Factors which have previously provided the basis for decisions as to the use of CRT (cathode ray tube) or teletype terminals in computer-assisted instruction (CAI) may be decreasing in importance. Specifically, differential cost factors and teleprocessing capability may no longer provide a basis for differentiating between CRTs and teletypes. In this paper several experiments are reviewed, and the instructional and psychological implications of instructional terminals are discussed. The major terminal characteristics discussed are cost, teleprocessing capability, presentation, rate, and display mode. The major instructional and psychological implications discussed are device memory load factors and instructional time and efficiency. Student characteristics of intelligence and anxiety are discussed in relation to instructional terminal characteristics. (Author)
TECH MEMO

COMPUTER TERMINAL SELECTION: SOME INSTRUCTIONAL AND PSYCHOLOGICAL IMPLICATIONS

Bobby R. Brown and Harold F. O'Neil

Tech Memo No. 37
May 15, 1971

Project NR 154-280
Sponsored by Personnel & Training Research Programs
Psychological Sciences Division
Office of Naval Research
Arlington, Virginia
Contract No. N00014-68-A-0494

This document has been approved for public release and sale; its distribution is unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States Government.
The FSU-CAI Center Tech Memo Series is intended to provide communication to other colleagues and interested professionals who are actively utilizing computers in their research. The rationale for the Tech Memo Series is three-fold. First, pilot studies that show great promise and will eventuate in research reports can be given a quick distribution. Secondly, speeches given at professional meetings can be distributed for broad review and reaction. Third, the Tech Memo Series provides for distribution of pre-publication copies of research and implementation studies that after proper technical review will ultimately be found in professional journals.

In terms of substance, these reports will be concise, descriptive, and exploratory in nature. While cast within a CAI research model, a number of the reports will deal with technical implementation topics related to computers and their language or operating systems. Thus, we here at FSU trust this Tech Memo Series will serve a useful service and communication for other workers in the area of computers and education. Any comments to the authors can be forwarded via the Florida State University CAI Center.

Duncan N. Hansen
Director
CAI Center
Abstract

Factors which have previously provided the basis for decisions as to the use of CRT or teletype terminals in computer-assisted instruction may be decreasing in importance. Specifically, differential cost factors and teleprocessing capability may no longer provide a basis for differentiating between CRTs and teletypes. In this paper, in which findings from several experiments have been reviewed, instructional and psychological implications of instructional terminals are discussed. The major terminal characteristics discussed are cost, teleprocessing capability, presentation rate, and display mode. The major instructional and psychological implications discussed are device memory load factors and instructional time and efficiency.
<table>
<thead>
<tr>
<th>Security Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. KEY WORDS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>

DD 1 Nov 65
S/N 0101-807-6821

ERI
Student characteristics of intelligence and anxiety are discussed in relation to instructional terminal characteristics.
COMPUTER TERMINAL SELECTION: SOME INSTRUCTIONAL AND PSYCHOLOGICAL IMPLICATIONS

Bobby R. Brown and Harold F. O'Neil

Tech Memo No. 37
May 15, 1971

Project NR 154-280
Sponsored by
Personnel & Training Research Programs
Psychological Sciences Division
Office of Naval Research
Arlington, Virginia
Contract No. N00014-68-A-0494

This document has been approved for public release and sale; its distribution is unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States Government.
COMPUTER TERMINAL SELECTION: SOME INSTRUCTIONAL AND PSYCHOLOGICAL IMPLICATIONS

Bobby R. Brown and Harold F. O'Neil

ABSTRACT

Factors which have previously provided the basis for decisions as to the use of CRT or teletype terminals in computer-assisted instruction may be decreasing in importance. Specifically, differential cost factors and teleprocessing capability may no longer provide a basis for differentiating between CRTs and teletypes. In this paper, in which findings from several experiments have been reviewed, instructional and psychological implications of instructional terminals are discussed. The major terminal characteristics discussed are cost, teleprocessing capability, presentation rate, and display mode. The major instructional and psychological implications discussed are device memory load factors and instructional time and efficiency.

