The findings of an experiment are reported in which 28 students taking a graduate level course in techniques of programed instruction were randomly assigned to either cathode ray tube (CRT) or teletype terminals. Results from the analysis of the final concept test data revealed that students performed equally well regardless of terminal device. Apparently the information load in the computer-managed instruction (CMI) system is sufficiently low to allow acceptable performance without the necessity for some form of memory support. The difference in error rate is interpreted to reveal a diminished effect of memory support on reducing errors. This effect of memory support has been found in cathode ray tubes using computer-assisted instruction (CAI) learning materials. The failure to find this effect in this study is probably due to the difference in CMI and CAI, i.e., CMI does not present instructional material that may require some form of memory aid for effective learning. The CRT group completed the units earlier than did the teletype group. (Author/JK)
TECH MEMO

AN INVESTIGATION OF THE EFFECTS OF TWO TYPES OF INSTRUCTIONAL TERMINALS IN COMPUTER-MANAGED INSTRUCTION

Bobby R. Brown, Wallace H. Hannum, and Walter Dick

Tech Memo No. 36
May 15, 1971

Project NR 154-280
Sponsored by
Personnel & Training Research Program
Psychological Sciences Division
Office of Naval Research
Arlington, Virginia
Contract No. N00014-68-A-0494

This document has been approved for public release and sale; its distribution is unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States Government.
Tech Memo Series

The FSU-CAI Center Tech Memo Series is intended to provide communication to other colleagues and interested professionals who are actively utilizing computers in their research. The rationale for the Tech Memo Series is threefold. First, pilot studies that show great promise and will eventuate in research reports can be given a quick distribution. Secondly, speeches given at professional meetings can be distributed for broad review and reaction. Third, the Tech Memo Series provides for distribution of pre-publication copies of research and implementation studies that after proper technical review will ultimately be found in professional journals.

In terms of substance, these reports will be concise, descriptive, and exploratory in nature. While cast within a CAI research model, a number of the reports will deal with technical implementation topics related to computers and their language or operating systems. Thus, we here at FSU trust this Tech Memo Series will serve a useful service and communication for other workers in the area of computers and education. Any comments to the authors can be forwarded via the Florida State University CAI Center.

Duncan N. Hansen
Director
CAI Center
This paper reports the findings of an experiment in which 28 students taking a credit earning graduate level course in techniques of programmed instruction were randomly assigned to either cathode ray tube or teletype terminals.

Results from the analysis of the final concept test data revealed that students performed equally well regardless of terminal device. Apparently the information load in the CMI system is sufficiently low to allow acceptable performance without the necessity for some form of memory support. The difference in error rate is interpreted to reveal a diminished effect of memory support on reducing errors. This effect of memory support has been found in CRTs using CAI learning materials. The failure to find this
effect in this study is probably due to the difference in CMI and CAI, i.e. CMI does not present instructional material that may require some form of memory aid for effective learning.

There was a significant difference in the performance of the CRT and teletype groups on the course product. A further analysis of the data revealed that as a whole the CRT completed the units on the concepts at an earlier data than did the teletype group as well as spending less time interacting with the system. Apparently the students in the CRT group began work on their products earlier than the teletype group.

As was expected the CRT group spent significantly less time signed-on to the CMI system. This probably reflects the operating speeds of the terminal devices rather than any other factor.
AN INVESTIGATION OF THE EFFECTS OF TWO
TYPES OF INSTRUCTIONAL TERMINALS IN
COMPUTER-MANAGED INSTRUCTION

Bobby R. Brown, Wallace H. Hannum, and Walter Dick

Tech Memo No. 36
May 15, 1971

Project NR 154-280
Sponsored by
Personnel & Training Research Program
Psychological Sciences Division
Office of Naval Research
Arlington, Virginia
Contract No. N00014-68-A-0494

This document has been approved for public release and sale; its distribution is unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States Government.
AN INVESTIGATION OF THE EFFECTS OF TWO
TYPES OF INSTRUCTIONAL TERMINALS IN
COMPUTER-MANAGED INSTRUCTION

Bobby R. Brown, Wallace H. Hannum, and Walter Dick

Abstract

This paper reports the findings of an experiment in which 28 students taking a credit earning graduate level course in techniques of programmed instruction were randomly assigned to either cathode ray tube or teletype terminals.

Results from the analysis of the final concept test data revealed that students performed equally well regardless of terminal device. Apparently the information load in the CMI system is sufficiently low to allow acceptable performance without the necessity for some form of memory support. The difference in error rate is interpreted to reveal a diminished effect of memory support on reducing errors. This effect of memory support has been found in CRT's using CAI learning materials. The failure to find this effect in this study is probably due to the difference in CMI and CAI, i.e., CMI does not present instructional material that may require some form of memory aid for effective learning.

