route is taken from INXSUB (labeled GO). At this area,
the subsystem option bit (40 octal), which indicates that the present opera-
ting program is the subsystem, is reset to zero, (This bit is set by CTSS
just before starting to execute the subsystem. It prevents recursive sub-
systern calls.) Finally, the previously prepared command buffer is acti-
vated by calling the CTSS procedure SCLS (Section 3.5.7.24), and the re-
sume Intrex command is executed by calling the procedure NCOM (Section
3.5.7.25).

B. Procedures Calling INXSUB:
Activated by CTSS subsystem Logic



I. 10. 1 -15)-

Procedures Called by INXSUB:
SETBLP, TNXCON, SETLIN, GETSYS, GETWRD,
WHOAML TYPEIT:" LOGMES,*- LDOPT,
DORMNT, FILCNT, GETTM, CHFILE, OPEN,
RDWAIT, BUFFER, CLOSE, RSOPT, SCLS, 1\::;OM

General purpose version

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:

1. "You have left Intrex by hitting the ATTN button twice. Intrex
will now continue at the point of interruption." (LOCMES)

2. "Intrex is unable to continue because of a system error. Please
bring this to the attention of Intrex personnel." (LOCMES)

3. "Intrex has experienced a system error. Your search status
is being reset in hopes that you may be able to proceed as if you
had just logged in to Intrex. If you encounter further difficulty
in system operation, please notify Intrex personnel. In any case,
please bring this error to our attention at your convenience.
Wait for READY message." (LOCMES)

4. "Error reading pass file in Subsystem." (LOCMES)
I. Length: (Separate program, not part of Intrex)

or 218 words (main program only).3328 10
176408 or 809610 words (including all sub-procedures)

J. Source:
INXSUB ALGOL

K. File References:
Password File
INTREX SAVED
progno SAVED

168



-1,

-PROGNO- rebresents the proLzrammer number locoen in to that
console as obtained via WHOAMI.

-MODE- is the dialog mode, LONG or SHORT, as obtained from
the Password File.

3. HOLD is the argument to a 'resume Intrex" command which causes
automatic re-cycling of Intrex through the sub-system when the user
issues a QUIT command.

4. -PWORD- is the password which prevents recycling after a QUIT com-
mand, as obtained from the Password Fiie.



Gene"- al and Pr' cess g

_l. 1. 1 INIC07:

Purpose

To set up dfilimiter and trim tables.

Des c ription

A. Operation: INICON( )

INICON initializes CLP by setting certain variables and by gen-
erating a character string via .C.ASC. FRALG returns the space used
by the procedure to free storage.

B. Procedures calling FNICON:
INIFIX

Procedures called by INICON:
F RA LG, . C.ASC

D. COMMON references:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages
None

I. Length:
178 )r 1510 words

J. Source:
CLP ALGOL

K. Files Referenced:
None

170



2. 1. 2 CI_

Pu.rpose

DeHL UI p I cal

When the system is ready to accept con-iroanos tron-; the user,
SUPER calls CUP. CT.? functions as a se ond-level supervisor (_)rc:r
the process 0.4: arceptiri, and interpreting user input.

Operation: Code r, CLP( )

CLP calls GETLIN, whi,h accepts a ur rod line r.r.
returns an :\-,C.:11 jIIIUT t that line pointer to

returns a pointer to tl-ie first substrnc thU

line (substrings are set of Py the char IL t r s colon, spa C. slash o r

ridge return). If NEXITM cannot find a substring for instance, it CliP
has proessed all the substrings CUP returns control to SUPER.Other-
wise, CLP gives the substring to LOOKUP, which searches the command
table. If it finds a match, it returns the BCD name of the module asso..-
elated with the command. If LOOKUP reports that the substring is not a
command name, CUP asks RESTOR to check the string against the list of
list names. Lf the string is not a list name either, CLP prints "illegal
command" and returns to SUPER. If the substring is a command, CLP
gives CALLIT the name of the required subroutine as supplied by LOOKUP
and CALLIT transfers control to the routine. CLP then calls NEXITM again
to search for the next command.

B. Procedures Calling CLP:
SUPER, SIGNIN

C. Procedures Called By CLP:
1. Direct Calls:

CALLIT, DORMNT FRET, GETLIN, LOOKUP,
NEXITM, RESTOR, TYPEIT, WRFLXA



:cos. SHORT
A INFO OR. LONG
COMENT LIBRY OUT. SUBJ.
DROP LIST QUIT TIME
EVAL MONTOR RANGE TITLE
EXIT NAME SAVE usE
GO NUNIBER SEEMAT WITH.

D. COMMON Referenc

Narne
IBEG (SST.)
MODEG (POT.)
TEXTX(POT.)
COMTB.(POT.)
VERBOS (POT.)

E. Arguments:
None

Values:
Code = 0

G. Error Codes
- 1:

2:
-3:
-4:

H. Messages

2..

es:

Meanin_L Inte r rogateci?
In begin stage
Anding mode
Text pointer
Command table
Lung/short mode

Changed?

user has not typed begin or unintelligible command (message 1 )
command line is too long (message 2.)
illegal command (message 3)
error return from command interpreter

"System error attempting to interpret cornrnand line." ($C LP 1 )

"Please break your request into requests not exceeding 200
characters in length." ($CLP2$)

"X is riot a legal command name. Check for typing errors.
See part 6.2. of Guide for full list of commands. ($CLP3$)

"Please rephrase your request."

4. "Your command could not be understood." ($CLP4$)
Lengtn:

3208 or 208 words10
Source:

CLP ALGOL
K. Files Referenced:

None



iic iret a c =mond line.

CLP lis GETLIN tL opt.i:iin a string of user ii.ornrnands. CJETLIN
waits /or input from the user :n -..he wait state, waking up periodically
so that the console i s nut a t.)matically lop,ged out. When a us,i.r types
L, character, the system is au-iom-,tically torced )ul of the wait state,
and GETLIN receives the user's uoinonci iine. GETLIN curiverts Lh
hne from 12-bit CTSS ic int,, bit ASCII c.-de. CTETLIN returns on

,ii),inter to this string.

eiJe ra t
1. Ma.r Flow

Ptr )

GETLIN initializes itsel by allocating a fixed amount of storage tor
both the original 12-bit string and the converted 9-bit string. GETLIN
calls GETIME to get thP current time of day and then falls asleep for a
pre-determined amount of time. When it wakes up it checks the time
and computes how long it has been asleep. It then uses FILCNT to check
for the existence of either the disk file "Hold Up" or "Hold It". Lf

neither of these files exist (more about this in Section )1 , it compares
the amount of time that it has been asleep against the specified sleep
time. If these times differ, GETLIN assumes that it was forced out of
wait state by the user and RDFLXA is called to receive the user's com-
mand line. RDFLXA returns control to GETLIN when the user types
a carriage return. GETLIN examines each character in the com-
mand line, converts it to ASCII and stores it in the ASCII string area. If

the line ends with a continuation character the hyphen -GETLIN calls
RDFLXA again and waits for more input. Otherwise, GETLIN inserts
a slash at the end of the line, constructs an ASCII pointer to the con-
verted line, and returns control to CLP.



3.2.1.3

2. Minor Details

-158-

(1) The presence of a file HOLD UP signifies that a systems
programmer is updating the message files . HOLD IT is
used for updating segments. In each case, the appropriate
files are closed and the system goes to sleep. After 5
minutes GETLIN will resumed normal operation.

(2)

(3)

Since CTSS accepts any character in a 1Z-bit mode, GETLIN
must itself implement the CTSS kill and erase feature.

GETLIN writes the input line in the Monitor File via ASIDE.
If the system is in CATII mode, the input line is written
into CATII output.

B. Procedures Calling GETLIN:
CLP, SIGNIN

C. Procedures Called by GETLIN:
ASIDE, CLFILE, FRET, FREZ, GET, GETIME, GET1Z,
FILCNT, INC, INC12, INITYP, INIDSK, NAP, OPFILE,
PUT, RDFLXA, SETBCD, TSSASC, WAIT

D. COMMON References:
Name

COMLIN(POT.)
MAXLIN(POT.)
VERBOS(POT.)
DFLN1(POT.
DFSN1(POT.)
TEXTX(POT.)
RTM. (POT.)
GETFLG(SST.)
HELD(SST.)
CATII(SST.)
TIMES(SST.)
INFOX (SST.)

E. Arguments:
None

F. Values:

MeaninE Interrogated? Changed?
Command line buffer
Max. lines input
Long/short mode
Dialog file long
Dialog file-short
Text pointer
Ready message time pointer x
Interrupt in GETLIN
Hold for DIRGEN
Off-line output
Times requested
Info, requested

Ptr = ASCII pointer to command line

G. Error Codes:
Ptr 0:

-1:
command line is empty
command line is too long

174



H. Messages:
1. "READY" (/Redrnes/)

I. Length:

7708 or 50410 words

J Source:
GETLIN ALGOL

K. Files Referenced:
None

i75

" -short n-aode]

3. 2. 1. 3



3. 2. 1. 4 -160- 3. 2. 1. 4

3. 2. 1. 4 NEXITM

Purpos e

To parse character strings

Description

The procedure NEXITM is designed to find the "next item" in a
string. A table of delimiters is used to determine what NEXITM will re-
turn as the next substring in a string of ASCII characters. Trimming of
leading and terminating characters and culling of common words is also
possible.

A. Operation:
The normal call to NEXITM contains 3 pointer to the string, a

pointer to a table of delimiters and an argument which will contain the
terminator found upon returning.

next NEXITM (staptr, termfo, tertap; $,
staptr is a standard Intrey L,ointer to the string of ASCII
characters.
termfo
lineate
tertaR

is the character found that NEXITM used to de-
this substring.
is a pointer to the delimiter table.

next is a pointer to the substring of characters starting
at the beginning of the string (at the location pointed to by
stIptr) and ended by but not including the character in termfo.

The number of characters in this substring is in the decrement of next,
and the length of the remaining string is computed and staptr is updated to
point to the part of the string that follows the substring returned.

Four optional arguments may be used. They must appear in the follow-
ing fixed order:

next = NEXITM (staptr, termfo, tertap, frtrim,
staptr, termfo,
arguments are:
frtrirn is a pointer to a table of characters that will be trimmed off
at the beginning of the substring.

and tertap
endtrirn, cultab, noast)$

are as above, and the four optional

176



-161- 3. 2. 1. 4

endtrirn is a pointer to a table of characters that will be
trimmed at the end of the substring.
cultab is a pointer to a table of common words that will be
culled out if they appear as the next item.
noast will disable the standard Intrex catalog convention for
asterisks as special characters. If this argument is not pre-
sent any asteris]-is that appea- will be treated as pairs that en-
close a group that is not to be broken up. (See "Input/output Re-
presentations of Special Characters", Intrex Memorandum 4 ).
This is a boolean.argurnent, and does not pass any value to
NEXITM, but is merely present or not present.

The use of an optional argument that follows some unused optional
argument requires the unused argument to be given as -0. If noast is
present (with any value), asterisks will be treated as ordinary delimiters.

The delimiter, front trim, and end trim tables are ASCII characters
packed 4 per word. The pointers to these tables are standard Intrex
pointers.

The cull table and the cull table pointer have a special construction.
The pointer cultab has the table length (in computer words) in the decre-
ment. The address portion contains the address of the beginning of the

table._ The table consists of English words of 4 or less letters. The ASCI:
codes for the words are left justified in the computer word, and unused bytes

are filled as zeroes. The last computer word in the table is all oct.11 7's.
The table searching procedure used is a FAP coded procedure that uses a
2 instruction loop. This procedure (TBSRCH) is available along with a
modified version for a table with more than one computer word per entry
(VSRCH). The current table for culling common words contains the 13

English words used in InvertedFile generation. These are: a, by, as, at,
in, of, on, to, and, for, the, with, from.

B. Proc edures Calling NEXITM:

AND. IN. OUT. S. T
AUTHOR LIST QUIT TABLE
CLP MONTOR RANGE TIME
DROP NAME SAVE USE
INFO NUMBER SIGNIN WR T

C. Procedures
COPY
DEC I
FIND
FRET

Called by NEXITM:

FREZ
GET
INC
INC 1

ISARG
ISARGV
PUT
TBSRCH



3. 9. 1. 4 -169 -

D. COMMON References:
None

E. Arguments:
See Section A

F. Values:
ASCII pointer

G. Error Codes

next 0 and terrnfo = 0 if an empty string pointer has been used.
thL decrement of staptr is zero.)

next -I if no delimiter is found in the string.
next --= -2 and terrnfo = 528 if only one asterisk is found and the argu-
ment noast is not present.
next = 0 and terrnfo =-delirniter found if there are no characters re-
maining in the substring after front and end trimming.

H. Messages:
None

I. Length:
1000 or 5 12

8 10

J. Source:

words

NEXITM ALGOL,

K. Files Referenced:
None



3. 2. 1, 5 LOOKUP

Purpose

To identify a command.

Des c ription

A. Operation Bcdstr LOOKUP (Ascptr, Tabptr)
LOOKUP is used by CLP to associate a user command with the

rntrex program module which will act on it. CLP gives two arguments
to LOOKUP, an ASCII pointer to a word from the user's command line
and a pointer, found in COMTB.(FOT.) to the Intrex command table. LOOKUP
takes the first four characters of the ASCII string and uses VSRCH to find
them in the table. If they are found, LOOKUP extracts the word whicn
follows these matching characters from the table. This is the BCD name
of the routine which CLP will call (via CALLIT) so that the user's com-
mand may be carried out. LOOKUP returns to CL? with this BCD string
as its value. If the four character ASCII string was not found, LOOKUP
returns to CLP with a value of 0.
B. Procedures Calling LOOKUP:

CLP

C. Procedures Called by LOOKUP:
GET, PUT, INC 1, VSRCH

D COMMON References:
Name Meaning_ Interrogated? Changed?

COMTB.(POT.) Command table pointer

E. Arguments:
Ascp!-r:
Tabptr:

ASCII pointer to user command
pointer to command table

F. Values:
Bcdstr name of procedure associated with command, in BCD

G. Error Codes:
0: command not found

ia



3.2.1.5 -164-

H. Messages :
None

I. Length:
1608

J. Source:

or 11210

NEXITM ALGOL

K. Files Referenced:
None

o rcis



)

3. 2. 2 3ubjec 'Title Co maric nterpretatio:-.
3 . 2 . 2_ . 1 IN IS.T

Purpose

To initialize subject/title interpreter.
Des c ription

A. Operation:
INIS. T is called by INIT2, which is called by 11\TIFIX, during

the fixed parameter initialization phase. It sets up strings of delimiters
and pointers to these strings for NEXITM to use in extracting the coram-)and
ine words. It is given over to free storage via FRALG after execution.

B. Procedures Calling INIS. T:
INIT2

C. Procedures Called by INIS.T:
FRALO, PREZ, .C.ASC

D COMMON R eferenc es :

None
E. Arguments:

None
Values:

None

Error Codes:
None

H. Messages:
None

I. Length:
438 or 3510 words

Source:
INTPRT ALGOL

K. Files Referenced:
None

i61



-) ?

3. 2. 2. 2 SUBJ.

Purpose

intt-rret SUB,TECT commands

Description

A. Operation: Code SUBJ.(Staptr)
The first task und,'rtaken by this routine is to clean up any search

structures (pointers, counts, indicators) (see Fig. 3. 1) left from
the previous search. This is accomplished by calling one of two pro-
cedures. If the current list is the result of a search, then CLEANP (in
a source file of the same name) is called. If the current list is a restored
NAMED list, then less clean-up is necessary and the little that is required
is done by calling DELIST (residing in RESLIS). The choice of which
xoutine to call is made by testing the system state indicator,
RLIC(SST.), which is set when a resto . ed list is in core.

SUBJ. then resets an internal flag called TIf, which is used to tell
the sub-procedure S. T. whether it is processing a subject or a title com-
mand. A "subject searchforrn" array of six words is obtained from free
storage and the pointer placed in the command list (SSF. (CL)). Then S. T.
is called, passing along a pointer to the command line.

S. T. will attempt to set up the search structures for the individual
words in the search term (described later). If it succeeds, a value of zero
is returned to SUBJ. If it fails, (because no unculled search words were
found) a negative value is returned.

When SUBJ. sees a negative return it returns the search form to
free storage, zeroes the pointer SSF.(CL.), and prints out an error mes-
sage to the user stating that no searchable words were found in his request.

If SUBJ. gets a zero return from S. T, it sets the SNX(SST.) in-
dicator (search not yet executed) and retutns to CLP.

B. Procedures Calling SUBJ:
CLP(via CALLIT)

C. Procedures Called by SUBJ:
CLEANP, DELIST, FRET, FREZ S.T, TYPEIT



COMMON References:

Name Meanin
R_LIC(SST.
SNX(SST.,
SSF(C L.)

72',,estoreH list

Search nc-2t exer.Tu-.ed
Suoet sea:co from

Interr ated Chancier'')

E. Ar=,uments:
Staptr: ASCII pointer to command line

F Values:
Code

G. Error Codes:
-2: error dissecting command line

X

H. Messages:
"Your search term contained no searchable words. Please review
your search request." ($inter3$)

I. Length:
608

J. Source:

or 48
10 words

INTPRT ALGOL

K. Files Refe renced
None



3. 2. 2_ 3 TITLE

Purpose

To interpret TIT.' 4-7-

Description
A. Operation: Code = TITLE (Staptr)

This procedure performs most of the functions of the procedure
SUBJ. except that it sets up a pointer to the title search form (TSF.(CL.))
and turns on the title indicator, TIT. Before calling CLEANP to clean
up the previous search structure, it examines SNX(SST.) (search-not-yet
executed flag) to see if a previous subject command on the same line has
set up a structure which should not be deleted. The value returned from
S. T. is processed in the same way as in the procedure SUBJ.

B. Procedure Calling TITLE:
CLP (via CALLIT)

C. Procedures Called by TITLE:
CLEANP, DELIST, FRET, FREZ, S. T, TYPEIT

D. COMMON References:
Name Meaning Interrogated? Changed?

RLIC(SST.) Restored list in core x
SNX(SST.) Search not executed x x
TSF.(SST.) Title search form x

E. Arguments:
Staptr: ASCII pointer to command line

F. Values:
Code = 0

G. Error Codes:
Code = -2: error dissecting command line

H. Messages:
"Your search terryi contained no searchable words. Please review

your search recitlesC($inter3$)

184



I. Leno-th:
o4

8
or 52 -4 ords

1 C

Source:
1-NmPRT LGCL

K. Files Referenced:
None



3. 2. 2. 4 -170-

3. 2. 2.4 S. T

Purpose

To construct search form.
De s c ription

A. Operation: Code = S. T(Staptr)
Up to seven simultaneous search words can be handled by Intrex.

S T calls free storage for an array of seven slots for pointers to the word
search forms. The pointer to this array is called the "sirnple search list
pointer" and is inserted into the appropriate component of the subject
search form, SSL.(SSF.). The mode component of SSF., which specifies
the searching mode, is currently set to zero, indicating a subject/title
search with no affix searching. (Pointers to the affixes of the words are
later set up for possible affix matching in some future stage of devei.op-
rnent.) NEXITM is then called to find the end of the search command
(next/) and extract the el. search term from the command line. The
term is copied into free storage and the pointer to it is inserted into the
"name pointer" component of the subject search form, N. (SSF.).

Another (six-element) array is obtained from free storage for each
word in the term and its pointer is placed into one of the seven slots of the
array pointed to by SSL. These six-word arrays are called the "Inverted
File search forms" and the pointers to them are the IFSFP's, Inverted-
File-Search-forrn-pointers.

NEX1TM is then called repeatedly to isolate the words of the sub-
ject term and pointers to the words are pa, s ed to the stemming procedure,
STEM (described below). The pointer to the stemmed word, returned by
STEM, is inserted into the name component of its own Inverted File search
form. Po:.nters to the affix and the search mode are also inserted into the
appropriate components of the IFSF, along with the weight 5 attribute
pointer if TIT indicates a title search term.

After all search words have been processed, the number of words
(from one to seven) is inserted in the decrement of the SSE. pointer and a
zero value is returned to the calling routine.

i8 6



-171- 3_ 2.2. 4

A sample search structure is presented in Fig. 3_ 1 showinL the
various pointers and structures as they appear after the described inter-
pretation of the search request.

B. Procedures Calling S. T:
SUBJ., TITLE

Procedures Called by S. T:
COPY, FRET, FREZ, NEXITM, STEM, TYPEIT

D. COMMON References:
None

E. Arguments:
staptr: ASCII pointer to command line

Values:
Code = 0

G. Error Codes:
-2: error dissecting command line

H. Messages:
"You have used more words in your search request than the system
can handle. Intrex will now search on the first seven significant
words you have given." ($interl$)

I. Length:
13078 or 711 10

rce:

words

INTPRT ALGOL

K. Files Referenced:
None

16 7



S
ub

je
ct

 S
ea

rc
h

F
or

m

P
al

 S
ub

je
ct

 p
hr

os
ej

41
.1

..t
itr

y±
 li

st

i.E
--

r.
4t

rio
ut

e
L

A
tta

ut
e

M
od

N
.

1
I

A
lt

;5
st

...
1:

Y
12

01
9U

(w
) 

S
S

L.
un

us
ed

M
er

ge
d

I

re
fe

re
nc

e
U

st
 a

s

'o
cc

um
u-

I
to

te
d

I
du

rin
g

se
ar

ch
T

itl
e 

S
ea

rc
h

F
or

m

A
ttr

ib
ut

e 
6

A
ut

ho
r 

S
ea

rc
h

1
F

or
m

j
(S

et
 u

p
L

I

uy
A

ut
ho

r
tit

;s
t;i

tT
ng

-1

Ir
ef

er
en

ce
lis

t f
or

en
tir

e
se

ar
ch

M
er

ge
d

I r
ef

er
en

ce
 I

I
lis

t o
s

ac
cu

m
u-

la
te

d
du

rin
g

se
ar

ch

T
itl

e 
ph

ra
se

IF
S

F
P

2

IF
S

F
P

3

IF
S

F
P

4
F

P
S

IF
S

F
P

7

In
ve

rt
ed

 F
ile

S
ea

rc
h 

F
or

m
s

to
-

M
cg

cl
e

N
.

O
ne

 fo
r

ch
 w

or
d

..1
1p

O
ne

 fo
r

ea
ch

 w
or

d

F
ig

. 3
.1

S
ub

je
ct

/T
itl

e 
S

ea
rc

h 
S

tr
uc

tu
re

0.
1 

W
or

d
1

C
or

w
oo

i

I
rA

itT
ic

ut
; T

-1
I

.r
A

itT
liT

ui
7e

--
2

LA
tti

bu
te

 6

(u
nu

se
d)

 T
.

D
oc

. c
ou

nt
s

A
F

L.
,n

iu
se

d)
 T

.

D
oc

. c
ou

nt
s

M
od

e
N

.
A

T
L.

W
or

d 
1

4.
 (

as
 a

bo
ve

)

0(
 W

or
d 

1
1

T
itl

e 
W

ei
 h

t

le
so

lu
ch

T
A

T
r

D
oc

. c
ou

nt
s

M
od

N
.

oc
. c

ou
nt

s

7-
**

. (
as

 a
bo

ve
)



-173- 3. 2_ Z 5

3.2.2.5 STEM

:Thrpose

To remove endings from search words.
De s c ription

A. Operation: STR STEM(WPTR, CODE)

STEM is called by S. T. for ach word of a subject or title term. It
receives an argument containing a pointer to the word to be stemmed, and
returns a pointer whose decrernent component has been decrea':ied to con-
tain only the number of characters in the stern. If no ending can be re-
moved, the pointer is unchanged and the stern is the entire word.

STEM begins by extracting from the word-pointer the address and
length of the character string to be stemmed (which we will refer to as the
"word"). The length of the word is used to determine the maximum length
of the ending which can be removed (or equivalently the minimum length
of the stern). Words of over thirteen characters have the Tnaxirni;rn ending
length set at eleven, while those under four characters are not stemmed
at all. For all other lengths, the minimum stern length is three. (All
character counts are in terms of ASCII characters, not Intrex special
characters.)

The word-pointer is then incrernented by three characters, skipping
past the minimum stem to point at the first possible ending character. The
remaining characters of the word (the possible ending) are ccoied into a
temporary storage area for comparison to the entries in the ending table.
The actual comparison is rn 'le by a call to VSRCH (described in Section
3.4.5.5). which searches the ending table starting at beginning of the ending-
group of this length. If no match is found in that length group, the ending
length is reduced by one, the copied ending is shifted one character to the
left (by calling SHIFT, described with VSRCH), and STEM loops back to
call VSRCH again. This is repeated until either a matching ending is found
or the ending length reaches zero. If the length becomes zero, the attt_ ript
to stern is unsuccessful and STEM returns the original pointer to the calling
program.



3. 2. 2. 5 -174-

If a potential matching ending is found, VSRCH returns the address
at which the ending resides. This address is used to calculate the depth
into the group of this particular ending. This depth and the length of the
ending which matched combine to form the "ending -code" a 12-bit rep-
resentation of the ending which is being removed from the word.

However, since VSRCH only finds a match on the first computer word
of the ending (up to four characters), the remaining computer words, if any,
must also be compared before a match can be clairned. This is done within
the body of STEM. If a mismatch is found in one of the remaining words of
characters, the ending-pointer is moved up to the next ending in the table
and VSRCH is called again.

Once a full match has been made, the "condition code" associated
with this ending is extracted from the ending table. The word-pointer is
then advanced, if necessary, to point at the ending to be r.emoved if the
condition code

Now, the condition code is used to compute the selection of a switch
number, which will route STEM to one of many possible tests, each one de-
signed to determine if the ending should be removed in the existing circum-
stances. For a detailed explanation of the stemming algorithm, see
Ref rence 8.

If the condition test is passed, STEM finishes by adjusting the pointer
to the new stem, constructing the ending-code and inserting it in the location
provided by the second argument of the call to STEM, and returning to the
calling program.
B. Procedures Calling STEM:

S.T
C. Procedures Called By STEM:

INC, COPY, VSRCH, SHIFT, GET , DEC I

D. COMMON References:
None

E. Arguments:
WPTR: ASCII Ptr.
CODE : to be filled

i90



F.- Values:

STR -= pointer

Error Codes:
None

H. Messages:
None

I. Lengta:
14538 811 10

Source:

-173-

to stemmed word

STEMIA ALGOL

.1.S1

3. 2 2. 5



3. 2. 3. I-N- IA.12

-176-

:nter7Dretation

ose

To initialize the AUTHOR procedure

Desc ription

A. Operation: INIAUT( )

This proc<_-_,.re initializes the delimitex- strings and pointers to
used by NEXITM in dissecting the cornman. line. It is called by the t;eg-
rnent initializer d_:.ring the fixed parameter initialization phase, and its
coding area is given over to Id e storage via FRALG after execution.

B. Procedures Calling INIAUT:
SEGINT

C. Procedures Called By INIAUT:
FRALG, . C. ASC

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
"Tone

H. Messages:
None

I. Length:

248 or 20 words10

J. Source:
AUTHOR ALGOL

K. Files Referenced:
None

152



AC cornrnancs.

Des(_ riptIon

Operation: Cocie = i',.1.3THOR(Ptr)

AUTHOR, like SUI3J. at,id TITLE, sets up a new search strut ture
and discards any old structui-e which may exist from a previou- search or
restored list. If the current ist s a restored NAMEd list (REIC(SST.)
= true), then DELLST is called_ If it is the result of a search, then SNX(SST. )
is examined to see if the search form was just set up by a previou --arch on

the sanat- command lane. If this dot the case, CLEANP is called u discard
the previous search form. AUTHOR then performs its work of setting up a
new search form by calling three sub-proced res, GATP, LN, and AI which
are described in detail in the fohJwiric,, sections.

Figure 3.2 shows the structure set up by an AUTHOR command.

B. Procedures Calling AUTHOR:
CLP (via CALLIT)

Procedures Called By Author
AI, CLE DELIST, GATP, LN

D. COMMON Referenc es:
Name Meaning.

RLIC(SST.) Restored list in core
SNX(SST.) Search not executed

Inte rrogated? Changed?

E. Arguments:
Ptr: ASCII pointer to command line

F. Values:
Code 0

G. Error Codes:
Code -2: error parsing command line



a

S
et

 u
p

by

S
U

B
JE

C
T

C
om

m
an

d
Lk

t

S
S

F
.

T
S

F

A
S

F
.

R
R

L.

S
ub

je
ct

 S
ea

rc
h

F
or

m

r

de
b

T
itl

e 
S

ea
rc

h
F

or
m

S
et

 u
p

by
T

IT
LE

_ 
_ 

_

A
ut

ho
r 

S
ea

rc
h

F
or

m

M
od

e_

un
us

ed
A

IF
 S

F
.

R
L.

Ir
ef

er
en

ce
 I

I
lis

t
!fo

r 
en

tir
e(

I
se

ar
ch

I

im
E

,.u
th

or
na

m
e

A
ut

ho
r 

In
ve

rt
ed

 H
le

S
ea

rc
h 

F
or

m

-n
ol

gp
en

t1
 u

se
I r

ef
er

en
ce

!
I

I i
st

I
fo

r
I

A
ut

ho
r

on
ly

na
77

1

F
ig

. 3
.2

A
ut

ho
r 

S
ea

rc
h 

S
tr

uc
tu

re

- 
)

O
.'



T Lenth:
c,r ' sI 0

Sc.,urc

AUTHOR . LOOL

K. Files Referenced:
None

IS5



3. 2. 3. 3 GA1.17-

r

To get author template

Description

A. Operation:
A five-element array is obta ned fron. free storage and its pointer

deposited in the Author Search Form component of the command list
(ASF.(CL.)). Then a six-element array to be used as the Author Inverted
File se;:irch fnrm is borrowed from free storaL-. A pointer to this arra',
is inserted i.,to the AIFSF ',Dmponent of the ASF. The search mode of
both these forms is then set the value found in RAM(POT.)ordinarily
set to 10 by INIPOT during fixed parameter initialization). Finally, SNX
SST.) is set to indicate a search is pending and a zero is returnd

to AUTHOR.

B. Procedures Calling GATP:
AUTHOR

ocedures Called By GATP:
FREZ

D. COMMON References:
Name Meaning Inte rrogated' Changed')

SNX(SST.)
RAM(POT.)

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

Search not executed
Residual author mode

L 9 6



LGC

lies Refer,nced:

T'co



3.2.3.4

3.2.3.4 EN

purpose
To process author's last name

-182-

Description

A. Operation: Code = LN( )

The pointer to the command line passed to AUTHOR by CLP is
used by EN to read the author's last name from the command. NEXITM
is called with this pointer as an argument and the returned pointer to
the name is deposited in the name slot of the author -search-form,
N. (ASF% (CEO). If NEXITM fails to extract a name, a -2 error code is
returned to AUTHOR.

If the name is found, an appr'opriate amount of free storage is
utilized and the full name (including first name or initials, if any) is
copied' into the free storage area. The pointer in N. (ASF.(CL.)) is then
changed to point to this copy.

Now NEXITM is employed to isolate the last name only by includ-
ing a comma in the list of item delimiters. The last-name-pointer is in-.
serted into the name slot of the Inverted-File-search-form, N.(AIFSF.
(ASF.(CL))), a copy of the last name is then placed in free storage ahd
theiL pointer is, modified to point to the copy.

If the item delimiter found by N,EXITM was a slash, no first name
or initials were found and LN returns, to AUTHOR with a value of zero.
Otherwise, the mode of both the author-search-form and the Inverted-
File-search-form is modified to indicate that an affix 'search iS to be per-
formed (mode > 100). Slots for the author's initials and for its i17?inter are
obtained from free storage and value of 1 is returned to AUTHOR%

B. Procedures Calling EN:
:AUTHOR

C. Procedures Called By LN:
COPY, FREE, FREZ, NEXITM

D. COMMON References:
Name Meaning Interrogated? Changed?

RAM(POT.) Residual author mode

-14?



-183 -- 3.2.3.4

E. Arguments:
None

F . Values :
Code = 0

G. Error Codes:
Code = -2: last name not found

H. Messages:
None:

I. Length:
2158 or 141 10 words

J. Source:
AUTHOR ALGOL

A
K. Files Referenced:



3,2.3.5 -184-

3.2.3.5 AI .

Purpose

To process author's initials

Description

A. Operation: Code = AI( )

This procedure extracts the initials as given in the search command

and uses them as the affix part of the search forrx-J.

First, an initial-counter is reset to zero. Then NEXITM is called

to get the next item from the command line, using space, period, and

slash as the item delimiters. If NEXITM fails to return a pointer, the

delimiter found (TF) is examined to see the end of the command has been

reached. If the delimiter is not a slash, an error code of -2 is returned

to AUTHOR. Otherwise , all the initials have been extracted.

When NEXITM returns a pointer to an initial (or first name), the

first character is removed and packed* into the slot reserved for the/affix

by LN. If no slash has yet been found, the initial counter is incremented

by 1 (if not over the limit of 3) and another call to NEXITM is made.

If more than three initials are seen, an error message is typed and

only the first three are processed.
When all,initials have been packed into_the affix slot, its pointer is

deposited into the appropriate part of the Inverted File-search-fOrm,

AFL. (AIFSF. (CL. )), along with the relevent counts.A zero/ value is re-

turned to AUTHOR.

B. Procedures Calling AI:
AUTHOR

C. Procedures Called By AI:
GET, NEXITM, TYPEIT

D. COMMON References:
None

*Initials are ASCII characters packed three to a. computer word, left justified.

Note that, if a first name is given, only its first letter is used.

200



-185- 3.2. 3. 5

E. Arguments:
None

Values:
Code = 0

G. Error Codes:
Code = initials not found

H. Messages':
The AUTHOR command can accept a maximum of three initials.
All others are ignored." ($inter2$)

I. Length:
2248 or 14810 words

J. Source:
AUTHOR ALGOL

K. Files Referenced:
None



3. 2. 4. 1 -=-1 8 6

3. 2. 4 Primary Search Control
3. 2. 4. 1 SEARCH

-

purpcn e

To control search of Inverted Files
Descriytion

A. Operation Code = SEARCH ( )

The main, controlling procedure called SEARCH is very short
and simple. It does some initializing, such as turning on the "blip"
feature (which indicates to the user when his search is being processed
by CTSS), and resetting the appropriate indicators, state flags and modes.
It then calls the three search routines, SSRCH (subject ), TSRCH (title),
and ASRCF .(author) in that order. If any of those roul-ine 3 retuins tn
SEARCH with a negative value, indicating a failure to locate the search
request, no further search attempts arc made.

After calling the individual search facilities, the RRL(CL.) pointer
to the resulting reference list is examined to see if it has been filled by a
successful search. If so, the RRLE bit of the system state table is set to
indicate that a resultant reference list exists. The document count is
copied frormthe pointer in RRL. to the DCNT slot of the command list.

Finally, the blip is turned off, the last Inverted File segments to
be opened during the search are closed, if necessary, and SEARCH returns
to the Intrex supervisor. (SUPER).-

B. Procedures Calling SEARCH
SUPER (via CALLIT)

C. Procedures Called By SEARCH:
ASRCH, CLOSE, SETBLP, SSRCH, TSRCH

D. COMMON Refe rences :
Name Meaning Interrogated? Changed?

SNX(SST.) Search not executed x
RRLE(SST.) Reference list exists x
BLIP(POT.) Blip characters x
IFS2 (POT.) Narne2 of Inverted Files x

202



-187-

E. Arguments: )

None

F. Values:
Code = 0: search succeeds

G. Error Codes:
Code = -1: search fails (I/O error)

H. Messages:
None

L Length:
1578 or 11110 words

J. Source:
SEARCH ALGOL

K. Files Referenced:
AInnn date

203

3. 2. 4. 1



3. 2. 4. 2

3. 2. 4. 2 SSRCH, TSRCH, STRCH

Purpose

To control subject/title searches
Description

A. Operation: Code SSRCH( )

Code TSRCH( )
Code STRCH(SFP)

The heart of the search module, as far as subject/title searches
are concerned, is in STRCH. This is where the individual query word's
search forms (set up by S. T . in INTPRT) are selected, passed to
IFSRCF-f for look-up in the Inverted Files, and intersected by calls to
ANDER. Since STRCH is used for both subject and title searches, it is
set up for one or the other by the smaller, control routines named SSRCH
and TSRCH, respectively. Although these are separate routines, they
are so closely associated that, for purposes of operational description,
they may be clumped together with STRCH.

SSRCH is the first search procedure called by SEARCH. It exam-
ines the subjea-search-form slot of the command list (SSF. (CL..)) to see
if a subject search has been requested. If that slot is empty, return is
immediately made to SEARCH with the "subject flag" reset.

If a pointer is found in SSF.(CL.), the "subject flag" is set, the .

"anding mode" for ANDER is set to zero (causing term number matching),
and STRCH is called.with the pointer as an argument. Upon return to SSRCH,
the pointer to the rearranged Inverted File search form-pointers (explained
below), is stored in a component of the cornmar-, list called RESUB. The
currently active Inverted File segment name is saved for possible closing
later in SEARCH, and SSRCH returns to SEARCH with the same value it
received from STRCH (a zero if no error condition found).

TSRCH which is called next by SEARCH, performs essentially the
same operations as SSRCH, except that it takes the title-search-form-
pc4nter from command list and, i; not zero, passes it to STRCH. It also,
sets the "title flag" and, if the "subject flag" is also on, sets the "anding
mode" to 1 so that ANDER will ignore term numbers in intersecting the,



-189-- 3 2. 4. 2

title reference lists with the subject
In TSRCH, upon return from STRCH, the pointer to the re-

arranged title Inverted File search form pointers is inserted into the
command list.slot called RETIT.

The first thing STRCH does, when called hy SSRCH or TSRCH,
is to extract the number of query words (Inverted File search forms) n-
volved in the search from the decrement of the simple search list pointer.
If this number is greater than 1, it means that reference 1;sts from the
Inverted Files are going to have to be intersected by ANDER (the general
Boolean procedure). In order to improve the efficiency of the "anding"
process, it is desirable to start off with a list which 's not too large. The
object is to take advantage of the fact that the resulting list can be no
longer than the smallest individual list. An easy and quick way of getting
some idea (although not an exact figure) of the size of the lists involved
in t le search before they are finally looked-up in the Inverted File is to
look at the main directory and see how many sections are devoted to hold-
ing each list. The actual Method of doing this is described below urder
MEADIR. At this point, it suffices to point cut that a procedure named
REORD is called by STRCH which uses MEADIR to find a list not longer
than one Inverted File segment among those which will.be looked-up. If
one of that size is found, it is 'placed at the top of the group of search
form pointers, trading places with the one which was there. If none is
found to be less than one settion in length, then the smallest one is put
at the. top. This is, done by creating a new list of Inverted File search
form pointers. A pointer, to this new list is returned to SEARCH from
REORD to be Used in setting up sequential calls to IFSRCH for
locating the search words and extracting their reference lists. This
pointer to the re-ordered list is later inserted into the command list as
described above. _

Once the list of pointers is re-ordered, they are extracted, one by
one, and fed to IFSRCH for the look-up. Other preparations are made on
each search form, however, before IFSRCH is called. If an attribute list
exists in the main search form, it is transferred to the individual-word
search form and the attribute search indicator is turned on. If the number of



3. 2. 4. 2 -190-

words to be looked-up is one; then a code is sent to IFSRCH to determine
the selection of cozinmon buffers into which to read the list. (See descrip-
tion'of IFSRCH in Section 3. Z. 5.1)

IFSRCH is called with three arguments. They are the Inverted
File search form pointer, the number of the word being processed, and
the buffer code. IFSRCH returns with a pointer to the resulting reference
list (cr a zero if the search failed) and the name of the Inverted File seg-
ment in the argurre nt which sent the buffer code.

,

STRCH then examines the "result" slot of the search form for the
presence bf IFSRCH error codee. If an error code is found, an error mes
sage is recorded in the Monitor File and another is typed to the user. If

this occurs-, the search is aborted and an error code of -3 is returned to
SEARCH.

If no error is found in the "result" slot, the reference pointer is
examined. If it contains a zero, the search was unsuccessful and STRCH

return.; a value of -1 to SEARCH.

A successful search returns a reference list pointer from IFSRCH

to STRCH. Before this pointer is used for further processing of the search
query, the need for attribute matching is determined. If the attribute search
indicator is on and STRCH is processing other than the first word of a search,
then a second attribute search indicator is turned on to be used as an argu-
ment when calling ANDER for the intersection of this list with the previously
acquired list, On the other hand, if this word iS the first and only one of the

search, then a special*call must be made to the attribute screening routine,
ATSCRN, from STRCH. ATSCRN accepts the reference pointer, as an argu-
ment, selects only those references which match the required attributes, and
returns a pointer to the new list.

Next the main reference pointer at RRL.(CL.) is examined to see if
any previous look-up has produced a list. If this pointer is zero, the current
reference pointer supplied by IFSRCH or ATSCRN is inserted. For this first
obtained list, the pointer is also saved aside for future use by STRCH and

the name of the Inverted File segment is remembered.

206



-191- 3. 2. 4.

If a pointer already exists in RRT....(CI_.), then the list it points to
must be intersected with the current list...ANC:F.:a is called with these two
list pointers as arguments. Additional arguments are the "anding mode"

set
(set by SSRCH and TSRCH) and the most recentlyi/a.ttribute search indicator,
which wil) cause ANDER to screen attributes, before intersecting the lists,
via calls to BUFSCN (see Section 3.3.4.7). ANDER returns a polnter to

the intersected list which becomes the new RRL.(CL.), aftei the old aug-
mented list pointer associated with th old RRL. (CL.) is 9releted.

The current list pointer (before ANDing) is also deleted and the
source Inverted File is closed.

If the new resultant reference list pointer is a ze,-o, then STRCH

returns a -I value to SEARCH indicating that the search failed. If the new
pointer is less than zero, this indicates an error c-indition 'during ANDing
and a -2 value is returned to SEARCH to signal the error.

When the new pointer is a list pointer, the number of documents
involved in the list is extracted from the decrement and inserted into the
result slot of the Inverted File search form of this word.

If there are more words to process, STRCH then loops back to elect
the next search form and use it in calling IFSRCH etc.

After processing all the words, or search forms, the resultant refer-
ence list is saved in the search foim of this word for possible future use
(unused at present), the first list pointer is deleted, unless it is the only
one, and a zero value is returned to SSRCH or TSRCH and hence to SEARCH.

13. Procedures Calling SSRCH, TSRCH, STRCH:
SEARCH (calls SSRCH, TSRCH)
SSRCH (calls STRCH)
TSRCH (calls STRCH)

C. Procedures Called By SSRCH, TSRCH, STRCH:
ANDER, ATSCRN, CLOSE, IFSRCH, LOCMES, REORD,
SHOWER, TYPEIT

7



3. 2. 4. 2 -192-

ID. COMMON References:
..Name Meaning _ Interrogated? Changed?

SSF.(C1_,.) Subject search form x
RESLTB(CI, ) Reordered subject list x
TSF;(C1_,.) Title search form x \
RETIT(CL. ) Reordered title list x \
R111_,.(C1.,.) Resultant reference list x x \

E. Arguments:
SFP: address of title or subject search form

F. Values:
Code = 0 search successfull
Code =.1 search failed

(3. Error Cojes:
Code = -2: error during ANDER
Code = -3: error during IFSRCH

H. Messages:
1. "An error in tI"

retrieved in sif-error re-at.,

I. Length:

5168 /or 33410 words

J. Source:
SEARCH ALGOL,

K. Files Referenced:
AInnn date

files caused zero documents to be
:the word x. Avoid using this word,

serr$, $2err2$)



-193- 3.2.4.3

3.2 .-473ATSC RN

Purpose
To screen attributes in reference words

Description

A. Operation: Ptr = ATSCRN(Ap)
This]. roceure resides in IFSRCH ALGOL but is called only by

STRCH and so will be included here and not in the IFSRCH description.
It is used to compare specified components of the references in a list to
one or more attribute specifitations as chosen by the user in his search,
request. One.argument is passed to ATSCRN. This is a pointer to the'list
of references to be screened. A common buffer is selected (for reading
the balance ot the list from the disky if necessary) by using the buffer
number stored in the 'tag of word three of the aug,mented list pointer by
IFSRCH. This insures against using a buffer Which is being used for
holding another Inverted File list. The address of the first reference in

list to be screened is also obtained from the pointer and all the neces-
sary:counters and indices are reset to zero.

Common buffer 1 is used as an output storae area- for the refer-
ences which match the required attributes unless the entire list is cur-
rently in core. If some nf the references to be screened are disk-stored,
the disk address and number of disk references are also extracted from
the pointer. A parameter for keeping track'of 04 number of references
in a disk record is set to 432-unless the disk fi,le is an Inverted File seg-
ment, in which case it is one less because of the presence of a sectibn
header.

At this point, a sub-procedure named BUFSCN is called (Section
3. Y.. 4.7). It performs the actual comparison of each reference to the re-
quired attributes for those references currently, in core. References which
BUFSCN finds acceptable are stored in the output area whose address is
supplied in an argument to the call. Having processed this buffer, ATSCRN
decides if there are more references left (in disk to be processed and, if so,



3. 2. 4. 3 -194-

reads the next block via RDWAIT into the same common buffer area. The
RDWAIT variable RELLOC is updated and the-number of references left to
read is reduced.

The starting location of this new batch of references is set (skip-
ping the section header if we are reading an Inverted File segment) and
ATSCRN goes back to call BTJFSCN again.

After all, the references are screened, it is determined whether all
the references were originally in core. If so, ,the size of the list was
simply reduced by the attribute screen but the list is still core-stored and
continues to exist in the same place in core. Otherwise, the output buffer
is written into theDumpFile (finishing a job possibly started by BUFSCN
if it filled the buffer earlier). TheDurnpFile record count is updated and
a new augmented list pointer is constructed in place of the olci one passed
to ATSCRN. A pointer to this augmented pointer is returned to the calling
prrogram (STRCH)'.

B. Procedures
STRCH

C. Procedures
BUFSCN,

D. COMMON
Name

Calling ATSCRN:

Called By ATSCRN:

RDWAIT, WRWAIT, PREPTR

References:

COMBFn(POT.)
COMBF1(POT.)
TOTBLK(POT.)
DFN1(POT.)

Meaning Interrogated? Changed?

Input.buffer
Output buffer
Dumprile relocation
DumpFile namel

E. Arguments;
Ai): pointer VS list of references

F. Values:

Ptr = pointer to screened references

G. Error Codes:
None

"\- 210



H. Messages:
None

I. Length:
4558 or 30110 words

J. Source:
IFSRCH ALGOL

K. Files Referenced:
AInnn date
DUMnnn FILE

-195-

211

3. 2. 4. 3



3. 2. 4. 4 I -196-

3. 2. 4. 4 REORD, MEADIR

purpose
To reorder search terms

7--
Des c ription

A. Operation: Ptr = REORD (Lptr, Nifs)
REORD attempts to find a search word among those in the group

of Inverted File search forms presented to STRCH whose reference list
is not long enough to require more than one section. If none of the lists
are shOrt enough, REORD selects the shortest one available. The
selected list's search form pointer is moved to the top of the pointer
list (unless it already Ihappens to be there) and the pointer which was
there (the user's first search word) is moved to the old location of the
small list pointer. This rearrangement is used by ANDER to optimize the
intersection of the lists involved in the search. It is reilected in the COUNT
results which are listed in this rearranged sequence. The original order
is also saved, however, for the feed-back of the user's search request (by
EVAL).

Arguments passed to REORD includes a pointer to the list of Inverted
File search form pointers and the number of pointers in that list. Initial-
ization of REORD includes obtaining the core addresses of the two Inverted
File directories (via IFSET), obtaining an array for storing the re-ordered
list of pointers from free storage, a.id setting a variable which will hold
the smallest list size found so far to a high enough value to force selection of
the first list as being the, smallest so far.

Then, each search word,is passed to the measuring routine, MEADIR,
which looks it up in the Inverted File directories and determines its approxi-
mate size. The look-up is done in the same way as in LOCSEC, described
under IFSRCH. The initial letter of the search word is used to select a re-
lated slot in the first directory, which supplies the address within the second
directory where that alphabetic grouP begins. Comparison is then made be-
tween the search form word (converted to 5-bit code by NAM5) and the abbre-
viated (no more than 7 characters) entries of the directory.

212



-197 - 3. 2. 4. 4

As long as the search word is greater than (beyond) the directory
entry, the scan continues down through the directory. If the search word
is found to be less than (before) the directory entry, the "find,point" has
been nassed and it can be assumed that the list for the word in question
does not exceed one section but was contained (if it exists at all) in the
section just passed. In the case where the search word and directory
entry are equal, an "overflow-section counter" is incremented and the
comparison continues on to the next directory entry.

Once the "find point" has been passed, the scan of the directory
ends and the section counter just mentioned is returned to REORD.

Segments of the Inverted File which extend beyond 10 sections be-
cause of a large list in the tenth section present a special problem since
the extra sections are not represented in the directory. When the "find
point" turns out to be in Section 10, therefore, a call to the CTSS routine,
FSTATE, is made to determine the length of the segment, from which is
computed the additional sections to be added to the section count.

The section count retUrned to REORD is 'ro if the list was con-
tained Ia a single section. This prompts the immediate switching of this
list pointer with the one at the top of the list. REORD then has done its
job and returns a pointer to this reordered list to STRCH. If the section
clunt was greater than zero, it is compared to the variable holding the
sn,allest section count so far (set to a high value during initialization). If
this section count is smaller, it replaces the old count and the,position of
this search word pointer Within the list is remembered. Then REOr
loops back to call MEADIR with the next search word pointer as an argu-
ment. If all searchwords have thus been measured without finding a non-
overflow list, the position of the smallest one is used and switphed with
the top list.

B. Procedures Calling REORD, MEADIR:
STRCH (calls REORD)
REORD (calls MEADIR)

C. Procedures Called By REORD, MEADIR:
FREZ, FSTATE, GET, IFSET, NAM5

213



3.2.4.4 -198-

D. COMMON References:
Name

IFS2(POT.)
Meaning

Name 2 of Inverted File

E. Arguments:
Lptr: address pointer
Nifs: integer

F. Values:
Ptr = pointer to new list of pointers

G. Error Codes:
None

H. Messages:
None

I. Length:
3608 or 24010 words

J. Source:
SEARCH ALGOL

K. Files ReferenCed:
AInnn date

214

Interrogated? Changed?



-199- 3.2.4.5

3.2. 4.5 ASRCH

Purpose
To control author searches

Description

A. Operation: Code = ASRCH( )

ASRCH performs the same functions for author search requests
that SSRCH, TSRCH, and STRCH perform for subject/title searches.
The author search form pointer is extracted from the command list. If
it is zero, ASRCH returns a zero to SEARCH.

If pointer exists, the Inverted File search form pointer is ex--
tracted from the author search form and passed along to IFSRCH fer look-
up. The other arguments to the IFSRCH call are a 1 (representing the
number of words in the search phrase in this case only a last name)
and a buffer selection code (1 or 2, depending upon whether or not a sub-
ject and/or title search has arready been performed). IFSRCH returns
a pointer to the reference list, if the search was cuccessful, and the docu.-
rnent count in the result slot of the Inverted File search form. If ASRCH
finds an error code in this slot, it enters one error message in the
Monitor File and prints another to the user. In this event, an error code
of -3 is re,arned to SEARCH to indicate an I/0 or file structure error
has occurred.

If no error code is returned, the reference pointer is examined.
If this is zero, it means the search failed. In this event, a zero is in-
serted into the resultant reference list pointer, RRL. (CL. ), and a -1 is
returned to SEARCH. A successful search of the author Inverted File
calls for Possible further processing of the reference list. If the search
was not a combined one (no resultant reference list already exists) and a
screen on attributes is called for, then ATSCRN it5 called to perform the
screening and supply a pointer to a new list of screened references.

It is important to keep in mind, here, that the usual kind of attri-
bute restriction, namely RANGE, is not applicable to author searches and
that the attribute matching in this case is really an affix (initials) screen.

215



3. 2. 4. 5 -206-

If a resultant reference list already exists, the list returned from
JFSRCH must be ANDed with it. The pointers to the two lists are passed
as arguments to ANDER, along with an "anding mode" of 2(which prevents
trying to match on term numbers) as an attribute search :indicator, (If this
indicator is on, ANDER, will call BUFSCN to screenyeferences with
matching attributes from the author reference list.)

ANDER returns a pointer to the intersected list which becomes the
new resultant reference list. The augmented pointer to the author list
is delethd from the table, as is the old resultant reference list pointer.

If ANDER returns an error code (less than zero), then ASRCH re-
turns a -2 to SEARCH. Otherwise, the Inverted File segment opened by
IFSRCH is closed, the new document count is copied from the decrement
of the resultant reference list pointer to the result slot of the Inverted File
search form, and ASRCH returns a zero (success code) to SEARCH.
B. Procedures Calling ASRCH:

SEARCH

C. Procedures Called By ASRCH:
ANDER, ATSCRN, CLOSE, IFSRCH, LOCMES,

1.-TOWER, TYPEIT

D. COMMON References:
None

E. Arguments:
None

F. Values:
Code = 0: if search succeeds

-1: if search fails
G. Error Codes:

Code - error duringANIDER= 3: error during IFSRCH

H. Messages:
"An error in the computer files causethzero documents to be re-

4 trieved in searching on the word BAD, Avoid using this word if error
re-occursit ($serr$, $serr2$)

*.The word which triggered ihe error is printed here., 216



I. Length:
3538 or 23510 words

J. Source:
SEARCH ALGOL

K. Files Referenced:
None

-201 - 3.2.4.5

217



3.2,4.6 -202-

3.2.4.6 CLEANP, STCLN, ACLN

Puspose

To delete search structures
Description

A. Operation: CLEANP( ), STCLN( ), ACLN( )
Before a new search structure is put together at the command in-

terpretation stage, the old structure, if one exists, must be deleted and
returned to free storage (via FRET). This is also necessary when a
list is formed by the DOCUMENT command or a NAMEd list is being re-
stored to active status.

CLEANP examines the main search form pointers of the Command
List , ssr.(CL.), TSF.(CL.), and ASF.(CL.) to see if any search struc--
ture exists for subject, title, or author sq.arches, respectively.

The preqence of a subject and/or a title search structure
causes CLEANP to call the procedure STCLN, which accepts the search
form pointer as an argument and uses it to chain through the structure re-
turning the free storage arrays obtained by S. T, SUBJ., TITLE (see
Se'etion 3.2.2.4) and REORD (see Section 3.2.4.4).

If CLEANP calls STCLN to returnoa title search structure, an in-
dicator is set which tells STCLN that it must also return an attribute and
Mask for each search word in the user's query. In this case the attribute list,
ATL.(TSF.(CL)), is returned by calling the procedure ATLCLN, (see
Section 3.2.8.12).

If an author search structure exists, CLEANP calls ACLN to re-
turn those structure arrays. ACLN accepts the ASF.(CL.) as an argu-
rnent and calls FRET to return the areas obtained by AUTHOR when it
interpreted the user's AUTHOR search request. The search mode is
examined for the presence of an affix (initials) search, and the affix list
is returned if one exists.

After CLEANP has used these two sub-procedures, the current aug-
mented list pointer is deleted from the pointer table by a call to DRPPTR
(Section 3.2.4.8), unless the current pointer has been NAMEd (list type 4).

218



-203- 3.2.4.6

Now RRL., RESUB, and RETIT of the Command List are zeroed and the
RRLE(SST.) indicator is reset, thus destroying all indicatians of a "re-
sultant reference list".

Then, the Dump File is truncated to zero length and the number of
records in the file, saved in TOTBLK(POT.), is set to zero.

Finally, CLEANP calls FCLEAN (see below) to clean up OUTPUT
and RESTRICT structures.

B. Procedures Calling CLEANP:
SUBJ., TITLE, AUTHOR, RESTOR, NUMBER

C. Procedures Called By CLEANP:
DRPPTR, FILCNT, TRFILE, FCLEAN, FRET,
ATLCLN (via CALLIT)

D. COMMON References:
Name

SSF.(CL.)
TSF.(CL.)
ASF.(CL.)
RRL.(CL.)
RESUB(CL.)
RETIT(CL.)
DFN1(POT.)
TOTBLK(POT.)
RRLE(SST.)

E. Arguments:
-None

F. Values:
None

G. Error Codes:
None

H, Messages:
None

Meaning - Interrogated?
subject search form
title search form
author search form
resultant refer, list
reordered subj. forms
reordered title forms
Dump FIle name-one
Dump File block count
result- refer- list- exists

flag.

219

Changed?



3. 2. 4. 6 -204-

I. Length:

4658 or 30910 words

J. Source:
CLEANP A LGOL

K. File Refrences:
DUMnrin FILE

220
'



-205- 3.2.4.7

3. 2. 4.7 DELIST

Purpose

To clean up list pointer and and associated structures.

Des cription
-

A. Operation: DELIST( )

DELIST first examines RRL.(CL.) to make sure that a current
reference list exists. If so, the type of list is examined. Any type other
than NAMEd (type 4) will prompt DELIST to call the procedure DRPPTR
(described next) to remove the augmented list pointer from the table.

Next, FCLEAN (Section 3.2.4.9) is called to wipe out the old
OUTPUT, and secondary search (RESTRICT) specifications. Other tasks
of DELIST include: setting the main list pointer, RRL.(CL.) to zero; trun-
cating the Dump File to zero and setting its block count in TOTBLK(k)OT.)
to zero; resetting the System State Table bits. RRLF. and RLIC (resultant
reference list exists, and restored list in core) to false.
B. Procedures Calling DELIST:

SUBJ.., TITLE, AUTHOR, RESTOR, IFSRCH, .NUMBER

D.

D.

F.

Procedures Called By DELIST:
DRPPTR, FCLEAN, TRFILE

COMMON References:
Name

RRL.(CL.)
DFN1(POT.)
TOTBLK(POT.)
RRLE(SST.)
RLIC(SST.)

Arguments:
None

Values:
None

Meanins

result.reference list
bump File nanie-one
Damp File block count
result. -refer.,.. Iist-exists f1a4
-restored- list-in-core flag

Interzl? Changed?

221



3. 2. 4. 7 -206--

G. Error Codes:
None

H. Messages:
None

I. Length:
558 or 4510 words

J. Source:
CLEANP ALGOL

K. File References:
DIJMnn FILE



-207- 3. 2. 4. 8

3. 2. 4. 8 DRPPTR

Purpose
Drop list pointer fromwtable

Description
A. Operation: DRPPTR( )

The pointer in the Resultant Reference List slot of the Command
List, RRL. (CEO, points to a three-word augmented list pointer. DRPPTR
inserts a zero into each of the three words of this pointer through use of the
"full word component" facility of AED.
B. Procedures Calling DRPPTR

DELIST, AND. , NAME

C. Procedures Called By DRPPTR
None

D. COMMON References:
Name Meaning Interrogated? Changed?

RRL.(CL.)

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

result. refer. list

I. Length:
258 or 2110 words

223



3.2.4.8 -208--

J. Source:
CLEANP ALGOL

K. Fife References:
None

224



-209- 3. 2. 4. 9

3. 2.4. 9 FC LEAN

Purpose
To clean-up OUTPUT request form

Part of the process of removing all traces of a previous search in pre-
paration for the creation of a new list is to discard the output structures
set up by OUT. (describe14.4n Section 3.2.7.2) and the secondary search
(RESTRICT) structure set up by IN. (described in Section 3.2.7.3).

Description

A. Operation: FCLEAN( )

The Output Request List Poii_...er in ORE. (GE.), which points to a
permanent array containing field numbers to be output, has its decrement
(count of field numbers) set to zero by masking off all but the address
portion of the word.

Next, the Field Se.rch, List pointer in FSC.(GE.) is reduced in the
sarneway (eliminating the count in the decrement), and the pointers stored
in the ten-word array used for holding RESTRICT specification pointers
are examined one-by-one. The free-storage area to which each one of
these pointers points is returned via FRET, and the pointer itself is
changed to zero.
B. Procedures Calling FCLEAN:

CLEAN, DELIST, NEWPT
C. Procedures Called By FCLEAN:

FRET

ID. COMMON References:
Name Meaning Interrogated? GLia.Lai sci?

ORE. (CE. ) output request list
FSE.(GL.) field search list

225



J. 2. 4. 9

E. Arguments:
None

F. values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
748 or 6010 words

S. Source:
FCLEAN ALGOL

K. File References:
None



-211-

3. 2. 5 Inverted File Lookup
3. 2. 5. 1 IFS RC H

Purpose
To search Author or Subject Inverted Files for a list

Description

3. 2. 5. 1

A. Operation: Ptr = IFSRCH (IFSFP, WRDNO, IFS1)
IFSRCH accepts, as one of its arguments, an address pointer to

an Inverted -File-search-form. This array is of the following form:
WORD 1 - mode (1-3 decimal digits)
WORD 2 - name pointer (to ASCII string)
WORD 3 attribute pointer (to list of attributes)
WORD 4 - affix pointer (to list of pointers)
WORD 5 time array pointer (for time checks)'
WORD 6 - result (filled by IFSRCH)

1%kThe name pointed to by word 2 is looked up in the Inverted Files
according to the mode in word 1. Although the mode specifies that an exact (***stem match must be made (0 in the units digit) , a match on affix strings as
well as stems may or may not be called for (1 or 8 in the hundreds digit).
The azithor file will be'searched if the tens digit is a 1, while an zero in
that place specifies a subject/title file search.

If an attribute list is to be considered in the selection of qualifying
references, then a pointer containing the address of the attribute mask
(which must immediately precede the attribute list) appears in word 3 of the
search form. The length of the attribute,1ist must appear in the decrement
of word 3.

Word 4 may contain a similar pointer to a list of Intrex pointers,
which in turn point to ASCII strings of endings' or author's initials. The
pointer in word 4 will not be put to use in an affix string match, however, un-
less the mode in word 1 calls for affix matching.

The other two arguments passed to IFSRCH by SEARCH, WRIDNO
and IFS1, are used to govern the selection of common buffers which IFSRCH

*1. Set up \by SUBJ., TITLE, or AUTHOR
**2. Not presently used.

*** 3. Only exarct match mode is currentl.t4in use.
4. At present only author's initials are used in searching

with affixes. 227



3. 2, 5. 1 -212--

will use in reading the Inverted File. First WRDNO tells if the current word
is the first word of a search request. If it is, IFS1 will indicate if it is a
one-word.subject, title or author search or a combination of them. The con-
ventions used in this determination follow the outline below.

Search Type IFS 1 = Buffer Used
1-word subject 1 5

1-word title, no subject. 1 5

Author, no subj. or title 1 5

1-word title with subj. 2 4
Author with subj. or title 2 4

If W RDNO is greater than 1, then IFSRCH used buffer 3 for reading in
the Inverted File sections. IFS1 is also --Ased to relay back to SEARCH the

first name'of the Inverted File segment where the sought word was found.
After establishing the buffer selection and the search mode and in-

itializing a few parameters, IFSRCH passes the pointer to the search word to
a sub-procedure named LOCSEC which will look the name up in the Inverted
File directories. LOCSEC selects the appropriate section number of the ap-
propriate Inverted File segment where searching should begin. The proper
RELOC, or depth into the file, is computed using this section number, and
reading of the file begins.

After checking for the presence of a section header fence, the off-
set of the*-first list in the section (also in the header) is used to compute .
the starting location of the list. If this offset is zero (meaning no list starts
in -that section) either the next section or the-previous section is read; de-
pending on the direction of scan. Almost always the scan is forward. The
one exception will be explained in the writeup of LOCSEC.

When a list header is located, a check is made for the li-st fence
and a pointer to the "name" (search word) is set up. The number of char-
acters in the name and number of affix codes associated with it are set aside.
The string-comparing procedure COMPUL is called to match the list name
against the one pointed to by the search form. The return from this proce-
dure indicates a high, low, or equal comparison. A high compare means
that the search form word is beyond that point in the Inverted File and we

228.'



-213- 3.2.5.1

must keep looking. A low compare means that the "find point" has been
passed without making a match and that (unless we are going to work
backward) the search has failed. In the former case, the list header is
used to locate the start of the next list and IFSRCH loops back to call
COMPUL again. If the end of the section is reached without reaching
the "find point", the next section is read and the search continues. If all
the sections of a segment are scanned unsuccessfully, that segment is
closed and the next one in sequence is opened for reading.

,If COMPUL finds that the two names match to the end of the
search form word, their lengths are compared. An inequality in length
constitutes a failure and the search ends in a mismatch. If the two lengths
are the same, however, a match has been found and the reference and docu-
ment counts are extracted from the header of the Inverted F ile list.

At this point, the affix-search indicator is examined and, if on,
the affix matching procedure, MATAFF, is called. If affix matching is
successful, a pointer to a list° of satisfying references will be filled upon
return from MATAFF. If it is unsuccessful, that pointer will be zero and
the miss-match exit is taken from iFSRCH.

If affix matching succeeds, or none is required, an indicator is
set and the name of the Inverted File segMent containing the matching list
is plugged into the IFS1 argument to-be returned to the calling program.

Now the address of the first reference word in the list is com-
puted by moving down from the top of the list header the length of the
header, name field, and affix field. Since affix fields may spill over to
the next section, a test must be made to see if the references for this list
are actuall in the next section and; if so, how far in.

Once the actual starting address of the reference list is established,
the number of references that might possibly be contained in the remainder
of the buffer is computed. If this number is less than the total references
in this list, it is used as the core-stored count in word two of the three-
part augmented pointer created by the sub-procedure, PREPTR. The re-
rnaining references become the disk-stored count in word three of the aug-
mented pointer and, for these cases, the name of the Inverted File segment

229
.1k



3. 2. 5. 1 -214-

goes into word one.1 The disk and core addresses are also inserted by
PREPTR and the list type is set in the tag of word two. If all the ref-
erences are contained in the buffer, the list is considered a core-store
list (type 0) and words one and two of the pointer are left blank.

After the augmented pointer has been created, it is inserted into
the list pointer table (part of RESLIS ALGOL) by a call to TABENT.

Finally, the document count of the list, extracted earlier from
the list header, is inserted into the decrement component of both the
"resule slot of the search form and the reference pointer returned to
SEARCH, which will become the "Resultant Reference List" pointer or
RRL.(CL..).

When a search fails, the reference pointer is checked to see if
a previous call to IFSRCH for another word in the same search term
produced a list pointer.If so, that pointer is deleted from the list pointer
table by a call to DELIST since all words of a query must match the In-
verted File in order to make a successful search. The last scanned seg-
ment is closed, the result parametZrs are zeroed, and a zero value is re-
turned to SEARCH.

B. Procedures Calling IFSRCH:
SEARCH

C. Procedures Called By IFSRCH:
IFSET, LOCSEC, RDWAIT, COMPUL, CLOSE, OPEN,

D. COMMON References:
Name Meaning Interrogated? Changed?

IFS2(POT.) Naene 2 of Inverted File
COMBFn(POT.) Common buffer

E. Arguments:
IFSFP: pointer to inverted file search form

WRDNO: sequence number of word being processed
IFS1 : combination code

F. Values:
Ptr = Pointer to reference list augmented pointer or zero

(if no match made).

1. A detailed description of the three-part list pointer may be found in
Appendix B.

230



-215- 3. 2. 5. 1

G. Error Codes (in last word of search form):
-3 Premature end-of-file reading segment
-5 Section fence missing
-6 List fence missing

H. Messages:
"Error opening I.F. Seg. NAME1", (Seg. name) (LOCMES,
BCDASC)

I. Length:
25 ,58 or 137310 words (including ATSCRN, BUFSCN,
MATAFF, LOCSEC)

J. Source:
IFSRCH ALGOL

K. Files Referenced:
SInnn date
AInnn date

231

^



3.2.5.2 -216-

3.2.5.2 LOCSEC

Purpose
To locate a section of an Inverted File segment
Description
A. Operation: LOCSEG(Namptr, Aut )

IFSRCH passes two arguments to LOCSEC as it attempts to
narrow down the Inverted File search to the appropriate segment. One
argument is a Boolean variable which, if set, indicates an author search
is in progress. In this case the file names are set up to use the Author
Inverted File and-di-reCiories. Otherwise, subject-title file names are
used.

The first step in the search is to extract (using GET) the first
"character of the name or search word (the other argument to LOCSEC).
The ASCII code for this Character is then adjusted and used to select a
corresponding address in the first directory, IFTABS (or IFTABA). The
contents of this directory address points to the depth of the second direc-
tory (IFDS or IFDA) where the abbreviations- (up to 7 letters) of list
words which start with this character may be found.

Comparison is then begun at this position of directory two be-
tween the name passed to LOCSEC and the name abbreviations in the direc
tory. These abbreviations are seven characters or less coded in 5-bit
ASCII form. The argument-name then must also be converted to 5-bit
ASCII by the procedure NAM5 in a separate ALGOL file of the same
name. Each word of directory two represents one section of the Inverted
File. The name of the first list in that section was condensed to 5-bit
code -and inserted into the appropriate directory slot by IFGEN during the
creation of the Inverted Files. Thus, directory two is a real index
almost a table of contents to the sections of the Inverted File. Sections
of the file which contain only references from a large list and no begin-
ning of a new list are represented by the negative form of the list name



3.2.5.2

code in their corresponding directory slots. During LOCSEC's matching
process, if a negative name is seen, it is skipped. A full-computer-word
comparison is made between the converted argument-name and the trial
directory-abbreviation. If the argument is greater (further down the alpha-
betical order) than the trial, the next trial in sequence is taken from the
directory. When a trial is found which is greater than the argument, the
sought word is assumed to be in the previous section of the Inverted
File. The directory index is reduced by 1 and used to compute the proper
segment and section numbers. For example, if the trial in slot number
205 was found to be the first one which was greater than the arguz-pet, then
the sought name would be expected to be found in segment 20 (200/10),section 4.

If the argument and trial happed to be equal, an indicator (EQU) is
set and no reduction by 1 is made to the index. Thus, the assumption is made
that the full word being sought will be found at or beyond the point indicated
by the matching abbreviation. This is not always true. Therefore, IFSRCH
will back up and try the previous section when the "find-point" has been
passed and the (EQU) indicator.is on.

Having selected a segment of the Inverted File for searching,LOCSEC
constructs the first name of that segment from the segment number it selec-
ted and opens the file for reading by calling the CTSS procedure OPEN before
returning to IFSRCH. If an error occurs because the file is already open, a
normal return is made. Any other kind of OPEN error results in an error
message (1) and an Intrex abort.
B. Procedures Calling LOCSEC:

IFSRCH

C. Procedures Called By LOCSEC:
DEFBC, GET, NAM5, OPEN

D. COMMON Referenc
None

E. Arguments:
Narnptr:

Aut :
ptr to search word
Boolean switch (used to distinguish between authoi
and subject searches).

2B3



3. 2. 5. 2

F.. Values:
None

G. Error Codes:
None

H. Messages:
1. "Error opening I. F. segment x," (LOCMES, BCDASC)

I. Length:
See length of IFSRCH

J. Source:
IFSRCH ALGOL

K. Files Referenced:
Slxxx date
AIxxx date

2 3



3.2.5.3 NAM5

Purpose
To convert to 5-bit code

Description
A. Operation:*

-219- 3. 2. 5. 3

Str = NAM5 (Ptr)
NAM5 is called by LOCSEC with an argument containing a

pointer to an ASCII string (the "name" field of the user's query search
form). Up to the first seven characters of this string are converted to
a 5-bit representation of the ASCII code. This is a simple matter of
masking off all but the first (low-order) 5 bits in most cases. The only
special case is when a non-alphabetic character (code less than 100 octal)
is found within a string which started with a letter. ( e.g. H*Sub 2*). Since
the five-bit code for * is the same as the five-bit code for J, which would
cause ambiguity problems, the non-alphabetic characters in these cases
are 5-bit coded as zero. If however, the first character is non-alphabetic,
then standard bit masking is done throughout the "word". The ambiguity
with letters would not matter in this case since the scan of the directory
would start in the early, non-alphabetic area as controlled by the directory
to the directory.

Character strings -of less than seven codes will be left-adjusted
with zero bits filling in the unused right portion of the word. The word
holding the converted string is returned to the calling program.
B. Procedures Calling NAM5:

LOCSEC

C. Procedures Called By NAM5:
GET$.INC1

D. COMMON References:
None

E. Arguments:
Ptr: pointer to ASCII string

The coding scheme describe& here is not ambiguity-proof and a revised
algorithm is being prepared for testing.

-

235



3. 2. 5. 3 -220-

F. Values:
Str = left- ajusted 5-bit character string

G. Error Codes:
None

H. Messages:
None

I. Length:
1718 or 12110 words

J. Source:
NAM5 ALGOL

K. Files Referenced:
None

114



3.2.5.4 MATAFF
Pur2ose
To match an affix string (author's initials)

-221-

Des cription

3.2.5.4

A. Operation: Code = MATAFF
The design specifications of this routine and the whole strategy

of matching affixes have undergone such extensive revision over the life
of Intrex that many awkward and redundant operations are left in the pre-
sent version of MATAFF. Currently, only author's initials are searched
as affixes. Although it is undoubtedly difficult to follow the scheme by
reading the source code, the general technique is as follows.

First the address of the affix header/code pairs of computer
words is located within the Inverted File list whose name matched the
searched word. The number of such affix pairs is extracted from the list
header. Then an array is obtained from free storage which will be used to
hold the matching affix position nuMbers (from 1 to as many sets of initials
as there are in the list). An index to this array is set up.

Now the number of affix pointers (always one for authors) and the
pointer to the pointers is extracted from the Inverted File search form
which was passed to IFSRCH. MATAFF is then ready to s-tart comparing
the affixes of the user's, query to the affixes of the Inverted File list.

As the compare logic loops through the affix lists, tests are made
for a possible spill-over into the next Inverted File section, which would
necessitate reading the next block into core. As each I. F. affix is taken,
the initials count of that affix is taken from the affix header. The corre-
sponding initials count of the query name is taken from the decrement of
the affix pointer. A comparison (using COMPUL) is made between these
two initial strings to the end of the shorter one. If a match is made, thie
sequence or position number of the list affix is inserted into the next avail-,
able slot of the array set up for that purpose, and an indicator is set de-
signating that the search has been successful.

