The Effect of Mode of Elicitation in Articulation Testing.

TR-154

BB-5-0216

Mar 71

OEC-5-10-154

16p.

EDRS Price MF-$0.65 HC-$3.29

Articulation (Speech), College Students, Consonants, Error Patterns, Grade 1, Pictorial Stimuli, Preschool Children, Reading Research, Reading Skills, Visual Stimuli, Word Recognition

Differences in articulation error rates and error patterns as a function of five elicitation modes (picture, picture with pretraining, word repetition, sentence repetition, and nonsense word repetition) were examined. The same 15 words (or pictures representing them) were stimuli in four real word conditions; nonsense words were formed by recombining the vowels and final consonants of the real words. Subjects were 22 preschoolers, 8 kindergarteners, 10 first graders, and 24 college students. Each subject was tested in each mode with order of testing counterbalanced. Errors in initial consonants, initial consonant clusters, vowels, final consonants, and final consonant clusters were scored separately. Error rates and error patterns were similar for the four real word modes. The nonsense words showed an error rate three times higher than that of the real word modes and, in constrast with the real word modes, increased rather than decreased from initial to final position. The effect of test items which are effectively nonsense as well as additional considerations bearing on the choice of real word testing modes are also considered. (Author/VJ)
THE EFFECT OF ELICITATION IN ARTICULATION TESTING

WISCONSIN RESEARCH AND DEVELOPMENT

CENTER FOR COGNITIVE LEARNING
Technical Report No. 154

THE EFFECT OF MODE OF ELICITATION IN ARTICULATION TESTING

Robin S. Chapman and Ai chen Ting

Report from the Project on Reading and Related Language Arts
Basic Prereading Skills: Identification and Improvement

R. L. Venezky, Principal Investigator

Wisconsin Research and Development
Center for Cognitive Learning
The University of Wisconsin
Madison, Wisconsin

March 1971
STATEMENT OF FOCUS

The Wisconsin Research and Development Center for Cognitive Learning focuses on contributing to a better understanding of cognitive learning by children and youth and to the improvement of related educational practices. The strategy for research and development is comprehensive. It includes basic research to generate new knowledge about the conditions and processes of learning and about the processes of instruction, and the subsequent development of research-based instructional materials, many of which are designed for use by teachers and others for use by students. These materials are tested and refined in school settings. Throughout these operations behavioral scientists, curriculum experts, academic scholars, and school people interact, insuring that the results of Center activities are based soundly on knowledge of subject matter and cognitive learning and that they are applied to the improvement of educational practice.

This Technical Report is from the Basic Prereading Skills: Identification and Improvement element of the Reading and Related Language Arts Project in Program 2, Processes and Programs of Instruction. General objectives of the Program are to develop curriculum materials for elementary and preschool children, to develop related instructional procedures, and to test and refine the instructional programs incorporating the curriculum materials and instructional procedures. Contributing to these Program objectives, this element has two general objectives: (1) to investigate ways to test for skill deficits and to overcome them and (2) to develop a kindergarten-level program, including diagnostic tests and instructional procedures, for teaching basic prereading skills. Tests and instructional programs will be developed for visual and acoustic skills, including letter and letter-string matching with attention to order, orientation and detail, and acoustical matching, segmentation, and blending.
CONTENTS

Abstract vii

I. Introduction 1

II. Method 3
 Design 3
 Stimulus Materials 3
 Procedures 4
 Subjects 4
 Data Transcription 4
 Error Classification 4

III. Results 6
 Failure to Elicit Test Words 6
 Nonsense Word Errors 8

IV. Summary and Conclusions 9

References 11

LIST OF TABLES AND FIGURES

Table

1 Stimulus Materials 3
2 Mean Per Cent Error by Sound Class and Elicitation Mode for Each Age Group 5
3 Mean Per Cent Error by Sound Class and Elicitation Mode, Averaged over 40 Children 6
4 Per Cent Failure to Give Test Word, by Group and Mode of Elicitation 7

Figure

1 Difference between Error Rate for Sound Class and Average Error Rate for Each Mode 7
ABSTRACT

Differences in articulation error rates and error patterns were examined as a function of five elicitation modes: picture, picture with pretraining, word repetition, sentence repetition, and nonsense word repetition. The same 15 words (or pictures representing them) were used as stimuli in the four real word conditions; nonsense words were formed by recombining the vowels and final consonants of the real words.

