DOCUMENT RESUME

ED 050 071

INSTITUTION Wyoming State Dept. of Education, Cheyenne.
PUB DATE 70
NOTE 79p.
EDRS PRICE EDPS Price MF-$0.65 HC-$3.29
DESCRIPTIONS Autc Mechanics (Occupation), *Curriculum Guides,
 Electronics, Engineering Drawing, Grade 7, Grade 8,
 Grade 9, Grade 10, Grade 11, Grade 12, Graphic Arts,
 School Mathematics, Trade and Industrial Education,
 *Vocational Education

ABSTRACT

GRADES OF AGES: 7-12; SUBJECT MATTER: Mathematics. ORGANIZATION AND PHYSICAL APPEARANCE: The guide has an introduction and four chapters: 1) A Sample Mathematics Curriculum; 2) The Exceptional Student in Mathematics; 3) Mathematics Components for Comprehensive Occupational Education; 4) Reference Materials. The guide is printed and spiral bound with a soft cover. OBJECTIVES AND ACTIVITIES: The guide makes no attempt to detail objectives or activities for each grade. General outlines are given for the low achiever and the mathematically talented in chapter 2. Chapter 3 lists activities and the related mathematical concepts for auto mechanics, electronics (electricity-radio), graphic communications, hospitality occupations, industrial drawing and drafting, and metal processing occupations. INSTRUCTIONAL MATERIALS: Chapter 4 lists texts, pamphlets, periodicals, sources of free and inexpensive materials, sources of transparencies for the overhead projector, sources of models and equipment, computer training kits, computer companies, and toys, games, and puzzles for learning mathematics. STUDENT ASSESSMENT: No specific provisions are made for evaluation. (MBM)
Wyoming Mathematics Curriculum
Grades 7-12

Prepared by
THE SECONDARY MATHEMATICS CURRICULUM COMMITTEE OF WYOMING under a grant with the U.S. Office of Education, as authorized under Title V, Elementary and Secondary Education Act, 1965.
WYOMING SECONDARY MATHEMATICS
CURRICULUM COMMITTEE

WILLIAM FARTHING
Powell

DAVID FLORY
Riverton

BOB HILEMAN
Saratoga

FRANK HOUK
Wheatland

TOM MARTIN
Cheyenne

ROBERT ROBB
Sheridan

WILLIAM SEVERIN
Laramie

JOHN SEYFANG
Worland

DON WEISHAAR
Casper

NORD E. WILKES
Afton

VINCENT G. SINDT, Chairman
Wyoming State Department of Education

Consultant to Committee:
DR. W. EUGENE FERGUSON
Head of Mathematics Department
Newton High School
Newton, Massachusetts 02160
FOREWORD

Mathematics education has been undergoing rapid changes during the last few decades. Technological advances in our society require a better background in mathematics. The mathematics program should provide each individual student, according to his ability, with an understanding of mathematics adequate for his current and future needs.

The program of mathematics in our schools should be modernized in such a way that our students can understand the basic principles involved and become acquainted with new concepts. Instruction should involve periods of exploration, experimentation and inquiry. Through the program the student should become aware of the power and influences of mathematics in his continuing occupational and personal development.

The State Department of Education gratefully acknowledges the contribution of the members of the Secondary Mathematics Curriculum Committee of Wyoming who prepared this guide.

It is my hope that curriculum development in Wyoming will be an on-going process. Through this process, further developments and revisions can be looked for in the future.

I believe that you, the mathematics educators of the state, will find this guide a useful resource and hope that you feel free to react to it so that your suggestions can be incorporated in future developments.

HARRY ROBERTS
State Superintendent of Public Instruction

June, 1970
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>INTRODUCTION</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Modern Mathematics Is and Is Not</td>
<td>viii</td>
</tr>
<tr>
<td>Questions Basic to Mathematics Curriculum Development</td>
<td>ix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A SAMPLE MATHEMATICS CURRICULUM</td>
<td>1</td>
</tr>
<tr>
<td>Flow Charting the Curriculum</td>
<td>1</td>
</tr>
<tr>
<td>Sample Mathematics Flow Chart</td>
<td>2</td>
</tr>
<tr>
<td>The Spiral Approach to Learning</td>
<td>3</td>
</tr>
<tr>
<td>“Behavioral Objectives” for Secondary Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>THE EXCEPTIONAL STUDENT IN MATHEMATICS</td>
<td>7</td>
</tr>
<tr>
<td>The Low Achiever</td>
<td>7</td>
</tr>
<tr>
<td>The Mathematically Talented</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHEMATICS COMPONENTS FOR COMPREHENSIVE OCCUPATIONAL EDUCATION</td>
<td>11</td>
</tr>
<tr>
<td>Auto Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>Electronics (Electricity-Radio)</td>
<td>13</td>
</tr>
<tr>
<td>Graphic Communications</td>
<td>13</td>
</tr>
<tr>
<td>Hospitality Occupations</td>
<td>14</td>
</tr>
<tr>
<td>Industrial Drawing and Drafting</td>
<td>15</td>
</tr>
<tr>
<td>Metal Processing Occupations</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER IV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE MATERIALS</td>
<td></td>
</tr>
<tr>
<td>Texts</td>
<td>17</td>
</tr>
<tr>
<td>Pamphlets</td>
<td>25</td>
</tr>
<tr>
<td>Periodicals</td>
<td>26</td>
</tr>
<tr>
<td>Sources of Free and Inexpensive Materials</td>
<td>26</td>
</tr>
<tr>
<td>Sources of Transparencies for the Overhead Projector</td>
<td>28</td>
</tr>
<tr>
<td>Sources of Models and Equipment for Mathematics</td>
<td>29</td>
</tr>
<tr>
<td>Computer Training Kits</td>
<td>32</td>
</tr>
<tr>
<td>Computer Companies</td>
<td>32</td>
</tr>
<tr>
<td>Toys, Games, and Puzzles for Learning Mathematics</td>
<td>33</td>
</tr>
</tbody>
</table>
In order to meet the demands of a rapidly changing society, and in order to face the challenges of the 1970's, the mathematics curriculum in today's schools must be flexible. It must be designed to meet the needs of the students as they face the world of work, and designed to meet the needs of the society itself.

The mathematics teacher is charged with the responsibility of developing and maintaining this flexible program. The mathematics teacher is urged to examine carefully the existing curricular program as it exists for the students of his district.

A flow chart should be developed to chart the possible avenues of student alternatives in the program. This flow chart should be studied for flexibility and it should reflect the needs of all students. (See example, page 2.)

It is important to understand the purpose of modern mathematics, viewing it as a whole, rather than just gaining knowledge of a few of the topics. In teaching mathematics today, we hope to produce pupils who understand the "why" of numbers and operations in addition to the "how" of computational skills. Furthermore, pupils need to be presented with the basic principles that underlie mathematics, whether mathematics is being studied at the primary or the high school level.

Most of the teaching of mathematics is not on but helps the students discover patterns, retaining what is effective reasoning.

Most of the teaching of mathematics is not on but helps students discover patterns, retaining what is effective reasoning.

'Paul R. Trafton, Ideal School Supply,

vii
INTRODUCTION

Knowledge of the principles and their applications not only reduces the number of rules to be memorized but helps the pupil become cognizant of the fact that there is a structure and organization to mathematics. Through using discovery techniques, pupils become actively involved in finding patterns, generalizations, and rules for themselves, thus retaining what they learn more easily and developing more effective reasoning ability as well.

Most of what has been written and of what we try to teach can be summarized under four major headings. Modern mathematics is an attempt to: (1) emphasize the "why" just as much as the "how," (2) teach mathematics as a structure, (3) allow pupils to discover relationships for themselves whenever possible, and (4) teach the social utility, or practical applications of mathematics and of arithmetic computation. It is important for teachers or parents upon being introduced to a new concept to take time to see how it contributes to these major purposes. There are many false impressions about "modern" mathematics. An attempt is made in the following discussion to correct some of these erroneous ideas.

WHAT MODERN MATHEMATICS IS AND IS NOT

Modern mathematics is just a downward shifting of topics False

While there has been a downward shifting of the grade placement of certain topics, this is not a basic purpose of modern mathematics. Where this downward shift has occurred, the emphasis has not been so much on mastering a skill earlier as it has been on carefully developing a concept or intuitively dealing with a mathematical idea that will be treated more formally in future years. In most cases enrichment materials have been included along with extensive amounts of supplementary or additional materials. The additional materials have, in a large part, been included to teach the structure of mathematics.

Modern mathematics is an attempt to teach the "why" of mathematics .. True

Adults today have little idea why they do certain things in arithmetic. Upon hearing an explanation of "regrouping" or "borrowing" in subtraction, it is not unusual for adults to state that they now understand for the first time what they are doing. Arithmetic begins to make sense to them.

Modern mathematics means throwing out many previously taught topics .. False

Undoubtedly there are many teachers who wish that this statement were true, particularly with more difficult ideas. However, a close inspection of curriculum materials will indicate that few topics are being discarded. It is true that many concepts are being presented from a different viewpoint and that certain applications are not receiving as much emphasis as formerly.
Modern mathematics is an attempt to teach mathematics as a structure. True

In mathematics, there are a few key principles, usually considered to number less than twelve, around which most of the development of arithmetic can be built.

Modern mathematics means doing away with drill. False

This is not true. Drill still plays an important role in mathematics, and children are still expected to learn basic facts. Yet it is true that drill for the sake of drill is being deemphasized. Attempts are also being made to make drill more creative by using it in situations that call for reasoning at the same time.