Whether a match is made or not, the next affix in the list is taken



3, 2. 5. 4 -222-

and comparison is repeated. All matching affix position numbers aresaved in the array. When all affixes in the list have been compared thesearch is over. If any matches have been made, the array of affix posi-tion numbers becomes a list of attributes and the attribute-search-modeindicator is turned on. This forces a later stage of the search to use theaffix numbers in an attribute screen.
B. Procedures Calling MATAFF:

IFSRCH
C. Procedures Called By MATAFF:

COMPUL, FRET, FREZ, RDWAIT
D. COMMON References:

None

E. Arguments:
None

F. Values:
Code 1:

G. Error Codes:
Neale

H. Messages:
None

match is successful
match fails

I. Length:
See IFSRCH

J. Source:
IFSRCH ALGOL

K. Files Referenced:
Alann date



-223- 3.2.6.1
3,2.6 Search Command Play-Back

3.2.6.1 INIEVL

Purpose
To initialize EVAL
Description
A. Operation:, INIEVL

This initializing procedure is called by INIT2 in OVNEW
ALGOL, which, in turn, is called by INIFIX in INITLY ALGOL during
the "fixed parameter" initialization. It sets up pointers to character
strings, message labels, and mask bits used by EVA14. After execution,
the code used by INIEVL is given to free storage by a call to FRALG.

B. Procedures Calling INIEVL:
INIT2

C. Procedures Called By INIEVL
FRALG, . C. AS C

D. COMMON ReferenceQ:
Tone

E. Argunents:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
62 8 or 5010 words



3. 2. 6. 1 -224-

J. Source:
EVAL ALGOL

K. Files Referenced:
None

-)40



-225-- 3. 2.6.2

3.2.6.2 EVAL

Purpose
To print the results of a search command

Description

A. Operation: Code = EVAL( )

Since the function of EVAL is to produce a message to the
user reporting on the results of his search command, it must con-
struct the message according to several conditions. First, it checks
to see if an "output" request or a "restrict" request was given on
the same command line with the search request by examining the Field
Search and Output Not "Executed bit of the System State Table, FXONX-
(SST.). If on, the message is set up to tell the user that the selected
fields will be output "now". If off-, the message is set up to say that
the fields will be produced when the user types an output command.

Next, the resultant reference list pointer is examined
as to the existance of a list. If there is one, the document count is ex-
tracted from the command list's restilt slot. When the document count
is only 1, the message elements pertaining to a single "document" are
selected for use. If it is more than 1, the components referring to plural
"documents" are used.

Next, the pointer to output commands is taken from the command
list, the address of the table of field names is obtained via FLDNAM (in
TABLEZ), and the dialog mode (long or short) is determined..Initi?lization

. ,
of routine parameters iF completed and the message to,the user is begun
by calling TYPEIT in the "continuation mode" (CONT) to print out the first,
introductory words of the message. In "long" mode, this section (OP1) con-
sists of the p ase, "A search on your request". In "short" mode it is
blank. Now the re est itself is repeated, as Intrex understood it. Pointers
to the three search forms are extracted from the command list and put
through a construction and typing loop, one by one. If any of the three types



3. 2. 6. 2 -226-

are unused, a count is incremented which is used to select the proper
message label corresponding to the next type and the loop is repeated.
Types which were used, and therefore provide a pointer to a search
structure, cause extraction of the name or term and the endings or
initials. A string of ASCII characters is constructed in core which
joins each ending to the corresponding stem (separated by a hyphen) or
follows an author name by initials. A record is kept of all the individual
words looked up in the search.

Another TYPEIT call is made whose first argument is 0P14,
GPIS, or 0P16 producing the search types SUBJECT, TITLE, or
AUTHOR respectively. The selection of one of these three message
labels is determined by the count incremented each time through the loop.
The second argument in the TYPEIT call is the pointer to the in core

,search term just constructed. A third argument kecips TYPEIT in the
continuation mode.

If a subject command is played back to the user, the attribute
slot of the search structure is examined to see if a RANGE restriction
were given. If so, the word RANGE (0P14A) is displayed, followed
by the range numbers (or names if long mode) the user specified.

After this loop processes all three types of search requests,
another TYPEIT call, still corainuing the same line, puts out the phrase,
"found d* document(s).

If the number of documents found is zero and the user is in
"long mode", the search-word count is examined. If more than one
word was involved in the search (including combinations ,of search types),
an automatic count of msa,tching documents will be displayed by calling the
procedure SEEMAT (in SEEMAT ALGOL). The call to this routine, which

**

The number of documents as specified by the count in the command
list.
"s" added unless d= 1.

242



-227- 3. 2. 6. 2

does exactly what a user-issued COUNT command does, is actually
made from the superviscr, SUPER, upon return from EVAL. EVAL
merely puts forth -a. rnessage telling the user that the COUNT results
are about to be displayed (op10). If only one search word were used,
a COUNT display-would be meaningless, so a message suggesting the
use of other search terms or commands is given(OP18).

When some documents have been found, -another TYPEIT call,
using message OP4a, starts a new sentence with the phrase, "The
catalog fields" (long mode) or the abbreviation,"0:" (in short mode).
At this point, the bits of the output request list pointer are examined to
see if any of 5 possible special fields (NORMAL, ALL, STANDARD,
MATCH. and TEXT) were requested by the user. This is done in a
loop which masks off one of the appropriate bits at a time to see if it
exists. If so, the corresponding field name (or label for it) is selected
from n array set by INIEVL and fed to TYPEIT.

Next, regular fields are processed as specified by the output re-
quest list which contains an array,of field numbers selected by the user
in his output command. In long mode, the numbers are used to select the
corresponding position in the field-name table (constructed by TABLE)
whose address was obtained earlier by FLDNAM. In short mode, only
the field numbers themselves are printed.

If the routine passes this point without having typed any field
labels, a bit in the output request ltt pointer is examined which would
have been set by OUT. (the outpUt request interpreter, residing in
INOUT ALGOL) if field 1, the document number, were requested. If
this bit is on, the word DOCUMENT (in long mode) or the number 1
(in short) is printed. If this bit is not on, then no output fields were re-.,

Vested and EVAL assumes that the user wants the NORMAL output ( i.e.
TITLE, AUTHOR, LOCATION). A call to TYPEIT with the message
label (0P46) which produces this bit of text is made. This call is also
in the "continuation mode" and now another call to TYPEIT extends the
rnessage to say "for those documents ---" (or "- - -that "document- -
as the case may be). If field, restrictions were requested via RESTRICT,



3. 2. 6, 2 -228-

a set of restrict specifications will have been set up in IN. , also residing
in INOUT. These specifications, which are pointed to by ti_e field search

list pointer of the command list, FSL. (CL.), are also played back to the
user as part of EVAL's response. If any exist, the message continues,
"--- which also match your f4_eld restrictions---", or just "R:" in short
mode. Th.en the actual restrictions are displayed (as IN.understood them).

In short mode, the message to the user is now complete. In long
mode, however, 'it goes on to say that his specified output "will be oUt-
put now," or '"---will be output when you type o (for output)", depending
upon whether or not an output (or restrict) command was issued with the
search command.

Additional TYPEIT calls are made, in long mode, to tell the user
he "-.-- may terminate the output at any time by hitting the ATTN key once

I etc, and to suggest what he might do next:
EVAL returns to the supervisor with aivalue of zero, which is the

conventional signal that a module has zompleted its job successfully.
An example of a response displayed to the user by an EVAL call,

which exercises most of the outputs, is given un er Part H.

50. Procedures Calling EVAL:
SUPER(via CALLIT)

C. Procedures Called By EVAL:
COPY, DIST, FLDNAM, FRET, PREZ, INC, PUT,
RNGNAM, TYPEIT

D. COMMON References:
. -

Name Meaning Interrogated? gla.22gr

FSONX(SST.) FSO not executed

E. Arguments:
None

F. Values:
Code =

244



G. Error Codes:
None

-229- 3.2.6.2

H. Messages: (samples)
LONG

A. search on your request SUBJECT magnet -ic reson-ance/RANGE
MAJOR, SECONDARY/TITLE spectroscop-y/AUTHOR Smith, rf found
6 documents. The catalog fields TITLE, AUTHOR, LOCATION for
those documents which aiso match your field restrictions RESTRICT
AFFILIATION Harvard will be outPut now. You may terminate this
output at any tire by hitting the ATTN key ONCE."

SHORT

"S: magnet-ic reson-ance/RA: 1,2/T: spectroscop-y/
A: Smith, rf found 6 docs 0: NORMAL/R: 22 Harvard"

I. Length:
13008 or 70410 words

J. Source:
EVAL ALGOL

K. Files Referenced:
None

245



3.2.6.3

3.2.6.3 GETEND

-230-

Purpose

To convert ending code to ASCII string

Description

A. Operation: PTR = GETEND(CODE)
As EVAL reconstructs the user's search term for play-back

after the search is done, the ending codes pointed to in the affix list of
the search structure are converted to their corresponding ASCII letter
codes. To do this conversion, EVAL calls GETEND with an argument
containing the ending code.

GETEND breaks the ending code into its two parts. The left-
most four bits give the length of the ending, thus specifying which length
subset must be located within the ending list. The other eight bits of the
code specify which ending within the subset is to be extracted.

The location of the ending pointer table is obtained b calling
INIEND (see Section 3. 1 2. ::-, . The length subset extracted from the
ending code indicates which pointer is to be chosen from the table. The

address portion of this pointer is then used to locate the first ending of

this length in the list arid the ending number is used to adjust this,
address to the proper ending locatitm.

finally, the ending is copied (via COPY) from the ending list into
a declared array within GETEND and a pointer to this copy is constructed
and returned to the calling program.

B. Procedures Calling GETEND:
EVAL

C. Procedures Called By GETEND:
INIEND, COPY

D. COMMON References:
None

E. Arguments:
CODE: 12-bit ending code

24



-231- 3., 7.. 6, 3

F. Values:
Ptr = pointer to ASCII ending

G. Error Codes:
None

H. Messages:
None

I. Length:
2178 or 14310 words

J. Source:
STEM2A ALGOL

K. File References:
None

r



3, 2. 7. 1 -232-
3. 2..7 Output Command Interpretation
3. 2.7. 1 INIOUT

Purpose

To initialize the procedures OUT. and IN.

Description

A. Operation: INIOUT ( )

INIOUT initializes IN. and OUT. by setting a few character
strings used by those.procedures.

B. Procedures calling INIOUT:

C. P::ocedsires called by INIOUT:
FRA 1..G, . C .ASC

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

Error Codes:
None

H. Messages:
None

I. Length:
208 or 1610 words

J. Source
1NOUT ALGOL

K. Files Referenced:
None

248



-233- 3. 2.7. 2

3. 2.7. 2 OUT.

Purpose
To interpret OUTPUT command

Description

A. Operation: Code = OUT. (Ptr)
CLP calls OUT. to_interpret a user's request for output. OUT.

examines the command line for field specifications. Fields are speci-
fied either by their number or by their name. When it finds one, it
either sets a bit in the output request list pointer (ORL.) or it enters the
field number for that field in the output request list, depending on,the
field requested. An output request always wipes out the previous output

request.
if the user asks for a non-existent field, OUT. prints an error

message and re.:urns to CLP. If the user specifies more than 10 fields,

OUT. accepts the first 10 and ignores the rest. If the field number is
90 and the user's Console is not a CRT, OUT, prints an error message.
If there are no arguments, all of the bits in the ORL except those in the
address portion are zeroed out. This indicates a request for output
with a default specification (fields 24, 21, 23, 47). If the previous com-
mand was "output 90" or "output text", and this current request is not
for field 90, OUT. sets TEXTX (POT.) to 0 and transmits a form feed
via WRFLXA. If SNX(SST.) is not true, OUT. sets GCE (SST.) to true

and returns to CLP.

13.

The special fields are handled in the following way:

field 1: set bit 0 of ORL.
field 74: set bit 1 of ORL.
field 75: set bit 2 of ORL.
field 76: set bit 18 of ORL.
field "an" set bit 19 of ORL.
field 90: set bit 20 of ORL.
no field: zero out bits 0-20.

Procedures calling OUT.:
CLP (via CALLIT)



3. 2. 7. 2 -234

C. Procedures called by OUT .

AS crNT FREE
COMPUL FREZ
COPY LEGFLD
FLDNAM NEXITM

D. COMMON References:

TYPEIT

Name Meaning Interrogated? Changed?
ORL.(CL.) Output request list x
TEXTX (POT.) Text pointer x
BLIP, (POT; ) Blip characters x
SNX (SST.) Search not executed x
GCE (SST.) Go command exists x
FSONX (SST.) FSO not executed x

E. Arguments:
Ptr: ASCII pointer to user command line

F. Values:
Code 0

G. Error Codes:
Code -3: illegal field name

-5: "text" not a valid field for this console

H. Messages:
1. "x is not a legal designation. Check for typing errors. See

Part 15 of Guide for full list of types Of catalog information."
($11\1. 3$)

2. "See Part 8 of Guide for details on correct use of OUTPUT
command. Please rephrase your request." ($OUT.3a$)

3. "The OUTPUT command accepts only 10 fields. You may
output the remainder on a subsequent request." ($OUT.4$)

4. "To see TZXT you must say output fiche and get the fiche
location of the text." ($OUT.5$).

I. Length:
2608 or 176 10 words

J. Source:
INOUT ALGOL

K. Files Referenced:
None

250



-235-- 3. 2.7. 3

3. 2. 7. 3 IN.

Purpose
To interpret RESTRICT co--and
Description
A.. Operation Code = . IN.

IN. processes a user's request for a secondary sear:.h.IN. expects
two arguments in the command line pointed to by Ptr: the first is the
name or number of the field to be searched and the second is the character
string which FSO will search for .IN. stores an ASCII pointer to the string
and the binary equivalent of the field number in a word in the field search
list. The ten-word list can hold ten search s'pecifications. After FSO has
performed the searches, the strings are returned to free storage and the

list is zeroed out .
If the first argument of the user request cannot be identified as a

field, or if the second argument is missing, IN. prints an error mes-
sage and returns to CLP. If the user has made more than 10 search re-
quests since the last output request, IN. prints an error message. Other-
wise, IN. stores an ASCII pointer to the string in the next available word
in the Field Search List and puts the field number in bits 3-9 of that same
word.

f

B. ProcedureS calling IN.:
CLP (via CALLIT)

' C. Procedures called by IN.:

ASCINT FREE TYPEIT
COMPUL FREZ
COPY LEQFLD
FLDNAM NEXITM

D. COMMON references:
Name Meaning Interro ted? 'Changed?

FSL. (CL.) Field search list
BLIP(POT.) Blip characters x

E. Arguments
Ptr: ASCII pointer to user command line



3. 2. 7. 3

F. Values:
Code = 0

-236-

"G. Error Codes:
Code = 1: field search list is full

= - 2: no search string
3: illegal field name

H. Messages:
1. "Only 10 RESTRICT restrictations allowed on a search."

"Please begin a :iew search." ($ N. 1$)
2. "You have not fully specified your RESTRICT command.

See Part 9. 5 of Guide for details on correct use of RE-
STRICT command."
"Please rephrase your request." ($IN. 2 $)

3. "X is not a legal designation. Check for typing errors.
See Part 15 of Guide for .1-11 list of catalog information."
($ N. 3$)

4. "See Part 9. 5 of Guide for details on corroct use of OUT-
PUT command."

"Please rephrase your request." ($IN. 3a $)

I. Length:
2408 or 16010 words

J. Source:
INOUT ALGOL

K. Files Referenced:
None

252



-237- 3.2.8.1

3. 2. 8 ../tput Command Controls

3. 2. 8. 1 FSO

Purpose

To output Catalog information

Description

When a user requests output by means of the OUTPUT command, the
system will store his specifications and then call FSO.

FSO will transmit to the user four kinds of data:

1. Document numbers, obtained from the reference list.
2. Catalog information from CR**INTREX.
3. Fiche locations from FICHE DIRECT.
4. Texts of articles via microfiche.

I. Document Numbers
If the user specifies "Output 1", FSO will print the document num-

bers that it finds in the reference list. Since the catalog is not referenced,
this farm of retrieval is inexpensive.

II. Catalog Info rmation

FSO scans the catalog index, CATDIR INTREX, for the locations of
the requested documents in the catalog. FSO reads a document's record
into core and prints the fields that have been requested.

There are several special features associated with this basic pro-
cedure:

a. Secondary searches: If the user has given the RESTRICT com-
mand, FSO will, for each document, compare the search string
with the specified fields. If the match succeeds, FSO tells the
user this and tries the search on a new document. FSO outputs
the requested information.

b. Field 74 (MATCH): FSO uses the term numbers which it finds in
the reference words to print out only those terms in field 73
which met the conditions of the search request.

c. Field 75 (STANDARD): FSO prints the Author, Title, Corporate
Author and Location fields in a format similar to a bibliographic
entry.

253 .



3.2.8.1 -238-

d. Field 76 (Normal): This is the default option if the user gave
no field specifications in his output request. FSO prints the
Author, Title, Corporate Author and Location fields as four
separate fields.

e. ALL: If "ALL" is specified, all of the fields of each document
will be printed.

III. Fiche Locations
If the user has specified "5" or "fiche" in his outPut request, FSO

will call TRETRI, which will reference FICHE DIRECT to give the user
the fiche address of each document after any other requested catalog in-
formation has been given.

IV. Text Access
If the user has specified "90" or "text", FSO.will call TRETRI,

which will evoke the automatic text retrieval mechaniza\rn after any re-
quested catalog information has been given.

A. Operation
1. If CATII(SST.) is true, the typewriter is turned off and CATII

OUTPUT is opened. (This is the mode for creating output on
disc files for offline printout.

2. The subroutines WHOAMI and GETP are used to determine if the
user is working from an INTREX console. If he is, a switch is
set so that special symbols in the catalog data will be decoded
by SPCTRN.

3. Data is extracted from the output request list pointer. Flags
are set for the fields Document, Fiche, Standard, Normal,
all and Text.

4. GCE(SST.) and FSONX(SST.) are set to false.

5. If there is no document list, FSO prints an error message and
returns to SUPER.

6. If there are secondary search specifications and field 90 has
been requested, FSO prints an error message and returns to
SUPER.

7. GETLIS is called to initialize the document list.

8. FSO obtains a document number by calling the sub-procedure
FETCH:
a. If secondary searches are being performed and the imme-

diately previous search was successful, FETCH moves
the previously current document number to a new document
list. If the ne, list contains 432 references, it is written

254



3.2.8.1

out in the Dump File.

If the list of references which are in core is exhausted, and if
there are no more references on disk, FETCH returns to FSO
with a value of 0. If there are more references on disk, 432 of
them are read into core.

c. The document number of the current reference word is stored
as the value of FETCH. FETCH increments the reference list
pointer by one and returns to FSO.

9. If the document number returned by FETCH is the same number that
it previously returned, FETCH is called again (Step 8).

10. If FETCH returns a zero, FSO transfers to its exit routine Step 25.

11. If TEXTX(POT4 greater than zero and the document number returned
by FETCH is greater than TEXT5c(POT.)FSO branches back and calls
FETCH again (Step 8). This process continues until a document num-
ber lower than TEXTX(PC TO is returned by FETCH. This procedure is
followed because the user must cycle through "output text" requests
(one request for each document) as contrasted with other output re-
quests which give all documents at once.

12. A carriage return is typed.

13. If there is no secondary search and only field (Document) is re-
quested, the header for the current document is printed and control
is transferred back to Step 8.

14. The current field list pointer is set to point to the complete list of
fields, the standard fields or the list the user has entered.

15. GETINT is called. GETINT will scan the directory CATDIR CATS2
(POT.) for the pointers of the first 50 documents and read into
memory the first of these documents. If GET INT returns an error
code, FSO will print tne header and an error message. reset
TYPEIT by a call to INDENT, and branch back to Step 8.

16. If a secondary search has been requested, FSO will match er:,:ch
specified field'against the corresponding sejarch string.Jf the fiOd
is missing from the document, that part of the searc,11--is arbitrarily
ruled to be successful. If any part of the seconda-ry search failst,
HEADER is called. HEADER will report that the search failed and
then transfer control to Step 8.

17. If the CATII option is on, the typewriter will temporarily, be turned
back on to type a header.



3.2.8.1 -240-

18. If field 75 was requested, fields 24, 21, 23, and 47 will be printed
together as a combined field and header. If the INTREX console is
being used, SPCTRN will be called to decode any asterisk ex-
pressions in field 24.

19. The standard header is printed if field 75 was nbt requested.
20. If the current list of fields is not empty, FSO will step through '-

list, printing each of these fields:
a. GETFLD is called to obtain a pointer to a requested field;
b. SUBHEAD is_called to print the subheading for the field;
c. Either SPCTRN or TYPEIT is called to print the field;
d. A new field number is obtained from the current list of fields,

and control is transferred to Step a.
23 If field 74 has been requested', the following steps are performed:

a.
b.
c.

d.

e.
f.

GETFLD is called to retrieve a pointer.to field 73;
The term number is extracted from the current referenct word;
If term number is 77, which means that the list was generaLed
by the dc-ument ,-ommand, or if ythere is an author searcli form
but not a title ol )ject form also, FSO prints a message ex-
plaining that a recest for field 74 Is nonsensical;
FSO 'extracts the correct term from field 73, using the last two
characters of a term,");" as a del-miter;
The term is printed, using either TYPEIT or SPCTRN;
FETCH is called. If it returns a new document number, con-
trol is transferred out of the field 74 routine, otherwise, con-
tr,D1 is transferred to Step b.

22. If field five ha,s- been requeSted, TRETRI is called with a second argu-
ment of O.

23. If field 90 has Lbeen requested, TRETRI is called with a second argument
of 1. The value that TRETRI returns is stored in TEXTX (POT.).

24. Control is transferred to Step 8.
25. A concluding mes age is printed. The free 'storage used by GETINT

is rett-rned and I DENT is called with an argument of zero. If a new
list has been gen .rate,d by means of a secondary search, NEWPT
will establish it s the current list. Finally,, control is returned to
SUPER.

B. Procedure call'ng FSO:
SUPER

C. Procedures called by FSO:
CLOSE GETFLD
DLST GETINT

GETLIS
GETP
INC
INC 1
INDENT

FIELlDS
FLDNAM
FRALG
FSOCLN

INIDSK
MATCH
RDWAIT
SPCTRN
STANDL
TABENT
TRETRI
256

TYPEIT
WHOAMI
WRWAIT



D. COMMON References
Name

BLIP (POT.)
TEXTX(POT:-)
VERSOS (POT.)
COMBF1(POT.)
TOTBLK(POT.)
COMBF4 (POT .)
DFN1 (POT.)
CATri(SST.)
GCE (SST.)
FSONX(SST.)
SSF. (CL.)
TSF. (CL.)
ASF. (CL.)
ORL.(CL.)
FSL. (CL.)
RRL. (CL.)

E. Arguments:
None

F. Values:
Code, = 0

-241-

Meaning
blip characters
text pointer
TYPEIT mode
common buffer
Dump File pointer
common buffer
Dump File name 1
off line output
go command exists
FSO not executed
subject search form
title search form
author seah form
output request list
field search list
resultant reference list

3.2.8.1

Interrogated? Changed?

G. Error Codes:
Code = -1 no reference list

H. Messages:
1. "Search and Output completed. You may now see other catalog

information from this/these document/documents by making an
output request (for information on how to do this, see Part 8
of the Guide or type info. 8.
You may also select a 'subset of these documents by making a
RESTRICT request (see Part 9.5). Otherwis9, you may make
a new search (see Part or make other requests (see Part 1)".

(/fsol/, /fso2a/, /fso2b/, /fso2c/, /fso2d1,/, fso2d2/,
/fso2e/, /fso5/); [short form is null] .

2. "No documents found. You may make a new search (see Part 2
of Guide, or type info 2) ,-)r make other requests (see Part 1)."
[No documents found] (Aso4/)

3. "Your last active list has been retained." ($fso6$)

4. "The catalog record for this document can not be retrieved at
this time. Error code = 6 ($getl$)

257



3.2.8.1 -242-

5. "INTREX is unable to print this field" ($get2$)

6. "field empty" (/emprnes/)

7. "MATCH invalid for this request" (/doc6/)

8. "NO MATCH" (/doc5/)

I. Length:
23508 or 1256 10 words

J. Source:
FSO ALGOL

K. Files Referenced:
DIJMnnn FILE
NAMnnn FILE
SInnn - date-
AInnn - date-,



-243-

3.2.8.2 NEWPT
Purpose

3.2.8.2

To finish new reference list

Des c ription

NEWPT is called by FSOCLN to finish up the action of FSO either
after an interrupt or after FSO has processed all of the current documents.

A. Operation
1. NEWPT calls FCLEAN, which will clean up secondary search

specifications, if there are any.
2. If there has been a secondary sear ch and entries have been gen-

erated for a new reference list, NEWPT writes out these en-
tries -on the Dump File. A three-word reference list pointer is
created for thm, making them the current list.

3. If the original reference list which FSO used was on disk its
file is closed.

4 If Intrex is in the CATII mode, the file CATII OUTPUT is closed
and the typewriter is turned on.

B. Procedures calling NEWPT:
FSOCLN

C. Procedures called by NEWPT:
CLOSE, FCLEAN, INIDSK, TABENT, WRWAIT

D. COMMON References:
Interrogated? Changed?

DFLNI (POT.) Dump File name 1
TOTBLK(POT.) Dump File pointer

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

Ho Messages:
None

I. Length:
2008 or 12810 words

25a



3.2.8.2 -244-

J. Source:
FSO ALGOL

IC. Files Referenced:
DUMnnn FILE

260



-245- 3. 2. 8. 3

3. Z.8.3 INIFLD

Purpose
To initialize FSO

Description

A. Operation:
INIFLD is called by SEGINT to preset variables used by FSO.

B. Procedures calling INIFLD:
SEadIT

C. Procedures called by INIFLD:
C. ASC

D. COMMON References:
None

E.

F.

Arguments:
None

Values:
None

G. Error uk,des:

H. Messages:
None

I. Length:
1208 or 80 words10

J. Source:
FSO ALGOL

K. Files Referenced:
None



3.2.8.4 -246-

3.2.8.4 GETINT

Purpose
To initialize GETFLD

Description

A. Operation Code = GET1NT (Lptr, Llen)

FSO calls GETINT twice for each document. On the first call,

GETINT looks up in CATDIR INTREX the pointers for up to 50 catalog

pointers. GETINT uses this list of pointers to read the current docu-

ment into core. When the list is exhausted, another batch of 50 is read.

After all of the desired fields have been extracted, GETINT is called

with zero argument._ to clean up.

GETTNT has two arguments Lptr and Llen, Lptr o int s to the current

document on the reference list andLlen is the length of the remainder of

the list. If Lptr is zero, GETINT interprets this as a request to clean

up and returns the flee storage iast used by GETFLD. If GETINT's list

of catalog pointers is empty, it will step through this list of document

numbers and replace each one with a catalog pointer extracted from

CATDIR INTREX.
GETINT will use the current catalog pointer to read the catalog re-

cord into memory. If there is no pointer for a document, GETINT re-

turns a -1. If the pointer points be,,iond a segment oi the catalog, -4 is

returned. If the catalog record is larg - than 864 words, a -6 is returned.

If a fence cannot be fuund in word five of the record, a -5 is retuxned.

If GETINT successfully reads in a catalog record, it returns to FSO with

a value of zero.

B. Procedures calling GETINT:
FSO, FSOCLN

C. Procedures called by GETINT:

CLOSE, FRET, OPEN, RDWAIT

D. COMMON References:
Name Meaning Interrogated? Clanged?

CATSZ(POT.) Name2 of Catalog

E. Arguments:
Lptr: pointer to resultant reference list
Llen: Length of remainder of list

F. Values:
Code = 0

262



-
-247- 3.2.8.4

Error Codes:
-1: CATDIR INTREX does not ,.)ntain a pointer for t re-

cord.
- 4: A catalog segment has been read b-2.)rc-Ld its end Gf fiie.

5: The beginning of the header of a catalog record cannot
be found.

-6: There is not enough room in core storage for the record.

H. Messages:
N one

I. Length:
4118 or 2.6510 wo,ds

J. Source:
GETFLD ALGOL

K. Files Refeiences:
CATDIR INTREY
CRnnn INTREX



3.2.8.5

3.2.8. 5 FSOCLN
Purpose

To reset FSO parameters.

Description
FSOCLN calls routines which finish up the work of FSO. It is called

at the end of FSO or it is called by LISTEN after the user transmits an

interrupt,

A. Operation
NEWPT is called to clean up after a secondary search. GETINT is

called to return free sto:...ige. INDENT is called to reset the margin to
zero.

B. Pro,-_dures calling FSOCLN
FSO, LISTEN

C. Procedures called by FSOCLN:
GETIT, INDENT, NEWPT

D. COMMON references:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messa
pk,ne

I. Lengtti:
148 or 1210 words

J Source:
FSOCLN ALGOL

K. Files Referenced:
None

264._



-249- 3. a. 8.6

3.2.8.6 GETFLD

Purpose
To get a field from catalog

Description

A. Operation: Ptr GETFLD (Fldno, Expand)

GETFLD has been prepared by a call to GETINT, which reads the
catalog record into core. GETFLD has two arguments, Fldn.o and Ex-

pand.Fldno is the desired field and Expand is a Boolean switch which

indicates whether or not an encoded field should be decoded.

GETFLD searches for the field Fldno in its list of fixed fields. If it
finds it there, GETFLD transfers to a spe,-ialized routine which extracts
the field from the first four words of the ctalog record. If Expand is

false, as it will be if FSO ways the field for a secondary search,
GETFLD converts the binary value that it has extrazt...d into an ASCII
representation of the cataloger's code that the value represent.i. If FSO

has requested the field for purposes of output, GETFLD will use the

binary value to onstruct a TYPEIT message label.

Li GETFLD cannot find the field on its fixed fieid list, it will scan

the header of the record for the Fldno. If it finds Fldno in the decre-
ment of word in the header, then the address portion will contain the byte

count of the last .J y t e of that field. The beginning of the field can be de-

rived lasing the byte count of the previous field. GETFLD uses this data

to find the beginning of the field and its length. An area one word more

than half of the length of the field in bytes is allocated for conversion
from digrarri to ASCII.. If there is not ...:nough room, GETFLD returns

with-an error code of -6. The table in GETTAB is used to convert the

field. A pointer is returned to the converted field.
B. Procedure calling GETFLD:

FS()

C. Procedures called by GETELD:
nCOPY FREZ INC

DEFLiC GETINC INC1
FREE GETSET INTASC
FRER GETTAB PUT
FRET INC PUTINC

25

T PEIT



3.2.8.6 -250-

D. COMMON References:
None

E. Argu:nents:
Fldno: number of field'requested
Expand: if TRUE, then decode fixed fields

F. Values:
Ptr ASCII pointer to field

G. Error Codes:
Ptr -6: not enough room for digram-to-ASCII conversion
Ptr=--- -3: field missing

H. Me -4ges:

None

I. Length:

12408 or 67210 words

J. Source:
GETFLD ALGOL

K. Files Referenced:
None

266



-251- 3. 2.8. T

3.2.8.7 GETTAB

Purpos,J:-.

To get digram-ASCII c_ onversion table

Description

A. Operation: Ptr= GETTA.B )

GETTAB returns as its value the location of a 256 word table which
is used by GETFLD to convert a catalog field from digram to ASCII.

B. ''rocedures calling GETTAB:
GETFLD

G. Procedures called by GETTAB:
None

D. COMMON References:
None

E. Arguments:
None

F. Values:
Ptr= Location of table

G. Error Codes:
None

H. Messages:
None -,

I. Length:
4048 or 26010 words

J. Sourcet
GETTAB ALGOL

K. Files Referenced:
None

267



3. 2. 8. 8

3. 2. 8. 8 T RET RI

purplIse

To retrieve fiche no. or text

Description

A. Operation. Docno = TRETRI (Docno, Flag)`:
TRETRI opens the FICHE DIRECT, reads the entry for Docno and

closes the file. If Flag is one, TRETRI sends to the terminal, via
WRFLXA, a special character string containing the addrers of the text
to be retrieved and special control charactrs. These control characters
are interpreted by special logical circuitry attached to the terminal which
sends the appropriate request to the text-access system. TRETRI re-
turns to FSO with Docno as its value': If there is no fiche for Docno, a
value of -Docn3 is returned.

If Flag is 0, TRETRI prints via TYPEIT the location of the fiche.
If the text of the d-_.r.ument is not in the fiche collection, a special TYPEIT
message explains where it may be found.

B. Procedures calling TRETRI:
FSO

C. Procedures called by TRETRI:
DERBC RDWAIT SETFUL
OPEN SETBCD WRFLXA

D. COMMON References:
Name Meaning

VnBOS(POT.) TYPEIT mdcle
COMBFl (POT.) Common buffer

E. Arguments:
Docno: document number
Flag: 0: fiche locating requested

1: text requested

Interrogated Changed?

F. -Talues:
Docno = document number (fiche available)
Docno = document number (fiche not available)

G. Error Codes:
None

268.



-253- 3. 2. 8. 8

H. Messages:

1. "This document is not yet available from the text-access sub-
system. You may see a hard copy by asking a member of
the Intrex staff for it." (/text1/)

2. "Text is available only for the individual parts of tly.3 docu-

rnent (that is, for articles or chapters) which were separately

documented" (/text2/).

3. "Requoest a hard cOpy of text from a member of the Intrex staff.
Hard copy is found at library with code name x. See,Part 15.11
of the Guide for explanation of code." (/text3/, /text5a/,

, /text 513/)

I. Length:
5358 or 349N words

J. Source:
TRETRI ALGOL

K. Files Referenced:

FICHE DrRECT



3.2.8.9 -254-

3.2.8.9 SPCTRN

Purpose

To translate special characters

Description

SPCTRN is used to translate the ASCII representation of special
graphical symbols, such as Greek letters, into special code sequences
:whirCh, whr-n t-.*-2nsmitte-' tr, an INTREX console, will appear as graphical
symbols.

A. Operation

If the user is at an INTREX console, FSO will call SPQTRN(Ptr)
printout fields-instead of TYPEIT. SPCTRN will scan the field pointed
to by Ptr, looking for special graphical representations, which are always
bracketed by Asterisks. When it finds a special string, it,calls TABLK,
which translates it into the special codes that are used by:the INTREX con-
sole. Ordinary ASCII substrings within the field are transmitted by
SPCTRN by means of TYPEIT.A detailed description of SPCTRN, and
possible refinements of it, is given in Reference 12.

B. Procedures calling SPCTRN:
FSO

C. Procedures Galled by SPCTRN:
COMPAR FIND TABLK
COMPUL INC TYPEIT
DIST INC HAR

D. COMMON References:
None

E. Arguments:

Pti: ASCII pointer to catalog field

F. Values:
None

G. Error Codes:

None



-255- 3.2. 8. 9

H. Messages:
1. "DISPLAY PROGRAM HAS ENCOUNTERED AN ERROR."

"THIS PART WILL BE DISPLAYED AGAIN WITHOUT TRANS-
LATION." (preset)

I. Length:

3218
=

20910 words

Source:
SPCTRN ALGOL

K. Files Referenced:

None

271'



3. Z. 8. i 0 -2.56-

3.2.8.10 TABLK

Purpose

To 7.00k up specially coded characters

De sc ription

A. Operation: Chars = TABLK (Ptr, Flag)

TABLK translates the representation of a special character into the
binary codes that will activate the Intrex console to display that char-

acter. This process involves the use of four tables. DTABL contains

an entry for each special graphic. Each word contains a pointer to the

representation of the graphic, stored in STBL, and a pointer to the
binary equivalent, stored in OTBL. The ,?.ntries ir DTABL, con-

sequently the entries 4.n STBL and OTBL, are ordered according to the

length .of the representation. The table DRCT indexes the table DTABL.

Each word in DRCT points to the pointers in DTABL which apply to a re-

presentation of a given length.

Using the length specification in the decrement of Ptr as ir. in-
dex, TABLK extraCts a pointer from DRCT. TABLK steps through the
pointers in DTABL, looking for the string pciinted to by Ptr in the table

STBL. If it finds the string, it looks up the binary, equivalent in OTBL.

This value is transmitted to the console by a call to WRHGH.

B. Procedures calling TABLK:
SPCTRN

C. Procedures called by TABLK:

COMPAR FREZ INCHAR WRHGH
COMPUL GET OTBL.
FRET INC STBL

D. COMMON References:
None

E. Arguments:
Ptr: ASCII pointer to special graphic representation
Flag = 1: string translated

0: string not translated

272'



-257- 3.2.8.10

F. Va1u()s:
Chars = number of display positions used by special character

Error Coues:
None

H. Messages:
None

I, Length:
7228 or 46610 words

J. Source:
TABLK ALGOL

K. Files Referenced:
None

273



3. 2. 8. 11 -258--

3.2.8.11 STBL

Purpose

To define special symbols

Description

A. Operation: Addr STBL ( )

STBL returns the address of a packed table of all of the ASCII
equivalents of the special graphical characters. TABLK searches this
.table for the substring which SPCTRN hag ext.t.acted from a field.

B. Procedures calling STBL:
TABLK

C. Procedures called by STBL:
None

D. COMMON References:
None

E. Arguments:
None

F. Values:
Addr location of table

G. Error Codes:
None

H. Messages:
None

I. Length:
2678 or 18310 words

j. Source:
OTBL ALGOL

K. Files Referenced:
None



-259- 3. 2. 8. 12

3.2.8.12 OTBL

Purpose

To define binary c odes

De s c riytion

A. Operation: Addr= OTBL( )

OTBL returns as its value the location of a table conta:ning all of
the special character sequences which must be transmitted to an INTREX
console by TABLK in order to display special graphics.

B. Procedures calling OTBL:
TABLK

C. Procedures called by OTBL:
None

D. COMMON references:
None

E. Arguments:
None

F. Values:
Addr= location of table

G. Error Codes:
None

H. Messages:
None

I. Length:

1378 words or 9510 words
J. Source:

OTBL ALGOL

K. Files Referenced:
None

275



3.2.8.13

3.2.8.13 WRHGH

Purpose

To transmit special codes.

Description

A. Operation: WRHGH (String, Length)

WRHGH is a Fap-coded procedure which is as means of
calling the CTSS A-core procedure by the same name. The CTSS pro-
cedure will transmit to the user's console the 12-bit binary string de-
fined by the arguments String and Length.

B. Procedures calling WRHGH:
TABL1C

C. Procedures called by WRHGH:
WRHGH

D. COMMON References:
Name

E. Arguments:
String: location of character string
Length: length of string in words...

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
17

8 or 1510 words

J. Source:
WRHGH FAP

K. Files Referenced:
None

276



-761- ).

3. 2. 8. 34 INIRNG

Purpose

Tr\ imti.--,11.7.? RANGE, ATLCLN

Description

A. Cperation: INIR.NG ( )

INIRNG is called by SYSGEN via SEGINT. at system generation

time. Five variables are set; two of them are'ASCII pointers; which

are created by calls to .C. ASC. Th- procedure returns itself to free
storage via FRALG.

B. Psrocedures calling INIRNG:
SYSGEN (via SEGINT)

C. Procedures called by INIRNG:
FRALG".C.ASC

U. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
238 or 1910 words

J. Source
RANGE ALGOL

K. Files Referenced:
None

277



3.2.8.15

3.2.8.15 RANGE

Purpose
To interpret RANGE command
Description

-262-

RANGE is called by CLP to set'up an attribute list in the INTREX data
structure, based on the user's RANGE specifications.
A. Operation Code = RANGE(Ptr)

RANGE processes a user command by calling the internal procedures
INIR, SBSRCH, NO.ATL, GETLIS, NUMOK, NXTARG and FRMRAL.

1. RANGE calls INIR, which
a) obtains the location of the array of pointers to the ASCII

names Of the different ranges.
b) obtains the location of the subject search form (SSF.(CL.)).

2. RANGE calls SBSRCH, which prints an error message if a sub-
ject search has not been requested or if the search has already
been performed.

3. RANGE calls NO. ATL, which prints an error message if there
are already range attributes associated v.ith the search request.

4. RANGE calls GETLIS, which extracts the arguments in the com-
mand line which follow the RANGE command, and bUilds a list
of range specifications.

GETLIS calls NXTARG, whicn. uses NEXTITM to return an
, to the variable ARGPTR. If there are no more
:s, NXTARG assumes the Boolean value of FALSE.

13, _rARG is true, GETLIS L .11 UMOK to check the ar-
gument and convert it to its bina y e uivalent.
(1) NUMOK uses ASCINT.to convert the argument to ASCII.

If this yields a value outside the range of values for
RANGE, the argument is compared with the ASCII names
of possible Values.

(2) If the argument i illegal, NUMOK prints an error mes-
sage 'and returns a value of FALSE.

c) If NXTRAG and NUMOK are TRUE, GETLIS adds the binary
equivalent of the RANGE (0-4) to the next sequential location
in an array,
GETLIS loops back to Step a for another argument. If there
are no more, the unused portion of the array is returned to
free storage and GETLIS returns to ItANGE with a pointer to
the array as its value.

278



-263- 3.2.8.15

5. RANGE calls FRMRAL, which copies the array of ranges
into a new array and returns the old one to-free storage. The
new array has a 7 in the first word instead of a range value.

6. A pointer to the array is _ tored in the ATE. slot of the subject
search form.

7. RANGE returns to CEP with a value of zero. If there have been
any errors, RANGE returns a -1, which terminates the pro-
cessing of the user's command line by CLP and prevents the exe-
cution of a search request.

B. Procedures callirig RANGE:
CLP (via CAELIT)

Procedures called by RANGE:
ASCINT, COMPUE, FRALG, FRET, PREZ, NEXITM,
RNGNAM, TYPEIT

/D. COMMON References:
Name Meaning

SSF.(CE) subject search form

E. Arguments:
Ptr: ASCII pointer

F. Values:
Code = 0

G. Error Code:
None

hiterrogatecL? Changed?
X

H. Messages:
1. "X is not a legal RANGE. Check for typing errors. See Part 9. 2

of the Guide for details of correct usage of the RANGE command,"
($raccl$)

2. "The RANGE Command may only be tised along with a SUBJECT
search as explained in Part 9. 2 of tile Guide," ($raerr2$)

3. "You may use the RANGE command only once on each SUBJECT
search as explained in Part 9. 2 of the Guide.", ($raerr3$)

I. Length:
6008 or 384 10

J. Source:
RANGE ALGOL

K. Files Referenced:
None

words

279



3.2.8.16 -264-

3.2.8.16 ATLCLN
Purpose

To clean up attributes

Description

A. Operation: ATLCLN(Ptr)
ATLCLN is called by CLEANP to return the attribute list to

free storage.
ATLCLN calls FRET with the arguments Len and Loc, where

Len is one more than the decrement of Ptr, and Loc is the address portion
of Ptr. Ptr is then set to zero.
B. Procedures calling ATLCLN:

CLEANP (via CALLIT)

C. Precedures called by ATLCLN:
FRET

D. COMMON References:
None

E. Arguments:
Ptr: word pointer to attribute list

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:

24or 208 10

J. Source:
RANGE ALGOL

words

K. Files Referenced:
None

280 ;



-265- 3.2.9.1
3.2. 9 Miscellaneous Command Controls
3.2. 9. 1 INIVRB

Purpos e

To initialize miscellaneous procedures
Description

A. Operation: INIVRB( )

INIVRB initializes variables for LONG, SHORT, .CTENT, LIBRY,
WRT and GO.

B. Procedures calling INIVRB:
SEGINT

C. Procedures called by INIVRB:
. C.ASC, FRALG

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:

238 or 19119 words
j. Source:

VERBOS ALGOL
K. Files Referenced:

None

281



3.2.9.2 -266-

3. 2. 9. 2 COMENT

Purpose
To record a user's comment

Description
A. Operation: Code = COMENT (Ptr)

COMENT calls WRT to add the Comment pointed to by Ptr to the
Monitor File.

B. Procedures calling COMENT:
CLP (via CALLIT)

Procedures alled by COMENT:C.
WRT

D. COMMON References:
None

E. Arguments:
Ptr: ASCII pointer to user's comment

F. Values:

G.

Code 0

Error Codes:
None

H. Messages:
None

I. Length:-
15 8 or 1310 words

J. Source:
VERBOS ALOL

K. Files Referenced:
None

282



3. 2. 9.3 LIBRY

Purpose
To make a library request
Description

A. Operation:

-267-

Code = LIBRY (Ptr)

3. 2. 9.3

LIBRY calls WRT to print a library request in the Monitor File.
This is distinguished from COMENT by setting the variable Lib to true.
B. ProCedures calling IABRY:

CLP (via CALLIT)

C. Procedures called by LIBRY:
WRT

D. COMMON References:
None

Arguments:
Ptr: pointer to request fo:

F. Values:
Code = 0

G. Error Codes:
None

H. Messages:
None

I. Length:
178 or 1510 words

J. Source:
VERBOS ALGOL

K. 'Files Referer.ced:
None

283

ibrary assistance



3.2.9.4 -268-

3. 2. 9. 4 WRT

Purpose

To write a user message

Description
WRT extracts a user message from a command line and writes it in

the-Monitor File via ASIDE.

A. Ope ration: WRT (Ptr)
1. NEXITM extracts the message up to the next slash.
2. If LIBRY has set Lib to true, WRT prints via ASIDE:

***********LIBRARY REQUEST*********
3. WRT prints the message and then prints a line of asterisks

B. Procedures calling WRT:
COMENT, LIBRY

C. Procedures called by WRT:
ASIDE, NEXITM

D. COMMON References:
None

E. Arguments:
Ptr: ASCII pointer to message

F. Values:
None

G. Error Codes:
None

. H. Ae9sages:
None

I. ngt-n:
328 or 2610 words

J. Source:
VERBOS ALGOL

K. Files Referenced:
None

2



-269- 3.2.9.5

3. Z. 9. 5 LONG

Puryose

To enter long mode

De s c ription

LONG sets up TYPEIT to use the file of long messages rather than
the short one.
A. Operation Code = LONG ( )

1. VERBOS (POT.) is set to 1 (long mode).
2 INITYP (DFLN1( POT )) is called; the parameter DELN1(POT .)

contains the first name of the long message file (LMFILE).
3. If the system is in CLAMP mode, the value of the second word

of the Password Yile is changed to` the BCD string "AALONG".
(If an I/0 error-occurs, the system prints a message and goes
dormant). If the system is not in CLAMP mode, the value of
thp special A-core word is changed to "AA LONG"

B. Procedures calling LONG:
CLP (via CALLIT)

C. Procedures called by LONG:
BUFFER, CLOSE, INITYP, OPEN'; SETWRD

D. COMMON References:
Name Meaning Interrogated? Changed?

VERBOS(POT.) TYPEIT mode
DFLN1 (POT.) Long mess. file name 1
PFN1 (POT.) Password File
COMBF6(POT.) Common buffer
CLAMP(SST.) Hold mode

E. Arguments:
None

F. Values:
Code = 0

G. Error Codes:
None

H. Messages:
None

285



3.2.9.5 -270--

I. Length:
678 or 5510 words

J. Source:
VERBOS ALGOL

K. Files 13=qerenced:
None

4r

286



-271- 3.2.9.6
3.2.9.6 SHORT

ose

To enter short mode

A. SHORT works exactly like LONG except that it sets up TYPEIT touse the short message file.
A. Operation Code SHORT ( )

1.. Verbos (POT.) is set to 0.
Z. INITYP is called with ai' argument of DFSN1(POT.), which con-tains "SMFILE"..
3, The second word of the Password File (or A-core) is set to"SMFILE".

B. Procedures calling SHORT:
CLP(via CALLIT)

C. Procedures called by SHORT:
BUFFER, CLOSE, DORMNT, INITYP, OPEN, SETWRD,TYPEIT.

D. COMMON References:
Name

VERBOS(POT.)
DPSN1 (POT.)
PFN1(POT. )
COMEIF6(POT.)
CLAMP(SST .)

E. Arguments:
None

Volues:
Code =

G. Error Codes:
None

I.

Meaning

TYPE1T mode
Short mess, file
Password file
Common buffer
Hold mode

Mesages:
None

Length:
768 or 6210 words

287

Interrogated? Changed?.



0

3.2. 9. 6

J. Source:
VERBOS ALGOL

K. Files Referenced:
None

-272-



-273-

3. 2. 9. 7 INFO

PurposP

To print a section of the on-line guide

3. 2. 9. 7

A. Operation: Code = INFO (Ascptr)
CLP transfers control to INFO when it finds the command "info"

in the user's command line. INFO uses NEXITM to extract an argu-
ment. If no argument is specified, "1" is assumed. A guide file mes-
sage label is constructed by converting the argument to BCD and append-
ing ii. to the letter "A". The Guide Message File is opened by a call to
to INITYP. TYPEIT is called with the constructed label as an argument.
If TYPEIT cannot fine this label in the dire4...tory for the guide, it zeroes
out the erroneous argument and returns control to INFO without typing
its usual error message. INFO calls INITYP again to close the Guide
File and reopen the Message File. If the argument given to INFO was
zeroed out, an error message is printed.
B. Procedures calling INFO:

CLP (via CALLIT)

C. Procedures called by INFO:
CHKNUM, CTSIT6, FRET, INITYP, NEXITM, TYPEIT

D. COMMON References:
Name Meaning Interrogated? Changed?

INFOX(SST.)
INFOl(SST.)
INFO2(SST.)
DFLN1(POT.)
DFSN1(POT.)

INFO requested
INFO1 requested
INFO2 requested
Long message file name
Short message file name

X

E. Arguments:

ASCPTR: ASCII pointer to user command line
F. Values:

Code = 0

G. Error Codes:
None

289



3.2.9.7 -274-

H. Messages:

1. "X is not a valid argument to the 'INFO' command ($infoer$)

1. Length:

1208 or 8010 words
J. Source:

SQUIRE ALGOL

K. Files Referenced:
None

290



-275- 3.2.9.8

3. 2. 9. 8 SEE:MAT

Purpos e
To display results of Inverted File search upon COUNT comma:nd.

Description
CLP calls SEEMAT in response to the user command "COUNT" or "C".
SEEMAT shows how the lists of documents generated by each term in

search specification are combined to form a resultant-list.
The search words are printed out in the order in which they were

looked up. Two numbers follow each word: the total number of docu-
rnents associated with that word and the total number of documents which
match on all of the words looked up thus far. If the document list is
empty, or if it has been reduced in size by a RESTRICT operation, the
message "current list size is .x" will appear.
A. Operation: Code = SEEMAT( )

1. If the user is in LONG mofle, SEEMAT will print a header.
2. SEARCH re-ordered the subject and title terms so that the

shortest lists would be looked up first. SEEMAT obtains these
re-ordered lists via RESUB(CL.) and RETIT(CLO).

3. If SEARCH did not look up a word (because the search had
failed before SEARCH got to this word), SEEMAT prints "Not
looked up" after it.

B. Procedures calling SEEMAT:
CLP (via CA.LLIT)
SUPER (via CALLIT)

C. Procedures called by SEEMAT:
COPY, GETEND, INC, INCl, INTASC, PUT, TOTTIM,
TYPEIT

D. COMMON References:
Name Meaning Interrogated?

VERBOS(POT.) TYPEIT mode

E. Arguments:
None

F. Values:
Code = 0

291

a



3. 2.9.8

G. Error Codes
None

-276-

H. Mes-sages:
1. "Current list size is x" (preset)
2. "Not-looked up" (preset)
3. "WORD(STEM-ENDING) NO. OF DOCUMENTS THAT MATCH

THIS STEM, ALL STEMS SO FAR. "

I. Length:

J. Source:

(/srn01/), (null)

6128 or 40210 words

SEEMAT ALGOL

K. Files Referenced:
None



-277- 3.3.1.1

3.3 List Manipulation Logic
3.3.1 Document S election
3.3. 1. 1 NUMBER

Purpose

To control. DOCUMENT command

Description
A. Operation: Code = NUMBER (Ascptr)

The number routine is called directly from CLP (Cornrnand
Language Processor) as a function of the DOCUMENT (or D) command.
It accepts a pointer to the remainder of the command line as in argument
which is assumed to contain one or more document numbers that the user
would like activated as his current list.

An array declared in the source program is used in holding the
document numbers as they are extracted from the command line. This
array is currently 50 words in length and is usually sufficient to hold
more numbers than can be typed in the two-line limit per command
(unless they are all 1-- or 2-digit numbers).

Common buffer 5 is used to read into core the current list of re-
ferences (if there is one, and if it is at least partially on the disk) so that
their document numbers might be checked against those that the user se-
lected. If the number requested is found to exist in the current list, the
entire reference word is copied from the list into the 50-wo-rcl arraywhich
will become the new list. This preserves such useful data as term and
word number of the original search words and allows OUTPUT MATCH
comniands to work on the new reduced list.

1 If the desired document number is not already in the current list,
a pseudo-reference word is constructed with a special code (77) in the term
number position. This makes OUTPUT MATCH an invalid request on this
document. It is possible that the user will present a string of numbers,
some of which will be on the current list and some not. In this case, the
resulting list will contain a mixture of real and pseudo-referencewords.
OUTPUT MATCH will then partially work for the user and a COUNT com-
mand will produce ,data about the last search (whose list is partially re-
tained).



3. 3. 1. 1 -278-

Before being compared to the current list and stored in the new
one, each document number must be read from the command line (via a
call to NEXITM) and converted from ASCII characters to a binary number
(using ASCINT). If this converter is fed an argument -ich is non-numeric
or anurnber greater than 32,767, an error message informs the user that
he has used an "improper document number", and NU'1BER loops back
to see if there are any others to be found on the command line.

If no current list exists (RRLE(SST.) is false), the dummy term
number is inserted and the pseudo-reference is deposited into the new list.
If a current list does exist, a call to GETLIS (a sub-procedure of ANDER
residing in BOOL ALGOL) will provide pointers and counts to that list,
reading the first buffer-full from the disk, if necessary. Then each refer-
ence word of the old list is extracted by calling a sub-procedure within
NUMBER named FETCH. This routine keeps track of when the core-stored
references of the list are exhausted and, at that time, reads in more via
RDWAIT. If the list b/eing read is from an Inverted File segment, an ad-
justment of one word is niade to the list address and reference counts to
allow for the section header which starts the block. If all references have
been read and processed, FETCH returns a zero value to NUMBER. If
FETCH returns the address of a reference word, its document number is
pulled out for comparison to the current.command document number.

When the document numbers match, the reference of the old list
is stored in the new list by calling STORIT (another sub-procedure of
NUMBER), and indicators are set which show that a match has been made.
STORIT keeps track of where in the 50-word array to deposit the refer-
ence, by incrementing a storage index. If this index reaches 50, then a
larger block of free storage is needed to hold all the references created
by this DOCUMENT command.* This is obtained by calling another sub-
procedure named NEDMOR. In this routine, the size of the new-list array

*With the-present limit of only two input lines per command, this over-
flow is extremely unlikely.

294:



-279- 3.3.1.1

is increased by fifty locations and a new array is obtained from free-
storage. The references already stored are transferred into the
large array.

If the comparison of document numbers shows that the com-
mand-line's document number is below the one in the current position
of the old reference list, then NUMBER loops back to call FETCH for the .

next reference in the old list. If the command document is above the list
position, then the docurrient is not on the current list and a pseudo-reference
is constructed and stored.

After each command document is handled, a test is made for the
end of the coMmand (slash). If this has not been reached, NUMBER loops
back to call NEXITM again and take the next command document.

If, after all docutuents in the command have been processed, the
new list storage index is zero, an error message (2) informs the user that
he has failed to provide any (legitimate) document numbers in his command.

If a new list has been established, then the old one, if it exists,
is deleted. When the indicatOr shows that at least one command document
number was found on the old list, DELIST is called to merely remove the
old augmented list pointer from the table. The rest of the old search
structure is kept to supply maximum information if a COUNT command

/follows. If the new list is entirely composed of pseudo-rdferences un-
related to a prior search, then CLEANP is called to erase all remnants
of the last search. In this case, RLIC(SST.), the indicator Which prevents
calling of CLEANP at the outset of a new search request, is set to prevent
a repeated cleanup of the search structure.

If the Name File or an Inverted File segment was opened by
calling GETLIS, it is now closed.

Other wrapup chores include setting the RRLE(SST. ) indicator,
sorting the new list by descending document numbers (us ing a sort routine named
DNSORT), and entering the new augmented pointer into the pointer table

295



1.1 -280-

via TABENT. The address of this augmented pointer goes
and the number of documents involved in the 1st goes into th:
oi RRL. and into DCNT(CL.).

Finally, the document number comrr. 4nd indicator, _
set to alert the command Language P?ocessor tha.; if th use:
issue an OUTPUT command with his DOCUMENT comm...nd,
should be printed informing him of the size of his new lis t anca
get output.* This message cannot lie given by NUMBER since
way of its knowing if an OUTPUT command follows.

In all cases, NUMBER returns a zero value to CLP.

B. Procedures Calling NUMBER:
CLP (via CALLIT)

C. Procedures Called By NUMBER:
ASCINT, CLEANP, CLOSE, DELIST, DNSORT, FRET, FREE,
GETLIS, NEXITM, RDWAIT, TABENT, TYPEIT

D.

4

RRL.(CL.)
ec rement

4C(SST.) is
did not
message

how he can
there is no

COMMON References:
Name

COMBF5(POT.)
RRLE(SST.)
RLIC(SST.)
DNC(SST.)

E. Arguments:
Ascptr: ASCII

F. Values:
Code 0

G. Error Codes:
None

Meaning Interrogater
Common buffer
Reference list exists
Restored list in core
Doc. command given

pointer to user command line

Chanted?

Given in "long mode" only.

912;



-281- 3. 3. 1. 1

H. Mess ages:

1. "JUNK* is an improper document number and has been ignored
in processing your command." ($dnerrl$)

Z. "You have not included any (legitimate) document numbers in
your command." (Sdnerr2$)

The character string supplied by the user is given here.

I. Length:
7168 = 46210

J. Source:
1NTPRT ALGOL

K. Files Referenced:
Alnnn (date)
SImin (date)
DUMnnn FILE

2a7,



3. 3. 2.1 -282-

3. 3. 2 Naming_ and Restoring
3.3.2.1 INIRES

Purpose

To initialize list pointer table and session files

De,.scrintion

This procedure was originally written to initialize the aug-
mented list pointer table and the Name File into which named lists
would be written. It has grown to include the setting up of file names-4
for the Dump File, the Monitor File, and the Password File, and also
contains the "central error exit" which will be taken whenever any I/0
error is encountered by Intrex. It is called during session initializa-
tion.
A. Operation: INIRES(Snam)

The list pointer table is a declared array (currently 120 loca-
tions long) which is used to hold (up to 40) augmented list pointers.
The address of this array is established here and is available to the
procedure TABENT which stores the pointers.

The first names of the three files are chosen by starting with
DUM001 and testing (via FSTATE) to see if it has been opened by an-
other user. If so, the name is changed to DUM002, etc., until a file
is found which is not open. Once a number has been selected ior the
Dump File name, it is also used to construct the names of the Monitor
and Password files.

The Password.File is only created when the system has been
started using the "hold" argument, which causes the "dynamic"
initialization routine DYNAMO, called prior to the execution of INIRES,
to set an indicator in the System State Table, CLAMP(SST). When this
flag is on, INIRES first sets up the Password File names, and then
writes (using WRWAIT) the contents of ESCODE(POT) into word one
of this file. This location of the POT contains the code word issued
immediately after the "hold" argument by the person who resumed
Intrex. If none was supplied by the user, the word "escape" is used
brIntrex as the password and placed into ESCODE(POT) during the exe-
cution of DYNAMO.

298



-283- 3. 3. Z. 1

The password file contains one othgc word of data--the word
"long" or "short", depending upon which mode the user has selected.

For no reason, other than convenience, the INIRES routine
was chosen to contain the central I/0 er or exit fo-r Intrex. This is set
up by calling a procedure named SETRT (Section 3.1.10 2) which has
as an argument the lab 1 (EREXIT) of a location to which
control is to be returned whenever an rror is encountered during Intrex's
many reading or writing operations. It shouldbe pointed out here that
program stops or other unusual terminations (such as console turn-offs)
will not return control to this location.

In one or two pla_c_es-in Intrex, such as iltrIFSRCH, special
localized error returns are specified'which over-ride the global one
set by SETRTN. This is done to allow certain types of errors (such as
"file already open") to be ignored at the point of detection. When that
local routine examines the error code and finds an "unacceptable" one,
it then must go to the central error location by way of a procedure call.
For this reason, EREXIT is embedded in a routine within INIRES named
ERRGO (Section 3. 1. 10. 1).

B. Procedures Calling INIRES:
DYNAMO

C. Procedures Called By INIRES
SETRTN,.C.ASC, DEFBC, FSTATE, OPEN, BUFFER,
FILCNT, TRFILE, WRWAIT, CLOSE, IODIAG, TYPEIT,
BCDASC, OCTASC, BFCLOS, DORMNT

D. COMMON References:
Name Meaning

COMBFO(POT.)
MFN1( POT .)
DFN1( PO TO
PFN1(POT.)
ESCODE (POT. )
VERBOS(PO T. )
CLAMP(SST.)

Common buffer
Monitor file name
Dump file name
Password file name
Escape code
TYPEIT mode
Hold mode

E. Arguments:
Snam: system name (in 13CD)

299

Interrogated? Changed?



3.3.2.1 -284-

F. Values:
None

G. Error Codes:
None

H. Messages:
(See ERRGO in Section 3.1.10.1)

NOTES:

1. The CTSS error code is printed here
2. The name of the VO procedure in which the error occurred

is printed here.
3. The address of the procedure call to the erring routine is

given here.

4. The names of the file involved in the error are given here.

I. Length:
37 58 or 25310 words

J. Source:
RESLLS ALGOL

K. Files Referenced:
DUMnnn FILE
PASnnn FILE

300
4



-285- 3.3.2.2
3. 3. 2. 2 NAME

Purpose

To name a list
Des c ription

The Intrex NAME command causes the "Command Language
Processor" (CLP) to call the procedure NAME. This routine should
logically reside in RESLIS ALGOL, but it had to be moved out due to
the limitations of the AED compiler. Therefore, NAME now is found
in ANDOR ALGOL along with the procedures AND., OR., etc.

A. Operation: Code = NAME (listpt)
The one argument passed to NAME -consists of a pointer to

the remainder of the command line. A call to NEXITM extracts the
next word from the line, which is assumed to be the name the user
wishes to assign to the current reference list.

Before this occurs, however, a name for the Name File must
be established. If no previous NAME command was issued, the name
file component of the POT, NFN1(POT), \will be empty upon entering
the routine. In this case, a first name of the Name File is constructed-
of the form NAM---, where the last three characters are the same as
those of the Monitor and Dump Files. It is then inserted into NFN1(POT)
and a zero-length file with that name is created via a Call to TRFILE.

The Name File is then opened for writing and buffered (using

common buffer 6).
When the name is obtained from the command line, it islooked-up

(via LOOKUP in NEXITM ALGOL) in the command table to make sure it
is not ambiguous with an Intrex command. If the ambiguity does exist,
a message to that effect (1) is typed to the user, he is asked to use an-
other name, and NAME returns to CLP.

If no command ambiguity is foundr-i-procedure named CHKNAM

is called. This routine (Section 3. 3. 2. 4) converts the ASCII name to
BCD codes and scans the list pointer table to see if any list already
exists with that narne. If CHKNAM returns a value greater than or equal
to zero, it found a matching name at this location in the table. The user

The importance of this will be made clear in the description of_RESTOR

301,



3.3.22 -286-

is then informed that his name is ambiguouv with a previous name and
that he should choose another (2).

If the name passes the two ambiguity tests, it then is compared
to the word ALL, since that word also must be prohibited (3) to allow
DROP ALL commands. Assuming an acceptable name has been issued,
the next step is to take the current list pointer from RRL(CL). Two more
conditions, here, may cause the name operation to be aborted. If no
pointer is found in ,RRL(CL), an error message (4) informs the user that
he has "no current list". If a pointer exists whose type is 4, meaning
it already is a named list; the user is informed that he cannot name the
list_twice f6).

Lists of any other type are written into the Name File by having
the Boolean procedure, ANDER, do the bookkeeping and writing involved,
thus saving a duplication of this kind of coding. This is accomplished
through a special set of arguments to ANDER (all zero except the list
pointer) which tells ANDER that this is a dummy operation intended
solely for writing the entire list.

A list that has thus written into the Name File is, of course, en-
tirely disc-resident. The unused third word of its augmented pointer is
then to hold the document count of that list. This is necessary when the
named list becomes non-current, since the count would then be lost in
RRL(CL) and DONT(CL).

NAME finishes by setting the LISAV(SST) bit, which indicates
that at least one list has been named, changing the tag of list-pointer
word two to a 4 to classify the list as having been named, inserting the
BCD-coded name of the list into word one of the agdfnented pointer; de-.
leting the present (current) list pointer by calling a procedure in RESLIS
named DRPPTR, setting RRL(CL) to point at the named list, informing
the user that his list has been named (7), and closing the Name File.

NAME then returns a zero value to CLP to indicate a completed

B. Procedures Calling NAME:
CLP (via CALLIT)

302



-287- 3.3.2.2

C. Procedures Called By NAME:
OPEN, BUFFER, TRFILE, NEXITM, TYPETT, CHKN.AM,
ANDER, DRPPTR, CLOSE

D. COMMON References:
Name Meaning Interrogated? Changed?

NFN1(POT.)
COMBF6(POT.)
COMTB(POT.)
LISAV(SST.)

E. Arguments:
Listpt: ASCII pointer to user command line

Values:
Code = 0

G. Error Codes:
None

H. Messages:

1. "Your list name is ambiguous With the Intrex command, C .
Please use anotber nam ." ($nam5$, $nam6$, $nam8$)

Name file name
Common buffer
Command table
List saved

X

2. "Your list name is ambig ous with a previously NAMEd list.
Please use another name ' ($nam5$, $nam7$, $nam8$)

3. "All is a restricted word for nanling lists." ($nam9$)

4. ."You have no current list. Your NAME command cannot be
processed." ($nam12$)

5. "You have not given a name for your tist." ($nam11$)
6. "Your current list has already been named and cannct be

named again." ($nam10$)
7. "C 1 is now the name of your current list." (/narneok/)

NOTES:

1. The name supplied by the user is given here. -

203



3.3.2.2 -288-

I. Length:
402 or 25810 words

J. Source:
ANDOR ALGOL

K. Files Referenced:
NAMnnn FILE



-289- 3.3.2.3

3..3.Z.3 TABENT

Purpose
To enter pointer in table
Description

This procedure resides in RESLIS ALGOL, along with the list-
pointer table which it fills. When a routine, such as ANDER, IFSRCH
or NAME, has constructed a new augmented pointer to go into the table
of list pointers, TABENT is called with a pointer to the augmented
pointer as an argument.
A. Operation: Addr = TABENT (Ptr)

TABENT first scans down the table, examining the second and
third words of each table slot to find one in which both words are empty.
(No list can exist without at least one of these being filled.) If no empty
slot is found, the user is informed that his list table is full and he must
DROP some lists before assigning any more names to lists. The extensive,
use of the NAME command is the only way in which the table can be filled
up, since old search lists, etc., are deleted frorn the table as soon as
they are made inactive by creating a new current list.

If an empty slot is located, the three computer words pointer to
by the argument ptr are copied into the table slot. The location (core
address) of this newly filled slot is then returned as a value to the calling
program.
B. Procedures Calling TABENT:

NAME, IFSRCH, ANDER, NEWPT

C. Procedures Called By TABENT:
TYPEIT

D. COMMON References
None

E. Arguments:
Ptr: points to the 3-word argmented reference list pointer



3.3.Z.3 -Z90-

F. Values:
Addr = location of filled slot in list of NAMEd lists

G. Error Codes:
Addr = 1: list table full

H. Messages:
"Your NAMEd-list file is full. You must DROP one or more
list names before re-issuing your NAME command."

I. Length:
778 or 6310 words

J Source:
RESLIS ALGOL

K. Files Referenced:
None

306



-291- 3.3.2.4

3 . 3. 2. 4 CHKNAM

Purpose
To check list name against pointer table
Description

A. Operation: Addr CHKNAM (Ptr, Ln)
This procedure is called for two purposes. First, it converts

the li.st name pointed to by the first argument to a. BCD character-string
of one-to-six characters. This converted name is placed in the second
argument by CHKNAM.

Second, the converted name is then compared to the first word
of each entry in the list-pointer table. If a match is found, the core ad-
dress of the matching name is returned to the calling program.

'One exceptional case is made when CHKNAM is called from the
SAVE procedure with the list name, ALL. Here, the first argument is
changed to contain the location of the top of the list pointer table. This
is then used by SAVE in scanning down the table to SAVE all NAMEd lists
(see description of SAVE in Section 3. 3. 3.1.).

B. Procedures Calling CHKNAM:
AND, DROP, LIST, NAME, R.ESTOR, SAVE, USE

C. Procedures Called By CHKNAM:
BZEL, CTSIT6, FRET, RJUST

D. COMMON References
None

E. Arguments:
Ptr: ASCII pointer to name of list
LN: Name of list in BCD (returned to calling procedure).

F. Values:
Addr location of name in list-pointer table

jtn,



3.3.2.4 -292-

G. Error Codes:
Addr Name not in pointer table

H.. Messages:
None

I. Length:
1 Q7 o 7 110 words

J. Source:
RESLIS ALGOL

K. Files Referenced:
None



-293- 3. 3. 2. 5

3. 3. Z. 5 RES TOR

Purpose

To restore a NAMEd list

Description

This routine is called Inr CLP as the result of Intrex's only
"implied" command. When the user wishes to re-activate or
store" one of his NAMEd lists, he merely types the name of the list.
The Command Language Processor (CLP) first tries to interpret the

4name as an Intrex command (which is why the NAME routine will not
allow the user to assign names which are ambigtious with commands).
If CLP fails to find it in the command table, the name is then passed
to RESTOR to see if it is a NAMEd list..
A. Operation: Code RESTOR (Aptr)

The argument Aptr passed on to CILIKNAM.to see if the name
it points to is in the table of NAMEd lists. The value returned from
CHKNAM will be less than zero if the name is not found. In this case
RESTOR returns an error code to CLP, which will then declare the
"name" to be an illegal command.

If CHKNAM returns a positive value, it is the address of the
augmented list pointer whose first word contains the same as the one
given. This pointer is then made the "active" or "current" list
pointer by inserting it into RRL(CL), but only after deleting the old
current list from the list table. If that list was also a "restored" list
(RLIC(SST) on), then the deletion is made via DELIST. Otherwise,
CLEANP is called to clean up the entire search structure.

The document count of the newly restored list is transferred
from the third word of the list pointer (where it was saved by NAME)
to the decrement of RRL(CL) ar-d DCNT(CL).

The restored-list-is-current indicator (RLIC) and the resultant-
reference-list-exists indicator (RRLE) are set and RESTOR returns a
zero value to CLP.



3.3. Z. 5 -294-

B. Procedures Calling RESTOR:
CLP (via CALLIT)

C. Pro-:eduies Caller'. By RESTOR:
CLEAN? (via CALLIT), CHKNAM, DELIST

D. COMMON References

Name Meaning Interrogated? Changed?
RLIC(SST.) Restored list in core x
SNX(SST.) Search not executed x
RRLE(SST.) Reference list exists x

E. Arguments:
Aptr: ASCII pointer to user command line

F. Values:
Code = 0

G. Error Codes:
Code = -1: Name not found in table

H. Messages:
None

I. Length:
758 or 6110 word3

J. Source
RESLLS ALGOL

K. Files Referenced:
None

31-
A..



-295- 3. 3. Z. 6

3. 3. 2. 6 LIST

Purpose

To display the list names

Description

A. Operation: Code LIST (Arg)
This procedure is called by CLP in response to a user's

LIST command. The LIST command may be used for any of three
purposes. The simplest, executed by typing the word LIST with no
arguments following it, will cause the procedure to produce a list of
the user's NAMEd reference lists. A call to NEXITM will return a
zero value if,no argument exists. This tells LIST to scan the list-
pointer table looking for augmented pointers to NAMEd lists (type 4).
Each one that is found is converted to ASCII by BCDASC and printed
via TYPEIT. This mode of LIST is also called by the USE procedure
described with SAVE in Section 3.3.3.3.

A second use for LIST is implemented when NEXITM returns
a pointer to the word FILE,. In this case, the user is asking for a
listing of the Save File names which are kept in a directory on the disc.
This list of file names is produced by calling a procedure named LISFIL,
which resides in SAVLIS ALGOL and is described in Section 3.3.3.7.

A third.use of LIST is activated by following the LIST command
with the name of a save file,, whose list names the user would like to
see. rf the word after the LIST command is not FILE, it is compared
to the current Save File name in the POT (if there is one). Failing a
match there, the Save File directory is scanned to see if the argument
is the name of a non-current Save File. This is done by, calling the proce-
dure CFIKSAV (Section 3.3.3.2). If CHKSTAV says the name is not in
the directory, an error message is printed (2) and LIST returns to CLP.
If the name is found, LIST calls LISTSL (Section 3.3.3.6) which will
read and print the list names st'ored in that Save File.



3.3.2.6 -296-

B. Procedures Calling LIST:
CLP(via CALLIT), USE

, C. Procedures Called By LIST:
Via CALLIT: CHKSAV, LISFIL, LISTSL
Directly: CHKNAM, NEXITM, TYPEIT

D. COMMO.N References:
Name Meaning Interrogated? Changed?

SFN1(POT.) Save file name

E. Arguments:
Arg: ASCII pointer to user command line

F. Values:
Code = 0

G. Error Codes:
None

H. Messages:

1. "N NAMEd Lists currently being held" (/nam0/, /nam4/)
Z. "File1 is not a SAVE file name" (/liser1/)

NOTES:

I. The word supplied by the user is given here.

I. Length:
2178 or 14510 words

J. Source:
RESLIS ALQOL

K. Files Referenced:
None

312



-297- 3.3.2.

DROP

Purpose
To drop a named list oF a Save File

De s c ription

A. Ope ration: Code = DROP (Ptr)
This procedure is called by CLP in response to a DROP com-

mand. It accepts a pointer to the remainder of the command line and,
from it, extracts names of lists which are to be deleted from the list-
pointer table. NEXITM is called repeatedly to access the next name
until a delimiter other than space (slash) is found to end the string of
names,

If no item is found to follow the DROP command, an error
message (1) is displayed to the user and DROP returns to CLP.

If NEXITM returns with a pointer to an item, that pointer is
passed as an aigument to CHK1,TAM (Section 3.3.2.4) to see if the name
is in the table. A negative value from CHKNAM indicates that the name

was not found. The user is told that this name is not that of a NAMEd

(1) and the next item is taken (if any). -
A positive value from CHKNAM would be the tble location

of the list pointer to be dropped. Zeroes are deposited into the three
words of this table entry, an, indicator is set showing that a deletion
was made, and the next item is sought.