Subjects (Ss) were 22 preschoolers, 8 kindergartners, 10 first graders, and 24 college students. Each S was tested in each mode with order of testing counterbalanced. Errors in initial consonants, initial consonant clusters, vowels, final consonants, and final consonant clusters were scored separately.

Error rates and error patterns were similar for the four real word modes. The nonsense words showed an error rate three times higher than that of the real word modes and, in contrast with the real word modes, increased rather than decreased from initial to final position.

The effect of test items which are effectively nonsense is discussed for normative and correlative studies. Additional considerations bearing on the choice of real word testing modes are presented.
INTRODUCTION

In testing articulation, the experimenter or clinician must decide how speech sounds are to be elicited from the child; this paper is concerned with some of the consequences of that decision.

Speech sounds may be elicited spontaneously by pictures, incomplete sentences, printed words or sentences, or conversation. The spontaneous mode may have the advantage of eliciting normal, or habitual, speech patterns, if this is the experimental goal; it has the disadvantage, in younger children and poor readers, of failing to sample phonemes occurring in non-picturable or hard-to-read words.

Speech sounds may also be elicited by asking the child to repeat words, phrases, sentences, or nonsense words. The imitation mode permits the testing of a wider range of phonemes; however, it has been argued that the child may indeed imitate the model, revealing what he can say rather than what he normally says.

Evidence that imitative elicitation techniques yield lower error rates than spontaneous is mixed. In a study of 100 normal children with a mean age of 3 years 9 months, Templin (1947) found no differences between spontaneous (picture) and imitation modes for words. Siegel, Winitz, and Conkey (1963) reported a study of 100 normal kindergartners, reported a slightly lower error rate on imitation for only eight out of 40 speech sounds or clusters (/l, r, sk, s, t, tr, c, z/).

In studies of young, functionally speech-defective children (second grade or below), Morrison (1914) and Burkhard (1965) reported no difference in spontaneous (picture) and imitative modes; Fischers (1965) and Snow and Milisen (1954), however, found fewer errors in imitation. Snow and Milisen also tested seventh and eighth grade children with functional speech defects and found the difference in spontaneous and imitation modes to be far greater for older children than younger.

Several other variations in test materials and procedure may affect error rates. For young speech-defective children, Fischers (1965) and Burkhard (1965) found that the imitation of phrases or sentences produced higher error rates than imitation of single words. Scott and Milisen (1954), in a study of 64 functionally speech-defective children ranging in age from 4 to 14, found imitation of nonsense syllables (CV) to yield lower error rates than spontaneous elicitation of words, and further, that imitation error rates were lower when the child could see the experimenter saying the nonsense syllable than when the child could only hear the syllable. The effect of nonsense (or unfamiliar) words on normal children's articulation errors has not been investigated, although makers of imitation tests have attempted to use only high-frequency words.

Venezky, Chapman, and Calfee (in preparation), in a study of the articulation errors of normal kindergarten and first grade children, found error rates higher for repetition of words presented on tape than for repetition of words spoken by an experimenter facing the child. Higher error rates were observed for one speaker (female) on tape than the other (male).

It would appear that the following factors affecting error rate must be taken into account in interpreting differences in mode of elicitation: population from which sample is drawn (age; normal versus functionally speech defective); task (spontaneous production versus imitation); stimulus characteristics (real word, sentence, nonsense word); presentation, for imitation tasks (tape; live, experimenter's face concealed or visible); the environment of the speech sound tested (word or utterance initial, medial, and final; occurrence in diphthong or cluster); and the phonemes tested.
In the present study, the particular phonemes tested and their word positions and cluster environments were held constant; the effect on error rate of picture, word, sentence, and nonsense word elicitation modes was studied for four age groups of normal, monolingual speakers (preschool, kindergarten, first grade, and college). Of particular interest were possible differences in imitation mode conditions.
METHOD

DESIGN

A 4 x 5 x 5 factorial design was used: group x mode x sound class, with repeated measures on the last two factors. The four groups of Ss participating in the study were preschoolers, kindergartners, first graders, and college students. Each S was tested in five elicitation mode conditions: picture, picture again, real word, nonsense word, and sentence. Five classes of sounds were defined for each stimulus list: initial consonant, initial consonant cluster, final consonant, final consonant cluster, and vowel.