Attempts are made to lead pupils to discover mathematical relationships for themselves. A balance between drill for reinforcement and intuitional understanding is necessary if a mathematics program is to be successful.

Modern mathematics seeks to use "discovery" techniques. True

The idea of "discovery" can be referred to as the method of modern mathematics. The topics taught are important, yet if they are taught in a rote, mechanical manner, with an emphasis on symbol manipulation instead of insight, little advantage is gained. However, when the concepts involved in the new emphasis are presented in an interesting manner, and pupils are given an opportunity to explore, raise questions, and generalize, there is much to be gained.

Modern mathematics is just for the "bright" kids. False

If modern mathematics is to be of value, it must be able to help all levels of learners. It is true that the new emphasis does allow pupils with mathematical insight a chance to use more of their talent, and it keeps them from becoming bored. However, while the need to challenge able pupils is being met...
more adequately, the mathematical needs of average and below average pupils are also being met more satisfactorily than has usually been done in traditional programs. The new emphasis can be of great value to them. It is these pupils who became “bogged down” in rules and manipulations in the past and who can profit from the emphasis on key concepts and greater insight.

It should be recognized that there will be a few pupils who will continue to have difficulty with mathematics. Special programs in terms of a slower pace and limited context should be used to best provide for these people’s needs.

Modern mathematics is just sets, bases, revised terminology, geometry and number lines
False

To view modern mathematics only as a series of topics is to miss what it is really trying to accomplish. While these topics are important, their inclusion is for more than just knowledge of them. They are included because they contribute to a much larger picture.

Modern mathematics means we have been doing a bad job
False

There are many teachers who have worked hard at teaching arithmetic for many years who unfortunately see the new approaches as an indication that they have been doing a poor job. Many of these people have been doing a fine job. In fact, it is not unusual to hear teachers in a modern math course exclaim, “Why, I’ve been teaching modern math and didn’t even know it!”

QUESTIONS BASIC TO MATHEMATICS CURRICULUM DEVELOPMENT

Just as the nature of our society is continuously changing, so the mathematics curriculum must be constantly re-examined and revised.
age and be-
satisfactorily
s. The new
pupils who
in the past

few pupils
ics. Special

True

or topics is
While these
than just

False

bad job
False

at teach-
ly see the
in doing a
fine job.
math and

changing,
xamined

and revised in the light of new societal and intellectual con-
ditions.

As teachers, administrators and others interested in
mathematics curricula consider changes in programs, they
should try to find answers to these key questions which are
basic in curriculum development.

• What are the goals of teaching mathematics? What is
the role of mathematics in the life of pupils of dif-
ferent abilities and cultures? Are we teaching math-
ematics for occupational needs, for improved citizen-
ship, or for success in advanced courses? Are we teach-
ing mathematics to change our society or to establish
values which will maintain our social order?

• What mathematical ideas, skills, attitudes, and habits
can be most effectively developed at a given grade
level? The new programs have found that we can teach
complex ideas to very young children. Now the ques-
tion is what ideas should be taught to our pupils and at
what age should they be introduced? What new topics
should be introduced? What traditional topics should
be dropped?

• How should programs be varied to provide for differ-
ent levels of ability? How do we accelerate the learn-
ing of the talented at all levels? How can small schools
provide several curriculum tracks? Should enrich-
ment include probability, calculus, or computer pro-
gramming?

• How do we teach for transfer so that mathematical
ideas will be used in solving problems? What specific
applications need to be included in the mathematics
class? Are the social applications or the applications
in science to be taught by some department other than
the mathematics department?

• What degree of rigor or mathematical precision in
language and logic is appropriate at various grade
levels? Should mathematical ideas be presented in simple language which, because of its simplicity, is somewhat lacking in precision? What vocabulary and symbolism is appropriate at a given grade level? How important is it to stress the basic axioms of our number system such as commutivity, associativity, or distributivity? One of the greatest dangers of the new programs is that the reorganization may go too far and confront students with concepts whose degree of abstraction exceeds the youngster's mathematical maturity. Excessive abstraction might result in students' bewilderment and hostility toward mathematics rather than understanding appreciation.

- What emphasis should be given to computational skill? Can this skill be attained by means other than drill? What level of competence is considered satisfactory at a given level?

- What is the role of the computer in the mathematics program? Should mathematics courses teach computer programming? Should the computer be used as a tool to teach mathematical ideas and problem solving? Are computers and calculators appropriate tools for low-ability students?

- How do we prepare teachers for the new programs? How is the effectiveness of a teacher measured? What are appropriate mathematics courses for the teacher?

- How do we evaluate the effectiveness of a new mathematics program? What behaviors demonstrate the attainment of objectives? What tests can be used to compare two programs each based on different content?

- What criteria should be used in selecting instructional materials? What sequence of textbooks is most appropriate? Should each mathematics class have several texts and supplementary books or pamphlets? What is the role of programmed texts? What is the role of concrete representation of abstract ideas?
be presented in its simplicity, is vocabulary and grade level? How much of our num-
ber activity, or dig-
gers of the new may go too far whose degree of ma-
ematical ma-
result in students'
mathematics rather
computational skill? other than drill? ad satisfactory at the mathematics es teach computer be used as a tool problem solving? ropriate tools for the new programs? measured? What is for the teacher? as of a new math-
matists can be used to a different content? ecting instructional books is most appro-
class have several amplifies? What is What is the role of new ideas?

• How shall the achievement of students of different ability be graded? Should the general mathematics class as well as the accelerated class receive the entire range of grades from A to F?

• How are students selected for different curriculum tracks? How can provision be made to transfer from one track to another?

In a time of change such as the present there are two extremes which can lead to difficulties. On the one hand, there is the inflexible, traditional, and conservative point of view which resists any change. On the other hand, there is the extreme liberal point of view which is ready to accept any innovation that seems popular. We need to avoid these extremes by having criteria whereby we accept, reject, or modify proposals for new programs. There are a variety of new models of school mathematics available for your school. You must make your choice. The discussions that follow might help you make a wise choice.

FLOW CHARTING THE CURRICULUM

The Wyoming Secondary Mathematics Curriculum Committee recommends that each school district carefully evaluate its present mathematics curriculum.

One technique of this review might be to develop a flow chart of possible alternative student routes through the existing program. Thought should be given to the grouping process, to the procedures for entry into and exit from courses, and to whether the program is structured to meet the needs of all students.

The district flow chart can then be matched against the sample shown in this section. This chart is in no way intended as a requirement but is simply a sample toward which some districts may want to work.

The mathematics program should be flexible, allowing the student to move both horizontally and vertically.

There should be a variety of course offerings to meet the occupational and academic needs or deficiencies of each student.

To realize the most from the mathematics curriculum, grouping strategies are recommended. Criteria for these groupings are extremely important. When grouping a student in mathematics, attention should be given to his achievement and attitude in mathematics, English and other language arts, other subject areas as measured by his grades, and teacher recommendations. Other criteria should be his performance on standardized tests, the results of conferences with the student and his intelligence quotient.

Effective grouping among the teaching staff, the administration, the guidance people, and the students should be periodic revisions of each group's needs as measured by performance. Close cooperation among the teaching staff, the administration, the guidance and counseling personnel, and the student is necessary for a total program to be successful.

To assure a successful program, a persistent effort must be made throughout the school year to provide continuous evaluations. The areas emphasized should be continually reviewed in light of changing needs and criteria. The areas emphasized should be periodically reviewed in light of changing needs and criteria.

Note that the traditional approach to education is also suggested and societal needs are necessary for a total program to be successful. The solid lines signify the program with the dotted lines refer to students who may have a background or remedial needs.

The "low achieving" student of the chart can be included. The traditional approach to education is also suggested and societal needs are necessary for a total program to be successful.
CHAPTER I

A SAMPLE MATHEMATICS CURRICULUM

The student and his parents and, least important, his intelligence quotient.

Effective grouping involves cooperation and communication among the teachers, the guidance personnel and the administration. Close liaison between the mathematics staff and the guidance people in the district is highly recommended.

To assure a success-oriented program, each student should be periodically re-evaluated and regrouped. This re-evaluation should be made in accordance with the success, ability and needs of the student, and should be continual and not made just at the completion of certain levels.

The flow chart is offered as a possible curriculum offering. The areas emitting from each level show the possible selections and alternatives that are available to a student at that level.

Note that the sample curriculum permeates the occupational education concept for all students served. Student offerings are also suggested for a wide range of other individual and societal needs in mathematics. The committee believes that each of these components and offerings is necessary for a total program.

The solid lines show a student who is progressing through the program with average success or better. The dotted lines refer to students who need programs to give them additional background or remedial work.

The “low achiever” courses referred to on the left-hand side of the chart can be specially designed for “low achievers.” The traditional approaches are often what have caused these students to fail, and programs should be designed with many creative and individualized components.
"Low Achiever" remedial program to master arithmetic

"Normal" seventh grade course

"Low Achiever" normal seventh grade course

"Low Achiever" slower eighth grade course

"Normal" eighth grade course

Specially designed "Low Achiever" program

"Low Achiever" Algebra Survey I

"Normal" first Algebra

Occupational components, flexible for easy entrance and exit or incorporation into other programs

Specially designed "Low Achiever" program, flexible for easy entry and exit

Algebra Survey I

Algebra Survey II

Algebra Survey II

First year Algebra

Geometry

Second year Algebra

Geometry
Sixth grade

"Normal" seventh grade course

"Above Average" accelerated into first part of eighth grade course

"Normal" eighth grade course

"Above Average" eighth grade course and beginning Algebra

"Normal" first year Algebra

"Above Average" Algebra and parts of second year Algebra or Geometry

Geometry

Second year Algebra

Functions and Analytic Geometry

Probability & Statistics

Calculus

Geometry and Plane Analytics

Second year Algebra and Introductory Trigonometry

Computer Science

Geometry and Plane and Solid Analytics

Occupational components, flexible for easy entrance and exit or incorporation into other programs
THE SPIRAL APPROACH TO LEARNING

The spiral approach to learning is often emphasized in teaching modern mathematics. This method or approach develops a concept from the intuitive level to the analytic level by spacing instruction. The method will also develop a concept from exploration to mastery.