Student characteristics of intelligence and anxiety are discussed in relation to instructional terminal characteristics.
COMPUTER TERMINAL SELECTION: SOME INSTRUCTIONAL AND PSYCHOLOGICAL IMPLICATIONS

Bobby R. Brown and Harold F. O'Neil

During the past decade, within computer-assisted instruction (CAI), considerable attention has been given to the problem of "student-subject matter interface." Within CAI the student-subject matter interface refers to those devices which are employed for the presentation of stimuli to the student and for entering of student responses. Stimulus presentation is accomplished through devices such as cathode ray tubes (CRT), two-way typewriters or teletypes, slide projectors, tape recorders, etc. Student response capability is provided by typewriter keyboards, light pens in conjunction with CRT, and other special devices such as the "Rand Tablet" and touch sensitive keyboards.

Due primarily to cost factors and considerations growing out of computer technology, two of these interface devices have gained far more widespread use than the others. These are the CRT, with or without light pen capability, and the hard copy typewriter or teletype. Of these two devices, the hard copy typewriter or teletype is currently the predominant student-subject matter interface device in use with CAI.

The predominance of teletype terminals is due mainly to cost factors. The usual price for a CRT terminal being about twice that of a teletype. However, since the creation of inexpensive terminal equipment
is one of the dynamic areas in computer technology, one can anticipate a significant decrease in their cost. The price of CRT terminals is decreasing monthly and some projections indicate the CRT may become as cheap as a color TV set in the future.

An additional factor growing out of computer technology which has in the past favored teletype terminals over CRTs has to do with the capability of teleprocessing. In the past it has been impossible to teleprocess to many CRTs for distances in excess of approximately 2,000 feet due to a need to amplify the video signal. This factor has obviously severely limited the teleprocessing application of CRT terminals. However, with the advent of teletype compatible CRTs which do not require amplification of the video signal, teleprocessing distance is no longer a limiting factor.

Given reasonably comparable cost figures in the near future and equivalent teleprocessing capabilities in the present, on what basis does the administrator choose either teletype terminals or CRT terminals? There seem to be three primary differences which can be noted as a basis for decision making: First, the CRT terminal provides more rapid presentation of instructional materials. The typical teletype terminal presents instructional material at approximately 125 words per minute, or far below the average reading speed of high school and college students. In contrast, CRT terminals present material a screen at a time, or far in excess of the reading speed of even the faster readers. Second, the CRT does not provide the student with a hard copy of his interaction with the computer while the teletype does. A third difference to be noted between these two devices is the relative noise generated by each device. The CRT is
noticeably quieter in operation than the teletype. With many teletypes operating simultaneously within a relatively small area, the noise level could conceivably become a debilitating factor in instruction.

Given that past choices between teletypes or CRTs have been based primarily on cost considerations and factors growing out of computer technology, it is not surprising that few studies have investigated the instructional and psychological implications of terminal selection. However, with the decreasing importance of cost and teleprocessing considerations in the selection of terminals, it becomes increasingly important to consider the psychological and instructional implications of the type of terminal selected.

In the remainder of this paper we will focus upon the instructional and psychological implications of terminal selection, focusing primarily upon CRT versus teletype terminals. The findings which we will review offer the basis for some tentative conclusions concerning terminal selection as well as pointing up areas in need of further investigation.

Memory Load Characteristics

The lack of hard copy and the more rapid presentation rate of a CRT terminal yield an important but seldom mentioned difference between CRT and teletype presentations. Due to the more rapid and transitory nature of CRT presentations of material there is a potentially higher memory load for CRT presentations than for teletype presentations of the same instructional material. Suggestive evidence as to the importance of memory load has been provided by a series of studies conducted at the Florida State University Computer-Assisted Instruction Center. The impact of differential memory load of the teletype compared to the CRT seems to debilitate two groups of people seriously. One group consists
of students of below average intelligence, and the other group consists of the high anxious students.

Intelligence. Evidence for the negative impact of a CRT presentation for low I.Q. students was found by Dick and Latta (1969). They presented math materials via CRT and programmed instruction. The CAI program had the same basic frames as the PI texts plus remediation for incorrect responses as well as remedial loops. Results of the posttest, retention test, and "in program" errors indicated that the low ability students performed poorer than the high ability students and further that students receiving programmed instruction performed significantly better than those using CAI. In each case, these effects were due to the poor performance of the low ability students who used the CRT terminal. Dick and Latta (1969) suggested that the low ability students were unable to cope with the continuous flow of information as presented by the CRT without the ability to return to previously presented information. It can be further hypothesized that without the availability of a hard copy, this was primarily due to a memory demand that was not present with a PI presentation of the same material.