STIMULUS MATERIALS

Fifteen common nouns representing concrete objects were drawn from articulation test lists used in a previous study; all were of intermediate pronunciation difficulty for kindergarten and first grade children (Venezky, Chapman, & Calfee, in preparation). Five sets of stimulus materials were derived from these words: two sets of slides which were color photographs of the 15 objects named (picture conditions 1 and 2); the word list itself; 15 nonsense words formed by permuting the vowels and final consonants or consonant clusters of the original test items; and 15 sentences of 6 words or less each containing an embedded test word. One final consonant in the nonsense list was incorrectly recorded as /l/ rather than /r/.

Table 1

<table>
<thead>
<tr>
<th>Sentences</th>
<th>Words and Pictures</th>
<th>Nonsense Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>I drank a glass of milk.</td>
<td>glass /glaɪ/</td>
<td></td>
</tr>
<tr>
<td>The long string broke.</td>
<td>string /streɪ/</td>
<td></td>
</tr>
<tr>
<td>The king's crown is silver.</td>
<td>crown /krɒn/</td>
<td></td>
</tr>
<tr>
<td>The frog jumped into the water.</td>
<td>frog /fræɡ/</td>
<td></td>
</tr>
<tr>
<td>Grandma gave me a scarf today.</td>
<td>scarf /skær夫/</td>
<td></td>
</tr>
<tr>
<td>His new shirt is blue.</td>
<td>shirt /ʃɜːt/</td>
<td></td>
</tr>
<tr>
<td>Susie's mouth is open.</td>
<td>mouth /maʊθ/</td>
<td></td>
</tr>
<tr>
<td>My truck has four wheels.</td>
<td>truck /trak/</td>
<td></td>
</tr>
<tr>
<td>They built a church over there.</td>
<td>church /ˈtʃɜːθ/</td>
<td></td>
</tr>
<tr>
<td>A star twinkled in the sky.</td>
<td>star /steɪn/</td>
<td></td>
</tr>
<tr>
<td>My thumb hurts very much.</td>
<td>thumb /θʌm/</td>
<td></td>
</tr>
<tr>
<td>Daddy brought flowers home.</td>
<td>flowers /ˈflɔːərs/</td>
<td></td>
</tr>
<tr>
<td>Sandy got a blouse for Christmas.</td>
<td>blouse /ˈblʌs/</td>
<td></td>
</tr>
<tr>
<td>My tooth fell out.</td>
<td>tooth /θɔːt/</td>
<td></td>
</tr>
<tr>
<td>The grass grows fast in summer.</td>
<td>grass /ɡrɑːs/</td>
<td></td>
</tr>
</tbody>
</table>
Each of the five sets of stimuli were independently random-ordered. The verbal materials were recorded on an Ampex 1100 tape recorder with a Shure lavaliere microphone at 3 1/2 ips by a male speaker of Midwestern English with previous recording experience. Two practice items preceded each recorded list. Inter-item intervals were approximately 3 sec. for the word and nonsense conditions; enough time to repeat the sentence twice (approximately 5 sec.) was left between sentences.

PROCEDURES

Groups of Ss were pretrained at least a day before testing on the slides to insure the elicitation of the appropriate labels. The experimenter (E) presented slides with a Carousel projector and provided corrective feedback to the labels chorused by the group.

In individual testing sessions, slides were presented in a hand-held battery-operated viewer and taped materials were played through stereo earphones by a Uher 5000 tape recorder. Responses were recorded on a second Uher 5000 at 3 1/2 ips using a Shure lavaliere microphone.

Brief instructions to name or repeat preceded each condition. The order of conditions for a S within an age group was determined by sequential assignment of Ss to rows in Latin-square blocks of the 24 possible orderings of picture, real word, nonsense word, and sentence. In the picture conditions, each S named the slides in two different random orders, with an intervening presentation in which E named the slides.