When no more names are found in the command, the Name
File is condensed (if any deletions were made) by calling a proce-

\dure named CONNAM (described below). This procedure re-writes
the Name File, omitting the deleted lists.

Two exceptional cases are recognized by DROP. If the list
name is ALL, then the entire list-pointer table is zeroed out (thus
killing the current list also). The "named-list flag" of the System-,
State-Table, LISAV(SST), is set to false, the Name File is deleted
from the disc, and its name is removed from the'POT.

If the item found after the DROP 'tommand is FILE, the
meaning of the DROP command is completely changed. It now be-
comes a request to delete a.Save File from the disc. Another call to
NEXITM is made to get the rilme of the file to be dropped.. This timeZ,

313



3.3.2.7 -298-

a call to CHKNAM is made merely to convert the file name to BCD.
The converted name is then passed to another procedure, CHKSAV,
which determines if the name of the file exists in the Save File direc7,
tory (see Section 3. 3. 3. 2). A zero returned from CHKSAV indicates
no such file exists. The user is then informed of his error (4) and
DROP returns to CEP.

If CHKSAV indicates the file is there, a call to DEEFIE (a
CTSS procedure) deletes it from the disc. Its directory entry is re-
moved by calling CONDIR (see Section 3. 3. 3.5) using the &rectory
address returned by CHKSAV as an argument to,CONDIR.

Here, also additional names may be processed by re-calling
NEXITM until a command terminator (slash) is found.
B. Procedures Calling DROP:

CEP (via CALLIT)

C. Procedures Called By DROP:
NEXITM, CHKNAM, DELf1E, CALLIT(CHKSAV, CONDIR),
CONNAM, TYPEIT, BCDASC

Name Meaning Intszzogatal? chang_s_cr

D. COMMON References:

NFN1(POT.) Name file'iname
LISAV(ST.) List saved

E. Arguments:
Ptr: ASCII pointer to user command line

F. Values:
7,ode =

G. Error Codes:
'None



-299- 3.3.2.7

H. MeSsae:
1. "yokl. have not provided the name of a NAMEd list" ($narn3S)

2. ,fLiAt1 has not been NAMEd" ($narn2$)

3. "NO NAMEd lists currently being held" ($nain0$, $nani4$)

4. "}-411 is not a SAVE file name" ,($userl$)

5. "yokk have not provided the name of a SAVE file" (SuserlS)

NOTES:
1 Th ae provideri by the Xer is given here.

I. Length;
230 or 15710 words

J. Source;
R.21.1S ALGOL

K. Files 12-ferenced:
I*"



3.3.2.8 -300-

3.3.2.8 CONNAM
Purpose

To condense the Name File

Description

A. Operation:
When the DROP command succeeds in deleting a NAMEd-list

pointer from the table, the list itself is removed from the Name File
to prevent that file from growing any larger than necessary. This is ac-
complished by scanning the list-pointer table and noting all lists which
are NAMEd (type 4). The table position of each of these lists is saved
in an array for use in reconstructing the Name File.

A temporary file named TEM---, where the last three char-
acters of the name correspcnd to those of the Dump, Monitor, and Name
Files, is created to hole the lists which are to be retained. Then the
array of table positions supplies pointers to the lists which mustbe read
from the old Navc., File and written into the new one. A. each list is
copied, its depth in the new file is inserted into the seccnd word of the
augmented pointer.

When all the NAMEd lists have been copied, the new file is re-
named (via CHFILE) to the original Name File name, destroying the
original file.

If the original Name File is larger than 100 records, the user
is warned of a possible delay during re-writing.

B. Procedures Calling CONNAM:
DROP

C. Procedures Called By CONNAM:
FILCNT, TYPEIT, OPEN, BUFFER, CLOSE, RDWAIT,
WRWAIT, TRFILE, DELFIL, CHFILE, FRER, FREE,FRET



D. COMMON References:

Name
TOTNAM(POT.)
NFN1(POT.)
COMBF6(POT.)
COMBF6(POT.)

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

-301 - 3.3.2.8

Meaning Interrogated? Changed?
Diimp File pointer
Name File name
Common buffer
Common buffer

H. Messages:
"There will be a slight delay while Intrex cor'-nses your
NAMEd List File. Please stand by." ($coi

I. Length:
4358 or 28510

7.>

ff3J. Source:
RESLIS ALGOL

K. Files Referenced:
TEMnnn FILE
NAMnnn FILE

words

7



3.3.3.1 -302-

3.3. 3 Saving and Using
3. 3. 3. 1 SAVE

Purpose

To save a NAMEd list in a file.

Description

When used alone, the command SAVE will copy the references
in a previously NAMEd list into a permanent disk file for use during
future Intrex sessions. When used beigre the word FILE, a file for
the above purpose will be opened for writing. The first name of the
file or the name of the list to be saved are given as arguments to the
command.

A. Operation: Code = SAVE(LIST) or SAVE FILE (SFILE)
The procedure SAVE is called by the command language

procc--:.sor (CLP) in response to the user command SAVE. or SAVE
FILE. The latter is used to create a Save File name which the user
may then fill with NAMED lists that he would like to SAVE for future
sessions of Intrex.

The procedure accepts as an argument the pointer to the rest
of the command line, and calls NEXITM to extract the next word. If
a next word does not exist, an error message (1) is issued and SAVE
returns to CLP.

If a next word exists, it is passed to CHKNAU (described in
Section 3.3.2.4) which converts the word to BCD and looks it up in
the list-pointer table. Names not in the table cause CHKNAM to re-:
tura a negative value. This prompts SAVE to determine if the "name"
is the word FILE or the word ALL. If it is neither, the same error
message (1.) as above is given and SAVE returns.

The word FILE after a SAVE command produces another call
to NEXITM to get the name the user wants to assign to his Save File.
Here again, if NEXITM can find no next word, an error message (4)
is typed. Otherwise, CHKNAM is called to convert the name to BCD.
If the name is FILE, the user is informed (message 2) that this word
cannot be used as a Save File name (to allow both USE and USE FILE

318,



-303- 3.3.3.1

commands for reactivating Save Files see USE description in Section
3.3.3.3). If the name already exists in the directory, the user is in-
formed (3) tnat his chosen name is in use and he must select another.

If CHKSAV returns a zero value, the name is new and acceptable
and will have been added to the directory by CHKSAV. It is then inserted
into SFN1(POT4, which will be used as the first name of the Save File in
any forthcoming transactions. A file with this first name and the last name
SAVE is then opened for writing. The first block or record of this file will
be used to hold a table "of augmented list pointers, similar to those in the
in-core table of pointers. The first step in constructing this table is to
write a block of 432 blank (zero) words. This is accomplished by. zeroing
out common buifer 6' and writing the buffer into the newly opened Save File.
The Save File is then closed until the user deposits something into it via a
SAVE command.

TOTSAV(POT), which is a component of the POT used to hold the
number of disk records in the Save File (address portion) and to hold the
Save File's list-table index (decrement), is set to the initial value of 1 in
both cases. SAVE has then finished executing a SAVE FILE command and
returns to CLP.

If the word FILE does not follow a SAVE command, then the proce--
dure takes a totally different path.

The only other exceptional case occurs when the word ALL is given
by the user who Wishes all NAMED lists to be placed in his Save File. When
the SAVE procedure finds the word ALL following the SAVE command, a
flag (TOT) is set which will cause the list-copying logic to be repeated for
all NAMEd lists. A list name which is found in the list-painter table by
CHKNAM will return a table position at which the list pointer is found. But
/before proceding with the SAVE operation, the SFN1(POT) register is ex-
amined to make sure that the user has previously issued a SAVE FILE com-
mand. If this slot is empty, an error message (4) is given and SAVE re-
turns to CLP.

If a Save File name exists, the list table index for the Save File
is extracted from the decrement of TOTSAV(POT) and checked to see if
more lists can be SAVED without overflowing the in-core pointer table,

31



3.3.3.1 -304-

which has a limit of 40 augmented pointers all told (including current
pointers resulting from a search etc.). If the limit has been reached (a
very unlikely event), then the user is told to assign a new Save Filename
before saving any more lists.

Next, the Save File is opened for writing and the Name File is
opened for reading. Common buffer 0 (at the top of core) is used as an
I/0 buffe]- in transferring the data.

The read-position within the Name File and the length of the list to
be saved are obtained from the augmented pointer whose location was sup-

. pliedby CHKNAM. The write position within the Save File is computed using
the-block count stored in the address of TOTSAV(POT.). This position is
also temporarily stored in the augmented pointer's disk-address so that
the pointer relates to the list as it will be in the Save File. This pointer is
then written into the first record of the Save File at the index position ex-
tracted from TOTSAV(POT. ). The index is then incremented by three for
the next pointer deposit, and the disk-address of the pointer is re-set to
its original, Name File addre9s.

Finally, all the data having been established, the transfer of the
list from the Name File to the Save File-is made usir4 RDWAIT and
WRWAIT. If the list is longer than a record of 432 words, repeated reads
and writes are made with the two disk address'es being incremented each
time and the number of records copied accumulated in TOTSAV(POT.).

When the entire list -.las been copied,' the ALL flag, TOT, is tested,
to see if SAVE is done or must go back for another possible NAME list. In
the case where ALL was used, no table position'of the list pointer would
have been returned by CHKNAM, but the ASCII pointer a4ument win. be
changed by CHKNAM to contain the addresP of the top of the table of list
pointers. This address will be used by &AVE to step through the table copy-
ing all NAME lists.

When no more copying remains to be done, the latest table index of
the Save File is inserted in the decrement of TOTSAV(POT..) for use in.the
next SAVE operation. At this point, the delimiter found by NEXITM in ex-
tracting the list name is examined. If it is not a command thrminator (slash),

323



-305- 3, 3. 3. 1

the procedure loops back to call NEXITM again to get the next list name
which the user is E

When the command terminator is found, the Save !Ale and Name

File are closed and a zero value is returned to CLP.

B. Procedures Calling 'SAVE:
CLP (via CALLIT)

C. Procedures Called By SAVE:
NEXITM, CHKNAM, OPEN, BUFFER, RDWAIT, WRWAIT,
CLOSE, CHKSAV, TYPEIT

D. COMMON References:

E.

Name
CD(EIOT.)
.CFT(POT.)
CET(POT.)
SFN1(POT.)
NFN1(POT. )
TOTSAV(POT.)
COMBF6(POT.)
COMBFO(POT.)

Arguments:
LIST: ASCII

SFILE:ASCII

Meaning
command delimiter table address
front trim table address
end trim table address
Save File name one
Name File name one
Save File address and table Index
Save File write buffer
Name/Save I/0 transfer buffer

Interrogated?

pointer to list name
or

pointer to F. le Name

F. Values:
Code 0 (Zero)

G. Error Codes:
None

Changed?

H. Messages:
1. "You have t provided the name of a NAMED list." ($nam3$)

2. "The word FILE may not be used as the name of a SAVED
f File. please use another narn ." ($saV8$, $nam8$)

3. "The name you have assigned tt your SAVE file is already in
use. Please repeat your SAVE FILE request using another
name." ($sav2$)

4. "You have not provided a name for your SAVE file." ($sav3$)

5. "Your current SAVE file is full. You rrnist assign a new name
via the SAVE FILE command before saving any more lists,"
($sav4$)

321



3,3.3.1 -306-

1. Length:
5218 or 33710 words

J, Source:
SAVL1S ALGOL

K. Fde Reff rences:
NAM --- FILE
user SAVE

322



-307- 3.3.3.2

3.3.3.2 CHKSAV

Purpose

To check the Save File directory

Description

This procedure is used either to find a file name in the Save File
directory, or to add a new name tc it. The SAVE procedure described in
the previous section calls CHKSAV to add new file names. All other proce-
dures using CHKSAV do so only to see if a file already exists in the direc-
tory.
A. Operation: R CHKSAV(FN)

Whether CHKSAV is being called by SAVE for adding a new file
name or from some other procedure can be determined by comparing the
name of the file passed in the argument FN to the name stored in the para-
meter usedbySAVE for holding the file name, This parameter is accessible to
CHKSAV since it is compiled with SAVE in the same source file.Calls to CHKSAV
from outside this source file will mean that these file names will not match.
In both cases, CHKSAV looks for the file name in the directory of Save File
names. -

If a Saved File directory exists, it is opened for reading.Each word
is then read and compared to the name passed to CHKSAV in FN. If

a match is found, the directory file position of this name is returned to the
calling program.

If no similar name is found in the directory, the directory is closed.
The determination is then.made as to whether the call to CHKSAV came from
SAVE or elsewhere. If it came from elsewhere (such as USE in RESLIS),
then CHKSAV is done and returns.

When the call is from SAVE, the name is to be added to the direc-
_

tory. The directory file is opened for writing, the single word containing
the name is entered via WRWAIT, and the directory file is closed.

Before returning to the calling program, the return value is set to
zert. (if a name was added to the directory) or to a file address (if a name
was found already in it).



3.3. 3. -308-

B. Procedures Calling CHKSAV:
SAVE, USE, DROP, LIST, LLSTSL

C. Procedures Called By CHKSAV:
FILCNT, OPEN, BUFFER, RDWAIT, WRWAIT, CLOSE

p. COMMON References:

Name Interrogated? Changed?
COMBF6(POT.) directory I/0 buffer

E. Arguments:
FN: BCD coded file name

F. Values:
R = 0 (zero)
R ,---- file address

G. Error Codes:
None

H. Messages:
None

I. Length:
1378 or 9510 words

J. Source:
SAVLIS ALGOL

K. File Refrences:
SAVED DIRECT

324



3. 3. 3. 3 USE

Purpose

To use a Save File

Description

USE rovides the user with the facility for reactivating a Save File
previously created. It is called by CLP in response to the command, USE.

A. Operati Code = USE(FN)
U(SE accepts an argument containing an ASCII pointer to the rest of

the command line.
A call to NEXITM takes the next word from the command line. If

none is found, an error message (I) is printed and USE returns. CHKNAM
is called to convert the word to BCD. If this word is ADD, the name of a
Save File should be found ncxt on the command line and the mode of re-
activation will be somewhat different. In the "add" mode the Save File
specified by the command will become the user's "current Save File", so
that NAMEd lists may be SAVEd in it, but the list pointers already in the
Save File will not be read into core and made active NAMEd lists. When the
word ADD is seen, therefore, USE sets an indicator and goes back to recall
NEXITM to get the name of the Save File to be activated. If the word is FILE,
it is ignored (USE and USE FILE are equivalent) and NEXITM is called agair..

In either mode, when a file name has been found and converted to
BCD, it is passed to CHKSAV to see if it is actually a Save File recorded in
the directory. If CHKSAV returns a zero valce, it failed to find the file name
and an error message (1),results. If the file narne is found, a call to FSTATE
is made to see if the file really exists on the disk, and, 'if s,o, to obtain its
length. If the file is not on disk, another error meSsage (2) is printed and the
name of the file is deleted from the directory by calling CONDIR(Section
3.3.3.5.

At this point, if the "add" mode indicator is on, the'procedure skips
ahead to the final few operations of activating the /file. If the regular mode is
belag executed, NFN1(POT.) is examiner'. If it doles not contain a Name File
name, one is constructed using the same nurneri

325

last three characters con-



3. 3. 3. 3 -31 0-

tained in the user's Dump.File. A call to DELFIL is made to delete any
Name File by this name which might already exist from a previous Intrex
session.

Now, the entire Save File is copied into the new Name File by a
small routine called, MOVEIT (Section 3.3.3.4). The -^o.th of the new
Name File (in records) is inserted into TOTNAM(POT.). This length is
also placed in TOT,SAV(POT.) and the name of the Save File is inserted
into SFN1(POT-.) to make the Save File current and receptive to new
NAMEd liss.

zTo complete the activation of the lists in the Save File and,new
Name File, the list table in the first record of the Name File is/read into
the in-core list-pointer table. This of course, destroys any list pointers
already there, including both NAMEd lists and the cu.rrent list from a
search, if any. (This is the reason for the ADD option.) With no current
list, ',RL. (1 ) is made 0. Once the pointers are read into core, the
Name File is , sed and a verification message (3) informs the user what
the command has done. This message ends with a list of the NAMEd lists
just activated, produced by calling the LIST procedure with an argument of
0 (zero) (Section 3. 3. 2. 6).

In the "add" mode, TOTSAV(POT.) and SFN1(POT.) are filled as
in the regular mode, but a somewhat different message(4) is printed to
verify the execution of the user's command. The list of NAMEd lists which,
cc..mpletes the message is produced by calling LIST with an argument con-
sisting of a pointer to the name of the Save File. This prompts LIST to dis-

,
play the names of the lists in t_iat re-activated Save File.

Finally, in both modes the index of the Save File's list-pointer table_
is set in the decrement of TOTSAV(POT.), using the count of listS just pro-
duced by the call to.the LIST routine. In all cases USE returns a value of
zero to CLP.

B. Procedures balling USE.:
CLP (via CALLIT)

C. Procedures Called By USE:
NEXITM, CHKNAM, CALLIT(CHKSAV, MOVEIT, CONDIR),
FSTATE, DELFIL, OPEN, BUFFER, RDWAIT, CLOSE,
TYPEIT, LIST

326



D. COMMON References:
Name

NFN1(POT.)
DFN1(POT.)
SFN1(POT.)
COMBF6(POT.)

-311-

Meaning Interrogated?
Name File name one
Dump File name one
Save File name one
Save File directory
. read buffer

E. Arguments:
FN: ASCII pointer to file name

F. Values:
Code 0 (zero)

G. Error Codes:
None

H. Messages:

3. 3. 3. 3

Changed?

1. "You have not provided the name of a SAVE file." ($USER1$)

2. , "SFILE1 is not found to be stored on disk and Is being deleted
from the SAVE file directory." ($SAV7$)

3 "SFILE 1 has become your current NAMEd list file and SAVE
file. The list names in this file may now be restored to active
status by typing their names, which are:" ($USEM1$)
(List of Listnames)

4. SFILE 1 has become your current SAVE file and will accept
SAVEd lists. Your current NAMEdl lists, if any, are re-

.tained and may now be SAVEd, if and when desired." ($USEM2$)

(List of List-names).
NOTES:

1. The file name supplied by the user is

I. Length:
7248 or 46810

J. 'Source:
RESLIS ALGOL

K. File References:
NAIVI--- FILE

327

;iven here



3.3.3.4 -312-

3. 3. 3. 4 MOVEIT

Purpose

To copy a disk file

Description

A. Operation: MOVEIT(IN1, IN2, OUT1, OUT2)
This procedure accepts as urnents the names of two disk files.

The first two names are those of a itte,to be copied, such as a Save File
to be reactivated as a Name File. The second two names are those to be
given to the new file. The files are opened for reading and writing, respectively,
with Common Buffer 6 being used for buffering the writing of the new file and
Common I3uffer 2 used for transferring the data in and out of c

Both files are closed upon rompletion of the transfer.

B. Procedures Calling MOVEIT:
USE

C. Procedures Called By MOVEIT:
OPEN, BUFFER, RIDWAIT, WRWAIT, CLOSE

D. COMMON References:
Name Meaning Interrogated? Changed?

COMBF2(POT.) Core-transfer buffer
COMBF6(POT.) Write buffer x

E. Arguments:
IN1, IN2: Input File names
OUT1, OUT2: Output FiIe'-na.mes

F. Values:
r'-Fone

G. Eirror Codes:
None

H. Me/ssages:
None Air

328



-313- 3.3.3.4

I. Length:
Approx. 1008 or 6410 words

J. Source:
SAVLIS ALGOL

K. File References:
NAM - - - FILE

user SAVE

329



3.3.3.5 -314-

3. 3. 3. 5 CONDIR

Purpose

To condense the Save File Directory

Descr::ption

A. Operation: CONDIR(FLOC)
This procedure is used to drop file names from the Save File

directory whose position is given in the argument of the call. The proce-
dure would normally be called from the DROP routine in response to a
DROP FILE command. It might also be called from the previously de-
scribed USE procedure, if the file to be USEd was not found on the disk.

CONDIR first calls FILCNT to sez if a Saved File directory
exists. If not, the procedure simply returns immediately to the calling
program. Otherwise, the length of the ±ile is established and used to con-
trol a loop which reads one word of the file at a time. The directory is
opened for both reading and writing. Every word except the one found in
the argument position is ritten back into the file. When all reading and
writing is finished, the new file is truncated to one word less than its orig-
inal length by a call to the CTSS routine, TRFILE (Section 3.5.1.8).

Finally, the directory file is closed and CONDIR returns to the
calling routine.

B. Procedures Calling CONDIR:
DROP, USE

c . Procedures Called By CIDIR:
FILCNT, OPEN, BUFFER, RDWAIT, WRWAIT,
TRFILE, CLOSE

D. COMMON References:
Name Meaninc Interro ated? Changed?.-

COMI3F6(POT.) I/0 Buffer

E. Arguments:
FI OC: integer (file index)

330
tt



F. Values:
None

G. E,7-ror Codes:
None

H. Messages:
None

Length:
1138 or 7510 words

J. Source:
SAVLIS ALGOL

K. File References:
SAVED DIRECT

-315- 3,3.3,5

331



3. 3. 3. 6 -316-

3. 3. 3. 6 LISTSL

Purpose

To list names of lists in a Save File

Description

A. Operation: CNT LISTSL(SLN)
This procedure j.,.s calied by LIST when the user llows the LIST

rnrnand with the name of a Save File whose SAVEd ist i.rnes he wants
displayed.

LISTSL accepts an argument containing a BCD-Coded Save File
name. A c 1 to FILCNT on his file name is made to determine if the file
actually exists on the disk. If a negative return from FILCNT shows that
no such file exists, an error message is i= sued (1) and the file name is de-
leted from the directory (if it exists there) by a call to CONDIR (described
earlier).

If the file is found on the disk, TYPEIT is used to produce an intro-
thy...tory message (2). Then the file is opened for reading, buffered, and the
names in the table in the first record are read, one word at a time. Each
list name is printed by TYPEIT after conver-i,on to ASCII by BCDASC. Ai
empty word signals the end of the list-pointer table and the loop is termina-
ted. The names are counted as they are read and printed. This count is
tested for the possibility of zero lists in the table, in\which case the user is
given the word "none" for a resiilt.

In all cases the count is returned as a value to LIST which uses it
to add a summary message (see LIST in Section 3.3.2.6.

B. Procedures Calling LJSTSL:
LIST

C.

D.

Procedures Called By LISTSL:
FILCNT, TYPEIT, BCDASC, RDWAIT, CLOSE, LOCMES,
CONDIR, CHKSAV

COM1\ -ON References:
Name Meaning Interrogated Changed?

COMBF6(POT;) I/O buffer



-317- 3.3.3.6

F. Arguments:

SLN: BCD file name

F. Values:
CNT.--count of List names in Save File

G. Error Codes:
None

Messages:

1. "SF1LE 1 is not found to be stored - disk and is being
cl.I.leted from the SAVE File direc p." (SSAV7$)

Z. "Lists in file SFILE1" (SSAV6,$)
(List of List Names)

NOTES:
1. The name of the file specified by the user is given here.

I. Length:
1418 or 97 /0 words

J. Source:
SAVLIS ALGOL

K. File References:
user .,AVE

333 --



3. 3. 3. 7 -31 8--

3. 3. 3. 7 LISFIL,

Purpose

To list Save File narnes

A. Operationl LISFIL( )

This procedure is called by the LIST procedure (see Section
3.3.2.6) when a LIST TILE command is given by a user desiring to see
what S.tve Files are currently in the Save File directory. LISFIL first
checks to see if a directory exists by calling the procedure FILCNT (Section
3.4.3.1). If FILCNT returrs a negative value, no directory exists and the
user is informed that no Save Files are currently on the disk (1).

A positive value returned from FILCNT will be the length of the
directory, which is then used to cont..01 a loop in which the directory en-
tries are read and listed one-by-one. RDWAIT is used to read each direc-
ty while BCDASC converts the file name from BCD t(. ASCII so
that TYPEIT can display it to the user.

When all the file names in the directory have thus been listed, an-
otfier TYPEIT call is made to give the user a summary message (1) as to
the number of Save Files currently held.

B. Procedures C;Illing LISFIL:
LIST

C. Procedures Called By LISFIL:
FILCNT, OPEN, RDWAIT, TYPEIT, BCDASC, CLOS1

D. COMMON References:
Name Meaning Interrogated? Changed?

COMBF6(POT.) 1/0 buffer

E. Arguments:
None

F. alues:
None

334



G. Error Codes:
None

H. Messeaes:

1.

-319- 3. 3. 3.7

"Ni SAVE Files currently being held on File.'' (SSAV5S)

NOTES:

1. The number of file names listed by the LISFIL procedure
is given here.

I. Length:

1028 or 6610 words

J. Source:
SAVLIS ALGOL

K. File ReferemL:es:
SAVED DIR.F.CT

335



3.3.4.1 -320-

v--;.3. 4 Boolean Operations
3. 3. 4. 1 AND.

Purpos e

To control Boolean commands

Description
The process of per:'orming a Boolean intersc -tion on two lists of

references produces a resulting list containing only those references which
share certain common specifications or attributes (namely, document num-
ber and/or subject term number). When such matching criteria are found,
one or both of the similar refeT :nces is taken into the new list and the com-
parison continues. This process generally means that the resulting list
will be small -i- than the length of the shorter of the two original lists.

If the user wishes to intersect two iists on their document numbers
only, he issues the command, "LISTI, AND LIST2" where LIST1 and LIST2
are names he previously assigned via the NAME command. (LIST1 may be
omitted in which case the current list is taken as LIST1). The procedure
AND., called by CLP in processing the AND command, will read the second
list name, find it in the list-pointer table, and use its pointer and the cur-
rent list pointer as arguments to the main Boolean procedure ANDER (de-
scribed in Section 3. 3. 4. 5).

Since the other Boolean commands and their corre.,3ponding proce-
dures all necessitate basically the same preparations, subroutine calls mes-

1. \sage construction, etc., duplicate coding was obvi\ated by making AND. a
general purpose set up routine used also by WITH., OR., and NOT.

A. Operatior. Code = AND.(SPA)
The POT /location MODEG(POT.) containsl an "anding mode" in-

cliator (normally set by CLP) which is used by the, procedure ANDER to de-
te,-rnine IA hat course of action it should follow while cornpari g references.
This mode is extracted from the POT upcn. entering AND. to be used as an
argument in the ensuing cail to ANDER. It will have been set to 3 (ciocu-
ment number intersection o,,I ') by LP in anticipation o, an AND command.



-321- 3. 3.4. 1

Next, the oeiirniters and trim ta.ble pointers are extracted irrn
the POT and set op bor disecting the command line with calls to
Flaas i.--;ed for indicating the use of AND. by the NOT command or the GP,
command are set to false, and the argument (the pointer to the rerhalnder
of the command line) is saved in a local variable.

The preceding operations are pertinent only to the AND command.
The steps described below are used also by WITH, OR, and NOT commands.

The CTSS buD feature is used during all Boolean operations as well
as during searching. liETBLP is called specifying the blip character to be
that contained in BLIP (POT.) and setting a time period of one second be-
tween blips.

NEXITM is used to obtain the next word on the command line,
assumed to be a NAMEd list. If NEXITM returns an error code, a
message (1) is prizted telling the user he has not :ven a list name.

The ASCII word returnee by NEXITM iF now converted to
BCD by the basic conversion procedurt4 CTS1T6 (see Section 3.4.2.8)
and tested to see if it is the word NOT. If it is NOT, then the user has
issued an AND NOT command, which is quite different, of course, from
an AND command. In'this case, NOT. is called by AND. (see description
of NOT. in Section 3.3.4.4),which forces another cycle throughAND. with
different conditions. In this case two exits will be taken, first fromNOT.
and then from AND. to return to CLP. This bears some resemblance to
the exit from a recursive procedure.

Any word other than NOT is 7:,assed to the procedure CHKNAlvf
(see Section 3.3.2 5) to see if the word is the name of a NAMEd list. If

CHKNAM returns a negative value, the name was not found in the list table
and an error message to this effect (2) is displayed to the user.

Next, RRL.(CL.) is examined to make sure there is a current list
on which to perform the required Boolean operation. If if is empty, a mes-
sage is typed (3) stating that the user has no current li3t.

Now the procedure ANDER is called with the pointer to the NAMEd
1 st (returned by CHKNAM), the current list r_Anter, the 'andilig mode, and
a zero (indicating "no attribute screening") passed as arguments. The
scanning of the two reference lists, as specified by the anding mode, takes
place in ANDER. The resulting list is written into the Dump File and a
pointer to its augmented (three-part) pointer is returned to AND..

337



3.3.4.1 -322-

If the value returned is not a pointer but an error code, AND.
immediately aborts and returns to CLP. No error message is given by
AND. here because it will have been given by the routine causing the
error, asually TABENT. (Section 3.3.2.3) coMpiaining that the list table
is full.

If the value is a zero, the Boolean comparison produceb no sat-
isfying references so the following pointer prepairations are"Skipped. -

The pointer returned by a successful call to ANDER is made the
current list pointer by inserting it into RRL.(CL.). First, however, the
old list pointer in thiS component of CL must be deleted by calling DRPPTR
(Section 3. 4.8), unless that pointer relates to a NAMEd liE;t, which must
be retained.

Having completed its task, AND. must then tell the user abdut the
result. A complex call to TYPEIT is prepared, one of whose arguments is
determined by the type of Boolean command being performed as indicated
by the anding mode. The result message (4) Will specify that ANDing,
WITHing, ORing, or NOTing has taken place according to whether the mode
.1.;-s 3, 0, 4, or less than 0, resPectively. The mesgage will also state the num-
ber of documents involved-in.theresulting list (from the decrement of RRL.).
If that number is zero, the user is told (5) that his most recent list is being
retained (the contents of RRL. have not changed)._

.

Before assuming that its job is completed, AND.. exac.siines the de-
limiter found by NEXITM to determine if the command terminator has been
reached. If not, NEXITM is called again and its returned word converted
to BCD. This word is compared to the words AND, R, NOT, and WITH in
case the user is stringing Boolean commands together'. If the word is any
of these, the proper corresponding mode is set and AND. loops back to the
first call to NEXITM to read the name of the next list on which to operate.

If the word is none of these, AND, goes back to the place where
CHKNAM is called to see if the user is chaining lists together for the same
Boolean operation (e.g. OR Ll L2 L3).

Once a command terminator is found the blip feature is turned off
by calling SETBLP with zero arguments, and AND.s prepares to exit.

338



-323- 3.3.4.1

Here, the OR command flag (set by OR.) and the NOT cominand flag (set
by NOT.) are tested. If either flag is on, transfer is made to the exit
location of-the corresponding routine and, hence, back to CLP.

If both,flags are off, the argument pointer to the command line is
updated and AND. returr,s a zero value to the calling routine,

B. Procedures Calling AND.:
CLP, WITH. (both via CALLIT)

C. Procedures Called By AND.:
SETBLP, NEXITM, CTSIT6, CHKNAMF ANDER, DRPPTR,
T YPEIT

D. COMMON References:
Name Meaning Interrogated? Changed?

MODEG(POT.)
CD(POT.)
CET(POT.)
CET(POT.)
BLIP(POT.)
RRL,.(CL.)

anding mode
command delimiters
front-trim table
end-trim table
blip character
resultant ref. list ptr.

E. Arguments:
SPA: ASCII pointer

F. Values:
Code = 0 (zero)

G. Error Codes:
None

H. Messages:

1. "You have not provided the name of a NAMEd list" ($nam3$)
1"xlist has not been NAMEd." ($nam3$)

3. "You have no curreira list upon which to perform Boolean
operations." ,($anerrl$)



3.3.4.1 -324-

2
4. "The list resulting from ANDing the current active list with

3 4lname contains N documents." ($anorl$, $anor2.$,
$anor4$, $anor4a$, /op3a/ or jop3b/)

5. "Your last active list has' been retained." ($fso65)

NOTES:

1. The user-supplied word is given here.
2. This may be WITHing ($anor0$), ORing ($anor3$) or NOTing

($an-or5$) if the anding mode so dictates.
3. The user-supplied list nam.e.is given here.
4. The number of documents in the result ig liSt is given here.

I. Length:
3518 or 23310

J. Source:
ANDOR ALGOL

K. File References:
None

340



-325- 3. 3. 4. 2

3. 3. 4.2 WITH .

Purpose

To control the WITH (strong AND) command

_Jescription

If.the user wants Ito intersect subject term' numbers as well as
document numbers, then 1Ne types, "LIST1 WITH LIST2", (Here again
LIST I may be taken as the current list.) If LIST1 contains the refer-
ence list for the word ZINC and LIST2 contains the reference list for the
word OXIDE, then'the result of the above command would be the same as
if the user had done a subject search on th hrase ZINC OXIDE.

The same comparison procedure (ANDER, Section 3. 3.4. 5) is
used by all the Boolean operations. A mode arglirnent to ANDER con-
trols the type of action taken during and after comparison of the lists.The
subject-search logic and the WITH command both call ANDER with a rnode
of 0, which causes term numbers to be used in the intersection process.

I-Combination subject/title searches, subject/author 'searches, subject/
author searches and the AND command call ANDER with modes of 1,2 and
3 respectively, whict; prevent ANDER from considering term numbers.The
resulting list from this kind of intersection is usually larger than that pro-
duced by the more restrictive WITH command intersection.

A. Operation: t Code = WITH. (SPW)

WITH. is called by the Command Language Processor (CLP) with
an argument containing a pointer to the rest of the command line. The proce-
dure itself performs only two steps,since'rnost of the processing is actually,

. done by AND, and ANDER.
First, WITH. inserts a mode of zero into the MODE'G component of

POT., which will cause ANDER to consider term numbers in the more de-
manding type of intersection.

Then WITH. calls AND., passing along the same commmand line
pointer as its argument. AND, will, of course, returnto WITH, in the nor-
mal procedural manner, and hence back to CLP. with the same zero value
which is standard for command routines.

341



3.3.4.2 -326-

B. Procedures Calling WITH.:
CLP (via CALLIT)

C. Procedures Called By WITH.:
AND.

D. COMMON References:
Name Meaning -Interrogated? Changed?

MODEG(POT.)') anding de

E. Arguments:
SPVr: ASCII pointer

F. Values:
Code = 0 (zero)

G. Error Codes:
None

H. Messages:
None*

I. Length:
178 or 1510

J. Source:
ANDOR ALGOL

o

K. File References:
None

*Directly from WITH, f or indirect results, see AND..

342



-327- 3.3,4.3-

3. 3. 4. 3 OR.

Purpose

To control the OR command

Description

A Boolean OR on two lists of references (L1 OR L2) produces
a resultiag list containing references found in either or both of the twó
lists. It merges the two lists into one, maintaining the descending order
of document numbers and ascending order of term numbers within each
document. Redundant references are discarded so that it is possible that
the length of the resulting list will be less than the sum of the lengths of
the two original lists. The OR procedure uses AND. logic and causes a_
call to ANDER with a mode argument of 4 which sets the ANDER switch-
ing mechanism to merge rather than exclude. The OR command would
generally be used to combine the lists of search words or phrases having
similar meanings so that all the references pertaining to a given area
will be included,in a group which would be unattainable by ordinary search
techniques.

A. Operation: Code --:-- OR.(SPO)
OR. is called by CLP and accepts an argu ent containing a pointer

to the rest of the command line. This pointer is p aced in a local variable
which is common to the AND. procedure. Then a similarly common variable
used for holding the anding_rnode is set to 4, the number which indicates
ORing to both AND. and ANDER. Since this mode may be 'changed later if
AND. finds subsequent Boolean commands on the same line, a flag is set to
serve as a reminder that the final exit back to CLP must come from OR..
This flag will be examined at the end of AND, and, if set, will cause AND.
to branch back to the exit point of OR.

After setting the "OR" flag, transfer is made from OR, to AND, at
the point in AND, where the blip feature is activated and the command line
is interrogated by NEXITM (see earlier description of AND.) AND, then



3. 3. 4. 3 -328-

(using ANDER) performs the ORing operation. Whn it finishes and returns
to OR., the advanced command line pointer is deposited into the argument
address and a zero value is returned to CLP.

B. Procedures Calling OR.:
CLP (via CALLIT)

C. Procedures Called By OR.:
None*

D. COMMON References:
None*

E. Arguments:
SPO: ASCII pointer

F. Values:
Code 0 (zero)

Go Error Codes:
None

H. Messages:
None*

I. Length:
318 or 25 l0

J. Source:
ANDOR ALGOL

K. File References:
None

*Directly from OR, For indirect result!, see AND .

344



-329- 3. 3. 4, 4

3. 3. 4. 4 NOT.

Purpose

To control the NOT command

Description

The Intrex command, LIST1 NOT LIST2, means "produce a list
which contains only those references from LIST1 which are not also in
LIST2". The resulting list length must be less than or equal to LIST1.

Like Intersection, Negation may be performed either with or with-
out regard to term numbers. If only the word NOT is-used betw.3en list
names, then term numbers will be considered and only those references
having the saie term and document numbers as the LIST2 reference will
be discarded (ANDER mode = -I). If the two words AND NOT appear be-
tween list names, then any reference of LISTI having the same document
number as a LIST2 reference will be dropped (ANDER mode z -3). Thus,
the result of

LIST1 NOT LJST2
will, in general, contain more references than

LIST1 AND NOT LIST2

since there will usually be fewer discarded references.

A. Operation: Code = NOT.(SPN)
NOT. is called by CLP or AND. with an argument containing a

pointer to tbe rest of the command line. This pointer is saved in a local
variable for use by AND, as described above under OR..

Since the_re are two kinds of NOT operations and, therefore, two
modes which might be passed to AND, and from there to ANI:ER, NOT.
must examine the mode indicator in MODEG(POT..) to determine which NOT
mode is to be used. A zero in this component means that the word AND has
already been encountered on the command line and the local mode is then set
to -1.

345



3. 3.4.4 -330-

A three (3) in the mode slot means that NOT, was called directly
from CLP (no AND), so the mode in the local parameter is set to -3. A
flag is set to indicate that return must be made via NOT. and the control
branches to AND, as described above for OR..

AND. and ANDER then perform the actual procesSing of the com-
mand. At the end of AND., the NOT flag sends control back to NOT, which
replaces the old argument command pointer w;.th the now advanced local
version and returns a zero value to the calling program.

B. Procedures Calling NOT.
AND, CLP (via CALLIT)

C. Procedures Called By NOT.
None*

D. COMMON References:
Name MeaniziR Interrogated? Changed?

MODEG(POT)* anding mode

E. Arguments:
APN: ASCII pointer

F. Values:
Code = 0 (zero)

G. Error Codes:
None

H. Messages:
None*

I. Length:
378 or 3110

J. Source:
ANDOR ALGOL

K. File References:
None

Directly from NOT.. For indirect results, see AND..

4 46



-331-

ANDER GET BUY

Tarpose
To perform Boolean rnanipulati.oris on two lists

LSI.c. ription

ANDER is a very- complex, general purpose Boolean operation pro-
cedure called by the search module (when multi-word search terms must
be intersected) or by the Boolean comrnilnd procedures described in Sec-
tions 3.3.4.1-4. ANDER takes two reference lists and compares their
document numbers (and sometimes term numbers). A new list iS pro-
euced from the two input lists, the contents of which depends upon the
Boolean operation being performed. The new list is deposited into the user's
Dump File and a new augmented list pointer is added to the list po:nter table.

A. Operation: NP ANDER(P1, P2, MAND, S)
ANDER accepts four arguments passed from the calling routine. The

first and second are pointers to augmented list pointers. These in turn point
to two reference lists which are to be processed in some Boolean operation.
The third argument contains a mode code which determines which Boolean
operation is to be performed. The fourth argument is a flag stating whether
or not attribute screening is necessary on the references before they are
compared by ANDER.

The first step taken by ANDER is to extract from the two augmented
list pointers (and place into 1oca-1 yaria 1es, 'BLK1 and BLK2) the block
(common buffer) numbers employe-1i- old the cere-stored portion, if any,
of the list. These are used later by the.procedure GETLIS (Section 3.14.6)
to select the buffers to be usediror reading.

Then, counters and indices are reset to zero, and the current disk
block counts of both the Dump File and the Name File are obtained from the
POT.

The flags used by ANDER are reset and the list pointed to b'y argu-
ment pointer one is prepared for processing. This is done by calling GETLIS

347



AC*

3.3.4.5 -332-

with this pointer in argument one. GETLIS will read the first block of
list one into a common buffer determined by the last two arguments, BLK1
and BLKZ, and fill the several other acigument words of the a\all with data
pertaining to the address, type,, file names, etc. of the list.

One of the items of data supplied by GETLIS is the numtier of disk-
stored references left to be read. If this number is zero, then the end-of--
file flag (E0F1) is set to indicate that no further reading of list-one is
necess ary.

Preparation for list-one examination is cornpleted.by setting the
core index of list-one (IX1) to zero.

Next, the second argument pointer is examined. If it is a zero,
this indicates that ANDER is being called by the procedure NAME (Section
3.3.2.2) for the sole purpose of writing a list into the Name File.
This simpler use of ANDER is controlled by setting a flag called FAKE,
which prevents the reference-comparison apparatus from being used.

When the second pointer is not zero, the second list is prepared as
was the first-by calling GETLIS with th4 ;-' r as the first argumentbut
this time the last two arguments ar LK2, BLKI). Again, if the
number of disk-stored references reii. to be processed after GL- LIS
is zero, the end-of-file flag (E0F2) is set.---..\

Now the name of the output file,- into Vrhich will be written the re-
_sulting list, is selected. If the FAKE flag is not set, the output file name

parameter is set to the name of the Dump File (found in the POT). Other-
wise, the output file is the Name File and all the parameters relating to
list-two are set to zero.

In either case, the core-address index of list-two (I= and the out-
put buffer index (OX) are reset to zero, completing the preparations for
comparing the references of the two lists.

,GETLIS will normally put the first blocks of references from the
lists into common buffers one and three. The next block of references to
be read (from one list or the other) will go into common buffer two. This



-333- 3.3.4.5

is forced by putting that buffer address into the parameter which controls
the reading of the next block (named NEXTB). A corresponding control
parameter (named NB) is set to the next buffer number, 2.

The selection of an output buffer is dependent upon the mode. A
titlelor author search list being combined with a previous search list (mode
1 or/2, respectively) will cause the selection of common buffer six. All
other modes will cause buffer four to be.chosen for storing output. This dis-
tinction is made because title and author lists may be themselves occupying
common buffer four.

Main Loop A

Here, ANDER sets an output index parameter (AX) to be used, pos-0

sibly, by the attribute screening routine BUFSCN (Section 3.3.4.7) to a
starting postion of zero.

An important factor concerning the reading of disk files in proc-
essing the two reference lists is that time is saved by overlapping the read-
ing time with the processing time. This is accomfilished by using RDFILE
instead of RDWAIT to read the files This simply initiates the read and pro-
ceeds on to the next instruction. This necessitates keeping the data block
being read one step ahead of the block being processed. It also means that,
before any new read, a call to FWIT must be used to ensure that the pre-

,

vious read is Pnished.
A call to FWAIT is Iade at this-point in ANDER if file names have

been set by GETLIS. Then the fourth argument to ANDER is tested to see
if attribute screening was requ.ested by the search routine. If so, BUFSCN
is called with the following four arguments: 1. the core address of the cur-
'rent block of references of list-one; 2. the number of reference words in
this block; 3. the same 'core address as 1, to be used as the output area by
BUFSCN; and 4. the output area .index set up especially for BUFSCN(AX).
The group of in-core references is reduced by BTJFSCN to contain only those
which contain the qualifying attributes specified by the user's search request
(RANGE, TITLE, and AUTHOR with initials are the only possible attribute



3. 3. 4. 5 -334-

specifiers at present). The value returned bY BUFSCN is the new ,re-
duced length. (Note that this is only the length of the core-stored block,
not of the entire list.) If this length is zero, meaning all references in
the block were rejected, or if the FAKE flag is on, then the following test
for determining whic-h list's block will be usee up first is skipped by trans-
ferring directly to the point where list-one is set up for the next read
("Lit-One Loop").

Main Loop B
,A call to FWAIT must also be made at this point since the exhaus-

tionof list-two core references will transfer control back to this point
rather than to Main Loop A.

Here a decision is made as to which list block will be exhausted
first and, therefore,, which list file will need to be read from next. This
decision is made by examining the docUment nuTiabe,rs of the last refer-
ence in each core block. Since the lists are in descending numerical
order of document numbers, the one which ends with the highest number
will be exhausted first.

List-Two LOop
If list-two is due to be emptied first, an indicator (FST) is set to

If the end-of-file flag is already set for list-two, control then branches
point where references are compared ("Compare Docurnents").
Otherwise, the file names of list-two (as establishedby GETLIS) are

prepared as the next file to be read, and its disk address (RELLOC) is up-
dated.

List-One Loop
If list-one is due to be emptied first, the FST indicator is set to 1.

If list-one's end-of -file flag is already set, control branches to the refer-
ence comparison point ("Compare Documents").

Otherwise, the file names of list-one (as established by GETLIS)
are prepared as the next file to be read, and its disk address (RELLOC)
is updated.

350



-335 - 3.3.4.5

Theri- the file whose name was prepared 4-o be read next, if any, is
read (via a call to RDFIL.E) into the next selected common buffer (up to
432 words). (If the file being read is the Dump File and if output has pre-
viously been written into the Dump File beyond the second 432-word record,
then a rare and insidious CTSS file handling bug, involving alternate reads
and writes of dually opened files, must be avoided by issu g a special call
to the RDWAIT procedure. This read must be into the first half of the file
and ndt on a record boundary. It serves to avoid confusing the chaining
mechanism of CTS'S file handling logic.)

Compare Documents
Before comparing references fromrthe two lists, the FAKE flag

(which indicates a pseudo-anding is being done by the NAME pr')( dure)
is checked. If this flag is set, control is at once transferred to point
further on in ANDER where the reference is extracted from list- I..: and
inserted into the output buffer ("Take B").

If FAKE is not set, the length of the core-stored references in list-
one is checked.. If it is zero (because of an attributed screen w--ich dis-
carded them all), control passes to the point where the list-one index is in-
cremented and checked ("Bump List One"). This will set up another read
(if there are more references on the disk for this list) and cycle back to
"Main Loop A".

Having established the existence of two lists of references, the
document number of the next one pointed to by each list index is extracted-.

If the flag (FIN) which indicates that one of the lists has been com-
pletely scanned is set, then transfer is made to the point where document
numbers are counted p -isr to including the reference in the output list
("Count Docs").

If FIN is NOT ket, the iocument numbers just extracted are com-
pared. If they are the ame, control is transferred ahead to the point
where term numbers may be compared ("Compare Terms"). If they
are not the same, then the mode will determine which course of action is
to be taken.



3.3.4.5 -336-

If the NOT mode is active (0) and if -list-one's document number
is greater than that of list-two, transfer is made to the list-one index in-
crementation ("Bump List One") which skips to the next reference on the
list governing the NOT screen. If list two's document number is larger,
then this reference isn't on the NOT list and must be included in the out-
put by transferring ahead to the point where document numbers are counted
and references inserted into the output buffer ("Count Docs").

If the OR mode is active (4), then a reference -selection-control-
flag (TX) is set (if list one's document is larger) or reset (if smaller).
Again, ANDER transfers to the document counting area, Count DOcs.

If ANDER reaches this point, then the mode must be either 0 or 3
(one of the modes of Boolean AND). The document numbers of the two
lists are compared to see which is the larger.

If the mode is 3 (the weaker AND), then the document number which
is larger must be compared with the immediately preceding one on the list
to determine if the present one is a continu ion of the same docianent num-
ber group. If so, that reference must be added to the output list. This is
accomplished by setting (list-one document number greater) or resetting
(list-two document number greater) the reference-selection-controlflag
TX and branching ahead to "Take B".

If this document number is different from the previous one, or if the
mode is 0 (the stronger AND), then ANDER transfers ahead to the appro-
priate list\incrementation section, depending upon which document number
is larger.

Bump List-One
NThe next reference word in list-one is made accessible by adding

one to its indx IXI. If the index is then not beyond the last reference in
core, transfer'is made back to the start of the compare loop ("Cornare
Documents").

When the index reaches the end of the core-stored referekes, the.
end-of-file flag is tested to determine if any more references are waiting
to'be read from a list-one disk file.

352' tt



-337-- 3.3, -4.5

If EOF1 is set, all references in this list have been processed. In.
either mode of ANDing, this means that the con-iparison is completed and
ANDER transfers to the wrap-up section ("Finish"). If the mode indicates
ORing or NOTing is in progress, however, then the other list must be com-
pleted and added to the output list. A check is made to determine if, by co
incidence, lit:t two is already exhausted. If so, transfer is made to "Finish':
if not, the reference-selection- flag, TX, is reset to false to force the selec-
tion of list-two references to completion. Then the flag FIN, which in-
dicates that one list is done is set. Finally, the last core-reference address
of list-one is zeroed out to force the main loop to follow the path which se-
lects and processes list-two. The address immediately following"the last
reference is also zeroed to prevent undesirable document number matching.
ANDERthenloops back to get the next block of list-two references ("Main
LoopB").

If, upon exhausting the current in-core block, the -of-file flag
has not beeh set, preparation is made for the reading and processing of the
next block of references from the disk file. Thr parameter (RL1) which
holds the number of references left to be read is examined to see if at least
one-more fur block (432 words) remains. If not, the new core-block length
(CL1) is set to the number of disk references remaining, and the disk ref-
erence count is set to zero. Otherwise, the core-block length is set to the
full block size of 432 and the disk reference count is reduced by that amount

Now the core-block address is set to the\location contained in the
next-block parameter, NEXTB, and a new value for NEXTB is obtained
from GETBUF, a sub-procedure of ANDER which apcepts an argument con-
taining the common buffer number just exhausted and, returns the address of
the corresponding buffer. This action ensures that the next buffer to be used
will be the one just emptied.

Next, the core index of list-one is reset to zero,. Adjustments are
made to the core address, core length, and disk reference count if the list
is an Inverted File-stored list. These adjustments are necessary to cornpen-
sate for the presence of a section header at,the top of each block of Inverted

35
f



-338-

File
With preparations completed, ANDER now loops back to "Main

Loop A" to screen attributes on the new block (if necessary) and start a
read of the next one.

11.32rnE_List-Two
This sectionof ANDER coding is almost identical to the one just de-

scribed under "Bump List-One". Of course, the list indices, counts, flags,
etc. are those related to list-two in this case. If the entire list has been
exhausted and the mode is OR, necessitating the continued processing of
list-one, then the reference-selection-flag TX is set to TRUE to force the
selection of list-one. (Note that, unlike "Bump List-One, " the NOT mode
"does not require further processing of the other list, since list-two is the
only one containing rotentially useable references). Transfer is made from
here to "Main Loop B" (as it was in "Bump List-One") to start a read of
the next block of list-one references.

On the other hand, _if more list-two references remain to be read
from the disk, the buffer and core-address settings (described above)
'contrOl the reading of the next block of list-two when transfer is made
back to "Main Loop B".

Comyare Terms
Certain Modes require comparison of term numbers when docu-

ment numbers have been found to match. One which does not is that used
for intersecting title references vvith subject references. This is indicated
by a mode of 1 sent from the caILng procedure SEARCH, (Sections 3.2.4.1
and 2). When this mode is ieturted at "compare Terms", transfer isolimme-
diately made to "Count Does" witthout any term comparison being done.

Anothr'r mode requiring no terrn matching is the "strong" NOT (with
the AND before it) whose rn .Tie is -3. This mode requires that all refer-
ences with matching document nurribe be dr-Dpped from the output list re-
gardless of term numbers, s: ANDER transfer to "Bump List Two" to get
the next refer( ace.

Any,other mode will ca_use the extraction and comparison of the two
term numbers. The action taken after comparison depends again upon the
specific mode. The "weak" NOT (-1) and the "strong" AND (0) will cause
ANDER to skip the reference by transteretg to "Bump List-One" if the list-

35 4



-33 9- 3. 3. 4. 5

one term number is Less (earlier) than the list-two term. If the list-one term
is greater (later) than the iist-two term, one of two actions may be taken.
If the mode is 0, then the list-two reference is skipped by transferring to
"Bump List Two". If the mode is -1, the "weak" NOT allows the different
term from the same document by transferring to "Count Docs". If the term
numbers are equal, the "weak" NOT mode will cause transfer to "Bump
Li St-Two" which omits this reference from the output list, while "strong"
AND mode will accept the reference in the output list by transferring to
"Count Does".

In the OR (4) mode, the term numbers are compared and the refer-
ence-selection-flag TX is set or set depending upon whether the list-one
term is less -than-or-equal-to r greater-than the list-two term, respec-

Count Docs...
The number of different document numbers involved in the output

list is tabulated by "remembering" the previous number added to the list
and comparing it here to either list-one's o/' list-two's document n rnber,
depending upon the settine- of the indicator TX. When the numbe is the
same as the previous on, transfer is made ahead to "Take A". If they
differ, the document count is incremented by one and the present document
number becomes the new "previous" One.

tively.

Take A
Before the current reference is added to the output list, one more

.mode test is made. If the mode is OR (4) and both the document and term
num-Ders of the two list's current references are identical, then neither
reference is chosen for insertion into the output list on this cycle through
the comparison loop. Omission is caused by transferring ahead to "See
Mode." After one list index is advz need, then if thc two current references
differ, the remaining simitar reference is selected. This avoids duplicity
of references.

355



3.3.4.5 -340-

Take B
The decision as to which list will provide the current reference

to be adde'd to the output list is determined by either the "pseudo-AND"
flag FAKE or the reference-selec,don-flag TX. If either of these flags
is set, the reference is extracted from list-one. If both are reset, the
list-two reference is taken. n either case, as soon as the transfer of the
reference into the output buf has been made, the output index (OX) is in-
cremented by one and a test is made to see if the buffer (432 words) is now
full.

When the buffer is full, the CTSS utility procedure WRWAIT is
called to write the contents of the buffer into the output file. Then the
written-reference counter OUTCNT is incremented by 432 and the output
buffer index OX is reset to zero.

See Mode
Having completed the comparison and selection orrejection of one

-terence, ANT- 'P determines which list index should be incremented gy again
4 <amining the mode.

A mode of 4 (OR) will cauSe ANDER to use the reference-selection-
flag TX to determine which of the two references was just used and, there-
fore, which list index should be next incremented.

All the other modes except 0 (strong AND) will cause transfer to
"Bump List-Two" to get the next list-two reference.

The zero mode increments both of the list indices. Rather thantest
for the end-of-lpuffer in both incrementations, only the one which is pched-
uled to run out first, as determined back at the beginning of "Main Loop B",

must.be tested. This is detected here by examining the earlier set flag,
FST. If FST is 1, then list-one will be exhausted first so the list-two in-
dex is incremented here, followed by a transfer to "Bump List-One". If

FST is 2, then list-two will run out of reference first and the reverse
procedure will be followed.

Finish
When all relevant referelices have been processed, the output list

must be completed and the new -1.ISt poiiter must be,constructed and entered

356.



-341- 3. 3. 4. 5

into the list pointer table. First, the current output buffer index, OX is
added to the written-reference counter OUTCNT to update the total num-
ber of references in the output list.

Next, the disk files, if any, holding the lists may need to be closed,
depending upon the type of list involved and the mode of ANDER.

If OUTCNT, the number of output references selected, is zero, then
ANDER immediately returns to the calling program with a zero for a return
value. Otherwise, the current output block is written, using WRWAIT__. into
the output file. (Note that the entire 432-word block is written, even if only
partially filled.)

Now, the block count in the POT, which indicates the size of the
user's Dump File, is updated by adding the number of blocks written by

this call to ANDER. (If the pseudo-anding mode called by the Name proce-
dure is in use, the Name File block count is updated instead.)

An augmented list pointer is now Constructed within a local array
containing all the releVant data pertaining to the size and location of-the new
list. This pointer is then added to the table by calling the proQedureTABENT
(see Section 3.3.2.3), which returns a pointer to the location in the table
where it inserted the augmented pointer. The ;lumber of documents tabulated
by the "Count Docs" section is inserted into the decrement of the new pointer
making it a complete list pointer, which is then returned as a value to the
calling program.
B. Procedures Calling ANDER:

STRCH, ASRCH, AND., NAME

C. Procedures Called By ANDER
GETLIS, FWAIT, BUFSCN (via CALLIT), RDWAIT, RDFILE,
GETBUF, WRWAIT, CLOSE, TABENT

D. COMMON References:
Name,

TOTBLK(POT.)
TOTNAM(POT.)
DFN1(POT.)
NFN1(POT.)
COMBF2(POT.)
COMBF4(POT.)
COMBF6(POT.)

Meaning
Dump File block count
Name File block count
Dump File name-one
Name File name-one
common buffer two
common buffer four
common buffer six

Interrogated? Changed?



3.3.4.5 -342-

E. Arguments:
Pl: address pointerP2: address pointer
MAND: integer
S: Boolean

F. Values:
NP = pointer to new list

G. Error Codes:
NP = -1 (List table full)

H. Messages:
None (see GETLIS below)

I. Length:
16558 or 94110 words excluding GETLIS)

J. Source:
BOOL ALGOL



3.4.6 GET EIS

Lrpc.se
provide access to a reference list

,scription
The variety of list types, formats, sizes. etc. greatly complicates

a problem of accessing lists for output or comparison by the ANDER
ocedure. GETLIS is designed to modularize the operations irivol-ed in
Ltiating a read of a list (if disk-stored) and supplying the relevantdata
the location and size of the list. Although GETLIS is internal to ANDER.

is used also by FSO in processing a user's OUTPUT command.
Operation:

GET LIS (PI, T1, CAI, C L1 , DA 1 , RLI, XNA M1 , XNAM2,
BLKA, BLKB)

The current length of the Dump File is obtained by multiplying the
Dck count in the POT by 432, the number of computer words in a disk
cord. This will be used to determine the necessity of avoiding a CTSS
e reading bug as described below.

The only argument (of the ten employed)which passes inform,,-
m to GETIAS rather than accepting information from it, is Pl. This argu-
ent contains a.pointer to a reference list augrnentedpointer. The tag of the
cond word of this augmented pointer, containing the list type. is extracted
.d placed in the second argument of GETLIS, Tl.

If the type is 0, then GETLIS is dealing with a completely core-
ored reference list and there is no disk file to be read. The seventh argu-
ent XNAM1 (file name one), arid the corresponding ANDER parameter
iich holds the current, to-be-read file name (LN1) are set to zero. Also
t to zero is the sixth argument RL1, which holds the number of disk-
ored references left to be read. In this case, GETLIS jumps ahead to the
Ld of the procedure where the third and fourth arguments, core address
list and core length of list, respectively, are filled from the auQmented

3t pointer.



3.3.4.6 -344-

Any other type of list involves at least some disk-stored refer- -
ences. The disk index (RELLOC) and the number of disk-stored refer-
ences are extracted from the augmented pointer and inserted into argu-
ments five and six, respectively.

If the list type is 4 (a NAMEd list), then the Name File's first
name is copied from the POT into the seventh argument and into the local
parameter LN1. The eight argument and local LN2 are set to contain the
word FILE, which is always the last name of a Name File (or Dump File).
A call to FSTATE is made to determine if this file is already open for
reading. If not, the procedure OPEN is called.

If the list type is 2 (stored on the Dump File), then the Dump
File name is extracted from the POT and inserted into the seventh argu-
ment and LN1. No FSTATE call is needed in this case because the Dump
File is always op)en for both reading and writing.

In both cases of completely disk-stored lists, the first block of
references is read into core and 0cc7.., les one of the common buffers not
already being used. A fairly elaborate system of common buffer book-
keeping is carried on in IFSRCH (Section 3.2.5.1), ANDER (previous
Section), and GETLIS, using the common buffer numbers stored in the
augmented list pointers. These block numbers are extracted by ANDER
(called BLK1 for list-one and BLKZ for list-two) and both are passed to
GETLIS aS arguments nine and ten (BLKA and BLKB). When list-one is
to be read, BLK1 is first and becomes BLKA in GETLIS. When list-two
is to be read, BLK2 is first and becomes BLKA in GETLIS. When GETLIS
is called from FSO or NUMBER, buffer four or five, respectively, is passed
via argument nine to become BLKA. Argument ten ,BLKB, is zero.

GETLIS now examines argument nine, BLKA and, if it is non-zero,
leaves both block numbers as they are. If, however, BLKA is a zero, it
indicates that the call to Gi:TLIS is from ANDER, rather than FSO or
NUMBER, and that there are no references from this list in core. There-
fore a common buffer must be selected by placing a buffer or block num-
ber in BLKA. The object is to read list-one into buffer one and list-two

3'



-34 5- 3. 3. 4. 6

into buffer three. On the first call to GETLIS, BLK2 is BLKB and
is also empty. This prompts GETLIS to put a 1 into BLKA (i.e., BLK1).
On the second call to GETLIS, BLK1 is BLKB and will not be empty. This
informs GETLIS to put a 3 into BLKA (i.e., BLK2).

Now BLKA is usad to compute the actual core address of the se-
lected common buffer, which is then placed in argument three, CAI.

If the list type is 2 (in Dump File), action must be taken to avoid
the CTSS file chaining bug, involving files which are opened simultaneously
for reading and writing, by making an extra read into the first half of the
file at a position other than on a record boundary.

For either list type (2 or 4), RDWAIT is now called to put the first
block of disk-stored references into core in the selected common buffer.
The disk index, argument five, is incremented by the size of the block(432)
and the number of disk-stored references remaining, RL1, is reduced. If
the resulting number is less than the size of a block, then that number is
used to fill the fourth argument (number of core-stored references) and
the disk reference count is reduced to zero.

If the number of disk references is presently greater than or equal
to the size of a block, then the fourth argument, CL1, is set to 432 and
.the disk reference count is reduced by that same amount.

In the case of list types 2 and 4, GETLIS is now finished and re-
turns to the calling program.

If the list type is 1, indicating a list which is partially in core, with
the rest of the references in an Inverted File segment, then the first name
of that segment must be extracted from, word one of the augmented list
pointer. This name is deposited into argument seven and the local para-

1

metef LN1 (for use by ANDER). The1second name of the segment is ob-
tained from the POT and placed in arguMent eight and ENZ. A call to
FSTATE is made to determine if this file is currently open for reading.
If not, it is opened by calling the CTSS procedure OPEN.'

At this point the address and length of the core-stored portion of the
list is extiacted from the third word of the augmented pointer and deposited



3.3.4.6 -346-

in the third and fourth arguments of GETLIS. (These steps also serve in
processing type 0 lists as mentioned earlier.) This completes the proc-
essing of all legitimate list types and GETLIS returns to the calling pro-

_

gram. ------

If the type code taken from the augmented list pointer is other than
those described above, GETLIS transfers to an error exit where a mes-
sage (1) informs the user of the error, and processing is terminated by a
call to DORMNT.
B. Procedures Calling GETLIS:

ANDER, FSO, NUMBER

C. Procedures Called By GETLIS:
FSTATE, OPEN, RDWAIT

D. COMMON References:
Name

E.

TOTBLK(POT.)
NFI\11 (POT. )
DFN1(POT.)
COMBF1(POT.)
IFS2(POT.)

Arguments:

1. Pl:
2. Tl:
3: CAl: .
4. CL1:
5. DA1:
6. RL1:
7. XNAM1:
8. XNAM2: -.
9. BLKA: .

10. BLKB:

F. Values:
None

Meaning

Dump File block count
Name File name one
Dump File name one
Common buffer one
Inverted File name two

Interrogated? Changed?

means argument gives data to GETLIS.-.means argu-
ment accepts data from GETLIS.)

address pointer
list type
core reference address
core reference length
disk file index
disk references left
list file name one
list file name two
this list's core buffer
Other list's core buffer

33



-347- 3.3.4.6

G. Error Codes:
None

H. MeSsages:
1. "Invalid List type in pointer" (LOCMES)

I. Length:
3748 or 252 words10

J. Source:
BOOL ALGOL

K. Files Referenced:
DUMnnn FILE
NAMnnn FILE
SInnn date
AInrin date

3Grao:4;



3.3.4.7 -34 8-

3.3.4.7 BUFSCN

Purpose
To screen list by attributes

Description
When the user specifies a RANGE in a SUBJECT corrimand, or

when he issues a TITLE command (which is really like a SUBJECT with
range 5), or when he issues an A4JTHOR command.qualified by initials,
the specified attributes are set during the interpretation phase to be used
in screening the resulting reference list. This screening is done either
during execution of the SEARCH procedure Via ATSCRN (which in turn,
calls BUFSCN to perform the actual screen - see Section 3. 2.4. 3) or
during execution of ANDER, which calls BUFSCN directly). BUFSCN
examines one core array of referen. es and cdmpares the appropriate
component of the r.eference word to te specified attribute. Only those
references with the matching attribute re kept in the array.

A. Operation: NWDS = BUFSCN (INAD, WDS, OUTTAD, OX)

BUFSCN consists of one large processing loop within which is an-
other loop almost aS large. The first, or outer loop steps one-by-one
through the list of references supplied by the first two arguments of BUFSCN.

The first argument specifies where the reference group begins and the sec-
ond argument tells how many there are to be examined, thus controlling the
duration of this outer. loop.

The second, or inner loop steps through the attribute list as set up
during the interpretation of the user's search request and prepared locally

-
by IFSRCH (which is the,reason for compiling BUFSCN and ATSCRN in the

same file as IFSRCH).
Each reference word is compared to each attribute word with the

irrelevant parts of the reference words masked off. Further action is taken
only if-the two remaining parts are equal.

A reference which Contains the required attributes is stored in the



-349-

array designated by the third argument of BUFSCN at
by the index in the fourth argument. When BUFSCN is
this index is used merely to control the output storage
area

3. 3. 4. 7

the depth specified
called by ANDER,
(which is the same

as the input) and to record the length of the output list. When called
from ATSCRN,however,, the index is carried over from one call of BUFSCN
to the next until the output buffer is full (432 words). As the references are
stored in the output area, the document numbers are counted by comparing
each number to the previous one. Whenever a different number is'encoun-
tered, the counter is incremented. This count is used only by ATSCRN and
a not communica:ted to ANDER.

If the output.buffer is filled, its contents are written onto the Dump
File and the block counter stored in the POT is iLremented. At this point,
the output index (fourth argument) is reset to zero and the parameter con-
taining the number of references written is incremented by 432 for the ben-
efit of ATSCRN.

After the outer lobp has stepped through all the references in the in-
put block, the output bufer index is returned to the calling routine.
B. Procedures Calling BUFSCN:

ANDEL ATSCRN

C. Procedure Called By BUFSCN:
WRWAIT

D. COMMON References:

-

Name Meaning Interrogated? Changed?
DFN1tPOT.) Dump File name one x
TOTBLK(POT.) Dump File block count x

E. Arguments:
INAD:
WDS:
OUTAD:
OX:

address pointer
integer
addres s pointe r
integer



3. 3. -350--

F. Values:
NWDS = length of screenedclist

G. Error Codes:
N'one

H. Messages:
None

I. Length:
170s or 12010 words

J. Source:
IFSRCH ALGOL

K. Files Referenced:
DUMnnn FILE

36ei



-351- 3.4.1.1
3.4 Intrex Utilities
3.4.1 Free Storage Controls
3. 4. 1. 1 FREE

Purpose
To obtain memory block from free storage

Description
FREE locates a block of contiguous core locations of the size requested,

removes tne block 1rom the free storage chain, and returns a pointer to it.
When the first call is made to FREE, the memory bound is raised to the

top of memory, creating a free storage area. As'storage is requested,
blocks are taken from progressively higher locations in this area. When
storage is returned to this area, its location is entered in the first ele-
ment in the chain, a word in the free storage package. At the same time,
the length of the area returned is entered in the decrement of the first word
of this area. If a second block, higher than the first, is returned, the ad-
dress portion of the first word of the first block will be filled with the loca-
tion of the second block and ale length of the second block will be inserted in
the decrement of the first word of the second block. If the second block is be-
tween the pointer in the free storage package and the first block re/turned, the
first word of the second block is modified to contain its length and die loca-
tion of the first block. The original pointer is modified so as to point to the
second block instead of the first block.

367



3.4.1.1 -352-

Free Storage
Package

2500

location of next block

10-
1"...4*4.44.,4.\

100 4000

100 word block

......) end of chain

80 0

80 word
block

Diagram of Memory

Fig. 3.3

A. Operation Ptr = FREE (Len)
1: If Len is less than or equal to zero, FREE prints an error mes-

sage by means of a call to CNTLOC and then calls ERR,G0 (Sect. 3.1.0 1)
2. - FREE steps through the linked list of free storage areas, looking

for one at least as big as Len. If it finds an area larger than Len,
FREE uses the first part of the block to fill the storage request and
relocates the pointer in the first word of the block to be just beyond
the portion retrieved. This involves adjusting the pointer of the
previous block so that it points Len words further and it involves
constructing a new pointer for the remnant of the original block. 1

3. If FREE discovers a block of size Len in its free storage chain,
there will not be a remnant left after the request is filled, There-
fore, FREE modiiies the pointer of the previous block so that it
points to the block following the retrieved block.

bg



-353- 3.4.1.1

4. If FREE cannot firid a block large enough, it looks for room
above the free storage chain. If there is room there, the
lower end of this block is allocated. This portion will bec-ome
part of the free storage chain if it is later returned via FRET.

5. If there is no room available, an error message is printed and
FREE returns an error code of -1.

6. If FREE has found a block of length Len, it returns the location
of the first word of the block as its value.

B. Procedures Calling FREE:
AUTHOR, CONNAM, GETFLD, IFSINT, INIFIX, INIPOT,

INIVAR,IN.,`SYSGEN, TABLE, TYPASH

C. Procedures Called By FREE:
CNTLOC, ERRGO, GETMEM, OCTTOI, SETMEM, WFLX,
WFLXA.

D. COMMON References:
None

E. Arguments:
Len: binary intege'

F. Values:
Ptr z-- location of first word of block

G. Error Codes:
Ptr = -1: storage not available.

H. Messages:

1. "Illegal use of 'free', count is zero or negative" (preset)
2. "Short x words of free storage

Largest block is y
Total storage is z" (preset)7



3.4.1.1 -354-

I. Length:

2508 or 16810 words

J. Source:
FREED ALGOL

K. File References:
None



-355- 3.4.1.2

3.4.1.2 FRET
Purpose
To return memory to free storage.
Description

When a block of storage obtained via the free storage mechanism is
no longer needed, it can be returned to the common storage pool by means
of a call to FRET.
A. Operation: FRET(Een, Ptr)

A subroutine calls FRET to return a block of storage of length
Een located at Ptr.

1. If Een is less than zero, an error message is printed. If Len is
zero, FRET returns without doin,.: anything.

2. FRET steps through the free storage chain, looking for a block
whose addr-.2..ss is greater than the one being returned.

3. If the block being returned is above those already in the chain,
the last pointer in the chain is modified so as to point to this new last
block. However, if the block which was formerly the last block
in the chain overlaps with the block being returned, an error rnes
sage is printed and nothing else is done. If the block_being re-
turned is contiguous with-the last block, the two are merged in-
to one.

4. If the blo k being returned has a lower address than a block al-
ready.. ixVthe chain, it is inserted in the chain. If the blockbeing
returned overlaps with the block in front of it, an error message
is printed and nothing is done. If it overlaps with the block be-
hind it, a comment is made and it is merged with this block. If it
touches neither the one in front of it or behind it, the pointer asso-
ciated/with the block in front is modified to point to the new block,
and the new block is made to point to the one following it.

)3.

B. Procedurs Calling FRET:
ASCITC, CHKNAM, CEP, CONNAM, EVAE, FCLEAN, FRALG,
GETrLD, GET INT, GETEIN, IFSINT, IFSRCH,
INFO, INIT irP, NEXITM, NUMBER, PREP, QUIT , RANGE,
REND, SUBJ., S. T, TABLK, TITLE, TYPASH, TYPEIT, . C. ASC

C. Procedurs Called By FRET:
CNTEOC, ERRGO, GETMEM, OCTTOI, WFLX, WEEXA



3.4.1.2 -356-

COMMON References:
None

E. Arguments:
Len: length of block to be returned (binary)
Ptr: location of block to be returned (binary)

F. Values:
None

G. Error Codes:
None

H. Messages:
1. "Illegal use of 'fret', count negative" (preset)
2. " An atten-ipt to 'fret' storage already returned"(preset)

I. Length:
2518 or 16910 words

3. Source:
FREED ALGOL,

K. Files Referenced:
None

372



-357- 3. 4. 1. 3

3.4.1.3 FREZ
Purpose
To obtain a zeroed memory block from free storage
Description
A. Operation: Ptr = FREZ (Len)

FREZ calls FREE to obtain a block of storage of size Len. FREZ
Uses a Fap-coded loop to zero it out before returning the location of the
first word of the block as the value of FREZ.
B. Procedures Calling FREZ:

AUTHOR, ASCIT, ASCITC, ASCIT6, BUFSCN, CEP, CTSIT,
CTSIT6, EVAL, GETFLD, GETLIN, IFSRCH, INIS. T,
INITDB, MONINT, NEXITM, NUMBER, PREP, RANGE, REND,
SEARCH, SUBJ., S. T., TABLE, TABLK, TITLE

C. Procedures Called By FREZ:
CNTLOC, ERRGO, FREE

D. COMMON References:
None

E. Arguments:
Len: binary integer

F. Values:
Ptr = core location in binary

G. Error Codes:
Ptr = -1: not enough storage

H. Messages:
1. "Illegal use of 'FREZ'. Count is zero or negative" (preset)

I. Length:
4310 or 538 words

J. Source:
FREED ALGOL

K. Files Referenced:
None

373



3.4:1.4 -358-

3.4. 1. 4 CNTLOC
Purpose
To print count and location of cap to erring free storage procedure
Description

CNTLOC is called by FREE and FRET to print a message giving
the origin of a call to free storage and the size of the block in question.
A. Operation: CNTEOC( )

1. If the high end of a block being returned via FRET overlaps,
CNTLOC prints:

Count = x Called from location
Count adjusted to z

If the beginning, or tow end, of the block overlaps, CNTLOC prints:
Count = x Called from location
FRET call ignored

2. If FREE calls CNTLOC (which is only when Len is less than or equal
to zero), only the first line of the message above is printed.

B. Procedures Calling CNTLOC:
FREE, FREZ, FRET

C. Procedures Called By CNTLOC:
OCTTOI, WFLX, WFLXA

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

371,



[. Messages:
See Item A in this Section

Length:
518 or 41 10 words

Source:
FREED ALGOL

Files Referenced:
None

-359- 3.4.1.4

373.