The following diagram will help illustrate the spiral approach to learning:

In the elementary school, pupils study the rational numbers by participating or by considering parts of regions and subsets (A). The rational numbers are studied on the number line (B). Soon the rational numbers are studied by using equivalent subsets (C). Later the rational numbers are ordered (D). Then the operation of addition is performed upon the set of rational numbers (E). The operation of multiplication is then performed upon the set of rational numbers (F). The operations of addition, subtraction, multiplication, and division are reviewed and extended (G). Rational numbers of arithmetic are extended to rational expressions of algebra (H). The rational expressions of trigonometry are studied (I).

This approach involves the teaching of rational numbers and its related concepts at several points in the curriculum separated by a period of time. With each new exposure to the rational numbers a new approach is taken and a higher level of sophistication is gained.

The student studies the rational numbers in terms of regions and subsets. This is followed by studying the rational numbers on the number line. Later the rational numbers are
g is often emphasized in a method or approach de-
level to the analytic level will also develop a con-
help illustrate the spiral

study the rational numbers

study the rational numbers

study the rational numbers

studied by using equivalent subsets. Complete mastery is not
necessary on any one level as the rational numbers will be
reviewed and extended on each level.

"BEHAVIORAL OBJECTIVES" FOR
SECONDARY MATHEMATICS

All instruction should be based on a set of criteria ex-
pressed in the form of measurable purposes, goals, aims, or
objectives.

The model behavioral objectives presented in this section
are primarily concerned with the cognitive level of learning.
These are objectives which emphasize remembering or repro-
ducing something which has been learned, and objectives which
involve the solving of some intellectual task for which the
individual has to determine the essential problem and then
reorder given material or combine it with ideas, methods or
procedures previously learned. Cognitive objectives vary from
simple recall of material learned to highly original and creative
ways of combining and synthesizing new ideas and materials.
We find that the largest proportion of educational objectives
fall into this domain.

The Secondary Mathematics Curriculum Committee
wishes to emphasize the importance of cognitive objectives,
but does not wish thus to imply that objectives in the affec-
tive domain should not be developed. These affective objec-
tives are those which emphasize a feeling, a tone, an emotion
or a degree of acceptance or rejection. Affective objectives
var, from simple attention to selected phenomena to complex
but internally consistent qualities of character and conscience.
These objectives are often expressed as attitudes, interests,
appreciations, values and emotional sets or biases. Objectives
in the affective domain are much more difficult to incorporate
into the curriculum, but it is important to keep these affective
ideas in mind when developing a mathematics program.
The success of an instructional program is dependent on the common understanding of the objectives by the persons who developed the program and the persons who measure the effectiveness of the program. The key is the clear understanding of the instructional program and its objectives. Therefore, the objectives used must be stated in a clearly defined form that has little chance of being misinterpreted by anyone.

The use of “behavioral objectives” in curriculum plans is based on this premise. In a mathematics program, the objectives should be so stated that there is a definite understanding about the desired goal towards which a student is striving. The objective clearly states the desired performance of the learner and can be clearly measured.

Terminology is important in the writing of behavioral objectives. Words used must be meaningful and must eliminate as many misinterpretations as possible. Some words and phrases that should not be used are “to know,” “to understand,” “to appreciate,” and “to believe.” These phrases sound fine but are difficult to interpret and evaluate.

Some more desirable words and phrases to use are “to recite,” “to name,” “to write,” “to list,” “to solve,” “to identify,” and “to construct.” Then there is little question as to what kind of response the learner should exhibit.

In using this approach in a classroom, the plan normally would be, first to identify certain concepts that are to be taught. Then a number of behavioral objectives are written for each concept. The objectives are organized in an ordered sequence. As a student moves through this sequence, often on a self-pacing basis, each concept should be learned.

The use of behavioral objectives can best be implemented when a teacher recognizes the fact that a student must be accepted where he is and taken as far as possible. This suggests the need for some form of individualization in the classroom. The technique used in reaching an objective is not as
am is dependent on
xes by the persons
is who measure the
is the clear under-
and its objectives.
ated in a clearly
ing misinterpreted
 curriculum plans is
program, the objec-
tive understanding
student is striving.
performance of the
writing of behavioral
ul and must elimin-
Some words and
know," "to under-
"These phrases sound
enses to use are "to
slove," "to identi-
ittle question as to
hibit.
, the plan normally
pts that are to be
jectives are written
ized in an ordered
is sequence, often
be learned.
best be implemented
a student must be
possible. This sug-
ization in the class-
objective is not as
important as the fact that he has learned and can perform
the desired response.

A valuable reference for developing an understanding of
behavioral objectives is Preparing Instructional Objectives by
Robert Mager (Fearon Publishers, 1962). Excellent samples
of instructional objectives in mathematics are available from
the Instructional Objectives Exchange, Center for the Study
of Evaluation, UCLA Graduate School of Education, Los
Angeles, California 90024.

Following is a partial list of objectives for concepts taken
from the flow chart on page 2. The objectives are stated as
samples, and the percentages are listed as a part of the sample
objective. These percentages should be determined locally, and
should be subject to constant evaluation and review.

Seventh Grade Mathematics
("average class")

- Given a group of problems consisting of adding, subtracting, multiplying, and dividing mixed numbers, whole numbers, fractions, decimals, 90% of the students will show a proficiency of 80%, in a written test.

- Given a group of geometric solids, 90% of the students, using rulers, meter sticks, paper and pencil, will be able to determine their surface area, and volume, with an allowable error of 10%, 80% of the time.

- Using per cent, 90% of the students will correctly solve 20 out of 25 problems on a written test dealing with interest.

Eighth Grade Mathematics
("average class")

- Given a list of numbers in base 2, base 5, and base 12, 85% of the students will show a proficiency of 80% when adding, subtracting, and multiplying them on a written test.
• Using a compass and straight edge, 90% of the students will be able to construct congruent triangles, bisect lines and angles, draw perpendicular and parallel lines, and divide lines into three and five congruent line segments, 85% of the time.

• Given a group of compound sentences, 85% of the students, using graph paper and a straight edge, will be able to find the truth set of the sentences 80% of the time.

General Mathematics

• Given a group of problems consisting of adding, subtracting, multiplying, and dividing whole numbers, fractions, and decimals, 90% of the students will show a proficiency of 90% on a written test. Ninety per cent of the students will show a proficiency of 90% when taking an oral test on time conversions, dry measure conversions, liquid measure conversions, and length conversions.

Algebra I

• Given a group of polynomials the students will be able to add, subtract, multiply, and divide them with 85% proficiency.

• Given a group of equations, complete and incomplete, 90% of the students will be able to solve them by completing the square, factoring, and by formula, in 20 out of 25 tries.

• Ninety per cent of the students, when given a group of pairs of linear equations, will be able to solve them by graphing, adding and subtracting, substitution, and slope intercept, to a proficiency of 85%.
Given a group of statements, 95% of the students will be able to determine the hypothesis and conclusion, 85% of the time.

When given a problem such as circumscribing a track around a football field with a limited amount of space, all students will be able to determine the maximum distance using geometry.

Algebra II with Trigonometry

- Given a group of quadratic equations, 90% of the students will be able to graph them with a proficiency of 90%.

- Given a group of imaginary, irrational, and complex numbers, 85% of the students demonstrate at least 80% proficiency when adding, subtracting, multiplying, and dividing them.

- Given a group of oblique triangles, the students will demonstrate a proficiency of 80% in using the Law of Sines, Law of Cosines, and the Law of Tangents.
THE LOW ACHIEVER

The past decade has seen much advancement in the mathematics curriculum and the teaching of mathematics. At most levels, however, the emphasis has been directed at the above-average student. While new materials and strategies have given the better student a finer insight into the structure of mathematics, they have not relieved much tension in the low achiever. This section of the guide will present some suggestions for low achiever mathematics in grades 7-12, with emphasis on course structure and classroom methodology.

In our discussion of low achievers, we are considering approximately one-third of our students who for some reason learn at a slower rate. They are generally one or more years below grade level in mathematical skills. The low achiever is apt to terminate his education in high school, a circumstance which makes his secondary mathematics program very critical.

The identification of the low achiever must be accomplished as early as possible. Good vertical coordination needs to exist between the elementary and secondary school administration and faculty.

A basic aim of this program is to insure some degree of success by placing the low achiever in a mathematics course which best meets his needs and abilities. To accomplish this, the counselors, teachers and administrators should consider the level of mathematics achievement, English and reading achievement, the performance on standardized tests, the motor skills, the physical and emotional health, the attitudes of the student in other areas, student conferences and the I.Q. Provisions for movement between low achiever and regular class offerings is very important.

While comprehensive what goes on in the program.

