This teacher's edition of a tenth grade general mathematics workbook attempts to show how certain mathematical skills are needed by the consumer. Each of the ten instructional units contains review exercises, practical applications, and practice problems for three levels of ability. Included are units on: (1) business forms, (2) algebra, (3) banking, (4) geometry, (5) taxes, (6) graphing, (7) data processing, (8) probability, (9) insurance, and (10) hospital work. [Not available in hardcopy due to marginal legibility of original document.] (RS)
WOMP

WILMINGTON OPERATIONAL MATHEMATICS PROGRAM

BOOK 2
TEACHER'S EDITION

WILMINGTON PUBLIC SCHOOLS
Wilmington, Delaware
WILMINGTON OPERATIONAL MATHEMATICS PROGRAM

by

Paul V. Rogler, Director
Arthur Gibson
Leon Davis
Raymond Wilson

This program is the result of work under a grant from the U.S. Office of Education; Department of Health, Education, and Welfare by authority of the Cooperative Research Act.

Wilmington Public Schools
Wilmington, Delaware
APPENDIX A

Teachers Edition of Wilmington Operational Mathematics Program, Book II
(only five copies available)
The Wilmington Operational Mathematics Program is one of the important new efforts of the Mathematics Department of the Wilmington Public Schools, under the leadership of Dr. Paul Rogler, to meet demands for quality in mathematics teaching and learning. It is an attempt to break away from the general mathematics instruction traditionally provided for many tenth grade youngsters.

Providing mathematics closely related to the realities of the "World of Work," "Business Experience," and other units of high interest level associated with early adolescence should spark the motivation and hence the achievement of the youngsters.

For teachers, having readily available well-prepared work sheets, transparencies, and other instructional aids, this volume should prove to be an excellent resource.

Gene A. Geisert
Superintendent of Schools
To the teacher:

We have tried to provide you with ten workable, relevant units that will lead students, sometimes through life situations that hopefully will interest them, and sometimes through mathematics topics that have basic appeal to them, into learning the mathematics needed to be productive citizens.

This teacher's edition contains all the pages that are in the student text. Where answers are needed, they are provided. Where suggestions might help, they, too, are provided. Some pages are worded "ditto provided." For these pages you will be given ditto masters so that you may run off as many as you wish. Please try to keep the dittos in an organized way so they can be used again another year.

We hope that the binding of student texts will be strong enough that they can be distributed to students and will last for at least two years. You may want to keep the texts in the classroom and just distribute them as needed. Either plan is acceptable. The program is experimental. We will see which plan works best. It is not planned to have students write in their texts. Test problems can be copied onto work paper and then done at home.

We have placed, at the left of exercises, the letters A, B, or C according to the level of difficulty of the problems. A problems would be workable for all, even the poorest students. B problems are average difficulty problems. C problems are for those top students who can do some extra challenging work. Feel free to use this information as you wish. If the gradations do not fit your class, don't use them.

We also think that you may wish to change the order of the units. Feel free to do so. We have planned beginning units as interest-getters and foundation-layers, but later units can fit your judgment as to which ones will appeal most to your students.

Paul V. Rogler
Leon Davis
Arthur Gibson
Raymond Wilson
In 1967, with a federal grant, the Wilmington Operational Mathematics Program came into being. Its objectives were:

--To write units of work that incorporate practical applications from the events and affairs of urban life into a general mathematics outline that is modern in its scope.

--To seek out problems from local industry that relate to situations that general students will occupy within a few years after their ninth grade study.

--To write units at a reading level compatible to that of slow learning ninth grade students.

--To incorporate in the units provision for differentiated instruction that helps the teacher challenge each level of student at his own level.

--To keep a developmental treatment of concepts as the heart of the program with many practical problems used as illustrations.

--To plan the instruction taking into consideration ways in which these students learn; the use of role playing, games, puzzle-problems, and taped materials for makeup as well as enrichment; real problems that involve student-activity as well as laboratory work should be included.

To accomplish these objectives the director and three teachers, Arthur Olison, Muriel Rains and Raymond Wilson, all of whom had extensive experience in teaching ninth grade general mathematics, met for six weeks. They reviewed the recommendations of previous general mathematics curriculum committees in Wilmington; they reviewed many collected references on the subject; they met with a consultant from the college level; they visited local industrial plants and consulted with representatives from these plants; they polled student interests; and they then wrote the units as planned. The result was a set of ten units that can provide a year's work in ninth grade general mathematics. The written work has appeal for the situation that leads to a need for some mathematics. As the need for mathematics is seen, instructional activities and practice are provided. The units are organized so that they lead into successively more difficult concepts as the work progresses. Units have been chosen to spark the motivation of the students, either by reference to natural interests of students, to fields that have vocational connections for them, business and industrial complexes in our city, or teacher aids, each unit is supplemented by a set of ditto masters of differentiated work sheets geared to the unit and a set of transparencies that aid in the teaching of the unit.
The ninth grade materials were written in 1967. They were tried by the project teachers in 1967-68 and rewritten in the summer of 1968.

During the 1968-69 school year, evaluative bi-monthly meetings helped coordinate the work and incorporate new ideas developed by individual teachers.

The tenth grade materials, Book II, were written, again with a federal grant, by Leon Davis, Arthur Gibson, and Raymond Wilson, during the summer of 1969.

Much credit needs to be given to each of the writers, and to the other teachers who have used the program and given their suggestions for improvement. Hopefully, we have here what we first started to visualize when a General Mathematics Planning Committee was first formed in 1964—an organized program for general students that will give them an understanding of mathematics principles while providing down-to-earth examples that relate the use of mathematics to their life experiences.

Paul V. Rogler, Director
Wilmington Operational Mathematics Program
Wilminton Public Schools
Wilminton, Delaware

WILMINGTON OPERATIONAL MATHEMATICS PROGRAM

Book II
Part I

UNIT

<table>
<thead>
<tr>
<th>Unit</th>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>DO Math</td>
<td>1 - 42</td>
</tr>
<tr>
<td>II</td>
<td>Algebra</td>
<td>43 - 124</td>
</tr>
<tr>
<td>III</td>
<td>Banking</td>
<td>125 - 171</td>
</tr>
<tr>
<td>IV</td>
<td>Geometry</td>
<td>172 - 214</td>
</tr>
</tbody>
</table>

Division of Educational Programs in Cooperation
with the
Office of Education,
Bureau of Research

Dr. Gene A. Geisert
Superintendent of Schools

Dr. Paul V. Rogler
Supervisor
Secondary Mathematics Department

1969
WILMINGTON OPERATIONAL MATHEMATICS PROGRAM

Book II

Part II

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit V:</td>
<td>Taxes</td>
<td>215 - 262</td>
</tr>
<tr>
<td>Unit VI:</td>
<td>Graphing</td>
<td>263 - 293</td>
</tr>
<tr>
<td>Unit VII:</td>
<td>Data Processing</td>
<td>294 - 319</td>
</tr>
<tr>
<td>Unit VIII:</td>
<td>Probability</td>
<td>325 - 348</td>
</tr>
<tr>
<td>Unit IX:</td>
<td>Insurance</td>
<td>349 - 373</td>
</tr>
<tr>
<td>Unit X:</td>
<td>Hospital Work</td>
<td>374 - 400</td>
</tr>
</tbody>
</table>

Division of Educational Programs in Cooperation with the Office of Education, Bureau of Research

Dr. Gene A. Geisert
Superintendent of Schools

Dr. Paul V. Rogler
Supervisor
Secondary Mathematics Department

1969
In many high schools there is a special program for students who want to work while going to school. Let's call it Diversified Occupations (D.O.) This course of study is open to any student who intends to enter full-time employment after graduation, (general students, business students and college prep students.)

Students enrolled in this program receive valuable working experience and financial aid. Some students attend school half a day and work half a day and some work on a two-week on and off basis.
To the Teacher:

This unit is centered around the "Work Study Program" that has been instituted in many high schools. It is not designed to prepare a student for a particular job, but rather, to give him some practice in filling out forms, applications and a general knowledge of a paycheck. Also, to point out the fact that any employee has responsibilities to himself as well as his employer.

Hopefully, this unit will provide you with some diagnostic testing to help you determine the level of your class in regard to its mathematical ability.

The approach is unique in that we make use of "Role Playing". That is, the students, play the roles of interviewers and interviewees while simulating an actual job interview. They are required to evaluate each other on a rating sheet (primarily mathematics and a few character traits). Finally each student is hired as a sales clerk.

At the end of this unit (teacher's edition only) you will find a number of practice problems dealing with the four fundamental operations on the set of rational numbers to be used either before or after the "Math Skill Test".