SUBJECTS

The 64 Ss were drawn from University of Wisconsin students, first graders and kindergartners attending Nakoma Elementary School (an upper-middle class school in Madison, Wisconsin), and four-to-five year old preschoolers attending Child Development, Inc., day-care centers in Madison and Middleton, Wisconsin. The original design called for 24 Ss in each age group; mechanical recording difficulties resulted in the loss of data for 32 Ss. For the remaining Ss in each age group, order of conditions was approximately counterbalanced. In the data reported here, 24 adults, 10 first graders, 8 kindergartners, and 22 preschoolers are represented.

DATA TRANSCRIPTION

Errors of pronunciation were independently transcribed in broad phonetic notation (IPA) by two experienced linguists; a third transcriber resolved any disagreements between the two transcribers.² Pronunciations of real words attributable to dialect variation were treated as correct. These included post-vocalic /r/-deletion in star, skirt, flowers, church, and scarf; substitution of /a/ for /o/ in frog or /o/ for /a/ in star and scarf; and substitution of /a/ for /o/ in glass and grass. The same criteria were applied to the nonsense list in order to provide comparable error scoring; post-vocalic /t/-deletion was accepted in /stavaz/, /glat/, /sw@/, and /matf/; /a/ or /o/ was accepted in /Gs/, /tram/, and /matf/; /a/ was accepted in /strW/ and /frag/.

ERROR CLASSIFICATION

Substitution or deletion errors were classified according to whether they occurred in an initial consonant (IC) or initial consonant cluster (ICL); the vowel (V), including /a/ as a single vowel phoneme; or final consonant (FC) or final consonant cluster (FCL). An insertion error was scored as a cluster error if it occurred medially in the cluster. A pre-vocalic insertion was classified as an IC (or ICL) error if the insertion was consonantal; if a vowel, it was classified as a V error. Similarly, a post-vocalic insertion was classified as a V or FC (FCL) error depending on whether it was a vowel or a consonant.

For each S, a percentage score for each of the five error types was derived by dividing the number of phoneme errors by the total number of phonemes for that classification and then multiplying by 100. Thus a score represented per cent error of total possible deletion and substitution errors. Insertion errors, which are not taken account of in computing the total possible error, were rare. The total number of phonemes for each error type in each stimulus list were: IC, 5; ICL, 21; V, 16; FC, 14; FCL, 2. When S failed to produce the expected word or nonsense syllable, or when noise made the response unintelligible, the number of phonemes in each divisor was accordingly reduced.

IPA, or the International Phonetic Alphabet, is one of several systems for representing speech sounds in any language.
III
RESULTS

The mean per cent error for each age group, mode, and sound class in the 4 x 5 x 5 design is shown in Table 2. No errors were made on the two phonemes exemplifying the FCL sound class in any condition except the nonsense mode. It is clear, then, that FCL error rates would be significantly lower than all other sound class error rates in real word modes, and that the nonsense mode would differ significantly from the real word modes in FCL error rate. Thus a significant mode by sound class interaction could arise from FCL error scores alone. It was decided to test for additional sources of main effect and interaction by deleting the FCL sound class from the analysis of variance; college students' scores were also deleted.

A 3 x 5 x 4 unequal-n analysis of variance, age group by mode by the remaining

Table 2
Mean Per Cent Error by Sound Class and Elicitation Mode for Each Age Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Mode</th>
<th>IC</th>
<th>ICL</th>
<th>V</th>
<th>FC</th>
<th>FCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool</td>
<td>Picture 1</td>
<td>9.8</td>
<td>6.3</td>
<td>5.4</td>
<td>3.1</td>
<td>0.0</td>
</tr>
<tr>
<td>(n = 22)</td>
<td>Picture 2</td>
<td>10.8</td>
<td>6.3</td>
<td>4.6</td>
<td>3.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>Picture 1</td>
<td>15.4</td>
<td>1.3</td>
<td>2.4</td>
<td>4.1</td>
<td>0.0</td>
</tr>
<tr>
<td>(n = 8)</td>
<td>Picture 2</td>
<td>5.0</td>
<td>4.7</td>
<td>.9</td>
<td>4.7</td>
<td>0.0</td>
</tr>
<tr>
<td>First grade</td>
<td>Picture 1</td>
<td>4.0</td>
<td>1.4</td>
<td>1.2</td>
<td>.7</td>
<td>0.0</td>
</tr>
<tr>
<td>(n = 10)</td>
<td>Picture 2</td>
<td>4.0</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>College</td>
<td>Picture 1</td>
<td>0.0</td>
<td>.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(n = 24)</td>
<td>Picture 2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Word</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Sentence</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Nonsense</td>
<td>.8</td>
<td>.2</td>
<td>1.3</td>
<td>4.2</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Table 3