Anxiety. The impact of anxiety and its relationship to terminal characteristics can be inferred from three studies concerning anxiety and performance in a CAI setting. However, before briefly outlining the results of these studies, a distinction must be made between two facets of anxiety. According to Spielberger (1966) state anxiety refers to a transitory state or condition that is characterized by feelings of tension and apprehension, and heightened autonomic systems activity. Trait anxiety implies an individual difference of anxiety proneness,
i.e., the disposition to respond with elevations in A-State under conditions characterized by some threat of self-esteem. O'Neil, Spielberger, and Hansen (1969) investigated the effects of A-State on performance for materials that were presented by a 1440 CAI system (IBM, 1965). In this study, the State-Trait Anxiety Inventory (Spielberger, Gorsuch, & Lushene, 1970) was used to measure state anxiety during the learning task. They found that high A-State students made more errors in the difficult portion of the learning task than low A-State students and did as well as the low A-State students in the easier portions of the task. In the follow-up study, O'Neil, Hansen, Spielberger (1969) found essentially the same A-State by task difficulty interaction. However, in the second study the mean error rate of the high A-State students on the difficult portion of the CAI task was approximately twice that of the first study.

One of the major differences between these two studies was that the learning materials in the first study were presented on a typewriter terminal and in the second on a CRT terminal. The typewriter terminals provided a printed output of the learning materials and the student's responses, thus the student could review his previous erroneous responses prior to each trial. In contrast, the materials presented on the CRT were programmed to be erased immediately after the subject responded. Thus, there may have been a greater memory load for the CRT. This may have accounted for higher mean error rates for high A-State students for the second CAI study. The typewriter printout seems to have provided greater memory support in the first CAI study.
Leherissey, O'Neil and Hansen (1970) argued that one method for reducing errors of the high A-State students for learning materials presented on the CRT would be to provide some type of memory support. They predicted, therefore, that there would be no differences between the high and low A-State students with memory support and that the performance of high A-State students would be inferior to that of the low A-State students without memory support. The memory support consisted of allowing the students to see the previous incorrect responses to each problem before attempting it again, whereas this information was not available to the no-memory support group. The no-memory support group was equivalent to the groups run in the O'Neil, Hansen and Spielberger (1969) study on typewriter terminals. Leherissey et al. (1970) found, as predicted, that memory support reduced the errors by high A-State students; i.e., high A-State students in the memory support condition made approximately 1.75 fewer errors than high A-State students in the NMS condition, lower medium A-State students performed equally as well with or without memory support.

Of major interest for this paper was the finding (Leherissey et al. 1970) that the provision of memory support reduced the errors of the high A-State male students on CRT terminals to a rate of errors equivalent to that of the high A-State students on typewriter terminals. Although performance improved in the memory support condition of Leherissey et al., the level of A-State was found to be higher for students in the memory support group as contrasted to the no-memory support group. This difference approached significance (p < .10). They inferred that the memory support condition could be operating as a stress condition in
that providing students with their previous incorrect responses was also providing them with a constant reminder of their past failures.

It would appear on the basis of the three studies of anxiety and computer-assisted learning that memory support was successful in reducing male students' errors. However, Leherissey et al. further suggest that such a benefit may produce within the student an undesirable side effect of state anxiety. Thus, it would seem to be desirable to design memory aids which not only reduce the memory load of the CRT, but which also reduce the anxiety experienced in a learning situation.

Additional evidence concerning the differential memory load characteristics of presentation devices is provided by an experiment in which subjects were presented material via three presentation devices (Brown, Hansen, Thomas, & King, 1970). In addition to teletype and CRT presentations, students were also presented instructional material via audiotape. In addition to generally confirming the findings of the studies above, the findings from this experiment provide suggestive evidence concerning two additional factors relating to device memory load characteristics. Thus the findings will be presented in some detail. The first characteristic concern is the ability of students to perceive the memory load characteristics of terminal devices; the second offers some indication as to the possibility of offsetting undesirable effects of memory overload through increased redundancy of instructional materials.