Both be new and serious at

The low-achieving student, the premise is mathematics. The Algebra first year and the understanding will be emphasized students as important that in the social

The be must not be from arithmetic interesting, interesting, "laboratory" from the nature of the
CHAPTER II

THE EXCEPTIONAL STUDENT IN MATHEMATICS

ment in the mathematics. At most, the above-mentioned strategies have to the structure of tension in the low-achiever community (see flow chart) is vital. For these students, growth is very often erratic and hence “pigeonholing” a student in a given track through the secondary mathematics curriculum (or in any given year) must be avoided.

While the committee deems it very important that a comprehensive grouping procedure be used, it emphasizes that what goes on in the classroom after the grouping is accomplished determines a successful low-achiever mathematics program.

Both the course content and classroom methodology must be new and exciting. Certainly an effective program will give serious attention to both aspects of the learning situation.

The flow chart suggests two tracks of ability-grouped low-achiever offerings. The “higher” of the two is based upon the premise that the low achiever takes essentially the same mathematics as the regular student, only at a slower pace. The Algebra Surveys, I and II, will approximate a regular first year algebra course. The pace will, of course, be slower and the usefulness of algebra to the student’s environment will be emphasized. While it is highly desirable that these students appreciate mathematical structure, it is more important that they learn the mathematics that will be needed in the social world.

The basic or lower track of low-achiever mathematics must not be a rigid, structured, repetitious review of topics from arithmetic. The low achiever finds this material uninteresting, and quite logically so, since it represents his “failings” from several years. The classroom should serve as a laboratory for learning, with educational activity a main feature of the class. Basic instructional objectives, determined
in light of the student and his environment, should be identified. This done, a variety of instructional media such as adding machines, filmstrips, mathematical games and manipulative devices should be used as physical models and tools for learning concepts and skills. Since abstractions usually come slowly to the low achiever, problem-solving should be approached by generalizing cautiously the results of many concrete examples. Every explanation given should be simple, direct, and objectively illustrated.

Courses should be structured in such a way as to allow considerable student independence. If a student shows great interest in a particular topic, he should be allowed and encouraged to pursue it independently. To permit this, the courses should be made up of a series of small units. The units should be constructed and arranged so as to be as independent of one another as possible. This will enable the student doing independent work, as well as the student who may be currently confused, to have many opportunities to start "fresh." Also recommending the small-unit approach is the high absence rate of low achievers. A student returning to class will become a part of the class again much faster if he is not faced with endless hours of review (which he probably won’t do!).

Perhaps the most important ingredient in a successful program for low achievers is the teacher who will be in charge of the classroom. A good student will learn in spite of a poor teacher but the low achiever will learn only because of a good one. It has long been the practice in our educational system to give the low-achiever classes to a less qualified and less competent teacher than is found in the college preparatory classroom. This practice among administrators and teachers must be changed. As a means of creating a more positive attitude among teachers toward programs for low achievers,

- school districts should try to stimulate teacher interest in this area by in-service education and workshops; and
- the administration should give the teacher of the low

In sum, low achievers contain rates of less physical teacher.

The low achievers create a pr

This is the guidelines student in an accelerated additional year would be an addition would be the committee hope mining the

If a systematically ta nized. These population; attitudes of availability

Schools, mathematics is most appro conditions a
achiever proper recognition, provide additional planning time, and stress the importance of his work.

In summary, the principal features of any program for the low achiever are success and respectability. The program must contain real problems, be flexible and provide for different rates of learning. However, the best curriculum, and the best of physical facilities and materials will not replace the quality teacher.

The low achiever can learn mathematics and he can make an effective contribution to society. It is our responsibility to create a program which will allow this to happen.

THE MATHEMATICALLY TALENTED

This section of the guide is intended to provide some guidelines for programs to provide for the above-average student in mathematics. A program of this type would be accelerated to the point that a student could take at least one additional year of mathematics. Whether this additional year would be advanced placement or supplementary mathematics would be the decision of the local school system. The committee hopes that the following will be of some help in determining the type of program.

If a school desires to enter into a program for its mathematically talented students, several factors need to be recognized. These include: (1) the size and character of the school population; (2) the availability of qualified teachers; (3) the attitudes of teachers, administrators, and parents; and (4) the availability of outstanding college-bound students.

Schools have a choice of several possible actions regarding mathematics for the above-average student. The option that is most appropriate for a particular school depends upon local conditions and resources.
Because of the sequential nature of mathematics, schools that plan an accelerated program must design the mathematics curriculum so that a full college preparatory program can be completed by the end of grade 11. This can be accomplished in one or more of the following ways: (1) starting the study of secondary school mathematics in grade 8; (2) reorganizing the content of the courses; (3) establishing accelerated sections for the more capable students; (4) encouraging the election of more than one mathematics course in grade 9, 10, or 11; (5) instituting programs of summer study or guided independent study during the academic year.

After the regular college preparatory program has been completed, the 12th year program could include a course in the first year of college calculus and perhaps supplementary courses in probability and statistics, matrix algebra, modern (abstract) algebra, linear algebra, finite mathematics, or computer science. The Advanced Placement Program of the CEEB is one possibility for the calculus offering; however, the committee does not feel the Advanced Placement Program is necessarily the only alternative in providing an adequate program for the above-average student in mathematics. Some schools have enriched their curriculum offering at each level without accelerating.

When an Honors Program is planned for the above-average students, teachers and administrators must be aware that the course must be taught by able, ambitious people, using rigorous textbooks and materials and meeting high standards. It is a course involving college material taught at the high school level to college-ability students. Administrators should be aware of the extra demands imposed on teachers by these courses, especially on those teaching them for the first time; and should schedule additional time for planning.

In curriculum design, teachers should carefully consider not only the content but also the level of sophistication at which new concepts are introduced. With accelerated groups, this can be of great importance because maturity level may not have real importance in standing of some formal, rigorous, achieve both using a spirally intuitive and gradually introductory" is not necessarily the only concept or particular program distinguished by some theorem, states definitions, proofs until a...
of mathematics, schools must design the mathematics preparatory program can be his can be accomplished in
(1) starting the study of algebra 8; (2) reorganizing the shing accelerated sections in encouraging the election course in grade 9, 10, or 11; per study or guided inde-
year.

Preparatory program has been said could include a course in and perhaps supplementary e, matrix algebra, modern finite mathematics, or com-
ment Program of the CEEB offering; however, the com-
ed Placement Program is providing an adequate presen-
technology. Some alum offering at each level is planned for the above-
misadministrators must be aware by able, ambitious people, matrial and meeting high college material taught at ability students. Administra-
mands imposed on teachers nose teaching them for the adional time for planning.

should carefully consider level of sophistication at d. With accelerated groups, because maturity level may not have reached sophistication level. Intuition is extremely important in mathematics; on the other hand, a deep understand-
ing of some mathematical concepts is best acquired by formal, rigorous treatment. Many mathematicians attempt to achieve both of these objectives—intuition and precision—by using a spiral approach in which an idea is first introduced intuitively and later reexamined, perhaps several times, at gradually increasing levels of rigor. Use of the word “intuitive” is not meant to suggest a reduction of either clarity of concept or precision of expression. Rather it attempts to distinguish between a course that emphasizes precise proofs of all theorems—rigor in a formal sense—and a course that states definitions and theorems correctly but that defers some proofs until a later course.

When a school desires to accelerate its mathematics pro-
gram, it is necessary to identify potential students as early as possible, grades 7 and 8, or earlier if possible. Though these students should be identified early, the committee ur-
that schools adopt a “swinging door” policy for these students. Occasionally, even a student who has been screened before entrance into an accelerated program does not perform as well as expected. Such a student should be allowed to decelerate and rejoin a regular group; there is little gain in forcing acceleration on an unreceptive student. On the other hand, often a mathematically-talented student is overlooked for a year or two; or a student may discover and develop in himself talents that were not evident at the time of the initial screening. Such a student should be encouraged to join the acceler-
ed group, perhaps with some guided independent study to help him catch up. As was mentioned in the area of low achievers, it is not the aim to “pigeonhole” a student in a particular program at the seventh or eighth grade level, or even for that particular year.

In identifying, evaluating and re-evaluating mathematically talented students, counselors, teachers, and administrators should consider mathematical achievement, English and reading achievement, performance on standardized tests, attitudes
in other subject matter areas, student conferences, physical and emotional health of the student, and lastly, I.Q. The student who thinks creatively or imaginatively in mathematics is rare. The lack of some of the other desirable traits should probably be overlooked in one who possesses this flair. The committee feels that is desirable; and in mathematics instructors, an essential part of
committee feels that guidance at all levels in the curriculum is desirable; and interpersonal communication among mathematics instructors, guidance personnel and administrators is an essential part of effective grouping.
Wyoming's approach to Comprehensive Occupational Education is based upon a model that is currently being developed in the schools throughout the state.

The major aspects of the model are shown in Illustration I.

During the elementary years, emphasis is placed upon development of attitudes toward the world of work. Projects to develop in all children a respect for all work and a motivation for productive citizenship in the world of work will be implemented. Desirable attitudes for employability are emphasized.

Grades seven and eight are devoted to a career orientation program. The program is developed to provide the students with an understanding about broad areas of our economy such as manufacturing, construction, service, marketing, agriculture, business and professions. Emphasis is placed upon job information and orientation.