Mean Per Cent Error by Sound Class and Elicitation Mode, Averaged over 40 Children

<table>
<thead>
<tr>
<th>Sound Class</th>
<th>Average</th>
<th>Average without FCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>IC</td>
<td>ICL</td>
</tr>
<tr>
<td>Picture 1</td>
<td>9.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Picture 2</td>
<td>8.0</td>
<td>4.8</td>
</tr>
<tr>
<td>Word</td>
<td>9.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Nonsense</td>
<td>6.5</td>
<td>5.4</td>
</tr>
<tr>
<td>Sentence</td>
<td>4.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Average</td>
<td>7.4</td>
<td>4.2</td>
</tr>
</tbody>
</table>

sound classes, with repeated measures on the last two factors, was run on the children's per cent error scores. Significant effects were found for age group \(F(2, 37) = 5.06, p < .05\), sound class \(F(3, 111) = 4.99, p < .01\), mode of elicitation \(F(4, 148) = 12.31, p < .01\), and the mode by sound class interaction \(F(12, 444) = 5.84, p < .01\). (Repeated measures effects were also significant, \(p < .05\), when the Geisser-Greenhouse correction to degrees of freedom was applied.) No other interactions were significant.

The significant age group effect arose from a decrease in per cent error with increasing age. Average per cent error for a sound class (excluding FCL) in a mode was 6.7 for preschoolers, 4.1 for kindergartners, and 2.5 for first graders.

The average per cent error in a sound class is shown for each mode of elicitation condition in Table 3. The error rate in the nonsense condition was approximately twice those of the four real word conditions; three times greater, when the FCL sound class is included. A post-hoc Scheffé comparison showed the nonsense condition error rate to be significantly greater than the average of the real word conditions \(p < .05, df = 4, 148\).

The main effect of sound class would appear to arise from the overall greater error rate on IC phonemes. The post-hoc Scheffé test of IC versus the average of the other sound classes, however, did not reveal a significant difference.

The significant mode by sound class interaction arose from an error pattern difference between the nonsense condition and all of the other conditions. When the nonsense mode is removed from the analysis, the interaction disappears. The FCL sound class was omitted from these analyses but, if included, would have contributed strongly to the interaction; FCL error rates were zero everywhere but the nonsense condition. The complete interaction is displayed in Fig. 1; each bar in that graph represents the difference between error rate for a single sound class and the average error rate, for a particular mode. In the real word modes, most errors are made on initial consonants, fewer on vowels and final consonants, and fewest on final consonant clusters. In the nonsense word condition, fewest errors are made on initial consonants and clusters and most on vowels and final consonant clusters. That is, the error pattern in the nonsense mode was the reverse of that found in the real word modes. In the college student data, few errors were observed except in the nonsense condition; there, as in the children's data, error rates increased in final position.

FAILURES TO ELICIT TEST WORDS

The test word was elicited from Ss 98.2\% of the time overall. In Table 4 is shown the percentage of times test words were not given out of the total opportunities to give them for each mode and group, including college students. The picture conditions account for 91\% of the failures to elicit test words from Ss; most failures resulted from the S giving an inappropriate label for a picture. Even when the appropriate labels were given by E.
Fig. 1. Difference Between Error Rate for a Sound Class and Average Error Rate for Each Mode.

Table 4
Per Cent Failure to Give Test Word, by Group and Mode of Elicitation
(Preschool, n = 22; Kindergarten, n = 8; First Grade, n = 10; College, n = 24)

<table>
<thead>
<tr>
<th>Group</th>
<th>Picture 1</th>
<th>Picture 2</th>
<th>Word</th>
<th>Sentence</th>
<th>Nonsense</th>
<th>All modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool</td>
<td>7.9</td>
<td>4.8</td>
<td>2.1</td>
<td>0.3</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>9.2</td>
<td>5.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>First Grade</td>
<td>5.3</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>College</td>
<td>1.7</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>All Ss</td>
<td>5.3</td>
<td>2.7</td>
<td>0.7</td>
<td>0.1</td>
<td>0.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>
immediately prior to the list (second picture condition), 5 to 6% of the test words were not appropriately elicited in preschool and kindergarten Ss. The word repetition mode is clearly preferable to picture elicitation for normal children, since error rates are comparable and more complete data are assured.