3.4.1.5 -360-

3.4.1.5 SIZE

Purpose
To find size of largest block of free storage.
Descri tion
A. Operation: Val = SIZE( )

SIZE steps through the free storage chain, looking for the largest
block. The size of the largest block is returned as the value of SIZE.
B. Procedures Calling SIZE:

INIFIX, SUPER

C , Procedures Called By SIZE:
GETMEM

D. COMMON References:
None

E. Arguments:
None

F. Value:
Val = size of largest block in binary

G. Error Codes:
None

H. Messages:
None

Length:
1018 or 6510 words

J. Source:
FREED ALGOL

K. Files Referenced:
None



-361- 3.4.1.6

3.4. 1. 6 FRER

Purpose
To check free storage
Description

FRER is used to determine if a block of free storage of the size de-
sired is available.
A. Operation: Code rz FRER (Len)

FRER calls SIZE to find the largest block of free storage available.
If this block is smaller than Len, FRER returns a zero; otherwise, it re-
turns a 1.

B. Procedures Calling FRER:
CONNAM, GETFLD, TYPASH

C. Procedures Called By FRER:
SIZE

D. COMMON References:
None

E. Arguments:
Len: size of storage block needed in binary.

F. Values-:
Code = 1 not enough storage

0 storage is available
G. Error Codes:

None
H. Messages:

None
Length:

118 or 910 words
J. Source;

27,r7-0L,

K. Files ,'t, r.
Noiv

3 ;74



3.4.1.7 -36Z-

3. 4. 1. 7 FSIZE

Puryose
To count the total number of words of free storage that are available.

Description
A. Operation:

FSIZE
Val FSIZE( )

calls SIZE, which, in the course of finding the largest
block of storage, also totals all of the blocks together. FSIZE returns this

total as its value.
%ft

B. Procedures Calling FSIZE:
SUPER

C. Procedures Called By FSIZE:
SIZE

D. COMMON References:
None

E. Arguments:
None

F. -Values:
Val = free storage total, in binary

G. Error Codes:
None

H. Messages:
None

I. 1,e.ngth:
14 or 12 words

8 10

J. Source:
FREED ALGOL

K. Files Reference&
None

378



-363- 3.4.1.8

3.4.1.8 FRESET

Purpose
To reset free storage package.
Description

FRESET zeroes out the variables in the free storage mechanism.
A subsequent call to FREE will result in storage being allocated from
above the current memory bound.
A. Operation: FRESET( )

FRESET zeroes out the first word of the free storage chain, along
with 3 other variables.
B. Procedures Calling FRESET:

SYSGEN

C. Procedures Called By FRESET:
None

E. Arguments:
None

F. Values:
. Ncne

G. Error Codes:
None

H. Messages:
None

I. Length:
128 or 1010 words

J. Source:
FREED ALGOL

K. Files Referenced:
None

373



-364-

3.4.1.9 FTRACE
Purpose
To trace use of free storage.
Description
A. Operation: FTRACE(Swt) -If FTRACE is called with a value of 1 for Swt, the tracing mech-
anism is turned on, When FREZ or FREE is called, the system willprint
the location of the storage block, its size, and the location of the call to
the free storage package, each on a separate line. When FRET is called,
the size, the lacation of the block, and the location of the call. are printed,
in that order.
B. Procedures Calling FTRACE:

None

C. Procedures Called By FTRACE:
None

D. COMMON References:
None

E. Arguments:
Swt: 1: turn on trace

0: turn off trace
F. Values:

None

G. Error Codes:
None

H. Messages:
None

Length:
6 words

J. Source:
FREED ALGOL

K. Triles Ref- --,crikced:
Nonf'



-365- 3.4.1.10

3. 4. 1. 10 FRALG

Purpose
To return a procedure to free storage when it is no longer needed.
Description

Certain procedures, such as initialization routines, are- only ex-
ecuted once. FRALG makes available as data areas the memory used by
such routines.
A. Operation: FRALG(Label 1, Label 2)

FRALG calls MAINBD to find the boundary between the core-
resident seCtion of the retrieval system and the overlay sector. If FR.ALG
is being called by a routine in the overlay sector, FRALG returns without
doing anything.

Otherwise, FRALG makes a call to FRET of the form: FRET (Label 2-
Label 1, Label 1), where Label 1, Label 2 are labels in the calling proce-
dure defining the first and last locations of the area to be returned.

13. ProceduresCalling FRALG:
INIAUT, INICON, INIEVL, INIFIX, INIFLD, INIOUT, INIRNG,
INIS. T, MONINT, PREP, SIGNIN, SYSGEN, TABLE

C. ProceduresCalled By FRALG:
FRET, MAINBD

D. COMMON References:
None

E. Argumenta:
Label 1: beginning location of area'to be returned
Label 2: ending location of area to be returned

F. Values:

G.

None

Error Codes:
None



3. 4. 1. 15)___

H. Messages:
None

I. Length:
2 2 10 or 268 words

J. Source:
FRALG FAP

K. Files Referenced:
None

-366-

382



-367- 3.4.2.1

3. 4. 2 Code Conversion
3. 4. 2. 1 . C. ASC

Purpose
To generate an ASCII string.

Description
The procedure .C.ASC converts the BCD string defined by the

AED language .C. specification into an ASCII string with pointer Ascptr.
A. Operation: Ascptr = .C. ASC(. C. /string/, 1)

The .C. form of a string pointer is converted to the . BCI. format
and ASCITC is called to convert the string to ASCII. ASCITC will obtain
memory for the converted string by a call to FREE. If .C.ASC has a
second argument, all Df the characters in the string will be_converted to
upper case. If the original BCD string is n.ot in, an overlay segment, it will
be returned to free s.torage.via a call to FRET.

B. Procedures Calling .C.ASC:
INIAUT, INICON, rNIEVL. INIFLD, INIOUT,
INIS.T, INIVRB, MONINT, SAVE .

"I

C. Procedures Called By .C.ASC:
ASCITC, FRET, GET, INC1, ISARGV, PUT

D. COMMON References:
None

E. Arguments:
Arg: Arg contains, the address of the beginning of the BCD string.

The word before the beginning of the string contains the length of the string
in its decrement.

If lower case ASCII is desired,the second argument should/not appear.,

F. Values:
Ascptr = ASCII pointer to string

383



3.4.2.1 -368-

G. Error Codes:
None

H. Messages:
None

I. Length:
1468 or 10210 words

J. Source:
ASCON ALGOL'

.7.

rl

384



-369- 3.4.2.2

3.4. 2. 2_ INI. C.

Purpos e

To initialize .C.ASC .
Description
A. Operation: INI. C ( )

INI. C. inii:.ia4lizes .C.ASC by providing it with the beginning
address of the overlay area. .C.ASC will nortereturn the original
BCD string to free storage 'f it lies in Elie overlay area.
B. Procedures Calling INt.C.:

INIFDC

C. Procedures Called By INI.C.:
MAINBD

D. COMMON References:
None

E. Arguments:
None

F. Values:
None -

G. Error \Codes:
None

H. Messages:
None

I. Lengtli:
7 .cirords

J. Source:
ASCON ALGOL

K. Files Referenced:
None



3.4.2.3 -370-

3.4.2.3 INTASC

Purpose

To convert integer to ASCII.

Description

A. Operation: Ascptr = INTASC (Integer)
INTASC converts the binary number Integer to its ASCII equiv-

alent and returns an ASCII pointer Ascptr. The ASCII codes are stored in an
array in the subrOutine. INTASC handles positive or negative numbers.
The magnitude of integer must be less than 100 million.

B. Procedures Calling INTASC:
GETFLD, SEEMAT, TRANS, TYPEIT

C. Procedures Called By INTASC:
INC, PUT

D. COMMON References:
None

E. Arguments:
Integer: binary number to be converted

F. Values:
Ascptr = ASCII yointer to converted numbe.x.3

G. Error Codes:
None

H. Messages:

None
I. Length:

1338 or 91 10 words

J Source:
ASCON ALGOL

K. Files Referenced:
None



3. 4. 2. 4

3. 4 2. 4 OCTASC

Pureos e

To convert integer to an octal ASCII number.

Des cription

A. Operation: Ascptr OCTASC(Int)
OCTASC will convert the binary integer Int into its octal equiv-

alent as expressed in ASCII digits. The ASCII string, resides in.an array
within OCTASC and is pointed to by Ascptr.

B. Procedures Calling OCTASC:
ERRGO, LISTEN, TYPEIT

C. Procedures Called By QCTASC:
INC, PUT

D. COMMON References:
None

E. Arguments:
Int: Positive or negative integer

F. 'Values:
Ascptr = ASCII pointer to octal number

G. Error Codes:
None

H. Messages:
None

I. Length:

1128 Or 10 words74

J. Source:
ASCON ALGOL

K. Files Referenced:
None



3.4.2.5 -372-

3.4.2.5 TSSASC

Purpose

To convert 12-bit BCD to ASCII.

Descriztion

A. Operation: Achar = TSSASC (Char)
TSSASC converts the BCD character that it finds in the right most

12 bits of Char to ASCII and returns this value to Achar. Char may con-
tain either a 6-bit or a .12-bA BCD character. If Char is not a BCD char-
acter, ofif it cannot be mapped into ASCII, TSSASC returns a zero.

B. Procedures Calling TSS.PC:
ASCIT6, ASCITC, GETLIN

C. Procedures Called By TSSASC:
None

E. Arguments:
Char: 6-bit or 12-bit BCD character, right adjusted

F. Values:
Achar = an ASCII character

G. Error Codes:
None

H. Messages:
None

I. Length:

2128 or 13810 words
J. Source:

CTSS

K. Files Referenced:
None

388

FP'



-373-- 3.4 2.6

3.4.2.6 ASCTSS

purpose
To convert ASCII to 12-bit BCD,

Description:

A. Operation: Char =--- ASCTSS(Achar)
ASCTSS converts the ASCII character tha.t it finds in the right-

most 9 bits of Achar to its 12-bit BCD equivalent.

B. Procedures Calling ASCTSS:
CTSIT6, TRASH

C. Procedures Called By ASCTSS:
None

D. COMMON References:
None

E. Arguments:
Achar: 9-bit, right adjusted, ASCII characier

F. Values:
Char = 12-bit BCD character

G. Error Codes:
None

H. Messages:
None

I. Length:
7 words

J. Source:
CTSS

K. Files Referenced:
None

389.



3.4.2.7 -374-

3.4.2.7 ASCIT6

Purpose

To convert string of 6-bit characters to ASCII.
Description
A. Operation: Ascptr ASCIT6(Bcdptr)

ASCIT6 converts the string ,of 6-bit characters pointed to by Bcdptrinto a string of upper case ASCII characters pointed to by Ascptr. ASCIT6all'Ocates storage for the ASCII string by a call to FREE. The characterspointed to by Bcdptr are extracted one by one (using GET6), converted toASCII (using TSSAISC)and added to the new string by means of PUT.
B. Procedures Calling ASCIT6:

MONTOR

C. Procedures Called By ASCIT6:
FREE, INC, INC6, PUT, TSSASC

D. COMMON References:
None

E. Arguments:
Bcdptr: Address portion contains beginning location of string anddecrement portion contains number of 6-bit bytes.

F. Values:
Ascptr = ASCII pointer

G. Error Codes:
None

H. Messages:
None

I. Length:
1048 or 68

10 words
J. Source:

STRAND ALGOL
K. Files Referenced:

None

3Q0



-375- 3.4.2.8

3. 4. 2. 8 CTSIT6

Purpose
To co4vert,ASCII string into 6-bit BCD strings

Description

A. Operation: Bcdptr = CTSIT6 (Ascptr)
CTSIT6 converts the string of ASCII charactei-s pointed to by

Ascptr to a string of 6-bit characters pointed to by Bcdptr. CTSIT6
allocates storage for the BCD string by a call to FREE. Each ASCII
character is converted by a call to ASCTSS. The pointer returned
contains the number of characters in its decrement.

B. Procedures Calling CTSIT6:
AND., CHKNUM, INFO, QUIT, SIGNIN

C. Procedures Called By CTSIT6:
ASCTSS, FREE, GET, INC, INC6, PUT

D. COMMON References:
None

E. Arguments:
Ascptr: ASCII pointer

F. Values:
Bcdptr = 6-bit BCD string pcinter

G. Error Codes:
None

H. Messages:
None

I. Length:
1138 or 75 words10

J. Source:
STRAND ALGOL

K. Files Referenced:
None

391



3.4.2.9 -376-

3.4.2.9 ASCITC

Purpose
To convert 6-bit BCD string to lower-case ASCII.

Description

A. Operations: ,Ascptr = ASCITC (Bcdptr)
ASCITC functions the same as ASCIT6,(see Section 3.4.2.7),

except that the converted ASCII characters are usually lower case in-
stead of upper. However, if a 6-bit BCD character in the string pointed
to by Bcdptr is preceded by a $, the character is. converted to upper case.

B. Procedures Calling ASCITC:
BCDASC, LOCMES, PREP, C.ASC

C. Procedures Called By ASCITC:
FREE, FRET, GET6, INC, INC6, PUT, TSSASC

D. COMMON References:
None

E. Arguments:
Bcdptr: 6-bit BCD string pointer

F. Values:
Ascptr = ASCII pointer

G. Error Codes:
None

H. Messages:
None

I. Length:
1548 or 10810 words

J. Source:
STRAND ALGOL

K. Files Referenced:
None



-377- 3.4.2.10

3.4.2.10 ASCINT

Purpose

To convert ASCII number to binary.

Description

A. Operation: Val = ASCINT (Ptr)
ASCINT converts the ASCII-coded number pointed to by Ptr to

a binary number. ASCINT calls CHKNUM to check for the lettersil and
0. If ASCINT finds a non-numerical character, it returns a value of -1
B. Procedures Calling ASCINT:

CALLIT, IN., NUMBER, OUT., RANGE, TABLE

C. Procedures Called By ASCINT:
CHKNUM, GET, INC

D. COMMON References:
None

E. Arguments:
Ptr: pointer to number expressed in ASCII

Fo Values:
Val = binary number.

G. Error Codes:
Val =-1: bad argument

Ho Mpssages:
None

I. Length:
1718 or 121 10 words

J. Source:
ASCINT ALGOL

K. Files Referenced:
None

393



3.4. Z. 11 -378-

3.4. 2. 11 CHKNUM

Purpose

To check for I's and O's.

A. Operation: CHKNUM(Ptr)
CHKNUM checks the ASCII-coded number pointed to by Ptr for

the presence of non-numerical characters. If the character is the letter
0 or I it prints an error m ssage. If the character is some other letter,
CHKNUM returns to the calling program.

B. Procedures Calling CHKNUM:
ASCINT, CALLIT. INFO

C. Procedures Called by CHKNUM:
GET, INC1, PUT, TYPEIT

D. COMMON References:
None

E. Arguments:
Ptr: ASCII pointer to number

F. Values:
None

G. Error Codes:
None

H. Messages:

!. "You have typedtheletterj. in place of a one (I) in the command
argument A. Your command will be processed as if a 1 had
been typed. Please observe this distinction,. Failure to do so
may cause matching difficul,ties." ($1oerr2$, $loerr0/1$,
$loerr3$, $loerr4$, $loerr5$, $loerr6$)

I. Length:
1668 or 11810 words

J. Source.
CHKNUM ALGOL

K. Files Referenced:
None



3.4.3 File Manipulation
4.3.1 FILCNT

Piir_pose

give length of file.
escription

-379- 3. 4. 3. 1

A. Operation: Len = FILCNT (Name 1, Name2)
FILCNT calls FSTATE to find the length of a file. If the file can-

not be found, FILCNT returns a -1 instead of the length.
B. Procedures Calling FILCNT:

CLEANP, CONDIR, CONNAM, GETL , IFSINT,
INIRES, LISFIL, LISTSL, PREP, REND, TABL

C. Procedures Called By FILCNT:
FSTATE

D. COMMON References:
None

E. Arguments:
Namel, Name2: name of file (6-bit BCD)

F. Values:
Len = length of file in words

G. Error Codes:
Len = -1: file not found

H. Messages:
None

I. Length:
528 or 4210 words

J. Sou'rce:
AEDLBJ BSS

395



3.4.3,1 -380-

K. Files Referenced:
COMAND TABLE
FIELDS TABLE
ENDING TEST2
HOED UP.
HOLD_IT
IFDS- date
IFDA date
DUMnnn FILE
NAMnnn FILE
PASnnn FILE
'lam.. SAVED

SAVED DIRECT

N

396,



-381- 1-5

3.4.4 Character-Strin Mani ulation
3.4.4. I GET

Purpose
To get ASCII character.
Description
A. Operation: Char = GET(Ascptr)

GET will extract the 9-bit ASCII character pointed to by Ascptr
and set the crontents of Ctiar to this value.
B. Procedures Calling GET:

ASCINT, AUTHOR, CHKNOM, COMPAR, COMPUL,
CTSIT, ; CTSITC, FIND, GETLIN, IFSRCH, IN., NAM5, NEXITM,
OUT., SIGNIN, STEM, TA BLK, TYPEIT, . C. ASC

C. Procedures Called By GET:

D. COMMON- References:
None

E. Arguments:
Ascptr: ASCII pointer to character string

F. Values:
Char = right-adjusted 9-bit character pointed to by Ascptr

G. Error Codes:
None

H. Messages:
None

I. Length:
2010 or 248 words

J. Source:
GET FAP

K. Files Referenced:
None

. 397



3.4.4.2 -382-

3.4.4.2 INC

Purpose
To increment pointer.
Description

A. Operation: INC(Ascptr, Shift)
INC adjusts the ASCII pointer Ascptr by the amount (+ or

specified by Shift. The decrement of Ascptr is left unchanged.
B. Procedures Calling INC:

ASCINT, ASCIT, ASCIT6, ASCITC, CTSIT, CTSIT0, EVAL,
FSO, GETFLD, GETLIN, INTASC, MATCH, NEXITM, OCTASC,
SEEMAT, SPCTRN, STEM, TABLE, TABLK, TRANS, TRASH,
TYPEIT.

C. Procedures Called By INC:
None

D. COMMON References:
None

E.. Arguments:
.:,scptr: ASCII pointer ito character string
Shift: number of bytes by which Ascptr is to be adjusted

(+ or -, binary)
F. Values:

None

G. E -ror Codes:
None

H. Mes sages:
None

I. Length:
2710 or 33 words8

J. Source:
INC FAP

K. Files Referenced:
None

398



-383- 3.4.4.3

3. 4. 4. 3 PUT

Purpose
To insert ASCII character.
Description
A. Operation: PUT(Char, Ascptr)

PUT will insert the rightmost nine bits of Char in the byte loca-
tion indicated by Ascptr.
B. Procedures Calling PUT:

ASCIT, ASCIT6, CAPASC, CHKNUM, EVAL, GETFED,
GETLIN, INTASC, 4N., NEXITM, OCTASC, OUT., SEEMAT,

TABLE, TRANS, .C.ASC
/

C. Procedures Called By PUT:
None

D. COMMON References:
N-one

E. Arguments:
Char: 9-bit ASCII character to be inserted

Ascptv : ASCII pointer to byte position to he filled by "Char".

F. Values,:-
.4one

G. Error Codes:
None

H. MessageS:
None

I. Length:
or words2510 31 8

Source:
PUT FAP

K. Ffles Referenced:
None

399



3.4.4. -384-

3. 4. 4. 4 GET 6

Purpose

To get 6-bit chai_cter.
Description
A. Operation: Char = GET6(Ptr)

GET6 extracts a 6-bit BCD character pointer to by the BCD pointer
Ptr and return it as the value of Char.
B. Procedures Calling GET6:

ASCITC, ASCIT6, PREP

C. Procedures Called By GET6:
None

D. COMMON References:
None

E. Arguments:
Ptr: :yidress = location of beginning of BCD string

tag = first byte position (0-5)
dec = length of string in bytes

F. Values:
Char = 6-bit character, rigfrk,adjusted

G. Error Codes:
None

H. Mes tges:
None

1. Length:
or 2682210

J. source:
GET6 FAP

werds

K. Files Refercnced:
None



-385- .4.4.

3. 4. 4. 5 INC6

Purpose
To increment BCD pointer,
Description
A. OiJeration: INC6(Ptr, Count)

INC6 incrernen, Ptr by the number of bytes specified in Count.
If Count is negative, the pointer is backed up.
B. Procedures Calking INC6:

ASCITC, ASCIT6, PREP, TRASH

C. Procedures Called By INC6:
None

D. COMMON References:
None

E. Arguments:
Ptr: 6-bit Bic...13 pointer

Count: number oi 6-bit bytes by which Ptr is modified

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
728 or 5810

3. Source:
INC6 FAP

words

K. Piles Referenced
None



3.4.4.6 -386-

3.4.4.6 PUT6

Purpose
To insert 6-bit character.
Description
A. Operation: PUT6 (Char, Ptr)

PUT6 puts the right-m._ bits of Char in the byt_ position in-
dicated by Ptr.
B. Procedures Calling PUT6:

CTSIT6, PREP, TRASH

C. Procedures Called By PUT6
None

D. COMMON References:
None

E. Arguments:
Char: 6-bit data element, right adjusted

Ptr: pointer to BCD si-,ring
F. Values:

None
G. Error C ,des:

None
H. Messages:

None
I. Length:

2910 or 358 words
J. Source:

PUT6 F.A.P

K. Files Referenced:
None



3.4.4.7 GET12

Purpos e

To get 12-bit byte.
Description
A. Operation:

-387- 3.4.4.7

Char =, GET 12(Ptr)
GET12 extracts the 12-bit BCD charaAer pointed to by Ptr and

returns it as the value of Char.
3. Procedures Calling GET12:

GETEIN

C. Procedures Called By GE.T12:
None

D. COMMON References:
None

E. Arguments:
Ptr: pointer to 12-bit character string

F. Values:
Char = 12-bit right adjusted character

G. Error Codes:
None

H. Messages:
None

I. _Length:
508 or 4010 words

J. Source:
ST RIX2 ALGOL

K. Files Refereni2ed:

433



3_4.4. 6

.4.4.8 INC1Z

Purpose
To adjust 12-bi:, _BCD pointer.

Description

A. Operation: INC12 (Ptr, Shift;
INC12 adjusts the pointer Pt by the rositive or negatjye quantity

specified by Shift. The decrement of P=,- is left unchanged.
B. Proceaures Cal Uric: INC12:

GETLIN

C Procedures Called BY INC12:
None

D. COMMON References:
ene

E. Arguments:
Ptr: 12-bit BCD pointer (0 < tag < Z)

Shift: positive or negative integer
F. Values:

None

G. t&srror Codes:
None

H. Messages:
None

I. Length:
1758 or

J. Source:
STRIX2

125 10 words

C COOL

K. Files Referenced:
None



-389- 3.4.4.

4.4.9 COPY

Purpose
To copy ASCII stringt

Description
A. Operation: COPY(Ascptrl, Ascptr2)

COPY takes the ASCII string defined by ASCPTRI -,nd copies it
into the area which begins at the locations pointed to by Ascptr2. It is
not necessary to specify a length in Ascptr2 (in other words, you could
overflow your target area).

B. Procedures Calling COPY:
A. Called by: AUTHOR, E'IAL, C,E-PEND, GETFLD,

SEEMAT. STEM, S. T. , TABLE., TRANS, I YPEIT

C.

D.

Procedures Called By COPY:
None

COMMON References:
None

E. .tIrgurnents:
Ascptrl: ASCII poi.nter to string to be copied

scptr2.: ASCII pointer toarea which will receive cop--

F. Values:
None

G. Error Codes:
None

H. MeSsages:
None

I. Length:

1 1 ft 10 or 1628

J. Source:
COPY FAP

Files Referenced:
Noile

405



3.4.4.10 -390-

3.4.4.10 DIST

Purpose
To compute length of string in bytes.
Desc ription

A. Operation: Count = DIST(Ascptrl, Ascptr2)
DIST counts the number of characters in an ASCII string and

returns this value to Count. -1 he string is defined by sciptrl, which
p,.:ints to the first character, and .;cptr2., which points to the last
character. The count includes the iirst and last characters.
B. Procedures Calling DIST:

EVAL, FSO, SPCTRN

C. Procedures Called l3y DIST:
None

D. COMMON References:
None

E. Arguments:
Ascptrl, AscptrZ: ASCII pointers

F. Values:
Count = inclusive count of bytes between the two pointers

G. Error Codes:
None j

H. Messages:
None

I. Length:
3010 or 368

J.
DLST FAP

words

K. Fi'es Referenced:
None



_.4.4. 11 FIND

Purpose
To scan for delimiter
Description
A. On,, ration:

-391- 3.4.4.11

Ptr = FIND (Delim, Strptr)
FIND looks for delimiters pointed to by the A:3CII pointer De lirn

by scanning the ASCII string defined by Strptr. Jf FIND does not find any
of the specified delimiters inthe string, it returns a zero. Otherwise FIND
returns a pointer to the first delimiter that it encounters. The decrement
of this pointer contains the length of the remainder of the string from this
point

B. Procedures Ca7ling FIND:
NEXITM, SPCTRN

C. Procedures Called By FIND:
GET, INCI

D. COMMON References:
None

E. Arguments:
De lim: ASCII pointer to; a string of ASCII characters functioning

as delimiters.
Strptr: ASCII pointer to a string to be searched for delimiters.

F. Values:
Ptr pointer to substring of searched string, beginning with first

occurance of a delimiter
G. Error Codes:

None
H. Messages:

None
I. Length:

1088 or 7210 words

J. Source:
MATCH ALGOL

K. Files Referenced:
None

407



3. 4. 4. 12

3. 4. 4. 12 COMPAR

Purpose
To compare ASCII strings.

Descri tion A

A. Operation: COMPAR(Ascptr.1, Ascptr2, CharA Hi, Low,t.Equal)
COMPAR will compare the string pointed to by Ascptrl, with the

string pointed to by Ascptr2. If, after comparing the number of char-
acters specified in Chars, no inequality has been discovered, COMPAR
will return by transferring to the label Equal. Otherwise. COMPAR wili
transfer to Hi or Low, depending on whether the first non-matching char-
acter in the string pointed to by Ascptrl is high or low relative to the cor-
responding character in the other string.

B. Procedures Calling COMPAR:
SPCTRN, TABLK

C. P-,.ocedures Called By COMPAR:
GET, INC1

D. COMMON References:
None

Arguments:
Ascptrl: pointer to the comparison ASCII string. This string is

high, low or equal relative to the string pointed to by
Ascptr2.

F.

AscptrZ:
Chars:
Hi:

Low:

Equal:

Values:
None

pointer to ASCII string to which first string compared.
number of characters from each string fo be compared.
If the first character in Ascptrl which is not equal to
Ascptr2 is greater, then this exit is taken.
Exit if first string is low.
First Chars characters of both strings are equal if this
exit is taken.

408



G. Error Codes:
None

H. Messages:
None

I. Length:
578 -or 4710 words

J. Source:
MATCH ALGOL

K. Files Referenced:
None

-393- 3.4.4.12

409



3.4.4.13 -394-

3.4.4.13 COMPUL
Purpose

To compare strings, ignoring case differences.

Description

A. Operation: COMPUL (Ascptrl, Ascptr2, Chars, Hi, Low, Equal)
COMPUL comPares twO ASCII strings in exactly the same way that

COMPAR does, except that it ignores case differences..

13. Procedures Calling COMPIJL:
IFSRCH, MONTOR, 01n., SPCTRN, RANGE, TAI3LK, TIME

C. Procedures. Called By COMPLIL:
GET, INC1

D. COMMON References:
None

E. ArgUrnents:
See description qf COMPAR (Section ,3.4.4.12)

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
618 or 4910 words

J. Source:
MATCH ALGOL

K. files Referenced:
None



3.4.4.14 MATCH

Purpose

To find substring.
ljescription

A. Operation:

-395- 3.4.4.14

14k. = MATCH(Short, Long, Mode)
MATCH looks for the ASCII string Short within the ASCII string

Long. If it finds a match, it will return a pointer to the first matching
character. The decrement of this pointer indicate how many char-
acters the substring is from the beginnin of the string pointed to by Long.
If there is no match, or if short is longer than long, a value of 0 is, re-
turned. If the Mode is zero case differences will be considered, but not
if the Mode is 1.

B. Procedures Calling MATCH:
FSO

Procedures Called By MATCH:
COMPARE, CONIPUL, INC

D. COMMON References:
None

E. Arguments:

F.

Short: ASCII pointer to the substring being searched for
Long: ASCII pointer to the string being searched.
Mode: If 0, consider case differences, but if 1, ignore cases.

Values:
Ptr = ASCII pointer to substring within! string Long.

If the decrement of Ptr is n, the substring begins
with the nth character of Long.

G. Error Codes:
Code = 0: substring not found

H. Messages:
None

411



3.4.4.14 -396-

1. Length:

156
8

or 110 10
words

J. Source:
MATCH ALGOL

K. Files Referenced:
None



-397- 3.4.4.15

3. 4. 4. 15 GETSET

Purpose
To set up pointer for GETIN,:..." and SETINC.

Description
The GETINC package provides a means of sequentially processing

a string of ASCII characters with slightly greater economy than by using
the routines GET, INC and PUT.
A . Operation: GETSET (Ascptr, Newptr)

GETSET takes the ASCII pointer Ascptr, and creates a pointer,
Newptr, which can be used by GETINC and PUTINC.

B. Procedures Calling GETSET:
GETFLD

C. Procedures Called By GETSET:
None

D. COMMON Refeiences:
None

E. Arguments:
Ascptr: ASCII pointer
Newptr: address portion = location of beginning o string
Tag

=Portion:
Decrement

Portion: = expression of byte position in terms of number of
bits from right end of word.

F. Values:
None

G. Error Codes:
None-

byte 0: = 27
byte 1: = 18
byte 2: = 9
byte 3: = 0

413



3.4.4.15 -398-

H. Messages:
None

I. Length:
1610 or 208 words

J. Source:
GET INC FA P

K. Fi1e-, Referenced:
None

414

(



-399- 3.4.4.16

3. 4. 4. 16 GET INC

Purpose

To get character and increment pointer.
Description

A. Operation: Char = GETINC (Newptr)
GETINC extracts the character (9-bit ASCII) pointed to by the

special pointer Newptr and returns this character as ;its value. At the
same time, Newptr is incremented by 1 byte.

B. Procedures Calling GETINC:
GETFLD

C. Procedures Called By GETINC:
Non..

D. COMMON References:
None

E. Arguments:
Newptr: special pointer (see description of GETSET)

F. Values:
Char = ASCII (9-bit) character

G. Error Codes:
None

H. Messages:
None

I. Length:
228 or 1810 words

J. Source:
GETINC FAP

K. Files Referenced:
None

e-

4 1



-400-

3.4.4.17 PUTINC

Purpose

To insert character and increment pointer.

Descri tion

A. Operation: PUT1NC(Char, Newptr)
PUTINC stores the 9-bit ASCII character on the right-hand side

of Char in the byte pointed to by Newptr.

B. Procedures Calling PUTING:
GETFLD

C. Procedures Called By PUTINC:
None

D. COMMON References:

E.
None

Arguments:
Char: 9-bit ASCII character

Newptr: special pointer (See description of GETSET)

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
348 or 2810 words

J. Source
PUTINC FAP

K. Files Referenced:
None



-401--

3. 4. 4. 18 INC1

Purpose

To increment ASCII pointer one byte.

Description

A. Operation: INC1(Ascptr)
AE cptr is incremented by one byte.

B. Procedures Calling INC1:
CAPASC, CHKNUM, COMPAR. COMPUL, DROP, FIND, FSO,
GETFLD, IN., NAME, NEXITM, OGT., SEEMAT, TABLE,
TRANS, TYPEIT, . C. ASC

C. Procedures Called By INC1:
None

D. COMMON References:
None

E. Arguments:
Ascptr: ASCII pointer

F. Values:
None

Error Codes:
None

H. Messages:
None

I. Length:
1410 or 168 word

J. Source:
INCI FAP

K. Files Referenced:
None

417



3.4.4.19 -402-

3.4.4.19 DEC1

Purpose
To decrement ASCII pointer by one byte.

Description

A. Operation: DEC1(Ascptr)
Ascptr is backed up one byte.

B. Procedures Calling DEC1:
NEXITM, STEM, TRANS, TYPEIT

C. Procedures Called By DEC1-:
None

D. COMMON References:
None

E. Arguments:
Ascptr: ASCII pointer

F. Values:
None

G. Error Codes:
None

I-1. Messages:
None

I. Length:
1810 or 228 words

3. Source:
DEC1 FAP

K., Files Referenced:
None

41.a



-403- 3.4.5.1

3.4.5 Miscallaneous Utilities

3.4.5.1 DNSORT

Purpose

To sort in descending order.

Description
1DNSORT is a special-purpose version of the general-purpose ex-

change sort XSORT. DNSORT sorts a list of words in Place, using the
right-most 15 bits as a key.
A. Operation: Ptr = DNSORT(Ptr)

DNSORT is called by NUMBER to sort in descending order a list
of words-pointed to by Ptr. These words contain document nilmbers that
users have typed in the address portion of each word. Using these bits as
a key, the sort proceeds by finding the highest document number for the
first word of the array. Then, it firs the second-highest number for the
next position, and so on. If the pointer Ptr has a zero decrement, DNSORT

will return a -1. Otherwise, DNSORT returns Ptr as its value.
B. Procedures Calling DNSORT:

NUMBER (via CALLIT)

C. Procedures Called By DNSORT:
None

D. COMMON References:
None

E. Arguments:
Ptr: word pointer to array

F. Values:
Ptr = word pointer to sorted list (identical to Ptr used as argument)

G. Error Codes:
' Ptr = -1: zero length list

H. Messages:
None

419



3.4.5.1 -404-

I. Length:
62 8 or 50 10 words

J. Source:
DNSORT FAP

K. Files Referenced:
None

42:444401



-405- 3.4.5.2

3.4.5.2 FAPDB,G

Purpose

To debug system.

Description

A. Operation: FAPDBG( )
VF

FAPDBG is an extensive debugging subroutine. It enables a user
to examine core locations and to change their values. In addition, it en-
ables a user to set a breakpoint and start execution of his procedure at
any point that he chooses. Finally, if the user specifies a symbol table.
FAPDBG will reference core locations in terms of their symbolic ad-
dresses rather than their absolute core locations.

FAPDBG is evoked by typing the Intrex command "fapdbg" or
Because the Intrex system is currently fairly stable, FAPDBG is not r -t
of the present system. If extensive changes are made to the system in the
future, it will probably be practical to re-include this large (5384 wori_
package.

B. Procedures Calling FAPDBG:
CLP (via CALLIT)

C. Procedures Called By FAPDBG:
None

D. COMMON References:
None

E. Argurnerts:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

4'21



3.4.5.2 -406-

I. Length:
12 , 4008 or 538410 w,.)rds

J. Source:
TSLIBZ BSS

K. Files Referenced:
Name SYMTB

4



-407- 3.4.5.3

3 NAP

,Purpose

To call SLEEP

Description

A. Operation: NAP(Time)
NAP calls SLEEP (Section 3.5.7.Z) with the argument (number

of seconds to sleep) set up in the accumulator.

B. Procedures Calling NAP:
GETLIN

C. Procedures Called By NAP:
SLEEP

D. COMMON References:
None

E. Arguments
Time: lumber of seconds that program will be asleep

F. Values:
None

G. Error Codes:
None

H. Messages:
None

Length:
Or 158 words1310

J. Source:
UTILIB

K. Files Referenced:
None



3. 4. 5. 4 -408-

3. 4. 5. 4 TBSRCH

Purpose

To' search a table for a key

Description

A. Operation: Ptr TBSRCH(Key, Table, Length)
The procedure TBSRCH is 'lied to search a table that contains one

computer word per entry. If the "Key" is found in "Table", then "Ptr"
will point to the word which matched exactly on "Key". If no match is
found, "Ptr" will be set to zero.

The last entry in the table must be a. fence of binary ones.
B. Procedures Calling TBSRCH:

NEXITM

C. Procedures Called By TBSRCH:
None

D. COMMON References:
None

E. Arguments:
:Key: item (1 word) being searched for.

Table: beginning location of tabie.
Length: length of table in we_ rds.

F. V alues :
Ptr = pointer to word in table w hich matched

G. Error Codes :
Ptr = 0: Key not found ir

H. Messages:
None

I. Length:
368 or 3010 words

J. Source:
SRCH FAP

K. Files Referenced:
None



-409- 3.4.5.5

3. 4. 5. 5 VSRCH

Purpos e

To search table with multi-word entries.

escri tion
Operation: Ptr VSRCH(Key; Table, Length, N)

The procedure VSRCH is used to scan a table pointed to by Table
for a word with the value of Key. Each entry in the table may be N
words long. However, VSRCH only examines the first:word of each

entry in searching for the key.
If the first word of an entry matches Key, VSRCH wiil return a

pointer to this word. If the Key is not found, VSRCH will return a valUe

of zero.
B. Procedures Calling VSRCH:

LOOKUP, STEM
C. Procedures Called By VSRCH:

None

D. COMMON Reference
None

E. Arguments:
Key: item for which table is scanned

beginning location of table
Length: number of entries in table
N: number of computer words, per entry

F. 'Values:
Ptr pointer to word in table which matched with key.

G. Error Codes:
Ptr = 0: Key not found in table

H. Messages:
None

a

42



3.4. 5. 5 -410--

I. Length:
508 or 4010 words

J. Source:

SRCH FAP

K. Files Referenced:
None

426



-411- 3.4. 5. 6

3. 4. 5.6 SHIFT

Purpose

To shift array left nine bits.
Description

A. Operation: SHIFT (Array)
The Procedure SHIFT will shift the contents of the

beginning at location Array nine bits to the left.

B. Procedures Calling SHIFT:
STEM

C. Procedures Called By SHIFT:
None

D. COMMON References:
None

E. Arguments:
Array: beginning location of 3-word array

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
1310 or 158 words

J. Source
SHIFT FAP

K. Files Referenced:
None

42



3.4.5.7 -41Z-

3. 4. 5. 7 STRACC, PRSTRA

Purpose

STRACC: To initialize tracing mechanism.
PRSTRA: To write out results of trace.

Description

A. Operation: STRACC( ), PRSTRA( )

STRACC is called as part of the system generation process. It
examines each word of core, looking for the TTR instructions which is
used in the CTSS environment as a transfer vector. If it finds a TTR,
and if it find a TSX instruction which points to the TTR and if the TTR
points to a reasonable location, the TTR instruction is replaced by an in-
struction of the form TXH Trac, 0, Proc. The instruction TXH has the
same effect as a simple transfer when the tag is zero. "TRAC" is the
entry point of a trace routine and Proc is the transfer location of the TTR.

During execution of Intrex, transfers to subroutines will automat-
ically result in transfers to the trace procedure TRAC. TRAC searches
and internal table for the value Proc. If Proc is already in the table, the
cognt is incremented by 1 in that slot. If Proc is not in the table, it is
added. P

At some point the procedure PRSTRA may be called. PRSTRA
writes the table used by TRAC in a fiie called TRACY TABS.

The user may obtain a useful printout of the data in TRACY TABS
by using the stand-alone program TROUT.

B. Procedures Calling STRACC, PRSTRA:
STRACC: SEGINT
PRSTRA: undetermined

C. Procedures Called By STRACC, PRSTRA:
STRACC: GETMEM, TSPOT
PRSTRA: CLOSE, OPEN, WRWAIT

D. COMMON References:
None



-413-

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:

None

I. Length:

STRACC: 25010 or 3728 worcis

PRSTRA: 1510 or 178 words

J. Source:
STRACE ALGOL

K. Files Referenced:
STRACC: None
PRSTRA.: TRACY TABS

429'

3. 4.



3.4.5.8 -414-

3.4.5.8 TESTMO

To test for minus zero

'Description

A. Operation: Bool = TESTMO(Val)
If the 36-bit word Val has a one bit in the left-most position and

zeroe3 elsewhere, TESTMO returns a value of TRUE. Otherwise, its
value is FALSE.

B. Procedures Calling TESTMO:
TYPEIT

C. Procedures Called By TESTMO:
None

D. COMMON References:
None

E. Arguments:
Val: value to be tested

F. Values:
Bool = TRUE if -0, FALSE otherwise

G. Error C,,des:
None

H. Messagps:
None)

I. Length:
258 or 21 10 words

J. Source:
TESTMO ALGOL

K. Files Referenced:
None

430



-415- 3. 4. 5. 9

3. 4. 5. 9 TSPOT, TRAC

Purpose

To TRACe subroutine calls.

Description

A. Operation: TRAC( ), Loc = TSPOT( )
TRAC is used to trace subroutine calls within the Intrex system.

As a part of system generation STRACC (see Section 3.4.5.7) replaces
all of the,transfer vectors with an instruction of the form "TXH TRAC,
PROC." When procedure Proc is called, the TXH instruction transfers
control to the entry point TRAC TRAC looks up entry. point Proc in its
table. If it finds it, TRA-C updates th7-7Count field for that entry, by one:-
Othei-wise, TRAC creates a new entry in the table for Proc. TRAC then
'transfers to Proc.

TSPOT is used to communicate between the subroutines TRAC,
STRACC, and PRSTRA. TSPOT provides STRACC with the entry point
to TRAC, which STRACC uses in generating TXH instructions. The core
location immediately above the entry point TRAC contains the location of
the table used by TRAC. PRSTRA (see Section 3.4.5.2) uses this address
in writing out the table.

B. Procedures Calling TRAC, TSPOT:
TRAC: None
TSPOT: STRACC

C. Procedures Called By TRAC, TSPOT:
None

D. COMMON References:
None

E. Arguments:
None

F. Values:
TRAC: None
TSPOT: Loc = entry point for TRAC ii



3.4.5.9 -416-

G. Error Codes:
None ---------

H. Messages:
None

I. Length:
TRAC: 6010 or 74 words, TSPOT = 2 words

8

J. Source:
TRACE FAP

K. Files Referenced:
None



-417- 3.4.5.10

3.4.5.10 TIMEIN, TOUT, TOTTIM

Purpose

To provide fine timing of Intrex.

Description

A. Operation: TIMEIN( ), TOUT( ), TOTTIM( )

TIMEIN, TOUT and TOTTIM/work together to provide a means of
timing Intrex modules. Their advantage over MONTIM is that, being more
primitive, they have considerably less overhead and can, therefore, be
used to measure finer time intervals.

TIMEIN extracts the value of the 13-core timer and places it in a save
location. TOTTIM extracts the current time and subtracts from it the value
obtained by TIMEIN. This value is added toatctal. If INCTIM(SST.) is on, the
incremental tirne.is printed via WRFLXA. TOTTIM prints the total accu-
mulated time in the same format.

B. Procedures Calling TIMEIN, TOUT, TOTTIM:
Dependent on the procedure being tested

C. Procedures Called by TIMEIN, TOUT, TOTTIM:
TIMEIN: None
TOUT: WRFLXA
TOTTIM: WRFLXA

D. COMMON References:

Name Meaning Interrogated? Changed?
INCTIM(SST. ) Inc rem. Time Mode

E. Argument:
None

F. Values:
None

G. Error Codes:
None

433,



3.4. 5.10 -418-

1-1. Messages:
1. " + 001D8+"**

I. Lengths:
TIMEIN: 4 words
TOUT: 44 words
TOTTIM: 6 words

J. Source:
TIMER FAP

K. Files Referenced:
None

**This means 1 second and 8 60th's.

434



-419- 3.4.5,11

3. 4. 5. 11 WHEN

Purpose

To get time and date
Description
A. Operation: = WHEN (Date)

The CTSS utility GETIME will deposit the time of day in the AC
register and the date in the MQ. Since the MQ is not accessible through
AED, the Fap-coded subroutine WHEN provides- a means of obtaining this
data. WHEN calls GETIME arid stores the MQ in the _rgument Date.
B. Procedures Calling WHEN:

MONTOR

C. Procedures Called By WHEN:
GETIME

D. COMMON References:
None

E. Arguments:
Date: BCD-coded date in format of MI,MDDYY (value returned by

WHEN).

F. Values:
Time = time of day in 60th's of seconds

G. Error Codes:
None

H. Messages:
None

I. Length:
158 or 1310 words

3. Soui-ce:
TIME ALGOL

K. Files Referenced:
None

4

435



3. 5. 1.1

3. 5 CTSS Utilities'
3. 5. 1 Disk IJO
3. 5. 1. 1 OPEN

Purpose
To prepare the system for reading or writing a file.

Description

A. Operation: OPEN (Status, Namel, NameZ, Mode, Device)
OPEN must be called before a file may be read or modified.

B. Procedures Calling OPEN:
BFOPEN, CHKSAV, CONIDIR, OONNAM, DYNAMO, GETINT,
GETLIS, -IFSINT, INIRES, INITYP, LISFIL, LISTSL, LONG,
MOVEIT, NAME, OPFILE, SAVE, SHORT, SUMOUT, SYSGEN,
TRETIU, USE.

C. Procedures Called BY OPEN:
None

D. COMMON References:
None

Arguments:

a. Stat4s:
R: Read
W: Write

RW: Read-Write

b. Namel:
first name of file

C. Narne2:
second name of file

d. Mode:
0: permanent
1: temporary
4: read- only

100: protected

e. Device:
2: Disk

F. Values:
None



-421- 3.5.1.1

G. Error Codes:
3: file is already in active status
4: more than ten active files
5: status is illegal
7: linking depth exceeded
8: file in private mode under different user
9: attempt to write a read-only file

10: attempt to read a write-only file
11: machine or system error
12: file not found in UFD
13: illegal device specified
14: no space allotted for this device
15: space exhausted for this device
16: file currently being restored from tape
17: I/0 error
'18: illegal use of M.F. D.
19: U. F. D. not found (i. e., OPEN through a link)
20: Attempt to read secondary mode file

H. Messages:
None

I. Length:
1 word (resides in A-core)

J. Source:
CTSS

Files Referenced:
SYSNAM SGMTOn (l< n < 4)
(MOVIE TABLE)
SYSNAM
COMMAND TABLE*
FIELT5S TABLE*
ENDINo TESTI*
mra,h D,IST X T
SMFILE DIRTA B
LMFILE DISTXT
LMFILE DIRTAB
,GtTIDEA DIST XT
GUIDEA DIRTAB
MONOnn FILE!'` (01 < nn < 10)
TIMING SUMA;RY
NENN'T; SUMARY:
FIC191. E . DIRECT
CAT(DIR IICIT11EX
C Rnnn INT REX (001 < nnn < 290)



3. 5, 1. 1 -422 -

IFDA date
IFDS date
IFTABA date
IFTABS date
Sinnn date (001 < nun < 260)
Alnnn FILE (001 Z nun Z-030)
TEMnnn ,FILE (001 < nnn < 010)
NAMnnn FILE (001 Z nun R.- 010)
PASnnn FILE (001 < nun < 010)
DUMnnn FILE (001 Z nun 7 010)
Name SAVE
SAVED \DIRECT

OPEN,BUFFER, RDFILE, WRFILE, CLOSE called by
13FOPEN, BFREAD, BFWRIT and BFCLOS respectively
(see Section 3.5.2.3).



-423 - 3. 5. . 2

3.5. 1. 2 CLOSE

Purpose

To return an active file to inactive status

Description

A. Operation: CLOSE (Name 1, Name2)
Since the system will maintain only ten active files at once, files

generally must be closed after being used.

B. Procedures Calling CLOSE:
ANDER, CLEANP, CHKSAV, CONDIR, CONNAM, DYNAMO,
FSO, GETINT, IFSINT, IFSRCH, INIRES, INIVAR, LISFIL,
LISTSL, LONG, NAME, QUIT, SAVE, SEARCE-I, SHORT,
SUMOUT, SYSGEN, TIME, USE

C. Procedures Called By CLOSE:
None

D. COMMON References:
None

E. Arguments:
Namel:
Name 2:

F. Values:
None

first name of file or "ALL"
second name of file

G. Error Codes:
None

H. Messages:
None

I. Length:
1 word (resides in A-core)

J. Source:
CTSS

K. Files Referenced
See Section K of 3. 5. 1. 1



3. 5. 1. 3 -424-

3.5.1.3 BUFFER

Purpos e

To assign an area of core which the I/0 mechanism may use as a buffer.

Des c ription

A. Operation: BUFFER(Name I , Narne2, Buf(0) to 432)
BUFFER is called after the file has been initialized by OPEN. It

must be used if the file is being written.

B. Procedures Calling BUFFER:
BFOPEN, CHKSAV, CONDIR, CONNAM, INIRES, LISFIL,
LISTSL, LONG, MOVEIT, NAME, QUIT, SAVE, SHORT,
SUMOUT, SYSGEN, USE

C. Procedures Called By BUFFER:
None

D. COMMON References:
None

E. Arguments:
a. Narnel and NarneZ: first and second names of the file.
b. Buf(0) to 432: Bug()) is the beginning location of the core

storage area. The expression "to 432" will cause the
length of the buffer to be placed in the decrement of the argu-
ment of the call.

F. Values:
None

G. Error Codes:

3 -File is not an active file
4 -buffer is above memory bound
5 -buffer is too small

H. Mes sages :
None

I. Length:
1 word (resides in A-core)

J. Source:
CTSS

K. Files Referenced:
See Section K of 3.5.1.1

I*V. 440



-425- 3. 5. 1. 4

3. 5. 1. 4 RDFILE

Purpose

To read a file and overlap with other processing

Description

A. Operation: RDFILE (Namel, Name2, Relloc, Area(x) to y, Eof, Eofcnt)
RDFILE initiates the It) necessary to move y words of data from

the file Narnel, Narne2, starting at word Relloc, to the a-rea of memory
starting at Area(x).

B. Procedures Calling RDFILE:
ANDER, BFREAD

C. Procedures Called ,By RDFILE:
None

D. COMMON References:
None

E. Arguments:
Narnel, Narne 2: Name of file

1st word to be read
Area (x): 1st word of read area
Y:. nuMber of words to be read
Eof: location of end-of-file routine
Eofcnt: number of words read on last read before

encountering EOF.

F. Values:
None

G. Error Codes:
3 - file is not active
4 file is not in read status
5. no buffer assigned to this file
6 - previous I/0 out of bounds
7 - I/0 error
8 U.F. D. has beendeleted

H. Messagesl
None

441

(

(



3. 5.1. 4

I. Length:
1 word (resides in A-core)

J. Source:
CTSS

K. Files Referenced:

-426-

DUMxxx FILE (001< xxx< 010)
NAMxxx FILE (001 xxx 01 0)
MONxxx FILE ( 001 < xxx Z- 010)
COMAND TABLE
FIELDS TABLE
ENDING TEST2

44-25P



-427-

3. 5. 1. 5 RDWAIT

Purpose
To read a file with no processing overlap

Description

3. 5. 1. 5

A. Operation: RDWAIT(Namel, Name2, Reiloc, Area(x) to y, Eof, Eofcnt)
4RDWAIT works the same as RDFILE, except that it incorporates a

call to FCHECK, a CTSS file cher:king routine which will cause RDWAIT to
wait until the read has been completed before returning to the user.
B. Procedures Calling RDWAIT:

ANDER, CALLIT, CHKSAV, CONDIR, CONNAM, FSO, GETLIS,
IFSINT, IFSRCH, INITYP, LISFIL, LISTSL, MOVEIT, NUMBtR,
SAVE, SUMOUT, SYSGEN, TRETRI, USE

C. Procedures Called By RDWAIT:
None

D. COMMON References:
None

E. Arguments:
See Section E of description of RDFILE (3.5.1.4)

F. Values:
None

G. Error Codes:
See Section G of description of RDFILE (3. 5. 1. 4)

H. Messages:
None

I. Length:
1 word (resides in A-core)

J. Source:
CTSS

444!



3. 5. 1. 5 =428-

K. Files Referenced:
(MOVIE TABLE)
sysnam SGMTOn (1 < n < 4)
sysnam . TBLE.

SMFILE DIRTAB
SMFILE DISTXT
LMFILE DIRTAB
LMFILE DISTXT
IFDA date
IFDS date
IFTABA date
IFTABS date
Slxxx date (001 < xxx < 260)

DUMxxx FILE
(001 Z xxx < 030)AIxxx date
(001 < xxx < 010)

NAMxxx FILE (001 Z xxx < 010)
T EMxxx FILE (001< xxx < 010)
SAVED DIRECT
name SAVE

NEW SUMARY
FICHE DIRECT

9.

44 4



3. 5. 1. 6 -429-

3. 5. 1. 6 WRFILE

Purpose
To modify a file

Description
A. Operation: WRFILE(Namel, Name2, Relloc, Area(x) to y,Eof,Eofcnt)

WRFILE initiates the I/0 necessary to move y words starting at
Area(x) to the file Narnel Name2 starting at word Relloc.
B. Procedures Calling WRFILE:

BFWRIT

C. Procedures Called By WRFILE:
None

D. COMMON References:
None

E. Arguments:
See Section E of description of RDFILE (3r5. 1. 4)

F. Values:
None

G. Error Codes:
3 file is not active
4 file is not in write status
5 - no buffer assigned
6 - allotted space exhausted for this device
7 - previous I/0 out of bounds8 - I/0 error
9 - non-zero relloc with write7only file

10 - maximum length exceeded
H. Messages:

None
I. Length:

2 (resides in A-core)
J. Source:

CTSS
K. Files Referenced: 1:4

MON xxx FILE (001 < xxx < 010)

445



3.5_ 1 7 -430-

3.5.1.7 WRWAIT

Purpose

To modify a file

Description

A. Operation: WRWAIT(Namel, Name2, Relloc, Area(x) to y, Eof,Eofcnt)
WRWAIT functions the same as WRFILE, except that it waits until

the I/0 operation has been completed before returning to the user.

B. Procedures Calling WRWAIT:
ANDER, CHKSAV, CONDIR, CONNAM, FSO, IFSRCH,
INIRES, MOVEIT, QUIT, SAVE, SUMOUT, SYSGEN

C. Procedures Called By WRWAIT:
None

D, COMMON References:
None

E. Arguments:
See Section E of RDFILE

F. Values:
None

G. Error Codes:

(3.5.1.4)

See Section G of WRFILE (3.5.4.6)

H. Messages:
None

I. Length:
3 words (resides in A-core)

J. Source:
CTSS

K. Files Referenced:
DU Mnnn FILE (001
PASnnn FILE (001
NAMnnn FILE (001
TEM nnn FILE (001

< nnn
< nnn
< nnn
< nnn

- 7
010)
010)
010)
010)



-431- 3.5.1. 7

TIMING SUMARY (001 < nnn < 010)
SAVED DIRECT (001 < nnn 'Z 010)
xxxxxx SAVE (xxxxxx is Tis er- assigned name)
(Sysnam) SGMTnn (01 < nn < 04)
(Sysnam) TI3LE.



3.5.1.8 -432-

3.5.1.8 TRFILE

Purpose
To truncate a file

Description

t.

A. Operation: TRFILE(Narnet, Narrie2, Relloc)
The file Namel Name2, which is open for writing, is truncated

immediately before the relative location Relloc.

B. Procedures Calling TRFILE:
CLEANP, CONDIR, CONNAM, DROP, INIRES, NAME, dUIT

C. Procedures Called By TRFILE:
None

D. COMMON References:
None

E. Arguments:
a. Namel Narne2: name of opened file to be truncated
b. Relloc: location of first word to be truncated

F. Values:
None

G. Error Codes:
3 - file is not active .

4, - file is not write status
5 - buffer has not been assigned to file
6 - previous I/O out of memory bound
7 - relloc larger than file length
8 - I/0 error

H. Messages:
None

I. Length:
2 words (resides in A-core)

44.8?



3.5.1.8 -433-

J. Source:
CTSS

K. Files Referenced:
DUMnnn FILE (001 < nnn < 010)
TEMnnn FILE (001 <NJ:kan < 010)
SAVED DIRECT

a



3.5.1.9 -434-

3.5.1.9 FWAIT
putposs.
To wait for I/0 to be completed

Description

A. Operation: FWAIT (Namel, NameZ)
,If any I/O operation is in progress for file Namel Name 2 when

FWAIT is called, FWAIT will wait until the operation is completed be-
fore returning control to the user.

B. Procedures Calling FWAIT:
ANDER, BFREAD, BFWRIT

C. Procedures Called By FWAIT:
None

D. COMMON References:
None

E. Arguments:
Namel Name2:

F. Values:
None

first and second names of a file (BCD)

G. Error Codes:
3 - file is not active
4,- I/0 is out of memory bound
5 I/0 error

H. Messages:
None

I. Length:
1 word (resides in A-core)

J. Source:
CTSS



3. 5. I. 9

K. Files Referenced:
Slxxx (date) (001 < xxx < 260)
Alxxx (date) (001 7 xxx 7 30)
DUMxxx FILE (001 7 xxx < 010)
NAM.xxx FILE (001 Z xxx < 010)
MONxxx FILE (001 7 xxx Z 010)
COMAND TABLE
FIELDS TABLE
ENDING TEST2

45 1



3. 5. 2. 1 -436-

3. 5. 2 Buffered Disk 110
3. 5. 2. 1 BFOPEN

Puryose

To open a file and assign buffers

Description

A. Operation: BFOPEN(Status, Namel, Name2, Bufl, BufZ, Buf3, Err)
BFOPEN opens the file Namel, Name2 for reading or writing and

assigns up to 3 buffers to the file. BFOPEN will transfer to
occurs.
B. Procedures Calling BFOPEN:

INIDSK, PREP, REND, TABLE

C. Procedures Called By BFOPEN:
BUFFER, FWAIT, OPEN

Err if an error

D. COMMON References:
None

E. Arguments:
a. Status: may be R(Read) or W(Write)
b. Namel Name2: name of file
c. Bufl, Buf2, Buf3: beginning locations of 432-word buffers.

Reading requires at least one buffer and writing requires two.
d. Err: location of error handling routine.

F. Values:
None

G. Error Codes:
None

4:

H. Messages
None

I. Length:
1448 or 10010 word

J. Source:
CTSS

K. Files Referenced:
MONxxx FILE (001< xxx < 010)
COMAND TABLE
FIELDS TABLE
ENDING TEST2

(

452



-437- 3.5.2.2

3.5.2.2 BFREAD

Purpose
To read a record

Description
A. Operation: BFREAD(Narnel, Name2, Area(x) to y, Eof, Eofcrxt, Err)

BFREAD moves y words from the current buffer to -the location
beginning of Area(x).
B. Procedures Calling BFREAD:

RDFILE, FCHECK

C. Procedures Called By BFREAD:
RDFILE, FCHECK

D. COMMON Referen. es:
None

E. Arguments:
a. Namel Name2: file name
b. Area(x) to y: A-rea(x) is the first location of the area,that

will iteceive the data. "Y" words will be transmitted.
c. Eof: location to which control. is transferred when end of

file is encountered before end of file.
d. Eofcnt: number of words transmitted before the end of file

is encountered.
e. Err: location of error routine.

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
3 words (resides in A-cor,e)

J. Source:
CTSS

K. Files Referenced:
COMAND TABLE
FIELDS TABLE
ENDING TEST2

45 3



3.5.2.3 -438-

-3.5.2.3 -BFWRIT

Purpos e
To modify a file
Des cription

A. Operation: BFWRIT (Namel, Name2, Area(x) to y, Eof, Eofcnt, Err)
BFWRIT moves y words from the core Location Area(x) to the

current buffer.
B. Procedures Calling BFWRIT:

SUMOUT TYPEIT

C. Procedures Called By BFWRIT:
FWAIT, WRFILE

D. COMMON References:
None

E. Arguments:
See Section E of BFREAD (3.5.2.2)

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
246 or 16610 words

J. S

CTSS

K. Files Referenced:
MONxxx FILE (000 < xxx < 010)

454



3.5.2.4 BFC LOS

Purpose
To re-activate a file
Description

'st

-439- 3.5.2.4

A. Operation: BFC LOS (Namel, Name2)
BFCLOS will clear the buffers used for Namel Name2 and close

the file.

B. Procedures Calling BFCLOS:
ERRGO, INIDSK, PREP, REND, TABLE

C. Procedures Called By BFCLOS:
CLOSE

D. COMMON References:
None

E. Arguments:
Namei,Narne2: first and sec.ind names of file in BCD

E. Values:
None

G. Error des:
None

H. Messages:
None

I. Length:
2468 or 16610 words

J. Source:
CTSS

K. Files Referenced:
MON xxx FILE
COMAND TABLE
ENDING TEST2
FIELDS TABLE

(001 < xxx < 010)

455



3. 5. 3. 1 -440-

3. 5. 3 File Status

3. 5. 3. 1 CHFILE

Purpose
To -change the name and/or iirrode of a file
Description
A. Operation: CHFILE(Namel, Name2, Mode, Name3, Name4)

CHFILE will change the mode of Namel Name2 to Mode and will
change its name to Narne3 Name4. To change the mode only, Name3
and.Name4 must be represented by -0. The file being modified may not
be in active status at the time of the change.

B. P.r'ocedures Calling CHFILE:
SYSGEN

C. Procedures Called By CHFILE:
None

D. COMMON References:
None

E. Arguments:
Namel;Narne2: name of file to be changed
Mode: new mode of file (binary)
Narne31 Name4: new name of file (or -0)

F. Values:
None

G. Error Codes:
3 attempt to change M.F.D. or U. F. D. file
4 file not found
5 "linked" file not found
6 - "linking depth exceeded
7 atteMpt to change "private" file
8 - attempt to change "protected" file
9 record quota overflow

10 Name3 Name4 already exists
11 - machine or system error
12 - file in active status

H. Messages:
None

Li A-56



Length:
I wo'rd (resides in A-core)

J. Source:
CTSS

K. Files Referenced:
(MOVIE TABLE)

-441-- 3.5. 3. 1



3. 5. 3. 2 -442-

3. 5. 3. 2 DELFIL

Purpose
To delete a file
Descriytion
A. Operation: DELFIL (Namel, Name2)

DELFIL will delete Namel Narne2 'from the file directory

B. Procedures Caig DELFIL:
CONNAM, DROP, SUMOUT, SYSGEN, USE

C. Procedures Callao By DELFIL:
None

D. COMMON References:
None

E. Arguments:
Namel Narne2: Name of file (BCD)

F. Values:
Ncre

G. Error Codes:
3, - file not found in U. F. D.
4 - "linked" file not found
5 - linking depth exceeded
6 - file is protected, private, read-only, or write-only
7 - machine or system error
8. - file in active status

H. Messages:
None

I. Length:
3 words (resides in A-core)

J. Source:
CTSS

Files Referenced:
NAM xxx FILE (001 < xxx< 010)
(name) SAVE(sysnam) SGMTOn (1 < n < 4)
(sysnam) . TBEE.
NEW SUMARY 458



-443 3.5.3.3

3.5.3.3 FSTATE
Purpose
To retrieve statistical data on a file
Description
A. Operation FSTATE(Namel, Name2, A(0) to 8)

Upon return', the array A will contain the following data about the
file Name; Narne2:

A(0): length of file in words
A(/): mode
A(2): status (open/closed)
A(3): device (disk/drum/tape)
A(4): address of next word to be read
A(5): address of next word to be written
A(6): date and time of last modification
A(7): date of last read, author of file

B. Procedures Calling FSTACE:
FIECNT, GETLIS, INIDSK, INITYP, TYPEIT, SEARCH,
SYSGEN, USE

C. Procedures Called By FSTATE:
None

D. COMMON References:
None

E. Arguments:
Namel7 Narne2: name of file
A(0) to 8; 8-word array, which FSTATE fills with data

F. Values:
None

G. Error Codes:
3 - file not found
4 -"linked" file not found
5 - linking depth exceeded

H. IVIssages:
None

I. Length:
2 words (resides in A-core)

J. Source:
CTSS

4 5 a



3. 5. 3. 3

K. Files Referenced:

-444-

COMAND TABLE
ENDING TES T2
FIELDS TABLE
GUIDEA

IFDA
IFD S

DIR TAB
date
date

LMFILE
name

DIR TAB
SAVE

SAVED .DIRECT
SMFILE
syenam

DIR TAB
.TBLE.

AInnn date (001 < nnn < 035)
SInrin date ( 001 < nnn < 270)

DUMnnn FILE (001 nnn < 010)
MONnnn FILE (001< nnn 010)
NAMnnn FILE (001 < nnn < 010)
PAS rim. FILE (001 < nnn < 010)

460



3. 5. 4 Disk I/0 Errors
1. 5.4. 1 FERRTN

Purpose
To set error exit
Description
A. Operation:

-443- 3.5.4.1

FERRTN(Errloc)
FERRTN establishes a single error return for all I/0 system

errors at location Err loc.
B. Procedures Calling FERRTN:

SETRTN, SYSGEN

C. Procedures Called By FERRTN:
None

D. COMMON References:
None

E. Arguments:
ERREOC: core location of error routine

F. Values:- j
None

G. Error Codes:
None

H. Message's:
None

I. Length:
6 words

J. Source:
CTSS

K. Files Referenced:
All files

461



3. 5. 4,2 -446-

3.5.4.2 IODIAG

Purpose
To retrieve data on error conditions
Description

A. gperation: IODIAG(Area (0) to 7)
IODIAG may be called to obtain sp.cific information about the I/O

systems error. Upon return, the array Area will contain the following
information:

A(0): location of call causing the error
A(1): BCD name of routine causing error
A(Z): error code
A(3): I/O error code (1-7)
14 (4): Namel of file
A(5): Name2 of file
A(6): empty

B. Procedures Calling IODIAG:
ERRGO

C. Procedures Called By IODIAG:
None

D. CQMMON References:
None

E. Arguments:
Area(0) to 7: 7-word array, which will receive information

F. Vali es:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
2 words (resides in A-core)

J. Source:
GTSS

K. Files Referenred:
All files

462



-447- 3. 5. 5.1
3, 5. 5 Console I/0

RDFLXA3. 5. 5. 1

Purpose

To receive a line from the console
Description
A. Operation: Chars RDFLXA (Area(x) to y)

RDFLXA reads a line from the console and moves y words into
the core beginning at location Area (x). Oa return, "chars" will con-
tain the number of 6-bit characters read, including the break character.
In 12-bit mode, the rwrnber of characters read will be chars/2. Theword
containing the break character and subsequent words are padded with blanks
If the break character is not received before the input buffer is full, bit 21
of "chars" will be set to 1, indicating that another call to RDFLXA is nec-
essai?- to continue reading the line.

B. Procedures Calling RDFLXA:
GET LIN, INIVAR

C. Procedures Called By RDFLXA:
None

D. COMMON References:
None

E. Arguments:
Area (x) to y: defines an area beginning at Area(x) which is

words long.

F. ValUes:
Chars: length of input line in 6-bit characters

G. Error Codes:
None

H. Messages:
None

I. Length:
2 words (resides in A-core)

J. S ource:
CTSS

Files Referenced:
None

463



3. 5. 3.2 -448-

3.5.5.2 RDFLX

Purpose

To receive a line from the console
Description

A. Operation: RDFLX (Area (x) to y)
RDFLX will read a line from the console using RDFLXA. It will

then strip the break character from the line, pad any remaining char-
acters up to y words with blanks, and move the y words into memory
beginning at location Area (x). If y, which cannot be greater than 14,
less than the number of words read, the excess will be lost.

B. Procedures Calling RDFLX:
SYSGEN

C. Procedures Called by RDFLX:
RDFLXA

D. COMMON References:
None

E. Arguments:
Area(x) to y: defines a memory area starting at Area (x) and

y words long.

F. Values:
None

G. Error Codes:
None

H. Messages:
None

1. Length:
758 or 6110 words

J. Source:
CTSS

K. Files Referenced:
None



-449- 3. 5. S. 3

3.5.5.3 WRFLXA
Purpose
To write data on console
Description

A. Operation: WRFLXA (Area (x) to y)
WRFEXA will print y words beginning at location Area (x),

where y is less than 29 in 12-bit mode and y is less than 15 in 6-bit
mode. It does not add a carriage return at the end of the line and does
not delete trailing blanks.
B. Procedures Calling WRFLXA:

CALLIT, CEP, OUT. , PRT12 SENTRY, SYSGEN, TRETRI
WFLXA

C. Procedures Called WRFLXA:
None

D. COMMON References:
None

E. Arguments:
Area (x) to y: Defines an area beginning at Area (x) which is y

words long

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
3 words (resides in A-core)

J. Source:
CTSS

K. Files Referenced:
None

465



3. 5. 5- 4 -450-

3. 5. 5- 4 WRFLX

Purpose

To write data- on console.
s c 12 Li

A. Operation: WRFLX(Area(x) to y)
WRFLX will print.through the last non-blank character within y

words beginning at location Area (x). Trailing blanks will be deleted and
a carriage return inserted.
B. Procedures Calling WRFLX-

CALLIT, SYSGEN

C. Procedures Called by WRFLX:
None

ID. COMMON References:
None

E. Ar,4urnents:
Area (x) to y: .defines-a memory area starting at Area(x) which

Is y words long.
F. Values:

None

G. Error Codes:
None

H. Messages:
None

I. Length:
I word (resides in A-core)

Source:
CTSS

K. Files Referenced:
Norie

/F-3E3



-451-

3. 5. 5. 5 SETFUL

Purpose
To set character mode to 12-bit

3. 5.5.5

Description
A. Operation: SETFUL( )

SETFUL sets the console character mode switch to send and re-
ceive in 12-bit mode.
B. Procedures Calling SETFUL:

GETLIN, PRT12, TRETRI

C. Procedures Calling SETFUL:
None

D. COMMON References:
None

E.)/ Argliments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
1 word (resides in A-core)

J. Source:
CTSS

K. Files Referenced:
None

46'7



3. 5. 5. 6 --452-

3. 5. 5. 6 SETBCD

oss_

To set character mode to 6-bit
Description
A. Operation: SETBCD( )

SETBCD sets the console character mode switch to send and re-
ceive a 6-bit mode.
B. Procedures Calling SETBCD:

GETLIN, PRT12, TRETRI
C. Procedures Called By SETBCD:

None

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
1 word (resides in A-core)

J. Source:
CTSS

K. Files Referenced:
None

468



-453- 3.5.6.1

3. 5, 6 Data Conversion

3. 5. 6. 1 BCDEC

Purpose
To perform BCD to binary conversion

Description

A. Operatfon Bin = BCDEC(BCD)
BCDEC converts the BCD number "BCD" to the binary equiv-

alent Bin.
B. Procedures Calling BCDEC:

PREP, SYSGEN

C. Procedures Called By BCDEC:
:Tone

D. COMMON References:
None

E. Arguments:
BCD: number in BCD representation

F. Values:
Bin = binary number

G. Error Cod-7;s:
None

H. Messages:
None

I. Length:
228 or 1810 words

J.
'SS

K. Files Referenced:
None

469



3. 5. 6. 2 -454-

3. 5. 6. 2 DEFBC
ay.

Purpose

3. 5. 6. 2

To perform binary to BCD conversion
Description
A. Operation: A = DEFBC(K)

DEFBC converts the full 35 bits of K into a right justified, zero
padded, BCD numoer. The sign bit is ignored.
B. Procedures Calling DEFBC:

GETFED, IFSRCH, INIRES, SEARCH

C. Procedures Called By DFFBC:
None

D. COMMON References:
None

E. Arguments:
K: binary number

F. Values:
A = BCD number, right justi:aed, zero padded.

G. Error Codes:
None

H. Messages:
None

I. Lengta:
3 words

J. Source:
CTSS

K. ±riles Referenced:
None

470



-455- 3. 5. 6. 3

3. 5. 6. 3 DEABC

Pur c22se

To perform binary to BCD conversion

Description
A. Operation: A -DERBC(K)

DERBC converts the right 18 bits of K intr -. a right justified,
zero padded BCD number.

B. Procedures Calling DERBC:
TRETRI

C. Procedures Called By DERBC:
None

D. COMMON References:
None

E. Arguments:
K: binary integer

F. Values:

G.

A = /right justified, zero padded, BCD number

Error Codes:
None

H. Messages:
Ncne

I. Length:
3 words

J. Source:
C 'SS

K. Files Referenced:
None

471



3. 5. 6. 4 -456-

3.5.6. 4 OCABC

Purpose
To convert from binary to octal

De s c ription

Operation: A OCA BC(K)
OCABC converts the address field of N to 5 octal BCD digits

with a leading blank.

B. Procedures Calling OCABC:
SYSGEN

C. Procedures Called By OCABC:
No-e

COMMON References:
None

E. Arguments:
K: binary oigit

F. Values:
A = a le Of address field of K in octal, expressed in 5 BCD

numbers and one leading blank.

G. Error Codes:
Nory--

H. Messages:
None

I. Length:
4 words

J. S,,urce:
CTSS

K. Files_ Referenced:
None

4 72



-457 3. 5. 6. 5

3, 5. 6. 5 RJUST

Purpose
To right-adjust BCD word
Description-
A. Operation: A = RJUST(K)

RJUST will take the BCD word K and replace trailing blanks with
leading blanks. If the word is all blanksubbbbb" is returned.

B. Procedures Calling RJUST:
CHKNUM, QUIT, SYSGEN

C. Procedures Called By RJUST:
None

ID. COMMON References:
None

E. Arguments:
K: BCD word

F. Values:
A = right adjusted BCD word

rr.ecor Codes:
None -

G.

Messages:
None

)

I. Lqngth:
268 or 2210 words

J. Source:
RJUST

K. Files Referenced:
None

473



3. 5. 6, 6 BZEL

Pux__Lpass.

To convert zeroes to blanks

I2escri.2
A. Operation: A BZEL(K)

BZEL wifl. replace the leading zE.roes in the .BCD word K with
blanks. If K is zero," bb"will be returned.
B. Proc.idures Caiing BZEL:

CHNNUM, QUIT

C. Procedures Called By 13Zi..L:
None

D. CCMMON References:
None

E. Arguments:
K: BCD word

F. 'values:
A BCD word with leading zeroes converted to blanks.

G. Error Codes:
None

H. Messages:
None

I. Length:
208 or 16 10 words

J. Source:
CTSS

K. Files Referenced:
None

474



3. 5.7.

3. 5. 7 Miscellaneous Utilities

Purpose

To return control to CTSS

22scLiati22

A. Operation: DORMNT( )

DORMNT returns control to the CTSS supervisor and puts the user
in dormant status. Machine conditions, status and memory are saved,. If
the START or RSTART command is given, control returi.3 to the machine
instruction beyond the call to DORMNT.