Actually there are 29 pages of student text—remaining pages will be provided only as ditto.
Application for Admission into Diversified Occupations Course

Full Name ___________________________ Grade ______
Address ___________________________ Course ______
Telephone ___________________________ Home Room _____ PICTURE
Date of Application ________________________
Age ______ Date of Birth ________________________
Height ______ Weight ______
Mother's Name ___________________________ Occupation ______
Father's Name ___________________________ Occupation ______
Occupation Desired - 1st ____________________________
Reason ____________________________
Occupation Desired - 2nd ____________________________
Reason ____________________________
High School Credits ____________________________
Do you intend to go to college? _____ Reason ____________________________
Do you agree to a two-year training period if a junior or a one-year period if a senior? _____ Times absent last year ______
Do you have a driver's license? _____ Would you have the use of a car for transportation to and from a job? ______
Have you ever worked? _____ Where? ____________________________
Type of work? ___________________________ Employer: ____________________________
What are your hobbies, outside interests? ____________________________

POOR ORIGINAL COPY - REST AVAILABLE AT TIME FILMED
Opportunities are available to young people in the industrial and business places in our city, but only to those who are earnest in their efforts to receive training. If you are accepted in the Diversified Occupations Course, do you agree to put forth your best efforts in completing your training?

Sign

Student's Name

I consent to entering the Diversified Occupations Course and agree to cooperate with the school and training agency.

Sign

Parent or Guardian

Note: The Diversified Occupations Course is designed to train students for specific employment. If you plan to go to college, make sure that you select proper college preparatory subjects for college entrance.
Each of you will become a part of America's working force. Any job that you get will require you to know some basic mathematics. Many jobs require you to take a written test before you are hired. Most of these tests have a great deal of mathematics in them.

Name at least two kinds of jobs for each place of employment listed below.

Example:

Department Store
 a) Salesman
 b) Buyer

1) Hospital
2) Bank
3) Body and Fender Shop
4) Super Market
5) Restaurant
6) City Hall
7) City Park Dept.
8) Gas Station
9) Automobile Plant
10) Business Office
11) School
12) Construction Co.
13) Telephone Co.
14) Police Dept.
Role Playing

I. Roles:
 a) Interviewer(s)
 b) Interviewee(s) (applicants for job)
 c) Receptionist (secretary)

II. Scene:
 a) Interviewers Office

III. Preparation for Interview:
 a) Forms:
 1) Application of entrance into D.O. Program (already filled out)
 2) Application for Employment
 3) Math Skills Test
 b) Entire class will fill out Employment Application
 c) Administer Math Skills Test
 d) Correct Test
 e) Fill in Raw Scores (First page of test)
 f) Fill in Rating Sheet
 g) Secretaries will file together (staple)
 1) D.O. Application
 2) Employment Application
 3) Math Skills Test
 4) Rating Sheet
 h) Interviewer will pick applicants at random.
 1) Narrow possible selection down to two or three applicants
 2) Applicants will compete for job by selecting their classmates to form teams.
 3) Team will compete in Math Games
Application for Employment

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Last</th>
<th>First</th>
<th>Middle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Number of Years</th>
<th>Phone No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Last Previous Address</th>
<th>Number of Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>social security no.</th>
<th>sex</th>
<th>Height</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>physical defect.</th>
<th>glasses</th>
<th>other explain.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>single</th>
<th>married</th>
<th>divorced</th>
<th>separated</th>
<th>widowed</th>
<th>No. Children</th>
<th>No. Dependents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residence</th>
<th>With Parents</th>
<th>Rent</th>
<th>Board</th>
<th>Own Home</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>family data</th>
<th>occupation</th>
<th>address—if deceased so indicate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>father’s name</th>
<th>mother’s name</th>
<th>married or wife</th>
<th>dependents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>personal references—other than relatives or employers</th>
<th>name</th>
<th>address</th>
<th>yrs. acquainted</th>
<th>occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematical Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Score</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>+ W.N.</td>
</tr>
<tr>
<td>+ F</td>
</tr>
<tr>
<td>- D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-. - W.N.</th>
<th>+ W.N.</th>
<th>-. F</th>
<th>+ F</th>
<th></th>
<th>employee no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Over! | | | | | |
|-------| | | | | |
Education and Experience

<table>
<thead>
<tr>
<th>School</th>
<th>Name of School</th>
<th>Date</th>
<th>Subject of Specialization</th>
<th>Graduated Yes/No</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>High or Prep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Employer's Name & Address

<table>
<thead>
<tr>
<th>Name & Address</th>
<th>Type of Work</th>
<th>Dates</th>
<th>Salary</th>
<th>Reason for Leaving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Military Service

<table>
<thead>
<tr>
<th>Branch</th>
<th>Date</th>
<th>Special Duties or Training</th>
<th>Present Reserve Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Qualifications

- Typing [Y/N] W.P.M.
- shorthand [Y/N] W.P.M.
- Acting [Y/N] No. of Semesters
- Business Machines (Specify)

Salary Expected

<table>
<thead>
<tr>
<th>Salary Expected</th>
<th>What Led You to Seek Employment Here?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signed
Add:

1) \[\frac{34}{22} + \frac{14}{20} = \frac{90}{220} = \frac{9}{22} \]

2) \[\frac{387}{219} + \frac{5318}{5924} = \frac{5924}{5924} \]

3) \[\frac{418}{32976} + \frac{1287509}{1320903} = \frac{1320903}{1320903} \]

4) \[312 + 193 = 505 \]

5) \[\frac{38}{512} + \frac{34}{704} = \frac{704}{704} \]

6) \[\frac{1}{2} + \frac{3}{4} = \frac{11}{4} \]

7) \[\frac{3}{8} + \frac{3}{4} = \frac{11}{8} \]

8) \[\frac{1}{2} + \frac{7}{10} = \frac{16}{10} = 1.6 \]

Subtraction:

Whole Numbers

Fractions

Decimals
Add:

9) \(\frac{3}{5} + \frac{7}{10} + \frac{1}{2} = \frac{18}{10} = \frac{9}{5} \)

10) \(\frac{5}{6} + \frac{3}{8} \)

11) \(0.15 + 0.34 + 0.64 = 1.13 \)

12) \(0.34 + 2.17 + 48 = 2.99 \)

13) \(8.9 + 32.91 + 0.0078 = 41.8178 \)

14) \(7892.74 + 451.83 = 7893.1887 \)

15) \(45.1 + 6.78925 = 51.88925 \)

Subtract:

16) \(794 - 561 = 233 \)

17) \(8213 - 947 = 7266 \)

18) \(723411 - 89725 = 633686 \)

19) \(312 - 193 = 119 \)

20) Take 34 from 87

21) \(4 \frac{1}{2} - \frac{1}{2} = 4 \)

22) \(3 \frac{1}{4} - \frac{3}{8} = 2 \frac{7}{8} \)

23) \(7 \frac{1}{4} - \frac{5}{15} = 6 \frac{11}{32} \)

24) \(25 \frac{1}{8} - 12 \frac{5}{24} = 12 \frac{11}{24} \)

25) \(\frac{7}{16} - \frac{3}{8} = \frac{1}{16} \)

26) \(4.318 - 2.206 = 2.112 \)

27) \(573 - 32.1 = 540.9 \)

28) \(.62 - .15 = .47 \)

29) \(45.1 - 6.78925 = 38.31075 \)

30) \(31.18 - 9.75 = 21.43 \)
Multiply:

31) \(\frac{5}{4} \times \frac{1}{2} = \frac{5}{8} \)

32) 382 \times 14 = 5348

33) 326 \times \frac{407}{1} = 32682

34) 314 \times 2.5 = 7850

35) 458 \times \frac{13}{5} = 5954

36) \(\frac{1}{2} \times 4 = 2 \)

37) \(\frac{1}{4} \times \frac{4}{3} = \frac{1}{3} \)

38) \(\frac{3}{8} \times \frac{2}{3} = \frac{1}{4} \)

39) \(\frac{2}{3} \times \frac{3}{2} \times \frac{1}{10} = \frac{1}{25} \)

40) \(\frac{5}{8} \times \frac{1}{10} \times \frac{1}{2} = \frac{1}{16} \)

41) 314 \times 5 = 1570

42) 1.2 \times 0.07 = 0.084

43) 2.12 \times 43 = 916.46

44) 16.7 \times 0.0058 = 0.09846

45) 2.31 \times 2.4 = 5.4944
50) \(2585 + 5 = 2617\)
51) \(\frac{1}{2} + \frac{1}{4} = \frac{3}{4}\)
52) \(\frac{3}{8} + \frac{7}{10} = \frac{6}{7}\)
53) \(3\frac{1}{2} + \frac{3}{72} = 3\frac{9}{14}\)
54) \(\frac{5}{9} \div \frac{3}{25} = 14\frac{19}{25}\)
55) \(\frac{3}{4} + \frac{5}{9} = \frac{19}{18}\)
56) \(0.5 \times 25.65 = 12.825\)
57) \(2.3 \times 352 = 804.6\)
58) \(75.69 + 18.4 = 94.09\)
59) \(4.2 \times 34 = 143.2\)
60) \(342 \times 3 = 1026\)

Divide:
46) 8) 1969
47) 16) 672
48) 43) 301
49) 342) 568759

\(1643 \frac{13}{94}\)
Diversified Occupations Students' Rating Sheet

Student ___________________________ Date ____________
Teacher ___________________________
To Interviewer ______________________

Use of (Key) on next page:

<table>
<thead>
<tr>
<th>Rating Sheet</th>
<th>Excellent</th>
<th>Above Average</th>
<th>Average</th>
<th>Below Average</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neatness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courtesy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promptness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kind Worker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addition:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to get along with others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: ________________________________

Signed ________________________________
Key to Rating Sheet

(Mathematics)

The "Math Skills Test" is divided in twelve (12) parts; These are addition, subtraction, multiplication, and division problems for each of three kinds of numbers: whole number, fractions and decimals. There are five problems in each part.