In the portion of the Brown et al. (1970) experiment which is of interest in this paper, subjects were allowed to select jointly the presentation device and the redundancy level of the instructional material to be presented. The instructional device choices given to the subject
were those listed above, namely CRT, teletype and audiotape. The redundancy levels of the instructional material available for subject selection were terse, medium and redundant.

The first portion of the course was administered in such a way as to introduce the students to the three presentation devices and the three levels of information load or redundancy. The subjects were then required to choose the presentation device and redundancy level for their next segment or instruction. Following the selection, the segment of the instruction was presented via the selected media and at the selected redundancy level. This decision process occurred a total of three times for each student as the student progressed in the course.

The decisions made by the students in their three choices of media device and redundancy level are presented in Table 1. Table 1 also shows the proportion of choices of each information level for a given choice of device. A χ^2 calculated for the choice frequencies indicates the presence of nonchance factors in the pattern of choices (observed $\chi^2 = 59.45$, df = 8, $p < .001$).

As can be seen from Table 1, learners who chose audiotape presentation chose 50% of those presentations at the redundant level while students who chose typewriter presentations chose 59% of those presentations at the terse level. The selection of predominantly redundant presentations from the device which has high memory load characteristics coupled with the choice of terse material from the device which has low memory load characteristics seems to indicate that subjects were optimizing their device-redundancy level choices in such a way as to make the memory load manageable. These findings seem to suggest subject awareness of memory load device characteristics and the possibility of offsetting
TABLE 1
The Frequency and Proportion of Choices of Device Redundancy Level Combinations for Three Choices by Learner Control Subjects

<table>
<thead>
<tr>
<th>Device</th>
<th>Terse</th>
<th>Medium</th>
<th>Redundant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Tape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (.25)*</td>
<td>2 (.25)</td>
<td>4 (.50)</td>
<td>8 (1.0)</td>
<td></td>
</tr>
<tr>
<td>CRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 (.45)</td>
<td>17 (.29)</td>
<td>14 (.24)</td>
<td>59 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Typewriter</td>
<td>19 (.59)</td>
<td>8 (.25)</td>
<td>5 (.16)</td>
<td>32 (1.0)</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>27</td>
<td>23</td>
<td>99</td>
</tr>
</tbody>
</table>

*Proportion of choices is given for each redundancy level for a given choice of device.
unmanageable memory loads by increasing the instructional redundancy level.

Time and Instructional Efficiency

In the studies reviewed above one could conclude that the teletype terminal should be preferred over the CRT due to its lower memory load requirements. However, this finding must be carefully weighed against the consistently observed finding that teletype presentation requires significantly more instructional time than does CRT presentation. These differential time requirements also have implications for instructional system usage, scheduling constraints, and possible student motivation effects.

Evidence as to the differential time requirements of teletype and CRT terminals was found by Brown, Hannum and Dick (1971). Twenty-eight students taking a credit-earning graduate level course in programmed instruction via computer managed instruction (CMI) were randomly assigned to CRT and teletype terminals. The mean time to complete 12 instructional units of this CMI program for the CRT students was 261 minutes, the mean time for the teletype students was 354 minutes, indicating that the CRT group spent significantly less time signed on to the computer during this study (p < .02).

As a part of the course requirement in this study, each student developed and carefully documented a short unit of programmed instruction materials. It is of interest to note that based on the independent judgment of three evaluators, the CRT group scored significantly higher on this class project. This finding points up the importance of differential instructional time requirements. Analysis of the rate of progress
through the course for the two groups revealed that the CRT group not only took significantly less time, but individual students within the CRT group tended to complete more units within the course each time they signed on to the system. Thus, they were able to complete the instructional portion of the course sooner than the teletype group, allowing additional time to be spent on the development and documentation of their programmed instruction unit. This interpretation, if correct, suggests that instructional time requirements may have implications beyond those observed by simple mean comparisons of total time by allowing fewer scheduled periods on the instructional system. The lower time requirements of the CRT seemed to have had scheduling effects resulting in the saving, not of minutes, but of days.