B. Procedures Calling DORMNT:
ANDER, CLP, ERRGO, PREP, QUIT, SHORT, SUPER,
TABLE , TYPASH, TYPEIT

C. Procedures Called By DORMNT:
None

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
4 words

J. Source:
CTSS

K. Files Refer enced:
None

475



3. 5. 7, 2 -460-

3. 5. 7. 2 LEEP

PurpOse

To halt execution momentarily

Description
A. Operation: SLEEP( )

The program is placed in dormant status and is restored to
working status after n seconds .1ave elapsed, where n _s the contents
.f the ac cumulator. Since the call to '77.4EEP is not convenient via AED,

an AED-oriented procedure nameti NAP (Section 3.4. 5. 3) is empl )yed
to call it.
B. Procedures Calling SLEEP:

NAP

C. Procedures Called by SLEEP:
None

ID. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. ET ror Codes:
None

II. Messages:
None

I. Length:
2 words

J. Source:
CTSS

K. F Ies Referenced:,
None

476



-461-

3. 5. 7. 3 WAIT

Purpose

To f-mter WAIT status
Description
A. Operation: WAIT(S, N)

The INTREX system is put into WAIT status. The system will be
restarted after n seconds have elapsed o when an input line is completed.
13. Procedures Calling WAIT:

GETLIN

C. Procedures C..-.11-itd By WAIT:
None

D. COMMON References:
None

E. Arguments:
S: 0: Timer - wait status: the program will be restarted after n

seconds. No commands are accepted. Input lines are saved;
the program is not restated when input arrive.

I: Input-wait status: the program, will be restarted after n
seconds have elapsed or when an input line is completed. If
n is zero, the program will be restarted only when an input
line is completed.

2: Dormant status: the program will be restarted after n seconds.
An input line while dormant is interpreted as a command. This
mode is equi-ralent to SLEEP.

N: number of seconds for which execution is to be suspended.

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
3 words

J. Source:
CTSS

K. Files Referenced
None

477



3.

3.

5.

5.

7:4

7 4 GET BRK

A U

Purpose-
To get location of interrupt
Description

-

A. Operation: Loc GETBRK( )
GETBRK is called to 'find the value of the instruction location

counter at the point of interruption via the ATTN,button.

B. Procedures CallinE GETBRK:
INTONE, INTTWO, TYPEIT, LISTEN

C. Procedures Called By GETBRK:
None

D. COMMON References:
None

. E. Arguments:
None

F. Values:
Loc = location of_ break

G. Error Codes:-
None

H. Messages:
None

I. Length:
2 words

J. Source:
CTSS

K. Files Referenced:
None



3. 5.7 . 5 SETBRK

Purpose
To set the entry point for an,interrupt handling roUtine.

Description

A. Operation: SETBRK(Loc)

3. 5. 7. 5

-When a program is started, it is at interrupt level O. A program
may drop the'interrupt level and set the entry point for an interrupt
handling routine for each level. During execution, the level may be
rais.ed either by a program call to the supervisor or by the uSer sending
the interrupt signal. The interrupt signal causes the interrupt level to be

raised by one and control to be transferred to thelentry point previously
specified by the program.

An interrupt at level 0 will be ignored. Every interrupt will cause
the supervios f to print INT,.n, where n is the leVel to whith control is to
be transferred.
B. Procedures Calling SETBRK:

ININT, INTONE, INTTWO

C. Procedures Called By SETBRK:
NOne

D. COMMON References:
None

Arguments:
Loc: location of interrupt routine

F. Values:
None

G. Error Codes:
None

H. Messages:
None



3. 5. 7. 5 -464-

I. Length:
words

J. Source:
CTSS

K. Files Referenced:
None

.t

48



-465- 3. 5.7.6

3. 5.7. 6 SAVBRK

Purpose

To raise the interrupt level
Description
A. Operation: Loc = SAVBRK( )

kSAVBRK.taises the interrupt level by one and returns in the 'accu-
.

mulator the entry point of the interrupt handling routine of the level just
entered.

B. Procedures Calling SAVB1:----
TYPEIT

C. Procedures Called By SAVBRK:
None

D. COMMON References:
None

E. Argurnents:
None

F. Values:
,Loc = location of interrupt-handling routine for level ju L entered.

G. Error Codes:
None

H. Messages:
None

I. Length:
2 words

J. Source:
CTSS

K. Files Referenced:
None



3. 5. 7, 7 -466-

3. 5. 7. 7 GET MEM

Purpose

To obtain memory bound

Description

A. Operation: Mern = GETMEM( )
The current Aemory bound is stored in Mem.

B. Procedures Calling GETMEM:
FREE, FRET, SIZE

C. Procedures Called By GETMEM:
None

D. COMMON References:
None

E. Arguments
None

F. Values:
Mem = current memory size in binary

G. Error Codes:
None

H. Messages:
None

I. Length:
None

J. Source:
CTSS

K. Files Referenced:
None

482



-467- 3.5.7.8

3. 5. 7. 8 SETMEM

Purpose

To set memory bound
Description

A. Operation: N = M, SETMEM( )

SETMEM sets the memory allotment to tha value of N. The prior
expression "N= N" is necessary because SETMEM expects to find N in
the accumulator.

B. Procedures Calling SETMEM:
FREE, SYSGEN

C. Procedures Called By SET MEM:
None

D. COMMON References:
Nape

E. Arguments:
N: Memory bound (binary)

F. Values !
None

G. Error Codes:
None

H. Messages:
None

I. Length:
2 words

J. Source:
CTSS

K. Files Referenced:
None

483



3. 5. 7. 9

3. 5. 7. 9 WHOAMI

Purpos e

To identify user

Des c ription

A. Operation:

-468-

WHOAMI(Area (0) to,..7)
WHOAMI obtains status information from the supervisor. The

array Area will contain the following:
Area (0):
Area (1):
Area (2):
Area (3):
Area (4):
Area (5):
Area (6):

B. Procedures

C.

Problem number
Programmer number
CTSS system name
Console ID code
Name of the login command
Usel's home file directory
User's name

Calling WHOAMI:
INXCON, MONTOR, WHOM

Procedures Called By WHOAMI:
None

D. COMMON References:
None

E. Arguments:
Area (0) to 7: .7-word array, which WHOAMI fills with data.

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
3 words

J. Source:-
CTSS

K. Files Referenced:
None

8 4G



-469- 3.5.7.10

3.5.7.10 SETWRD

Purpose

To set A-core word

Description

A. Operation: SETWRD (Word)
SETWRD stores thc contents of "Word" in the A-c re location

that is reserved for the logged in user.

B. Procedures Calling SETWRD:
D TNAMO, INIDSK, LONG, OPFILE, QUIT, SHORT, TYPEIT

C. Procedures Called By SETWRD:
None

D. COMMON References:
None

E. Arguments:
Word: 1 word of data to be stored in A-core

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
3 words

J. Source:
CTSS

K. Fiies Referenced:
None



3. 5. 7.11

3. 5. 7. 11 GETWRD

Purpose

To get A-core word

Description

A. Operation: Word = GETWRD (Userno)
GETWRD will retrieve from A-core the contents of the location

reserved for the logged-in user.

B. Procedures Calling GETWRD:
INITYP

C. Procedures Called By GETWRD:
None

D. COMMON References:
None

E. Arguments:
Userno: user number (in binary)

F. Values:
Word = contents of word in A-core reserved for user with user

number Userno.

G. Error Codes:
None given in CTSS description

H. Messages:
None

I. Length:
1 word

J. Source:
CTSS

K. Files Referenced:
None



-471- 3.5.7.12

3.5.7.12 SETBLP

Purpose

To set blip characters
DescriptIon

A. Operation: SET BLP (Chars ,N)
SETBLP will cause the system to transmit to the console the

three 12-bit characters stoz:ed in Chars eve'ry N seconds.

B. Procedures Calli4 SETBLP:
AND., SEARCH

C. Procedures Called By SETBLP:
None

3. COMMON References:
None

E. Arguments:
Chars: word containing 0 3 12-bit characters

N: number of seconds per ,blip (bi.nary)
F. Values:

None

G. Arguments:
None .

H. Messages
None

I. Length:
3 words

J. Source:
None

K. Files Referenced:
None

487



3. 5. 7.,13 -472-

3.5.7.13 CHNCOM
Purpose
To chain commands
Description
A. Operation: CHNCOM(J)

CHNCOM determines if another command exists in the command
buffer. If it exists, it is executed. If no new command is there, DORMNT
is called if 3 is 1, DEAD if J is 0.

B. Procedures Calling CHNCOM:`
IFSINT, QUIT, REND, SYSGEN

C. Procedures Caned By CHNCO!'
None

D. COMMON-References:
None

E. Aruments:
J: 0 or 1

Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
6 words

J. Source:
C'TSS

K. Files Referenced:
None



-473- 3.5.7.14

3.5.7 . 4 GET COM

Purpo'se

To get command',argument

Description
A. Operation: Arg t--- GETCOM(N)

GETCOM sets Arg to be the valtte of the Nth argument of the user's
lates,t command. The command itself is number 0. The arguments may
be numbered 1-19, including a fence at the end of all octal 7's. N must be

a binary number in the location immediately after the call to GETCOM, not
a TXI-1 of an address containing N. Therefore; it is not suitable for the
standard AED calling statement. (See\ COMARG in next Section.)

B. Procedures Calling GETCOM;
COMARG, SYSGEN

PrsJcedures Called By GETCOMz
None

D. COMMON References:
None

E,. Arguments:
N: sequential positional of' argument desired.

(Command itself is argument zero)
F. Values:

Arg = Nth argument of command line
G. Error Codes:

None
H. Messages:

:None
I. Length:

3 words
J. Source:

CTSS

K. P'iles Referenced:
None

489



3. 5, 7. 15 -474-

3.5.1.15 COMARG

Purpose
To get command argument

Description

A. Operation: Arg = COMARG(N)
COMARG is the AED procedure which provides access to selected

arguments in the command line as explained in GETCOM in previous section.

B. Procedures Calling COMARG:
DYNAMO, INIVAR

C. Procedures Called By COM/kRG:
GETCOM

D. COMMON References:
None

Arguments:
N: sequential position of desired argument on command line (binary)

F. Values: -

Arg = Nth argument of command line

G. Error Codes:
-377777777777: no such argument N

H. Messages:- \
None

I. Length:
658 or 5310 words

Source:
CTSS

K. Files Referenced:
None

490



-475- 3.5.7. 16

3. 5. 7. 16 LDOPT

Purpos e
To load option bits
Des c ri2tion

A. Operation: LDOPT (Bits)
The value of Bits will replace the current contents

of -the option word in A-core. The options are as follows-
bits 18-35

1: Search user UFD first for commanc
2: Search user or system files (not bcth) for co:- -and
4:. Reset active files for command

10: User subsystem trap enabled
20: Inhibit quit signals for user
40: Current user program is subsystem

100: Automatic save before loading subsystem
200: User is dialable (for attaching and :31aving co Isoles)

B. Procedures Calling LDOPT:
DYNAMO, QUIT

Procedures Called By LDOPT:
None

D. COMMON References:
None

E. Arguments:

F.
Bits: setting for option word

Values:.
None

G. Error Codes:
None

H. Messages:
None (

I. Length:
5 woirs

J. Source:
CTSS1

K. Files ROferenced:
None'

491



3. 5. 7.17 -476-

3.5.7.17 SETSYS

Purpose
To set up subsystem
Description

A. Operation: SETSYS (Command, Mask)
SETSYS will establish either a CTSS command or a user's saved

file as a subsystem (specified by command) which will take control when
any of the conditions specified in Mask are met.

B. Procedures Calling.SETSYS:
DYNAMO, QUIT

C. Procedures Called By SETSYS:
None

D. COMMON References:
None

E. Arguments:
Command: name of subsystem to be used
Mask:\ Condition bits:

1. Trap new command
2. Trap DEAD or DORMNT /call
3. Trap CHNCOM if no chain

10. Trap on error condition

F. Values:
None

G. Error Codes:
None

H. Messages:
None

Length:
2 words (resides in A-core)

J. Source:
UTILIB BSS

K. Files Referenced:
None

492



-477- 3.7.18
3.5.7.18 GETSYS

Puryose

To get Subsystem Condition Code

Description

A. Operation: GETSYS(Word. Code)

Upon return from GETSYS, the two arguments will contain informa-
tion pertaining to subsystem conditions.. The first argument will contain
the name (in 6-bit 13CD) of the user's current subsystem. The second argu-
ment will contain the condition bits (set during Intrex initialization) which
specify under what circumstances the subsystem is to be trapped (in right-
most 18 bits), and the corresponding bit which indicates which condition
actually did cause a trap (in leftmost 18 bits).
B. Procedures Calling GETSYS:

INXSUB

C. Procedures Called By GETSYS:
None

D. COMMON Reierences:
None

E. Arguments:
WORD: .bcd. character string
CODE: integer

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
1 word (resides in A-core)

Source:
NOLIB BSS

K. Files Referenced:
None

493



3. 5.7.19 -478-

3.5.7.19 GNAM

Purpose

To identify calling program

Description

A. Operation: Code = GNAM( )

GNAM is used by a subroutine to determine the type of program
which has called it. GNAM has been rewritten by the Intrex staff so as
to return a value of zero, which indicates that the type is other than FAP,
FORTRAN, or MAD.

B. Procedures Calling GNAM:
COMARG

C. Procedures Called By GNAM:
None

D. COMMON References:
None

E. Arguments:
None

F. Vahaes:
Code = 0: p):2ceduze of type "1.-;nknown"

G. Error Codes:
None

Message,:
None

I. Length:
3 words

J. Sc. arce:
SYSNEW FAP

K. Files Referenced:
None



-479- 3.5.7.20

3. 5. 7. 20 RSCLCK

Purpose
To reset CPU clock

Description

A. Operation: RSCLCK( )
RSCLCK sets the B-core timer (word 5) to zero.

B. Procedures Calling RSCLCK:
DYNAMO

C. Procedures Called By RSCLCK:
None

D. COMMON References:
None

E. Arguments:
None

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
5 words

J. Source:
CTSS

K. Files Referenced:
None

495



3. 5. 7, 21 -480-

3. 5.7. 21 JOBTM

Purzose

To retrieve job time
Description

A. Operation: JOBTM(Tei)
JOBTM returns in the word Tn., the elapsed CPU time since the

first call to RSCLCK.

B. Procedures Calling JOBTM:
MONTIM

C. Procedures Called By JOBTM:
Nc e

D. COMMON References:
None

E. Arguments:
Tm; elapsed time in 60th's of a second

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
258 or 2110 words

J. Source:
CTSS

K. Files Referenced:
None



-481- 3. E. 7. 22

3. 5. 7. 22 GETIME

Purpose

To get time of day

Description

A. Operation: TIME = GETIME( )

GETIME returns as its value the elapsed number of 60th's of
seconds since midnight.

13. Procedures Calling GETIME:
GETLIN, GETTM, MONTIM, WHEN

. Procedures Called By GETIME:
None

D. COMMON References:
None

E. Arguments:
None

F. Values:
Time = time of day in 60th's of a second (binary)

G. Error Codes:
None

H. Messages:
None

I. Length:
4 words

J. Source:
CTSS

K. Files Referenced:
None.

4.9 7



3. 5. 7. 23 -482-

3.5.7.23 GETTM
Purpose

To get time of day and date

Description

A. Operation: GETTM (Date, Time)
GETTM returns the date as a BCD value in its first argument

and the time of day as a BCD value in its second argument. It obtains
these values from GETIME.

B. Procdures Calling GETTM:
TNIMON

C. P.rocedures Called By GETTM:
GETIME

D. COMMON References:
None

E. Arguments:
Date: BCD value of the form MWDDt
Time: BCD value of the form HHMM.M

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
658 or 5310 words

J. Source:
CTSS

K. Files Referenced:
None



-483 - 3.5.-7.124

3.5.7.24 SCES

Purpose
To set up a command list in a command buffer

Description
A. Operation: SCES (TAB (n) BUF)

The array wo-king backward from TAB(n) toward TAB (0) is tra s -
ferred to the CTSS command buffer number BUF until a fence of a inary
l's is found. If BUF is a zero; the current command buffer will lied.
Since command buffers are twenty locations in length, Intrex's subsystem,
INXSUB, uses TAB (19) as a SCES argument to load the current buffer with
arguments to a "Resume Intrex" command which were previously set up in
the array TAB.

A call to NCOM (Section 3.5.7.25) will then cause the command and
its arguments to be executed.
B. Procedures Calling SCI,S:

INXSUB

C. Procedures Called By SCES:
None

D. COMMON References:
None

E. Arguments:
TAB (n):
BUF:

F. Values:
None

G. Error Codes:
None

H. Messages:
None

array location
CTSS command buffer no.

499-



3. 5. 7. 24 -484-

I. Length:
208 or 1610 words

Source:
CTSS

K. File References:
None

r.)()



-485- 3.5.7.25

3. 5. 7 . 25 NCOM /
Purpose
To execute specified CTSS command from program

Description
A. Operation: NCOM (COM, PROG)

COM is a BCD integer containing the name of a CTSS command.
PROG is a BCD integer containing the first argument to be used withCOM.
PROG replaces the existing first argument of the current command buffer
before COM is executed.

In the Intrex subsystem INXSUB, the commazid in COM will be
RESUME and the argument in PROG----w-41The INTREX. The other neces-
sary arguments will have been set up in the command buffer by the proce-
dure SCES (Section 3. 5.7. 24).
B. Procedures Calling NCOM:

INXSUB

C. Procedures Called by NCOM:
None

D. COMMON References:
None

E. 'Arguments:
COM: BCD coded command
PROG: BCD coded program name

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
4 wordt (resides in A-core)

J. Source:
CTSS

K. File References:
None 501



3.6.1.1 .\ -486-
3.6 AEDTJtilities
3. 6. 1 MiscellaneouSUtilities
3. 6 . 1. 1 -WFLX

Purpose
To print a line with carriage return
Description
A. Operation: WFLX (.13CL/string/)

WFLX is a convenient means for printing a pre-set character
string. WFLX will use WRFLX to print the string defined by the AED
string expression defined by . BCI.
B. Procedures Galling WFLX:

CNTLOC,, FREE, FRET, PUTOUT,

C. Procedures Called By WFLX:
WRFLXA

D. COMMON References:
None

E. Arguments:
. BCI. pointer

F. Values:
None

G. Error Codes:
None

H. Messages:
None

TYPASH

I. Length:
2 words + the 368 or 30 10 of WFLXA

J. Source:
AEDLB1 BSS

K. Files Referenced:
None

502



-487- 3:6. 1. 2

3. 6. 1. Z WFLXA

Purpose
To print a line
Description
A. Operation: WFLXA(. BCI. /string/)

WFLXA is the same procedure as WFLX, except that it does not
provide a finalA carriage return.

B. Procedures Calling WFLXA:
CNTLOC, FREE, FRET

C. Procedures Called By WFLXA:
WRFLXA

D. COMMON References:
None

E. Arguments:
None

Values:
None

Error Codes:
None

H. Messages:
None

I. Length:
368. or 3010 words

J. Source:
AEDEB1 BSS

K. Files Referenced:
None

5



3.6.1.3 -488-

ISARGV

Purpose
To extract an argument from a subroutine call
Description
A. Operation: Arg = ISARGV (Return, n, Mask)

LSARGV checks for the existance of an nth argument. If there
is an nth argument, it is returned as the value of ISARGV. If there is
not an nthargurnent, ISARGV returns Mask as its value.

B. Procedures Calling ISARGV:
NEXITM, TYPEIT, . C. ASC

C. Procedures Called By ISARGV:
None

D. COMMON References:
None

E. Arguments:
Return: AED label of exit code for subroutine

n: position number of requested argument
Mask: any value

F. Values:
Arg = contents of argument n or value of Mask

G. Error Codes-,
None

H. Messages:
None

I. Length:
608 or 4810 words

J. Source:
AEDI.,131 BSS

K. Files Referenced:
None

.504

4



-489- 3.6.1.4

3. 6. 1. 4 ISARG

Purpose
To check for existance of an argument in a subroutine call

Description
A. Operation: Bool = ISARG (Return, n)

If n is positive, ISARG checks the nth position after the call

to see if it is an argument. If n is negative,'i-' checks the first through

nth positions to make sure all are arguments. If all 'checked positions are
arguments, the procedure exits with the value TRUE; otherwise, FALSE.

B. Procedures Calling ISARG:
NEXITM

C. Procedures Called By ISARG:
None

D. COMMON References:
None

E. Arguments:
Return: AED label for exit code for subroutine calling 1SARG

(implicitly declared as type label)
n: position number of argument

F. Values:
Bool = True if argument(s) exist(s); false otherwise.

G. Error Codes:
None

H. Messages:
None

I. Length:
608 or 4810 words (shares code with ISARGV)

J. Source:
AEDLB1 BSS

K. Files Refer?anced:
None

505



3. 6. 1. 5 -490-

3. 6. 1 . 5 GETP

Purpose

To get .N.RDS parameters

Description INN

A. Operation: GETP(ID, N)
This procedure reads the current values of the WRFLX ic

size parameters for the ARDS console. A maximum of fou ers
can be read into the array ID, -the actual number being &ecifiedby N
They are stored in this order; line count, maximum lines per page, y-
coordinate of the top of the page, number of characters per line. The
procedure INXCON (Section 3,1.3.2)uses GETP to inspect the Maximun-i
lines per page which is set to 30 for the Intrex console and is greater than
30 for ordinai-y ARDS consoles.

B. Procedures Calling GETP:
INXCON

C. Proceaures Called By. GETP:
None

13, COMMON References:
None

Arguments:
ID: 4-word array
N: number of words (1-4) to be read

F. Values:
None

G. Error Codes:
None

H. Messages:
None

I. Length:
178 or

-
J. Source:

NOLIB

words

UTILIB
Files Referenced:.

None

350 6



4

-491- 3.6.1.6

3.6.1.6 OCTTO)

Purpose

To perform binary to spread-octal conversion
Description

A. Operation:
OCTTOI

Bcdptr = OCTTOI (Val)
converts the binary number Val to a BCD-coded octal

representation. Instead of returning the actual converted value, as does
OCABC (see Section 3.5.6.4), it returns a pointer fo the value, witha word
count in the decrement.
B. Procedures Calling OCTTOI:

CNTLOC, FREE, FREZ

C. Procedures Called By OCTTOI:
None

D. COMMON References:
None

E. Argumenis:
Val: binary number

F. Values: ,

Bcdptr = pointer to octal representation
G. Error Codes:

None

H. Mess-ages:
None

I. Length:
268 or 2210 words

J. Source:
AEDLB1 BSS

K. Files Referenced:
,None



IV. DATA BASE GENERATION

This chapter describes the procedural steps and programs used in
the creation and updating of the Intrex data base. The format is basically
similar to that of Chapter III. Part A provides a Category of information

not needed in Chapter III "usage" of the program being described. Since

we are here describing entire programs and not just subroutines, the proper
activation of each program is of obvious importance. Part B describes the
program's operation. In Part C, "Files Referenced", the names of files used

as either input or output are liited. The conventions employed in Chapter III
to designatelfixed or variable names of files are used here as well. Part D

contains a list of messages which may be produced by the program. These

messages are numbered and references to them in Part B are made by the

corresponding number appearing in parentheses. Message parts which are
variable are again expressed symbolically and underlined.

Part E lists the source files which contain the major parts of the
program. There are usually several utility procedures also required which

are obtained from the library program files at load time.
Part F shows the CTSS commands needed to create and set aside an

executable program file.
The process of updating the data base is a lengthy one and includes

many steps. A complete list of these steps is given.in Appendix H. In brief,

the process is as follows:
Input files are generated on-line by typists keying the catalog record

data supplied by the Intrex catalog group. Computer printouts of the input are
proofread and corrections are made via an on-line editing program. The pro-
gram DRRUN (Section 4.1) is run on a batch of edited files to detect further
errors in format and another editing pass is made to remove the errors found

by DRYRUN.
The program WETRUN (Section 4.1) is run on the corrected input files

to produce new catalog file segments and Inverted File "shreds". The new cat-

dilog seginents are condensed to digram-coded representation by MASH

(Section 4.2). The subject/title shreds are phrase decomposed and stemmed

*IDuring times when the computer is down, files are punched off-line on paper
tape and later brought to the computer._1.,-

v.;
-492-1-/ 08



4

-493-

by the program STEMER (Section 4.3). These stemmed shreds and author
shreds are sorted alphabetically on the stem or name by SORT (Section 4.4).

The sorted shreds are added to the current set of Inverted File seg-
ments by IFGENS (subject/title file) and IFGENA (author file) (Section 4.5).
The new set of Inverted File segments is then checked for format and count
errors by IFTEST (Section 4.6).

An ASCII printout of the Inverted Files may be obtained by generat-
ing a formatted ASCII-coded disk file via the program IFLIST (Section4.7)
and then requesting an off-line printout of that file.

4.1 DRYRUN, WETRUN

Purpos e

To prepare input data for inclusion in data base

Description
The formatting program transforms di sk s to red catalo g

records into files for the Intrex retrieval system by: (1) updating the Cat-
alog Directory file (CATDIR FILE), (2) updating the Fiche Directory (FICHE
DIRECT), (3) appending new records to the Catalog Record files (CRxxx
M25100), and (4) creating two files of search terms: AUTHOR date, which con-
tains the authOrst narnesand SUBTIT date which contains the subject and title terms

A. Usage: r DRYRUN
r WETRUN

The formatting program resides in Comfil 4 as two different versions,
called DRYRUN SAVED and WETRUN SAVED. DRYRUN SAVED is loaded
with a dummy version of WRWAIT and BFWRIT. DRYRUN will generate zero-
length SUBarr date and AUTHOR date files, but will not write any data on disk.
It is used to detect errors in the input files. WETRUN contains active disk
procedures WRWAIT and BFWRIT, and is used for the actual updating of the
catalog.

Both programs require g file (PRE FORMAT) which contains the
names of the input files. Each such file contains about 10 catalog records.
The first name -6r these files has- 'fil{format Wi.xxxx, where xxxx is the file
number. The nature of these names is not checked by the program, but if a

5,0 9



-494-

file whose name appears in PRE FORMAT is not found, an error message
is printed.

The program gives on-line indications of its progress and of errors
that it finds. The design of the program is aimed at (1) continuing processing

as long as possible and (2) avoiding the admission of bad data into the cata-

log record file.
The operational steps involved in running DRYRUN and WETRUN are

listed in Appnedix H (Steps 1-5).

B. Operation:
The catalog records which WETRUN receives as input are organized

so as to be easily read and edited. The task of the WETRUN program is to

re-format this data so that it may be efficiently handled by the computer. All

of the fields ( except field5, the fiche location) are copied into a re-formatted
catalog recordwhich h s three sections. The first section if four,words long

and contains data whic has been converted to fixed-length, binary-encoded

fields. The second section contains pointers to ASCII-encoded variable-length
fields which comprise the third section of the record. The re-formatted cata-

log record is appended to the current segment of the catalog. If this segment

exceeds a certain lenith threshold, then a new segment is created. A pointer

to the record, specifying i's segment number, word position and length is

stored in wordD+ 10 of CATDIR FILE, where D is the document number. The

data in field 5 (fiche location) is compressea into a one-word binary format
and stored in word ID of FICHE DIRECT. WETRUN'generates special for-

matted records called threds from fields 21, 24 and 73 (author, title and sub-
ject). These shreds will be used by other programs to generate new entries

in the InvertedFile. The author sjireds, which contain.one author per shred,

are written in the file AUTHOR date. The subject shreds, which contain one

subject term in each, and the title shreds, containing an entire title, are
Written into SUBTIT date.

The WETRUN program processes a catalog record in two basic phases.
First, it reads in a record and constructs the re-formatted record in core. If

.....,.

no fatal errors* are encounteredin this phase, it continues to the second

phase: appending the record.io the catalog segmentlupdating the Catalog Direc-
toryland generating shreds. Otherwise, it goes on to process the next record

See Part D of this section.



-495-

without writing any data on disk.
The main procedure PORFOR calls OPERUN to open the output

files and the file PRE FORMAT, which contains the list of input files.
OPERUN also performs general initialization functions. The main proc-.
essing loop begins with the call to OPEINP by FORFOR. OPEINP extracts
the next available name from the file PRE FORMAT and opens that file.
FORFOR then calls REAREC, which is the basic control module for the
first phase of pro( essing. REAREC calls READON, which steps through
the catalog recora looking for fields. When a new field is found, the pro-
gram transfers control to the appropriate subsection for that field. If the
field is field 5 (fiche location), FGEN will be called to update the file
FICHE DIRECT. If the field is to be converted to binary, GULP will be
called to perform the conversion and STASH will be used to store it in the
buffer used for the first sectioi of the catalog record. If the field is to be
left as an ASCII string, STUFF is called to copy it into the buffer for Sec-
tion 3 and to generate a pointer to it. READON and STUFF both use the
procedure REACHA (Leave, Labl3) to extract characters from the input
file. REACHA returns via Leave when it encounters the end of a field and
via Labl3 if there are no more characters in the input stream. Otherwise,
REACHA returns normally.

If REAREC returns control to FORFORwithout having encountered
a fatal error, FORFOR calls CLOREC to carry out the 1,econd phase of proc-
essing. CLOREC calls AUTSHR, TITSHR and SUBSHR to generate author,
title and subject shreds and to write them out and disk in the files AUTHOR
Date and SUBTIT Date. CLOREC calls CATRAD to append the formatted re-
cord to the current catalog segment and to enter a poinker to it in CATDIR
FILE. If the length of the segment exceeds a certain threshold, a new seg-
ment is created.

If an end of file has not been encountered in the current input file,
REAREC is called to proceSs the next record. Otherwise OpEINP is called
to extract the next name froin PRE FORMAT and to open the file. If OPEINP

reports that the list of files is exhausted, CLORUN is called to close thefrun.



-496-

C. Fies Referenced:
CATDIR FILE
CRxxx M25100
SUBTIT date
AUTHOR date
FICHE DIRECT

D. Messages:
AUTSHR

1. "Too many authors in record."
Z. "Author shred overnow"***
3 "Bizarre error making author shreds-abortingeof encountered"t
A. "Write error for author shreds"**

CANERR

1. "Possible error in shred type" (back space)
CAT 1

1. "Nth reCord lacks a record number N =nu*
"record already in Catdir File*

CYVT 2

1. "Error in opening Catrec File"**
CLOREC

1. "The 1st N subject terms have been processed where N = n."
Z. "Subject terms, first N author terms have been processed N= n.

3 "The subject and author terms have been processed."
4. "Er.ror in writing or reading Catrec File or Catdir File."**
REAREC

1. "Field 5 missing':
2, "Record exceeds max. length of 4095.'*

READON

1. "Erroneous field nurnber."*
2. "Two record numbers in same recora.. may be missine*

*** See Footnotes at the end of this section.

312..



-497-

3. "Slot filled in fiche file"
4. "Bad fiche field"
5. missing record skipped.*

FORFOR

1. "Record has not been processed."*
2. "An input file has been run. Time = t."
3. "File closing error in (format)."**
4. "No file created for this record."*

GULP

1. "bizarre error may have occurred. Please examine the last record
in record file. Files may have been unprocessed after it. input eof."*t

OPEINP

1. "Files in "pre format" have been runt°
"Error in opening input file."**

OPERUN
1. "File in "Fre Format" not found."**
Z. "Name of Catrec File not found in Catdir File."**
3. "Catdir file end of file error (OPERUN)."**
4. "Error in opening input files."**
EGAD

1. "Error in closing out Catdir File."**

ROTATE

1. !'Error in reading input file.
CLORUN

1, "An input Ele has been run"
2. "File closing error."**
OPESHR
1. "Field missing."
CHEWOR

1. "Bizarre program error-run aborted, but files saved." t
2. "Illegal backspace"

4,

513



O
P

E
R

U
N

C
LO

R
U

N

O
P

E
IN

P
11

11
10

R
E

A
R

E
C

C
LO

R
E

C

F
ig

. 4
.1

D
R

Y
R

U
N

M
E

T
R

U
N

 (
M

ai
n 

F
lo

w
 o

f C
on

tr
ol

)



-499-

STUFF

1. "Too many field:."*
SUBSHR

1. "Too many subj. termsProcessing halted at term 63."
2. "Subject shred buffer overflow rec aborted."***
3. "bizarre error in subj. shred making rec aborted."t
4. "File writing error (subj. shred) run aborted."*

5. "Difficulties in making shred number = n."***

TITSHR

1. "Bizarre error in TITSHR- record aborted't
2. "Title shred buffer overflow record aborted."***
3. "Prob. in writing title shred operations ended."**
ERRFIE

1. "Error in making shred."**

E. Source:
WETRUN and DRYRUN are constructed from abOut 20 separate

AED source files. These files are listed in Fig. 4.2.

F. Loading Instructions:
Load files have been prepared for both WETRUN and DRYRUN (see

Fig. 4,. 2).
LAED - ncload - WETRUN (or DRYRUN)
S AVE WETRUN (or DRYRUN)

No data will be written out for this record and processing will begin on
the next catalog record.

** Run is aborted.
*** Processing of this catalog record will stop, but some subject, title,

or author shred have been written out into the shred files. The re-
cord has not been appended to the catalog.
This kind of error condition can ifrbe generated by a prog ram bug.

515



DRYRUN LOAD

FORFOR
CAT RAD
GU LFO R
VARFOR
FGEN2
DAN
AS C INT
NEX IT M
REA FO R
OPERUN
RUNFOR
C LOREC
ST OFIV
SHRFOR
AUTFOR
T IT FOR
SUBFOR
SRCH
MASAGE

(S RC H)
UT ILIB
(SRC H)
ST RLIB
(SRC H)
(SQZ)
NEW LB 1

Fig. 4.2

-500-

W ET RUN LOAD

Loading Sequence

FORFOR
CAT RAD
GU LFO R
VA RFO R
DAN
ASCINT
NEXITM
REAFO R
OPERUN
RUNFOR
C LO RE C
STOFIV
SHRFOR
AUTFOR
T ITFOR
SUIWOR
S RC H
IYIASAGE
(SRC H)
13:11 ILI B
(S RC H)
ST RLIB
(S RC H)
(SQZ )
NEW LB1



-501-

4.2 MASH

Purpose
To compress catalog files
Description
MASH is used to convert catalog records generated by WETRUN into a more
compact format. The ASCII-encoded fields 2, 20, 37 and 46 are converted
to fixed-length 13. ary-encoded fields. All. other ASCII fields are converted
to digrarn-enc ded ASCII. That is, two contiguous nine-bit ASCII characters
are representedl by one nine-bit digrarri encoded character whenever possible.
Since a nine-bit byte allows 512 different codes and the ASCII character set
uses only 128, a considerable number of combinations of characters can be

encoded.

A. Usage:
R MASH M25100 INTREX first last
MASH uses the directory SORTED M25100 to convert a segment

CRxxx M25100 to the digram-encoded segment CRxxx INTREX. The process
of creating a directory for MASH involves the following steps:

1. The directory is generated out of the newly-updated file, CATDIR
FILE.
CATDIR FILE must be shortened by using te CTSS procedure
SPLIT. The output of SPLIT is CAT FILE:

SPLIT CATDIR RILE (WDCT) *864 CAT

2. The pointers in CAT FILE are ordered according to document
number. They must be re-ordered according to the position of the
records in the catalog files. Also, empty slots (for documents not
yet included in the data base) Must be removed. The following com-
mand produces a file SORT OUT which is ordered on segment and
word numbers, with empty wozds removed:

R SORTER CAT FILE 777000 0777777 0 000000 000000

3. SORT OUT is renamed SORTED ,M25100:
RENAME SORT OUT SORTED M25100

317 CATDIR INTREX, the catalog directory for the compressed catalog,---\

is than the newly updated CATbIR FILE, then it must be lengthened by:

a . Finding the length of CATDIR FILE and CATDIR INTREX by
calling FSTATE:

517



-502-

CALL FSTATE CATD1R FILE
CALL FSTATE CATDIR IVTREX:

b. Using EXTEND to lengthen CATDIR INTREX:
R EXTEND CATDIR INTREX Len.
A copy of CATDIR INTREX called CATDIR M25100 must be
created.
MOVE CATDIR INTREX CATDIR M25100.

This file is not actually used for anything, but it is needed to accom-
odate a fluke in MASH. The last segment of CRxxx INTREX must be deleted.

DELETE CRxxx INTREX
This segment will be coMpletely re-written by MASH
MASH is now resumed.
R MASH M25100 INTREX first last

"M25100" is the second name of the uncompressed catalog records and
"INTREX" is the second name of the first segment to be processed anri
"last" is the number of the last segment.

B. Operation:
1.

v
The directory SORTED M25100 is searched word-by-word for the
first occurrence of the segment indicated by "first".

2. When a poirlter to the specified segment is found,,,the segment is
opened and the firstword of the segment is read.

3. The catalog record is read into memory.
4. A check is made for six octal 7's in word 5 of the record.
5. MASH steps through the lists of fields in the-header. Fields 2, 20,

37 and 46 are converted to binary and placed in word 3 of the new
record. All others are, converted to digram encoded characters.
The lengths of fields 67, 70, 71, and 73 are added to arrays.

6. The record is written out in CRxxx 1NTREX and control returns to
step 3.

7. When MASH has finished with a segment, the next segment is opened
and the process continues.

8. When sr,gment "last" has been processed, MASH prints the con-
tents of its statistical table.

518



C. Files Referenced:
SORTED M25100
CATDIR INTREX
CRxxx M 25100
CRxxx INTREX
CATDIR M25100

-503-

4

(000 < xxx < 295)
(000 < xxx < 295)

D. Messages:
1. "No old CATDIR second name given"
2. "No new CATDIR second name given"
3. "Input file is CATDIR (name)"

Output file will be CATDIR (name)"
4. "File CATDIR (name) does not exist"
5. "Length of CATDIR M25100 does not equal length of CATDIR

INTREX"
6. "Output files will not have name (name)"
7. "File CRxxx not found"
8. "Duplicate entry for record number x"
9. "Fence not found in record x"

File is CRxxx M25100
current catdir entry

z last record written
****** File is not good *****"

10. "Field number x put in lower body, not upper.
File is CRxxx INTREX Record number

11.4 "Finished with file CRxXx INTREX
Length is n"

12- "Finished Last Eie is CRxxx INTREX. Total document count

13. "FILE Error"

E. Source:
MASH ALGOL
STAT ALGOL
DTABLE ALGOL

F. Loading Procedure:
LAED -ncload- (GET) MASH
SAVE MASH
The load file MASH LOAD contains the following:

MASH
DTABLE
STAT
(SRCH)

519



-504-

4.3 STEMER SAVED

PUrpose

To decompose and stem subject/title terms.

Description.
The shreds produced by WETRUN (see Section 4.1) from the sub--

ject terms and title fields of the catalog records being processed.contain
the entire phrases used in those fields. STEMER reads these shreds, dis-
sects the phrases into individual words, steins each word (encoding the
endings removed), and writes new single-word shreds. These new shreds
are used to update (enlarge) the Inverted File later in the generation proc-
ess (see Section 4.5).
A. Usage: R STEMER name2

The-argument name2 must be the second name of the shred file
whose first name is SUBTIT. This second name is the date when WETRUN

created the shred file and has the form MMDDYY in 6-bit BCD code. These

names are assigned by WETRUN as it creates the shredfile. STEMER

creates a new file name STEMED tiame2.

B. Operation:
STEMER SAVED performs the following steps in its processing of

the subject/title shred file.
1. Read the second name of the file from the command argument

name 2.
2. Initialize the ending table via INIEND.

3. Open the input file for reading.
4. Open the output file for writing.
5. Read the first word of a shred from the shred file into core,
6. Take the length of the shred from the first word read in Step 5.
7. Read the rest of the shred as determined by the length obtained

in Step 6.
8. Dissect and stem the phrase contained in the stem just read by

calling the subroutine STEMER.
9. Write the new s =med shreds created by the subroutine STEMER

into the output
Return the usc -,ed array to free storage.

11. If more input shred., remain to be read, return to Step 5.
12. If all 'input shreds are processed, close the files and print ending

count statistics (11 and 12) by calling SHOW.



-505-

Some of the more important procedures contained in STEMER
SAVED are described below.

INIEND( ): This procedure, called in Step 2 above, reads a file of
common English word endings named ENDING TEST2. These endings were
derived from the work on stemming of J. Lovinsb. T he ending f i le
having been read into core, -a table of pointers is constructed by calling
the procedure ENDTAB. These pointers point to the various groups (by
length) of the endings in the file. The pointer table acts as a connection
between an ending code (described below) and the corresponding ending
in the file. The table is stored in the top of a large array (471 words), the
balance of which used for statistical data gathered during stemming of
the shreds. The address of this pointer table is returned to the main pro-
gram (STEMER) a.,3 a value of INIEND.

STEMER To avoid confusion between STEMER, the main program
resumed at command level, and the procedure STEMER, we shall refer'
to the procedure, hereafter, as STEMER and the entire module as STEMER
SAVED. STEMER accepts an argument OSHRED containing a pointer to the
original (phrase) shred and, through repeated calls to the sub-procedure
NEXITM, extracts each word from the phrase. Pointers to these single
wordsare pasl-to_artother procedure, STEM, which does the actual
matching of the endings in the ending file against the end of the word in
question. NEXITM and STEM are the same routines used by the Intrex Sys-
tem and are described in Secti\ons 3.2.1.4 and 3.2.2.5 respectively.

STEM returns a pointEkr to the stemmed word to STEMER, which adds
it to an array of stemmed shr ds being created from the phrase shred in
process. STEW-also returns (i its second argument) a code representing
the ending removed from the original word. This is a 12-bit code where bits
1-4 contain the number of characters in the ending and bits 5-12 contain the
position of that ending within its length group. As each ending is removed,
an associated counter is increrndaed to keep traCk of the number of times
each ending is used. A-

Both.the stems and the ending codes of the entire phrase are stored
in their separate arrays by STEMER until all the wOrds in the phrase are



-506

stemmed. Then they are extracted from these arrays one by one and a

new shred is created from each by forming a field one coritaining the stem,

a field two containing a copy of the reference in the original shred, and

a field three containing the ending code. Th e. copied reference is modified

to contain the word number (within the phrase) of the stern whose shred is

being created.
The logic exists within STEMER to creaie a new shred out of the

entire stemmed phrase as well as the individual words and is controllable

by the setting of a maximum phrase length parameter. However, this para-

meter has for some time been set to 1 for the creation of Intrex stemmed

shreds so that only single word-stems appear in the Inverted Files as pre-

sently constituted.
The array which holds the collection of new shreds as they are

created after stemming is obtained from free storage. After all the new

shreds a're created, a pointer to this array is returned to the main routine of

STEMER SAVED for outputting. This array is returned to free storage by

STEMER SAVED.
SHOW ( 1: When all the shreds from the input file have, been read and con-

. 7

verted to individual, stemmed shreds, STEMER SAVED-p/roceeds to display

statistics on the number of times each common ending was removed during

the processing. These counts are kept and incremented within an array set

up by INTEND as an extension of the ending pointer table _referred to earlier.
Each location in the array corresponds to one ending in the ending list and

is incremented wheneve.r that ending is removed by STEM.

SHOW prints a header line containing the oolumn headings, ENDING

and TIMES USED, and then proceeds to print a list of all the endings in the

list whose corresponding counts are greater than zero. The count will appe r

beside each ending. When all endings and counts have been listed, the tota,

number of all stemmed words will be printed. SHOW then returns to STE ER

SAVED.
C. Files Referenced:

SUBTIT name2
STEMED name2
ENDING TEST2



-507-

D. Messages:

1. "No ending file found"
2. "bf routine error"
3 "Error in reading endings"
4. "Error in opening file"
5. "Error in reading file"
6. "Premature end-of-file"
7. "Word length 0 on word n of name lisnam"
8. "Shred fence missing. Previous name's sterris were stems"
9. "Insufficient free storage called for new shreds. Stems are

stems"
10. "SLTBTIT name?, has been run"
11. "amding times used"
12. "total words stemrced is s"

E. Source Files:
'-STEMER ALGOL (Main, STEM)

STEM1 (STEMER, SHOW)
STEW (INTEND)

F. Loading Procedure:
LAED STEMER STEM1 STEM2 (SRCH) UTILIB(AEDP)
SAVE STEMER

Optional argument which eliminates loader from core image.

523



-508-
4.4 SORT SAVED

Purpose
To sort stemmed shred on index words
Description

The program SORT was developed by Technical Information Pro-_ _
grarn personnel to be used on files in a special format of their design. This
format, which is called "TIP Searcha:ble," has, been adopted by Intrex to be
used for sorting the shreds which are produced by WETRUN (Section 4. I)
'arid which eventually serve as input to tlie Inverted File Generator IFGEN
(Section 4.5). Thus SORT, together with STEMER described in 4. 3; pre-
pare the shreds for inclusion into the data base.

R SORT STEMED date SORTS date 1
The arguments STEMED date will be taken by SORT to be the name

of th,e input file to be sorte:d. These\are the names assigned to the stemmed
and decomposed Shred file by STEM R. The 7 rguments SORTS date will be
assigned to the output file created by SORT. The last argument specifies that
the SORT is to be keyed on field 1 (th?e search word) of the -shreds.

Author shreds are also sorted, although they do not go through the
:stemming process. The WETRUN program produces an author

named AUTHOR date which is sorted by the command:
R SORT AUTHOR date SORTA date I

A. ----Qs age

shred-fM.e

B. Operation:
For a Uscription of the sort method used by this program, see

Reference 14.
C Files Referenced:

STEMED date
SORTS date

or
AUTHOR date
SORTA date

D. Messages:
n items in n items out

(ri: is the number of items sorted)
E. Source Files:

Property of Technical Information Program, M. I. T.

F. Loading Procedure:
Loaded only by TIP

524



-509-

4.5 IFGEN SAVED

Purpose

To generate or update Inverted Files from stemmed, sorted shreds

Description

IFGEN SAVED exists in two versions named IFGENS and IFGENA
which are used in the generation or subject/title and author Inverted.Files
respectively. The two programs are basically similar but contain enough
differences to make combining them into a single dual-purpose program
unwieldy. In describing them, however, it is reasonable to talk about
both as though they were one and the same; and to merely point out the
more important ways in which they differ.

Each program reads a sorted shred file, SORTS or SORTA, and
merges the shreds into an existing set of Inverted File segments, creating
new segments in the process. If no old Inverted File segments exist, fresh
segments are created from the taput shreds. These segments will have a
first name format 01 SInnn or AInnn, respectively, with the number nnn
rangi5g sequentially from 1 to as high as necessary". The second name of
the segments will be the same as that of the input file usually the date of
creation in the form MMDDYY (month, day, year).
A. Usage:. R,IFGES(A) old date

The argument old is the second name of the current Set of Inverted
'Files to be updated. If none yet exist, this argument must be (0). It may
not be omitted..The a.rgurnert date is the secon1 name of the .9orted slatted
file which is to be rea-d-tp create the new set of Inverted Files. This name
will be used by IFGEN as the se'cond name of all new Inverted File segments.

B. Operation:
Since IFGEN is too large to be compiled ali in one source file, it

has been spilt into two segments. The first segment has either of two names
as mentioned above, IFGENS ALGOL for processing subject/title files and
IFGENA ALGOL, for processing author files. The second segment, IFGENB
ALGOL /is used in conjunction with both versions of the first segment.



-510-

IFGENS(A) contains the main program, a GETLIS routine to readthe next list
from the input Inverted File, a GETSHR routine to read and collect refer-
ences and affixes for the next group of shreds which have the same stem
field, and a REFMER routine which merges shied references (after they
have been sorted) with Inverted File list references.

IFGENB contains a PUTLIS routine to write the output lists into
the new Inverted File segments, an141DDTAB routine to enter the appro-
priate information into the directory files, an AFFMER routine to merge
shred affixes with old Inyerted File affixes, a DCECNT routine to count
the number of documents for each affix header, a FIXPOS routine to up-

.
date the affix position numbers in the reference list, a SETNAM routine
to set up file names according to whether author or.Subject Inverted Files
are being processed, a NAMS routine which converts the ASCII stem into'
5.-bit Codes for-insertion into the IFDS(A) directory file, and two segment-
name incrementing- routines It../I-.)Nitiand OUPNAM for updating to the next
input or output Inverted File segment respectively.

The main program uses .the forgoing.routines as it executes the
following steps.

1. Rea-1, the input and output file "names from the command line
arguments.

2. If the first argument is a .0, Set-the-indicator IFDONE to avoid
reading the old Inverted Files.

3. Initialize counters and indicators.
4. Set up storage buffers and their addresses.
5. Set file names v SETNAM.
6. Open table of contents file and input shred file,
7. If old Inverted File segments are all processed but there are

more input shreds, go to Step 13 (if SAMESH false) or Step 31
(if SAMESH true).

8. If input shred file is also exhausted, then go to Step 41.

9. Open next input Inverted File segment and read first list header.
- 10. Use header to read next list and following header via GETLIS

and compute pointers to various parts of the list.
11. If the use-same-shred indicator SAMESH is set, go to Step 18.
12. If the input shreds are all processed, go to Step 36.

r



-511-

13. Read the nr.xt input shred via GETSHR.
e-

14. Sort the shred r rences on document number and term
number via MYS RT.

J.5. Count the number of different document numbers in the sorted
references.

16. Insert document count and affix count into shred header.

17. If old Inverted File all processed, go to Step 31

18. Match the shred stern against the Inverted File list stern.
19. If shred stern is earlier in the sort order than the list stern,

go to Step 31.
20. If list stem is earlier than shred stern, go to Step 35.

21. If stems are equal, merge affixes via AFFMER.

22. Add shred reference, document, computer word and affix
counts to counts in list header.

23. Write list header and stem via PUTLIS.

24. Write afflist via PUTLIS.
25. Update affix numbers in references via FIXPOS.
26. Reset "use-same shred flag" SAMESH.
27. Merge shred and list references via REFNIER.
28. .'Write merged references via PUTLIS.
29. If all Inverted File lists of this segment are processed, close

this segment and go to Step 7.
30. If more lists in this segment, go to Step 10.
31. Write the shred list via PUTLIS.
32. Reset SAMESH to false.
33. If both Inverted File and shred lists are exhausted, go to Step 41.
34. If more shred lists, go to Step 11.
35. Set "use-same-shred flag," SAMESH, to true.
36`. Write Inveried File list header and name via PUTLIS.

37. Write affix list via PUTLIS.
38. Set shred references count to zero force dummy reference

merge.
39. Go to Step 27 to write references.
40. If Inverted File lists not done, then go to Step 35.

41. Blank pad and close last ovtput segment.
/

527



-512-

42. Close shred file.
43. Write two directory files containing data stored by PUTLIS.

(via ADDTAB).
44. Close table of contents file and any other open files.

Some of the more important procedures of the IFGEN module
are discussed below.

SETN 7'.Ait (MODE, SHD1, IFT, IFD, TA13): This procedure which
resides in P.A.rt 2 (IFGENB), is called during initialization of the main
program in Part 1 to set file names and affix parameters according to
whether the MODE passed from the calling program indicates that
zubject/title files or :,,,uthor files are being processed. SHD1 is set to
SORTS or SORTA, IFT is set to IFTABS or IFTABA, IFD is set to
IFDS or IFDA, and TAB is set to STABLE or ATABLE, respectively.
If the mode is author, CASEMK is set to mask out upper case bits in
initials. For subjects, it is set to zero. .

GETLIS ( ): This procedure is called by the main program to
obtain the next Inverted File from the segment currently being updated.
The header of the next list to be read has already been brought into
core along with the previous list. This supplies the counts or lengths
needed to determine how much storage is necessary to hold the re-
mainder of the list. If the list is too large to be contained in one
432-word block, an overflow flag is set to force the continued reading
of the list after the first block is processed.

The previously read and saved header is transferred to the
top of the new list area and the counts are updated. The number of
section pointers (if any) within the list are c6mputed and subtracted
from the word counts in the header, since they may not exist in the same
quantity when the updated list is written.

The list is then read into core following its new header, along
with the header of the next list is the segment. The next header is set
aside for use by the next call to GETLIS and the word counts are extracted
from this header to be used in looking ahead. When the end-of-file is
read, GETLIS calls TESDON to see if any more input segments remain
to be processed. TESDON attempts to open the next segment in
sequence by calling IUPNAM. If that routine indicates there are no
more input segments, TESDON returns a zero to GETLIS.

'5' 28



-513-

The core address of the list just read is returned as a value to the
calling program.

GETSHR( ): This procedure is called by the main program to obtain the
next shred list from the input shred file. The list is really a gathering of all
shreds with the same stern (field 1), which have been clustered together by the
SORT program described in Section 4.5. The first call to GETSHR is handled
differently from all subsequent calls. This call is a kind of pump primer
which causes the shreds to be read one shred ahead of the last one processed.
This is due to reading the next header along with the current shred. The
first call reads in the first shred header to get the length of the first shred.
An array of this size is obtained from free storage and the shred along with
the next shred header , is read into core. Shreds whose stern field is longer
than 80 characters are rejected arid the next shred is immediately read in

The shred stem is copied into a save area for comparison to the stern
from the previous shred, In the case of the first 'shred, the stem is also
copied into the previous stem area and no comparison is made. In this case,
and in the cases where the new stern is the same as the previous one, the
reference word for this shred is added to an array set .up to hold the collec-
tion of references from shreds with similar stems and a reference counter
is incremented.

The affix field of the new shred is compared to the affixes already
collected for this list and if not like any other, it is added to the affix array.
If it is similar to a previously stored affix, the reference count in that affix
header is increndented. In both cases the position or sequence number of the
affix in relation to the affix list is inserted into the appropriate component
of the reference word. If the shred list is later merged with an Inverted
File list, these numbers will be modified..

If the end of the shred file has not been reached, GETSHR loops back
to read the next shred. This process continues until either a shred is read
whose stem does not match the previous stem or the end of the shred flle
is reached. When either of these events occurs, GETSHR finishes the

Later, in the main program, stems longer than Z8 characters are ignored,

329



-514-

construction of the new list by inserting the affix list before the reference
list, the previous stem before the affix list, and a list header (3 words)
before the stem. The header couhts and fence are computed and inserted
and the address of the reference list is set aside for use by REFMER.

REFMER(R1, R2): When the main program finds a shred list whose
stem matches a list from the input Inverted File, it must update the old
list rathcr than create a new one. Updating includes merging of the new
reference list gathered by GETSHR with the old Inverted File reference list.
Such merging is the task of REFMER.

REFMER is called from the main program with two arguments, each
pointing to one of the reference lists to be merged. The length of each list-is
extracted from the decrement portion of its pointer. Indices for stepping
through the lists are initialized to zero. An index is set to point to an area
obtained from free storage during main initialization whiCh will be -used to
store the merged list. The index is incremented whenever a new output
reference is stored.

References from the two lists are compared and the one with the higher
document number is stored as output. Since all the new (shred) documents

--should be different from any already in the Inverted File, a message (1) is
typed if identical document numbers are found. Both the old Inverted File
list and the output list are buffered and the flushing and refilling of the bufferS
are controlled by the user of indicators.

One additional function of IkEFMER is the deletion -,1 the section pointers
fromthe old Inverted File list as it is read, examined, and merged. Pointers
must be deleted even when no shred list is being merged and only the original
Inverted File list is being output. In this case, REFMER is employed in a
pseudo-call for the sole purpose of deleting these pointers. Such a call is trig-
gered by using a shred list pointer argument of zero.

When the output list is completed, a pointer which contains the length
(in decrement) and address of the, new list, is returned as a value to the main
program.

AFFMER (ALA& NA, PT): Another part of updating an Inverted File refer-
ence list whose stem matches that of a shred list is the combining of the affixes
of the two lists. The Gld Invert d File list of affixes (Al) is transferred to an

530



-515-

output array (obtained from free storage) and the shred affixes {A2) which

are new and different (if any) are appended to the end of that group.Durino
the transfer of the old list affixes, any section pointers which are en-
countered are removed. This must be done by employing pseudo-calls to
AFFMER with zero for the second argument when nb shred affixes are
being merged.

In an actual combining of affix lists, the affix codes of each list are
extracted and compared to each one in the other list.v When different, the
shred affix is added (along with its header) the otitput group and the count of
affixes (NA) is Incremented. When the new affix is the same as some In-
verted File list's affix, the header counts of the old affix are.updated to in-
clude the counts of the shred affix. A table of affix positions (PT) is filled
as the affixes are combined into a single group. This table will show the
relative position within the combined affix group of each shred affix, whether
added to the end of the group or inclu/ded with one already in the group. The
table is later used by the procedure FIXPOS, to update the affix position
number in the shred references.

FIXPOS(LZ, PT): This procedureis called from the main progam after
a shred list has been combined with a-ri Inverted File list and AFFMER ha

made a composite affix group and a table of affix position numbers fort)
reference list created from the shreds. This table provides a converter
from affix sequence numbers relative to ,.he original shred list to sequence
numbers relative to the now combined affix list.

The number of references in shred list is extracted from the de-
crement of the shred list pointer (SR) and is used to terminate the following
processing loop:

1. The temporary affix number (inserted by GETSHR) is ex-
tracted from the current/reference and used as an index to
the position table.

2. The contents of that location of the table is taken and stored in
the reference word in place of the temporary affix number.

3. The index to the reference list is moved up to the next reference.

FIXPOS is located in the second segment of IFGEN (IFGENB) and de-

cides whether the affix position number is a 4-bit (subject endings)-or a 7-bit

5ai



-516-

(author initials) component on the basis of the variable CASEMK. This

word is zero for processing. subject files and contains a mask to screen
out upper case bits in initial,- of author file affixes.

DCECNT (SR, SA): This procedure is called from the main program
after a new shred list has been.obtained via GETStIR and befOre AFFMER

is called. The first argument SR is a pointer to the list of shred references
---

and the second argument contains the number of affixes associated with the

list. The number of references is extracted from the decrement portion of
the pointer and the address of the first affix is computed. DCECNT then

scans the reference list once for each affix in the group looking for affix
position numbers corresponding to the affix being checked. When such a

reference is found, its document number is compared to the document

number of the one found previously. When the numbers differ, a count is

incremented. At the completion of each reference list scan, this document

count is inserted into the affix header and the list is scanned again for the

next affix.
PUTEIS (EP, RE, HW):

PUTEIS is the Output control procedure of IFGEN. It is called from
several different places in the main program to output the various parts
(header and stem, affix group, references) of the new Inverted File lists
as they are pieced together by other:sections of the program. The first argu-
ment (EP) contains a pointer to the.data to be added te the output buffer part
of a new Inverted File list. The decrement of this pointer contains the length

of the area to be output. The second argument (RE) contains the length of the

entire list remaining to be processed (minus any blank padding). Tl-e third
argument is non-zero only when the header (including ,the sten or name of the

list) is the portion being written. This tells PUTEIS that it must check the

size of the list against the space remaining in the output Inverted File section
and determine if any blank padding is going to be needed to fill out unused
words at the end of the section. Even when a list containing enough references

to extend through several sections (432-word blocks) is being processed the
length contained in RE may be used to compute how far into the last used sec-
tion the list will extend. A minimum of ten computer words must be left over

at the end of the list to accommodate the header of the next list. When this is

532



-517-

not the case, the space must be padded with blanks and the number of blanks
must ba entered into the header of the Est being processed before it can be
output. The padding itself is not added to the output, of course, until the
li,st is entirely written. Padding is also_added when the last list of a segment
is being processed. The final list will be indicated by a value of 10 for the
third argument HW. This will force the pad- uit of the rernainde7- of the sec-
tion.

PUTLIS counts both segments (files) and sections (records). When a
new segment is opened, a heading is written into the table-of-contents file
(e.g. SEGMENT n ). When- a new section is started, an entry is made to the
table-of-contents file indicating that, Section No. n starts with lisnam and
the offset is s. The list whdse stern is lisnam will then appear in segment
n at the depth of s. When s is greater than 1, it is because the previous
list spilled over into this section. A section header containing this offset is
written at the top of each section. As each new section is started, the first
list stem is converted to 5-bit ASCII by NAM5 and added to the primary direC-
tory IFDS(A) by a call to the procedure ADDTAB. This routine also determines
.when the initial letter of the stem differs from that of\the previous stem. When
this is the case, the new initial is used on an index to the secondary directory
IFTABS(A). This location is then filled with the index position of IFDS(A)
where the new alphabetic group begins.

As each portion of_a list is output, the section space remaining
(SECREM) and the list length remaining (REMEIS) are reduced accordingly.
When REMLIS reaches zero, any necessary blank padding is written to corn-

.
plete the remaining words of the section and, if the section count has reached
ten oit more, the segment is closed. On the next call to PUTLIS, a new seg-
ment na e is obtained by calling the procedure OUPNAM, Nkhich increments
the output file number and inserts it into the first name (SInnii or AInnn) of the
output Inverted File.
C. Files Referenced:

SORTS(A) date
S(A)Innn- old
S(A)Innn date

date S(A) TABLE
IFDS(A) date
IFTABS(A) date

533



-518-

D. Messages:

1. "Lfgen error has occurred. Error code

2. "Same D.N. found in I. and shred list with name lisnarn
D. N. is - n

3. "Error in writing output Inverted File segments "

4. "Error in opening output file no. f "

5. "job done."

E. Source Files:
IFGENS ALGOL

Or
IFGENA ALGOL
IFGENB ALGOL

F. Loading Procedure:
LAED - ncload- IFGENS(A) IFGENB (SRCH) UTILIB (AEDP)
SAVE IFGENS(A)

5,34



-519-

4. 6 IFTEST SAVED

Purpose
To check the header counts of Inverted File lists

Description
IFTEST is an adaptation of IFLIST (described in the next section )

and was originally designed to serve as a "dry run" for the creation of an
Inverted File listing via IFLIST. Since IFGEN (described in the pre'ious
segment) has occassionally, due to its complexity, constructed a list with

an improper header count, and since these counts are used to chain :rorn
one list to the next, it is important to verify the accuracy of these counts.
IFTEST is now routinely used to verify a new set of Inverted Files, whethe r
IFLIST is going to be run on these files or nct.

The program performs the same chaining computations that are re-
quiied of IFGEN and IFLIST (using code borrowed from IFLIST) but produces
no output unless an erroneous count is detected. Then the Inverted File seg-
ment number, section number, depth into the segment and count which trig- Ay.
gered the error are.printed and processing is terminated. TFTEST may be re-
sumed with arguments which select the subject/title or author files and which
indicate if all the segments are to be tested or only selected ones.

A. Usage:
1. R IFTEST AInnn date

SInnn
2. R IFTEST AI date

,SI

3. RIFTEST batch file

The example given in 1 above' is the mode used regularly as part of
the file generation procedure. The argument SInnn (ort)Pnnn) specifies the
first name of the segment Where checking is to, begin. The argument date
specifies the sec,rid name of the file segments. IFTEST will proceed from
this segment to the next sequentially until alll existing segments are processed
or until an error is encountered.

Example 2 allows the selection of an individual segmentnumber (as given



-52 0-

in s) of the author or subject files to be checked. In this mode, only one
file segment is processed.--Example 3 allows selected segment names to be read from a line-
'marked batch file nam;ed in the command arguments. The file may be
creat -1 by EDI,1 5 or QED15 (CTSS edit programs) and consists of pairs of
segment names, one pair per line.

B. Operation:
IFTEST reads the arguments from the command.line and deter-

mines which of the. opt'ons shown in Part A have been employed. If the
author files are being tested, dicator AUT is set. If a batch file name
appears in the-arguments, an indicator BATCH is set. If a single segment is
being checked, the segment number is read from the command line and used

to create the input file name. In this case, an indicator SEG is set.
Having made these preparations, IFTEST proceeds withthe following

steps:
1. If BATCH is set, extract..,the next segment name from the batch

2. If BATCH-is not set, create the next segment name from the cur-
rent segment number via UPNAM.

3. Initialize the section-counter.
4. Open the segment for reading.
5. Read the next section into core and, if an end-of-file is en-

countered, set end-of-file flag and go to Step 20,

6. Initialize section pointers and increment section counter.

7. Check for section fence and, if absent, go to error exit.

8. Use section header offset to position section addreSs pointer to
first list.

9. Extract word count and blank count from list header.
10. Compute number of words remaining in this section.
11. Compute the number of section pointers in this list.

12. Get length of stem and length of affix group.
3 3. Save pointer to stem for possible error printout.
14. Save address of affix group.

5 '3



-521-

15. Move list pos:ition pointer BP to start of reference list_
16. Extract number of references in this list from list header.
17. If references start in next section, read in next section via OFEIST

but reset READIN flag.
18.. If reference list extends beyond end of section, use repeated calls

to OFLIST to.read through rest of reference list.
19. Check offset of each section header read and, if incorrect, go to

error exit.
-2O If AEADIN flag is off, meaning OFEIST not employed in Step 18,

--move list position pointer up to end of refernce list.
21. Set up addres,s pointer to next list header; see if still in this section;

chect for list header and, if absent, go to error exit.
22. Reset READIN flag.
23. Move list address up to next list.
24. If still in this section, go to Step 9.
25. If end-of-file flag not set, go to Step 5.
26. If end-of-file flag is set, close segment.

Reset end-of-file flag.
28. If SEG flag set, stop processing.
29. If BATCH flag set, get next file name from batch file.
30. If riL. more names in file, stop processing, else go to Step 3.
31. If BATCH flag not set, get next segment name via UPNAM
32. If this segment exists, go to Step 3, else stop processing.

ERROR EXITS: Whenever a missing header or ience indicates tnat the
chaining pr)cess has gotten off the track, or a reading error occurs, th type
of error and location of the list being processed is printed and proce;,/ig is
terminated.

OPNAM( ); In this subroutine the integer holding the binary segz ent
number is incremented by one and then convered to BCD via the CTS utility

/DEFBC. \The BCD number is then inserted into the right half (18 bits) of the
first name of the Inverted-File segments, thus creating a name of the form,
SInnn or AInnn where nnn is now one larger than beiore.



-522-

.2y1LIST.1.1. This subroutine uses the CTSS procedure BFREAD (see
Section 3.5.21.2) to read the next section of references in a list in which
the references extend beyond the section where the list begins.It increments
the main section counter and also a counter for the number of overflow sec-
tions being read in this list. An adjustment is made to the list position
pointer BP which takes into account the original depth into the section
where the list began and the size of the section. This adjustment, together
with others at Step 18 above, ensures that BP will be positioned at the start
of next list when all the overflow references have been read. Other such ad-
justments and preparations made by OF.LIST include .the setting of the flag
READIN, the positioning of the section addret ss pointer to the top of the sec-
tion, and the resetting of the depth parameter to zero.
C. Files Referenced:

S(A)Innn date
batch file

D. Messages:
1. "premature end of file reached"
2. "read error"
3. "fence error"
4. "offset error"
5. "Cw.I., count list header error"
6 "RFL, count list header error"
7. "Last list col :ained lisnarn (where lisnam is the stern or

name in the list being processed when an error occurred).
8. "Depth is d in file No. f " (v-here d is the list depth within the

file whose name contains the segment number f 1.

9 "Batch file empty or nonexistant"

E. Source File:
IFTEST ALGOL

F. Loading Procedure:
LAED -ncload-
SAVE IFTE'

IFTEST (SRCH) ITTILIB (AEDP)

538



-523-

4.7 IFLIST SAVED

Purzos e
To create an ASCII-coded file listing the contents of the Inverted Files
De s c ription

The Inverted Files contain both binary and ASCII data in a fairly
complex format. IFEIST provides a means of presenting the information
contained in a readable, tabulated form. The program produces a-.1 ASCII-
coded disk file which may then be printed off-line.

The file generated is named SUBFI.I., IFLIST or AUTFIL IFEIS
depending upon whether.subject or author files are being processed. The
author names or subject/title sterns are listed in the.left column, showing
the separation of sterns and endings. Other columns contain the number of
references associated :vith that stern, the number of different documents,
and the number of affix strings.

Listed in the "Term" column are the subject/title sterns taken
from the Inverted File lists, or the Author -names in the case of Author
files. The subject/title stems are followed by a hyphen when an ending
has actually been removed. If only.one ending has been removed from a
term word,, then the ending appears after the hyphen on-the-s-affie line..If'
more than one ending has -en removed, the vai-iations are listed in sep-
arate, indented entries under the stemmed term. A typical page of an 1.-
verted File, listing is shown in Fig. 4.3.

For author file listings, there is no stemming o:C eidings and
author's initials appear in place of the endings. Like muktiple ending
strings, multiple sets of initials appear in addjtional lines instead of ap-
pended to the name.

The second column contai the nui )ber of references asciated with this
This number should correspond to the number of refc actual

printed when full output is requested.
Column three contains the number of different documents designated

by the references in that list.
Column four indicates the number of affix strings (endings or initials)

associated with the term or name.



444

uart,r4isite-r
6741 10 5 1 (2) nP

3521 3. S 1 (2) OP

-5Z4-

sllsn (J42771

PeP, 1,, fn I,

1 1 1

2).

tiartin 2) 2'
.1.10,41n1s 4

16964 2 4 1 (1) nv (5) ,F 1!..514 2 I. I (1) 1,.472 b 2 1 (5) 2 k 11-3, 4 2 1 (4) Os
12334-7 b 1 (3, 1'0 1214; 1 1 (1) CI !. S S 2 1 (4; 0, , 2 1 (4) OP u21 3 14 2 (2) I

6122 10 5 1 (:, 5724 7 1 (5) PI 5721. 6 2 1 (4) nP It 2 2 (2) OP 546: 1, 4) OP
5241 13 1 1 (3) ny 4114 h . 1 (5) (,0 4545 20 2 1 (4) OF 2f,03 lu i 2 (3) OP 2.05 lo 2 2 (5) OF
2511 10 2 I (2) OP 2516 11 2 1 (4) ,P 2371 i 2 1 (3) OF '-2354 24 2 1 (4) O)- 14.06 4 2 1 (5) OP
1240 1u 2 1 (4) OP

,artinsit-r 1 1

3475 1 2 1 (1) Or

artlos 1 1 1

35.3)0 11 2 1 (4) OP

flAruhe,-I 1 1 1

106(8 11 u 1 (3) 01

3 2 1

15964 1 J (2) OP 15401 5 9 1 (2) OP 2520 4 4 1 (4) OF

vas-in:
16340 4 1 '1 (2) OP

MA5(1 k
10614 8 5 1 (5) OP

1

1

maser- 1154 215
rlaSOr 954 193
ruasers 217 91
,Aserinr 5 1

17709 1 h 1 (0) OP 17418 5 2 1 (2), OP 1741E 5 2 1 (3) C( 17J4.1 7 L 1 12) OP 12949 14 U 1 (2) OP
11627 3 S 1 (3) OP 11625 0 F. 1 (SI nP 11625 3 5 14(0) OP 11347 3 3 77 OF 10614 8 4 1 (2) J P
10612 10 2 1 (5) d 0 10613) 12 2 1 (3) d P 1061E 15 5 1 (3) d I' )4113 1; , 5 (3) J P 9s(40 1 11 1 (1) OF

3645 17 3 1 (2) OP 3145 1U 7 1 (2) OP 5072 17 4 1 (3) OP 3071 11 3 1 (4) OP 2494 3 5 (2) OP
2224 0 0 1 (5) OP 2224 1 6 1 (1) OP 2224 2 3 1 (4) OP 1E71 4 6 I (5) or 1876 5 2 I :1 OP
1874 I. 2 1 (4) OP 1661 0 5 1 (5) OP 1021 1 5 1 (1) OP 1460 2 1 2 (0) OP

,L1sk- 73 14
r ,s, s kr. r1 2 2

,as1 17
roasks 1 1

nasVinr 3 3

25713 5 1 's (2) P 25445 5 3 4 (5) P 1! J71 1 14 2 (1) PP 16 4 4 2 (5) or 15665 4 4 (3. or
15)45 E S 2 (4) OP 12951, L `, 2 (5) (,P 1234:' 1 U 4 (3) OP 11572 10 4 2 (5) 00 8575 0 14 . (5) Ov
3)575 I 15 2 (1) OP 7234 1 22 3 (1) rv 5721 2 1 2 (I) np 1771 3 10 2 (3) OP 5721 4 3 2 (';) 0r,
5721 4 1 2 (3) n, 5721 5 2 2 (2) op 5721 4 1 2 (2) np 57:1 7 e 2 (22 OP 5721 5 0 2 (4) OP
5721 0 2 2 (5) r) 3212 3 6 1 (7) OP 2517 5 5 2 (4) OP

nnson- 26 1) 2

Ilason 25 17
t1ason14 1 1

17920 1 4 1 (1) OP 17920 5 6 1 (2) nv 17u.! ., 2 1 (2) or 17'

Fig. 4.3 Sample Page of J.F. Listing

0) 4



When affix strings are listed, the reference count and the
document for each affix is shown in the appropriate columns.

When the listing of references is requested by the mode argument,
the contents of each reference word is shown in the following format: DN
TN WN EN- (WT) WJO. ,,.;DN is the document number, TN the term
nuifnber within the document, WN the word number within the tet-tn, and
EN the affix position associated the term. The ,.veight (0-5) appears
within the parentheses and the property code is inthcated by the presence
of one or more of the letters W, J, 0 (whole work, journal article, orig-
inal:work).

Up to five refe-tences are printed to a line with as many lines as
needed used to print the entire collection of references in the list.
A. Usage:

R IFEIST SInnn date -mode-
2. R IFLtST AI date mode s
3. R IFIfIST batch file -mode-

The above options of IFLLST usage correspond to the options de-
scribed in Sect5.on 4.7 for IFTEST except that the mode argument allows
reference word contents to be included in or excluded from the listing. A
mode of 0 or the ornrnision of a mode (examples 1 and 3 only) produces
the full reference listing. A -anode of I causes references to be suppresse4.
B. Operation:

After initializing pointers and flags, IFLIST reads the argument<2
from the command line and determines which of the options of Part A have
been empfoyed. If the first arg,ument is oi the form s'hown in example 1,
then the starting segment nun,,)er is extra(:ted (lie file name 'A thy H ist
argument. If the first argumc nt indicates that au1Thr files are to be Iistc!(1,
then an indicator ATJT is set. If a batch file name appears in arguments on
and two instead of Inverted File A.rnes, an indicator BATCH is set.

An attempt is then made to read a third argument (inode) frdm the
command buffer. If tli5' rgument exists, it is used to set or reset an in-
dicator NOREFS, accordinR to wl-ether th mode is 0 or a 1. If it
nut exist, NOREFS remains reset (false)



If a mode argument is found, an attempt is made to extract a fe rth
argument, which f present is used as the segment number to be processed_
An indicatoi SEG is set to prevent processing beyond this segment.