In grades nine and ten, students are given opportunities to explore various occupational clusters through a broad career program leading toward a tentative choice of an occupational goal by age sixteen.
CHAPTER III
MATHEMATICS COMPONENTS FOR COMPREHENSIVE OCCUPATIONAL EDUCATION

A career preparation broad skill program is provided for grades eleven and twelve. Cooperative education programs are emphasized and close liaison with business and industry is encouraged.

ILLUSTRATION 1

As schools of the state actively move toward the incorporation of comprehensive occupational education, the increased responsibility of mathematics educators for developing mathematical components is evident.
Mathematical educators need to cope with these new occupational programs by developing creative new subject material directed toward the occupational clusters. Business mathematics for the commercial student, applied mathematics for the construction, trade or industrial oriented student, mathematics for the mechanic, and occupational mathematics components for the mathematically talented, are just a few of the areas where further development is definitely needed.

Along with the development of creative new subject material—and this is definitely needed—new or better ways of classroom instruction of these topics will be necessary. Mathematics educators must remember that if these courses, strategies and components are to be useful and meaningful to the students, they can't be a replay of a general mathematics course taught in a traditional manner. Techniques and strategies such as those used in mathematics laboratories, and individualized learning activity packets could be looked at as models.

The mathematics material can be developed and tailored to each school's needs. Creative strategies with individual or small group orientations, packet formats and relevant activities must be developed.

Examples of how mathematics problems and activities can be related to occupational and industrial orientation are given in the accompanying listings.

As these programs are extended, the development of activities can be expected to expand into other fields as well as within the fields listed.

AUTO MECHANICS

<table>
<thead>
<tr>
<th>Occupational Activity</th>
<th>Mathematical Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine the size of each wrench in a given set of wrenches.</td>
<td>Common fractions</td>
</tr>
</tbody>
</table>
educators need to cope with these newims by developing creative new subjectoward the occupational clusters. Business
a commercial student, applied mathematics
t, trade or industrial oriented student,
mechanic, and occupational mathematics
mathematically talented, are just a few
further development is definitely needed.

The development of creative new subject
is definitely needed—new or better ways
action of these topics will be necessary.
tors must remember that if these courses,
ponents are to be useful and meaningful to
n't be a replay of a general mathematics
traditional manner. Techniques and strate-
used in mathematics laboratories, and indi-
activity packets could be looked at as
ics material can be developed and tailored
ads. Creative strategies with individual or-
tions, packet formats and relevant activi-

Now mathematics problems and activities can
ional and industrial orientation are given
ings.
ms are extended, the development of acti-
ted to expand into other fields as well as

c Auto Mechanics

Mathematical Concept

<table>
<thead>
<tr>
<th>Occupational Activity</th>
<th>Mathematical Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure the wheel base of a Dodge Dart.</td>
<td>Linear measurement, conversion of units</td>
</tr>
<tr>
<td>What feeler gauges should be used to set valve tappet clearance? .012, .009, .004, etc.</td>
<td>Decimal fractions</td>
</tr>
<tr>
<td>Measure intake-manifold vacuum and test fuel pump pressure.</td>
<td>Fundamental operations</td>
</tr>
<tr>
<td>Determine ignition timing in degrees of crankshaft rotation.</td>
<td>Angles, ratios</td>
</tr>
<tr>
<td>Determine foreign car specifications.</td>
<td>Metric units to English units</td>
</tr>
<tr>
<td>Compute cost of labor and parts for a tune-up.</td>
<td>Costs, percent</td>
</tr>
<tr>
<td>Measure cylinder bore with micrometer and interpret reading.</td>
<td>Linear measurement, metric units, tables</td>
</tr>
<tr>
<td>Make a bar graph to compare motor vehicle traffic death rates by states.</td>
<td>Graphs, tables</td>
</tr>
<tr>
<td>Compute "stopping distances" at various speeds.</td>
<td>Formulas, reading tables</td>
</tr>
<tr>
<td>Compare the weight per horsepower of a Mercury and a Volkswagen.</td>
<td>Ratios, fundamental operations</td>
</tr>
<tr>
<td>Figure cost of owning and operating a car.</td>
<td>Estimates, formulas, interest, percent</td>
</tr>
<tr>
<td>Determine time needed to charge a battery.</td>
<td>Common fractions, formulas</td>
</tr>
</tbody>
</table>

Mathematical Concept

| Common fractions | Decimal fractions | Linear measurement, conversion of units | Fundamental operations | Angles, ratios | Metric units to English units | Costs, percent | Linear measurement, metric units, tables | Graphs, tables | Formulas, reading tables | Ratios, fundamental operations | Estimates, formulas, interest, percent | Common fractions, formulas |
Occupational Activity

Determine amount of antifreeze mixture for adequate protection at various temperatures.

Find speed in M.P.H. of race car which travels 2.31 miles per minute.

Determine the error in speedometer and odometer readings caused by a change in tire size.

Mathematical Concept

Percent, tables

Formulas, averages, fundamental operations

Circumference, ratios

ELECTRONICS (ELECTRICITY-RADIO)

Compute amperage and voltage of a given number of dry cells connected in parallel.

Calculate voltage and amperage of dry cells connected in series.

Compute cost of operating an electrical device for a given period of time.

Read instrument scales in making checks of circuit values.

Determine total resistance of two or more resistors connected in series.

Calculate current in a simple, direct current circuit when voltage and resistance are known.

Calculate horsepower rating of an electric motor.
Mathematical Concept

- Ant, tables
- Formulas, averages, mental operations, inference, ratios
- Common fractions, decimal fractions, formulas
- Conversion of units, decimal fractions, ratios
- Decimal fractions, formulas, tables, powers of ten, square root
- Decimal fractions, formulas, logarithms

Occupational Activity

- Find length of magnet wire needed to wind a coil with a given number of turns on a coil form of a specified size.
- Find value of a resistor needed to drop voltage in a given electronic circuit.
- Calculate length of a half-wave, dipole antenna designed to resonate at a given frequency.
- Calculate voltage drops of given electrical circuits.
- Find impedance ratio of transformer.
- Determine time constant of resistance-capacitance (BC) combination.
- Determine resonant frequency of a series circuit.
- Find power output of an electron tube with given characteristics.
- Determine decibels resulting from power gain.

Graphic Communications

- Determine number of picas in an inch.
- Conversion of units, linear measurements
Occupational Activity

- Figure cost of paper for a job on basis of price per pound.
- Determine number of job-size pieces that can be cut from stock-size sheets when paper grain is a factor.
- Determine cost of mounted linoleum blocks.
- Scale illustrations to proper proportions for paste-up prior to photographing.
- Compute diameter of camera aperture in relation to focal length of lens for a given value.
- Calculate press output for fractional parts of an hour.
- Determine spoilage allowance on a given job to be printed.
- Find dimensions of rectangles by proportion when given the ratio of the width to the length.
- Determine shutter speeds for a camera used in photographing copy to be printed by the offset method.
- Determine various spacing combinations when the em-quad is assigned a value of 60 units.

Mathematical Concept

- Fundamental operations, conversion of units
- Areas, linear measurements
- Ratios
- Geometry of right triangles, ratios
- Formulas, ratios
- Analysis of relationships, common fractions
- Percent, tables
- Geometry of right triangles, ratios, square root
- Ratios, tables
- Analysis of relationships, areas, conversion of units

Occupational Activity

- Calculate type area number
- Determine ratios in development
- Figure quantity given ratio matching
- Calculate conjugates using representative
- Analysis of relationships, conversion of units
- Percent, tables
- Geometry of right triangles, ratios, square root
- Ratios, tables
- Analysis of relationships, areas, conversion of units

Occupa.

- Take a review
- Compile the week's results
- Plan a consolidation
- Plan the activities for people.
Mathematical Concept

- Fundamental operations, conversion of units, areas, linear measurements, tables, ratios, formulas, proportions

Occupational Activity

- Calculate number of words in a type area containing a given number of square inches.

- Determine time-temperature ratios in a photographic film development.

- Figure quantities required by given ratios for mixing and matching colored inks.

- Calculate major and minor conjugates for enlarging or reducing reproduction copy on a graphic arts camera.

HOSPITALITY OCCUPATIONS

- Take a restaurant order and compile the final bill with taxes, etc.

- Order the necessary food for a week's restaurant operation.

- Plan a convention involving 300 people for two days with large and small group meetings.

- Plan the kitchen and bakery activities for a banquet of 50 people.

Mathematical Concept

- Areas, conversion of units, tables

- Decimal fractions, percents

- Common fractions, decimal fractions, ratios, weight measurement

- Formulas, ratios, tables

- Fundamental operations, decimals

- Fundamental operations, decimals, fractions, ratios and proportions

- Blueprint layout, area determination, fundamental operations, ratios, proportions

- Fundamental operations, decimals, fractions, ratios, volumes
Occupational Activity

Simulate the cashier functions of a large restaurant.

Maintain the hospitality accounts for a 35 room motel.

Lay out a kitchen for 90 person capacity restaurant.

Maintain the custodial supply accounting for a large building for one month.

Simulate the time keeping functions for a large motel for one week.

Develop household budgeting procedures for a family of four.

Simulate the role of a hostess or maitre d’ in seating and party arrangements for 50 people.

Establish bartender procedures for a group of 30 people for three hours.

Simulate the role of an airline stewardess in the planning for a two hour flight.

Mathematical Concept

Machine operations and computations

Basic computation involving machine work and fundamental operations

Areas, ratios, proportion

Areas, ratios, fundamental operations

Fractions, decimals, fundamental operations

Money management, fundamental operations, decimals

Fundamental operation, space perception, area

Volume, ratio and proportion

Measurements

Occupational Activity

Make an enlargement of a schematic diagram to a given scale.