Analysis of the on-line error rate for the two groups did not reveal significant differences; however, the teletype group did make fewer errors than the CRT group. It is of interest to note that this investigation, in which no significant differences in program errors attributable to memory load factors were observed, differed from the above studies on one rather crucial dimension. In the previously mentioned studies, the instructional materials were presented to the students at the instructional terminal. In this CMI study, however, learning materials were presented off-line and only the questions and diagnostic statements were given to the students on-line. The failure to observe memory load differences between the two presentation devices is seen as an indication that the application demand characteristics of CMI may be so minimal as to render memory load differences inconsequential.
The relative inefficiency of hard copy typewriter terminal devices has been observed by others as well. Wodtke and Gillman (1966) observed an increase of approximately 1/3 in time required to complete instructional material when that material was presented by a hard copy typewriter rather than an off-line programmed text. This differential was further increased for students with minimal typing skills.

It would seem that the desirable feature of supplying the student with memory support through the provision of a hard copy is to be purchased at the expense of less efficient use of student time. Conversely, the speed and efficiency with which instructional material can be presented via CRT may be purchased at the expense of an unmanageably heavy memory load requirement.

Additional considerations which should be borne in mind in choosing between CRT terminals and teletype terminals have previously been alluded to, and include such factors as the relative operational noise level of the various devices. If terminals are to operate within a classroom where other non-terminal oriented instructional activity may also be taking place, the noise level of teletype terminals could become objectionable. Also, there are certain situations in which the absence of hard copy as provided by teletype terminals is a desirable feature of the CRT terminals. For example, the sequential dependency among test items becomes far less a matter of concern with CRT presentations. The student receiving test items on a CRT terminal does not have the opportunity to refer to earlier questions in answering any given question. In many cases, this is a highly desirable feature and permits the presentation of questions which might be partially answered by preceding
questions. Should the student have access to a hard copy of such a test, the ability to refer to prior questions would tend to invalidate such a test.

One additional psychological factor should be briefly mentioned. It would seem that students have become inculturated, perhaps through traditional instruction, to expect and desire something to take with them upon leaving the instructional event. In traditional instruction this is typically the students' notes and perhaps other handouts supplied by the instructor. In CAI, this inculturated student expectation is apparently well met by the hard copy typewriter. When given the opportunity, students invariably take the hard copy of their instructional interaction with them. Upon numerous occasions it has been observed that students receiving instruction via CRT terminals feel ill at ease and express a desire to have notes or something to take with them upon leaving the instructional situation.

Tentative Conclusions

Factors which have previously provided the basis for decisions as to the use of CRT or teletype terminals may be decreasing in importance. Specifically, differential cost factors and teleprocessing capability may no longer provide a basis for differentiating between CRTs and teletypes. The advent of relatively inexpensive teletype compatible CRTs which also permit remote teleprocessing makes more salient the instructional and psychological bases for choosing between CRTs and teletype terminals.

There is evidence that the rapid and transitory display capabilities of CRT terminals may give rise to unmanageable memory load
requirements on students receiving instruction. These memory load requirements seem to be largely alleviated by the presence of a hard copy printout provided by teletypes.

Memory load considerations seem to be more important for highly anxious students and for students of below average intelligence. Reduction of memory load by the provision of memory support information may in some cases increase student anxiety.

Teletype terminals present instructional material at a rate considerably slower than the reading rate of high school or college students. It seems that this additional time requirement for teletype based instruction may have implications for scheduling and course completion in access of the simple additional on-line time required for instruction.

There are indications that the memory load requirements incurred with the use of CRT terminals can be overcome by tailoring the redundancy levels of the instructional material to the presentation device. Also, periodic review procedures along with instructional handouts may very well alleviate the high memory load requirements of the CRT presentations without incurring the additional time requirements associated with teletype presentations.

The operational noise level of teletypes, often a minor factor, can, in some situations, become a determining factor in selection of instructional devices.

The apparent desire on the part of most students to have some hard copy material to take with them upon leaving the instructional situation should be taken into account and some provisions made for this perceived need when employing CRT terminals.
The overall consideration of the student-subject matter interface seems to be grossly underinvestigated at this point. Full blown studies considering not only CRT and teletype terminals, but the full array of student-subject matter interface devices seems to be called for. Studies employing procedures such as those suggested by Briggs (1970) taking into account subject matter characteristics, learner characteristics, characteristics of the instructional process, and the specific instructional objectives, should greatly extend our understanding of student-subject matter interface requirements.
REFERENCES