Examples:

Addition:
- Whole Numbers (5 problems)
- Fractions (5 problems)
- Decimals (5 problems)

If you get all five (5) correct for a particular part, say addition of whole numbers, you are rated "Excellent".

If you get four correct for a particular part, say addition of fractions, you are rated "Above Average".

And so on
MATHEMATICAL GAMES

1) Equivalent Fractions:
Select a Recorder(s) and Timer
Write a "Lowest Term" fraction on the chalkboard
Have each team name as many equivalent fractions as they can in one minute. (Teams recite individually)
Score:
One point for each fraction not repeated.

2) Operational Skills:
Duplicate "Tally Sheet" to be passed from one member of each team to the next.

Example:

<table>
<thead>
<tr>
<th>Talley Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start with</td>
</tr>
<tr>
<td>Number 8</td>
</tr>
</tbody>
</table>

Give each member of each team a card with a number on it preceded by a sign of operation
Examples: +5, -3, x $\frac{1}{2}$, +4
You can make up these cards in two sets
Each corresponding member of each team will receive the same card (or you may use flash cards)
Each member of a team will perform the operation that is on his card.
Mathematical Games continued:

The team with the correct answer first, wins.

Score:

Vary the number of points to correspond with the difficulty of the set of cards.

These games can be modified to cover any aspect of arithmetic that you want.

You can make use of "Flash Cards"
After being tested, interviewed and hired, you must fill out the following forms in order that your employer will be able to make the correct deductions for Federal and State Income Taxes from your gross wages.

EMPLOYEE'S WITHHOLDING EXEMPTION CERTIFICATE

1. IF SINGLE (or if married and wish withholding as single person), write "1." If you claim no exemptions, write "0."

2. IF MARRIED, one exemption each is allowable for husband and wife if not claimed on another certificate.

(a) If you claim both of these exemptions, write "2." (b) If you claim one of these exemptions, write "1." (c) If you claim neither of these exemptions, write "0."**

3. Exemptions for age and blindness (applicable only to you and your wife but not to dependents):

(a) If you or your wife will be 65 years of age or older at the end of the year, and you claim this exemption, write "1." (b) If both will be 65 or older, and you claim both of these exemptions, write "2." (c) If you or your wife are blind, and you claim this exemption, write "1." (d) If both are blind, and you claim both of these exemptions, write "2."**

4. If you claim exemptions for one or more dependents, write the number of such exemptions. (Do not claim exemption for a dependent unless you are qualified under Instruction 4 on other side).

5. If you claim additional withholding allowances for numerous dependents fill out and attach Schedule A (Form W-4), and enter the number of allowances claimed (if claimed file new Form W-4 each year).

6. Add the exemptions and allowances (if any) which you have claimed above and write total.

7. Additional withholding per pay period under agreement with employer. (See Instruction 1).

I CERTIFY that the number of withholding exemptions claimed on this certificate does not exceed the number to which I am entitled. 10-19-10081-1

(Signature)
You have been hired as a Sales Clerk in a large department store.

Your "Rate of Pay" is $1.75 per hour

A Sales Clerk has the following responsibilities:

a) Punching his/her Time Card
b) Writing up Sales Slips
c) Making Change

As an employee, not only do you have a responsibility to your employer, but you also have a responsibility to yourself. You should be able to compute:

a) Your Gross Pay (based on your hourly wage)

b) Your Total Deduction

c) Your Net Pay
The expression "punching the clock" means movement of a knob attached to a clock in order to record the time at that moment.

An employee is required to punch the clock each morning when he reports to work and each evening when he goes home. In fact, if he goes out of the building for lunch he is required to record this by punching the clock when he leaves and when he returns.

Time worked is recorded in hours and quarter hours. Any time less than a quarter hour is not considered. No credit is given for coming early or leaving late.

Thus, on Monday, on Tom's time card,
8:04 was treated as 8:15; 12:01 as 12:00
12:46 as 1:00 and 4:32 as 4:30; Total hours 7 \(\frac{1}{4} \)

On Tuesday 7:54 was treated as 8:00; 12:02 as 12:00
12:52 as 1:00 and 3:58 as 3:45; Total hours 6 \(\frac{3}{4} \)

Explain the adjustment in time for Wednesday, Thursday and Friday.
Assume that regular store hours are from 8 a.m. to 12 noon and from 1 p.m. to 5 p.m., and that fractional parts less than \(\frac{1}{4}\) hours are not considered.

Copy and state the number of hours indicated in each of the following.

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
<th>NUMBER OF HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:59</td>
<td>12:01</td>
<td>(\frac{4}{4})</td>
</tr>
<tr>
<td>7:00</td>
<td>12:02</td>
<td>(\frac{4}{4})</td>
</tr>
<tr>
<td>7:05</td>
<td>12:03</td>
<td>(\frac{4}{4})</td>
</tr>
<tr>
<td>7:10</td>
<td>12:04</td>
<td>(\frac{4}{4})</td>
</tr>
<tr>
<td>1:00</td>
<td>5:02</td>
<td>(\frac{4}{4})</td>
</tr>
<tr>
<td>12:58</td>
<td>4:03</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>1:11</td>
<td>5:06</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>12:54</td>
<td>3:33</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>9:10</td>
<td>12:04</td>
<td>(\frac{2}{4})</td>
</tr>
<tr>
<td>1:18</td>
<td>5:04</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>8:10</td>
<td>11:40</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>12:40</td>
<td>4:20</td>
<td>(\frac{3}{4})</td>
</tr>
</tbody>
</table>
Your Time Card

Draw the above time card and fill in completely using the time given below:

Store hours: 9 a.m. to 12 noon - 1 p.m. to 5 p.m.

<table>
<thead>
<tr>
<th></th>
<th>MORNING</th>
<th>AFTERNOON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>M</td>
<td>7:00</td>
<td>12:01</td>
</tr>
<tr>
<td>T</td>
<td>7:00</td>
<td>12:01</td>
</tr>
<tr>
<td>W</td>
<td>7:01</td>
<td>12:02</td>
</tr>
<tr>
<td>TH</td>
<td>7:00</td>
<td>12:01</td>
</tr>
<tr>
<td>F</td>
<td>7:02</td>
<td>12:02</td>
</tr>
</tbody>
</table>
Writing Up Sales Slips

A sales clerk must be very good at multiplication and addition. In completing a sales slip on which he must compute the total cost of 8 pairs of curtains at $3.98 per pair and 12 packages of curtain rods at $1.19 per package he must be able to multiply and add correctly.

DEPARTMENT STORE

Date: 9/23/49

Sold To: M. Tho
Address: 304 W. 6th

Sold By: L. W.

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
<th>COST PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>p. Curtains</td>
<td>$3.98</td>
</tr>
<tr>
<td>12</td>
<td>p. Curtain Rods</td>
<td>$1.19</td>
</tr>
</tbody>
</table>

TOTAL $55.70
Draw a sales slip for each customer and write up the following purchases:

<table>
<thead>
<tr>
<th>1) Customer</th>
<th>Quantity</th>
<th>Description</th>
<th>Cost Per Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrs. Ruth Barksdale</td>
<td>8</td>
<td>Stocking</td>
<td>$1.00</td>
</tr>
<tr>
<td>904 Clayton Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilmington, Delaware</td>
<td>3</td>
<td>Slips</td>
<td>$2.59</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Hand Bag</td>
<td>$10.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Mr. J. Ashburn</td>
<td>1</td>
<td>Water Hose</td>
<td>$4.95</td>
</tr>
<tr>
<td>204 Bancroft Pkwy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilmington, Delaware</td>
<td>2</td>
<td>Bags-Grass Seed</td>
<td>$1.50</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Bag Lime</td>
<td>$2.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Mr. R. Kempski</td>
<td>3</td>
<td>Pre. Socks</td>
<td>$1.00</td>
</tr>
<tr>
<td>407 duPont Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilmington, Delaware</td>
<td>1</td>
<td>Fr. Shoes</td>
<td>$1.95</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Ties</td>
<td>$2.75</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Shirts</td>
<td>$5.50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>T-Shirts</td>
<td>$1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Mrs. Arlene Dickerson</td>
<td>3</td>
<td>Make up two</td>
<td></td>
</tr>
<tr>
<td>1619 W. 4th Street</td>
<td></td>
<td>items and the</td>
<td></td>
</tr>
<tr>
<td>Wilmington, Delaware</td>
<td>3</td>
<td>cost per item.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAKING CHANGE

Discussion problem:

Tom bought 2 shirts at $3.50 each and gave the clerk a ten-dollar bill.

a) What was the total cost of his purchase ($7.00)

b) How much change did he receive? ($3.00)

c) Tell how the clerk would make change using the least number of coins. (5 dimes, 4 nickels, 2 quarters, 1 dime)

Cathy bought 6 pencils @ 4¢ each and 2 packs of paper @ 25¢ each. She gave the clerk a one-dollar bill.

a) What was the total cost of her purchase? ($1.74)

b) How much change did she receive? ($0.26)

c) Make change for Cathy using the least number of coins. (2 quarters, 4 dimes, 2 nickels, 1 penny)

Mary bought 2 ½ pounds of apples at 13¢ a pound, 3 cans of soup at 19¢ each and a box of crackers for 43¢. She paid for the purchase with a five-dollar bill.

a) What was the total cost of the purchase? ($4.35)

b) How much change did she receive? ($0.65)

c) How would you make change if you were the clerk? (2 quarters, 2 dimes, 5 pennies)
Two points to remember when making change:

1) When handed a bill by the customer, keep the bill in full view while repeating the cost of the article and size of the bill.