Draw a pattern for tile to be used in a tile-top coffee table.

Make a dimensioned drawing of a book-binding project.

Make a scale drawing indicating directions given in layout drawing.

Locate 5 ornamental lamps around the edge of a circus park so that they will be equally spaced.

Represent a given location by means of construction.

Illustrate graphically the relationship of valve timing to crankshaft rotation.

Compute the length of rafters for a warehouse.

Construct a rectangular coordinate line chart of motorcycle stopping distances.

Lay out a sprinkler system.

INDUSTRIAL DRAWING AND DRAFTING

Enlarge a design by the squares method.

Areas, linear measurement, ratios

Design an elliptical-shaped table top.
<table>
<thead>
<tr>
<th>Concept</th>
<th>Occupational Activity</th>
<th>Mathematical Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>ions</td>
<td>Make an enlargement of a schematic diagram to a given ratio.</td>
<td>Common fractions, ratios</td>
</tr>
<tr>
<td>ion in-werk</td>
<td>Draw a pattern for tile to be used in a tile-top coffee table.</td>
<td>Common fractions, decimal fractions, linear measurement</td>
</tr>
<tr>
<td>al operation</td>
<td>Make a dimensioned drawing of a book-binding project.</td>
<td>Linear measurement</td>
</tr>
<tr>
<td></td>
<td>Make a scale drawing interpreting directions given in lathe-turning.</td>
<td>Ratios</td>
</tr>
<tr>
<td></td>
<td>Locate 5 ornamental lamps around the edge of a circular park so that they will be equally spaced.</td>
<td>Angles, circumference of circles</td>
</tr>
<tr>
<td></td>
<td>Represent a given location by means of construction.</td>
<td>Geometrical constructions</td>
</tr>
<tr>
<td></td>
<td>Illustrate graphically the relationship of valve timing to crankshaft rotation.</td>
<td>Graphs</td>
</tr>
<tr>
<td></td>
<td>Compute the length of rafters for a warehouse.</td>
<td>Pythagorean theorem</td>
</tr>
<tr>
<td></td>
<td>Construct a rectangular coordinate line chart of motorcycle stopping distances.</td>
<td>Analysis of information, analytic geometry, graphs</td>
</tr>
<tr>
<td></td>
<td>Lay out a sprinkler system.</td>
<td>Areas, geometry of circles, linear measurement, ratios</td>
</tr>
<tr>
<td></td>
<td>Design an elliptical-shaped table top.</td>
<td>Geometry of angles, circles, ellipses, linear measurement</td>
</tr>
</tbody>
</table>
Occupational Activity

Lay out the design and angular setting for a plaque of polygon shape.

METAL PROCESSING OCCUPATIONS

Determine the size of hole to be drilled for a reaming operation.

Find dimensions of a standard screw when only the diameter is known.

Find total length of a steel bar when a series of dimensions are known.

Figure ratio of acid to water in etching solution.

Calculate length of metal strip required for reinforcing a container.

Find dimensions necessary in threading a specified shaft.

Calculate amount of material to be left on a turned shaft for finishing.

Mathematical Concept

Angles, geometry of angles and regular polygons

Occupational Activity

Make a stretchout of metal container or hole.

Calculate distance between dividers in a metal container.

Determine taper in inches per foot.

Find size of a metal object to be made proportionally smaller than a model.

Determine length of wire necessary to complete a specified job.

Determine the percentage of a casting.

Determine length of a strip to encircle an elliptical metal tank.

Common fractions, decimal fractions, tables

Tables

Common fractions

Liquid measurements, ratios

Conversion of units, formulas, sketches

Common, decimal fractions, linear measurements, tables

Fractions, linear measurements
Occupational Activity

Make a stretchout of a simple metal container or holder.

Calculate distance between the dividers in a metal container.

Determine taper in inches per foot.

Find size of a metal object which is to be made proportionately smaller than a model.

Determine length of wire needed to make a wired edge around a circular metal container.

Find cost of welding rod necessary to complete a specific shop job.

Determine the percent of shrinkage in a casting.

Determine length of a steel strip to encircle an elliptical metal tank.

Mathematical Concept

Geometry of lines, angles, squares, and rectangles, linear measurement

Decimal fractions, linear measurement, tables

Conversion of units, formulas, ratios

Common fractions, formulas

Decimal fractions, formulas

Common fractions, costs, decimal fractions, ratios, tables

Fractions, percent

Formulas, sketches, square root, tables
TEXTS

Barnett, R & Sons, 1

Beaumont, *of Mathematic Publishing*

Beiler, Alber, New York: Dover

Bell, Eric York: McG

Bell, E. T., New York:

Bell, Eric York: McG

Berkeley, E. and Aplica, 1956

Birkhoff, G York: Chel

Birkhoff, Developern Algebra

Blumenthal, Francisco, C

Boehm, Geo Press, New Y
CHAPTER IV
REFERENCE MATERIALS

tions, 1955. (First
ed in 1949 by Hafner.)

Portland, Maine: J. Wes-

Secondary Mathematics.

Fishers, 1953

duction. New York:

Vren, The Teaching of :

McGraw-Hill Book

otations, Vol 2. Chi-

Notations, Vol 2. Chi-

Structure of the Real

yssey: D. Van Nostrand

Report of the Commis-

Report of the Commis-

Geometry.

NCTM, *Computer Oriented Mathematics*, 1963

NCTM, *Arithmetic in General Education*. (16th Yearbook)

NCTM, *The Learning of Mathematics* (18th Yearbook)

NCTM, *The Metric System of Weights and Measures*. (20th Yearbook)

NCTM, *Insights Into Modern Mathematics*. (23rd Yearbook)

NCTM, *The Growth of Mathematical Ideas*. (24th Yearbook)

NCTM, *Evaluation in Mathematics*. (26th Yearbook)

NCTM, *Enrichment Activities for the Grades*. (27th Yearbook)

NCTM, *Enrichment Activities for High School* (28th Yearbook), 1963

NCTM, *Topics in Mathematics for Elementary School Teachers*. (29th Yearbook), 1964
NCTM, *More Topics in Mathematics for Elementary School Teachers.* (30th Yearbook), 1969

NCTM, *Historical Topics for the Mathematics Classroom.* (31st Yearbook), 1969

Address:

NCTM
National Council of Teachers of Mathematics
1201 Sixteenth Street, N.W.
Washington, D. C. 20036

Polya, George, *“Induction and A Plausible Inferer*. University Press, 1962

Polya, George, *Mathematics, Study Gro*. 367 South Pasad

Rademacher, Ha

Reid, C., *From Zemer and Co., Inc.

Ringenberg, L. A., 1201 Sixteenth Str

Roberts, J. B., *The ting*. San Francisco

Sanford, V., *A S Houghton Mifflin C

Sawyer, W. W., *A San Francisco, Cal 1959*

SMSG, *Conference on Mathematics Education for Below Average Achievers*, 1964

Baltimore, Maryland.

Hindu-Arabic Numerals, 7th ed., 1201 Sixteenth Street, Washington, D.C.

2 Vols. Boston: Ginn & Company, 1901

PAMPHLETS

NCTM, An Analysis of New Mathematics Programs.

NCTM, A Guide to the Use and Procurement of Teaching Aids for Mathematics.

NCTM, Education in Mathematics for the Slow Learner.

NCTM, Aids for Evaluators.

NCTM, Designing the Mathematics Classroom.

NCTM, How to Study Mathematics.

NCTM, How to Use Field Trips.

NCTM, How to Use the Overhead Projector.

NCTM, How to Use Your Bulletin Board.

NCTM, How to Use Your Library.

NCTM, Twelfth-Grade Pre-College Mathematics Program.

NCTM, Research in Mathematics Education.

NCTM, Multi-Sensory Aids in the Teaching of Mathematics, 18th Yearbook, Bureau of Publications, Teachers College, Columbia University, New York, 1945

NCTM, Mathematical Challenges, Washington, D.C., 1201 Sixteenth St., N.W., 1965

NCTM, The Continuing Revolution in Mathematics, 1968

NCTM, Mathematics Clubs in High Schools, 1958

NCTM, Computer Facilities for Mathematics Instruction, 1967

NCTM, Experiences in Discovery, 1966

Unit 1—Formulas, Graphs and Patterns
Unit 2—Properties of Operations with Numbers
Unit 3—Mathematical Sentences
Unit 4—Geometry
Unit 5—Arrangements and Selections

PERIODICALS

The Mathematics Teacher. Published by NCTM

The Arithmetic Teacher. Published by NCTM

School Science and Mathematics. Published by Central Association of Science and Mathematics Teachers, Inc.

The American Mathematical Monthly. Published by MAA.

Scientific American. Published by Scientific American, Inc.

Mathematics Magazine

Address:
NCTM
National Council of, 1201 Sixteenth Street, Washington, D.C. 20036

MAA
The Mathematical Association of America, SUNY at Buffalo
Buffalo, New York 14260

School Science and Mathematics
Central Association of Science and Mathematics Teachers, Inc.
Bluffton, Ohio 45817

SOURCES OF FUNDING

American Automobile Association of America, Washington, D.C. 20036. (Math; Automobiles—

American Bankers Association, 12 E. 36 St., New York, New York 10014. (Math; the Stone Age to the Everyday Living.)

Association for Computing Machinery, New York, New York 10014.

Bell Telephone Laboratories, New York 10014. (Math; Everyday Living.)