Dick, W., and Latta, R. Comparative effects of ability and presentation mode in computer-assisted instruction and programmed instruction. AV Communication Review, November, 1969.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name and Title</th>
<th>Address</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Director, Personnel and Training Research Programs</td>
<td>Office of Naval Research</td>
<td>Arlington, Va. 22217</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>ONR Branch Office</td>
<td>495 Summer Street</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>ONR Branch Office</td>
<td>1030 East Green Street</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>ONR Branch Office</td>
<td>536 South Clark Street</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>Information Systems Program</td>
<td>Office of Naval Research (Code 437)</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>Education and Training Sciences Department</td>
<td>Naval Medical Research Institute</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>Technical Reference Library</td>
<td>Naval Medical Research Institute</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td>Naval Medical Field Research Laboratory</td>
<td>Camp Lejune, North Carolina 28452</td>
</tr>
<tr>
<td>1</td>
<td>Mr. S. Friedman</td>
<td>Special Assistant for Research and Studies</td>
<td>OASN (M&RA)</td>
</tr>
<tr>
<td>1</td>
<td>Chief, Naval Air Reserve Training Program Manager</td>
<td>Naval Air Station</td>
<td>Box 1</td>
</tr>
<tr>
<td>6</td>
<td>Director</td>
<td>Naval Research Laboratory</td>
<td>Washington, D.C. 20390</td>
</tr>
<tr>
<td>6</td>
<td>Director</td>
<td>Naval Research Laboratory</td>
<td>Washington, D.C. 20390</td>
</tr>
<tr>
<td>12</td>
<td>Defense Documentation Center</td>
<td>Cameron Station, Building 5</td>
<td>5010 Duke Street</td>
</tr>
<tr>
<td>1</td>
<td>Chief</td>
<td>Behavioral Sciences Department</td>
<td>Naval Medical Research Institute</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td>Naval Medical Neuropsychiatric Research Unit</td>
<td>San Diego, California 92152</td>
</tr>
<tr>
<td>1</td>
<td>Chief of Naval Operations (Op-98)</td>
<td>Department of the Navy</td>
<td>Washington, D.C. 20350</td>
</tr>
<tr>
<td>3</td>
<td>Technical Director</td>
<td>Personnel Research Division</td>
<td>Bureau of Naval Personnel</td>
</tr>
<tr>
<td>3</td>
<td>Technical Director</td>
<td>Behavioral Sciences Department</td>
<td>Naval Medical Research Institute</td>
</tr>
<tr>
<td>1</td>
<td>Training Research Program Manager</td>
<td>Bureau of Naval Personnel (PERS-A321)</td>
<td>Washington, D.C. 20370</td>
</tr>
</tbody>
</table>
1 Chief
Naval Air Technical Training
Naval Air Station
Memphis, Tennessee 38115

1 Commander, Naval Air Systems Command
Navy Department, AIR-413C
Washington, D.C. 20360

1 Commanding Officer
Naval Air Technical Training Center
Jacksonville, Florida 32213

1 Naval Air Systems Command
(AIR 5313A)
Washington, D.C. 20360

1 Research Director, Code 06
Research and Evaluation Department
U.S. Naval Examining Center
Building 2711 - Green Bay Area
Great Lakes, Illinois 60088
ATTN: C.S. Winiewicz

1 Commanding Officer
ATTN: Code R142
Naval Ordnance Station
Louisville, Kentucky 40214

1 Technical Library
Naval Ordnance Station
Indian Head, Maryland 20640

1 Commander
Submarine Development Group Two
Fleet Post Office
New York, New York 09501

1 Mr. George N. Graine
Naval Ship Systems Command (SHIP 03H)
Department of the Navy
Washington, D.C. 20360

1 Technical Director
Naval Personnel Research and Development Laboratory
Washington Navy Yard, Building 200
Washington, D.C. 20390

1 Commanding Officer
Naval Personnel and Training Research Laboratory
San Diego, California 92152

1 Chairman, Behavioral Science Department
Naval Command and Management Division
U.S. Naval Academy
Luce Hall
Annapolis, Maryland 21402

1 Superintendent
Naval Postgraduate School
Monterey, California 93940
ATTN: Library (Code 2124)

1 Commanding Officer
U.S. Naval Schools Command
Mare Island
Vallejo, California 94592

1 Commanding Officer
Service School Command
U.S. Naval Training Center
San Diego, California 92133

1 Dr. James J. Regan, Code 55
Naval Training Device Center
Orlando, Florida 32813

1 Naval Undersea Research and Development Center
3202 East Foothill Boulevard
Pasadena, California 91107
ATTN: Code 118

1 Technical Library
Naval Ship Systems Command
National Center, Building 3 Room 3 S-08
Washington, D.C. 20360
Mr. Leo Mason
Center for Naval Analysis
1400 Wilson Boulevard
Arlington, Virginia 22209