NONSENSE WORD ERRORS

The high error rate on nonsense words may arise from failure to perceive some phonemes correctly. To account for the present data, it must be further assumed that misperception of sounds in nonsense words is more likely for sounds in final position than those in initial position.

An indirect check of this explanation was carried out by asking an independent sample of 10 adults to listen to the nonsense word tapes and write down what they heard in conventional spelling. Consonant spellings were examined for evidence of misperception. Ss spelled /θ/ as /8/ out of 10 times as both IC and FC. Only one other spelling suggested IC misperception, and four others suggested FC misperception. These data would predict an 18% error rate on IC items for college students (.8% obtained), an 8.5% error rate on FC (4.4% obtained) and 0 error rates on ICL and FCL (.2% and 8.3% obtained). The fit of predicted and obtained data is far from good; although /θ/ in particular may have presented identification problems in the absence of meaning cues, the supposed errors of misperception do not show the same increase in final position that the nonsense articulation errors exhibit.

An alternate, and simpler, explanation is that short-term memory for the nonsense phoneme string decays rapidly during production, leading to an increase in error rate for the latter part of the string. One finding in particular bears out this explanation: deletion errors of final consonants show an unusual increase in the nonsense condition, accounting for 75% of the deletion errors occurring for the FC error type. [Nonsense FC substitution and insertion errors account for approximately 50% of such errors in FC position.] Further, substitution errors for the single FCL item occur only in the nonsense condition. The deletion errors for the ICL items, in contrast, occur with equal frequency in all elicitation modes.

A direct test of the memory-decay hypothesis for the increasing error effect could be carried out by examining the probability of mispronunciation of a final consonant as a function of the number of preceding phonemes.
IV

SUMMARY AND CONCLUSIONS

The most striking finding of the study is that nonsense word stimuli yield an error rate that is not only higher than the error rate for phonologically similar real word stimuli, but that also increases sharply from initial to final position.

Misperception of the nonsense stimuli was rejected as an explanation of the nonsense data, since indirect evidence indicated it could account only for a general error rate increase rather than the pattern of increasing errors observed. The hypothesis of short-term memory decay was advanced as a simpler explanation of the increasing error effect. On this explanation, word meaning would eliminate short-term decay of phonological information for real words, since the word is stored as a single unit which is used to retrieve phonological (or production) information from long-term memory. Although the alternative possibility of better phonological chunking of familiar phoneme sequences cannot be ruled out, it appears implausible in the face of evidence that listeners sharply differentiate nonsense English words from non-English words but not from real English words.

Further research is required to establish the extent and probable cause of the increasing error effect in nonsense word repetition. It is clear from the present data, however, that articulation test makers should take exceptional care in avoiding test words likely to be unknown to the children being tested. When two groups differing in size and structure of vocabulary (e.g., upper and lower socio-economic status children) are compared on the same articulation test lists, differential articulation scores may be found solely because more test words constitute nonsense items for one group. Reported correlations of articulation scores with socio-economic status and I.Q. must be viewed with some skepticism until it can be established that the test words were equally familiar to all children tested. Theoretical conclusions as to the relative difficulty of initial and final sounds are, of course, also biased by the inclusion of nonsense test items.

The failure to find different error rates or error patterns among the three real word elicitation modes leaves the choice of mode open on these counts. The repetition modes, however, allow a wider choice of test word and a higher probability of elicitation than the picture elicitation technique. Testing with single words has the advantage of shortening test time; testing with sentences confers more semantic context and the possibility of varying a test word’s phonetic environment.

Finally, it should be noted that the data lay to rest again the speculation that children are significantly more likely to mispronounce spontaneously produced words than to mispronounce imitated words. Also unsupported by the data is the extension of that argument to predict higher error rates for repetition of words in sentences than for repetition of words in isolation.
REFERENCES

Morrison, C. E. Speech defects in young children. The Psychological Clinic, 1914, 8, 138–142.