Boy Scouts of America, New Jersey. (Mechanical Engineering; Everyday Living.)
Program

Mathematics Magazine. Published by MAA

Address:
NCTM
National Council of Teachers of Mathematics 1201 Sixteenth Street, N.W.
Washington, D.C. 20036

MAA
The Mathematical Association of America, Inc. SUNY at Buffalo
Buffalo, New York 14214
1968

School Science and Mathematics
Central Association of Science and Mathematics Teachers, Inc.
Bluffton, Ohio 45817

SOURCES OF FREE AND INEXPENSIVE MATERIALS

American Automobile Association, 1712 G. St., NW, Washington, D.C. 20036. (Minimum Stopping Distance; Facts for Math; Automobiles—Facts and Figures.)

American Bankers Association, Banking Education Committee, 12 E. 36 St., New York, New York 10016. (Banking from the Stone Age to the Atomic Age; Money and Banking for Everyday Living.)

Association for Computing Machinery, 211 E. 43 St., New York, New York 10017. (Computopics.)

Bell Telephone Laboratories, 463 West St., New York, New York 10014. (Mathematics Research in Industry.)

Boy Scouts of America, National Council, New Brunswick, New Jersey. (Mechanical Drawing; Surveying.)
Chase Manhattan Bank Museum of Moneys of the World, 1245 Avenue of the Americas, New York, New York 10020. (Moneys of the World.)

Christman, Laura E., Yorkville, Illinois (Mathematics calendar.)

Chrysler Corporation, Public Relations Division, Community Affairs Dept., Box 1919, Detroit, Michigan 48231. (Mathematics Problems from Industry.)

The Conference Board, 460 Park Ave., New York, New York 10022. (Road Maps of Industry.)

Consolidated Edison Company of New York, 4 Irving Place, New York, New York 10003. (Easy Arithmetic.)

C.U.P.N. Central Office, Box 1024, Berkeley, California 94701. (Basic Library Lists.)

The Duodecimal Society of America, 20 Carlton Place, Staten Island, New York 10304. (Excursion in Numbers.)

Ford Motor Company, Education Affairs Department, Dearborn, Michigan. (How Long is a Rod?; On the Art of Problem Solving; A History of Measurements chart.)

General Electric Company, Educational Relations, Department MWH. Schenectady, New York (Why Study Math?; You and the Computer.)

General Motors Corporation, Education Relations Section, General Motors Technical Center, Warren, Michigan. (Precision, A Measure of Progress, Mathematics at Work.)

Hamilton Watch Company, Public Relations Department, Lancaster, Pa. (Time Telling.)

Household Financial Institute, Prudential Library.)

International Business Machines Corporation, York, New York.

Institute of Life Insurance, 145 Madison Avenue, New York, New York. (Statistics; Mathematics; Mathematics Problems from Industry.)

Internal Revenue Service, 419 N. Capitol Street, N.W., Washington, D.C. (Income Tax; Statistics; Mathematics; Mathematics Problems from Industry.)

Keuffel and Esser Company, Madison Avenue, New York, New York. (Mathematics; Mathematics Problems from Industry.)

Litton Industries, 1300 W. 28th Street, Los Angeles, California. (Mathematical Recreations; Mathematics Problems from Industry.)

Marchant Calculating機器 Co., Princeton, New Jersey. (Marchant Calculating Machines; Mathematics Problems from Industry.)

Martin Publishing Company, California. (Mathematics Problems from Industry.)

A. A. Merrill, 250 Delaware Avenue, Buffalo, New York 14201. (Perpetual Calculators; Calculating Machines; Mathematics Problems from Industry.)

Merrill, Lynch, Paine, Webber, New York, New York 10004. (Mathematics Problems from Industry.)

Monroe Calculator Company, N.J. 07050.

Mu Alpha Theta, Oklahoma City, Oklahoma 73069 (Mathematical Logs.)
Household Finance Corporation, Money Management Institute, Prudential Plaza, Chicago, Ill. (Money Management Library.)

International Business Machines, 590 Madison Avenue, New York, New York 10022.

Institute of Life Insurance, Education Division, 488 Madison Avenue, New York, New York 10022. (Sets, Probability and Statistics; Mathematics in Action.)

Internal Revenue Service, Public Information Division, Washington, D.C. (Income Tax Teaching Kit.)

Keuffel and Esser Company, 300 Adams Street, Hoboken, N.J. 07030. (Slide Rule catalog.)

Litton Industries, Inc., Beverly Hills, California (Problematical Recreations; Mostly Greeks.)

Marchant Calculating Machine, Oakland, California. (From Og to Googol.)

Martin Publishing Company, Box 251, North Hollywood, California. (Mathematics.)

A. A. Merrill, 25 Commodore Road, Chappaqua, New York 10514. (Perpetual Calendar.)

Merrill, Lynch, Pierce, Fenner and Smith, 70 Pine St., New York, New York 10005 (How to Buy Stocks.)

Monroe Calculating Machine Co., 555 Mitchell St., Orange, N.J. 07050.

Mu Alpha Theta, Box 117, University of Oklahoma, Norman, Oklahoma 73069 (Mathematical Book List; Chips from Mathematical Logs.)
Museum of Science and Industry, Jackson Park, Chicago, Ill.
(You Will Like Geometry.)

National Better Business Bureau, Chrysler Building, New York, New York 10017. (Accident and Health Insurance; Life Insurance.)

National Education Association, 1201 16 St. NW, Washington, D.C. 20036. (Curriculum materials.)

New York Life Insurance Co., Box 51, Madison Square Station, New York, New York 10010. (Should You Be a Mathematician?)

New York State Petroleum Council, 220 Delaware Ave., Buffalo, New York 11202. (Mathematics in the Petroleum Industry.)

New York Stock Exchange, Manager, School and College Relations, 11 Wall St., New York, New York 10005. (Understanding the New York Stock Exchange; You and the Investment World.)

Ohaus Scale Cooperation, 1050 Commerce Ave., Union City, New Jersey 07083. (Manual for Measurement Science.)

Saving Bank Association of New York State, 110 E. 42 St., New York, New York 10017. (Quick Credit Cost Computer.)

Scripta Mathematics, Yeshiva University, Amsterdam Ave. and 186 St., New York, New York 10003. (Portraits of Mathematicians.)

Sperry Gyroscope Co., Great Neck, New York 11020. (Gyroscope Through the Ages.)
SOURCES OF TRANSPARENCIES
FOR THE OVERHEAD PROJECTOR

Admaster Prints, Inc., 425 Park Avenue, New York, N.Y. 10016

Charles Beseler Company, East Orange, N.J. 07019
Robert J. Brady Company, 3227 M Street NW, Washington, D.C. 20097

John Colburn Associates, Inc., 1122 Central Avenue, Wilmette, Ill. 60091

Creative Visuals, Inc., Box 310, Big Springs, Tex. 79721

DCA Educational Products, Inc., 4865 Stenton Avenue, Philadelphia, Pa. 19144.

Encyclopedia Britannica Films, 1150 Wilmette Avenue, Wilmette, Ill. 60091

John W. Gunther, Inc., P. O. Box g, San Mateo, Calif. 94402

C. S. Hammond and Company, 515 Valley Street, Maplewood, N.J. 07040

Hubbard Scientific Company, 2855 Shermer Road, Northbrook, Ill. 60062

Instructo Products Company, 1635 North 55th Street, Philadelphia, Pa. 19131.

Keuffel and Esser Company, 300 Adams Street, Hoboken, N.J. 07030

Minnesota Mining and Manufacturing Company, Visual Products, Box 3100, St. Paul, Minn. 55101

RCA Educational Services, Camden, N.J. 08102

Tecnifax Corporation, 195 Appleton Street, Holyoke, Mass. 01042
Tweedy Transparencies, 321 Central Avenue, Newark, N.J. 07103

United Transparencies, Inc., Box 888, Binghamton, N.Y. 13902

Visual Materials, Inc., 980 O’ Brien Drive, Menlo Park, Calif. 94025

SOURCES OF MODELS AND EQUIPMENT FOR MATHEMATICS

Arithmetic Principles Association, 5348 NE 42 Avenue, Portland, Ore.

Arkay International, Inc., 2372 Linden Blvd., Brooklyn, N.Y.

Associated School Distributors, Inc., 220 West Madison St., Chicago, Ill.

Isay Balinkin, University of Cincinnati, Cincinnati, Ohio

Berger Scientific, 37 Williams Street, Boston, Mass.

Stanley Bowman, 12 Cleveland Street, Valhalla, N.Y.

Milton Bradley Company, 74 Park Street, Springfield, Mass.

Caddy-Imler Creatings, 2517 W. 102 St., Inglewood, Calif.

Cambosco Scientific Company, 37 Antwerp St., Brighton Station, Boston, Mass.

Central Scientific Company, 1700 Irving Park Road, Chicago, Ill.
Charvos-Roos Corp., 50 Colfax Avenue, Clifton, N.J.

Circline Ruler Company, 4609 Waveland Court, Des Moines, Iowa

Corbett Blackboard Stencils, 543 Third Avenue, North Pelham, N.Y.

C-Thru Ruler Company, 827 Windsor Street, Hartford, Conn.

Cuisinaire Company of America, 246 E. 46th Street, New York, N.Y.

Daintee Toys, Inc., 230 Steuben St., Brooklyn, N.Y.

Dana and Company, Inc., Box 201, Barrington, R.I.