Dr. A. L. Slafkosky
Scientific Advisor (Code AX)
Commandant of the Marine Corps
Washington, D.C. 20380

Dr. Robert Lockman
Center for Naval Analysis
1400 Wilson Boulevard
Arlington, Virginia 22209

Dr. Robert Lockman
Behavioral Sciences Division
Commandant of the Marine Corps
Washington, D.C. 20380

Chief, Training and Development Division
Office, Deputy Chief of Staff for Personnel
Department of the Army
Washington, D.C. 20310

Director of Research
U.S. Army Armor Human Research Unit
Fort Knox, Kentucky 40121

Director
Behavioral Sciences Laboratory
U.S. Army Research Institute of Environmental Medicine
Walter Reed Army Institute of Research
Fort Knox, Kentucky 40121

Mr. Harold A. Schultz
Educational Advisor-ATIT-E
CONARC
Fort Monroe, Virginia 23351

Lt. Col. Robert R. Gerry, USAF
Chief, Instructional Technology Programs
AFHRL (TRT/Dr. Ross L. Morgan)
Wright-Patterson Air Force Base
Ohio 45433

Dr. Vincent Cieri
Education Advisor
U.S. Army Signal Center and School
Fort Monmouth, N.J. 07703

Director
Behavioral Sciences Laboratory
U.S. Army Research Institute of Environmental Medicine
Walter Reed Army Institute of Research
Fort Knox, Kentucky 40121

Div. of Neuropsychiatry
Walter Reed Army Institute of Research
Walter Reed Army Medical Center
Washington, D.C. 20012

Director of Research
U.S. Army Armor Human Research Unit
Fort Knox, Kentucky 40121

Director
Behavioral Sciences Laboratory
U.S. Army Research Institute of Environmental Medicine
Walter Reed Army Institute of Research
Fort Knox, Kentucky 40121

Lt. Col. Robert R. Gerry, USAF
Chief, Instructional Technology Programs
AFHRL (TRT/Dr. Ross L. Morgan)
Wright-Patterson Air Force Base
Ohio 45433

AFHRL (TR/Dr. G. A. Eckstrand)
Wright-Patterson Air Force Base
Ohio 45433

AFHRL (TR/Dr. Melvin T. Snyder)
Wright-Patterson Air Force Base
Ohio, 45433

AFSOR (NL)
1400 Wilson Boulevard
Arlington, Virginia 22209
1 HQ, AFSC (SDEC)
Andrews Air Force Base
Washington, D. C. 20330

1 Director
Air University Library (AUL-8110)
Maxwell Air Force Base
Alabama, 36112

1 Headquarters, Electronics Systems Division
ATTN: Dr. Sylvia Mayer/MCDS
L. G. Hanscom Field
Bedford, MA 01730

1 Director of Manpower Research
OASD (M&RA) (M&RU)
Room 3D960
The Pentagon
Washington, D. C. 20330

1 Dr. Alvin E. Goins, Chief
Personality and Cognition Research Section
Behavioral Sciences Research Branch
National Institute of Mental Health
5454 Wisconsin Ave., Room 10A01

1 Dr. John Annett
Department of Psychology
Hull University
Hull
Yorkshire, England

1 Dr. Bernard M. Bass
University of Rochester
Management Research Center
Rochester, NY 14627

1 Dr. C. Bunderson
Computer Assisted Instruction Lab.
University of Texas
Austin, TX 78712

1 Dr. Lee J. Cronbach
School of Education
Stanford University
Stanford, CA 94305

1 Division of Psychological Studies Educational Testing Service
Rosedale Road
Princeton, NJ 08540

1 Personnel Research Division (AFHRL)
Lackland Air Force Base
San Antonio, TX 78236

1 Commandant
U.S. Air Force School of Aerospace Medicine
ATTN: Aeromedical Library
Brooks AFB, TX 78235

1 Lt. Col. Austin W. Kibler
Director, Behavioral Sciences (Acting)
Advanced Research Projects Agency, DDR&E
1400 Wilson Boulevard
Arlington, VA 22209