<table>
<thead>
<tr>
<th>Cost of Article</th>
<th>Amt't Offered in Pay't</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.79</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Thus you say,

"$2.79 out of $5.00"

2) In making change, use the largest bills and coins possible.

Note:

When making change you **Add**.

$2.79 out of $5.00 = $5 - $2.79

YOU THINK

$2.79 + n = $5.00

To make Change:

- Add 1 penny to $2.79 = $2.80
- Add 2 dimes to $2.80 = $3.00
- Add 2 dollars to $3.00 = $5.00

<table>
<thead>
<tr>
<th>Article Bought</th>
<th>Amt. Offered in Pay't</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 House @ $2.79</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COINS</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1c</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Copy and change sheet on the right and show how you would give change for the following purchases:

<table>
<thead>
<tr>
<th>Article(s)</th>
<th>Amount Offered</th>
<th>Amount in Paid</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 8 pencils @ 4¢ each</td>
<td>$.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) 1 pair shoes @ $14.37</td>
<td>$15.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) 1 coat @ $55.75; 1 suit @ $38.50</td>
<td>$110.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) 5yds. material @ $3.75 each</td>
<td>$20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) 238 gal. fuel oil @ 15¢ each</td>
<td>$60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) 9 balls @ $1.85 each</td>
<td>$40.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) 4 pairs stockings @ $1.25</td>
<td>$10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) 8 pairs curtains @ $3.29</td>
<td>$30.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9) 3\frac{1}{2} lbs. nails @ 20¢ a lb. and 1 hammer @ $3.50</td>
<td>$5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10) 9 storm windows @ $16.75 each and 2 storm doors @ $59.60 each</td>
<td>$300.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

COINS

<table>
<thead>
<tr>
<th>1¢</th>
<th>5¢</th>
<th>10¢</th>
<th>25¢</th>
<th>$1</th>
<th>$5</th>
<th>$10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.18</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.63</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>5.75</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>23.35</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>3.68</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.80</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>30.05</td>
</tr>
</tbody>
</table>

DOLLAR BILLS

<table>
<thead>
<tr>
<th>$0.00</th>
<th>$0.25</th>
<th>$0.50</th>
<th>$1.00</th>
<th>$2.00</th>
<th>$5.00</th>
<th>$10.00</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>11</td>
<td>2</td>
<td>7</td>
<td>94.99</td>
</tr>
</tbody>
</table>
Understanding Your Pay Check

This is a typical Pay Check

The Stub and The Check

The Stub - you keep for your records

The Check - You can sign (on the back) and exchange for cash.

You separate the stub from the check by tearing along the dotted line.

The three (3) most important numbers on the stub are:

GROSS PAY - TOTAL DEDUCTIONS - NET PAY
GROSS PAY - Amount earned before deductions

DEDUCTIONS - Each amount subtracted from gross pay

NET PAY - Amount you receive (take home pay)

\[\text{Net Pay} = \text{Gross Pay} - \text{Deductions} \]
\[N.P = G.P - T.P. \]

Which do you think is the larger

a) gross pay or deductions? \(G.P \)

b) net pay or deductions? \(N.P \)

c) gross pay or net pay? \(G.P \)

Which do you think are True and which are False?

1) Net and gross pay are always the same. \(\text{F} \)

2) Gross pay is usually larger than net pay. \(\text{T} \)

3) Take home pay is another way of saying gross pay. \(\text{F} \)

4) Net pay means the same as deductions \(\text{F} \)

5) Gross pay minus deductions equals net pay. \(\text{T} \)

6) You get to spend deductions. \(\text{F} \)

7) You get to spend net pay. \(\text{T} \)

8) You usually get to spend gross pay. \(\text{F} \)
There are two classifications of deduction, required and voluntary:

Required Deductions:
- Federal Income Tax
- State Income Tax
- Social Security (F.I.C.A.)

Voluntary Deductions:
- Health Insurance
- Charity (Ex.: United Fund)
- Purchase of Share (If you work for a corporation)
- Credit Union

All deductions are reported on your pay stub. (Draw your own.)

Record the following information on this stub.

- **Number of Hours Worked**: 20
- **Hourly Wage**: $1.75
- **Federal Income Tax**: 3.35
- **State Income Tax**: .97
- **F.I.C.A.**: 1.18

Compute and record total Deductions and Net Pay.

Employee's Statement

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Pay</td>
<td>$35.00</td>
</tr>
<tr>
<td>Federal Inc. Tax</td>
<td>3.35</td>
</tr>
<tr>
<td>State Inc. Tax</td>
<td>.97</td>
</tr>
<tr>
<td>F.I.C.A.</td>
<td>1.18</td>
</tr>
<tr>
<td>Health Ins.</td>
<td></td>
</tr>
<tr>
<td>Charity</td>
<td></td>
</tr>
<tr>
<td>Total Deductions</td>
<td>5.40</td>
</tr>
<tr>
<td>Net Pay</td>
<td>29.60</td>
</tr>
</tbody>
</table>
A Compute the Hourly Wage in each case:

<table>
<thead>
<tr>
<th>Hours Worked</th>
<th>Gross Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 23</td>
<td>$25.30</td>
</tr>
<tr>
<td>2) 15</td>
<td>$24.75</td>
</tr>
<tr>
<td>3) 39</td>
<td>$88.00</td>
</tr>
<tr>
<td>4) 40</td>
<td>$90.00</td>
</tr>
</tbody>
</table>

B 5) If your gross pay is $46.50 and your net pay is $34.47. What is the amount of total deductions?

C Compute the Net Pay in each case:

<table>
<thead>
<tr>
<th>Hours Worked</th>
<th>Hourly Wage</th>
<th>Fed. Tax</th>
<th>State Tax</th>
<th>F. J. A.</th>
<th>Health Ins.</th>
<th>Charity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6) 23</td>
<td>$1.75</td>
<td>$3.92</td>
<td>$1.01</td>
<td>$1.21</td>
<td>$.54</td>
<td>$2.00</td>
</tr>
<tr>
<td>7) 15</td>
<td>$1.45</td>
<td>$1.98</td>
<td>$.84</td>
<td>$.92</td>
<td>$.54</td>
<td></td>
</tr>
<tr>
<td>8) 40</td>
<td>$2.00</td>
<td>$13.00</td>
<td>$2.46</td>
<td>$2.36</td>
<td>$1.50</td>
<td>$2.50</td>
</tr>
<tr>
<td>9) 43</td>
<td>$3.50</td>
<td>$23.00</td>
<td>$4.57</td>
<td>$3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10) 10</td>
<td>$1.50</td>
<td>$1.17</td>
<td>$.55</td>
<td>$.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6) $31.57
7) $16.02
8) $58.18
9) $116.43
10) $2.44
Practice Problems:

Add:

A

1) 23
 31
 24
 78

2) 41
 16
 27
 84

3) 23
 45
 58
 126

4) 35
 42
 73
 140

5) 214
 241
 422
 877

6) 327
 235
 114
 706

7) 347
 256
 172
 970

8) 287
 157
 314
 758

9) 671
 328
 416
 1415

10) 457

11) 68

12) 37

13) 96834

B

14) 18793
 9345
 275
 3043

15) 9706
 238
 459
 7261

16) 3717
 98636
 459
 54722

17) 493865
 68345
 50
 49686

C

18) 23 + 61 + 97 + 10
 25) 27 + 8 + 142

19) 9 + 169 + 34 + 25
 26) 451 + 32897041

20) 238 + 77 + 54278
 27) 32 + 8 + 80018

21) 7932 + 417 + 97 + 369480
 28) 32479 + 19 + 900

22) 2314 + 20314 + 200314 + 200314
 29) 491 + 90007 + 82

23) 27 + 728 + 4297 + 36
 30) 9 + 9007 + 900083

24) 6371 + 36948 + 42 + 7389000
 31) 1781 + 9 + 800087

30
Practice Problems:

Subtract

A 1) 4694 2) 7859 3) 8947 4) 3815
 -381 -647 -6873 -1747
 4313 7212 12101 2568

 5) 51925 6) 34519 7) 56987 8) 7251 9) 38651
 -4758 -18742 -8998 -431 -9784
 4714 15777 6749 6820 28867