There was a significant difference in the performance of the CRT and teletype groups on the course product. A further analysis of the data revealed that as a whole the CRT completed the units on the concepts at an earlier date than did the teletype group as well as spending less time interacting with the system. Apparantly the students in the CRT group began work on their products earlier than the teletype group.
As was expected the CRT group spent significantly less time signed-on to the CMI system. This probably reflects the operating speeds of the terminal devices rather than any other factor.
AN INVESTIGATION OF THE EFFECTS OF TWO TYPES OF INSTRUCTIONAL TERMINALS IN COMPUTER-MANAGED INSTRUCTION

Bobby R. Brown, Wallace H. Hannum, and Walter Dick

One of the most often suggested ways to improve education is that of individualizing the instructional process to more adequately meet the needs of each student. The problem of individualizing instruction has intrigued educators for several decades. Early attempts at individualization were reported by Hashburne (1926), and Parkhurst (1922). Although these plans were well formulated, progress in the implementation of individualized instructional programs has been meager.

This lack of progress is, in part, a function of administrative problems associated with individualized instructional programs. In a truly individualized program, all students in a class would pursue different instructional sequences, at varying rates, which places a management burden upon the teacher. Recording the progress of each student, and prescribing instruction for him is a task which can require a large amount of time from several persons. The work with individually prescribed instruction (IPI) done at Oakleaf School in conjunction with the University of Pittsburgh demonstrated the magnitude of the problem of non-automated information management (Cooley and Glaser, 1969). Initially,
the IPI program used several clerical assistants to aid teachers in the handling of the information necessary for the management of such an instructional system.

There have been several recent attempts at applying computer technology to the managerial problem underlying individualized instruction programs (Coulson, 1968; Schuer, 1967; Flanagan, 1970; Hagerty, 1970). Although these studies differ in a variety of ways, they are all sufficiently similar to be labeled computer-managed instruction (CMI) projects (Morgan, 1969).

In CMI, the computer can function as evaluator, diagnostician, and prescriber of instruction as well as a recorder of student progress. Rather than serving as our instructional presentation service as in computer-assisted instruction (CAI), the computer monitors the student's learning through a step-by-step evaluation of his progress. Thus in CMI, the actual learning does not occur at the computer terminal, but rather "off-line" in a more conventional (but usually individualized) fashion. Since on-line instruction is not a feature of CMI, the computer costs of this approach are much lower than CAI. Hagerty (1970) reports a comparison of the costs of instruction between CMI and traditional instruction at the University level. She found that CMI costs were approximately one-half to one-third the cost of conventional graduate instruction.

There are two basic types of CMI systems: batched processing and terminal oriented. There are a number of projects which have utilized a batched processing system in their operations such as Flanagan's Project Plan (1970), Coulson's work at Systems Development Corporation (1968), and O'Dierno's (1969) work at the New York Institute of Technology. In these
projects, students are directed to learning materials based on progress information supplied by the computer to their teacher. Students' instruction and testing is all performed with conventional paper and pencil procedures. Test answer sheets are read by optical scanners and the data is transferred to computers for analysis and reporting. In turn, the reports are supplied to the instructor and/or the student.

A terminal-oriented CMI system has been developed at the Florida State University CAI Center. The significant feature of this interactive CMI approach is that the diagnostic evaluations and learning prescriptions take place in real-time via an interaction between the student and the computer system. This system has the virtue of providing immediate corrective feedback as opposed to the usual 1-2 day wait in the batched systems.

The initial implementation of this interactive system has been reported by Hagerty (1970) and Gallagher (1970). The present study extends the investigation of an interactive CMI system by focusing on the use of two different terminal devices for the student-machine interface. The terminal devices used were cathode-ray tubes (CRT) and teletypes (TTY). Information can be displayed at a faster rate on the TV-like screen of the CRT as compared to the typing rate of the teletypes, but the CRT's do not provide a hardcopy of this information for future reference. Due to the presentation rate, the CRT's may be more efficient terminal devices than teletypes for use in an interactive CMI system. However, the teletypes generate a printout of the student's interaction with the system which can be used for future study and review. Thus, the teletypes might be considered the more desirable terminal device in terms of fostering student learning and retention.
The major purpose of this study was to investigate the performance of students in a CMI course when they used two types of terminal devices. The role of individual differences with regard to terminal device was also investigated. A study by Dick and Latta (1969) reported a significant ability by treatment interaction in a comparison of programmed instruction and CRT-oriented CAI instruction. They found that low ability junior high school students performed better on PI than CAI, whereas there were no differences for high ability students. They tendered the explanation that low ability students may be unable to cope with the information load from the CRT since they don't have a copy of previous information to assist them. In the current study, graduate record exam (GRE) and grade point average (GPA) were used as indices of graduate student ability.