With these pi rations having been n-larir IFLIST loops through
the following steps as I:. produces its cutput fil.-

1. If BAT H is set, extract the next segment name from the batch
file.

Z. If BATCH is not set, create the next seL-ment name from the current
segment number via UPNAM.
Initialize the output buffer pointer to the top of the buffer

1. Output a carriage return and three tabs followed by the name of
the segment being listed.

5. Output two carriage returns, the lumn headings Term, No. of
Refs No. Does., No. Ends., and two more carriage ieturns.

6. Open the output file for writing (SUBFIL IFLIST for subject/title
files, AUTFIL IFLIST for author files).

7, Open the current input segment for reading.
8. Read the next section into the input buffer arid, if the end-of-file

is encountered, set the end-of-file flag and go to Step 61.

9. Set section address pointer to the top of the sec\tion and reset sec-
tion depth to zero.

10. Cl eck for section fence and, if abSont, go to error -exit.
11. Use section header offset to position section address pointer to

first list.
12. Check for list fence and, if absent, go to error exit.

3. Extract number of blank words and length of name or stern fforn
list header and constieuct a pointer to the name or stern.

14. Return any free storage used on last call to the affix processing proce-
dure GROUP.

15. Extract the number of aifixes from the list header.
16. Place list position pointex-.BP at address of first refererr7e.

17.. -Compute the address of the first affix.
18. Constru, . a list of all affix codes in the list v..?,,a
19. If only,one affix in list, go to Step 58.

20. Output the name or 7' tom.

542



-527-

21 Output a hyphen if AUT is not set, a comma if it is set.
22. Output necessary tabs to get to column two via TABIN.
23. Colurnnize the reference, document, and affix counts via

COLNUM.
2.4. Output a carriage return to end thiS line.
Z5. If single-affix flag EDSONE is set, reset it and go to Step43.
26. Set up loop to attach affix codes to name or stern.
27. Output 1 space for indentation.
2:k. Output the name or
29. If AUT flag is on, go to Step 33.
30. Convert the next ending code saved by GROUP to ASCII char-

acters via GETEND (see Section 3.2.6.3).
31. If the EDSONE flag is set and GETEND returned a converted

ending, output a hyphen and add 1 to the affix (ending) length.
32. Bypass following author file steps by going to Step 35.
33. Create a pointer to the initials s,tring.
34. Output a comma and add 1 to the affix (initials) length.
35. Outv..it this affix character string.
36. .P:.dd affix length to name or stern length.
37. If EDSONE flag is set, go to Step 22.-
38. Output necessary tabs o get to column two via TAPTN.
39. Columnize the reference and document counts for this affix

via COLNUM.
40. Output a )carriage return.

_41, Move affix address pointer up to next affix in list and reset
length to zero.

42. If more affixes in list, l op back tc append next affix by going to
Step 2,7.

43. If all affixes are proc, .;ed, extract reference count from list
header,

44. If ref,....rences sta...-t in next section, read in next section via.
OFLIST but reset READIN flag.

45. If NOREFS flag is not set, go to S'cep 48.
46. If not outputting references (NOREFS set) and zeference list ex-

tends beyond end of this section, use repeated calls to OFLIST
to thrbugh rest reference list.

543



47. When all references read in, go to Step 59.
48. Set references-output-per-line parameter N to 5.
49, 31 reference count is less than go to Step 57.

50, If next. reference is in next section, read in the next sec..i.on
via OFLIST.

51. Dissect next reference and output its relevant data via CUTREF.
52. If output buffer address is within fifty computer words of the end

of buffer, write out and reset buffer via RITOUT.
53. Incr-;ment list position pointer to next reference.
54. If N references have not yet been done, go to Step 50

If N references finished, reduce the reference
count by N and, if count is now zero, go to Step 59.

56. If more rferences to do, output a carriage return and go to
Step 49.

57. Set N equal to remaining reference count and go . Step 49..

58. (from Step 19 only) Set the single-affix flag, EDSONE, set the
affix processing loop counter to zero, and go to Step 28.

59. (from Step 55) Output two carriage returns between lists.
60.. If NOREFS flag is set and READIN flag is not set, move list

position pointer BP past r.aferences.
61. If output is at a word boundary and buffer is over nalf full, write

out buffer contents and reset buffer via RITOUT.
62. Move section address pointer to start of next list and update depth

into section.
6 3 . Reset READIN flag.
64. If new list starts in this:;section, go to Step 12.
65. If end-of-file flag is not set; then gn to Step B.

Close segment.
67. Reset end- of-file flag.
68. If single-segment flag S i set, l'len go to Step 7.::.
69 if BATCH flag is set, ext-act nex.t segment -ri,.:)e frol) batch file.
70. If .-;0 more names in batch liie, go to Step 7L

1 If BATCH flag is not set, get next segment name via UPN M.
72. Close the output fite*.
73. If next segment exists, go to Step 3.
74. If no f-e,-)re segments to process, terminate alP" return to CISS.

The output file is closed and reopened for each segment processed so that
an error which fails to take a prescribed error exit wifl not cause the en-
tire ov:fput file to be lost.

o 4 4



ERROR EXITS

Althoughthe prior use of IFTEST (Section 4.6) shoulc" catch any
fence, count or offset errors in the Inverted File, error exits are provided
in IFLIST which will cause processing to be terminated if.the program de-
tects such an error. The type of error and number of the segment in which
it occurred are printed out on-line and the output file is closed before the
program halts.

Some of the more important subroutines are described below.
UPNAM( ): Thig subroutine increments the segment counter and con-

verts the new number to BCD via the CTSS uti'ity procedure DEFBC, The
BCD number is then inserted into the right halt of the first naril,: of the In-
verted File to make a segrz ent na_ne of the form SInnn or .-Innn where nnn
is now one larger than before.

CFLIST( ): This subroutine uses the CTSS procedure BFREAD (see
Section 3.5.2.2) to read references in a list in which the references ex-
tend beyond the se_.,ion where Lie list begins. In the case where the proce-
dure GROUP h- s read into the next section to complete an affix list which
crosse, a section boundary the amount of the extension into the new sec-
tion is stored by GROUP in a parameter PRE. OFLIST uses PRE in con-
trolling the address _Lito which to read the new (partial) section and the port-
ion of the section to be read. OFLIST also adjusts the list position pointer
13±), the section address pointer and the section depth to reflect the new sec-
tion contents and sets the flag READIN to indicate that those adjustments
have been made.

RITOkJ This subroutine is used to empty the output buffer by calsling
the CTSS procedure BFWRIT (see Section 3.5.2.3) which writes the contents
of the buffer into the disk file SUBFIL (or AUTFIL) IFLIST The number-of'
words written is computed from the current storage addres Any unfilled
bytes in the current address are padded with n=111 codes. The current: storage
addr,ss is then .et to the start of the output buffer for refilling,

TABIN(L): Thi- sulli-outine is used to compute the nu-nber of tabs (10
spaces to a tab) needed to reach the second column in the output format. This
column is set at th,' .30th character position or 3rd tab stop of the line. The
argument L contains the current number of characters already on the line,
and therefore,determines how many tabs will be needed. if L is,,thirty or more,



tnen the third tab stop has already been reached. In this case, a carriage re-
turn is output followed by three tabs. If L is less than thirty, the number
of tabs needed is computed and output.

COLNUM(NUMS): This subroutine s used to output the counts of refer-
ences, documents, and, where applicable, affixes related to the name or
stern in column one. Each count is followed by a tab code which positions
the next count in a new column. Since the number of arguments containing
counts varies, the AED argument reading ,,-)rocedure ISARGV (Sectior 3.6.1. 3)
is used fetchiThe arguments. Each number received is converted to ASCII

via INTASC (Section 2. 3) before being stored in the output buffer.

CODES = GROUP(E, N): This valued subroutine is used to gather the
affixes of a given list into a consolidated group.In.the rase where the affixes
span from the end oLone section into the next, they are moved to a temporary
storage area obtained from free storage, and the affix address is changed to
this area.

When subjeCt/title ending codes are being processed, another kind

of consolidation also takes place. The ending codes are copied from the orig-
inal list into an array containing only`the codes and no accompanying affix
headers. This step is left-over from the time when phrases (whole inde.x

terms) were included in the inverted File and all the ending codes related to
the phrase had to be unpacked from each\ "affix string': Since only single
words are included,now, this step could be eliminated.

The addr(ss of the consolided list of codes is returned as a value to

tre calling program.
CUTREF):i This subroutine extracts the components of a re.Terence

word whose -ddress is given the argument and outputs the data which ti )se
components represent. First, the document numbel is extracted, con, erted
to ASCII via INTASC, and copici into the output buffer. Similar t real:II-lent is
given to the term number (position of term in subjects field c c author
name in author field), the word nurnt word po:3ition within tne term), an,1
the affix number (position (tf the related affix within the affix group). Next,
the weight (range nurnber)(is taken and is outputwithin parentheses.

The three bits of the\roperty code, standing for "whole work",
"journal article", andt2origielal work", are tested. When a bit is on, the
letter W, J, or 0 are output, respectively.

'54G



-531 -

A .ngle spact. is output between each of the main elemer.:s
above ibut not between the letters WJO except to take the plac .. ci
letter). Two spaces are included at the end of CUTREF to sepai-at
ence's data from the next.

C. Files Referenced:
Sinnn date
AInnn date
SU BF IL IF LIST
AUTFIL IFLIST

D. Messages:

1. "premature end of file reached (plus message No. 6):'
Z. "write error"
3. ft read error"
4. "list header error"
5. "Last list name contained ---LISNAM (plus message No. 6)"
U. "in file No. F" (where F is the nur-.ber which is part of the

name of the segment in error).
7. "Batch file empty or non-existant"

E. Source File:

IFLIST ALGOL

F. Loading Procedure:

LAED -ncload-
SAVE IFLIST

IFLIST STEMZ (SRCH) UTILIB (AEDP)

54 7



-532-

V. SUPPORTING SOFTWARE

In this chapter, programs are d-scribed which provide supporting
roles to the operation of Intrex but which are not par': of the generation or
updating of the da'a base. Like the prrIgrarns described in Chapter IV,

these are independantly compiled, loaded, and executed programs, each
designed to perform a specific task.

the format of the descriptive sections is the same'as in Chapter IV
(See Chapter IV introduction for explanation of sub-secti-os).

5.1 nTRG.F.N

Purpose
To create a label-controlled directory to disk- and core-stored message
text.

Description
DIRGEN (DIRectory GENerator) creates a directory file which serves

as an -index to both a disk _file and a core-stored table_of ASCII coded messa
The message files may be created and altered via the CTSS,console using
the editing programs EDA or QED.'" Each message is delimited at each
end by a special code and prefaced by a label consi`sting of up to six ASCII

characters, the first of which is alphabetic. The labels are deliMited at
each end by another special code. Other characters sometimes appear
elsewhere in the message file which help format the file print-out cr serve
as comments. Onry the characters between pairs of special codes a\re pro-
ce,ssed by DIRGEN however.

"DIRGEN reads the message file, findS and checks the length of labels
and messages, and places each label in the directory, with a pointer to the

location of the accompanying message.
The disk-stored messages (designated by labels set off with V's) are

written onto a disk-text file. To conserve space, only.the message text is

written the labels are omitted. The core-stored messages (designated

b'y labels set off with Ps) are added to the end of the directory. Directory

entries co4ain a BCD coded representation of the message label and a



3-s_

rnersage file_poSition pointer. If bit 2 of the pointer 1, the message
!pointed to is a core-stored message.
The last name of the-Input message file is TEXT. The last name

of the output message file Ps DISTXT. The last narrre of the directory file
created by DIRGEN is DIRTAB. The first name will be the same for both
output files and iS specified when DIRGEN SAVED is Resumed by entering
it as the first argument of the command (See Part A below).

The directory file must be read into core by calling
INITYP (namel.) before the first call fo TYPEIT which has a disk-message_
or core-message label as an-argument.

DIRGEN-will use the $ code as the disk label delimiter and the / code
- as the core labe). delimiter. A second argument may be given in the Resume

DIRGEN command specifying a substitute character to be used for the $.
No Provision has been made to substitute for the slash.

Similarly, DIRGEN will use the * code as the message cfelimiter,
unless a substitute code is specified in the third argpment (optional) of the
Resume DIRGEN command.

In general, short, frequently used message labels are kept in core,
while longer, or infrequently used lables are stored on t e disk for most
efficiency.

A. Usage: R DIRGEN m file -1d- -md-
In-the aboVe command, rnfile is the first naMe of an ASCII file

(whose last name is TEXT) containing the messages and labels to be pro-
cessed. The optional arguments, ld and rnd are substitute label delimiter
and message delimiter characters to be used if the standard $ and / are
undesirable for some reason.

B. Operation:
The arguments are read from the command buffer and used to set

the name of the TEXT file to be processed and, if the second and third
arguments exist, to establish tehe new delimiters. If a dire'ctory file with
this first name already sexists, it and the corresponding DISTXT file are
deleted so as to start with a clear slate. Then the TEXT.)file is opened



-534-

for reading and the DISTXT file isopened for writing and adciress pointers
to a core--nessage storage area and a disk-message storage area are set
to their starting locations. Finally, all flags and\counters are initialized to
zero and the first block of data from the TEXT file is-read into core by the
subroutine SUMMON.

Having made the above preparations, DIRGEN loops through the
following steps as it processes the TEXT file arid creates the DISTXT and
DIR TA B file s :

1. Examine input chiaacters looking for a disk-label
or core-label delimiter.

2. Wh'en a label delimiter is found (set core-label flag
if it is a core-label), _look for si ilar delimiter within
the next seven characters.

3. If no second label delimiter is-found within seven
characters, go.,to error exit.

4. Convert label string to BCD and see if it is already
in the directory table formed so far.

5. If a similar label is already in the table, store this
one in a special array, set the "ignore flag", and
skip next ste.p.,

6.. Add this label to the direct6ry table and increment
the table index by`two.

7. Examine more input ch racters looking for a iext
delimiter.

8. lf'at any time diaring_chara_cte-r-scanning the end of
th e. input buffer is reached, call SUMMON to read
in more input.'

9. When a tex-t delimiter is found, copy text which follows
into either the disk-message buffer or the core-
it-nessae buffer, depending upon se-tting of the core-
clabel flag.

10. Insert address of the buffer area just filled into the
directory table just after the label inserted in step 6.
If core table address inserted above, set a special
core bit (bit 2) in the pointer.
It disk-message buffer is filled during step 9, write
'buffer 'into- DISTXT file and reset buffejr parameters.
If end of input buffer is reached before a second
delimiter is found, call SUMMON to read more.

14. Insert character count of input between text delim-
iters into decrement of text pointer just added to table.

15. Reset flags and rettirn td step 1.

11.

550



-535-

When SUMMON finds no more input text to be read, DIRGEN com-
pletes the output files and prints a list of the labels-created. The directory
file DIRTAB is written in two stages, the pointer/label table and the core-

\
message text, but only after the pointer addresses relatelgtO the core-stored
messages are adjusted to include the length of the directory table to which
it is appended. After printing an on-line report of the number of labels in
the new table, DIRGEN prints any multiply defined labels set Aside earlier
and a list is rntde of all cryated labels: Then DIRGEN closas all files and
halts.

SUMMON( ): This subroutine reads the next blItk of input data into the
input buffer. The exact amount of data-and s..,tarting, storage address can be

-adjusted by setting certain parameters ours-kle of SUMMON. The CTSS I/0
If this'utility BKREAD, described in section 3.5.2.2, is used for reading.

routine encounters an end-of-file mark, return to SUMMON is made to a
-

place where a flag is set. This flag,is ested upon the next entrance to
SUMMON and, when-found to be on, tr nsfer is made out of SUMMON to

the wrap7up area of DIRGEN.
After reading a new block of input, SUMMON reinitializes the input

at. pointer,length, and character count before returning to the calling program

Files Referenced:
,Narne _ Function

namel TEXT message-text (input)
namel DIST XT text without labels (output)
namel DIRTAB directory table and core-messages

(output)

D. Messages:

1. "error in 'reading message file.y
Z. "error in writing disk text file"
3. "too many characters in label -- long label message skipperr''

4. "label delimiter not found within 400 characters improper
file''

55 1
(.1



- -536-

5. "text delimite.r not found within 20 characters improper file"

6. "diretory of -N mes`sage pointers created"
. .

7. "the following labels -are multiply-defined, only 1 set ocCurrence
used

lab 1
lab 2
etc: "

(complete list of labels created).
8. "directory labels a- a

lab].
lab2
etc. "

(complete list of labels created)

E. Source File:

F.

DIRGEN ALGOL

Loading ProCedure:

LAED - ncload-
SAVE DIRGEN

DIRGEN (SRCH) UTILIB (AEDP)

552

r !),



-537-

5.2 PRINTM, PRNASC

Purpose

To print ASCII files on line.

De s cription
PRINTM

A. Usage: PNNASC name 1 na me 2 -wdct-

The programs PRINTM and PRNASC will print the ASCII file narnel
na me 2 starting at computer word wd ct. If the'final argument, wdc t is

c-)liitted, the filc will be fr--)rn the top. If there are non-printing
characters in the file, they will be represented by the expression <nnn>,
where nnn is the octal representation of the character.
PRINTM prints formatting codes, such as space, horizontal tab, and
carriage return, as octal codes rather than transmitting them to the console
as effective control characters. PRINTM transmits the carriage return
control character after every 84 characters of output. PRNASC, in contrast,
transmits the control characters that occur in the text and does not send any
of its own.

B. Operation:
PR.NASC and PRINTM begin by extracting arguments from the com-

mand line: narnel narne2 and, if included, the first word position WDCT.
FSTATE is called to determine the length of file na-rn e I n a rn e . If the
length is less than wdct, an error message is printed and the program quits.
Otherwise, a block of 432 words is read from the file. If an end-of-file condi-
tion occurs, the EOF indicator is set, Next, TYPASC is Called to print the
contents of the buffer. If the EOF flag is not set, the next block is read and
printed.

The operation of the sub-procedurds TYPASC, TRASCI and PRT12 is
explained below:

TYPASC (Ascztr): TYPASC performs the following steps:

1. TYPASC allocates an output area which is seven times the size of the
block of ASCII code pointed to by Ascptr.

55a



-538- 5.

Z. TYPASC calls TRASCI (Ascptr, Out). TRASCI translates the ASCII
code in the area pointed to by Ascptr into 12-bit BCD, which is
stored in the area pointed to by Out.

3. TYPASC calls PRT12(Out), which prints the 12-bit characters.

4. TYPASC releases the storage used aS an, output area and returns
control to the main procedure.

TRASCIlAscptr, Out): . TRASCI performs the following steps:

1. Using the string manipulation procedures GET and INC, TRASCI
steps-through the input area, extracting characters one by one.

2. If an ASCII character is non-printing, it is translated into the ex-
pression <nnn >, where nnn is its octal equivalent,

3. If an ASCII character is printableL, it is first translated to 12-bit
by ASCTSS and then inserted in the output buffer by PUTOUT.
PRT 12 (Output): PRT12 uses WRFLX to print the 17-bit char-
acters pointed to by Output.

C. Files Referenced:
namel, narne2:

b. Messagest-:-
-

I. "Given starting word beyond end of file."

any ASCrI file

E. Source File:
PRINTM ALGOL
PRNASC ALGOL

F. Loading Procedure:
LAED PRINTM (SRCH) NOLIB

or
LAED PRN4SO (SRCH) NOLIB
SAVE PRINT/M (or PRNASC)

54



-539- 5. 3

5.3 UPDIR

Purpose .

To update a master file directory
Description

After a batch of input files have been added to the data baSe, they
are written out on tape and deleted from disk. The project TIP program
PUTOUT transfers them to tape and simultaneou.sly creates a directoryfor
the tape. The tape is copied on to a master by means of a 1401 program.

UPDIR is used to combine the directory for the current batch of
files with the directory for the master tape.
A; Usage R UPDIR master -direct- -inc- -direct- -1-

"rnater direct" is the name of the file to be updated. "inc direct" con-
tains the new (incremental) directory information. If master direct has
never been LI J date d, this must be indicated by the argument "lr otherwise
that argument i omitted.

B. Operation:
the directories are six-bit line-marked BCD-coded-files. A file is

defined in the directorieth by a line with the'following format:
namel name2 wdct *line

"namel name2" is the name of the file. "wdct" is the length of the file in
words. "line" is the line number.

UPDIR combines the two directories by reading the master directory
into a work area and then reading in the incremental directory immediately
behind it. At this point, UPDIR is left with,two tasks, First, it must step
through the second part of the combined directory and incre3ment all of the
line numbers by n, where n is the number' of lines in the first part. Sec-,

ondly, since the last record of the Master file is padded out with zeroes, it
must make an entry in-tke directory to account for it. UPDIR steps through
the new entries and totals the word counts. The sum is divided by 432 (the
number of words per record) and the remainder is used as the length of a
dummy entry, called BLANK. PADDING. Finally, UPDIR deletes the old
master directory and writes out the new one.
C. Files Referencedu

master directory (name entered in command line)
Increment directory (narnff entered in command line)

555



D.

-540- 5

Messages:
1. 'Can't find last" (last line of master directory)
2. 'Error in reading master
1. "Error in reading incremental file

E. Source File:
UPDIR ALGOL

F. Loading Procedure:
LAED UPDIR (SRCH) UTILIB
SAVE UPDIR

556



1NTREX BEYOND 197:

The preceeding chapters described the Intrex Ret ai System
it has be----n implemented to date. This ch=pter discusses s,::me addtticra i
functions that we hope to implement, the factors involved in exporting
Intrex, and the characteristics of future generations of Intrex-like re-
trieval systems.

6. 1 Modification of the Intrex System

Intrex, being an experimental retrieval system, has been a con-
tinually growing system. This report is being written at a time when growth
of the (_:urrent system' has leveled off so that future new features will not
significantly chahge the basic organization and operation of the system. How-

,

ever, some features yet to be implemented would improve operating efficiency
v,hile others Would affect the user interface and permit more flexible oper-
ation and greater convenience. Some of these features are discussed below.

6. 1. 1 Exte-nded Primary Search Capability

Currently the arguinent of a subject search command is a string of
search words all of which (in their stemmed version) must be found in one

of the index phrases for the document. Searches are made more flexible
by the ability to name li-sts of documents resulting from a search request
and to combine :he named lists via Boolean operations. The need to name
lists however, may be an unneccessary encumbrance upon a user who is

interested in orily the resultant combined list, In such cases it would be
desirable to-incorporate Ehe Boolean operations directly in the search
requests. For example the request

subject (iron oxides or ferrous oxides) and structural degradation

would be equivalent to the sequence of commands currently necessary:

subject iron oxides

name iron/subject ferrous oxides

or iron/name ironfe/subject structural degradation

and ironfe

-541-
5,57



-542-

Note the use oft,parentheses in the first request to indicate order of Boolean

operations.
The Boolean operations might also be used between commands rather

than strictly within the arguments of a single command. For example

subject ferrous oxides and not author pearlman

would produce all documents indexed under "ferr-ous oxid-es" not written

by Mr. Pearlman.
Another useful extension of the subject and the title search corn-

mands would I-) e the ability to control stemming. For example a command

of the form
subject reactor+

'-

would retrieve documents indexed under "reactor" and "reactors" but
not those_indexed andex "reactivity",e L'eactivation". Similarly a com-

mand of the form
subject past*

_

would retrieve- documents indexed under idt those indexed
under "'Pastel" or "paste", thus eliminating some false drops, As pointed
out in the earlier, chapters the provision for adding this capability already
exists in the structure of the inverted files.

A third feature which would also effect the precision of retrieval is

user controlled word adjacency. That is, a search request of the :corm

subject high-temperature

would match only documents where "high" preceeds "temperature" with

no intervening words in the inderase.
An extension of the "authc -" search command would permit search-

ing of documents with joint authorship. ,For example the command

author brown, j. s. little, c.w.

would retrieve all documents authored jointly by Brown and Little. This

command would have the same effect as a similar command issfried with the

Boolean connective and between the names but would be shorter and would

558



-543-

place the syntax of the author command in closer agreement with that of
the other search commands.

A final but more subtle point of improvement is to make all com-
mands immediately executable. That is, the CLiP module, responsible for
initiating corrirriaris, would execute a command immediately upon encoun-
tering either a sl/ash (/, or a carriage return delimiter. Currently, corn-

/mands are interpreted a line at ar time in such a way that certain, apparently
reasonable command sequencces cannot be executed. For example, the
sequence

subject aluminum/output title

is permitted, but the sequence
subject aluminum/ name alu/ output . title

is not. With the suggested change there would be no restrictions on the
commands that could be combined on a single line. This would result in a
co/Tit-nand language syntax that would be much cl4rer to users. In the pro-
cess of implementing this modification, the current "anding" capability im-

.

plied by a series of search commands separated by sla'shes would be re-
_ 1

placed by the more explicit Boolean capability described above.

6.1.2 Extended Output Features
Several extended features- related to output appear to be desirable.

One of the most important of these features, and one which is in fact being
implemented at this writing, is the request for output off-line. This feature
will permit a user to initiate a search and examine results at a later time.
It will also permit a user at a display terminal to conveniently obtain a hard-
copy list of the documents he retrieved together with pertinent information
about each document. In addition, this feature will prepare the way for a
imode of operation where users, remote from the consoles, can request
searches (via telephone or through the mail) and have results delivered to
them (the so-called "delegated" search mode).

Another improvement wOuld autorn.atically decodp certain information
in the catalog before presenting it to the uSer _ For eximple, within the

. A



-544-

location field the journal name is represented as a CODEN and the date is
represented in a coded form. Both of these could be automatically inter-
preted. In addition, certain "transfer codes" appearing in the catalog indicate that
information pertaining to a field is contained in another catalog record. This
informati-on could be located by the Intrex programs and presented directly
to the user whenever a transfer code is encountered. Other codes of leser
utility such as the cataloger code, could also be interpreted.

Various other improvements in the output format are possible. Further
extentions of existing commands could permit increased flexibility-- allowing
output of information for the nth document on a list, increased paging capa-
bility for text access, and so on.

6.1.3 Other Search Aids
Several other features could be implemented that would allow users

to control the general searching process more completely and improve pre-
cision of retrieval. The RESTRICT go.ommand which selects documents from
an already retrieved list based on the appearance of a given string in the
index terms could be modified to function in a manner more like the gener
alized search command of Section 6.1.1. A second minor improvement
would be to implement a form of this command that would apply to the pro-
Pe codes of documents: z

journal article (or not), 0 - original work, and P -
professional level.

In keepiRg with the imMediately executable principle for commands
(Section 6.1.1), the RANGE command should be reprogrammed to apply
after a search command has been executed. Then the command could be
given either as y:ort of the search request (as now) or separately after the
search has been executed and acknowledged.

A problem for the user of any retrieval system is to think of synon-
.ymous and other related terms in order to improve his search strategy.

Currently, users of Intrex are aided in chosing synonyms by a printed the-
saurus available at the console. A better arrangement would be to have a
thesaurus related to the inverted file avaakable on-line and displayable at
/the user' s request.



-545-

Another feature related to user aids for more quick and convenient
searching is a more sophisticated form of the on-line guide. Currently a
user types "info n" to display the nth selection of the guide. An easier to
use implementation would permit following the INFO \command word by
command name s or other words intuitively related to the concept for which
the-user needs help. Thus the command INFO SIMPLE SEARCH would be
equivalent to the current command INFO 2. The implementation of this
feature could range from a set of tagged messages to a context search of
the guide, to a mini retrieval program complete vath inverted file to sec-
tions of the on-line guide.

6. 1. 4 Data rfase Update
Since the current Intrex program has been aimed toward estar 4-l-

ing a data base sufficiently large for meaningful experimentation, the
grams described in Chapter IV were designed only for expansion of th- data
base. However, at this writing there is no general procedure for ret.,,iing
and/or replaCing documents in the data base. A progr'am for removal of
documents must 1) remove records from the catalog and remove correspond-
ing entries in the-catalog directory and 2) delete appropriate docume:Li num-
bers (pointers) frome lists in the inverted file. _The latter is the more
difficult of the two operations.

An approach to reducing the data base without comple_tely removing
documents is as follows. Catalog records for some selecfed documents are
reducect_to little more than title and author, and the catalog directory is
adjusted correspondingly. References to these documents resulting from
terms other than those found in the title are reinoved from the inverted file.
Thus searches on title terms can still locate the document. This approach
reduces the storage associated wi i the document by about 80%. The in-
verted file operations however are more complex than thos required for
complete removal of a document. In order to strike a compromise be-
tween size of data base and economics of storage we have already em-

- baked on an effort to reduce the data base in this way. The programs
written for this purpose can be easily modified to completely remove docu-
ments when that become4 desirable,



-546-

6.2 Exportation of Intrex
The current Intrex programs were designed primarily to support

the goal of experimentation with some adVancod novel concepts in information
retrieval. Therefore the question of transferral of these programs to other
computers has been subordinated to the primary goal of experimentation.
Indeed, the programs have been somewhat customized to the CTSS system
in order to maximize operational efficiency. As a result, the transition
to another computer system would be made difficult for a nUmber of rea-
sons including

1) The lack of an AED source language compiler on many
computer system's.

2) The dependence of variables, pointers, coding scheme,-, etc.
on the 36-bit word size of the 7094.
The intimate relation of some program features to system
features, the structure of Which is peculiar to CTSS (file
system, I/0 techniques, interrupts, etc. ) '77#

In addition to these fundamental difficulties, certain subroutines
have been written in machine language for more efficient operation. The
exportation of the present,l-system to a machine other than the IBM 7094
would require complete recoding of these programs.

Although the current Intrex programs are not easily exportable,
stin themselves, the concepts upon which the system is based were designed

to be exporte-d and h\opefully will be. The most effective vehicle for their
exportation is probably another retrieval system, Intrex II,1 designed both
to incorporate all the \salient features of the present system and to be
more easily adapted tO, other computers. Further discussion of the require-
ments and properties of the next generation of the Intrex Retrieval System
is found in the next section.

6,3 Future Generations of Intrex
The,present Intrex Retrieval System was designed as an experi-

mental vehicle in which several important new concepts in library auto-
mation would be tested. A second-generation more operational Intrex
would probably differ from the experiMental system in a number of ways.

562



-547-

First, the user interface would be somewhat more sophisticated,
encompassing at least the addi.Cional. features described in Section 6.1 and
perhaps other features of a more advanced nature. For example on-line
instructional, aids might be provided that adapt to the user' s past experience
and suggest customized search strategies.

Secondly, there would be significant changes in the augmented catalog.-
The catalog record would be much shorter several. fieles wor.ld be either
eliminated or compacted. We anticipate the result would be a reduction (in
words per record) of 2. 5 or 3 to 1. Just which fields would be eliminated
or reduced must be determined from further experimentation with the pre-

*sent Catalog . Present indications are however that the number of subject
terms could be reduced, the abstract could be eliminated where available
through text acceSs, and several. shorter fields of less utility could be re-
moved. That is notto suggest that these fields are of no value hut that for
near future systems the benefits do not justify the additional costs.

Third, there would be changes in the general progr, architecture
and structure of Intrex. To a certain extent this structure would depend on
whether the system operates on a large general-purpose time sharing sys-
tem or a smaller dedicated machine. .We believe that there are many rea-
sons to favor the dedicated machine and that ultimately information retrieval.
centers will have to have machines dedicated to their use. In either case
future generations of Intrex should take advantage of the many advanced fea-
tures available on modern third-generation oomputer systems. For e,xaMpli-
in the current environment, Intrex runs as an Ordinary user under the CTSS
supervisor. This means that each user of Intrex h4s a separate copy of the
Intrex programs which is swapPed in and out of core by theupervisor in
the process of time sharing. There is no provision on this early system to

k

* An item related to the catalog itself is the indexing process, which pro-
duces the catalog record. Questions related to the amount and depth of
indexing must still. be resolved by our experiments and will relate to the
size a format of the catalog.

.56



-548-

take advantage of the fact that all Intrex users are in fact employing the
same basic code and Lherefore could share it. In many more modern com-
puter systems it is possible for users to share code and data in core
through techniques such as segmentation (on MULTICS16) and reentrant
programming. Such operation would be expecially desirable for a ma-

,chine dedicated to information retrieval since it could completely elim-
inate the need for swapping. Even without shared program code, large
memories and the ability to perform multiprogramming in most.machines
reduces swapping to some extent since more than one potentially active
user program can reside in core at a given time.

Several other features are available on the newer machines which
should serve to increase the operational efficiency of the Intrex programs
significantly. Not the least of these features is the ability to address bytes
of inforrnation directly through hardware features and special related in-
structions. A very large portion of operating time of the current Intrex
System is consumed by ch-aracter string manipulation, i.e., packing and
unpacking of bytes in a computer word, and code conversion. Through
direct byte addressing the packing and unpacking ceuld be completely
eliminated. The code conversion although generally less time consuming

_than packing operations, could also be accelerated on some machines by
the availability of special microprogrammed code conversion "sul
instructions".

A fourth wa-y in which future generations of Intrex would differ is
in the data base as it relates to the :ile system. The relation of the Intrex
data base' to the CTSS disIC file yste-rn has been discussed at length by
Ku.sik9. Synoptcally, the CTF ffie systern,.which is not unlike a paged
rr fn-nory, is well suited to an envirtiuunent where files of varying length
are continually le ,rig created, deleted, and modified. In this kind of
environment the file sy.,tem ler ..A.Kes .aes't u se of the available hardware
storage resources. When tht set of files-is wel- structured and static
as in the Intrex data base', the 7TSS file system is quite slow and in-
efficient. The ir. -sfficiency is prmarily due to the fact that records corn-
prising a file are scattered at ra.-idom throug out the disk and chained
together so that a large number ,_>1. disk acce ses are needed to locate a

p-

a 84



7549-

particular piece of information in a file of moderate length. A better approa,ch
to the file system structure has bee proposed by Kusik in which contiguous
records of a file are put on the same or adjacent disk tracks. Directories
to the files (such as CATDIR for the catalog r-'cords) are distributed on
the disk in such a manner that an entry in the directory points only to re-
cords in the same cylinder. This arrangement minimizes the total access
time for a given piece of information by eliminating "chaining" and mini-
mizing disk seek time. In addition, it should be noted that if the storage
device is not the traditional disk then the file structure could differ signif-
icantly from both 3chemes mentioned here (see for example Goldschmidt 10).

A final way in which the current Intrex differs from its possible
future implementation is in its flexibility.- Ultimately, as information re-
trieval requirements become more demanding and more diverse, the single
IR center will not be able to fulfill these requirements. A Network of IR
centers, each center perhaps specializing in a particular area of information
for its data base will be needed. Each must then provide a variety of dif-
ferent types of service including SDI and retrospective searhing carried
out as a batch processing operation subordinate to the on-line service. In
particular, search requests of the latter type should be init_ated at the on-
line terminal -d be direct _L to any center or data base in the network.
Indeed, the Intrex-like system of the future may be broadened far beyond
the scope of simple 17ib1iographic retrieval. It may serve aS the catalyst
for integrating publishing and clearing houses in a nation or world wide
network where information of all kinds can be collected, retrieved, and
distributed. The Intrex-like system of the future must be prepared for
this network type operation and must have the evolutionary,ability to
adapt to further system requirements possibly unknown at the time of
its design.



APPENDIX A

SUMMARY OF COMMON REFERENCES

1. Paranion Table POT
BLIP

Function: Hold blip characterq
Interrogated by: AND. , FSO, IN., OUT., SEARCH
Changed by: INXCON

BYTEC
Function: Count of bytes printed from catalog
Interrogated by: GETFLD
Changed by: DYNAMO, GETFLD

CATS2
Function: Name2 of catalog files
Interrogated by; DYNAMO, GETINT, QUIT
Changed by: INIVAR

CD
Function: Command line delimeters pointer
InterTMogated by: AND., INIRES, SAVE
Changed by: INICON

CET
Function: End T rim- Table pointer

. Interrogated by: AND., INIRES, SAVE
Changed by: INICON

CFT
Function: Front-Trim-Table pointer
Interrogated by: AND. , INIRES, SAVE
Changed by: INICON

COMBFO
)Function: Common buffer 0 pointer

Interrogated by: I INIRES, QUIT, SAVE
Changed by: INIFIX

COMBF1
Function: Common buffer 1 pointer
Interrogated by: ATSCRN, GETBUF, GETINT, GETLIS, IFSRCH,

SUMOUT, TABLE, TRETR1
' Changed by: INIF IX

COMBF2
Function: Common buffer 2 pointer
Interrogated by: -ANDER, IFSRCH, MOVEIT, TABLE
Changed by: INIFIX



-551

COMBF3
Function: Common buffer 3 pointer
Interrogated by: ATSCRN, IFSRCH, TYPEIT

, Changed by: INIFIX

COMBF4
Function: Common buffer 4 pointer
Inter'rogated by: ANDER, ATSCRN, FSO, IFSRCH, NUMBER
Changed by: INIFIX

COMBF5
Function: Common buffer 5 pointer
Interrogated by: ATSCRN, FSO, IFSRCH
Changed by: INIFIX

COMBF6
Function: Common buffer 6 pointer
Interrogated by: ANDER, CHKSAV, CONDIR, CONNAM,FSO. INIFFX,

LISFIL, LISTSL, LONG, MOVEIT, NAME, NEWPT,
SAVE, SHORT, USE

Changed by: INIFIX

COMLIN
Function: Command line pointer
Interrogated.by: GE,TLIN, SAVE
Changed by: IN LF IX

COMTB ,

Function: Command table pointer
Interrogated by: CLP, NAME
Changed by: INIFIX

CPUS
Function: CPU times array pointer
Interrogated by: MONINT
Changed by: MONINT

DFLN1
Function: Long message file namel,
Interrogated by: DYNAMO, GETLIN, INFO, LONG, TYPEIT
Changed by: INITDB

AFN1
Function: Dump file namel
Interrogated by: ANDER, ATSCRN, BUFSCN, CLEANP, DELIST,

FSO, NEWPT, QUIT, USE
Changed by: INIRES



-552-

DFSN1
Function: Short message file namel
Interrogated by: DYNAMO, GETLIN, INFO, SHORT, TYPEIT
Changed by: INITDB

ESCODE
Function: Escape code
Interrogated by: INIRES, OPFILE, QUIT
Changed by: DYNAMO

IFS2
Function: Inverted file name2
Interrogated by: GETLIS, IFSINT, IFSRCH, MEADIR, SEARCH
Changed by: INIVAR

INTIAD
Function: Location of level 1 interrupt routine.
Interrogated by: ININT, INTONE
Changed by: ININT

LMAP
Function: Pointer to field lengths array
Interrogated. by: GETFLD
Changed by: GETFLD

MAXCHR
Function: Maximum length of output line
Interrogated by: TYPEIT
Changed by: DYNAMO, INITDB

M.AXCIN
Function: Maximum number of input characters per line
Interrogated by: GETLIN
Changed by: INITDB

MAXLIN
Function: Maximum number of lines of input
Interrogated by: GETLIN
Changed by: INITDB

MFN1
Function: Monitor file namel
Interrogated by: ERRGO, MONTOR, INIRES
Changed by: INIRES

MODEG
Function: Mode used by procedure ANDER
Interrogated by: AND. , NOT
Changed by: CLP, WITH

.t`



-553-

MODS
Fu-action: Address oi module call count array
Interrogated by: MONINT
Changed by: MONINT

MONBFI
Function: Location of monitor buffer 1
Interrogated by: INIDSK
Changed by: INIDSK

MONBF2
Function: Location of monitor buffer 2
Interrogated by: INIDSK
Changed by: INIDSK

MFUNI
Function: Monitor File used namel
Interrogated by: MONTIM, QUIT, SEARCH, SUMOUT
Changed by: MONTOR

MFUN2
Function: Monitor File used narne2
Interrogated by: MONTIM, SUMOUT
Changed by: MONTOR

NFN1
FunCtion: Name File name!
Interrogated by: ANDER, CONNAM, DROP, NAME, SAVE, USE
Changed by: DROP, USE

PFN1
Function: Password File namel
Interrogated by: DYNAMO, LONG, QUIT, SHORT
Changed by: INIRES

RA.M

Function: Residual author mode
Interrogated by: GATP, LN
Changed by: INITDB

REAS
Function: Real time array pointer
Interrogated by: MONINT
Changed by: MONINT

RTM
Function: Ready message time pointer
Interrogated by: GETLIN
Changed by: INITDB

569



-554 -

SFN1
Function: Save File name/
Interrogated by: LIST, SAVE
Changed by: -SAVE, USE

STM
Function: System CPU time array pointer
Triterrogated by: CALLIT, LISTEN, MONTOR, SUkDER, TYPEIT
Changed by: INITDB

SYSNAM
Function: Intrex system name
Interrogated by: MONTOR -

-Changed by: DYNAMO, INIVAR
TEXTX

Function: Text access pointer
Interrogated by: FSO, GETLIN
Changed by: CLP; FSO, OUT.

TOTBLK
Function: .IDump File pointer
Interrogated by: ANDER, ATE RN, BUFSCN,. FSO, GETEIS
Changed by: ANDER, DEEIST, INIRES, NEWPT

TOTNAM
Functi..onr: Name File pointer
Interrogated by: ANDER, CONNAM
Changed by: ANDER, CONNAM, DROP, MIRES, USE

TOTSAV
Function: Save File pointer.
Interrogated by: SAVE
Changed by: SAVE, USE

VERBOS
Function: TYPEIT mode
Inteixogated by: CEP, FSO, GETLIN, INIRES, SEEMAT,

TRETRI, T YPEIT
Changed by: DYNAMO, INITDB LONG, SHORT

"070



- 555-
2. System State Table (SST)

CATII
Function: Off-line output
Interrogated by: FSO, GETLIN
Changed by: DYNAMO

,CLAMP
Function: Restricted user
Interrogated by: INIRES, LONG, MONITOR, QUIT, SHORT
Changed by: DYNAMO, QUIT

FSONX
Function: FSO not executed
Interrogated by: EVAL, SUPER
Changed by: EXIT, FSO, OUT., SUPER

GCE
Fur-::tion: Go command exists
Interrogated by: SUPER
Changed by: EXIT, FSO, OUT., SUPER

GETFLG
Function: Interrupt in GET:LIN
Interrogated by: INTONE, LISTEN
Changed by: GETLIN

HELD
Function: Intrex held up for Message File update
Interrogated by: GETEIN
Changed by: GETLIN

IBEG
Function: In begin stage
Interrogated by: CLP, GO, LISTEN, SUPER
Changed by: DYNAMO, GO

INFO1
Function: None
Interrogated by: Not Used
Changed by: INFO

INFO2
Function: None
Interrogated by: Not Used
Changed by: INFO

INFOX
Function: Info. begin performed
Interrogated by: GETLIN
Changed by: INFO, TYPEIT

571



-556-

INTI
Function: Interrupt level 1
Interrogated by: TYPEIT
Changed by: INTONE, TYPEIT

INT2
Function: Interpt-level 2
Interrogated by: TYPEIT
Chanwed by: INTTWO, TYPEIT

ISI
Function: In sign-in
Interrogated by: LISTEN
Changed by: SIGNIN, SUPER

LISAV
Function: At least one reference list named
Interrogated by: DROP
Changed by: DROP, NAME

RLIC
$11-Function: Restored li,st in core

Interrogated by: AUTHOR, DELIST, RESTOR, SUBJ., TITLE
Changed by: NUMBER, RESTOR

RRLE
Function: . Reference list exists
Interrogated by: SUPER
Changed by: DELIST, RESTOR, SUBJ., TITLE

SKIPS
FunctiDn: Skip sign-in
Interrogated by: SIGNIN
Changed by:"--ITANAMO

SPEC1
Function: Special condition 1
Interrogated by: GETFLD
Changed by: DYNAMO

SPEC2
Function: Special condition 2
Interrogated by: FSO
Changed by: DYNAMO

SNX
Function: Search not executed
Interrogated by: AUTHOR-, OUT., RESTOR, SUB UPER, TITLE
Changed by: EXIT, GATP, SEARCH, SUBJ., SUPER, TITLE



- 557 -

T ESTIT
Function: In test mode
Interrogated by: DYNAMO, SUPER
Changed by: DYNAMO

TIMES
Function: Time request active
Interrogated by: GETLIN
Changed by: TIME

3. Command List
ASF

Function: Author search form
Interrogated by: ASRCH, CLEANP, EVAL, FSO
Changed by: ACLN, GATP

DCNT
Function: Document count
Interrogated by: EVAL
Changed by: RESTOR, SEARCH

FSL
Function: Secondary search,4ist
Interrogated by: EVAL, FSO
Changed by: FCLEAN, INITDB, IN.

ORE
Function: Output request list
Interrogated by: EVAL, FSO
Changed by: FCLEAN,. INITDB, OUT..

RESUB
Function: Recordered subject search list
Interrogated by: STCLN
Changed by: CLEANP, SSRCH

RETIT
Function: Reordered title search list
Interrogated by: STCLN
Changed by: CLEAN?, TSRCH

RRL
Function: Reference list
Interrogated by: AND., ASRCH, CLEANP, DELIST, DRPPTR, 8VAL,

FSO, SEARCH, STRCH
Changed by: ASRCH, CLEANP, DELIST. RESTOR, STRCH, USE



- 558 -

SSE
Function: Subject search form
Interrogated by: CLEANP, EVAL, FSO, RANGE, SSRCH
Changed by: STCLN, SUBJ.

TSF
Function: Title search form
Interrogated by: CLEANP, EVAL, FSO, TSRCH
Changed by: STCLN, TITLE

574



APPENDIX B
DATti BASE FORMATS

1. Catalog

The Intrex catalog uses a directory file, CATDIR INTREX, and a
set of catalog files. The catalog files are named CRxxx INTREX, where
xxx is a 3-,digit number. For each document in the data base, CATDIR
INTREX contains a one-wOrd pointer which points to the document's catalog
record within the segmented catalog files.

The first ten words of the file CATDIR INTREX contains general
information about the catalog (see Table 1). Starting in word 11 of the direc-
tory, each word in position n of the directory references the document
with docuMent number n-10 (see Table 2). If a document is not in the data
base, the corresponding word in the directory is zero.

Each catalog record has three separate regions. The first region
is four words long and consists of fixed-length, binary encoded fields (see
Table 3). The second region contains pointers to variable length fields in
the third region (see. Table 4). This region begins with a one-word header
which specifies the length of the region. Following the header are the pointers
which contain the field number in the decrement and the byte position of the
first character of the next field in the address.** The first byte of the first
field is counted as position I. The character strings follow one after the
other in region three. The strings are digram encoded; that isN, pairs of
ASCII characters, are represented whenever possible by one unique nine-bit
code.

* Bits 3-17 of the pointer
** Bits 21-35 of the pointer

i -559-



-560-

Table 1

Format of first 10 words of CATDIR INTREX

Word - Contents
1 Highest document number in file
2 Size of catalog file in words
3 No. of catalog records in catalog
4 No. of changes made to catalog
5 Namel of last segment
6 Name2 of catalog
7 Maximum length of catalog segment

8-10 Not used

Table' 2

Format'of CATDIR INTREX pointer

Word Bits Contexls

'1
1

..._. 1

.

0-8
9-20

21-35

Number of catalog segment ,

Lprigth of record in wo-i-ds .

Position of first word of record
- .

376



-561-

Table 3

Format of Region 1 of catalog record

Word Bits . Contents .

1 0-20 Document number (Field 1)
1 21-35 Online date (Field 4)
2 0-11 Catalogers' codes (Field 3)
2 12-14 Level of approach (Field 66)
2 15-19 Language (Field 36)
1 , 20-24 Medium (Field 30)
2 25-30 Format (Field 31)
2 31-35 Purpose (Field 65)
3 0-9 Language of Abstract (Field 37)
3 10-15 Chosen by (Field 2)
3 19-20 .Main entry pointer (Field 20),
3 21-35 Date acquired (F:i.ald 46)
4 0-35 Not used
I

_

Table 4

Format of Region 2 of, catalog record

Word Bits, Contents-
1 0-17 All. l' s
1 18-35 Number of words in Region 2
2 3-17 Field number
2 21-35 First byte position

_

3 0-35 Same as word 2



-562-

Z. Inverted Files
The Author and Subject/Title Inverted Files consist of n segments.

Each segment of the Inverted File contains ten sections of 432 computer
words (one disk record) each. If a long list begins in Section 10, it may
run over into one or more additional 432 woi-d blocks. Each section begins
with a one-word header containing a fence of octal 7's in the left half and
a list offset in the right half (see Figure B1). This offset is the number of
computer words into the section where the first new list begins. If no new
list begins in that section (because of a long list beginning in a previous
section and ending in a subsequent section), then the offset will be zero.

Each list is introduced by a three word header...The first word of
this header contains an octal 7 in the left-most three bits (prefix), the num-
ber of all-zero computer wards used as padding at the-end of the list (BWL)
in the neXt 15 bits (decrement), and the total number of computer words in
the list (CWL) in the right 15 bits (address). The second word in the header
contains the number of documents in the list (DCL) in the decrement, and the
number of references in the, list (RFL in the address. The third word contains
the number of characters (bytes) i e index word sten--; or name (BYN) in
the address, a 1 (author files) or a (subject title files) in bits 9-14 repre-
senting the maximum number of affix codes which may be associated with this
stem/name (EWN), and the number of affixes in the list in bits 3-8 (EDS) if
a .-tibject/title file or bits 1-8 (INS). if an author file (see Figure B1).

The ASCII-coded index word or list name is packed four characters
to a computer word in the words immediately following the header. Any un-
filled words are left-justified and (binary) zero-padded.

Pairs of affix words follow the name. Each pair consists of a header
and an ending code or set of author's initials. The ending code, found in the
subject/title Inverted Files, is a left-juptified 12-bit code which addresses
one of the entries in the ending table residing in a file called Ending Tests.
This file-table contains ASCII ending strings organized according to the
length of the string from longest to shortest. The left-most four bits of the
12-bit code gives the length of the ending and, .therefore, group within the
table. The other eight bite provide the position of that ending withintIle group.
Author's initials found in the affix of the author Inverted Files are strings of

. 0
!MOO



RRL. (CL.)

. Count
1 1

LitidrPointer

Current List Pointer

Pointer Table

r- - - -

r
1 1

S Innn Segment or List name

DR T R DR refs. on disk file (Type T ) at record R

CR B A cit refs. in core (Buffer 8) ot Location A

Fig. B.1 Inverted File Format



-564-

from one to four ASCII characters packed left-justified into the affix word.
The affix header contains the number of such initial codes in the tag por-
tion (bits 18-20). In subject/title files, the tag of these headers is empty.
In both types of files, the address portion of the affix header words contains
the nurn6er of references associated with this affix (REF), which is a sub-
set of the entire reference list, and the decrement portion contains the num-
ber of documents in that subset of references (DCE).

Following the affix list Is the list of reference words associated
with, the stem or name. The length of this list may range from 1 to several
thousand computer words taking up many sections of the Inverted File.Each
reference word contains: a document number (DN); a property code (PC);

an affix number (EN or IN); and a term or author number (TN or AN). In
adfilition to these, the subject/title references contain a weight (WT) and

word number (WN). The bit positions and meaning of these components are
shown in Figure Bl. The affix number is used to connect the reference word
to a particular affix/header word pair. For instance, a three in this compo-
nent means that the third affix in the group of affixes should be used whenever
this reference prompts the printing of the stem with its ending or the.author
name with its initials .

Inverted File lists may be split betren sections only at pOints

within the affix group or the reference list and never in the header ,or stem/
"naz-ne. To avoid the latter condition, an area of ten computer words or more
must exist between the end of any list and, the end.of a section in order for a
new list to begin in that section.* When fewer than ten words are left in the
section, they are (ASCII) 'blank-padded and the next list begins at the start
of the next section. It is these blank words that are recorded in'the BWL

component of the three-word ist header. They are also reflected in CWL
(computer words in the list).

.1



-565-

3. List Pointers
The "current list" pointer resides in the "resultant reference list"

component of the Command List, RRL. (CL.), which is a single computer
word whose address portion points to an entry in the table of augmented list
pointers. An augmented list pointer is a group of three contiguous words con-
taining data about a reference list. Pointers in this table may be the result
of searches, Boolean operations, NAME commands, or DOCUMENT com-
mands. At present, the table is 120 words in length and can, therefore, hold
forty list pointers.

The first word of a three-part pointer is used for one of two purposes.
If the list ione which has )een NAMEd by the user and is, therefore, residing
in the Name File, the first pointer word holds the name (in 6-bit BCD) of the
list. If the list is at least partially disk-resident in some other file (such as
the "Dump File or an Inverted File segrnent),then the first word will hold the
name of that file. In any case, the first word may be thought of as the "name"

portion. If the list is entirely cove-resident, this word is empty.

The second word of the augmeiited pointer is used to point to that
part of the list which resides on the disk. The address portion contains the
file depth expressed in number of 432-word records at Which the list begins.
The decrement portion contains the length, or number of references on the
disk for this list. The tag of this word contains a type code. A 'V in the tag
means the list is to be found in an Inverted File segment. A '2' means the .

list is to be found in the Dump File, and a '4' means it is i the Name File.
This code provides a means of determining how to treat the name in word one.
If the entire list is core-resident, word two is empty.

Word threg provides the location (address part) and fength (decre-
ment) of the core-stored portion of the list. it also contains, inthe tag compo
nent, a "common buffer number" designating which of the Intrex buf.gers
should be used for reading the disk-stored portion, if any, of the' list.If the
entire list is disk-resident, word three is empty. A NAMEd list pointer .,

uses word three to hold the document count.Figure B2 shows a pointer to
an Inverted File List.

581



C
rr

i
)4

:7
13

B
its

Se
ct

io
n 

H
ea

de
r

L
is

t H
ea

de
r

N
on

e
(s

te
m

)

A
ff

ix
 1

A
ff

ix
 2

A
ff

ix
 n

L
is

t H
ea

de
r

3
17

21
35

7
7

7,
7

7
7

L

E
N

D
IN

G
C

O
O

E
 1

E
A

u_
D

rh
to

R
T

:f
T

.F
.:1

X
,_

E
rz 4

I._
_ 

A
ut

ho
r.

, I
ni

tia
ls

A
ut

ho
r

54
1.

er
/fi

de

E
N

D
IN

G
C

O
D

E
 2

In
--

 D
C

E
--

-c

E
N

D
IN

G
 I

C
O

D
E

 n
 ;

le
 g

. ,
11

R
E

FE
R

E
N

C
E

 1

R
E

FE
R

E
N

C
E

 2

A
FF

IX
 L

IS
T

(E
D

Sx
2)

R
E

FE
R

E
N

C
E

 L
IS

T
M

FL
)

R
E

FE
R

E
N

C
E

 n

' ,
=

=
e/

A
=

01
=

D
C

L

ri
 4

21
=

L
os

t R
ef

er
en

ce
 o

( 
Se

ct
io

n

R
ef

re
nc

e 
W

or
d 

Fo
rm

at

11
.-

17
11

11
-2

0s
21

-3
5

14
15

-1
(4

11
-1

41
15

-1
71

18
-2

01
21

- 
-3

5
W

hi
t T

N
E

N
W

T
O

C
O

N

fl
in

Pr
op

ed
y 

C
od

e

14
--

 A
ttr

ib
ut

es

L
IS

T
(C

W
L

)

L
IS

T
 n

LO
:

Li
st

 o
ffs

et
 (

po
si

tu
u 

in
 li

st
 w

he
re

 fi
re

t h
st

 b
eg

in
s)

B
W

L:
B

la
nk

 w
or

ds
 in

 li
st

(li
m

oo
nt

 o
f p

ad
di

ng
 a

t e
nd

 o
f '

lis
t)

C
W

 L
i

T
ot

al
 c

om
pu

te
r 

w
or

ds
 in

 li
st

 (
in

cl
ud

in
g 

bl
an

ks
if 

an
y)

D
C

 L
i

N
um

be
r 

of
 d

is
tin

ct
 d

o)
cu

m
en

ts
 in

 li
st

R
F

L:
N

fim
be

r
re

fe
re

nc
es

\ i
n 

lis
t

IN
S

:
N

um
bs

 o
f i

ni
tia

l e
ts

au
th

oi
 li

st

E
D

S
:

N
um

b 
r 

of
 w

or
d 

en
cl

in
g'

p 
in

 s
ul

tij
ec

t/t
itl

e 
lis

t

E
W

N
:

N
um

b 
r 

of
 E

ng
lis

h 
w

or
ds

 in
's

eb
je

ct
/ti

tle
 te

rm
 (

al
w

ay
s

I a
t

pr
as

e 
t)

or
 n

um
be

r 
of

 in
iti

al
s 

in
 a

ut
ho

r 
na

m
e

(a
lw

ay
s 

41

N
um

be
r 

of
 b

yt
es

 (
ch

ar
ac

te
rs

) 
in

 n
am

e 
st

em
 (

he
re

61

N
um

be
r 

of
 d

is
tin

ct
 d

oc
um

en
ts

 r
ef

er
rin

g 
to

 th
e 

na
m

e
us

in
g

af
fix

 n

N
um

be
r 

of
 r

ef
er

en
ce

e 
as

so
ci

at
ed

 w
ith

 th
e 

na
m

e 
us

in
g

af
fix

 n

In
iti

al
 c

ou
nt

 (
N

o.
 o

f i
ni

tia
ls

 in
 th

io
 a

ut
ho

r 
af

fix
)

B
Y

N
:

D
G

E
n:

R
E

F
 n

:

D
N

:

W
N

:

T
N

:

A
N

:

E
N

:

P
G

:

W
:

J: 0:

D
oc

um
en

t n
um

be
r

W
or

d 
nu

m
be

r 
w

ith
in

 p
hr

as
e

T
er

m
 n

um
be

r 
w

ith
in

 d
oc

um
en

t (
su

bj
ec

t,k
itl

e 
re

fe
re

nc
es

)

A
ut

ho
r 

nu
m

be
r 

w
ith

in
 d

oc
um

en
t (

au
th

or
 r

ef
er

en
ce

s)

E
nd

in
g 

nu
m

be
r 

as
so

ci
at

ed
 w

ith
 r

ef
er

en
ce

In
iti

al
 s

et
 n

um
be

r 
as

st
i i

at
ed

 w
ith

re
fe

re
nc

e

W
ei

gh
t (

le
ve

ll 
of

 s
ub

je
l O

dl
e 

te
rm

P
ro

pe
rt

y 
co

de
 c

on
ta

in
in

g 
th

e 
fo

llo
w

in
g 

In
di

c 
st

or
e

Is
do

( 
um

en
t w

ho
le

 w
or

k'

I. 
do

cu
m

en
t j

ou
rn

al
 a

rt
ic

le
'

D
oe

s 
do

: u
m

en
t r

ef
le

ct
 o

rig
in

al
 w

or
k*

F
ig

. 8
.2

A
ug

m
en

te
d 

Li
st

 P
oi

nt
er

 F
or

m
at



-567-
4. Fiche Direct

Fiche Direct gives the loLations of the full texts of documents in
the data base. The directory is ordered by document number: word n of
the directory gives the location of documentni Each word contains four
fields: fiche number, first frame positiyfi1 last frame position and document
number (see Table 5). If the full text of a document is not on microfiche, the
fiche number field is zero and the first frame position has a.special code in-
dicated ;n Table 6.

Table 5
1;iche Direct Format

Field Bits
Fiche Number 0-10
First Frame Position 11-16
Last Frame Position 17-22
Document Number 23-35

Table 6
Special Codes

Code in first frame Exceptions to Microfiche Text Storage
7 ositionl
1

2
.

Microfiche text access to be available at
a /tater date. (Filming will be done after
cataloging the document.) (Access number,
when known, will be added to FICHE DIRECT
by update.) \
Microfiche text access available only to in-
dividual bibliographic part_s_of this document.
(For example, the document record is that
for an entire journal.)

rofiche text access will not be available.
Hai copy aCcess only. (Document text runs
mor than 60 pages; document typography
too po o film; document is "temporary"
as say, preprint to be replace4E by a perma-
nent publication.) The last frame position
contains the right-most six bitsof:an ASCII
letter code for the location of the guaranteed
hard copy access. If this location is inla li-
brary whose name has an established code
(see field II in the manual) that code is used.
If this location.is a shelf adjacent to the Iritrex
display console, the code letter "i" is entered.

,

083



APPENDIX C

THE INTREX ENVIRONMENT

1. The Time-Sharing System:
1 5The Compatible Time-Sharing System (CTSS) was developed at MIT_

by Project MAC under the sponsorship of the National Science Foundation
the Office of Naval Research, and the Ford Foundation. It was one of the
pioneering efforts in the time- sharing field, becoming operational in 1963,

..

and through continuous growth and improvement it has reached a high level
of utility and reliability. CTSS is implemented On an IBM 7094 computer using
two 32K word* units of core memory. One memory unit (referred to as A-core)
holds the operating system. This operating system handles I/O, scheduling,

_

the swapping of user programs, _and general job monitori9g. The other mem-
ory unit (referred to as B-core) is reserved for the user program which is

13currently being run. No multiprogramming or aging capability exists on
CTSS so only one user program can reside in B"---eore at a given time. User .
programs are swapped in and out when an I/0 transfer is called for or when
the time slice allocated by the supervisor scheduling algorithm has elapsed.
When a user's program is swapped out of core, its core-image is dumped
onto the high speed drum from which it can be reloaded when its turn arrives
again. The computer time used for swapping is tabulated by the supervisor
and a share of.it is assessed each user, together with the processing time
used.

The user interacts with CTSS through commands typed on the termi-
,

nal keyboard. Most commands have one or more arguments specifying how or
upon which entity the command is to be implemented. For example, when the
command is to begin execution of a user's ipreviously loaded but disk resident
program, the command is RESUME or R and the first argument after the
word RESUME is the name of the program. Other (optional) arguments may
follow the program name and these are read and used by the program as it
begins operation. Thus, in the command, RESUME INTREX SHORT HOLD,
the command RESUME will cause the program file named INTREX SAVED

'\s

A word on the 7094 is 36 bits plus parity. Words have the following format:
Pre-
fix Decrement Tag..

---
Address

0-2 3-17 8:20 21-35

58 4568 -



-569-

to be.brought into B-core and executed. The program INTREX will then read
the a=rgurnents SHORT and HOLD and use them to set the appropriate pro-
gram mode switches. INTREX or any other program once started can be
terminated immediately by pushing the "attention" or "quit" button twice
in succession.** Other CTSS cornrnands permit a user to create,edit, corn-

or assemble programs and perform some other functions described
below.

One of the most powerful and useful characteristics of the CTSS
architecture-is its method of storing, acidressing, sharing, and generally
managing files. A file is a collection of disk-stored or drum-stored symbols
which may be a source program, an object program, printable text, or set
of data. -The actual location of files on physical storage devices is handled
by the CTSS supervisor and need not concern the system user, who always
addresses the files by a symbolic name. Each file has two names, the sec-
ond of which usually classifies it as a particular type. For example; a file
whose last name is SAVED is assumed by CTSS to be an executable program.
Furthermore, any executable 'program must be given the last name,SAVED
before it can be executed at any time other than immediately after loading.
Files whose last names are BSS are assumed to be relocatable binary (ob-

ject) programs. Only these can be loaded together to become an executable
program. Files whose last names are ALGOL are agsumed to be source
programs in the AED language and only these can be compiled by the AED
compiler into an object program (See next section).

File names are kept by CTSS in a "User's File Directory" (UFD),
which may be accessible to the individual programmer or shared by several
users. A UFD which is sharable is called a Common File (or COMFIL). A
CTSS accourt may consist of one or more "problem numbers", each main-
taining its own set of Common Files 'and/or individual UFD's. A user upon
"logging in" to CTSS enters his "home UFD". He then may switch into
other UFD's where permission to do so has been established or merely share
programs in other UFD's (again when permission has been established). The
Intrex software system currently exists in COMFIL 4 of problem number T289.

**However see Section 3.1.10.3 in regard to INTREX.

585



- 57 0 -
-

System components (source files etc.) are stored in other Common Files.
Through the sharing of programs many users who have individual accounts
on CTSS can use the Intrex retrieval programS without having to maintain
copies of the programs in'tbeir own directories. Such programs can be made
available to users in a read-only mode to protect the programs from change.
2. The AED Programming Languagel3

AED (Automated Engineering Design) is a high level source language
based on ALGOL-60 and developed under the direction of Douglas T. Ross
at the Electronic Sytems Laboratory of MIT. AED includes, besides the
conventional features of ALGOL, provision dynamic storage allocation
and list processing. Also included but not b ilt directly into the language are
4irocedures for string and character manipulation and several other features.
AED was initially implemented on the IBM 709 but was brought to CTSS in
1963 and "grew up" there. Currently the language is also available on the
IBM 360/67 and other third generation machines.

Intrex software employs several important features of the AED lan-
guage and these greatly facilitated the integration of system components. Per-
haps the most useful feature of all was the flexibility of subroutine calls and
linkages such as the ability to pass a variable length string of arguments to
the routine being called and to chain through an unlimited number of routine
levels and back without restrictions. Other features which played a vital role
in Intrex construction are the free storage package, the COMMON variable
area, 'the ability to conveniently pack words and refer to the packed compo-
nents; and the ability to insert machine language instructions where AED
language statements are inadequate or inconvenient to perform the desired
function.

Scarce programs written in AED are entered into the CTSS file system
via input/edit programs such as EDL or QED 15 where each character is re-
presented by a 6-bit BCD code. The implementation of AED on CTSS is via
the command TAED which calls the compiler into action upon the file whose
first name is specified as an argument to the comMand and whose last name
is ALGOL. Other arguments may be appended to the command to designate
special modes or to generate additional output files (e.g., a symbol table).

583



A
P
P
E
N
D
T
X
 
D

M
E
S
S
A
G
E
 
T
E
X
T

I
.

"
L
o
n
g
"
 
M
e
s
s
a
g
e
 
T
e
x
i

/
e
x
i
t
/
 
*
e
r
r
o
r
*

/
m
t
l
a
b
l
/
 
*
s
i
g
n
i
n
*

/
m
t
l
a
b
2
/
 
*
s
i
o
n
2
*

/
m
t
l
a
b
.
i
.
/
 
g
c
l
p
*

/
s
t
l
a
b
4
/
 
*
f
s
o
*

/
m
t
l
a
h
5
/
 
*
e
y
a
l
*

/
m
t
l
a
b
b
/
 
*
o
u
i
t
*

/
m
t
l
a
h
7
/
_
*
s
e
a
r
c
h
*

/
m
t
l
a
b
e
/
 
*
i
n
t
l
*

/
m
t
l
a
b
9
/
 
*
i
n
1
2
*

/
o
p
l
/
 
0
A
 
s
e
a
r
c
h
 
o
n
 
y
o
u
r
 
r
e
q
u
e
s
t
*

/
0
P
2
/
 
*
f
o
u
n
d
*

/
o
p
3
a
/
 
*
d
o
c
u
m
e
n
t
s
.
*

/
o
p
i
b
/
 
*
d
o
c
u
m
e
n
t
.
*

/
o
p
4
a
/
 
T
h
e
 
c
a
t
a
l
o
g
 
f
i
e
l
d
s
*

/
o
p
i
l
b
/
 
T
T
T
L
E
,
 
A
U
T
R
O
R
,
 
L
o
C
A
T
E
O
N
*

/
o
p
5
a
/
 
*
t
o
r
 
t
h
o
s
F
 
d
o
c
u
m
e
n
t
s
*

/
0
p
5
b
/
 
*
t
o
r
 
t
h
a
t
 
d
o
c
u
m
e
n
t
*

/
o
p
6
/
 
*
N
y
h
i
c
h
 
a
l
s
o
 
m
a
t
c
h
 
y
o
u
r
 
f
i
e
l
d
 
r
e
s
t
r
i
c
t
i
o
n
s
 
P
E
S
T
P
I
C
T
 
*

/
o
p
7
/
 
*
w
i
i
i
 
b
e
 
c
u
t
o
u
t
*

/
o
p
9
a
/
 
*
n
o
w
.
*

/
0
p
8
b
/
 
*
w
h
e
n
 
y
o
u
 
t
y
p
e

C
D 4 1

0
0
1
6
A
0
1
6
o
$
0
1
7

(
t
o
r
 
o
u
t
p
u
t
)
.
*

/
o
p
9
/
 
*
Y
o
u
 
m
a
y
 
t
e
r
m
i
n
a
t
e
 
t
h
i
s
 
o
u
t
p
u
t
 
a
t
 
a
n
y
 
t
i
m
e
 
b
y
 
h
i
t
t
i
n
g
 
t
h
e
 
A
T
T
N
 
k
e
y
 
O
N
C
E
.
*

/
0
p
9
a
/
 
*

o
t
h
e
r
w
i
s
e
,
 
y
o
u
 
r
a
y
 
m
a
k
e
 
o
t
h
e
r
 
o
u
t
p
u
t
 
r
e
q
u
e
s
t
s
 
(
f
o
r
 
i
n
f
o
r
m
a
t
i
o
n
 
s
e
e
 
P
a
r
t
 
P
 
o
f
 
t
h
e
 
G
u
i
d
e
(

o
r
 
c
h
a
n
g
e
 
y
o
u
r
 
f
i
e
l
d
 
r
e
s
t
r
i
c
t
i
o
n
 
(
s
e
e
 
P
a
r
t
 
9
.
5
)
 
o
r
 
m
a
k
e
 
a
n
o
t
h
e
r
 
r
e
q
u
e
s
t
 
o
f

r
n
t
r
e
x
 
(
s
e
e
 
P
a
r
t

1
 
1
*

/
0
p
1
0
/
 
*
T
h
e
 
r
e
s
u
l
t
s
 
o
f
 
t
h
e
 
C
O
U
N
T
 
c
o
m
m
a
n
d
 
s
h
o
w
i
n
g
 
h
o
w
 
m
a
n
y
 
d
o
c
u
m
e
n
t
s
 
m
a
t
c
h
e
d
 
e
a
c
h
 
w
o
r
d
 
i
n
 
y
o
u
r
 
r
e
q
u
e
s
t

i
s
 
g
i
v
e
n
 
b
e
l
o
w
.
*

S
o
p
1
0
.
5
S
 
*
Y
o
u
 
m
a
y
 
m
a
k
e
 
a
 
n
e
w
 
s
e
a
r
c
h
 
b
y
 
d
r
o
p
p
i
n
g
 
s
o
m
e
 
o
f
 
l
o
u
r
 
s
e
a
r
c
h
 
w
o
r
d
s
 
o
r
 
c
h
o
s
i
n
q

o
t
h
e
r
 
s
e
a
r
c
h
 
w
o
r
d
s
,
 
o
r
 
y
o
u
 
m
a
y
 
m
a
k
e
 
s
o
m
e
 
o
t
h
e
r
/

r
e
q
u
e
s
t
 
o
f
 
I
n
t
r
e
x
 
(
s
e
e
 
P
a
r
t
 
1
)
.
*

/
o
p
1
1
/
 
*
S
T
A
N
D
A
R
C
*

/
n
p
1
2
/
 
*
M
A
T
C
H
*

f
o
o
l
d
/
 
/
P
F
S
T
R
I
C
I
*

/
0
p
1
4
/
 
*
S
U
B
J
E
C
T
*

/
o
p
l
4
a
/
 
3
A
N
G
7
,
*

/
0
0
5
/
 
*
T
I
T
L
E
*

/
o
p
l
h
/
 
*
A
U
T
U
o
R
*

l
o
p
l
i
/
 
m
g
,

/
0
P
q
0
/
 
0
T
!
)
(
T
*

/
0
1
,
1
9
!
 
*
Y
o
u
 
m
a
y
 
n
o
w
 
m
a
k
e
 
a
 
n
e
w
 
s
e
a
r
c
h
 
u
s
i
n
g
 
o
t
h
e
r
 
t
e
r
m
s
 
o
r
 
m
a
k
e
.
o
t
h
e
r
 
r
e
q
u
e
s
t
s
 
o
f
 
T
n
t
r
e
x

(
s
e
e
 
P
a
r
t

1
 
o
f
 
G
u
i
d
e
 
o
r
 
t
y
p
e
 
e
0
1
6
i
n
f
o
 
1
0
0
1
7
?
.
.
*

$
s
i
n
t
$
 
*
g
r
e
e
t
i
n
g
s
!
 
T
h
i
s
 
i
s
 
I
n
t
r
e
x
.

P
l
e
a
s
e
 
l
o
g
 
i
n
 
b
y
 
t
y
p
i
n
g
 
t
h
e
 
w
o
r
d
 
W
I
 
f
o
l
l
o
w
e
d
 
b
y
 
a
 
s
p
a
c
e
 
a
n
d
 
y
o
u
r
 
n
a
m
e
 
a
l
d

a
d
d
r
e
s
s
 
l
s
 
i
n
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 
e
x
a
m
p
l
e
:



(
d
l
d
l
o
g
 
s
m
i
t
h
,
 
r
 
j
;
m
i
t
 
7
3
-
5
2
5
1
;
e
x
t
 
7
2
3
4
0
)
7
7

N
o
t
e
 
t
h
a
t
 
y
o
u
r
 
l
o
g
 
i
n
 
s
t
a
t
e
m
e
n
t
 
s
h
o
u
l
d
 
e
n
d
 
w
i
t
h
 
a

c
a
r
r
i
a
g
e
 
r
e
t
u
r
n
.
*

S
s
i
n
2
a
$
 
*
W
e
l
c
o
m
e
 
t
o
 
I
n
t
r
e
r
 
M
.
*

S
s
i
n
a
 
1

I
t
 
y
o
u
 
a
l
r
e
a
d
y
 
k
n
o
w
 
h
o
w
 
t
o
 
u
s
e
 
I
n
t
r
e
x
,
 
y
o
u
 
m
a
y
 
g
o

a
h
e
a
d
 
a
n
d
 
t
y
p
e

i
n
 
c
o
m
m
a
n
d
s
.
 