10) 589 - 374 13) 6782 - 5695 16) 2357 - 1598
 (215) 1087
11) 873 - 751 14) 7813 - 5658 17) 7814 - 957
 (122) (2155)
12) 3498 - 872 15) 3172 - 998
 (2626) (2174)

B 19) From 492 take 80
 412
20) From 947 take 725
 222
21) Take 317 from 849
 532
22) From 6712 take 3541
 3171

23) From 1000 take 524
 476
24) From 5281 take 794
 4487
25) Take 1250 from 2000
 750
26) From 35000 take 32974
 2026

C Find the difference between:

27) 845 and 731
 (114)
30) 2317 and 892
 (1425)
33) 4000 and 3678
 (322)
28) 937 and 512
 (425)
31) 700 and 1214
 (514)
34) 200 and 1136
 (936)
29) 314 and 478
 (164)
32) 3215 and 8714
 (5499)
35) 100000 and 92458
 (7542)
Practice Problems:

A Multiply

1) \(\frac{46}{7} \) \(\boxed{3.22} \)
2) \(\frac{83}{9} \) \(\boxed{9.2} \)
3) \(\frac{48}{32} \) \(\boxed{1.536} \)
4) \(\frac{341}{75} \) \(\boxed{4.552} \)
5) \(\frac{392}{64} \) \(\boxed{6.125} \)
6) \(\frac{819}{47} \) \(\boxed{17.4} \)
7) \(\frac{612}{345} \) \(\boxed{1.782} \)
8) \(\frac{893}{215} \) \(\boxed{4.13} \)
9) \(\frac{371}{209} \) \(\boxed{1.78} \)
10) \(\frac{587}{630} \) \(\boxed{0.937} \)
11) \(\frac{906}{321} \) \(\boxed{2.82} \)
12) \(\frac{5683}{724} \) \(\boxed{7.88} \)

B Multiply by sight:

13) \(417 \times 10 \) \(\boxed{4170} \)
14) \(417 \times 100 \) \(\boxed{41700} \)
15) \(417 \times 1000 \) \(\boxed{417000} \)
16) \(52681 \times 10 \) \(\boxed{526810} \)
17) \(100 \times 3482 \) \(\boxed{348200} \)
18) \(61297 \times 10 \) \(\boxed{612970} \)
19) \(1000 \times 349 \) \(\boxed{349000} \)
20) \(2316 \times 1000 \) \(\boxed{2316000} \)
21) \(3900 \times 10 \) \(\boxed{39000} \)
22) \(21500 \times 100 \) \(\boxed{2150000} \)
23) \(3470000 \times 10 \) \(\boxed{34700000} \)

C Find the product:

25) \(3 \times 4 \times 6 \) \(\boxed{72} \)
26) \(5 \times 2 \times 8 \) \(\boxed{80} \)
27) \(11 \times 3 \times 7 \) \(\boxed{240} \)
28) \(16 \times 8 \times 3 \) \(\boxed{0} \)
29) \(16 \times 32 \times 0 \) \(\boxed{0} \)
30) \(32 \times 2 \times 5 \) \(\boxed{160} \)
31) \(11 \times 5 \times 3 \) \(\boxed{165} \)
32) \(20 \times 5 \times 10 \) \(\boxed{1000} \)
33) \(15 \times 6 \times 18 \) \(\boxed{0} \)
34) \(27 \times 3 \times 1 \) \(\boxed{81} \)
35) \(0 \times 82 \times 35 \) \(\boxed{0} \)
36) \(8 \times 15 \times 8 \times 3 \) \(\boxed{7680} \)
Practice Problems:

Divide:

1) 6)18
2) 9)63
3) 8)56
4) 4)92
5) 5)665
6) 3)627
7) 6)858
8) 4)328
9) 6)82008
10) 7)6379
11) 8)43864
12) 9)92748

13) 14)154
14) 17)357
15) 19)209

16) 87)509
17) 26)832
18) 32)9472

19) 43)93420
20) 231)82598
Practice Problems:

Divide:
21) 405 + 5 \[\frac{81}{1} \]
22) 4016 + 2 \[\frac{2008}{1} \]
23) 7032 + 8 \[\frac{876}{1} \]
24) 630 ÷ 20 \[\frac{33}{1} \]
25) 4302 + 90 \[\frac{373}{1} \]
26) 60544 + 344 \[\frac{1179}{1} \]
27) \[\frac{16}{8} \] \[3 \]
28) \[\frac{252}{12} \] \[21 \]
29) \[\frac{47133}{9} \] \[5 \]
30) \[\frac{1992}{83} \] \[29 \]
31) \[\frac{1442}{103} \] \[14 \]
32) \[\frac{540}{45} \] \[12 \]
33) \[\frac{54300}{150} \] \[362 \]
34) \[\frac{710907}{703} \] \[1011 \times 171 \]
Practice Problems:

Fill in the missing number:

1) \(\frac{1}{3} = \frac{2}{} \)
2) \(\frac{1}{4} = \frac{3}{} \)
3) \(\frac{1}{5} = \frac{6}{} \)
4) \(\frac{1}{6} = \frac{7}{} \)
5) \(\frac{2}{3} = \frac{0}{15} \)
6) \(\frac{3}{4} = \frac{15}{} \)
7) \(\frac{3}{8} = \frac{9}{} \)
8) \(\frac{4}{5} = \frac{40}{} \)
9) \(\frac{5}{12} = \frac{20}{} \)
10) \(\frac{7}{8} = \frac{48}{} \)
11) \(\frac{3}{10} = \frac{30}{} \)
12) \(\frac{5}{16} = \frac{80}{} \)

Reduce to Lowest terms:

13) \(\frac{3}{9} = \frac{1}{} \)
14) \(\frac{4}{8} = \frac{1}{} \)
15) \(\frac{4}{10} = \frac{2}{} \)
16) \(\frac{5}{15} = \frac{1}{} \)
17) \(\frac{6}{30} = \frac{1}{} \)
18) \(\frac{4}{16} = \frac{1}{} \)
19) \(\frac{4}{14} = \frac{2}{} \)
20) \(\frac{10}{25} = \frac{2}{} \)
21) \(\frac{6}{15} = \frac{2}{} \)
22) \(\frac{10}{32} = \frac{6}{} \)
23) \(\frac{6}{9} = \frac{2}{} \)

Change to improper fractions:

25) \(2 \frac{1}{4} = \frac{9}{} \)
26) \(1 \frac{3}{5} = \frac{8}{} \)
27) \(4 \frac{2}{3} = \frac{14}{} \)
28) \(3 \frac{1}{8} = \frac{25}{} \)
29) \(8 \frac{4}{9} = \frac{76}{} \)
30) \(5 \frac{7}{8} = \frac{47}{} \)
31) \(6 \frac{2}{3} = \frac{20}{} \)
32) \(10 \frac{1}{25} = \frac{251}{} \)
33) \(7 \frac{5}{12} = \frac{89}{} \)
34) \(9 \frac{5}{11} = \frac{104}{} \)
35) \(10 \frac{1}{3} = \frac{31}{} \)
36) \(12 \frac{3}{8} = \frac{99}{} \)
37) \(5 \frac{3}{16} = \frac{83}{} \)
38) \(7 \frac{1}{5} = \frac{36}{} \)
39) \(3 \frac{9}{10} = \frac{37}{} \)
40) \(8 \frac{5}{32} = \frac{261}{} \)
Practice Problems:

A Add:

1) \(\frac{1}{5} \)
2) \(\frac{3}{5} \)
3) \(\frac{5}{12} \)
4) \(9 \frac{3}{8} \)
5) \(7 \frac{1}{16} \)

\[
\begin{align*}
\frac{1}{5} & \quad \frac{4}{5} & \quad \frac{11}{12} & \quad \frac{7}{8} & \quad \frac{3}{16} \\
\frac{2}{5} & \quad \frac{1}{2} & \quad \frac{\sqrt{5}}{3} & \quad \frac{17}{4} & \quad \frac{1}{1}
\end{align*}
\]

Subtract:

6) \(\frac{2}{3} \)
7) \(\frac{4}{5} \)
8) \(7 \frac{9}{16} \)
9) \(11 \)
10) \(8 \)

\[
\begin{align*}
\frac{1}{3} & \quad \frac{1}{5} & \quad \frac{3\sqrt{2}}{16} & \quad \frac{7}{12} & \quad \frac{5\sqrt{3}}{16} \\
\end{align*}
\]

B Write the "Least Common denominator for each set of fractions:

11) \(\left\{ \frac{1}{2}, \frac{1}{6} \right\} \)
12) \(\left\{ \frac{3}{7}, \frac{2}{3} \right\} \)
13) \(\left\{ \frac{7}{8}, \frac{1}{3} \right\} \)
14) \(\left\{ \frac{2}{5}, \frac{3}{7} \right\} \)
15) \(\left\{ \frac{1}{4}, \frac{2}{5} \right\} \)
16) \(\left\{ \frac{1}{4}, \frac{9}{10} \right\} \)

17) \(\left\{ \frac{5}{8}, \frac{1}{6} \right\} \)
18) \(\left\{ \frac{3}{4}, \frac{1}{6} \right\} \)
19) \(\left\{ \frac{4}{15}, \frac{7}{30} \right\} \)
20) \(\left\{ \frac{3}{8}, \frac{1}{12} \right\} \)
21) \(\left\{ \frac{3}{7}, \frac{11}{21} \right\} \)

22) \(\left\{ \frac{7}{16}, \frac{5}{32} \right\} \)

...
Practice Problems:

A Add:

1) \(\frac{1}{2} \)
 \[\frac{1}{2} \]
 \[\frac{5}{6} \]

2) \(\frac{1}{3} \)
 \[+ \frac{3}{4} \]
 \[\frac{1}{12} \]

3) \(\frac{1}{4} \)
 \[+ \frac{1}{2} \]
 \[\frac{2}{12} \]

4) \(3 \frac{1}{3} \)
 \[+ 5 \frac{1}{6} \]
 \[\frac{8}{3} \]

5) \(3 \frac{7}{10} \)
 \[+ 8 \frac{1}{2} \]
 \[+ 5 \frac{3}{4} \]
 \[\frac{17 \frac{12}{30}} {17 \frac{12}{30}} \]

6) \(9 \frac{3}{5} \)
 \[+ 4 \frac{5}{8} \]
 \[\frac{13 \frac{12}{20}} {13 \frac{12}{20}} \]

7) 18
 \[+ \frac{3}{4} \]
 \[\frac{22 \frac{1}{2}} {22 \frac{1}{2}} \]

8) \(9 \frac{1}{3} \)
 \[+ \frac{5}{9} \]
 \[\frac{18 \frac{5}{9}} {18 \frac{5}{9}} \]

9) \(7 \frac{1}{4} \)
 \[+ 11 \frac{2}{3} \]
 \[\frac{18 \frac{5}{9}} {18 \frac{5}{9}} \]

10) \(7 \frac{1}{4} \)
 \[+ 3 \frac{1}{2} \]
 \[\frac{16 \frac{3}{10}} {16 \frac{3}{10}} \]

Subtract:

11) \(\frac{5}{6} \)
 \[- \frac{1}{2} \]
 \[\frac{1}{3} \]

12) \(\frac{3}{4} \)
 \[- \frac{2}{3} \]
 \[\frac{1}{12} \]

13) \(\frac{2}{5} \)
 \[- \frac{5}{8} \]
 \[\frac{1}{10} \]

14) \(7 \frac{2}{3} \)
 \[- 5 \frac{4}{9} \]
 \[2 \frac{2}{9} \]

15) \(9 \frac{1}{5} \)
 \[- 6 \frac{7}{10} \]
 \[\frac{3}{2} \]
A Multiply:

1) \(\frac{1}{2} \times 8 = \) \(\square \) 7

2) \(\frac{1}{2} \times 24 = \) \(\square \) 8

3) \(\frac{3}{4} \times 12 = \) \(\square \) 9

4) \(\frac{5}{6} \times 36 = \) \(\square \) 10

5) \(\frac{3}{10} \times 20 = \) \(\square \) 11

6) \(\frac{5}{11} \times 44 = \) \(\square \) 12

B 7) \(\frac{1}{2} \times \frac{1}{3} = \) \(\square \) 13

8) \(\frac{1}{4} \times \frac{3}{8} = \) \(\square \) 14

9) \(\frac{5}{12} \times \frac{3}{5} = \) \(\square \) 15

10) \(8 \times \frac{11}{16} = \) \(\square \) 16

11) \(\frac{7}{10} \times \frac{1}{7} = \) \(\square \) 17

12) \(\frac{4}{5} \times \frac{10}{18} = \) \(\square \) 18

C 13) \(5\frac{1}{2} \times \frac{2}{5} = \) \(\square \) 19

14) \(3\frac{1}{4} \times \frac{4}{9} = \) \(\square \) 20

15) \(\frac{7}{10} \times 3\frac{3}{7} = \) \(\square \) 21

16) \(18\frac{1}{2} \times 4\frac{1}{4} \times \frac{3}{8} = \) \(\square \) 22

17) \(2\frac{1}{3} \times \frac{3}{10} = \) \(\square \) 23

18) \(4\frac{1}{5} \times 12\frac{1}{2} = \) \(\square \) 24

19) \(1500 \times \frac{1}{100} \times \frac{3}{5} = \) \(\square \) 25

20) \(2\frac{3}{5} \times 1\frac{1}{2} + 2 = \) \(\square \) 26
Practice Problems:

A Divide:

1) \(\frac{3}{5} + \frac{3}{5} \) (1)

2) \(\frac{3}{4} + \frac{3}{8} \) (2)

3) \(\frac{7}{8} + \frac{5}{16} \) (3/5)

4) 15 + \(\frac{5}{6} \) (18)

5) 27 + 2 \(\frac{1}{4} \) (12)

6) 12 + 4 \(\frac{4}{5} \) (2 1/2)

7) 1 \(\frac{1}{8} \) + \(\frac{9}{24} \) (3)

8) \(\frac{3}{4} \) + 35 (1/4)

9) \(\frac{8}{16} \) + \(\frac{5}{16} \) (1)

10) 70 + 4 \(\frac{3}{8} \) (10)

11) 44 + 1 \(\frac{2}{5} \) (3 1/7)

12) 2 \(\frac{2}{3} \) + 1 \(\frac{7}{8} \) (1 1/3)

13) 4 \(\frac{13}{16} \) + 1 \(\frac{12}{32} \) (3 1/2)

14) \(\frac{7}{8} \) x \(\frac{4}{9} \) + \(\frac{5}{36} \) (4 1/4)

39
Practice Problems:

Write as decimals:

1) \(\frac{1}{10} \) (0.1)
2) \(\frac{7}{100} \) (0.07)
3) \(\frac{29}{100} \) (0.29)
4) \(\frac{67}{1000} \) (0.067)
5) \(\frac{3}{1000} \) (0.003)
6) \(\frac{217}{1000} \) (0.217)
7) \(\frac{9}{10000} \) (0.0009)
8) \(\frac{6}{100} \) (0.06)
9) \(\frac{152}{1000} \) (0.152)
10) \(\frac{1}{10000} \) (0.0001)

Write as common fractions:

13) \(\frac{21}{10} \) (2.1)
14) \(\frac{6}{8} \) (0.75)
15) \(\frac{25}{100} \) (0.25)
16) \(\frac{185}{1000} \) (0.185)
17) \(\frac{0025}{1000} \) (0.0025)
18) \(\frac{0001}{1000} \) (0.0001)
19) \(\frac{1001}{10000} \) (0.1001)
20) \(\frac{0086}{10000} \) (0.00086)
21) \(\frac{204}{100} \) (2.04)
22) \(\frac{06686}{1000} \) (0.06686)
23) \(\frac{01}{100} \) (0.01)

Write as mixed decimals:

25) \(1 \frac{1}{10} \) (1.1)
26) \(15 \frac{3}{100} \) (15.03)
27) \(73 \frac{30}{100} \) (73.3)

Write as mixed numbers:

31) \(9 \frac{6}{10} \) (9.6)
32) \(6 \frac{246}{1000} \) (6.246)
33) \(8 \frac{054}{1000} \) (8.054)
34) \(14 \frac{0635}{1000} \) (14.0635)
35) \(549 \frac{0001}{1000} \) (549.0001)
36) \(10.03 \) (10.03)
Practice Problems:

Add:

1) \(\frac{.5}{+.4} + \frac{2.9}{.9} = 1.07 \)

2) \(.78 \)

3) \(.347 + .655 = 1.002 \)

4) \(3.36 + .37 + 21.7 = 25.73 \)

5) \(52 + 3.64 + 5.761 = 61.401 \)

6) \(2.38 + .418 + 5.2 + 7 = 14.998 \)

Subtract:

7) \(.9 - .6 = .3 \)

8) \(1.2 - .7 = .5 \)

9) From 4.50 take 1.82 = 2.68

10) Take .98 from \(\frac{1}{2} \)

Multiply:

11) \(.3 \times .7 = .21 \)

12) \(.72 \times .4 = .288 \)

13) \(2.5 \times 1.7 = .425 \)

14) \(.0076 \times .005 = .0000380 \)

15) \(.045 \times .0037 = 0.0001665 \)

Divide each decimal by 10, then by 100, then by 1000:

16) \(\frac{.35}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

17) \(\frac{.375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .00375 \)

18) \(\frac{1.0}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .000375 \)

19) \(\frac{19}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .003 \)

20) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

21) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

22) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

23) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

24) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

25) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

26) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

27) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

28) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

29) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

30) \(\frac{.00375}{10} \times \frac{10}{100} \times \frac{1000}{1000} = .0000375 \)

41
VARIABLES

Write a whole number that is between 1 and 50. Now add 5 to this number. Here are some of the possibilities:

\[2 + 5 \quad 14 + 5 \quad 37 + 5 \quad 49 + 5 \quad 18 + 5 \]

Generally this can be expressed as:

Some number plus 5

or

? + 5 \quad \Delta + 5 \quad \square + 5 \quad x + 5 \quad \# + 5

Can you think of other ways to write the same idea?