STATEMENT OF THE PROBLEM

This investigation examined the effect of two different terminal devices (CRT and teletype) on both performance and time required to complete a graduate level course offered via an interactive computer-managed instruction system.

In investigating differences due to terminal device, several indices of student performance were used. These include: (1) Student scores on a criterion-referenced test of the major objectives involved in the course; (2) Instructor rating of each student's project for the course which included the development of a unit of programmed instruction and accompanying documentation; and (3) Time spent at the CMI terminal.

In addition to these three primary indices, several other measures were obtained. These include the error rate on performance on the computer.
terminal, the number of objectives in which criterion performance was not initially reached, and the computer costs per student for participating in the course.

SUBJECTS
The subjects for this study consisted of 28 graduate students who enrolled for the course "Techniques of Programmed Instruction" in the Department of Educational Research at the Florida State University during the Spring Quarter, 1970. There were 4 females and 24 male subjects. The subjects were randomly assigned to either CRT or teletype terminals.

APPARATUS
An IBM 1500 Instructional System was used to conduct this study. The IBM 1500 Instructional Display terminal equipped with light pen and typewriter keyboard served as one terminal device. The other terminal device used was a teletype. The addition of a DEC 680 System under the control of a PDP/8 Computer provides the capability to drive both CRT's and teletypes by the same system.

MATERIALS AND PROGRAM DESCRIPTION
The materials used in this study consisted of a course guide distributed to the students at the start of the course, and numerous articles and chapters in books that were referenced to specific course objectives. The course guide included a task analysis of the course (see Appendix A), and for each task the guide gave the overall goal, specific behavioral objective(s), a sample test item, and primary and secondary references. These references were reproduced and kept in the Center's library which was open daily for student use. For each behavioral
objective, approximately fifteen test items were written and entered into a test item pool in the CMI system.

The CMI system was programmed in Coursewriter II, the CAI language which is available for the IBM 1500 CAI System. The functions of the CAI system consisted of record keeping, testing, diagnosis of weakness, and remediation. The student was not presented actual instructional materials on the terminals. A flow diagram of this interactive system for one unit in the course is presented in Figure 1.

This figure represents the path followed within each unit of the course. The first 12 tasks covered the concepts involved in the preparation of programmed instruction, the last 8 tasks involved the students' preparation of their own programmed unit and the documentation for it. The unit tests for each of the first 12 units consisted of 5 multiple choice or true-false questions selected at random from the test item pool for each objective for the task. The criterion for these task tests was set at 80% or 4 our of 5 items for each objective.

The tests for the productive portion of the course, tasks 13-20, consisted of a series of questions that the instructor would have asked the student about his product. It is possible to regard these tests as a simulated interview between student and instructor in which the instructor asks the student yes or no type questions about what he has done.

PROcedures

The treatment period for this investigation was ten weeks, the length of the Spring academic quarter at Florida State University. At the first meeting of the class, the procedures for the course were described.
Figure 1.--Computer logic flowchart for CMI System
The students were told how they would proceed through the course via computer management and were given a copy of the course guide. During this class they were told that they would not meet again until the last day of the quarter when their product for the course was due.

The students were allowed to complete the units of the course in any order they desired at any rate they wished, with the restriction that they must finish all the units and complete their product by the end of the quarter. When a student completed the first 12 units covering the concepts involved in programmed instruction, he was given a paper and pencil examination designed to measure his knowledge of the concepts (see Appendix B). When the student had turned in their programmed instruction documentation, a score was assigned to this product using an instructor rating sheet (see Appendix C).

The class met briefly the last day of the quarter primarily to discuss their reactions to the course, any problems they encountered, and to provide some closure for the course. It should be noted that the class only met on the first and last days of the quarter. They were required to finish the first 12 tasks by midterm and to have the documentation finished by the end of the quarter.

RESULTS

The main focus of this study was the investigation of the effect of two different terminal devices on student performance in a course offered via an interactive CMI system. The primary indices of student performance were scores on the final test over the conceptual tasks, scores on the course project (development and documentation of PI text), and total time spent by each student at the computer terminal.
Table 1 presents the means and standard deviations for the two experimental groups on these three performance indices.