(
R
e
m
e
m
b
e
r
,
 
e
a
c
h
 
c
o
m
m
a
n
d
 
e
n
d
s
 
i
n
 
a

c
a
r
r
i
a
g
e
 
r
e
t
u
r
n
.
)

O
t
h
e
r
w
i
s
e
,
 
f
o
r
 
i
n
f
o
r
m
a
t
i
o
n
 
o
n
 
h
o
w
 
t
o
 
m
a
k
e
 
s
i
m
p
l
e
 
s
e
a
r
c
h
e
s

o
f
 
t
h
e

c
a
t
a
l
o
g
,
 
t
y
p
e

W
h
i
n
f
o
 
N
O
Y
/

o
r
,
t
o
 
s
e
e
 
t
h
e
 
T
a
b
l
e
 
o
f
 
C
o
n
t
e
n
t
s
 
!
P
a
r
t
 
1
)

o
f
 
I
n
t
r
e
x
 
G
u
i
d
e

w
h
i
c
h
 
w
i
l
l
 
d
i
r
e
c
t
 
y
o
u
 
t
o
 
o
t
h
e
r
 
p
a
r
t
s
 
o
f
 
t
h
e
 
G
u
i
d
e

e
v
p
l
a
i
n
i
n
g
 
h
o
w
 
t
o

m
a
k
e
 
m
o
r
e
 
d
e
t
a
i
l
e
d
 
s
e
a
r
c
h
e
s
,
 
t
y
p
e

1
0
1
6
d
0
1
6
i
n
f
o
 
1
r
0
7
r
0
1
7

i
e
m
m
e
s
S
 
*
 
s
e
 
w
o
u
l
d
 
a
p
p
r
e
c
i
a
t
e
 
y
o
u
r
 
c
o
m
m
e
n
t
s
 
o
n
 
t
h
e
 
I
n
t
r
e
x
 
s
y
s
t
e
m
.

F
o
r
 
i
n
f
o
r
m
a
t
i
o
n

o
n
 
h
o
w
 
t
o
 
r
a
k
e
 
c
o
m
m
e
n
t
s
 
s
e
e
 
P
a
r
t
 
1
3
 
o
f

G
u
i
d
e
 
o
r
 
t
y
p
e

r
u
l
t
a
e
l
h
i
n
f
o
 
1
1
0
1
7
¢
0
1
7

Y
o
u
 
m
a
y
 
a
l
s
o
 
m
a
k
e
 
a
d
d
i
t
i
o
n
a
l
 
s
e
r
v
i
c
e
 
r
e
q
u
e
s
t
s

o
f
 
t
h
e
 
I
n
t
r
e
l
 
c
o
n
s
u
l
t
a
n
t
.

I
f
 
y
o
u
 
d
e
 
n
o
t
 
w
i
s
h
 
t
o
 
m
a
k
e
 
A
n
y
 
o
t
h
e
r
 
c
o
m
m
e
n
t
s

o
r
'
r
e
q
u
e
s
t
s
,
 
t
y
p
e

0
0
1
6
g
u
i
t
e
0
7
7

S
o
u
t
m
e
s
S
 
*
T
h
a
n
k
 
y
o
u
 
t
o
r
 
.
u
s
i
n
g
 
I
n
t
r
e
x
.
*

S
p
a
s
s
e
r
s
 
*
Z
r
r
o
r
 
i
n
 
w
r
i
t
i
n
g
 
p
a
s
s
w
o
r
d
 
f
i
l
e
.
 
N
o
 
a
u
t
o
m
a
t
i
c

r
e
s
u
m
p
t
i
o
n
 
o
f
 
I
n
t
r
o
x
.
*

S
p
a
s
s
o
k
$
 
*
P
a
s
s
w
o
r
d
 
r
e
c
e
i
v
e
d
-
-
*

S
b
e
g
m
e
s
S
 
*
P
l
e
a
s
e
 
t
y
p
e
 
t
h
e
 
w
o
r
d
 
R
E
G
I
N
 
f
o
l
l
o
w
e
d
 
b
y
 
a

c
a
r
r
i
a
g
e
 
r
e
t
u
r
n
.
*

$
b
e
g
e
r
1
S
 
I
n
t
r
e
x
 
c
o
u
l
d
 
n
o
t
 
u
n
d
e
r
s
t
a
n
d
 
y
o
u
r
 
l
o
g
 
s
t
a
t
e
m
e
n
t
.
*

S
b
e
g
o
r
2
S
 
*
P
l
e
a
s
e
 
l
o
g
 
i
n
 
b
y
 
t
y
p
i
n
g
 
t
h
e

w
o
r
d
 
L
O
G
 
f
o
l
l
o
w
e
d
 
b
v
 
a
 
s
p
a
c
e
 
a
n
d
 
y
o
u
r
 
n
a
m
e
 
a
n
d

a
d
d
r
e
s
s
 
a
s
 
i
n
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 
e
x
a
m
g
e
:

l
o
g
 
s
m
i
t
h
,
r
 
i
;
m
i
t
 
1
3
-
5
Z
5
I
;
e
x
t
 
7
2
1
4

N
o
t
e
 
t
h
a
t
 
y
o
u
r
 
l
o
g
 
s
t
a
t
e
m
e
n
t
 
s
h
o
u
l
d
 
e
n
d
 
w
i
t
h
 
a

c
a
r
r
i
a
g
e
 
r
e
t
u
r
n
.
*

$
b
e
g
e
r
i
$
 
*
I
n
t
r
e
x
 
c
o
u
l
d
 
n
o
t
 
f
i
n
d
 
y
o
u
r
 
n
a
m
e
 
i
n
 
y
o
u
r

l
o
g
 
s
t
a
t
e
m
e
n
t
.
*

/
r
e
d
m
e
s
/
 
*
R
F
A
D
Y
*

S
s
i
n
f
l
 
*
Y
o
u
 
m
a
y
 
n
o
w
 
l
o
o
k
 
a
t
 
a
n
y
 
p
a
r
t
 
o
f
 
t
h
e
G
u
i
d
e
 
o
r
 
u
s
e
 
a
n
y
 
o
t
h
e
r
 
c
o
m
m
a
n
d
.
*

S
s
i
n
n
t
 
*
T
o
 
s
e
e
 
T
a
h
l
e
 
o
f
 
C
o
n
t
e
n
t
s
 
f
o
r
 
I
n
t
r
e
x
 
1
 
G
u
i
d
e

a
n
d
 
h
o
w
 
t
o
 
u
s
e

t
h
e
 
G
u
i
d
e
 
o
n
 
l
i
n
e
,
 
t
y
p
e



m
0
1
6
i
n
t
o
 
1
2
0
7

G
t
h
e
r
w
i
s
o
,
 
y
o
u
 
m
a
y
 
n
o
w
 
m
a
k
e
 
s
i
m
p
l
e
 
s
e
a
r
c
h
e
s
 
o
r
 
u
s
e
 
a
n
y
 
o
t
h
e
r
 
c
o
m
m
a
n
d
.
*

i
i
n
f
o
e
r
S
 
*
i
s
 
n
o
t
 
a
 
v
a
l
i
d
 
a
r
g
u
m
e
n
t
 
t
o
 
t
h
e
 
'
I
N
F
O
f
 
c
o
m
m
a
n
d
.
*

S
i
n
f
o
t
r
S
 
*
T
h
i
s
 
s
e
c
t
i
o
n
 
I
f
 
t
h
e
 
o
n
-
l
i
n
e
 
C
u
i
d
t
,
 
h
a
s
 
b
e
e
n
 
t
r
u
n
c
a
t
e
d
 
b
e
c
a
u
s
e
 
o
f
 
i
t
s
 
l
e
n
g
t
h
.

S
e
e
 
p
r
i
n
t
e
d
 
v
e
r
s
i
o
n
 
i
f
 
y
o
u
 
c
a
r
e
 
t
o
 
r
e
a
d
 
t
h
e
 
e
n
t
i
r
e
 
s
e
c
t
i
o
n
.
*

/
f
s
o
l
/
 
*
S
e
a
r
c
h
 
a
n
d
*

/
f
s
o
2
a
/
 
*
O
u
t
p
u
t
 
c
o
m
p
l
e
t
e
d
.
 
Y
o
u
 
m
a
y
 
n
o
w
 
s
e
e
 
o
t
h
e
r

c
a
t
a
l
o
g
 
i
n
f
o
r
m
a
t
i
o
n
 
f
r
o
m
*

/
f
s
c
o
2
b
/
 
*
t
h
i
s
 
d
o
c
u
m
e
n
t
*

/
t
s
o
2
d
1
/
 
!
t
h
e
s
e
*

/
f
s
o
2
d
2
/
 
*
d
o
c
u
m
e
n
t
s
*

/
f
s
o
2
c
/
 
*
b
y
 
m
a
k
i
n
g
 
a
n
 
O
U
T
P
U
T
 
r
e
q
u
e
s
t
 
(
f
o
r
 
i
n
f
o
r
m
a
t
i
o
n
 
o
n
 
h
o
w
 
t
o

d
o
 
t
h
i
s
,
 
s
e
e
 
p
a
r
t
 
P
 
o
f
 
t
h
e
,
G
u
i
d
e
 
o
r
 
t
y
p
e
 
0
0
1
6
i
n
f
o
 
P
e
0
1
7
)
.
 
*

/
t
s
o
2
e
/
 
=
Y
o
n
 
m
a
y
 
a
l
s
o
 
s
e
l
e
c
t
 
a
 
s
u
b
s
e
t
 
o
f
 
t
h
e
s
e
 
h
d
c
u
m
e
n
t
s
 
h
y

m
a
k
i
n
g
 
a
 
1
F
s
T
m
I
C
T
 
r
e
e
f
:
e
s
t
 
(
s
e
e
 
P
a
c
t
 
9
.
9
1
.
*

S
f
s
o
g
f
 
*
N
o
 
d
o
c
u
m
e
n
t
s
 
f
o
u
n
d
.

Y
o
u
 
m
a
y
 
m
a
k
e
 
a
 
n
e
w
 
s
e
a
r
c
h
 
(
s
e
e
.

P
a
r
t
 
2
 
o
t
 
r
;
u
i
d
e
,
 
o
r
 
t
y
p
e
 
0
0
7
6
i
n
t
o
 
2
t
0
7
7
1
,
 
o
r
 
m
a
k
e
 
o
t
h
e
r
 
r
e
q
u
e
s
t
s

(
s
e
e
 
P
a
r
t
 
1
)
.
* O
t
h
e
r
w
i
s
e
,
 
y
o
u
 
m
a
y
 
m
a
k
e
 
a
 
n
e
r
 
s
e
a
r
c
h
 
(
s
e
e
 
P
a
c
t
 
2
1

o
r
 
m
a
k
e
 
o
t
h
e
r
 
r
e
q
u
e
s
t
s
 
(
s
e
e
 
P
a
r
t
 
1
)
 
.
*

S
t
s
o
b
$
 
*
Y
o
u
r
 
l
a
s
t
 
a
c
t
i
v
e
 
l
i
s
t
 
h
a
s
 
b
e
e
n
 
r
e
t
a
i
n
e
d
.
*

f
a
n
o
r
0
$
 
W
I
7
H
i
n
g
*

-

f
d
n
l
$
 
*
T
h
e
 
n
u
m
b
e
r
 
o
f
 
d
o
c
i
m
e
n
t
s
 
y
o
u
 
n
o
w
 
h
a
v
e
 
o
n
 
y
o
u
r
 
c
u
r
:
e
n
t
 
l
i
s
t
 
i
s
*

f
r
i
n
2
S
 
f
 
T
o
 
s
e
e
 
o
u
t
p
u
t
*

S
d
n
3
5
 
*
y
o
u
,
 
m
a
y
 
U
s
e
 
t
h
e
 
O
n
T
P
U
T
 
c
o
m
m
a
n
d
 
(
s
e
e
 
P
a
r
t
 
E
 
o
f
 
t
h
e
 
G
u
i
d
e
 
f
o
r
 
i
n
s
t
r
u
c
t
i
o
n
s
)
.
*

S
a
n
o
r
1
1
 
*
T
h
e
 
l
i
s
t
 
r
e
s
u
l
t
i
n
g
 
f
r
o
m
*

S
a
n
o
r
2
$
 
*
A
4
D
i
n
o
*

S
a
n
o
r
i
f
 
*
O
R
i
n
g
*

$
a
n
o
r
m
$
 
*
*

.

f
a
n
o
r
4
b
$
 
*
c
o
n
t
a
i
n
s
*

S
a
n
o
r
5
S
 
*
1
0
T
i
n
o
s

l
a
n
e
r
r
l
$
 
*
Y
o
u
 
h
a
v
e
 
n
o
 
c
u
r
r
e
n
t
 
.
l
i
s
t
 
o
n
 
v
h
i
C
h
 
t
o
 
p
e
r
f
o
r
m
 
B
o
o
l
e
a
n
 
o
p
e
r
a
t
i
o
n
s
.
*

S
c
o
n
1
$
 
*

T
h
e
r
e
 
w
i
l
l
 
h
e
 
a
 
s
l
i
g
h
t
 
d
e
l
a
y
 
w
h
i
l
e
 
T
n
t
r
e
m
 
c
o
U
d
e
n
s
e
s
 
y
o
u
r
 
N
a
m
e
d
-
L
i
s
t
 
F
i
l
e
.
 
P
l
e
a
s
e
 
s
t
a
n
d

b
y
.
*

S
d
e
l
a
y
f
 
*
I
n
t
r
e
x
 
i
s
 
g
o
i
n
g
 
d
o
r
m
a
n
t
 
t
O
r
 
a
 
f
e
w
 
m
o
m
e
n
t
s
 
t
o
 
a
l
l
o
w
 
a
 
s
y
s
t
e
m
 
f
i
l
e
 
t
o

b
e
 
u
p
d
a
t
e
d
.
 
Y
o
u
 
w
i
l
l
 
h
e
 
t
o
l
d
 
t
o
 
p
r
o
c
e
e
d
 
w
h
e
n
 
I
n
t
r
e
r
 
i
s
 
r
e
a
d
y
 
f
o
r
 
y
o
u
r
 
n
e
f
t
 
r
e
q
u
e
s
t
.
 
P
l
e
a
s
e

s
t
a
n
d
 
h
y
.
*

f
p
r
o
c
e
d
$
 
*
Y
o
u
 
m
a
y
 
n
o
w
 
p
r
o
c
e
e
d
 
t
o
 
i
s
s
u
e
 
r
e
q
u
e
s
t
s
 
t
o
 
i
n
t
r
o
%
 
a
s
 
s
p
o
n

a
s
 
t
h
e
 
n
e
x
t
 
P
R
A
D
Y

o
r

!
I
a
p
p
e
a
r
s
.
*

$
n
a
m
O
S
 
*
N
o
*

f
n
a
m
1
$
 
*
Y
o
u
r
 
l
i
s
t
 
t
a
b
l
e
 
i
s
 
f
u
l
l
.
 
Y
o
u
 
m
u
s
t
 
d
r
o
p
 
o
n
e
 
o
r
 
m
o
r
e
 
l
i
s
t
s
 
b
e
f
o
r
e
 
r
e
-
i
s
s
u
i
n
g

y
o
u
r
 
c
o
m
m
a
n
d
.
*

n
a
m
e
s
 
b
e
f
o
r
e
 
r
e
-
i
s
s
u
i
n
g
 
y
o
u
r
 
N
A
M
E
 
c
o
m
m
a
n
d
.
*

f
n
a
m
2
$
 
*
h
a
s
 
n
o
t
 
b
e
e
n
 
W
A
B
E
d
.
*

f
n
a
m
i
S
 
*
Y
o
u
 
h
a
v
e
 
n
c
t
 
p
r
o
v
i
d
e
d
 
t
h
e
 
n
a
m
e
 
o
f
 
a
 
N
A
N
E
d
 
l
i
s
t
.
*

f
n
a
m
i
t
$
 
*
4
)
)
!
F
4
 
l
i
s
t
s
 
c
u
r
r
e
n
t
l
y
 
b
e
i
n
g
 
h
e
l
d
.
*

f
i
l
a
e
f
 
*
Y
o
u
r
 
l
i
s
t
 
n
a
m
e
 
i
s
 
a
m
b
i
g
u
o
u
s
 
w
i
t
h
*

$
f
i
a
m
f
,
f
 
*
t
h
e
 
I
n
t
r
e
x
 
c
o
m
m
a
n
d
,
*

S
n
a
c
k
-
T
.
5
 
*
a
 
p
r
e
v
i
o
u
s
l
y
 
N
A
*
F
d

S
n
a
m
t
l
f
 
*
P
l
e
a
s
e
 
u
s
e
 
a
n
o
t
h
e
r
 
n
a
m
e
.
*

f
o
l
a
m
q
f
 
*
A
L
L
 
i
s
 
a
 
r
e
s
t
r
i
c
t
e
d
 
w
o
r
d
 
f
o
r
'
n
a
m
i
n
q
 
l
i
s
t
s
.
*

f
n
a
m
1
D
$
 
*
Y
o
u
r
 
c
u
r
r
P
n
t
 
l
i
s
t
 
h
a
s
 
a
l
r
e
a
d
y
 
b
e
e
n
 
n
a
m
e
d
 
a
n
d
 
c
a
n
n
o
t
 
h
e
 
n
a
m
e
d
 
a
g
a
i
n
.
*

f
n
a
m
1
t
f
 
*
Y
o
u
 
h
a
.
v
e
 
n
o
t
 
g
i
v
e
n
 
a
 
n
a
m
e
 
f
o
r
 
y
o
u
r
 
l
i
s
t
.
*

$
n
a
m
1
2
$
 
*
Y
o
u
 
h
a
v
e
 
n
o
 
c
u
r
r
e
n
t
 
l
i
s
t
.
 
Y
o
u
r
 
N
A
M
E
 
c
o
m
m
a
n
d
 
c
a
n
n
o
t
 
h
e
 
p
r
o
c
e
s
s
e
d
.
*

S
n
a
m
1
3
$
 
*
L
i
s
t
 
n
a
v
e
s
 
m
u
s
t
 
c
o
n
s
i
s
t
 
o
f
 
o
n
l
y
 
o
n
e
 
m
o
r
d
.
*

S
n
a
m
e
n
k
f
 
s
i
s
 
n
o
w
 
t
h
e
 
n
a
m
e
 
o
f
 
y
o
u
r
 
c
u
r
r
e
n
t
 
l
i
s
t
.
*

.5
`



S
s
a
v
/
S
 
*
T
h
e
 
n
a
m
e
 
v
o
u
 
h
a
v
e
 
a
s
s
i
g
n
e
d
 
t
o
 
y
o
u
r
 
S
A
V
E
 
f
i
l
e
 
i
s
 
a
l
r
e
a
d
y
 
i
n
 
u
s
e
.

P
l
e
a
s
e
 
r
e
p
e
a
t
 
y
o
u
r
 
S
A
V
E
 
F
I
L
E
 
r
e
q
u
e
s
t
 
u
s
i
n
g
 
a
n
o
t
h
e
r
 
p
a
n
e
.
*

S
s
a
v
3
S
 
*
Y
o
u
 
h
a
v
e
 
n
o
t
 
p
r
o
v
i
d
e
d
 
a
 
n
a
m
e
 
t
o
r
 
y
o
u
r
 
S
A
V
E
 
f
i
l
e
.
.
*

S
s
a
v
4
S
 
*
Y
o
u
r
 
c
u
r
r
e
n
t
 
S
A
V
E
 
,
f
i
l
e
 
i
s
 
f
u
l
l
.
 
Y
o
u
 
m
u
s
t
 
a
s
s
i
g
n
 
a
 
n
e
v
 
n
a
m
e

-
-

v
i
a
 
t
h
e
 
S
A
V
E
 
t
'
I
L
E
 
c
o
m
m
a
n
d
 
b
e
f
o
r
e
 
s
a
v
i
n
g
 
a
n
y
 
m
o
t
e
 
l
i
s
t
s
.
*

5
s
a
v
5
S
 
S
A
V
E
 
f
i
l
e
s
 
c
u
r
r
e
n
t
l
y
 
b
e
i
n
o
 
h
e
l
d
 
o
n
 
f
i
l
e
.
*

S
s
a
v
6
S
 
*
L
i
s
t
s
 
i
n
 
f
i
l
e
*

S
s
a
v
7
$
 
*
i
s
 
n
o
t
 
f
o
u
n
d
 
t
o
 
b
e
 
s
t
o
r
e
d
 
o
n
 
d
i
s
k
 
a
n
d
 
i
s
 
b
e
i
n
g
 
d
e
l
e
t
e
d
 
f
r
o
m
 
t
h
e

S
A
V
E
 
t
i
l
e
 
d
i
r
e
c
t
o
r
y
.
*

S
s
a
v
R
$
 
*
T
h
e
 
v
o
r
d
 
F
I
L
E
 
m
a
y
 
n
o
t
 
b
P
 
u
s
e
d
 
a
s
 
t
h
e
 
n
a
m
e
 
o
f
 
a
 
S
A
V
E
4
 
t
i
l
e
.
*

S
u
s
e
m
l
i
 
*
h
a
s
 
h
e
c
o
r
e
 
y
o
u
r
 
c
u
r
r
e
n
t
 
N
M
I
 
L
i
s
t
 
f
i
l
e
 
a
n
d
 
S
A
V
E
 
f
i
l
e
.

T
h
e
 
l
i
s
t
 
n
a
m
e
s
 
i
n
 
t
h
i
s
 
f
i
l
e
 
m
a
y
 
n
o
w
 
b
e
 
r
e
s
t
o
r
e
d
 
t
o
 
a
c
t
i
v
e
 
s
t
a
t
u
s
 
b
y
 
t
y
p
i
n
g

t
h
e
i
r
 
n
a
m
e
s
,
 
w
h
i
c
h
 
a
r
e
;
*

S
u
s
e
m
2
$
 
*
h
a
s
 
b
e
c
o
m
e
 
y
o
u
r
 
c
u
r
r
e
n
t
 
S
A
V
E
 
f
i
l
e
 
a
n
d
 
v
i
l
l
 
a
c
c
e
p
t
 
S
A
1
E
d
 
l
i
s
t
s
.

Y
o
u
r
 
c
u
r
r
e
n
t
 
M
A
M
E
d
 
l
i
s
t
s
 
(
i
t
 
a
n
y
)
 
a
c
e
 
r
e
t
a
i
n
e
d
 
a
n
d
 
m
a
y
 
n
o
w
 
b
p
 
S
A
V
E
d
 
i
f

a
n
d
 
w
)
,
e
n
 
d
e
s
i
r
e
d
.
*

S
1
i
s
e
r
1
S
 
*
i
s
 
n
o
t
 
a
 
S
A
V
E
 
t
i
l
e
 
n
a
m
e
.
*

S
n
s
e
r
l
S
 
*
Y
o
u
 
h
a
v
e
 
n
o
t
 
p
r
o
v
i
d
e
d
 
t
h
e
 
n
a
m
e
 
o
f
 
a
 
S
A
V
E
 
f
i
l
e
.
*

/
d
r
i
c
5
/

1
0
E
S
 
N
C
T
 
M
A
T
C
H
 
T
H
I
S
 
R
E
S
T
R
I
C
T
I
O
N
*

S
d
o
c
h
S
 
*
T
h
i
s
.
r
e
o
u
e
s
t
 
i
s
 
v
a
l
i
d
 
o
n
l
y
 
f
o
r
 
r
e
f
e
r
e
n
c
e
s
 
o
r
i
g
i
n
a
t
e
d
 
b
y
 
S
e
B
J
E
C
T
 
s
e
a
r
c
h
e
s
.
*

S
o
u
t
.
i
a
S
 
*
S
e
e
 
P
a
r
t
 
H
 
o
f
 
G
u
i
d
o
 
f
o
r
 
d
e
t
a
i
l
s
 
o
n
 
c
o
r
r
e
c
t
 
u
s
a
g
e
 
o
f

u
T
P
T
I
T
 
c
o
m
m
a
n
d
.
 
P
l
e
a
s
e
 
r
e
p
h
r
a
s
e
 
y
o
u
r
 
r
e
q
u
e
s
t
.
*

S
o
u
t
.
4
1
 
*
T
h
e
 
O
U
T
P
1
T
.
c
o
m
m
a
n
d
 
a
c
c
e
p
t
s
 
o
n
l
y
 
1
0

t
i
e
l
d
s
.
 
Y
o
u
r
 
t
i
r
s
t
 
1
0
 
f
i
e
l
d
s
 
w
i
l
l
 
b
e
 
o
u
t
p
u
t
.

Y
o
u
 
m
a
y
 
o
u
t
p
u
t
 
t
h
e

r
e
m
a
i
n
d
e
r
 
o
n
 
d
 
s
u
b
s
e
q
u
e
n
t
 
r
e
q
u
e
s
t
.
 
*

S
o
u
t
.
5
5
 
*
T
o
 
s
e
e
 
t
e
x
t
 
y
o
u
 
r
u
s
t
 
s
a
y
 
"

v
0
1
b
o
u
t
p
u
t
 
f
i
c
h
e
*
3
1
7
 
a
n
d
 
g
e
t
 
t
h
e
 
t
i
c
h
e
 
l
o
c
a
t
i
o
n
 
o
f
 
t
h
e
 
t
e
x
t
.
*

A
s
u
p
e
r
S
 
Y
o
u
 
h
a
v
e
 
n
o
 
c
u
r
r
e
n
t
 
a
c
t
i
v
e
 
l
i
s
t
 
f
o
r
 
v
h
i
c
h
 
t
o
 
p
r
o
v
i
d
e
 
o
u
t
p
u
t
.

Y
o
u
 
m
u
s
t
 
p
e
r
f
o
r
m
 
a
 
n
e
w
 
s
e
a
r
c
h
 
o
r
 
r
e
s
t
o
r
e
 
a
 
s
a
v
e
d
 
(
R
A
N
H

l
i
s
t
.
*

;
1
n
.
1
S
 
*
O
n
l
v
 
1
0
 
P
E
S
T
'
I
C
T
 
r
e
s
t
r
i
c
t
i
o
n
s
 
a
l
l
o
w
e
d
 
o
n
 
a
 
s
e
a
r
c
h
.

P
l
e
a
s
e
 
b
e
g
i
n
 
a
 
n
e
w
 
s
e
a
r
c
h
.
*

A
i
n
.
2
S
 
*
Y
o
u
 
h
a
v
p
 
n
o
t
 
f
u
n
)
,
 
s
p
e
c
i
f
i
e
d
 
y
o
u
r
 
R
P
S
T
E
I
C
T
 
c
o
m
m
a
n
d
.

S
e
e
 
P
a
r
t

o
f
 
C
u
i
d
e
 
f
o
r
 
d
e
t
a
i
l
s
 
o
n
 
c
o
r
r
e
c
t
 
u
s
e
 
o
f
 
R
E
S
T
R
I
C
T

r
o
m
v
a
n
d
.

P
l
e
a
s
e
 
r
e
p
)
r
a
s
e
 
y
o
u
r
 
r
e
q
u
e
s
t
.
*

f
i
n
.
3
S

i
s
 
n
o
t
 
a
 
l
e
m
a
i
 
f
i
e
l
d
 
d
e
s
i
g
n
a
t
i
o
n
.
 
C
h
e
c
k
 
f
o
r
 
t
y
p
i
n
g
 
e
r
r
o
r
s
.
 
S
e
e
 
P
a
r
t
 
1
5
 
o
f

,
:
u
i
d
e
 
t
o
r
 
f
u
l
l
 
l
i
s
t
 
o
f
 
t
y
p
e
s
 
o
f
 
c
a
t
a
l
o
g
 
i
n
f
o
r
m
a
t
i
o
n
.
*

E
i
n
 
h
S
 
*
Y
o
e
 
c
a
n
n
n
t
 
d
o
 
a
 
P
E
S
T
R
I
C
T
 
s
e
a
r
c
h
 
o
n
 
f
i
e
l
d
 
*

$
i
n
.
.
i
a
S
 
*
S
e
e
 
P
a
r
t
 
9
5
 
o
f
 
G
u
i
d
e
 
f
o
r
 
d
e
t
a
i
l
s
 
o
n
 
c
o
r
r
e
c
t
 
u
s
a
g
e
 
o
f

a
E
S
T
R
I
C
T
 
c
o
m
m
a
n
d
.

P
l
e
a
s
e
 
r
e
p
h
r
a
s
e
 
y
o
u
r
 
r
e
q
u
e
s
t
.
*

5
s
m
o
l
s
 
i
4
o
F
D
(
S
T
E
m
l
1
1
G
)

N
o
.
 
O
F
 
D
O
C
n
M
E
N
T
S
 
T
H
A
T
 
M
A
T
C
H

T
H
I
S
 
S
T
E
M

A
L
L
 
S
T
E
M
S
 
S
O
 
F
A
R
*

/
c
7
s
0
1
/

(
T
I
T
L
?
)

*

c
1
p

.
i
s
 
n
o
t
 
a
 
l
e
g
a
l
 
c
o
m
m
a
n
d
 
n
a
m
e
:

C
h
e
c
k
 
f
o
r
 
t
y
p
i
n
g
 
e
r
r
o
r
s
.

S
e
e
 
P
a
r
t
 
6
.
2
 
o
f
 
f
;
u
i
d
e

r
o
r
 
f
u
l
l
 
/
i
s
t
 
o
f
 
c
o
m
m
a
n
d
s
.

P
l
e
a
s
e
 
r
e
p
h
r
a
s
e
 
y
o
u
r
 
r
e
q
u
e
s
t
.
*

f
i
c
l
o
I
S
 
*
s
y
s
t
e
m
 
e
r
r
o
r
 
a
t
t
e
m
p
t
i
n
g
 
t
o
 
i
n
t
e
r
p
r
e
t
 
c
o
m
m
a
n
d
 
l
i
n
e
t
*

3
r
1
p
2
$
 
.
p
l
p
a
s
e
 
b
r
e
a
k
 
u
p
 
y
o
u
r
 
r
e
q
u
e
s
t
 
i
n
t
o
 
r
e
q
u
e
s
t
s
 
n
o
t
 
e
x
c
e
e
d
i
n
g
 
2
0
0
 
c
h
a
r
a
c
t
e
r
s
 
i
n
 
l
e
n
g
t
h
.
*

S
c
1
p
4
S
 
*
Y
o
u
r
 
c
o
m
m
a
n
d
 
c
o
u
l
d
.
n
o
t
 
h
e
 
u
n
d
e
r
s
t
o
o
d
.
*

S
l
o
e
r
r
O
$
 
*
r
e
r
o
 
(
0
)
*

I
l
o
o
r
r
I
S
 
'
o
n
e

(
1
)

S
l
o
e
r
r
2
S
 
*
Y
o
u
 
h
a
v
e
 
t
y
p
e
d
 
t
h
e
 
l
e
t
t
e
r
t

A
l
o
e
r
r
i
S
 
*
i
n
 
p
l
a
c
e
 
o
f
 
a
*

A
l
o
e
r
r
u
$
 
*
i
n
 
t
h
e
 
c
o
m
m
a
n
d
 
a
r
g
u
m
e
n
t
*

S
l
o
e
r
r
S
S

Y
o
u
r
 
c
o
m
m
a
n
d
 
w
i
l
l
 
b
e
 
p
r
o
c
e
s
s
e
d
 
a
s
 
i
f
 
a
*

s
l
o
e
r
r
h
S
 
*
h
i
a
 
s
e
e
n
 
t
y
p
e
d
.

p
l
e
a
s
e
 
o
b
s
e
r
v
e
 
t
h
i
s
 
d
i
s
t
i
n
c
t
i
o
n
.

F
a
i
l
u
r
o
 
d
o
 
s
o
 
s
a
y
 
c
a
u
s
e

A



m
a
t
c
h
i
n
g
 
d
i
f
f
i
c
u
l
t
i
e
s
.
4

S
l
o
e
r
r
o
S
 
*
t
O
l
b
o
r
0
1
7
*
-

F
/
o
e
r
r
l
$
 
*
e
0
7
6
/
e
C
7
7
*

'
R
r
a
e
r
r
1
S
 
*
i
s
 
n
o
t
 
a
 
l
e
g
a
l
 
R
A
N
G
E
.

C
h
e
c
k
 
f
o
r
 
t
y
p
i
n
g

e
r
r
o
r
s
.

5
4
 
P
a
r
t
 
9
.
2
 
o
f
 
t
h
e
 
G
u
i
d
e
 
f
o
r
 
d
e
t
a
i
l
s
 
o
f

c
o
r
r
e
c
t
 
u
s
a
g
e
 
o
t
 
t
h
e
,
R
A
N
G
E
 
c
o
m
m
a
n
d
.
*

S
r
a
e
r
r
2
5
 
*
T
h
e
 
n
A
N
C
:
 
c
r
5
m
m
a
n
d
 
m
a
y
 
o
n
l
y
 
h
e
 
u
s
e
d
 
a
l
o
n
g

w
i
t
h
 
a
 
S
n
a
j
=
c
7
 
s
e
a
r
c
h
 
a
s
 
e
x
p
l
a
i
n
e
d
 
i
n
 
P
a
r
t
 
9
.
2
 
o
f
 
t
h
e

C
u
i
d
e
.

p
l
e
a
s
e
 
r
e
p
h
r
a
s
e
 
y
o
u
r
 
r
e
q
u
e
s
t
.
*

S
r
a
e
r
r
a
S
 
*
I
n

m
a
y
 
u
s
e
 
t
h
e
 
R
A
N
G
F
 
c
o
m
m
a
n
d
 
o
n
l
y
 
o
n
c
e

i
o
n
 
e
a
c
h
 
S
U
B
7
_
C
7
 
s
e
a
r
c
h
 
a
s
 
e
x
p
l
a
i
n
e
d
 
i
n
-
 
P
a
r
t
 
9
.
2
 
o
f

t
h
e
 
G
u
i
d
e
.

P
l
e
a
s
e
 
r
e
n
h
r
a
s
e
 
y
c
u
r
 
r
e
q
u
e
s
t
.
*

S
d
n
e
r
r
1
$
 
*
i
s
 
a
n
 
i
m
p
r
o
p
e
r
 
d
o
c
u
m
e
n
t
 
n
u
m
b
e
r
 
a
n
d
 
h
a
s
 
b
e
e
n
 
i
g
n
o
r
e
d
 
i
n
 
p
i
.
o
c
e
s
s
i
n
s
,
 
y
o
u
r
 
c
o
m
m
a
n
d
.
*

4
d
n
e
r
r
2
S
 
*
Y
o
u
 
h
a
v
e
 
n
n
t
 
i
n
c
l
u
d
e
d
 
a
n
y
 
(
l
e
g
i
t
i
m
a
t
e
)
 
d
o
c
u
m
e
n
t
 
n
u
m
b
e
r
s
 
i
n
 
y
o
u
r
 
c
o
m
m
a
n
d
.
*

S
i
o
e
r
r
1
$
 
*
E
r
r
o
r
 
c
o
d
e
*

f
i
o
e
r
r
2
S
 
*
i
n
 
c
a
l
l
 
t
o
*

S
i
O
e
r
r
3
S
 
*
A
t
 
l
o
c
a
t
i
o
n
*

E
i
c
o
e
r
r
e
S
 
*
i
n
v
o
l
v
i
n
g
 
f
i
l
e
,
*

S
i
n
t
e
r
1
S
 
*
Y
o
u
 
W
y
e
 
u
s
e
d
 
m
o
r
e
 
w
o
r
d
s
 
i
n
 
y
o
u
r
 
s
e
a
r
c
h
 
r
e
q
u
e
s
t
 
t
h
a
n
 
t
h
e
 
s
y
s
t
e
m
 
c
a
n
 
h
a
n
d
l
e
.

I
n
t
r
e
x
 
w
i
l
l
 
n
o
w
 
s
e
a
r
c
h
 
o
n
 
t
h
e

t
i
r
s
t
 
s
e
v
e
n
 
s
i
g
n
i
f
i
c
a
n
t
 
w
o
r
d
s
 
y
o
u
 
h
a
v
e
 
g
i
v
e
n
.
*

$
1
.
n
t
e
r
2
S
 
*
T
h
e
 
A
T
I
T
F
I
R
 
c
o
m
m
a
n
d
 
C
a
n
 
a
c
c
e
p
t
 
a
 
m
a
x
i
m
u
m
 
o
f
 
t
h
r
e
e
 
i
n
i
t
i
a
l
s
.

1
1
1
 
o
t
h
e
r
s
 
a
r
e
 
i
g
n
o
r
e
d
.
*

:
 
i
i
n
t
e
r
4
i
 
*
*
o
u
r
 
s
e
a
r
c
h
 
t
e
r
m
 
C
o
n
t
a
i
n
e
d
 
n
o
 
s
e
a
r
c
h
a
b
l
e
 
w
o
r
d
s
.
 
P
l
e
a
s
e
 
r
e
v
i
e
w
 
y
o
u
r
 
s
e
a
r
c
h
-
r
e
q
u
e
s
t
.
*

.
S
i
n
t
e
r
4
S
 
*
Y
o
u
r
 
s
e
a
r
c
h
 
t
e
r
m
 
c
o
n
t
a
i
n
e
d
 
a
n
 
o
d
d
 
n
u
m
b
e
r
 
o
f
 
a
s
t
e
r
i
s
k
s
.
 
R
s
t
e
r
i
s
k
s
 
m
u
s
t
 
b
e
 
u
s
e
d

i
n
 
p
a
i
r
s
 
t
o
 
s
e
t
 
o
f
f
 
a
 
s
p
e
c
i
a
l
 
c
o
d
e
 
o
r
 
s
y
m
b
o
l
.
*

/
t
e
x
t
4
/
 
m

F
i
c
h
e
 
N
o
.

F
i
r
s
t
 
F
r
a
m
e

l
a
s
t
 
F
r
a
m
e
*

/
t
e
x
t
l
/
 
*
T
h
i
s
 
d
o
c
u
m
e
n
t
 
i
s
 
n
o
t
 
y
e
t
 
a
v
a
i
l
a
b
l
e
 
f
r
o
m
 
t
h
e
 
t
e
x
t
-
a
c
c
e
s
s

s
u
b
s
y
s
t
e
m
.

Y
o
u
 
m
a
l
l
 
s
e
e
 
a
 
h
a
r
d
 
c
o
n
y
 
b
y
 
a
s
k
i
n
g
 
a
 
m
e
l
b
e
r
 
o
f
 
t
h
e

I
n
t
r
e
x
 
s
t
a
f
f
 
f
o
r
 
i
t
.
*

/
t
e
x
t
l
/
 
*
T
e
x
t
 
i
s
 
a
v
a
i
l
a
b
l
e
 
o
n
l
y
 
f
o
r
 
t
h
e
 
i
n
d
i
v
i
d
u
a
l
 
p
a
r
t
s
.
o
f
 
t
h
i
s
 
d
o
c
u
m
e
n
t
 
(
t
h
a
t

i
s
,
 
f
o
r
 
a
r
-
t
i
c
l
e
s
 
o
r
 
c
h
a
p
t
e
r
s
)
"
 
v
h
i
c
h
 
w
e
r
e
 
s
e
p
a
r
a
t
e
l
y
 
n
o
c
u
m
e
n
t
e
n
.
*

/
t
e
x
t
 
I
/
 
*
P
e
q
u
e
s
t
 
a
 
h
a
r
d
 
c
o
p
y
 
o
f
 
t
e
x
t
 
f
r
o
m
 
a
 
m
e
m
b
e
r
 
o
f
 
t
h
e
 
I
n
t
r
e
x
 
s
t
a
f
f
.
*

/
t
e
x
t
5
a
/
 
*
H
a
r
d
 
c
o
p
y
 
i
s
 
f
o
u
n
d
 
a
t
 
l
i
b
r
a
r
y
 
w
i
t
h
 
c
o
n
e
 
n
a
m
e
 
h

/
t
e
x
t
5
b
/
 
*
.

S
e
e
 
P
a
r
t
 
1
S
.
I
1
 
o
f
 
t
h
e
 
G
u
i
d
e
 
f
o
r
 
e
x
p
l
a
n
a
t
i
o
n
 
o
f
 
c
o
d
e
-
.
*

b
t
e
x
t
f
I
S
 
*
T
h
i
s
 
d
o
c
u
m
e
n
t
 
i
s
 
n
o
t
 
a
v
a
i
l
a
b
l
e
 
a
t
 
t
h
e
 
c
o
n
s
o
l
e
.

Y
o
u
 
m
a
y

o
b
t
a
i
n
 
a
 
c
o
p
y
 
o
f
 
i
t
 
f
r
o
m
 
t
h
e
 
M
i
c
r
o
f
i
l
m
 
S
e
r
v
i
c
e
 
A
r
e
a
 
a
t
'
t
h
e
 
M
.
I
.
T
.
 
E
n
g
i
n
e
e
r
i
n
g

L
i
b
r
a
r
y
 
(
7
N
 
4
-
6
9
C
O
,
 
x
i
1
2
4
)
.

r

P
l
e
a
s
e
 
t
a
k
e
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 
f
i
c
h
e
 
n
u
m
b
e
r
 
w
i
t
h
 
y
o
u
:
*

f
e
m
p
m
e
s
/
 
*
T
h
e
r
e
 
i
s
 
n
o
 
d
a
t
a
 
i
n
 
t
h
i
s
 
f
i
e
l
d
 
f
o
r
 
t
h
i
s
 
d
o
c
u
m
e
n
t
*

s
1
e
t
1
S
 
*
T
h
e
 
c
a
t
a
l
o
g
 
r
e
c
o
r
d
 
f
o
r
 
t
h
i
s
 
d
o
c
u
m
e
n
t
 
c
a
n
 
n
o
t
 
b
e
 
r
e
t
r
i
e
v
e
d

a
t
 
t
h
i
s
 
t
i
m
e
.
 
E
r
r
o
r
 
c
o
d
e
 
=
 
*

s
g
e
t
2
S
 
*
I
5
T
4
7
X
 
i
s
 
U
n
a
b
l
e
 
t
o
 
p
r
i
n
t
 
t
h
i
s
 
f
i
e
l
d
.
 
T
r
y
 
u
s
i
n
g
 
s
h
o
r
t
 
m
o
d
e

(
t
y
p
e
 
'
e
0
1
6
s
h
o
r
t
e
0
1
7
0
)
.
*

/
t
e
x
t
5
/
 
*
T
h
e
 
f
i
c
h
e
 
f
o
r
 
t
h
i
s
 
d
o
c
u
m
e
n
t
 
i
s
 
n
o
t
 
a
v
a
i
l
a
b
l
e
*

S
w
a
r
n
S
 
*
V
O
T
I
:
E
!

F
o
r
 
m
o
r
e
 
c
o
m
p
l
e
t
e
 
i
n
f
o
r
m
a
t
i
o
n
 
s
e
e
 
h
a
r
d
-
c
o
p
y
 
G
u
i
d
e
.
*

S
o
u
t
l
a
w
S
 
*
T
h
e
 
n
u
m
b
e
r
 
y
o
u
 
h
a
v
e
 
u
s
e
d
 
t
o
 
l
o
g
 
A
n
 
i
s
 
a
v
a
i
l
a
b
l
e
 
o
n
l
y
 
f
o
r
 
U
s
e
 
f
o
r
 
t
h
e
'
l
n
t
r
e
v

r
e
t
r
i
e
v
a
l
 
s
y
s
t
e
m
 
a
t
 
c
e
r
t
a
i
n
 
t
i
m
e
s
 
a
n
d
 
l
o
c
a
t
i
o
n
s
.
 
I
f
 
y
o
u
 
w
a
n
t
 
t
o
 
u
s
e
 
C
T
S
S
 
f
o
r
 
o
t
h
e
r
 
t
h
a
n

I
n
t
r
e
x
 
r
e
t
r
i
e
v
a
l
,
 
y
o
u
 
m
u
s
t
 
u
s
e
 
a
n
o
t
h
e
r
 
e
n
t
r
y
 
n
u
m
b
e
r
.
 
I
f
 
y
o
u
 
w
a
n
t
 
t
o
 
u
s
e
 
t
h
e
 
I
n
t
r
e
x
 
r
e
t
r
i
e
v
a
l

s
y
s
t
e
m
,
 
p
l
e
a
s
e
 
c
c
m
e
 
t
o
 
t
h
e
 
E
n
a
i
n
e
e
r
i
n
g
 
L
i
b
r
a
r
y
 
b
e
t
w
e
e
n
 
1
1
 
R
M
 
a
n
d
 
4
 
P
M



o
n
 
w
e
e
k
d
a
y
s
 
o
r
,
 
f
o
r
 
s
p
e
c
i
a
l
 
h
o
u
r
s
 
o
r
 
l
o
c
a
t
i
o
n
s
,
 
c
o
n
t
a
c
t
 
j
R
i
c
h
r
4
 
M
a
r
c
u
s
 
a
t
 
M
I
T

1
5
-
4
0
6
,
 
e
x
t
.
 
2
1
4
0
.
*

S
s
e
r
r
S
 
*
A
n
 
e
r
r
o
r
 
i
n
 
t
h
e
 
c
o
m
p
u
t
e
r
 
f
i
l
e
s
 
c
a
u
s
e
d
 
z
e
r
r
i
 
d
o
c
u

n
t
s
 
t
o
 
b
P
 
r
e
t
r
i
e
v
e
d

i
n
 
s
e
a
r
c
h
i
n
g
 
o
n
 
t
h
e
 
w
o
r
d
*

S
s
e
r
r
2
5
 
"
A
v
o
i
d
 
u
s
i
n
g
 
t
h
i
s
 
w
o
r
d
 
f
o
r
 
s
e
a
r
c
h
i
n
g
 
i
f
 
e
r
r
o
r
 
r
 
-
o
c
c
u
r
s
.
*

/
f
3
0
.
0
1
/
 
*
C
o
n
v
e
n
t
i
o
n
a
l
*

/
f
3
1
.
3
g
/
 
*
P
r
o
f
e
s
s
i
o
n
a
l
 
j
o
u
r
n
a
l
 
a
r
t
i
c
l
e
*

S
f
3
1
.
3
3
S
 
*
P
r
o
f
e
s
s
i
o
n
a
l
 
S
e
r
i
a
l
 
a
r
t
i
c
l
e
*

/
f
3
1
.
3
5
/
 
*
P
r
o
f
e
s
s
i
o
n
a
l
 
l
e
t
t
e
r
s
 
j
o
u
r
n
a
l
 
a
r
t
i
c
l
e
*

/
t
3
1
.
3
6
/
 
*
C
o
n
f
e
r
e
n
c
e
 
p
r
o
c
e
e
d
i
n
g
s
 
a
r
t
i
c
l
e
*

/
f
3
1
.
2
i
/
 
*
C
o
n
f
e
r
e
n
c
e
 
p
r
o
c
e
e
d
i
n
g
s
*

1
f
3
1
.
3
7
$
 
*
T
r
a
d
e
 
j
o
u
r
n
a
l
*

S
t
Y
L
P
I
S
 
c
F
4
s
s
 
m
e
d
i
a
 
m
a
g
a
z
i
n
e
*

i
f
3
1
.
4
4
S
 
*
A
b
s
t
r
a
c
t
*

/
E
3
1
.
5
1
/
 
*
R
e
p
o
r
t
*

S
f
3
1
.
0
5
$
 
*
F
i
b
l
i
o
g
r
a
p
h
y
*

1
f
3
6
.
0
5
/
 
*
P
n
g
l
i
s
h
*

S
f
3
6
.
0
6
S
 
*
F
r
e
n
c
h
*

S
f
3
6
.
0
/
S
 
*
G
e
r
m
a
n
*

S
t
3
6
.
1
9
$
 
*
R
u
s
s
i
a
n
*

/
f
3
6
.
0
0
/
 
1
*

/
f
0
2
.
0
a
/
 
"
R
a
d
i
o
t
r
e
g
u
e
n
c
y
,
 
s
i
c
r
o
w
a
v
e
 
a
n
d
,
 
o
p
t
i
c
a
l
 
s
p
e
c
t
r
o
s
c
o
p
y
 
o
f

l
i
q
u
i
d
s
 
a
n
d
 
s
o
l
i
d
s
 
(
?
r
o
f
e
s
s
o
r
 
9
e
n
e
d
e
k
)
*

/
f
0
2
.
0
1
)
/
 
*
H
i
g
h
 
t
e
m
p
e
r
a
t
u
r
e
 
m
e
t
a
l
l
u
r
g
y
 
(
P
r
o
f
e
s
s
o
r
 
G
r
a
n
t
)
*

/
t
0
2
.
0
c
/
 
*
*
i
c
r
o
w
a
v
e
 
a
n
d
 
q
u
a
n
t
u
m
 
m
a
g
n
e
t
i
c
s
 
(
P
r
o
f
e
s
s
o
r
 
E
p
s
t
e
i
n
)
*

/
f
0
2
.
0
1
/
 
*
C
a
s
t
i
n
g
 
a
n
i
 
s
o
l
i
d
i
f
i
c
a
t
i
o
n
 
(
P
r
o
f
e
s
s
o
r
 
P
l
e
s
i
n
g
s
)
*
'

/
f
0
2
.
0
e
/
 
*
S
t
r
u
c
t
u
r
a
l
 
m
a
t
e
r
i
a
l
s
 
(
P
r
o
f
e
s
s
o
r
 
M
c
G
a
r
r
y
)
*

/
f
0
2
.
0
t
/
 
*
T
r
a
n
s
p
o
r
t
a
t
i
o
n
*

1
f
0
2
.
0
0
 
*
H
y
b
r
i
d
 
c
o
m
p
u
t
i
n
g
 
s
t
r
u
c
t
u
r
e
s
 
(
P
r
o
f
e
s
s
o
r
 
D
e
r
t
b
u
s
g
s
)
*

'
C
A

/
f
0
2
.
0
1
/
,
*
l
i
t
i
r
3
r
i
a
n
*

C
.
1
1

/
f
0
2
.
0
2
/
 
*
7
a
c
u
1
t
y
*

/
f
0
2
.
0
1
/
 
*
F
e
s
e
a
r
c
h
e
r
*

i
t
)

/
f
0
2
.
0
4
/
 
G
r
a
d
u
a
t
e
 
s
t
u
d
e
n
t
*

/
f
h
6
.
0
1
0
 
*
P
r
o
f
e
s
s
i
o
n
a
l
*

/
f
6
6
.
0
a
/
'
*
U
n
d
e
r
g
r
a
d
u
a
t
e
*

S
t
h
6
.
0
1
$
 
*
L
A
y
m
a
n
y

/
f
6
5
.
2
0
/
 
*
T
h
e
o
r
e
t
i
c
a
l
*
.

/
f
6
5
.
1
h
/
 
*
P
r
o
p
o
s
a
l
*

/
t
6
5
.
1
9
/
 
"
E
s
s
a
y
*

/
f
6
S
.
0
5
/
 
*
P
x
p
e
r
i
m
e
n
t
a
l
*

/
t
6
5
.
0
u
/
 
*
R
e
p
o
r
t
 
o
n
 
a
 
d
e
v
e
l
o
p
s
e
n
t
 
o
r
 
a
p
p
l
i
c
a
t
i
o
n
*

/
f
6
5
.
0
2
/
 
*
T
h
e
o
r
e
t
i
c
a
l
 
a
n
d
 
e
x
p
e
r
i
m
e
n
t
a
l
*

/
f
4
.
1
u
/
 
*
N
o
n
-
c
r
i
t
i
c
a
l
 
r
e
v
i
e
w
*

/
f
6
5
.
1
b
/
 
=
C
r
i
t
i
c
a
l
 
r
e
v
i
e
w
*

/
t
2
0
.
0
1
/
 
*
P
e
r
s
o
n
a
l
 
a
u
t
h
o
r
*

$
f
2
0
.
0
2
S
 
*
C
o
r
p
o
r
a
t
e
 
a
u
t
h
o
r
*

S
f
2
0
.
0
1
1
 
*
T
i
t
l
e
*



2
.

"
S
h
o
r
t
"
 
M
e
s
s
a
g
e
 
T
e
x
t

/
e
x
i
t
/
 
*
e
r
r
o
r
*

/
m
t
l
a
b
l
/
 
*
s
i
g
n
i
n
*

/
m
t
1
.
i
b
2
/
 
*
s
i
g
n
2
*

/
m
t
l
a
b
3
/
 
*
c
1
n
*

.
/

/
m
t
l
a
b
i
l
/
 
*
f
s
o
*

/
m
t
l
a
b
5
/
 
*
e
v
a
l
*

/
m
t
l
a
b
b
/
 
*
Q
u
i
t
*

/
m
t
l
a
b
i
/
 
*
s
e
a
r
c
h
*

/
m
t
l
a
b
P
/
 
*
i
n
t
1
*

/
m
t
l
a
h
q
/
 
*
i
n
t
.
2
*

/
o
p
1
/
*
*

/
0
1
3
2
/
*
f
o
u
n
1
:
*

/
o
p
3
a
/
*
d
o
c
s
*

/
o
p
3
b
/
*
d
o
c
*

/
o
p
4
a
/
*
o
:
*

/
o
p
(
b
/
 
*
N
O
I
M
L
*

/
0
p
5
b
/
*
*

/
0
p
6
/
 
*
0
:
*

/
0
p
7
/
 
*
*

/
o
p
8
a
/
 
*
*

/
o
p
8
b
/
 
*
*

/
o
p
1
1
/
*
S
T
A
N
D
A
P
D
*

/
0
p
1
2
/
*
M
A
T
C
H
*

*

/
0
p
1
4
/

/
o
p
l
i
l
a
/

/
o
p
1
5
/
 
*
T
:
*

/
o
p
7
b
/
 
*
A
:
.

/
0
[
1
1
7
/
 
*
*

/
o
p
N
U
/
 
*
4
0
*

/
s
i
n
1
/
 
*
P
l
e
a
s
e
 
l
o
q
 
i
n
*

/
s
i
n
2
a
/
 
*
1
0
1
c
o
m
e
 
M
.
*

/
s
i
n
2
/
 
t
*

/
s
i
n
u
/

/
r
e
d
m
e
s
/
 
.
R
*

/
e
l
m
s
/
 
?
l
e
a
s
e
 
c
o
m
m
e
n
t
 
o
r
 
q
u
i
t
.
*

/
o
u
t
m
e
s
/
 
*
T
h
a
n
k
 
y
o
u
 
t
o
r
 
u
s
i
n
g
 
I
n
t
r
e
v
.
*

S
p
a
s
s
e
r
S
 
.
F
r
r
o
r
 
i
n
 
w
r
i
t
i
n
g
 
p
a
s
s
w
o
r
d
 
f
i
l
e
.
 
N
o
 
a
u
t
o
m
a
t
i
c
 
r
e
s
u
m
p
t
i
o
n
 
o
f
 
T
n
t
r
e
s
.
*

S
p
a
s
s
o
k
S
 
*
P
a
s
s
u
o
r
d
 
r
e
c
e
i
v
e
d
-
-
*

i
b
e
g
m
e
s
S
 
*
P
l
e
a
s
e
 
t
y
p
e
 
t
h
e
 
w
o
r
d
 
B
E
G
I
N
 
f
o
l
l
o
w
e
d
 
b
y
 
a
 
c
a
r
r
i
a
g
e
 
r
e
t
u
r
n
.
*

S
b
e
g
e
r
I
S
 
4
.
7
4
t
r
e
y
 
c
o
u
l
d
 
n
o
t
 
u
n
d
e
r
s
t
a
n
d
 
y
o
u
r
 
l
o
g
 
s
t
O
e
M
e
n
t
.
*

N
b
e
g
e
r
2
1
 
'
P
l
e
a
s
e
 
l
o
g
 
i
n
 
b
y
 
t
y
p
i
n
g

t
h
e
 
w
o
r
d
 
L
'
.
)
r
.
 
f
o
l
l
o
w
e
d
 
h
y
 
y
o
u
r
 
n
a
m
e
.
a
n
d
 
a
d
d
r
e
s
s
.
*

S
h
e
g
e
r
i
S
 
a
f
4
t
r
o
x
 
c
o
u
l
d
.
n
o
t
,
f
i
n
d
 
y
o
u
r
 
n
a
m
e
 
i
n
 
y
o
u
r
 
l
o
g
 
s
t
a
t
e
m
e
n
t
.
*

S
i
n
f
o
e
r
i
 
*
i
s
 
4
o
t
 
i
 
v
a
l
i
d
 
a
r
g
u
m
e
n
t
 
t
o
 
t
h
e
 
'
I
N
F
O
,
 
c
o
m
m
a
n
d
*

S
i
n
t
o
t
r
S
 
*
'
h
i
s
 
s
e
c
t
i
o
n
 
o
f
 
t
h
e
 
o
n
-
l
i
n
e
 
G
u
i
d
e
 
h
a
s
 
b
e
e
n
 
t
r
u
n
c
a
t
e
d
 
b
e
c
a
u
s
e
 
o
f
 
i
t
s
 
l
e
n
g
t
h
.



S
e
e
 
p
r
i
n
t
e
d
 
v
e
r
s
i
o
n
 
i
t
 
y
o
u
 
c
a
r
e
 
t
o
 
r
e
a
d
 
t
h
e
 
e
n
t
i
r
e

s
e
c
t
i
o
n
.
*

/
f
s
n
l
/
 
*
*

/
f
s
o
2
a
/
 
*
*

/
f
S
o
2
b
/
 
*
*

/
f
s
o
2
c
/
 
*
*

/
f
s
o
2
d
1
/

/
f
s
o
2
i
2
/
 
*
*

/
f
s
o
2
e
/
 
a
*

/
f
s
o
U
/
 
*
N
o
 
d
o
c
u
m
e
n
t
s
 
f
o
u
n
d
.
*

/
f
s
o
5
/
 
*
*

E
f
s
o
h
$
 
*
Y
o
u
r
 
l
a
s
t
 
a
c
t
i
-
l
e
 
l
i
s
t
 
h
i
s
 
b
e
e
n
 
r
e
t
a
i
n
e
d
.
*

S
a
n
o
r
0
$
 
*
W
I
T
H
i
n
g
*

S
a
n
o
r
l
$
 
*
T
h
e
 
l
i
s
t
 
r
e
!
,
u
l
t
i
n
g
 
f
r
o
m
*

S
a
n
o
r
i
F
 
*
A
N
D
i
n
g
*

b
a
n
o
r
i
S
 
*
1
1
,
i
n
g
*

$
a
n
o
r
4
F
 
*
*

$
a
n
o
r
n
b
$
 
*
c
o
n
t
a
i
n
s
*

'
)

S
a
n
o
r
b
$
 
*
N
O
T
i
n
g
*

S
a
n
e
r
r
1
Y
 
*
Y
o
u
 
h
a
v
e
 
n
o
 
c
u
r
r
e
n
t
 
l
i
s
t
 
o
n
 
w
h
i
l
i
A
-
6
 
p
e
r
f
o
r
m

B
o
o
l
e
a
n
 
o
p
e
r
a
t
i
o
n
s
.
*

$
c
o
n
1
S
 
*

T
h
e
r
e
 
w
i
l
l
 
h
e
 
a
 
s
l
i
g
h
t
 
d
e
l
a
y
 
w
h
i
l
e
 
I
i
t
r
e
x
 
c
o
n
d
e
n
s
e
A
 
y
o
u
r

N
a
m
e
d
-
L
i
s
t
 
F
i
l
e
.
 
P
l
e
a
s
e
 
s
t
a
n
d
 
b
y
.
*

$
d
e
l
a
y
$
 
*
I
n
t
r
p
x
 
i
s
 
g
o
i
n
g
 
d
o
r
m
a
n
t
 
f
o
r
 
a
 
f
e
w
 
m
o
m
e
n
t
s
 
t
o

a
l
l
o
w
 
a
 
s
y
s
t
e
m
 
f
i
l
e
 
t
o
 
h
e
 
u
p
d
a
t
e
d
.

Y
o
u
 
w
i
l
l
 
h
e
 
t
o
l
d
 
t
o
 
u
r
o
c
e
e
d
 
w
h
e
n
 
I
n
t
r
p
x
 
i
s

r
e
a
d
y
 
f
o
r
 
y
o
u
r
 
n
e
x
t
 
r
e
q
u
e
s
t
.
 
P
l
e
a
s
e
 
s
t
a
n
d
 
b
y
.
*

3
p
r
o
c
e
d
F
 
*
Y
o
u
 
m
a
y
 
n
o
w
 
p
r
o
c
e
e
d
 
t
o
 
i
s
s
u
e
 
r
e
q
u
e
s
t
s
 
t
o
 
I
n
t
r
e
x
 
i
s

s
o
o
n
 
a
s
 
t
h
e
 
n
e
x
t

R
E
A
D
Y
 
o
r
 
'
 
a
p
p
e
a
r
s
.
*

S
p
a
m
O
S
 
*
N
o
4
,

S
n
a
m
l
$
.
*
Y
o
u
r
 
l
i
s
t
 
t
a
b
l
e
 
i
s
 
f
u
l
l
.
 
Y
o
u
 
m
u
s
t
 
d
r
o
p
 
o
n
e
 
o
r
 
m
o
r
e

l
i
s
t
s
 
b
e
f
o
r
e
 
r
e
-
i
s
s
u
i
n
g
 
y
o
u
r
 
c
o
m
m
a
n
d
.
*

I
n
a
g
2
$
 
*
h
i
s
 
n
o
t
 
i
p
p
o
n
 
N
A
M
E
d
.
*

$
n
a
m
i
l
 
*
Y
o
u
 
h
a
v
e
 
n
o
t
-

p
r
o
v
i
d
e
d
 
t
h
e
 
n
a
m
p
 
o
f
 
i
 
M
E
I
 
l
i
s
t
.
*

$
n
a
m
u
$
 
4
N
A
m
E
d
 
l
i
s
t
s
 
c
u
r
r
e
n
t
l
y
 
b
e
i
n
g
 
h
e
l
d
.
*

S
n
a
m
5
1
 
*
Y
o
u
r
 
l
i
s
t
 
n
a
m
e
 
i
s
 
a
m
b
i
g
u
o
u
s
 
w
i
t
h
*

S
n
a
m
K
$
 
*
t
h
e
 
T
n
t
r
e
x
 
c
o
m
m
a
n
d
,
*

$
n
a
m
7
.
5
 
*
a
 
p
r
e
v
i
c
u
s
l
y
 
N
A
M
E
d
 
l
i
s
t
.
*

S
n
a
m
4
$
 
*
P
i
P
4
'
s
e
-
-
I
-
A
e
 
a
n
o
t
h
e
r
-
n
a
m
e
.
*

S
n
a
r
q
5
 
*
A
L
L
 
i
s
 
a
 
r
e
s
t
r
i
c
t
e
d
 
w
o
r
d
 
f
o
r
 
n
a
m
i
n
g
 
l
i
s
t
s
.
*

$
n
a
g
1
B
3
 
*
Y
o
u
r
 
c
u
r
r
e
n
t
 
l
i
s
t
 
h
a
s
 
a
l
r
e
a
d
y
 
b
e
e
n
 
n
a
m
e
d

a
n
d
 
c
a
n
n
o
t
 
b
e
_
n
a
m
e
d
-
A
g
'
a
i
n
,
.
.
*

t
n
a
m
l
1
i
 
'
Y
o
u
 
h
a
v
e
 
n
o
t
.
 
g
i
v
e
n
 
d
 
n
a
m
e
 
f
o
r
 
y
o
u
r
 
l
i
n
t
.
*

T
n
a
m
1
2
$
 
*
Y
o
u
 
h
a
v
e
 
n
o
 
c
u
r
r
e
n
t
 
l
i
s
t
.
 
Y
o
u
r
 
N
A
M
E
 
c
o
m
m
a
n
d
 
c
a
n
n
o
t

h
e
 
p
r
o
c
e
s
s
e
d
.
*

S
n
a
m
l
I
T
 
*
L
i
s
t
 
n
a
m
e
s
 
m
u
s
t
 
c
o
n
s
i
s
t
,
o
f
 
o
n
l
y
 
o
n
e
 
w
o
r
d
.
*

S
n
a
m
e
o
k
$
 
*
i
s
 
n
o
w
 
t
h
e
 
n
a
m
e
 
o
f
 
y
o
u
r
 
c
u
r
r
e
n
t
 
l
i
s
t
.
*

T
s
a
v
2
$
 
*
T
h
e
 
n
a
m
e
 
y
o
u
 
h
a
v
e
 
a
s
s
i
g
n
e
d
 
t
o
 
y
o
u
r
 
S
A
V
E
 
f
i
l
e
 
i
s

a
l
r
e
a
d
y
 
i
n
 
u
s
e
.

P
l
e
a
s
e
 
r
e
p
e
a
t
 
y
o
u
r
 
S
A
V
E
 
F
I
L
E
 
r
e
q
u
e
s
t
 
u
s
i
n
g
 
a
n
o
t
h
e
r
 
n
a
m
e
.
*

S
s
a
v
l
i
 
.
'
Y
o
u
 
h
a
v
e
 
n
o
t
 
p
r
o
v
i
d
e
d
 
a
 
n
a
m
e
 
t
o
r
 
y
o
u
r
 
S
A
V
E
f
i
l
e
.
*

$
s
a
v
4
$
 
*
Y
o
u
r
 
c
u
r
r
e
n
t
 
S
A
V
E
 
f
i
l
e
 
i
s
 
f
u
l
l
.
 
Y
o
u
 
m
u
s
t

a
s
s
i
g
n
 
a
 
n
e
w
 
f
i
l
e
 
n
a
m
e
 
v
i
a

t
h
e
 
S
A
V
E
 
F
I
L
E
 
c
o
m
m
a
n
d
 
b
e
f
o
r
e
 
s
a
v
i
n
g
 
a
n
y
 
m
o
r
e
 
l
i
s
t
s
.
*

S
s
a
v
b
$
 
x
e
s
:
I
V
E
 
t
i
l
e
s
-
c
u
r
r
e
n
t
l
y
 
h
e
i
n
g
 
h
e
l
l
 
o
n

f
0
.
e
.
*

$
s
a
v
5
$
 
*
L
i
s
t
s
 
i
n
 
f
i
l
e
*

S
s
a
v
7
5
 
*
i
s
 
n
o
t
 
f
o
u
n
d
 
t
o
 
b
p
 
s
t
o
r
e
d
 
o
a
 
d
i
s
k
 
a
n
/
 
i
s

b
e
i
n
g
 
d
e
l
e
t
e
d
 
f
r
o
m
 
t
h
e

S
A
V
E
 
f
i
l
e
 
d
i
r
e
c
t
o
r
y
.
*

$
s
a
v
B
S
 
*
T
h
e
 
w
o
r
d
 
F
I
L
E
 
m
a
y
 
n
o
t
'
b
p
 
u
s
e
d
 
a
s
 
t
h
e
-
n
a
g
e

o
f
 
a
 
S
A
V
E
l
.
f
i
l
e
.
*

S
u
s
e
m
1

*
h
a
s
 
b
e
c
o
m
e
 
y
o
u
r
 
c
u
r
r
e
n
t
 
N
a
m
e
i
-
L
i
s
t

t
i
l
e
 
a
n
d
 
S
A
V
E
 
f
i
l
o
.

T
h
e
 
l
i
s
t
 
n
a
m
e
s
 
i
n
 
t
h
i
s
 
f
i
l
e
 
m
a
y
 
n
o
w
 
h
e
 
r
e
s
t
o
t
r
e
d
 
t
o
a
c
t
i
v
e
 
s
t
a
t
u
s
 
b
y
 
t
y
p
i
n
g
 
t
h
e
i
r

n
a
m
e
s
,
 
w
h
i
c
h
 
a
r
e
;
*

$
u
s
e
m
2
1
 
*
h
a
s
 
b
e
c
o
m
e
 
y
o
u
r
 
c
u
r
r
e
n
t
 
S
A
V
E
 
f
i
l
e
 
a
n
d
 
w
i
l
l

a
c
c
e
p
t
 
S
A
V
E
d
 
l
i
s
t
s
.

Y
o
u
r
 
c
u
r
r
e
n
t
 
N
A
M
T
1
 
l
i
s
t
s
 
(
i
f
 
a
n
v
)
 
o
r
e
 
r
e
t
a
i
n
e
d

a
n
d
 
m
a
y
 
n
o
w
 
b
e
 
S
A
V
E
d
 
i
f

a
n
d
 
w
h
e
n
 
d
e
s
i
r
e
d
.
*

S
u
s
e
r
1
.
5
 
*
Y
o
u
 
h
a
v
e
 
n
o
t
 
p
r
o
v
i
d
e
d
 
t
h
e
 
n
a
m
e

o
f
L
i
 
S
A
V
E
 
f
i
l
e
.
*



4
 
$
l
i
s
e
r
l
$
 
*
i
s
 
n
o
t
 
a
 
S
A
V
E
-
t
i
l
e
 
n
a
m
e
.
*

S
l
i
s
e
r
2
3
 
*
Y
o
u
 
h
a
v
e
 
n
o
t
 
p
r
o
v
i
d
e
d
 
t
h
e
 
n
a
m
e
 
o
f
 
a
 
S
A
V
E
 
f
i
l
P
.
*

f
i
n
.
1
$
 
*
O
n
l
y
 
1
0
 
R
E
S
T
R
I
C
T
 
r
e
s
t
r
i
c
t
i
o
n
s
 
a
l
l
o
w
e
d
 
o
n
 
a
 
s
e
a
r
c
h
.
 
P
l
e
a
G
e
 
b
e
g
i
n

a
 
n
e
w
 
s
e
a
r
c
h
.
*

5
i
n
.
2
S
 
*
Y
o
u
 
h
a
v
P
 
n
o
t
 
f
u
l
l
y
 
s
p
e
c
i
f
i
e
d
 
y
o
u
r
 
R
E
S
T
R
I
C
T
 
c
o
m
m
a
n
d
.
 
S
e
e
 
P
a
r
t
 
9
.
5
 
o
f
 
G
u
i
d
e
 
f
o
r

d
e
t
a
i
l
s
 
o
n
 
c
o
r
r
e
c
t
 
u
s
e
 
o
f
 
R
E
S
T
R
I
C
T
 
c
o
m
m
a
n
d
.

P
l
e
a
s
e
 
r
e
p
h
r
a
s
e
 
y
o
u
r
 
r
e
q
u
e
s
t
.
*

$
i
n
.
3
$
 
*
i
s
 
n
o
t
.
 
a
l
e
g
a
l
 
d
i
a
s
i
g
n
a
t
i
o
n
.
 
C
h
e
c
k
 
f
o
r
 
t
y
p
i
n
g
 
e
r
r
o
r
s
.
 
S
e
e
 
P
a
r
t
 
1
5
 
o
f
 
G
u
i
d
e
 
f
o
r
 
f
u
l
l

l
i
s
t
 
o
f
 
t
y
p
e
s
 
o
(
c
a
t
a
l
o
g
 
i
n
f
o
r
m
a
t
i
o
n
.
*

$
i
n
.
6
$
 
*
Y
o
u
 
c
a
n
n
o
t
 
d
o
 
a
 
P
E
S
T
P
I
C
T
 
s
e
a
r
c
h
 
o
n
 
f
i
e
l
d
 
*

-
f
i
n
.
3
a
$
 
*
S
e
e
 
P
a
r
t
 
9
.
5
 
o
f
 
G
u
i
d
e
 
f
o
r
 
d
e
t
a
i
l
s
 
o
n
 
c
o
r
r
e
c
t
 
u
s
e
 
o
f
 
R
 
S
T
R
I
C
T
 
c
o
m
m
a
n
d
.
 
P
l
e
a
s
e

r
4
p
h
r
A
s
e
 
y
o
u
r
 
r
e
q
u
e
s
t
.
*

$
o
u
t
.
3
a
$
-
*
S
e
p
_
P
a
r
t
 
8
 
o
f
 
G
u
i
d
e
 
.
f
o
r
 
d
e
t
a
i
l
s
 
o
n
 
c
o
r
r
e
c
t
 
U
S
A
 
o
f
 
O
U
T
P
U
T
 
c
o
m
m
a
n
d
.

P
l
e
a
s
e
 
r
e
p
h
r
a
S
-
e
-
y
o
u
r
 
r
e
q
u
e
s
t
.
*

S
o
u
t
.
U
$
 
*
T
h
P
 
O
U
T
P
U
T
 
C
O
M
m
a
r
i
d
-
a
c
c
e
p
t
s
-
o
n
1
Y
-
1
0
 
f
i
e
l
d
s
.
*

$
o
u
t
.
5
$
 
*
T
o
 
s
e
e
 
t
e
x
t
 
y
o
u
 
m
u
s
t
 
s
a
y
 
e
0
1
6
o
u
t
p
u
t
 
f
i
c
h
e
t
0
7
 
a
n
d

g
e
t
 
t
h
e
 
f
i
c
h
e
 
l
c
c
a
t
i
o
n
 
o
f
 
t
h
e
 
t
e
x
t
.

Y
o
u
 
m
a
y
 
o
u
t
p
u
t
 
t
h
e
 
r
e
m
a
i
n
d
e
r
 
o
n
 
a
 
T
i
b
s
e
q
u
e
n
t
 
r
e
q
u
e
s
t
.
*

$
s
u
p
e
r
l
 
*

Y
o
u
 
h
a
v
e
 
n
o
 
c
u
r
r
e
n
t
 
a
c
t
i
v
e
 
l
i
s
t
 
f
o
r
 
v
n
i
c
h
 
t
o
 
p
r
o
v
i
d
e
 
o
u
t
p
u
t
.

Y
o
u
 
m
u
s
t
 
p
e
r
f
o
r
m
 
a
 
n
e
w
 
s
e
a
r
c
h
 
o
r
 
r
e
s
t
o
r
e
 
a
 
s
a
v
e
d
 
(
N
P
I
E
1
)

l
i
s
t
.
*

/
s
m
0
1
/
 
*
*

/
g
s
0
1
/
 
*

(
T
I
T
L
2
)
 
*

$
c
l
p
3
$
 
*
i
s
 
n
o
t
 
a
 
l
e
g
a
l
 
c
o
m
m
a
n
d
 
n
a
m
e
.
 
C
h
e
c
k
 
f
o
r
 
t
y
p
i
n
g
 
P
r
i
i
r
s
.

S
e
e
 
P
a
r
t
 
6
.
2
 
o
f

G
u
i
d
e
 
t
o
r
 
f
u
l
l
 
l
i
s
t
 
o
f
 
c
o
m
m
a
n
d
s
.