Symbols like, ?, \(\Delta\), \(\square\), \#, used in this way are called Variables. In mathematics, letters such as, a, b, c, ... l, m, n, ... r, s, t, ... x, y, or z are used as variables.

Variables are symbols (letters) that hold a place for a number.

\[x + 5 \quad 2y + 10 \]
what number added to 5 \quad 2 times what number plus 10

\[\frac{4}{x} \quad 15 - p \]
four divided by what number \quad 15 minus what number
Directed Numbers = Positive and Negative Numbers.

We are all familiar with positive numbers.

They are the numbers of arithmetic.

We know how to add them, subtract them, multiply them, and divide them. All problems cannot be solved with positive numbers only.

If a gain of $5 is indicated by plus 5, (+5) How would you indicate a loss of $5? Would this number be a positive number? No it would not. We need some other kind of numbers other than positive.

By extending the number line to the left of zero, we extend our number system.

to a system that includes both positive and negative numbers.

For every positive number on the number line, there is a corresponding negative number to the left of zero, for example +2 and -2

Such pairs of numbers are called opposites. -2 is the opposite of +2 and +2 is the opposite of -2.
Numbers on the number line to the right of zero are called "Positive" numbers. They are distinguished by placing a positive (+) sign in front of them, however it should be understood that 2 and +2 represent the same number.

Numbers to the left of zero are called "Negative" numbers. They are distinguished by placing this (-) sign in front of them. Negative two can be written as -2.

Positive and Negative Numbers are called Directed Numbers.

Every number on the number line has an "Opposite" and the sum of a number and its opposite is zero.

\[
5 + (-5) = 0 \quad (-5) + 5 = 0
\]

\[
a + (-a) = (-a) + (a) = 0
\]

We will call the opposite of a number the Additive Inverse. Do you see why?
Thus the opposite of a number, and the additive inverse describe the same number.

<table>
<thead>
<tr>
<th>Number</th>
<th>Additive Inverse or Opposite</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>(-\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(-1.3)</td>
<td>(+1.3)</td>
<td>0</td>
</tr>
<tr>
<td>(+.6)</td>
<td>(-.6)</td>
<td>0</td>
</tr>
<tr>
<td>(-4)</td>
<td>(+4)</td>
<td>0</td>
</tr>
</tbody>
</table>

A symbol like the negative sign is used to indicate the opposite of the negative of a number. Not all opposites of numbers are negative.

The opposite of \(-6\) is \(+6\) or 6.

\(-(-6) = +6\) this is read, "the opposite of negative six is positive six"
A Write in symbols:
1) The opposite of negative twelve. \(+12 \)
2) The opposite of negative nine. \(-9 \)
3) The additive inverse of positive seven. \(-7 \)
4) The opposite of negative eleven is positive eleven. \(-(-11) = 11 \)
5) The opposite of positive forty is negative forty. \(-40 \)

B For each, write the number that when added to the given number, makes the statement true.

\[a + (-a) = 0 \] or \[(-a) + a = 0 \]

Example:
\[-4 + n = 0 \]
\[n = 4 \]

6) \(3 + n = 0 \)
\[n = -3 \]

7) \(0.25 + n = 0 \)
\[n = -0.25 \]

8) \(-1\frac{2}{3} + c = 0 \)
\[c = 1\frac{2}{3} \]

9) \(-14 + p = 0 \)
\[p = 14 \]

10) \(5\frac{1}{2} + p = 0 \)
\[d = 5\frac{1}{2} \]

11) \(-1\frac{1}{2} + t = 0 \)
\[t = 1\frac{1}{2} \]

12) \(100 + n = 0 \)
\[n = -100 \]

13) \(-\frac{2}{5} + \frac{3}{5} = h \)
\[h = \frac{1}{5} \]

14) \(o + m = 0 \)
\[m = -o \]

15) \(-6 + p = 0 \)
\[p = 6 \]

16) \(-\frac{3}{5} + h = 0 \)
\[h = \frac{3}{5} \]

17) \(-1 + r = 0 \)
\[r = 1 \]
Absolute Value

The absolute value of a number is the distance the number is from zero on the number line independent of direction. It is always positive. A pair of vertical bars \(| \) is the symbol used to designate absolute value.

\[-4\] is read "the absolute value of negative four"

\[| -4 | = | 4 | = 4 \]

The distance from 0 to \(-4\) is the same as the distance from 0 to \(+4\).

Write the opposite of:

1) \(-4\) \(4\)
2) \(+16\) \((-16)\)
3) \(-1\frac{1}{2}\) \(1\frac{1}{2}\)
4) \(+.3\) \(-.3\)
5) \(+\frac{4}{8}\) \(-\frac{4}{8}\)
6) \(-\frac{9}{16}\) \(\frac{9}{16}\)

Write the additive inverse:

19) \(-15\) \(15\)
20) \(+.1\) \(-.1\)
21) \(56\) \((-56)\)
22) \(4\frac{1}{3}\) \(-4\frac{1}{3}\)
23) \(-2.3\) \(2.3\)
24) \(17\frac{1}{2}\) \(-17\frac{1}{2}\)
25) \(1001\) \((-1001)\)
26) \(-9\) \(9\)
27) \(-15,430\) \(15,430\)

\[54\]
B. Evaluate the following:

28) $-4 \left[\begin{array}{c} 4 \end{array} \right]$
29) $21 \left[\begin{array}{c} 21 \end{array} \right]$
30) $+7 \left[\begin{array}{c} 7 \end{array} \right]$
31) $0 \left[\begin{array}{c} 0 \end{array} \right]$

32) $+1 \frac{1}{2} \left[\begin{array}{c} \frac{3}{2} \end{array} \right]$
33) $-8.6 \left[\begin{array}{c} -8.6 \end{array} \right]$
34) $+100 \left[\begin{array}{c} 100 \end{array} \right]$
35) $8 \left[\begin{array}{c} 8 \end{array} \right]$
36) $+8 \left[\begin{array}{c} 8 \end{array} \right]$
37) $-7 \left[\begin{array}{c} -7 \end{array} \right]$
38) $-16 \left[\begin{array}{c} -16 \end{array} \right]$
39) $-\frac{1}{2} \left[\begin{array}{c} -0.5 \end{array} \right]$

40) $5 + 7 \left[\begin{array}{c} 12 \end{array} \right]$
41) $-5 + 3 \left[\begin{array}{c} -2 \end{array} \right]$
42) $6 - 4 \left[\begin{array}{c} 2 \end{array} \right]$
43) $6 - 9 \left[\begin{array}{c} -3 \end{array} \right]$
44) $5 - 7 \left[\begin{array}{c} -2 \end{array} \right]$
45) $-4 - 3 \left[\begin{array}{c} -7 \end{array} \right]$
46) $-4 - 6 \left[\begin{array}{c} -10 \end{array} \right]$
47) $-6 + 7 \left[\begin{array}{c} 1 \end{array} \right]$
48) $-4 + 12 \left[\begin{array}{c} 8 \end{array} \right]$
49) $-6 + 4 \left[\begin{array}{c} -10 \end{array} \right]$
50) $-6 + 15 \left[\begin{array}{c} 9 \end{array} \right]$

55
ADDICTION OF DIRECTED NUMBERS

When adding Directed Numbers on the number line, we can use Arrows or Vectors (→). A vector has length and direction. The number indicates the length of the vector and the sign of the number indicates the direction of the vector.

+ sign ___ you move to the right on the number line
- sign ___ you move to the left on the number line

To add on the number line, draw a vector for the first addend starting at the zero point going in the direction of the sign. Then draw the second vector, starting from the end of the first vector, going in the direction of the sign. The sum is the new vector from zero to the new end point.

Ex: Add +2 and +4

```
+2
0
1
2
3
4
5
6
```

Add: -2 and -3

```
-5
-4
-3
-2
-1
0
1
2
3
4
5
```

Add: -6 and +2

```
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
```

-4

5(c)
Number Line

Vector Operations
Add:

\[
\begin{align*}
\frac{+2}{+4} & \quad \frac{-2}{-4} & \quad \frac{+2}{+4} & \quad \frac{-2}{-4} \\
\frac{+6}{+6} & & \frac{-6}{-6} & & \frac{-2}{-2} & & \frac{+2}{+2}
\end{align*}
\]

To Add Directed Numbers

If the signs are alike, both positive or both negative, simply add and write the same sign.