TABLE 1

Performance in CMI Course by Students Using Different Terminal Devices

<table>
<thead>
<tr>
<th>Groups</th>
<th>Concept Test</th>
<th>Product Evaluation</th>
<th>Time (Min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT</td>
<td>Mean 90.64</td>
<td>52.00</td>
<td>261.14</td>
</tr>
<tr>
<td>N = --</td>
<td>Standard Dev. 7.15</td>
<td>6.13</td>
<td>329.43</td>
</tr>
<tr>
<td>TT</td>
<td>Mean 89.86</td>
<td>45.36</td>
<td>353.78</td>
</tr>
<tr>
<td>N = --</td>
<td>Standard Dev. 8.06</td>
<td>5.87</td>
<td>327.84</td>
</tr>
<tr>
<td>TOTAL</td>
<td>Mean 90.25</td>
<td>48.83</td>
<td>307.46</td>
</tr>
<tr>
<td>N = --</td>
<td>Standard Dev. 7.49</td>
<td>6.78</td>
<td>325.92</td>
</tr>
</tbody>
</table>

It can be readily seen from the data in Table 1 that both groups performed equally well on the test over the concepts involved in the course. The CRT group had superior scores on the course project and spent less time actually working at a terminal.

In order to evaluate the differences on the concept test, an analysis of covariance was performed using the biomedical general linear hypothesis program (Dixon, 1968). The results of this analysis using pretest scores for the covariant yielded a F-ratio of 1.52. The F-ratio obtained from this analysis is not significant at the .05 confidence level. This indicates that there were no differences in the posttest over the concepts when the scores were adjusted for pretest differences.
An one-way analysis of variance was performed on the scores on the course product to examine differences between the two groups. This analysis is presented in Table 2.

TABLE 2
Analysis of Variance for Product Scores

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Squares</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>252.7589</td>
<td>1</td>
<td>252.7589</td>
<td>6.99</td>
</tr>
<tr>
<td>Within</td>
<td>758.5455</td>
<td>21</td>
<td>36.1212</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1011.3043</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The obtained F-ratio is significant at the .05 level. The products of the CRT group were rated as significantly superior to the products of the teletype group.

In order to evaluate the differences between the two groups in the amount of time spent on the computer terminal a Mann-Whitney U statistic was calculated. This resulted in a U of 33, significant at the .02 level indicating that the CRT group spent significantly less time signed on to the computer during this study.

In addition to these main analyses, several supplemental factors including the number of errors on the unit tests, the number of times criterion performance was not reached on the first attempt, and the costs associated with the use of the two terminals was investigated. Table 3 shows the comparison between the two groups on these factors.
TABLE 3
Mean Errors, Criterion Failures, and Associated Costs

<table>
<thead>
<tr>
<th></th>
<th>Mean Errors</th>
<th>Mean Failure to Achieve Criterion</th>
<th>Computer Costs per Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT</td>
<td>37.21</td>
<td>5.14</td>
<td>$14.48</td>
</tr>
<tr>
<td></td>
<td>13.23</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>33.71</td>
<td>5.07</td>
<td>$19.58</td>
</tr>
<tr>
<td></td>
<td>19.08</td>
<td>1.49</td>
<td></td>
</tr>
</tbody>
</table>

The total number of task test errors was not significantly different for the two groups. There was also no difference in the number of tasks on which criterion performance was not reached on the first attempt. The analysis of the cost per student indicates that the teletype was the more expensive terminal device. These cost figures were computed by multiplying the number of student hours spent on the system by the figure that reflects the current cost for time at the FSU CAI Center. This figure is $3.33 per student per hour regardless of terminal device. If the actual costs of the terminal devices were included, the teletype groups' costs would be even lower.

The general finding was that, regardless of terminal device, students perform equally well on the test on conceptual material. However, the CRT group spent less time interacting with the computer and also developed better course projects.

In order to access the role of individual differences within this CMI system, several indices of individual differences were employed: (1) GRE total scores; (2) grade-point average (GPA); and (3) anxiety as measured
by the State Trait Anxiety Inventory (Spielberger, Gorsuch, and Lushene, 1968). The correlations between these variables and the performance variables are presented below in Table 4.

TABLE 4

<table>
<thead>
<tr>
<th></th>
<th>GRE</th>
<th>GPA</th>
<th>Anxiety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Test</td>
<td>.11</td>
<td>.20</td>
<td>-.07</td>
</tr>
<tr>
<td>Product grade</td>
<td>.13</td>
<td>.38</td>
<td>.15</td>
</tr>
<tr>
<td>Number of Failures to Achieve Criterion</td>
<td>-.01</td>
<td>-.67*</td>
<td>.38</td>
</tr>
</tbody>
</table>

*p < .05

The only significant coefficient in this table is the correlation between GPA and the number of times criterion performance was not initially reached in the course evaluations on the terminals. This correlation would indicate that persons with higher ability as measured by GPA tended to more often reach criterion performance on the first attempt.