1 Mr. Joseph J. Cowan, Chief
Psychological Research Branch (P-1)
U.S. Coast Guard Headquarters
400 Seventh Street, S.W.
Washington, D.C. 20591

1 Dr. Andrew R. Molnar
Computer Innovation in Education Section
Office of Computing Activities
National Science Foundation
Washington, D.C. 20550

1 Dr. Richard C. Atkinson
Department of Psychology
Stanford University
Stanford, California 94305

1 Dr. Mats Bjorkman
University of Umea
Department of Psychology
Umea 6, Sweden

1 Dr. Jaime R. Carbonell
Bolt, Beranek & Newman Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. F. J. DiVesta
Pennsylvania State Univ.
320 Rackley Building
University Park, PA 16802

1 ERIC Clearinghouse on Educational Media and Technology
Stanford University
Stanford, CA 94305
1 ERIC Clearinghouse on Vocational and Technical Education
 The Ohio State University
 1900 Kenny Road
 Columbus, OH 43210
 ATTN: Acquisition Specialist

1 Dr. E. W. Fitzpatrick
 Managing Director
 Educational Technology Center
 Sterling Institute
 2600 Virginia Ave., N.W.
 Washington, D. C. 20037

1 Dr. Albert S. Glickman
 American Institutes for Research
 8555 Sixteenth Street
 Silver Spring, MD 20910

1 Dr. Harold Gulliksen
 Department of Psychology
 Princeton University
 Princeton, NJ 08033

1 Dr. M. D. Havron
 Human Sciences Research, Inc.
 Westgate Industrial Park
 7710 Old Springhouse Road
 McLean, VA 22101

1 Human Resources Research Organization
 Library
 300 North Washington Street
 Alexandria, VA 22314

1 Human Resources Research Organization
 Division #3
 Post Office Box 5787
 Presidio of Monterey, CA 93940

1 Human Resources Research Organization
 Division #6, Aviation (Library)
 Post Office Box 428
 Fort Rucker, Alabama 36360

1 Dr. Robert R. Mackie
 Human Factors Research, Inc.
 Santa Barbara Research Prak
 6780 Cortona Drive
 Goleta, CA 93017

1 Mr. Luigi Petrullo
 2431 North Edgewood Street
 Arlington, VA 22207

1 Mr. Wallace Feurzeig
 Bolt, Beranek and Newman, Inc.
 50 Moulton Street
 Cambridge, MA 02138

1 Dr. Robert Glaser
 Learning Research and Development Center
 University of Pittsburgh
 Pittsburgh, PA 15213

1 Dr. Albert E. Hickey
 Entelek, Incorporated
 42 Pleasant Street
 Newburyport, MA 01950

1 Human Resources Research Organization
 Division #4, Infantry
 Post Office Box 2086
 Fort Benning, Georgia 31905

1 Human Resources Research Organization
 Division #5, Air Defense
 Post Office Box 6021
 Fort Bliss, TX 79916

1 Dr. Roger A. Kaufman
 Graduate School of Human Behavior
 U.S. International University
 8655 E. Pomerada Road
 San Diego, CA 92124

1 Office of Computer Information
 Center for Computer Sciences and Technology
 National Bureau of Standards
 Washington, D. C. 20234

1 Psychological Abstracts
 American Psychological Association
 1200 Seventeenth Street, N.W.
 Washington, D.C. 20036

28
1 Dr. Diane M. Ramsey-Klee
R-K Research & System Design
3947 Ridgemont Drive
Malibu, CA 90265

1 Dr. Len Rosenbaum
Psychology Department
Montgomery College
Rockville, MD 20850

1 Dr. Robert J. Seidel
Human Resources Research Organization
300 N. Washington Street
Alexandria, VA 22314

1 Benton J. Underwood
Department of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. Joseph W. Rigney
Behavioral Technology Laboratories
University of Southern California
University Park
Los Angeles, CA 90007

1 Dr. George E. Rowland
Rowland and Company, Inc.
Post Office Box 61
Haddonfield, NJ 08033

1 Dr. Arthur I Siegel
Applied Psychological Services
Science Center
404 East Lancaster Avenue
Wayne, PA 19087