Denny Press, 1115 45th Street, Des Moines, Iowa

Denoyer-Geppert Company, 5235 Ravenswood Avenue, Chicago, Ill.

Eugene Dietzgen Company, 2425 Sheffield Avenue, Chicago, Ill.

Dinva Slide Rules, 683 South Remington Road, Columbus, Ohio

Dyna-Slide Company, 600 South Michigan Avenue, Chicago, Ill.

Educational Playthings, 1706 Hayes Avenue, Sandusky, Ohio

Educational Supply and Specialty Company, 2823 Gaye Avenue, Huntington Park, Calif.

Engineering Instruments, Inc., P.O. Box 335, Peru, Ind.

Hans K. Inc.

Gameco Producers, Inc.

Ginn and Company

Gould Scientific Instrument Co.

Graphical, Inc.

F. H. Hagan, Chicago, Ill.

J. L. Hamilton

Herbach and Company

Houghton International

P. E. Huff

Ideal School Furniture Co.

Industrial N.Y.

Instructo Manufacturing Co.

Instructo Manufacturing Co.

Jameson Electronics, Minn.
<table>
<thead>
<tr>
<th>City</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exton, N.J.</td>
<td>Exton Aids, Box MT, Milbrook, N.Y.</td>
</tr>
<tr>
<td>Des Moines</td>
<td>Farquaher Transparent Globes, 3724 Irving Street, Philadelphia, Pa.</td>
</tr>
<tr>
<td>London, Conn.</td>
<td>Gamco Products, Box 305, Big Spring, Tex.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Gould Scientific Company, Box 6743, Washington, D.C.</td>
</tr>
<tr>
<td>Westport, Conn.</td>
<td>Graphicraft, Westport, Conn.</td>
</tr>
<tr>
<td>Dallas, Tex.</td>
<td>F. H. Hagnar, 1010 Navarro Street, P. O. Box 361, San Antonio, Tex.</td>
</tr>
<tr>
<td>Hutsonville, Ill.</td>
<td>P. E. Huffman, Hutsonville, Ill.</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>Ideal School Supply, 8312 Birkhoff Ave., Chicago, Ill.</td>
</tr>
<tr>
<td>Columbus, Ohio</td>
<td>Industrial Research Laboratories, P. O. Box 471, Hempstead, N.Y.</td>
</tr>
</tbody>
</table>
Kendrey Company, P. O. Box 629, San Mateo, Calif. 94401
Kenworthy Educational Service, 138 Allen Street, Buffalo, N.Y.
Keuffel and Esser Company, 127 Fulton Street, New York, N.Y.
Lano Company, 4741 W. Liberty St., Ann Arbor, Mich.
LaPine Scientific Company, 6001 South Knox Ave., Chicago, Ill.
The Learning Center, Inc., 53 Bank St., Princeton, N.J.
Helberg Enterprises, Inc., 8327 North Lawndale Ave., Skokie, Ill.
Mathaids Company, 336 Kirk Ave., Syracuse, N.Y.
Mathatronics, Inc., 257 Crescent St., Waltham, Mass.
Math-Masters Labs, Inc., Box 310, Big Spring, Tex.
Models of Industry, 2100 Fifth St., Berkeley, Calif.
John Morse and Sons, 142 W. Lake Road, Penn Yan, N.Y.
Nasco Science Materials, Fort Atkinson, Wis.
National School Supply & Equipment, 27 East Monroe St., Chicago, Ill.
Owatonna Math Aids, Box 79, Owatonna, Minn.

F. A. Owen Publishing Co., Dansville, N.Y.

Palfreys School Supply Co., 7715 East Garvey Blvd., South San Gabriel, Calif.

Physics Research Laboratories, Inc., Box 555, Hempstead, N.Y.

Playball, Inc., 5—26 46th Ave., Long Island City, N.Y.

Frederick Past Company, 3650 North Avondale Ave., Chicago, Ill.

School Products Company, 330 E. 23 St., New York, N.Y.

School Service Company, 4233 Crenshaw Blvd., Los Angeles, Calif.

Science Research Associates, 259 E. Erie St., Chicago, Ill.

Scientific Development Corp., Watertown, Mass.

Scientific Educational Products, 30 E. 42 St., New York, N.Y.

Sifo Toy Company, 353 Rosabel, St. Paul, Minn.

Smith Brake Corporation, 1206 La Brea Ave., Inglewood, Calif.

Pickett and Eckell, Inc., 1109 S. Fremont Ave., Alhambra, Calif.

Speed-Up Geometry Ruler Co., Inc., 5100 Windsor Mill Road, Baltimore, Md.
L. S. Starrett Company, Athol, Mass.
The Stech Company, P. O. Box 16, Austin, Tex.
Three M Company, 2501 Hudson Road, St. Paul, Minn.
Viking Importers, 113 South Edgemont St., Los Angeles, Calif.
Vis-X-Company, Box 107, Los Angeles, Calif.
Wabash Instruments and Specialties, Box 194, Wabash, Ind.
Walker Products, 1530 Campus Drive, Berkeley, Calif.
Weem System of Navigation, Annapolis, Md.
W. M. Welch Scientific Co., 1515 Sedgwick St., Chicago, Ill.
Whitman Publishing Co., 1220 Mound Ave., Racine, Wis.
L. M. Wright Company, 686 Mariposa St., Altadena, Calif.
Yoder Instruments, East Palestine, Ohio

COMPUTER TRAINING KITS

All prices are approximate.

Arkay CT-650 Computer Trainer ($250). Arkay International, 3272 Linden Blvd., Brooklyn, N.Y. 11208

Bi-Tran Six ($6,000). Fabri-Tek, Minneapolis, Minn.

Brainiac ($22)

Calcolo: Analog Computation, Barrington, N.J.

Digicon 6 (§30)

Digiac 3010

Minivac ($23)

Cardiac (Fre"ech) (§75)

Clary Corporation (§75)

Control Data Corporation (§75)

Digital Equipment Corporation (§75)

Frieden Inc. (§75)

General Electric (§75)
Brainiac ($20). NASCO Science Material, Fort Atkinson, Wis. Also, Math-Master Labs, Big Spring, Tex.; and Berkeley Enterprises, 36 W. 11 St., New York, N.Y.

Digi-Comp ($5). E.S.R. Inc., 350 Main St., Orange, N.J.

Digiac 3010 ($800). Digital Electronics, Westbury, N.Y.

Minivac ($235). Scientific Educational Products Corp., New York, N.Y.

Cardiac (Free). Bell Telephone System. Available through local representatives.

COMPUTER COMPANIES

Clary Corporation, 408 Juniper St., San Gabriel, Calif.

Control Data Corporation, 8100 S. 34th Ave., Minneapolis, Minn.

Digital Equipment Corp., 146 Main St., Maynard, Mass.

IBM, Data Processing Div., 112 East Post Road, White Plains, N.Y.

Honeywell, Minneapolis, Minn.

Mathatronics Inc., 257 Crescent St., Waltham, Mass.

National Cash Register, Main & K St., Dayton, Ohio

Radio Corp. of America (RCA), Electronic Data Processing, Cherry Hill, Camden, N.J.

UNIVAC Div., Sperry Rand Corp., 1200 Ave. of the Americas, New York, N.Y.

TOYS, GAMES, AND PUZZLES FOR LEARNING MATHEMATICS

"Chinese Rings—Ancient Devils Needles." Cooperative Service, Inc., Delaware, Ohio

"Equations" and "Wiff'N Proof." Laymen E. Allen, Yale Law School, New Haven, Conn.

"Erector Set." A. C. Gilbert Company, New Haven, Conn.

"Fiddlestraws." Samuel Gabriel Sons & Company, New Haven, Conn.

"Fifteen Puzzles." William F. Drueke and Sons, Grand Rapids, Mich.

"Flex"

"Geo"

"Kala"

"Ketes"

"Krypt"

"Magi"

"Make"

"Mako"

"Pythu"

"Quint"

"Redix"

"Rosie"

"Soma"

"T-Puz"

"Teez"

"Tinker"
“Flexagons.” Science Materials Center, New York, N.Y.

“Krypto.” Krypto Corporation, 2 Pine Street, San Francisco, Calif.

“Make One.” Garrard Press, 510 North Hickory Street, Champlain, Ill.

“Pythagoras.” Kohner Brothers, New York, N.Y.

“Quinto.” Minnesota Mining and Manufacturing Company, St. Paul, Minn.

“Redux.” Majes W. Lang, Box 224, Mound, Minn.

“Soma Wood Block Puzzle.” Edmund Scientific Company, Barrington, N.J.

“Teez.” K. T. Games, Inc., Seaford, N.Y.

Other Companies Producing Games

Are-Jay Game Co., Cleveland, Ohio
Cadaco-Ellis, Inc., Merchandise Mart, Chicago, Ill.
Champion Publishing Co., 612 North Second St., St. Louis, Mo.
Educational Cards, Detroit, Mich.
Exclusive Playing Card Co., Chicago, Ill.
Fortune Games, 1517 Levee St., Dallas, Texas
Funway Games, Pelloom, Mich.
Gangler-Centry Co., Cantonville, Md.
Hall & McCready Co., Chicago, Ill.
Imout, Box 1944, Cleveland, Ohio
Kraeg Games, 4500 Shenendoah Ave., St. Louis, Mo.
Parker Bros., Inc., Salem, Mass.
Schaper Manufacturing Co., Inc., Minneapolis, Minn.
School Service Co., 4510 West Pico Blvd., Los Angeles, Calif.
Science Research Associates, Chicago, Ill.