The GRE scores were not related to any of the performance measures in the course. The anxiety scale also was not significantly correlated with performance. There was no evidence of differential performance of students of differing abilities.
DISCUSSION

Results from the analysis of the concept test reveal that students perform equally well regardless of terminal device. Apparantly the information load in the CMI system is sufficiently low to allow acceptable performance without the necessity for some form of memory support. The difference in error rate is interpreted to reveal a diminished effect of memory support on reducing errors. This effect of memory support has been found in CRT's using CAI learning materials. The failure to find this effect in this study is probably due to the difference in CMI and CAI, i.e., CMI does not present instructional material that may require some form of memory aid for effective learning.

There was a significant difference in the performance of the CRT and teletype groups on the course product. A further analysis of the data revealed that as a whole, the CRT completed the units on the concepts at an earlier date than did the teletype group as well as spending less time interacting with the system. Apparantly, the students in the CRT group began work on their products earlier than the teletype group. This interpretation is of course only conjectual.

As was expected the CRT group spent significantly less time signed on to the CMI system. This probably reflects the operating speeds of the terminal devices rather than any other factor.
REFERENCES

Dick, W. & Latta, R. Comparative effects of ability and presentation mode in computer-assisted instruction and programmed instruction, AV Communication Review, November, 1969.

Hagerty, N. K. Development and implementation of a computer-managed instruction system in graduate training, Tech Report No. 11, CAI Center, Florida State University, 1970.

APPENDIX A

<table>
<thead>
<tr>
<th>20</th>
<th>Produce a document describing Systems Analysis development and standardized evaluation of a Programmed Instruction text.</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Document the PI text you have written</td>
</tr>
<tr>
<td>18</td>
<td>Execute and Document the Summative Evaluation</td>
</tr>
<tr>
<td>17</td>
<td>Conduct the Formative Evaluation and Revise materials</td>
</tr>
<tr>
<td></td>
<td>Write PI course of instruction based on task analysis, behavioral objectives, entry behavior and instructional strategy selected</td>
</tr>
<tr>
<td></td>
<td>Select appropriate strategy of presentation for area of instruction</td>
</tr>
<tr>
<td></td>
<td>Distinguish strategies available with PI</td>
</tr>
<tr>
<td></td>
<td>Identify types of PI frames</td>
</tr>
<tr>
<td></td>
<td>Distinguish PI and non-PI</td>
</tr>
<tr>
<td></td>
<td>List requirements for task analysis</td>
</tr>
<tr>
<td></td>
<td>Identify behavioral objectives which have been written correctly</td>
</tr>
<tr>
<td></td>
<td>Identify entry behavior of students</td>
</tr>
<tr>
<td></td>
<td>List requirements for choosing an area of instruction</td>
</tr>
<tr>
<td></td>
<td>Identify and describe components of the Systems Approach</td>
</tr>
<tr>
<td></td>
<td>Select appropriate test items for each B.O.</td>
</tr>
<tr>
<td></td>
<td>Distinguish formative & summative evaluation</td>
</tr>
<tr>
<td></td>
<td>Classify B.O. in terms of the tasks required of the learner</td>
</tr>
<tr>
<td></td>
<td>Develop summative evaluation plan using standardized procedures</td>
</tr>
<tr>
<td></td>
<td>Develop summative evaluation plan</td>
</tr>
<tr>
<td></td>
<td>Describe the use of Systems Analysis in developing materials for a medium other than PI</td>
</tr>
</tbody>
</table>

Task Analysis of Techniques of Programmed Instruction, showing cognitive and productive units.
APPENDIX B

MIDTERM EXAMINATION FOR PROGRAMMED INSTRUCTION COURSE

This examination covers the thirteen cognitive units of the programmed instruction course. Read and answer all questions carefully.