P
l
e
a
s
e
 
r
e
p
h
r
a
s
e
 
y
o
u
r
 
.
.
.
-
g
u
e
s
t
.
*

$
c
l
p
l
$
 
*
S
y
s
t
e
m
 
e
r
r
o
,
 
a
t
t
e
m
p
t
i
n
g
 
t
o
 
i
n
t
e
r
p
r
e
t
 
c
o
m
m
a
n
d
 
l
i
n
e
.
*

-
S
c
l
p
2
$
 
*
P
l
e
a
s
e
 
b
r
e
a
k
 
p
p
 
y
o
u
r
 
r
e
q
u
e
s
t
 
i
n
t
o
 
r
e
q
u
e
s
t
s
 
n
o
t
 
e
x
c
e
e
d
i
n
g
 
2
0
0
 
c
h
a
r
a
c
t
e
r
s
 
i
n
 
l
e
n
g
t
h
.
*

S
c
I
p
u
$
 
*
Y
o
u
r
 
c
o
m
m
a
n
d
 
c
o
u
l
d
 
n
o
t
 
b
e
 
u
n
d
e
r
s
t
o
o
d
.
*

S
l
o
e
r
r
O
$
 
*
z
e
r
o
 
(
0
)
*

$
1
o
e
r
r
1
5
 
*
o
n
e
 
(
1
)
*

S
l
o
r
r
r
2
$
 
*
Y
o
u
 
h
a
v
e
 
t
y
p
e
d
 
t
h
e
 
'
l
e
t
t
e
r
*

S
1
o
e
r
r
3
$
 
*
i
n
 
p
l
a
c
e
 
o
f
 
a
*

$
l
o
e
r
r
u
$
 
i
n
 
t
h
e
 
c
o
m
m
a
n
d
 
a
r
g
u
m
e
n
t
*

$
1
o
e
r
r
5
$
 
T

Y
o
u
r
 
c
o
m
m
a
n
d
 
w
i
l
l
 
b
(
 
p
r
o
c
e
s
s
e
d
 
a
s
 
i
f
 
a
*

S
l
o
e
r
r
6
$
 
*
h
a
d
 
h
e
e
n
 
t
y
p
e
d
.

P
l
e
a
s
e
 
o
b
s
e
r
v
e
 
t
h
i
s
 
d
i
s
t
i
n
c
t
i
o
n
.

F
a
i
l
u
r
e
 
t
o
 
d
o
 
s
o
 
m
a
y
 
c
a
u
s
e

m
a
t
c
h
i
n
g
 
d
i
f
f
i
c
u
l
t
i
e
s
.
*

S
l
o
e
r
r
o
F
 
*
0
0
1
6
o
0
0
1
7
*

S
l
o
e
r
r
l
$
 
*
4
0
1
6
1
Z
0
1
7
*

$
r
a
e
r
r
l
$
 
*
i
s
 
n
o
t
 
a

P
A
N
G
E
.

C
h
e
c
k
 
f
o
r
 
t
y
p
i
n
g

e
r
r
o
r
s
.

S
e
e
 
P
a
r
t
 
9
.
2
 
o
f
 
t
h
e
 
G
u
i
d
e
 
f
o
r
 
d
e
t
a
i
l
s
 
o
f

c
o
r
r
e
c
t
 
u
s
a
4
e
 
(
-
A
-
 
t
h
e
 
P
A
N
g
E
 
c
o
m
m
a
n
d
.
*

A
r
a
o
r
r
2
S
 
*
T
h
e
 
9
A
N
g
E
 
c
m
m
a
n
d
 
m
a
y
 
o
n
l
y
 
b
e
 
u
s
e
d
 
a
l
o
n
g

w
i
t
h
 
a
 
S
P
R
J
E
C
T
 
s
e
a
r
c
h
 
a
s
 
e
x
p
l
a
i
n
e
d
 
i
n
 
P
a
r
t
 
9
.
2
 
o
f
 
t
h
e

G
u
i
d
e
.

P
l
e
a
s
e
 
r
e
p
h
r
a
s
-
O
u
r
 
r
e
q
u
e
s
t
.
*

$
r
a
e
r
r
3
$
 
*
Y
n
n
 
m
a
y
 
u
s
e
 
t
h
e
 
R
A
N
C
E
 
c
o
m
m
a
n
d
 
o
n
l
y
 
o
n
c
e

o
n
 
e
a
c
h
 
5
7
P
.
7
7
C
T
 
s
e
a
r
c
h
 
a
s
 
p
x
p
l
a
i
n
e
d
 
i
n
 
P
a
r
t
 
9
.
2
 
o
f

t
h
e
 
g
u
i
d
e
.

P
l
e
a
S
A
 
r
A
D
h
r
a
S
p
 
y
o
u
r
 
r
e
q
u
e
s
t
.
*

$
d
n
e
r
r
1
$
 
*
i
S
 
a
n
 
i
m
l
:
r
o
p
p
r
 
d
o
c
u
m
e
n
t
 
n
u
m
b
e
r
 
a
n
d
 
h
a
s
 
b
e
e
n
 
i
g
n
o
r
e
d
 
i
n
 
p
r
o
c
e
s
s
i
n
g
 
y
o
u
r
 
c
o
m
m
a
n
d
.
*

S
d
n
e
r
r
2
$
 
*
Y
o
u
 
h
a
v
e
 
n
o
t
 
i
n
c
l
u
d
e
d
 
a
n
y
 
(
l
e
g
i
t
i
m
a
t
e
)
 
d
o
c
u
m
e
n
t
 
n
u
m
b
e
r
s
 
i
n
 
y
o
u
r
 
c
o
m
m
a
n
d
.
*



$
i
o
e
r
r
l
$
 
*
F
r
r
o
r
 
c
o
d
e
*

i
i
o
e
r
r
2
$
 
*
i
n
 
c
e
l
l
 
t
o
*

S
i
o
e
r
r
3
$
 
*
a
t
 
l
o
c
a
t
i
o
n
*

S
i
o
e
r
r
4
S
 
'
i
n
v
o
l
v
i
n
g
 
F
i
l
e
,
*

S
i
n
t
e
r
1
$
 
*
Y
o
n
 
h
a
v
e
 
u
s
e
d
 
m
o
r
e
 
w
o
r
d
s
 
i
n
 
y
o
u
r

s
e
a
r
c
h
 
r
e
q
u
e
s
t
 
t
h
a
n
 
t
h
e
 
s
y
s
t
e
m
 
c
a
n
 
h
a
n
d
l
e
.

I
n
t
r
e
x
 
w
i
l
l
 
n
o
w
 
s
e
a
r
c
h
 
o
n
 
t
h
e

f
i
r
s
t
 
s
e
v
e
r
 
s
i
g
n
i
f
i
c
a
n
t
 
w
o
r
d
s
 
y
o
u
 
h
a
v
e

g
i
v
e
n
.
*

$
i
n
t
e
r
2
$
 
*
T
h
e
 
A
U
T
H
O
P
 
c
o
m
m
a
n
d
 
c
a
n
 
a
c
c
e
p
t
 
a

m
a
x
i
m
u
m
 
o
f
 
t
h
r
e
e
 
i
n
i
t
i
a
l
s
.

A
l
l
 
o
t
h
e
r
s
 
a
r
e
 
i
g
n
o
r
e
d
.
*

$
i
n
t
e
r
i
$
 
*
Y
o
u
r
 
s
e
a
r
c
h
 
t
e
r
m
 
c
o
n
t
a
i
n
e
d
 
n
o

s
e
a
r
c
h
a
b
l
e
 
w
o
r
d
s
.
 
P
l
e
a
s
e
 
r
e
v
i
e
w
 
y
o
u
r
 
s
e
a
r
c
h

r
e
q
u
e
s
t
.
*

$
i
n
t
e
r
4
$
 
*
A
s
t
e
r
i
s
k
s
 
i
n
 
s
e
a
r
c
h
 
t
e
r
m
s
 
m
u
s
t

A
p
p
e
a
r
 
i
n
 
p
a
i
r
s
 
t
o
 
o
f
f
s
e
t
 
s
p
e
c
i
a
l
 
c
h
a
r
a
c
t
e
r
s
y
m
b
o
l
s
.

Y
o
u
r
 
s
e
a
r
c
h
 
c
o
m
m
a
n
d
 
c
a
n
n
o
t
 
b
e
 
p
r
o
c
e
s
s
e
d
.
*

/
t
e
x
t
4
/
 
*

F
i
c
h
e
 
N
o
.

F
i
r
s
t
 
F
r
a
m
e

L
a
s
t
 
F
r
a
m
e
*

/
t
e
x
t
l
/
 
*
T
h
i
s
 
d
o
c
u
m
e
n
t
 
i
s
 
n
o
t
 
y
p
t
 
a
v
a
i
l
a
b
l
e

f
r
o
m
 
t
h
e
 
t
e
x
t
-
a
c
c
e
s
s
 
s
u
b
s
y
s
t
e
m
.

Y
o
u

m
a
y
 
s
e
e
 
a
 
h
a
r
d
 
c
o
p
y
 
h
y
 
a
s
k
i
n
g
 
a

m
e
m
b
e
r
 
o
f
 
t
h
e
 
I
n
t
r
e
x
 
s
t
a
f
f
 
f
o
r
 
i
t
.
*

/
t
e
x
t
2
/
 
*
T
e
x
t
 
i
s
 
a
v
a
i
l
a
h
l
e
 
o
n
l
y
 
f
o
r
 
t
h
e

i
n
d
i
v
i
d
u
a
l
 
p
a
r
t
s
 
o
f
 
t
h
i
s
 
d
o
c
u
m
e
n
t
 
(
t
h
a
t

i
s
,
 
f
o
r

a
r
t
i
c
l
e
s
 
o
r
 
c
h
a
p
t
e
r
s
)
 
w
h
i
c
h
 
w
e
r
e
 
s
e
p
a
r
a
t
e
l
y

d
o
c
u
m
e
n
t
e
d
.
*

/
t
e
x
t
3
/
 
*
F
e
r
r
u
e
s
t
 
a
 
h
a
r
d
 
c
o
p
y
 
o
f
 
t
e
x
t
 
f
r
o
m
 
a

m
e
m
b
e
r
 
o
f
 
t
h
e
 
I
n
t
r
e
x
 
s
t
a
f
f
.
*

f
t
e
x
t
5
a
/
 
*
H
a
r
d
 
c
o
p
y
 
i
s
 
f
o
u
n
d
 
a
t

l
i
b
r
a
r
y
 
w
i
t
h
 
c
o
d
e
 
n
a
m
e
 
*

/
t
e
r
t
'
)
b
/
 
*
.

S
e
e
 
D
a
r
t
1
5
.
1
1
 
o
f
 
t
h
e
 
G
u
i
d
e
 
f
o
r
 
e
x
p
l
a
n
a
t
i
o
n

o
f
 
c
o
d
e
.
*

$
t
e
x
t
h
S
 
*
 
T
h
i
s
 
d
o
c
u
m
e
n
t
 
i
s
 
n
o
t
,
 
a
v
a
i
l
a
b
l
e
 
a
t

t
h
e
 
c
o
n
s
o
l
e
.

Y
o
u
 
m
a
y
 
o
b
t
a
i
n
 
A
 
c
o
p
y

o
f
 
i
t
 
f
r
o
m
 
t
h
e
 
M
i
c
r
o
f
o
r
m
 
S
e
r
v
i
c
e
.
A
r
e
a
 
a
t

t
h
e
 
I
.
I
.
T
.
 
E
n
g
i
n
e
e
r
i
n
g
 
L
i
b
r
a
r
y

(
U
N
 
4
-
f
i
q
u
o
,
 
x
3
1
2
9
)
.

P
l
e
a
s
e
 
b
r
i
n
g
 
t
h
e
 
f
o
L
.
o
v
i
n
g

f
i
c
h
e
 
n
u
m
b
e
r
 
w
i
f
h
,
y
o
n
:
*

$
s
p
r
r
$
 
*
A
n
 
P
r
r
o
r
 
i
n
 
t
h
e
 
c
o
m
p
u
t
e
r
 
f
i
l
e
s
 
c
a
u
s
o
l
 
z
e
r
o

d
o
c
u
m
e
n
t
s
 
t
o
 
b
e
 
r
e
t
r
i
e
v
e
d

i
n
 
s
e
a
r
c
h
i
n
g
 
o
n
 
t
h
e
 
w
o
r
d
*

S
s
e
r
r
2
T
 
*
A
v
o
i
d
 
u
s
i
n
g
 
t
h
i
s
 
w
o
r
d
 
f
o
r
 
s
e
a
r
c
h
i
n
g

i
f
 
e
r
r
o
r
 
r
e
-
o
c
c
u
r
s
.
*

S
t
e
x
t
h
$
 
*
F
i
c
h
e
 
n
o
t
 
a
v
a
i
l
a
b
l
e
*

/
e
m
p
m
e
s
/
 
*
n
o
 
d
a
t
a
*

C
A

S
v
a
r
n
$
 
*
0

c
o

S
o
u
t
l
a
w
$
 
*
T
h
e
 
n
u
m
b
e
r
 
y
o
u
 
h
a
v
e
 
u
s
e
d
 
t
o

l
o
g
 
i
n
 
i
s
 
a
v
a
i
l
a
b
l
p
 
o
n
l
y
 
f
o
r
 
u
s
e
 
f
o
r
 
t
h
e

C
)

I
n
t
r
e
x
 
r
e
t
r
i
e
v
a
l
 
s
y
s
t
e
m
 
a
t
 
c
e
r
t
a
i
n
 
t
i
m
e
s

a
n
d
 
l
o
c
a
t
i
o
n
s
.
 
I
f
 
y
o
u
 
w
a
n
t
 
t
o
 
U
s
e
 
C
T
S
S

f
o
r
 
o
t
h
e
r

t
h
a
n
 
T
n
t
r
e
x
 
r
e
t
r
i
e
v
a
l

y
o
u
 
m
u
s
t
 
u
s
e
 
a
n
o
t
h
e
r
 
e
n
t
r
y
 
n
u
m
b
e
r
.

I
f
 
y
o
u
 
v
a
n
t
 
t
o
 
u
s
e
 
t
h
e
 
i
n
t
r
e
x

r
e
t
r
i
e
v
a
l
 
s
y
s
t
e
m
,
 
p
l
e
a
s
e
 
C
o
m
e
 
t
o
 
t
h
e

E
n
g
i
n
e
e
r
i
n
g
 
L
i
b
a
r
y
 
b
e
t
w
e
e
n
 
1
1
 
A
M
 
a
n
d
 
h
 
P
M
 
o
n

w
e
e
k
d
a
y
s
 
o
r
,
 
f
o
r
 
s
n
e
c
i
a
l
 
h
o
u
r
s
 
o
r
 
l
o
c
a
t
i
o
n
s
,

c
o
n
t
a
c
t
 
P
i
c
h
a
r

M
a
r
c
u
s
 
a
t
 
M
I
T
 
3
5
-
4
0
6
,
 
e
x
t
.
 
2
3
(
0
.
*

5
g
e
t
1
I
 
*
T
h
e
 
c
a
t
a
l
o
g
 
r
e
c
o
r
d
 
f
o
r
 
t
h
i
s
 
d
o
c
u
m
e
n
t
 
c
a
n

n
o
t
 
b
e
 
r
e
,
,
.
r
i
e
v
e
d
 
a
t

t
h
i
s
 
t
i
m
e
.

1
7
r
r
c
r
 
c
o
d
e

*

S
g
e
t
2
$
 
*
T
V
T
P
F
X
 
i
s
 
u
n
a
b
l
e
 
t
o
 
p
r
i
n
t
 
t
h
i
s
 
f
i
e
l
d
*

/
d
o
c
5
/
 
*
 
7
1
n
 
M
A
T
C
H
*

/
d
o
c
6
/
 
*
M
A
T
C
H
 
i
n
v
a
l
i
d
 
f
o
r
 
t
h
i
s
 
r
e
q
u
e
s
t
*

/
f
3
0
.
0
1
/
 
*
c
o
n
v
e
n
t
i
o
n
a
l
*

T
f
3
1
.
3
3
$
 
*
P
r
o
f
e
s
s
i
o
n
a
l
 
S
e
r
i
a
l
 
a
r
t
i
c
l
e
*

/
f
3
1
.
3
1
4
/
 
*
P
r
o
t
e
s
s
i
o
n
a
l
 
j
o
u
r
n
a
l

a
r
t
i
c
l
e
*

/
f
3
1
.
3
5
/
 
'
P
r
o
f
e
s
s
i
o
n
a
l
 
l
e
t
t
e
r
s
 
j
o
u
r
n
a
l

a
r
t
i
c
l
e
*

/
f
3
1
.
3
5
/
 
*
C
o
n
f
e
r
e
n
c
e
 
p
r
O
c
e
e
d
i
n
g
s

a
r
t
i
c
l
e
*

/
f
3
1
.
2
3
/
 
*
C
o
n
f
e
r
e
n
c
e
 
p
r
o
c
e
e
d
i
n
g
s
*

i
f
3
1
.
3
/
$
 
*
T
r
a
d
e
 
j
o
u
r
n
a
l
*

i
f
3
1
.
3
8
.
$
 
*
M
i
s
s
 
m
e
d
i
a
 
m
a
o
a
z
i
n
e
*

$
f
3
1
.
n
u
$
 
*
A
n
s
t
r
a
c
t
*

/
f
3
1
.
b
3
/
 
*
R
e
p
o
r
t
*

i
f
3
1
.
0
5
 
$
 
*
s
i
b
l
i
o
g
r
a
p
h
y
*

/
1
-
3
6
.
0
5
/
 
*
F
n
g
l
i
s
h
*

$
f
3
6
.
0
6
1
 
*
F
r
e
n
c
h
*

i
f
3
6
.
0
7
$
 
*
G
e
r
m
a
n
*

$
f
6
6
.
0
1
i
.
*
P
r
o
f
e
s
s
i
o
n
a
l
*

/
f
6
6
.
0
n
/
 
*
u
n
d
e
r
g
r
a
d
u
a
t
e
*

$
f
b
6
.
0
7
$
 
*
L
a
y
m
a
n
*

/
t
h
5
.
2
C
/
 
*
T
h
e
o
r
e
t
i
c
a
l
*



/
f
6
5
.
1
6
/
 
*
P
r
o
p
o
s
a
l
*

/
f
6
5
.
1
9
/
 
*
F
s
s
a
y
*

/
t
6
5
.
3
5
/
 
*
E
x
p
e
r
i
m
e
n
t
a
l
*

(
f
6
5
.
0
4
/
 
*
R
e
p
o
r
t
 
o
n
 
a
 
d
e
v
e
l
o
p
m
e
n
t
 
o
r
 
a
p
p
)
 
i
c
a
t
i
o
n
*

/
f
6
5
.
0
2
/
 
*
T
h
e
o
r
e
t
i
c
a
l
 
a
n
d
 
e
x
p
e
r
i
m
e
n
t
a
l
*

/
f
6
b
.
1
4
/
 
*
N
o
n
-
c
r
i
t
i
c
a
l
 
r
e
v
i
e
w
*

/
f
6
5
.
1
3
/
 
*
C
r
i
t
i
c
a
l
 
r
e
v
i
e
w
*

/
f
2
0
.
0
1
/
 
*
P
e
r
s
o
n
a
l
 
a
u
t
h
o
r
*

S
t
2
0
.
0
2
$
 
*
C
o
r
p
o
r
a
t
e
 
a
u
t
h
o
r
*

S
t
2
0
.
1
)
3
5
5
 
*
T
i
t
l
e
*

/
f
3
G
.
1
9
/
 
*
R
u
s
s
i
a
n
*

/
f
3
6
.
0
4
D
/
 
*
*

/
f
0
2
.
D
a
/
 
*
R
a
d
i
o
f
r
e
q
u
e
n
c
y
,
 
m
i
c
r
o
w
a
v
e
 
a
n
d
 
o
p
t
i
c
a
l
 
s
p
e
c
t
r
o
s
c
o
p
y
 
o
f

L
i
q
u
i
d
s
 
a
n
d
 
s
o
l
i
d
s
 
(
r
o
f
e
s
s
o
r
 
B
e
n
e
d
e
k
)
*

/
t
0
2
.
0
b
/
 
*
F
i
q
h
 
t
e
m
p
e
r
a
t
u
r
e
 
m
e
t
a
l
l
u
r
g
y
 
(
P
r
o
f
e
s
s
o
r
 
G
r
a
n
t
)
*

/
f
0
2
.
0
c
/
 
*
m
i
c
r
o
w
a
v
e
 
a
n
d
 
q
u
a
n
t
u
m
 
M
a
g
n
e
t
i
c
s
 
(
P
r
o
f
e
s
s
o
r
 
E
p
s
t
e
i
n
)
*

/
1
0
2
.
0
d
/
 
*
C
a
s
t
i
n
g
 
a
n
d
 
s
p
l
i
d
i
f
i
c
a
t
i
o
n
 
(
P
r
o
f
e
s
s
o
r
 
F
l
e
m
i
n
 
*
1
*

/
f
0
2
.
0
e
/
 
*
S
t
r
u
c
t
u
r
a
2
 
m
a
t
e
r
i
a
l
s
 
p
r
o
l
e
s
s
o
r
 
M
c
G
a
r
r
y
)
*

/
t
O
l
.
(
)
f
/
 
*
T
r
a
n
s
p
o
r
t
a
t
i
o
n
*

3
f
0
2
.
0
0
 
*
H
y
b
r
i
d
 
c
o
m
p
u
t
i
n
g
 
s
t
r
u
c
t
u
r
e
s
 
(
P
r
o
f
e
s
s
o
r
 
D
e
t
t
o
 
2
o
s
)
*

/
f
0
2
.
0
1
/
 
*
L
i
b
r
a
r
i
a
n
*

/
f
O
2
.
0
2
/
 
*
F
a
c
u
l
t
y
*

/
f
C
2
.
0
3
/
 
*
R
e
s
e
a
r
c
h
e
r
*

/
M
.
0
4
/
 
*
i
z
r
a
d
u
a
t
e
 
s
t
u
d
e
n
t
*



APPENDD< E

SUBROUTINE LINKAGES

SUBROUTINE CALLED BY:

ANDER AND., NAME, SEARCH

AND. CLP*

ASCINT IN., NUMBER, OUT., RANGE, TABLE

ASCIT6 MONTOR

ASCITC BC DASC, LOC MES , PREP, . C . ASC

ASCTSS CTSIT, CTSIT6, TRASH

ASIDE GETLIN, LISTEN, MONTIM, MONTOR,
PUTS, SEARCH, SUMOUT, SUPER,
TYPEIT, WRT

ASSET ASIDE

ATLCLN STCLN *

ATSC RN SEARCH

AUTHOR CLP*
BCDASC DROP, ERRGO, IFSRCH, INITYP, LISFIL,

LIST, LISTSL, MONTOR, QUIT, SUMOUT,
USE

BCD- .0 PREP, SYSGEN

BFCLOS ERRGO. INIDSK, PREP, REND, TABLE

BFOPEN INIDSK, PREP, REND, TABLE

BFREAD PREP, REND, TABLE

BFWRIT PUTS, SUMOUT

BUFFER BFOPEN, CHKSAV, CONDIR, CONNAM,c,
INIRES, LISFIL, LISTSL, LONG, MOVEIT,
NAME, QUIT, SAVE, SHORT, SUMOUT,
SYSGEN, USE

BUFSCN ATSC RN, ANDER*

BZ EL CHKNAM, QUIT

CA LLIT ANDER, CLEANP, CLP, DROP, INIFIX,
INITDB, LIST, NUMBER, RESTOR,
SUPER, USE, BUFSCN, ATLCLN

CHFILE SYSGEN

* Indicates procedure makes call via CALLIT.

-58Z-

59 8



-583-

SUBROUTINE CALLED BY:

CHKNAM AND., NAME, SAVE
CHKNUM ASCINT, INFO

CHKSAV SAVE, USE7 LIST *
CHNCOM IFSINT, QUIT, REND, SYSGEN
CLEAN AUTHOR, SUBJ., TITLE,NUMBER,* RESTOR*
CLFILE GETLIN
(4LOSE ANDER, CLFILE, CHKSAV,CONDIR,

CONNAM, DYNAMO, FSO, GETINT,
IFSINT , IFS RC H, INIRES, INIVAR,
LISFIL, LISTSL, LONG, NAME, QUIT,
SAVE, SEARCH, SHORT, SUMOUT,
SYSGEN, TIME, USE

CLP SUPER
CNT LOC FREC, FREE FRET, FREZ
COMARG DYNAMO, INIVAR

COMENT CLP*
COMPAR SPCTI;pNI, TABLK
COMPUL IFSRCH, IN., MONTOR, OUT ., RANGE,

SPCT RN, TABLK

CONDIR LISTSL, USE*
CONNAM DROP
COPY AUTHOR, EVAL, GETEND, GETFLD, IN.,

NEXITM, SEEMAT, STEM, S.T., TABLE,
TRANS, 'I YPEIT

CTSIT6 AND., CHKNAM, INFO, QUIT, SIGNIN
DEC I NEXITM, PUTS, STEM, TRANS, TYPEIT
DEF BC GETFLD, IFSRCH, INIRES, SEARCH

DELFIL CONNAM DROP, SUMOUT, SYSGEN, USE

DELIST AUTHOR, IFSRCH, NUMBER, RESTOR,
SUBJ., TITLE

DERBC TRETRI
DIST EVAL, FSO, SPCTRN
DNSORT NUMBER

DORMNT ANDER, C LP, ERRGO, FREC, FREE, FRET,
FREZ, PREP, PUTS, QUIT, SHORT, SUPER,
TABLE, TYPASH, TYPEIT



-584-

SUBROUTINE CALLED BY:

DROP CLP *
DRPPTR AND., NAME, DELIST

DYNAMO SUPER*
ENDTAB REND

ERRGO IFSRCH

EVAL STJPER *

EXIT CLP*
FAPDBG CLP*
FC LEAN CLEANP,' DELIST , NEWPT

FERRTN SETRTN, SYSGEN

FIELDS FSO

FILCNT CHKSAV, CLEANP, CONDIR, CONNAM,
GETLIN, IFSINT, INIRES, LISFIL, LISTSL,
PREP, REND, TABLE

FIND NEXITM, SPETRN
FLDNAM EVAL, FSO, IN., OUT
FRALG INIAUT, INICON, INIEVL, INIFDC, INIFLD,

INIOUT, INIRNG, INIS. T, MONINT, PREP,
SIGNIN, SYSGEN, TABLE

FREE AUTHOR, CONNAM, GETFLD, IFSINT,
INIF IX , , INITYP, INIVAR, IN.,
SYSGEN, TABLE, TYPASH

FRER CONNAM, GETFLD, TYPASH

FRET ASCITC, CHKNAM, CLP, CONNAM, EVAL,
FCLEAN, FRALG, GETFLD, GETINT,
GETLIN, IFSINT, IFSRCH, INFO, impax,

, INITYP, NEXITM, NUMBER.PREP,
QUIT, RANGE, REND, SUBJ., S.T.,
TABLK, TITLE, TYPASH, TYPEIT,
. C. ASC

FREZ AUTHOR, ASCIT, ASCITC, ASCIT6,
BUFSCN, CLP, CTSIT, CTSIT6, TWAL,
GETFLD, GETLIN, IFSRCH, IN".POT,
INIS. T, INITDB, MONINT, N'
NUMBER, PREP, RANGE, REND,
SEARCH, SUBJ., S. T., TABLE, TABLK,
TITLE

FRESET SYSGEN

FRMRAL RANGE
FSIZE SUPER

Coo



-585-
SUBROUTINE

FSO SUPER*
FSOC LN FSO, LISTEN *
FSTATE

CALLED BY

FILCNT, GETLIS, INIDSK, INIT YP,
PUTS, SEARCH, SYSGEN, !SE

FWAIT ANDER, BFOPEN, BEINRIT, GETLIS
GET ASCINT, AUTHOR, CAPASC, CHKNUM,

COMPAR, COMPUL, CTSIT, CTSIT6,
FIND, GETLIN, IFSRCH, IN., NAM5,
NEXITM, OUT., SIGNIN, STEM,TABLK,
TYPEIT, C . ASC

GET6 ASCIT, ASCITC, ASCIT6, PREP
GET 12 GETLIN
GETBRK LISTEN, PUTS, TYPEIT
GETCOM COMARG, SYSGEN

GETEND EVAL
GETFLD FS0
GET IME GETLIN, GET TM, MONTIN, WHEN
GETINC GETFLD
GETINT FSO, FSOCLN
GETLIN C LP,* SYSGEN

GETLIS ANDER, F50, NUMBER
GETMEM FREE, FRET, SIZE
GET P FSO, INX CON

GETSET GETFLD
GET TAB
GET TM

GETFLD
INIMON

GETWRD INITYP
GIVTAB IFSINT

GNAM
GO
IFSET
IFSINT
IFSRCH*

COMARG
CLP*
IFSRCH, SEARCH
INIVAR
SEARCH

INC ASCINT, A CIT, ASCITC, ASCIT6, CTSIT,
CTSIT6, VAL; FSO, GETFLD, GETLIN,
INTASC, MATCH, NEXITM, OCTASC,
SEEMAT, SPCTRN, STEM, TABLE,
TA BLK/, TRANS, TRASH, T YPEIT

601



- 586-

SUBROUTINE CALLED BY:

INC I CAPASC, CH_KNUM, COMPAR, COMPUL
DROP, FIND, FSO, GETFLD, IN.,
NAM5, NEXITM, OUT.,,PUTS,
SEEMAT, TABLE, TRANS, . C. P-SC

INC6 ASCIT, ASCITC, ASCIT6, CTSIT,
PREP, TRASH,

INC 12 GETLIN

INCHAR SPCTRN, TABLK

INDENT FSOCLN, FSO

INFO CLP *
INIAUT SEGINT

INICON IN IF LX

INIDSK DYNAMO, FSO, GETLIN, MONTOR, SLiMOUT

INIEND IFSINT
INIEVL INIT2

INIFIX SUPER*
INIFLD SEGINT

INI. C. IN IF DC

INIMON DYNAMO

ININT DYNAMO

INIO UT INIT2

INIRES DYNAMO

INIRNO SEGINT

INIS. T INIT2

INIT DB SYSGEN

INITYP DYNAMO, GETLIN, INFO, LONG, SHORT

INIT2 IN IF LX

INIVAR SUPER*
INIVRB SEGINT

INMON2 SEGINT

INTASC GETFLD, SEEMAT, TRANS, TYPEIT

IN. CLP*
INXCON DYNAMO

IODIAG ERRGO

LSARG NEXITM

LS ARGV NEXITM, T YPEIT, G. ASC

602



-587-
SUBROUTINE CALLED BY:

JOBTM MONT IM

KILFAP DYNAMO

LDOPT DYNAMO, QUIT
LEGFLD IN., OUT.
LIBRY CLP*
LINKUP CALLIT
LISFIL LIST *
LIST CLP*
LISTSL LIST*
LISTEN TYPEIT, INTONE
LOCMES ANDER, IFSINT, IFSRCH, INIDSK, INIFIX.

IMVAR, LISTEN, MONTOR, PUT, PREP,
REND, SHORT, STRCH, SUMOUT, TABLE,
r-YPEIT

LOCSEC IFSRCH
LONG CLP*
LOOKUP C LP, NAME
MAINBD F RA LG , INI . C.

MATCH FSO
MONINT INIFIX
MONTIM CALLIT, GETLIN, INIMON, MONTOR,

SUPER, TYPEIT
MONTOR CLP,* INIMON
MOVEIT USE*
NAM5 IFSRCH ( LOCSEC), REORD (MEi DIR)
NAME CLP*
NAP GETLIN
NEWPT FSOCLN
NEXITM AND. , AUTHOR, CLP, ,DROP, INFO, IN

J LIST, MONTOR, NAME, NUMBER, OUT.
NOT. CLP*
NUMBER CLP*
OCABC SYSGEN
OdT.ASC ERRGO, LISTEN, PUTS, TYPEIT
OCT:??I FREE, FRET
OPEN BFOPEN, CHKSAV, CONDIR, CONNAM,

DYNAMO, GETINT, GETLIS, IFSINT,
INIRES, INITYP, LISFIL, LISTSL, LONG,
MOVEIT, NAME, OPFILE, SAVE, SHORT,
SUMOUT, SYSGEN, TRETRI, USE



- 588 -

SUBROUTINE CALLED BY:

OPFILE DYNAMO, GETLIN, SENTRY

OR. CLP*
OTBL TABLK

OUT. CALLIT

PREP INIFIX*
PRTI:! T YPASH

PUT ASCIT, ASCIT6, CAPASC, CHKNUM,
EVAL, GETFLD, GETLIN, INTASC, IN.,
NEXITM, OCTASC, OUT. , PUTS,
SEEMAT, SIGNIN, TABLE, TRANS,
. C. ASC

PUTINC GETFLD

PUTOUT TRASH

PUTS TYPEIT (internal)
PUT6 CTSIT, CTSIT6, PREP, TRASH

QUIT GO, CLP*
RANGE CLP*
RDFILE ANDER

RDFLX SYSGEN

RDFLXA GETLIN, INIVAR

RDWAIT ANDER, CALLIT, CHKSAV, CONDIR,
CONNAM, FSO, GETINT, GETLIS,
IFSINT, IFSRCH, INITYP, LISFIL,
LISTSL, MOVEIT, NUMBER, SAVE,
SUMOU T, SYSGEN, TRETRI, USE

REND INIE ND

RESTOR CLP*
RJUST CHKNUM, QUIT, SYSGEN

RNGNAM EVAL, RANGE

RP IU ME TABLE

RSCLCK DYNAMO

SAVBRL PUTS, TYPEIT
SAVE CLP*
EARCH SUPER*

SEEMAT CLP7 SUPER, *
SEGINT S YSCEN

SENTRY LINKUP

SE-T BCD GETLIN, PRT12, TRETIU

SETBLP AND. , SEARCH

SETBRK ININT, INTONE, TYPE1T

(304



-589 -
SUBROUTINE CALLED Bv-

SETFUL GETLIN, PRT12, TRETRI

SETMEM FREE, SYSGEN

SETRTN INIRES

SETS YS DYNAMO, QUIT

SETWRD DYNAMO, INIDSK, LONG, OPFILE,
QUIT, SHORT, TYPEIT

SHIFT STEM'-
SHORT CLP*
SIGNIN SUPER*
SIGN2 SUPER*
SIZE INIFIX, SUPER

SLEEP NAP

SPCTRN FSO

STANDL FSO

STBL TABLK

STEM
STRACC SEGINT

SUBJ. CLP*
SUMOUT MONTOR, QUIT

SYSGEN SUPER

S. T SUBJ., TITLE
TABENT ANDER, FSO, IFSRCH, NUMBER

TABLE INIFIX *
TABLK SPCTRN

TBSRCH NEXITM

TESTMO TYPEIT
TIME CLP*
TIMEIN (variable)
TITLE CLP *
TOTTIM (variable)
TOUT (variable)
TRANS MONTIM, SUMOUT

TRASH TYPASH

T RET RI FSO

TRFILE CLEANP, CONDIR, CONNAM, DELIST,
INIRES, NAME, QUIT,

TSSASC ASCIT, ASCITC, ASCIT6, taETLIN



-590 -
SUBROUTINE CALLED BY:

TYPASH INIDSK, PUTS, TYPEIT
TYPEIT ANDER, AND., AUTHOR, CHKNUM,

CEP, CONNAM, DROP, ERRGO, EVAL,
EXIT, FSO, GETFED, GETEIN,
IFSRCH, INFO, INIFIX, INIVAR, IN.,
LISFIL, LIST, LISTSL, MONTIM,
McDNTOR, NAME, NUMBER, OUT..
PREP, QUIT, RANGE, REND,
SEARCH, SEEMAT, SHORT, SIGNIN,
SIGN2, SPCTRN, SUBJ., SUMOUT,
SUPER, S. T, TABENT, TABLE, TIME,
TITLE, USE

USE CEP*
VSRCH LOOKUP, STEM

AIT GET LIN
WFLX CNTLOC, FREE, FRET, PUTOUT, TYPASH
W LXA CNTL FREE, FRET
W HEN MONT

WHOAMI FSO, INXCON, MONTOR,,
WITH. CEP*
W RF ILE BFWRIT
WRFLX CALEIT, SYSGEN
W RF LXA CALLIT, CEP, OUT., PRT12S, SENTRY,

SYSGEN, TRETRI, WFEXA

WRHGH TABLK
WRT COMENT, `LIBRY
WRWAIT ANDER , CHKSAV, GONDIR, CONNAM,

FSO, IFSRCH, INIRES, )VEIT, QUIT,
SAVE, SUMONT

. C. ASC INICON, INIEVL, INIFED,
INIOUT, INIRNG, INIRES, INIS.T,
INIVRB, MONINT, SAVE

606



APPENDIX F

SUBROUTINE LINKAGES

SUBROUTINE CALLS

ANDER BUFSCN , CLOSE, DORMNT, FWAIT,
GETLIS, LOCMES, RDFILE, RDWAIT,
TABENT, TYPEIT, WRWAIT

AND. ANDER, CHKNUM, CTSIT 6, DRPPTR.
NEXITM, SETBLP, TYPEIT

ASCENT

ASCIT

ASCITC

CHKNUM, GET, INC

FRER, GET6, INC, IN06, PUT, TSSASC
_FRET, FREZ, GET6, INC, INC6,
T _;SASC

ASCTTS no calls
ASIDE ASSET

ASET no calls
ATECLN no calls
ATSCRN BUFSCN

AUTHOR CLEANP, COPY, DELIST, FREE,
FREZ, GET, NEXITM, TYPEIT

BCDASC

BCDEC no calls
BFCLOS ro calls
BECODE no calls
EFOPEN BUFFER, OPEN, FWAIT
BFREAD no calls,

BEWRIT WRFILE, FWAIT

BUFFER no calls*-Indicates procedure called via CALLIT
/



SUBROUTINE

BUFSCN
BZEL

CA L LIT

- 592 -

CALLS

WR
no calls

AND. , ASCINT , CHKNAM. DROP,
EVA L, FAPDBG, FC LEAN ,
GET LIN, LINK UP, LIST , MONTIM,
NAME, NOT,. , NUMBER , OR . , OUT. ,
R DWAIT , RESTOR, SUBJ. , TIT LE ,
USE, WRFLX, WRFLXA

CAPASG PUT, GET , INC 1

CHACAP no calls

CHANGE no calls

CHFILE no calls

CHKNAM BZEL, CTSIT6, FRET

CHKNUM PUT, GET 'NCI, TYPEIT

CHKSAV BUFFER, CLOSE, FILCNT, TRFILE

CLEANP DRPPTR, FILCNT, TRFILE, FCLEAN,
FRET, ATLCLN*

CLFILE CLOSE

C-LOSE no calls

CLP CALLIT, DORMNT, FRET, FREZ,
LOOKUP, NEXITM, TYPEIT, WRFLXA

CATLOC WFLX, WFLXA, OCTTOI

COMARG GETCOM, OJAM

COMENT WRT

COMPAR GET , INC I

COMPUL GET , ING 1

CONDIR BUFFER , CLOSE, OPEN , RDWAIT ,
TR FILE , WR WAIT



593

SUBROUTINE CALLS

CONNAM BUFFER , CLOSE , DELFIL, FILCNT ,

FRER, FRET, OPEN, RDWAIT, TRFILE,
TYPEIT , WR WAIT

COPY no c alls

CTSIT ASCTSS, FRER, GET, INC, INC 6, PUT 6

C TSIT 6 ASCTS, FR E Z , GET , INC , PLTT 6

DEAD no call s

DEC no calls

DEFBC no calls

DE LBC no calls

DELFIL no calls

DELIST FC LEAN , TR FILE, DR PPTR

DER BC no calls

DIFF no calls

DIST no calls

DNS( )R T no calls

DOR.:A NT no calls

DROP BCDASC , CHKNAM, CHKS A V
DE LFIL , INC 1 , NEXITM, TYPFIT

DR PPTk no calls

DYNAMO C LOSE , COMARG, INIDSK , INIMON ,
INIR ES , INITYP, INXCON

KILFAP, :1DOPT.. OPEN, OPFILE ,
RSCLCK , SETSYS, SETWRD

ENDTAI:-5 no calls

609



- 594- -

SUBROUTINE CA LLS

ERRGO BDCASC , BFC LOS, DORMNT, IODIAG,
OCTASC , T YPEIT

EVA L COPY, DIST, FLDNAM, FRET, FRE Z ,
GETEND, INC , PUT , RNGNAM, TYPEIT

EXIT TYPEIT

FAPDBG no calls

FCHECK no c alls

FC LEAN FRET

FERR TN no calls

FIELDS no calls

FILCNT FSTATE

FIND GET, INC 1

LDNAM no calls

FRALG FRET, MAINBD

CNTLOC, DORMNT

FRED nb calls

FREE CNT LOC , DORMNT, GE TMEM, OCTTPI
SE TME M, WFLX, WFLXA

FRER no calls

FR ESET no calls

F R T CNTLOC , DOR MNT , GETMEM, TTOI,
WFLX, WFLXA

FR E 7, C NT LOC DOR MNT , FR fE

ESIZE no calls

FSO CLOSE, DIST, FIELDS, FLDNAM, FRALG,
FSOCLN, GETFLD, GE TINT , GET LIS,
GET P , INC , INC I , INDENT INIDSK ,
MATCH, RDWAIT , SPCTRN, STANDL,
TABENT, TRETRI, TYPEIT , WHOAMI,
WRWAIT

610



- 595-

SUBROUTINE CALLS

FSC 7,LN GETINT, INDENT, NEWPT

FSTATE no calls

FTRACE no calls

FWAIT no calls

GET no calls

GET6 no calls

GET1.? no calls

GETBLP no calls

GETBRK no calls

GETCOM no calls

GETEND COPY, INIEND

GETFLD COPY, DEFBC;, FREE, FRER, FRET,
FREZ, GETINC, GETSET, GETTAB
INC, INC1,INTASC, PUT, PUTINC, TYPEIT

GETIME no calls

GETINC no calls

'GETIN CLOSE, FRET, OPEN, RDWAIT

GETLIN ASIDE, CLFILF, FILCNT, FRET, FREZ,
GET, GET12, GETINC, INC, INC12
INIDSK, INITYP, NAP, OPFT1 ,E, PUT,
RDFLXA, SETBCD, SETFUL, TSSASC,
TYPEIT, WAIT

GET LIS FSTATE, OPEN, RDWAIT

GETMEM no call

GETOPT no c lls

E T P no ills

GETSET no calls

GETSYS

Gil



596 -

SUBROUTINE CALLS

GE T TAB no

GETTIM no calls

GETTM GETIME

GET WR D no calls

GNAM no calls

GIVTAB no calls

GO QUIm

IFSET no calls

IFSINT CEINCOM, CLOSE , FIECNT FRE ,
FRET, GIVTAB, INTEND, LOCMES,
OPEN, R DWATT, TYPEIT

IFSR C1-1

INC

INC]

INC 6

INC 12

INC HA R

INDENT

BCDASC, B1TFSCN, CLOSE, COMPUL,
DEFBC, DELAST, ERRG15, FRET,
FREZ, GET, IFSET, LOCMES, NAM5,
RDWAIT, TABENT, TYPEIT, WRWAIT

no calls

no car s

no calls

no calls

no calls

no calls

INFO CH*NUM, .CTSIT 6, FRET, INITYP,
NEXITM, TYPETT

INLAUT F A LG, C. ASC

INICON I RA LG, . C. ASC.

INIDSK I CLOS, BFOPEN, FSTATE, LOCME.`3.
SE TWRD, TYPASH

INIEND no car s

6 I 2



SUBROUTINE

INIEVL

INIFIX

INIFLO

INI. C.

INIMON

ININT

TNIOUT

INIPUT

Cs_

FR A LG, C. ASC

FRALG, FREE, FRET, INiCON,
INIT2, INI. C. , LOCMES, MONINT, PREP*
ST ZE, TABLE*, TYPEIT

C. ASC

MAINBD

GETTM, MONTIM

SETERK

FRALG, C. ASC

FREE, FRET, FREZ

INIRES BUFFET' , CLOSE, DEFBC, FILCNT
OPEN, SETRTN, TRFILE, WRWAIT,
. C. ASC

INIRNG FRALG, C. ASC

INIS. T FRALG, FREZ, . C. ASC

INITDB FREZ

INITYP FREE, FRET, FSTATE, SETWRD
GETWRD, OPEN, RDWAIT, CLOSE

INIT2 INIEVL, INIOUT, INIS. T

INIVAR CLOSE, CO VIARG, FREE, IFSINT,
LOCMES, RDFLXA, TYPEIT

INIVRB . C. ASC

INMON2 no calls

INT ASC INC, PUT

IN TOI\E SETBRK, cETBRK, LISTEN

INTTWO GETBRK,

IN. ASCINT, COMPUL, COPY, FLDNAM,
FREE, GET, INCI, LEGFLD, NEXITM,
PUT, WHOAMI

613



suBRCY:T:Nz: CALLS

INXCON (5LTP, TOAMl

IODIAG no calls

1SARG o calls

ISARGD no calls

no calls

ISARGV no calls

JOBTM no calls

KILI*P no calls

KILNBK no calls

I.DOPT no calls

LEGFLD no calls

LIBRY WRT

SENTRY

LISFIL BCDASC, BUFFER, CLOSE, FILCNT,
OPEN, RDWAIT, TYPEIT

LIST BCDASC, LISTSL*, LISFIL*, CHKSAV*,
CHKNAM NEXITM,TYPEIT

,ISTSL BCDASC, BUFFER, CLOSE, CONDIR,
FILCNT, OPEN, RDWAIT, TYPEIT-

LISTEN ASIDE, GETBRK, LOCMES, OCTASC,M01:IIM, FSOCLN

LOCMES ASCITC

LOCSE C GET, NAI' 5, DEFBC, OPEN

LONG BUFFER, CLOSE, INITYP, OPEN, SETWRI)

LOOKUP VS12 CI-I

MAINBD no calls

MATCH iNC, COMPAR, COMPUL

MGIINT FRALG, FREZ, . C. ASC



599

SUBROUTINE CALLS

MON IM GETIME. JOBTM. TYPEIT

MONTOR ASCIT6, ASIDE, BCDASC, COMPT: L,
INIDSK, MONTIM, NEXITM, SUMOUT ,
TYPEIT, WHEN, WHOAMI

MOVEIT BUFFER, OPEN, FrDWAIT, WR WAIT

NAMS GET, INC1

NAME ANDER, B UFFER, CHKNAM, C LOSE, DRPPTR ,

'LOOKUP, NEXITM, OPEN, TRFILE, TYPEIT

NAP SLEEP

NEWPT FCLEAN, WRWAIT, TABENT, CLOSE,

NEXITM COPY, DEC1, FIND, FRET, FREZ,
GET, INC, INC'. ISARG, ISARGV PUT
TBSRCH

NOT. no calls

NUMBER ASCINT, CLEANP*, DELIST, DNSORT,
Fr! ET, FREZ, GETLIS, NEXITM,

,JWAIT, TABENT, 'TYPEIT

DCABC no calls

OCDBC no calls

OCLFiC nu ails

OCRBC no calls

OCTASC INC, PUT

OCTTOI no calls

OPEN no calls

OPFILE OPEN, SETWRD

OR. no calls

OTBL no calls

OUTCOM no calls



- 600-

SUBROUTINE CALLS

OUT

PREP

ASCINT, COMPUL, FLDNAM, GET,
INCI , LEGFLD, NEXITM, PUT,
TYPEIT, WRFLXA

ASCITC. BCDEC, BFCLOS, FBOPEN,
DORMNT, FILCNT, FRALG, FRET,
FREZ, GET6, LOCMES, PUT 6, TYPEIT

PR T12 SETBCD, SETFUL, WRFLXA

PUT no calls

PUTINC no calls

PUTOlpi( INC 6, PUT6

PUTS ASIDE, BFWRIT, DECI , DORMNT,
FSTATE, GETBRK, INC I , LOCMES,
OCTASC, PUT, SAVBRK, TYPASII

PUT6 no calls

QUIT BCDASC, BUFFER, BZEL. CHNCOM,
CLOSE, CTSIT6, DORMNT, FRET,
LDOPT, NEXITM, RJUST, SETSYS,
SETWRD, SUMOUT, TRFILE, TYPEIT,
WRWAIT

7

RANGE ASCiNT,. COMPUL, FRET, FREZ,
NEX ITM, RNGNAM, TYPEIT

RDFILE no calls

RDFLX RDFLXA

RDFLXA no calls

RiDWAIT no calls

REND BFCLOS, BFOPEN, BFREAD, CHNCOM,
ENDTAB, FILCNT, FRET, FREZ,
LOCMES, TYPEIT

RESTOR CLEANP*, DELIST

RJUST no cils

RNGNAM no calls

RPRIME no calls



- 601-

SUBROUTINE CALLS

RSCLCK cc Calls

RSOPT no calls

RSTR TN no calls

SAV7 RK no calls

SAVE B UFFER , CHKNAM, CHKSAN , CLOSE,
NEXITM, OPEN, RD WAIT , WR WAIT ,
. C. ASC

SEARCH ANDER , ASIDE, ATSCRN, CLOSE,
DEFBC, FREZ, FSTATE, IFSET,
IFSRCH, LOCMES, NAMS, SETBLP,
TYPEIT

SEEMAT COPY, INC , INC1. INTASC, PUT ,
TOT TIM, TYPEIT

SEGINT INIAUT, INIFLD, INIRNG, INIVRB
INMON2, STR ACE

SENTR Y no calls

SETBCD no calls

SETBLP no calls

SETBRK no calls

SETFRE no calls

SETFUL no calls

SETMEM no calls

SETNBK no calls

SE TNC V no -calls

SETOPT no calls

SE TP no calls

SE FR TN no calls

SETSYS no calls

SETWRD no calls

617



. - 602 -

SUBROUTINE CALLS

SHIFT no calls

SHORT BUFFER, CLOSE, DORMNT,
INITYP, OPEN, SETWRD, TYPEIT

SIGNIN CTSIT6, "FRALG, GET, NEXITM,
TYPEIT

SIZE CETMEM

SLEEP no calls

SPCTRN COMPAR, COMPUL, DIST, FIND, INC,
INCHAR, TABLK, TYPEIT

STANDL no calls

STBL no calls

STEM COPY, DEC1, GET, INC, SHIFT, VSRCH

STOPCL no calls
15,

STRACC no calls'

SUBJ. CLEAN-1j, DE-LIST ,--FRET,FRE Z ,
S. T, TYPEIT

SUMOUT

SUPER

SYSGEN

ASIDE, BCDASC, BFWRIT, BUFFER,
CLOSE, DE LFIL, INIDSK, LOCMES,
OPEN, RDWAIT, TYPEIT, WRWAIT

ASIDE, INIFiX*, INIVAR*, DYNAMO*,
SIGNIN4c, FSO*, FEIZE, MONTIM,\SIZE,
CLP, DORMNT; SEARCH*. EVAL)
FSIZE, MONTIM, SIZE, SYSGEN, SEEMAT*
TYPEIT

BCDEC, BUFFER, CHFILE, CHNCOM,-
CLOSE , DELFIL, FERRTN, FRALG,
FREE, FRESET, FSTATE, GETCOM,
GETLIN, OCABC, OPEN,
RDFLX, RDWAIT, RJUST, SEGINT,
SETMEM, WRFLX, WRFLXA

S. T 0 COPY,FRET, FREZ, NEXITM,
STEM, TYPEIT

618



SUBROUTINE 'CALLS

TABENT

TABLE

TAB LK

TYPEIT

ASCINT, BFCLOS, BFOPT.N, BFREAD,
COPY, DORMNT, FILCNT, FRALG,
FREE, FREZ, INC, INC 1 LOCMES,
NEXITM, P1T, RPRIME, TYPEIT

COMPAR, COMPUL; FRET, FRE Z ,

GaT, INC, INCHAR, OTBL, STBL,
WRHGH

TBSR CH no calls

TESTMO no calls

TILOCK no calls -

TIMCFIK no calls

TIME CLOSE, NEXITM, TYPEIT

TIMEIN no calls

TIMER no calls

TIMLFT no calls

TITLE CLEANP, DELIST, FRET FREZ ,

S. T , TYPEIT

TOTTIM no calls

TOUT no calls

TRANS COPY, DEC1 , INC, INTASC, 'PUT

TRASH ASCTSS, INC, INC 6, GET, PUTOUT,
PUT 6

TRETRI DERBC, OPEN, RDWAIT, SETBCD,
SE.TFUL, WRFLXA

TRFILE no calls

TSSASC no calls

TYPASH DORMNT, FREE, FRET, PRT12,
TRASH, WFLX

619



SUBROUTINE CALLS

TYPEIT ASME, BCDASC, BFOPEN, BFWRIT
DEC1 , DORMNT, FRET, FSTATE, GET,
GETBRK, INC; INCI. INITYP, INTASC,
ISARGV, LISTEN, LOCMES, MONTIM,
OCTASC, PUTS, SAVBRK, SETBRK,
SETWRD, PUT, TESTMO, TYPASH
RDWAII"

UPDATE no calls

USE BCDASC, BUFFER, CHKSAV*, CLOSE,
CONDIR*, DELFIL, FSTATE, MOVEIT*,/
NE.XITM, OPEN, RDWAIT, TYPEIT

VSRCH no calls

WAIT no calls
z WFLX WRFLX

WFLXA WRFLXA

WHEN GETIME

WHOAMI no calls

WHOM WHOAMI

WITH. no calls

WR FILE no calls

WRFLX no calls

WRFLXA no calls

WRHGH no calls

WRT ASIDE, NEXITM

WRWAIT no calls

. C. ASC ASCITC, FRET, GET, INC1-,
ISARGV, PUT

620



APPENDD( G

GLOSSARY OF INTREX TERMS

TERM. DEFINITION

affix .

ariding mode

1) The ending removed from a subject or title
word,by stemming.

2) The initials of an author.
The mode of operation to be used by the
Boolean procedure ANDER, which handles
all types of Boolean commands in the
manner directed by the mode.

attribute A particular property Of a reference word
which may be specified by the user to narrow
a search requet.

augmented no inter Three consecutive computer words contain-
ing the andr "ss, length, type, etc. of a re-
ference list.

CL. A pointer to the Command List array,It is
stored in one of the three COMMON words
of core accessible to all of Intrex.

combined search A search' request consisting of two or three
of the th ee types of primary searches (sub-
ject, tit: author). These search requests
are givr n the same command line, sep-
arated L lashes (/) and cause an intersoc-
tion of document numbers of the separate
lists.

Command List A list o -iser command parameters contain-
ing poi ,ers to the search structure, result-
aka ref rence list, and output request data.

Command List Pointer "See CL. I

common buffer

condition code

OD

One of several blocks of 432 consecutive core
words whose addresses are in the POT to .
make them..available as I/0 buffers frOrn any-
where in Intrex.
A letter code attached to each ending in the
ending table specifying the exceptional condi-
tions in which the ending may not be removed
by stemming.

-605-

621



TERM

current list

data base initialiZation

document count

Dump File

ending code

ending table

error coae

fence

find-point

fixed-parameter
initialization

full-term shred
Guide Directory

Guide File

7606-

DEFINITION

A list of Inverted File references resulting .

from a search, Boolean operation, document
command, or restoration of a NAMEd fist. It
is available for output of catalog information
or full text.
That part of the initialization of the Intrex soft-
ware in which names of the data base files are
specified via the tire-sharing console.
The number. of different document numbers in
a reference list (usually lower than the number
of references since most documents have several
appearances of the same key word.)

A file used by Intl-ex which holds the results of
Boolean operations and is_kept open for both
reading arid writing.

A 12-bit code representing the
address in the ending table where a particular
ending will be found.
A table of English word endiks which may be re-
moved to leave a common stern more suitable for
searching on 'subjects or titles.
A-value returned from a procedure indicating an
abnormal condition has occurred during execution
of that procedure.
A special computer word, file word, or table entry
which contains a distinguishable code signaling the
end of the data, (often 777777...78),
The place in the Inverted File where the search .

word should be found if it is in the file.

The phasebf Intrex initialization which does not
depend on the particular console, user, mode, date,
etc. and so can be done once by Intrex personnel
and saved as a semi-initialized system.

(See shred)
A disk file used by Intrex as an index to the Guide
File.
A disk file containing the text of the labeled sec-
tions of the on-line User's Guide available through
the INFO command.



-607-

TERM DEFINITION

held system An Intrex session which is "resumed" using
the word HOLD as an argument causing au-
tomatic recycling through the subsystem
INXSUB, back to start Intrex again after a
QUIT or BEGIN command.

list An Inverted File entry crnitaining one English
word (or character group) with its associated
affix codes and references.

list header A group of three computer words containing
data (counts, etc.) pertaining to the Inverted,
File list which folI.)ws it.

list pointer A single computer wOrd containing the addre:ss
of an augmented ,(3-part) pointer to a reference
list arid with the docut4ient count of that list in'
the decrement portion Of the pointer.

long mode One of the two dialog modes of Intrex which-is
designed to instruct and inform the user in his
interactions with the system.

Message Directory A disk file used by Intrex as an index to the
Message File and which also contains the text
of core-stored message components.

Message,File A disk file containing the text of labeled mes-
sage components used by the Intrex dialog.

Monitor File A disk file used to record all user/Intrex trans-
actions and related timing data.

Name File . A disk file used by Intrex to hold the reference
lists retained by the user's NAME connnands,

Parameter Option Table See POT
password A code word of up to six: characters, which may

be specified after the HOLD argument of a "re-
sume Intrex" command, providing a means of
escaping from a held system back to CTSS com-
mand level.

Password File A disk file used by Intrex to retain the password
of a held system and the dialog mode for use by
the subsystem in restarting Intrex.

POT An array containing a colleCtion of Intrex para-
meters containing over 40 computer words of
assorted clata wl-.1ch help to control the operation
of Intrex.

'623



-608-

TERM
DEFINITION

POT.
POT Pointer

primary search

See POT pointer.
A Pointer- containing the ddress of the start of the
POT array. It is stored in one of the three
COMMON words available to ail Intrex soft-
ware. -

A search of the Inverted Files for matches on
the search term or author name.

range restriction Specification by the user of a particular subject
tzrm weight (0-5) to be used as a reference
selection criterion.

record 1) A catalog entry describing one document in the
data base.

2). A disk segment consisting of 432 computer words.

reference

reference list

A computer word containing several items of in-
formation pertaining to an Inverted File indexing
word.

A contiguous group of reference words which
share one or more characteristics.

relloc The depth into a disk file at which reading or
writing is to begin.

resultant reference list
Save File

search term

search word

secondary search

section

section header

segment

See current list
A disk file named by the user for the purpose of
holding NAMEd lists f°t future Intr95, sessions
via use of the SAVE co mand.

The subject or title phrase or author name given
by the user in his search request.
A single English word (or group of characters), de-
limited by spaces or hyphens, which is part of a
search term.
An exact-character match of the string of char-
acters given by the user in a RESTRICT command
against the characters in the specified field.

Part of an Inverted File segment consisting of 432
computer words, or 1 disk record.
A single computer word containing a pointer to the
firitt list in an Inverted File section.

A disk file consisting of part of the set of Inverted
Files or Catalog Files.



-609-
TERM DEFINITION

session initialization The phase of Intrex software initializatioh
which must be performed at the outset of each
intrex ession. This :-ornplernents fixed-
parameter initialization.

short mode The dialog mode of Intrex which uses abbre-
viations and keeps promptirig to a minimum.

shred A unit of data produced by pro-essing the cat-
alog input and consisting of one index term
with its accompanying reference.

SST. A pointer to the System State Table. It is stored
in one of the three COMMON words available to
all Intrex software.

stemmed shred A shred produced from a full-term shred by
stemming and decomposing into single index
words and adding an affIttifield. These shreds
are used to generate or uPdate the Inverted Files..

stemming The removal of common endings from the words
in an index tF--rn according to an algorithm and table.

System State Table A computer word in which each bit position is a
Boolean indicator specifying if particular system
conditions are trust,. or -false.

System State Table See SST.
Pointer

625



APPENDIX H

DATA BASE GENERATION PROCEDURE

1. Data is entered into the computer in the form of files containing
ten catalog recrrds each. This data is typed in from computer
consoles, using the edit program QED.15

2. The input files are proofread and then corrected using QED.

3. DRYRUN is run to examine the files for erro'rs.

4. Errors found by DRYRUN are corrected using QED.

S. The program WETRUN generates three files and updates two others:

a. SUBTJT date is generated which contains the subject and title
terms (shreds) extracted from field 7.3 and field 24 of each
catalog record.

b. AUTHOR date is generated.which contains the names of the
authors which were in field 21 of each record. cr

Catalog segments with names of-the form CRxxx. M25100 are
generated. Each segment contains about fifty catalog° re-
cords. The data in-these segments has been reformatted to
make it more easily-accessible by the retrieval program.

d. The file CATDIR FILE is updated with pointers to the:0)0w
catalog records.

e. FICHE DIRECT is updated with the fiche addresses Of the new
documents.

6. The catalog segments generated by WETRUN are compresse-1 to
- 55% of their original size. The program MASH does tlie compression

by converting the ASCII char'acter' codes to digram codes, which rep-
resnt two char)acters in one nine-bit byte.. /

7. AUTHOR date is processed by SORT to produce the file SORTA date.

8. IFGENA is run to integrate the data in SORTA with the current
author Inverted File, thus generating a new set of Imierted File seg-
ments, AIxxx date. IFGENA also produces the directories IFDA date-
and IFTABA date. These directories, are used by the retrieval pro-
gram. to locate authors in the Inverted Files.

9 STEMER is used to parse the subject and title terms in SUBTIT date
into individual word shreds said then to stem them. These stems are
written into the file STEMND data:

-610,
326



-611-

10. SORT is a-run which uses STEMED date to eenerate a file of sorted
subject and title sterns, called SORTS data.

1 1. 4FGENS is used to merge SORTS eate with the current subject/title
Inverted File, producing the segments SIxxx,date. 1FGENS -alcto
creates two-levels of directories for the Inverted File:LFI5S date
and IFTABS date.

12. IFTEST is executed to scan the new Inverted Files for formai errors

13. IFLIST is used to list the contents of the Inverted Files creating
the ASCII files SUBFIL IFLIST and AUTFIL IFLIST.

6217



PPENDIX I
INDEX TO SUBROUTINES IN- CHAPTER III ,

ACLN 3. 2. 4. 6
AI 3. 2. 3. 5
ANDER 3. 3. 4. 5'
AND. 3. 3. 4. 1
ASCINT 3. 4. 2. 10
ASCIT 6 3. 4z 2. 7
ASCITC 3. 4. 2. 9
ASCTSS 3. 4. 2.. 6
ASIDE 3. 1. 6. 4
ASR CH 3. 2. 4.5
ASSET 3. 1. 6. 4
ATLCLN 3. 2. 8. 16
ATSCRN 3. 2. 4. 3
AUTHOR 3, 2. 3. 2
}3CDASC. 3. 1. 7,4
BC 3. 5. 6.1

3. 5. 2. 4
BFOPEN 3. 5. 2. 1
BFREAD 3. 5. 2. 2
BRWRIT . 3. 5. 2. 3
BUFFER 3. 5. 1. 3
,BUFSON 3. 3. 4. 7
BZEL 3. 5. 6. 6
CALLIT 3. 1. 9. 2
CHFILE 3. 5. 3.1
CHKNAM 3. 3. 2. 4
CHKNUM 3. 4. 2. 11
CHKSAV 3. 3. 3. 2
CLEANP 3. 2. 4. 6
C LFILE 3.;1. 3. 3
C LOSE 3. 5. 1. 2
C LP 3. 2. 1. 2

CNTLOC 3. 41 1.
COMARG 3. 5. 7.1
COMENT 3. 2. 9. 2
COMPAR 3. 4. 4. 12
COMPUL 3. 4. 4. 13
CONDIR 3. 3. 3. 5
CONNAM 3. 3.2. 8
COPY 3. 4. 4. 9
C TSIT 6 3. 4. 2. 8
DEC1 3. 4. 4. 19
DEFBC 3. 5. 6. 2
DE LFIL 3. 5. 3. 2
DELIST 3. 2. 4. 7
DERBC 3. 5. 6. 3
DIST ' 3. 4. 4. 10
DNSORT 3. 4. 5. 1
DORMNT 3. 5. 7. 1
DROP 3. 3. 2. 7
DRPPTR .3. 2. 4. 8
DYNAMO 3. 1. 3. 1
ENDTAB 3. 1. 2. 15
ERRGO 3. 1. 10. 1
EVAL 3. 2. 6. 2
EXIT 3. 1. 4. 3
FAPDBG 3. 4. 5. 2
FCLEAN 3. 2. 4. 9
FERR TN 3, 5. 4. 1
FIELDS 3. 1. 2. 12
FILCNT 3. 4. 3. 1
FIND 3.4. 4. 11
F L6NAM 3. 1. 2. 10
FRALG 3. 4.1.10



- 613-

FR.T.E
FRER
FRESET
FRET
FREZ

3. 4. 1. 1
3. 4. 1. 6
3. 4. 1. 8
3. 4. 1. 2
3. 4, 1. 3

FSIZE 3. 4.1. 7
FSO 3. 2. 8. 1
FSOCEN 3. 2. 8. 5
FSTATE 3. 5`. 3. 3
FTRACE 3. 4. 1. 9
FWAIT 3. 5. 1 . 9
G.A TP 3. 2. 3. 3
GET 3. 4. 4.1
GET 6 3. 4. 4. 4

. GET12 - 3. 4. 4. 7
GETBRK. 3. 5. 7. 4
GETBUF z 3. 3. 4. 5
GETCOM 3:5.1. 14
GETEND -,3. 2. 6. 3

3. 2. 8. 6
GETIME' .3. 5. 7. 22

TINC 3. 4, 4, 16
GETINT 3. 2. 8. 4
-GET-LIN 3. 2. 1. 4.
GETLIS 3. 3). 4. 6
GET-MEM 3. 5. 7. 7
GETP 3. 6.1. 5
GETSET 1.. 414. 15
GETSYS 3. 5. 7. 18
OETTAB 3. 2. 8. 7
GETIME 3.-5. 7. 22
GET TM 3 5.7.23
GETWRD'

e .

3. 5.,7 11

GIV-T-A.13 3.1. 2. 16
GNAM 3. 5. 7. 19

GO
IFSET
IFSINT
IFSR CH
INc
INC1
INC6.
INC12
INCHAR
INDENT
INFO
INItAUT

INIDSK
INIEND
INIEVL
INIFIX
TNIFLD
IN.C.
rNIMON
ININT
INIOUT
MIRES
INIRNG.
INIs.T.
INITDB
INITYP
INIT2
INIVAR
INTVRB
INMON2
INTASC
INTONE
INT TWO
IN.

3. 1. 4. 1
3. 1. 2. 14
3. 1. Z.14
3. 2. 5.1
3. 4. 4. 2
3. 4. 4.18
1. 4. 4. 5
3. 4. 4. 8
3.1. 7. 6
3. 1. 7. 5
3, 2. 9. 7
3. 2. 3. 1
3. 2. 1. 1,
3. 1. 6. 2
3.1. 2. 15
3. 2. 6. 1
3. 1. 2. 3
3. 2. 8. 3
3.4. 2. 2
(3. 1. 6. 1
3. 1.
3 .. 7.
3.

\ 3. 2.8. 14
3 Z. 2. 1
3. 1. 2. 2
3. 1. 7. 1

3. 1. 2. 13
3. 2. 9. 1

, 3. 1. 6.1
3. 4. 2. 3
3.1. 8. 2
3. 1. 8. 3
3. 2. 7. 3



INXCON
INXSU13
IODIAG
ISARG
ISARGV
JOBTM
KILFAP
LDOPT
LE GF LD
LIBRY
LINrUP
LISFIL
LIST
LISTSL
LISTEN
LN
LOCMES
LO CSEC
LONG
LOOKUP
MAINBD
MATCH .
MEADIR
MONINT
MONTIM
MONTOR
MO VE IT
NAM5
NAME
MATAFF
NAP
NCOM
NEWPT
NEXITM
NOT.

5

3. 1. 3. 2
3. 1. 10. 3
3. 5. 4. 2
3.6.1. 3
3,6.1. 3
3. 5. 7. 21
3. 1. 3. 4
3. 5. 7. 16
3. 1. 2. 9
3, 2. 9. 3
3. 1. 9. 5
3. 3. 3. 7
3. 3. 2. 6
3. 3. 3. 6
3. 1. 8. 4
3. 2. 3. 4
3. 1. 7. 3
3. 2. 5. 2
3. 2. 9. 5
3. 2. 1. 5
3. 1. 9. 4
3. 4. 4. 14
3. 2. 4.4
3. 1. 5.1
3. 1. 5. 2
3. 1. 6. 3
3. 3.4
3. 2. 5. 3
3. 3. 2. 2
3. 2. 5. 4
3. 4. 5. 3

5. 7.25
3. 2. 8. 2
3. 2. 1. 4
3. 3. 4. 4

NUMBER
OCABC

' OCTASC
OCTTOI
OPEN
OPFILE
OR.
OTBL
OUT.
PREP
PRT12
PUT
PUTINC
PUTOUT
PUT6
QUIT
RANGE
RlDFILE
RDFLX
RDFLXI.
RDWAIT
REND
R.FrP
RL-
RJUST
RNGNAM
R PR IME
RSCLCK
SAVBRK
SAVE
SCLS
SEARCH
SEEMAT
SEGINT
SENTRY

3. 3. 1. 1
3. 5. 6. 4
3. 4. 2. 4
3. 6. 1. 6
3. 5.1.1
3. 1. 3. 3
3. 3. 4. 3,
3. 2. 8. 12
3. 2. 7. 2
3. 1. 2. 5
3.1. 7. 9
3. 4. 4. 3
3. 4.4. 17
3. 1. 7. 8
3. 4. 4. 6
3. 1.4. 4
3; 2. 8. 15
3. 5. 1. 4
3. 5. 5. 2
3. 5. 5. 1
3. 5. 1. 5
3. 1. 2.15,
3. 2. 4. 4
3. 3. 2. 5
3. 5. 6. 5
3.1. 2. 8
3. 1. 2. 7
3. 5. 7. 20
3. 5. 7. 6
3. 3. 3. 1
3. 5. 7. 24
3. 2. 4.1
3. 2. 9. 8
3. 1. 2.1
3. 1. 9. 3

330



-615

SETB CD 3. 5. 5. 6 TIME 3. 1. 5. 3
SETBRK 3. 5. 7. 5 TIMEIN 3. 4. 5. 10
SETFUL 3. 5. 5. 5 TIT LE 3. 2. 2. 3
SETMEM 3. 5. 7. 8 TOT TIM 3. 4. 5. 10
SETRTN 3, 1. 10. 2 TOUT 3. 4. S. 10
SETSYS 3. 5.1. 17 TRANS 3. 1. 5. 5
SETWRD 3. 5. 7. 10 TRAC 3. 4. 5. 9
SHIF T 3. 4. 5. 6 TRASH 3. 1. 7. 8
SHORT 3. 2. 9. 6 TRETRI 3:2. 8. 8
SIGNIN 3. 1. 4. 2 TRFILE 3. 5. 1. 8
SIZE 3. 4. 1. 5 TSPOT 3. 4. 5. 9
SLEEP 3. 5. 7, 2 TSRCH 3. 2. 4. 2
SPCTRN 3. Z. 8, 9 TSSASC 3. 4. 2. 5
SSR CH 3. 2. 4. 2 TYPASH 3. 1. 7. 7
STANDL 3. 1. 2. 11 TYPEIT 3. 1. 7. 2
STBL 3.2.8.111 USE 3. 3. 3

\
STCLN 3. 2. 4 6

.1
VSRCH 3. 4. 5. 5

STEM 3, 2. 2. 5 WAIT 3. 5. 7. 3
STRACC 3. 4. 5. 7 WFLX 3. 6. 1 . 1

STRCH 3, 2. 4. 2 WFLXA 3. 6. 1. 2
SUBJ. 3. 2. 2, 2 WHEN 3. 4. 5. 11
SUMOUT 3. 1. 5. 4 ,-- WHOA MI 3. 5. 7. 9
SUPER 3. 1 1. 1 WITH. 3. 3. 4. 2
SYSGEN 3.1. 9. 1 WRFILE 3. 5. 1 6
S. T 3. 2. 2. 4 WRFLX 3. 5. 5. 4
TABENT 3, 3. 2. 3 WRFLXA 3. 5. 5. 3
TAB LE 3.1. Z. 6 WRHGH 3. 2. 8. 13
TAB LK 3. 2. 8. 10 WRT 3. 2. 9. 4
TBSRCH 3, 4. 5, 4 WR WAIT 3. 5. 1. 7
TESTMO 3. 4. 5. 8 . C. ASC 3. 4. 2. 1

6 3 1



REFERENCES

1. C. F. J. Overhage, Project Intrex - A Brief Description, Project
Intrex, M. I. T. , Cambridge, Mass.

2. Project Intrex - An Overview for Users, Electronic Systems Laboratory,
M. I. T., CanThridge, 1.4"-ass.

3. J. F. Reintjes, "System Characteristics of Intrex", Proceedings of
the Spring Joint Computer Conference, 1969, pp. 457, 459.

4. R. S. Marcus, P. Kugel, and R. L. Kusik, "An Experimental
Computer -Stored Augmented Catalog of Professional Literature",
Proceedings of the Spring Joint Computer Conference, 1969,

173.

5. D. R. KnudsOn and S. N. Teicher, "Remote Text Access in a Com-
puterized! Library Information Retrieval System'', Proceedings
of the Spring Joint Computer Conference, 1969, pp. 475, 481.

6. D. R. Haring and 3. K. Roberge, "A Combined Display for Com-
puter Generated Data and Scanned Photographic Images",
ProceedingS of the Spring-Joint Computer Conference, 1969,
pp. 483, 490.

D. Griffin, "Compressing and Catalog Record Data Base to
Save Storage", Intrex Memorandum ISR-44, October 27, 1969.

8. J. B. Lovins, "Development of a Stemming Algorithm", Mechanical
Translation, Vol. 11, Nos, 1 and 2,, March and June 1968.

9. R. L. Kusik, A File Organization for thetintrex Information
Retrieval System, Report ESL-TM-4I-5, Electronics Systems
Laboratory, M. I. T. , Cambridge, Mass., January 1970.

10. R. E. Goldschm*It, File Design fOr Computer-Resident Library
Catalogs, Report ESL-R-45T, Electronic Systems Labora'tory,
M. I. T. , Cambridge, Mass., -June 1971.

11. A. Benenfeld, "Input/Output Representation of Special Characters",
Intrex Memordum 4, Project Intrex, M. I. T. , Cambridge, Mass.

12. N. Goto, "A Translator Program for Displaying a Computer Stored
.Set of Special Characters," Report ESL-R-429, Electronic Systems
Lab., M.I.T. , Cambridge, Mass. Tuly 1970.

13. AED-0 Manual, M.I.T. Information Processing Center, Cambridge,
Mass,.

14. TIP Sort Package, Report TIP-TM-106, Project TIP, M. I. T.,
Cambridge, Mass.

-616-
632



- 617-

15. CTSS Pro rammer' s Manual, M. I. T. Information Processing Center;
Cambridge, Mass.

16. MULTICS Programmer' s Manual, Project MAC, M. I. T., Cambridge,.
Mas s .