1. Briefly explain the major use of the Systems Approach in Education.

2. List, in order, the steps in Dick's or Hansen's Systems Approach Model.

3. List the three elements basic to all Systems Approach Models.

4. List five of the basic requirements necessary in choosing a subject matter area to be programmed.

5. Briefly define:
 a. Step size--
 b. Explicit response--
 c. Feedback--
 d. Prompt--

6. Name three characteristics that differentiate programmed instruction material from non-programmed material.

7. Define task analysis in reference to instructional design.

8. Briefly define what is meant by entry behavior (give examples).

9. Briefly define:
 a. Baboon frame--
 b. Discrimination frame--
 c. Confirmation frame--
 d. Sub-terminal frame--

10. A well written behavioral objective contains:
11. List and briefly define Gagne's eight levels of learning.

12. Briefly define:
 a. Adjunct programming--
 b. Extrinsic programming--
 c. Intrinsic programming--
 d. Linear programming--

13. List at least two programming strategies and reasons for selecting each.

14. List and define at least four types of test items.

15. List five characteristics of a well-written test item.

16. Briefly differentiate between formative and summative evaluation.

17. List the differences between using the Systems Approach in developing materials for programmed instruction and materials for any other medium.

APPENDIX C

537 PROJECTION EVALUATION SHEET

STUDENT NAME ____________________________
CMI # ____________________________
EVALUATOR ____________________________

Topic Area ____________________________

Expert ____________________________

(10) 1. Task Analysis (5)
 Reasonable sequence (5)

(10) 2. Behavioral Objectives (5)
 Well written, compared with TA (5)
 a. Comparison with conventional curricula
 b. Outline of contents of program
 c. Show limits of the program's objectives and areas not being developed by the program

(5) 3. Description of Entry Behaviors (3)
 How derived, expressed as entry behavior and skills (2)

(5) 4. General Description of Target Population (5)
 Not entry behavior
 a. Minimum grade on standardized ability or aptitude tests

(10) 5. Program Preparation (Description of preparation process) (10)
 Select strategy, use TA, entry behaviors, etc.
 a. Expert Opinion
 b. Revision based on one-on-one

(10) 6. Evaluation Plan (Preparation for evaluation, data collection and development of instruments) and report of data (error rate of program and testing) (10)

(10) 7. Revision Suggestions or Implications (10)
 Based on Report of Data in #6

(5) 8. Miscellaneous (General overall impressions) (10)
 a. Indications of student attitude
 b. Practicality of program, e.g., supplemental materials, reusability, maintenance costs, etc.
 c. Administration, e.g., conditions necessary for success, procedures for introducing students to the program, etc.
MILITARY MAILING LIST

Col Ray Alvord
FR 19995
Air Force Institute of Technology
SLG
Wright-Patterson Air Force Base,
Ohio 45433

Dr. Ray Berger
Electronic Personnel Research Group
USC
Los Angeles, California 90007

Chief of Naval Research
Code 458
Department of the Navy
Arlington, Va. 22217

Director
ONR Branch Office
219 Dearborn Street
Chicago, Illinois 60604
Att: Dr. Morton Bestin

Office of Naval Research
Area Office
207 West Summer Street
New York, New York 10011

Director
Naval Research Laboratory
Washington, D.C. 20390

Commanding Officer
Service School Command
U.S. Naval Training Center
San Diego, California 92133

Commanding Officer
Naval Medical Neuropsychiatric Research Unit
San Diego, California 92152

Dr. James J. Regan
Code 55
Naval Training Device Center
Orlando, Florida 32813

Mr. Norman B. Carr
Educational Advisor
U.S. Army
Southeastern Signal School
Ft. Gordon, Georgia 30905

Director
ONR Branch Office
495 Summer Street
Boston, Massachusetts 02210
Att: Dr. Charles Starsh

Director
ONR Branch Office
1030 East Green Street
Pasadena, California 91101
Att: Dr. Eugene Gloye

Office of Naval Research
Area Office
1076 Mission Street
San Francisco, California 94103

Defense Documentation Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, Virginia 22314

Commanding Officer
Naval Personnel & Training Res. Lab.
San Diego, California 92152

Commanding Officer
Naval Air Technical Training Center
Jacksonville, Florida 32213

Chief, Naval Air Reserve Training
Naval Air Station
Box 1
Glenview, Illinois 60026
Behavioral Sciences Department
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014

Chief, Naval Air Technical Training
Naval Air Station
Memphis, Tennessee 38115

Technical Library
U.S. Naval Weapons Laboratory
Kahlgren, Virginia 22448

Technical Library
Naval Ship Systems Command
Main Navy Building, RM. 1532
Washington, D.C. 20360

Libr, Code 0212
Naval Postgraduate School
Monterey, California 93940

Technical Library
Naval Ordnance Station
Louisville, Kentucky 40214

Commanding Officer
U.S. Naval Schools Command
Mare Island
Vallejo, California 94592

Scientific Advisory Team (Code 71)
Staff, COMASFORLANT
Norfolk, Virginia 23511

ERIC Clearinghouse
Vocational and Technical Education
Ohio State University
Columbus, Ohio 43212

Office of Civilian Manpower Management
Department of the Navy
Washington, D.C. 20390
Attn. Code 024

Chief of Naval Material (Mat 031M)
Room 1323, Main Navy Building
Washington, D.C. 20360

Chief
Bureau of Medicine and Surgery
Code 513
Washington, D.C. 20390

Chief
Bureau of Naval Personnel
(Pers-11B)
Department of the Navy
Washington, D.C. 20390

Mr. George N. Graine
Naval Ship Systems Command
Code 034
Department of the Navy
Main Navy Building
Washington, D.C. 20360

Technical Library
Bureau of Naval Personnel
(Pers-11B)
Department of the Navy
Washington, D.C. 20370

ERIC Clearinghouse
Educational Media and Technology
Stanford University
Stanford, California 94305

Commander
Operational Test and Evaluation Force
U.S. Naval Base
Norfolk, Virginia 23511

Chief of Naval Operations, OP-07TL
Department of the Navy
Washington, D.C. 20350

ERIC Clearinghouse
Wright-Patterson Air Force Base
Ohio 45433

Dr. Don C. Coombs, Asst. Dir.
ERIC Clearinghouse
Stanford University
Palo Alto, California 94305

Chief of Naval Operations, OP-07TL
Department of the Navy
Washington, D.C. 20350
Director
Personnel Research Laboratory
Washington Navy Yard, Bldg. 200
Washington, D.C. 20390

Human Resources Research Office
Division #6, Aviation
Post Office Box 428
Fort Rucker, Alabama 36360

Human Resources Research Office
Division #4, Infantry
Post Office Box 2086
Fort Benning, Georgia 31905

Human Resources Research Office
Division #1, Systems Operations
300 North Washington Street
Alexandria, Virginia 22314

Armed Forces Staff College
Norfolk, Virginia 23511
Attn: Library

Walter Reed
Div. of Neuropsychiatry
Army Institute of Research
Walter Reed Army Medical Center
Washington, D.C. 20012

Air University Library
Maxwell Air Force Base
Alabama 36112
Attn: AUL-8110

AFHRL (TR/Dr. G. A. Eckstrand)
Wright-Patterson Air Force Base
Ohio 45433

Commandant
U.S. Air Force School of Aerospace Medicine
Brooks Air Force Base, Texas 78235
Attn: Aeromedical Library (SMDL)

Commander
Naval Air Systems Command
Navy Department Air-4132
Washington, D.C. 20360

Department of the Army
U.S. Army Adjutant General School
Fort Benjamin Harrison, Indiana 46216
Attn: AGCS-FA ATSAG-EA

Armed Forces Sta F College
Norfolk, Virginia 23511
Attn: Library

Walter Reed
Div. of Neuropsychiatry
Army Institute of Research
Walter Reed Army Medical Center
Washington, D.C. 20012

Chief
Training and Development Division
Office of Civilian Personnel
Department of the Army
Washington, D.C. 20310

Human Resources Research Office
Division #5, Air Defense
Post Office Box 6021
Fort Bliss, Texas 79916

Human Resources Research Office
Division #3, Recruit Training
Post Office Box 5787
Presidio of Monterey, California 93940
Attn: Library

Behavioral Sciences Division
Office of Chief of Research and Development
Department of the Army
Washington, D.C. 20310

Headquarters, Electronic System Div.
ESVPT
L.G. Hanscom Field
Bedford, Massachusetts 01730

6570th Personnel Research Lab.
Aerospace Medical Division
Lackland Air Force Base
San Antonio, Texas 78236
Dr. Glen Finch
AFOSR, Air Force Office of Scientific Research
1400 Wilson Blvd.
Arlington, Virginia 22209

Director, Education & Trng. Sciences
Naval Medical Research Institute
Building 142
National Naval Medical Center
Bethesda, Maryland 20014

Dr. George S. Harker, Director
Experimental Psychology Division
U.S. Army Medical Research Lab.
Fort Knox, Kentucky 40121

U.S. Army Air Defense School
Office of Director of Instruction
Attn' Mr. Wayne O. Aho
Fort Bliss, Texas 79916

Mr. Charles W. Jackson
5009 Holmes Ave., N.W.
Redstone Arsenal
Huntsville, Alabama 35805

Research Director, Code 06
Research and Evaluation Dept.
U.S. Naval Examining Center
Building 2711 - Green Bay Area
Great Lakes, Illinois 60088
Attn. C. S. Winiewicz

Dr. Ralph R. Canter
Military Manpower Research Coordinator
OASD (M&RA) MR&U
The Pentagon, Room 3D960
Washington, D.C. 20301

U.S. Army Behavior and Systems Research Laboratory
Commonwealth Building, Room 239
1320 Wilson Boulevard
Arlington, Virginia 22209

Mr. Edmund C. Berkeley
Computers and Automation
815 Washington Street
Newtonville, Massachusetts 02160

Director, Naval Research
Attn. Library, Code 2029 (ONRL)
Washington, D.C. 20390

Director
Aerospace Crew Equipment Department
Naval Air Dev. Center, Johnsville
Warminster, Pennsylvania 18974

Commander
Submarine Development Group Two
Fleet Post Office
New York, New York 09501

Dr. Henry S. Odbert
National Science Foundation
1800 G. Street, N.W.
Washington, D.C. 20550

Education & Training Develop. Staff
Personnel Research & Develop. Lab.
Bldg. 200, Washington Navy Yard
Washington, D.C. 20390

Dr. A. L. Slafkosky
Scientific Advisor (Code AX)
Commandant of the Marine Corps
Washington, D.C. 20380

Lt. Col. F. R. Ratliff
Office of the Ass't. Secretary of Defense (MR&U)
The Pentagon, Room 3D960
Washington, D.C. 20301

Director
Behavioral Sciences Laboratory
U.S. Army Research Institute of Environmental Medicine
Natick, Massachusetts 01760

Dr. Bernard M. Bass
University of Rochester
Management Research Center
Rochester, New York 14627

Dr. Donald L. Bitzer
Computer-Based Education Research
University of Illinois
Urbana, Illinois 61801
Dr. C. Victor Bunderson
Computer Assisted Instruction Lab.
University of Texas
Austin, Texas 78712

Dr. Robert Dubin
Graduate School of Administration
University of California
Irvine, California 92650

Mr. Wallace Feurzeig
Bolt, Beranek and Newman, Inc.
50 Moulton Street
Cambridge, Mass. 02138

Dr. John C. Flanagan
American Institutes for Research
Post Office Box 1113
Palo Alto, California 94302

Dr. Albert S. Glickman
American Institutes for Research
8555 Sixteenth Street
Silver Spring, Maryland 20910

Dr. Carl E. Helm
Dept. of Educational Psychology
City U. of N.Y. - Graduate Center
33 West 42nd Street
New York, New York 10036

Dr. Lloyd G. Humphreys
Department of Psychology
University of Illinois
Champaign, Illinois 61820

Dr. Gabriel D. Ofiesh
Center for Ed. Technology
Catholic University
4001 Harewood Rd., N.E.
Washington, D.C. 20017

Dr. Paul Slovic
Oregon Research Institute
P. O. Box 3196
Eugene, Oregon 97403

Dr. John Annett
Department of Psychology
Hull University
Yorkshire, ENGLAND

Dr. F. J. Divesta
Pennsylvania State University
320 Reackley Building
University Park,
University Park, Pennsylvania 16802

Dr. Marvin D. Dunnette
University of Minnesota
Department of Psychology
Elliot Hall
Minneapolis, Minnesota 55455

S. Fisher, Research Associate
Computer Facility, Graduate Center
33 West 42nd Street
New York, New York 10036

Dr. Robert Glaser
Learning Research and Development Center
University of Pittsburgh
Pittsburgh, Pennsylvania 15213

Dr. Bert Green
Department of Psychology
Johns Hopkins University
Baltimore, Maryland 21218

Dr. Albert E. Hickey
ENTELEK, Incorporated
42 Pleasant Street
Newburyport, Massachusetts 01950

Dr. Richard Myrick, President
Performance Research, Inc.
919 Eighteenth St., N.W., Suite 425
Washington, D.C. 20036

Mr. Luigi Petrullo
2431 N. Edgewood Street
Arlington, Virginia 22207

Dr. Arthur W. Staats
Department of Psychology
University of Hawaii
Honolulu, Hawaii 96822

Dr. M.C. Shelesnyak
Interdisciplinary Communications
Smithsonian Institution
1025 15th St., N.W./Suite 700
Washington, D.C. 20005
Educational Testing Service
Division of Psychological Studies
Rosedale Road
Princeton, New Jersey 08540

Dr. George E. Rowland
Rowland and Company, Inc.
P. O. Box 61
Haddonfield, New Jersey 08033

Department of the Navy
Office of Naval Research
Arlington, Virginia 22217
Code 458

Dr. Harold Gulliksen
Department of Psychology
Princeton University
Princeton, New Jersey 08540

Dr. Marty Rockway
AFHRL (TT)
Human Resources Lab.
Lowry Air Force Base, Colorado