If the signs are unlike, a positive and a negative, find the difference between the two numbers and write the sign of the number with the greater vector length.

A

Add:

1) \(\frac{+5}{+3} = \frac{8}{8}\)
2) \(\frac{-4}{-1} = \frac{-5}{-5}\)
3) \(\frac{+7}{-2} = \frac{-8}{-8}\)
4) \(\frac{-2}{-3} = \frac{-5}{-5}\)

5) \(\frac{+8}{+15} = \frac{3}{3}\)
6) \(\frac{+4}{-4} = \frac{0}{0}\)
7) \(0 - 9 = -9\)
8) \(\frac{+6}{-6} = \frac{0}{0}\)

9) \(\frac{0}{+1} = \frac{1}{1}\)
10) \(\frac{-83}{-49} = \frac{-162}{-162}\)
11) \(\frac{3}{4} - \frac{1}{4} = \frac{1}{2}\)
12) \(\frac{-9}{-14} = \frac{-132}{-132}\)

13) \((+3) + (-7) + (-8) = -15\)

14) \(\frac{+8}{+8} = \frac{16}{16}\)
15) \(\frac{-3}{-8} = \frac{-24}{-24}\)
B. 22) (+8) + (-15) 25) 4 - 8 28) 9 - 7 + 2 23) (-1) + (+11) 26) -6 +7 29) - 6 - 8 24) -5 -3 27) -5 -3 30) -2 -3 +9 -1 +3

C. 31) \(\frac{1}{2} + 2 \frac{1}{2} + (-3 \frac{1}{2}) + 4 \frac{1}{2} + 2 \frac{1}{3} + (-3 \frac{1}{3}) + \frac{2}{3} + (- \frac{1}{3}) \) 32) \(\frac{1}{3} - (- \frac{2}{3}) + \frac{4}{5} + (-5) + 2.5 + (-.5) + 3.5 + 2.4 - 2.9 \) 33) 2.5 + (-3.5) +4 + (-5) + 2.5 + (-.5) + 3.5 + 2.4 - 2.9 34) .5 + (-10.1) + .4 + (-1.2) + (-3) + (-.7) + (-1.4) + 5
Subtracting Signed Numbers

If you buy something that cost 65 cents and give the clerk a dollar, he may count your change saying "65, 75 (handing you a dime), one dollar (handing you a quarter"). He added a dime (10¢), and then a quarter (25¢). If you add 65 + 35 you get 100. The clerk did a subtracting problem (100 - 65) by adding.

Algebraically

\[100 - 65 = n \quad \text{or} \quad 65 + n = 100\]

65 + n = 100 means what number added to 65 equals 100?

Subtraction on the Number Line

Subtract +2 from +6

\[\begin{align*}
+6 - +2 \quad \text{or} \quad +2 + n &= +6 \\
\end{align*}\]

You Think:

What number added to +2 equals +6?

\[2 + (6-2) = 6\]

\[2 + 4 = 6\]

On the Number Line:

In what direction and how many units do you move to get from the subtrahend to the minuent?

Answer: Positive direction and 4 units to the right = +4
Subtract:

\((+3) - (-4)\) is thought of as

Negative four plus what number is equal to positive 3?

\(-4 + n = +3\)

You Think:

What number added to \(-4\) equals \(+3\)?

\[-4 + (3 - (-4)) = 3\]
\[-4 + 7 = +3\]

On The Number Line:

In what direction and how many units do you move to get from the subtrahend to the minuend?

Answer: Positive direction and 7 units to the right = \(+7\)

The distance from \(-4\) to \(+3\) is 7 units. The direction is to the right or positive. Therefore:

\[+3 - (-4) = +7\]

Check:

\[+3 - (-4) = +7\]

because: \(-4 + (+7) = 3\)
For any directed numbers \(a\) and \(b\)

\[a - b = a + (-b)\]

Replace the subtrahend by its opposite and add

Add: \[
\begin{array}{c|c|c|c|c|c}
\text{Add:} & \text{Subtract:} & \text{Add:} & \text{Subtract:} & \text{Add:} & \text{Subtract:} \\
+3 & +3 & -3 & -3 & -3 & -3 \\
+\frac{1}{4} & +\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\
+\frac{1}{7} & +\frac{1}{1} & -\frac{1}{7} & -\frac{1}{7} & -\frac{1}{7} & -\frac{1}{7} \\
\end{array}
\]

Add: \[
\begin{array}{c|c|c|c|c|c}
\text{Add:} & \text{Subtract:} & \text{Add:} & \text{Subtract:} & \text{Add:} & \text{Subtract:} \\
+3 & +3 & 0 & 0 & 0 & 0 \\
-\frac{1}{4} & -\frac{1}{4} & +\frac{1}{4} & +\frac{1}{4} & +\frac{1}{4} & +\frac{1}{4} \\
-\frac{1}{7} & -\frac{1}{7} & +\frac{1}{7} & +\frac{1}{7} & +\frac{1}{7} & +\frac{1}{7} \\
\end{array}
\]

A. Subtract on the number line using vectors:

1) +6
2) +2
3) -5
4) -3
5) -4
6) 0
7) -2
8) +4

Subtract:

9) \frac{3}{3}
10) \frac{9}{6}
11) \frac{11}{6}
12) \frac{-5}{-2}
13) \frac{-7}{-2}
14) \frac{-4}{-2}
15) \frac{-8}{-2}
16) \frac{-7}{-2}
17) \frac{-5}{-2}
18) \frac{-11}{-2}
19) \frac{-5}{-2}
20) \frac{-11}{-2}
21) \frac{-5}{-2}
22) \frac{-5}{-2}
23) \frac{-11}{-2}
24) \frac{-5}{-2}
25) \frac{9}{-2}
26) \frac{-13}{-2}
27) \frac{70}{-2}
28) \frac{-3}{-2}
29) \frac{-14}{-2}
30) 0

...
Subtract the lower number from the upper number:

B. 31) \(\frac{1}{2} \) \(32) + \frac{3}{8} \) \(33) - \frac{7}{5} \) \(34) - \frac{5}{50} \)

\[
\begin{align*}
31) & \quad + \frac{1}{2} & 32) & \quad + \frac{3}{8} & 33) & \quad - \frac{7}{5} & 34) & \quad - \frac{5}{50} \\
& \quad \frac{1}{4} & 32) & \quad \frac{3}{8} & 33) & \quad \frac{4}{5} & 34) & \quad \frac{1}{50} \\
\hline
& \quad \frac{1}{4} & & \quad \frac{3}{8} & & \quad \frac{4}{5} & & \quad \frac{1}{50} \\
\end{align*}
\]

35) \(\frac{10}{10} \) \(36) - \frac{6}{10} \) \(37) + \frac{3}{4} \) \(38) - \frac{5}{12} \)

\[
\begin{align*}
35) & \quad + \frac{10}{10} & 36) & \quad - \frac{6}{10} & 37) & \quad + \frac{3}{4} & 38) & \quad - \frac{5}{12} \\
& \quad \frac{2}{10} & 36) & \quad \frac{6}{10} & 37) & \quad \frac{1}{5} & 38) & \quad \frac{7}{8} \\
\hline
& \quad \frac{1}{5} & 36) & \quad \frac{1}{8} & 37) & \quad \frac{11}{20} & 38) & \quad \frac{11}{24} \\
\end{align*}
\]

39) \(\frac{3}{8} \) \(40) - \frac{5}{12} \) \(41) -19 \frac{1}{6} \) \(42) \frac{4}{7} \) \(43) -13 \frac{1}{3} \)

\[
\begin{align*}
39) & \quad + \frac{3}{8} & 40) & \quad - \frac{5}{12} & 41) & \quad -19 \frac{1}{6} & 42) & \quad \frac{4}{7} & 43) & \quad -13 \frac{1}{3} \\
& \quad \frac{1}{6} & 40) & \quad \frac{1}{4} & 41) & \quad -7 \frac{1}{4} & 42) & \quad \frac{1}{64} & 43) & \quad +26 \frac{1}{3} \\
\hline
& \quad \frac{13}{24} & 40) & \quad \frac{2}{3} & 41) & \quad -11 \frac{11}{12} & 42) & \quad \frac{31}{64} & 43) & \quad -39 \frac{8}{3} \\
\end{align*}
\]

C. Subtract as indicated:

44) \(27 - 5 \) \(45) \) \(-6 \) - \(+7 \) \(46) \) \(2 \) - \(-2 \) \(47) \) \((8 + 7) - (6 - 13) \) \(48) \) \((4 - 3) - (6 - 10) \) \(49) \) \((2 - 6) - (7 - 8) \)

\[
\begin{align*}
44) & \quad 22 & 45) & \quad -13 & 46) & \quad 4 & 47) & \quad 22 & 48) & \quad 5 & 49) & \quad -3 \\
\end{align*}
\]

50) From - 5 subtract 10 \(-15 \)

51) Take 4 from 1 \(-3 \)

52) From - 3 take - 7 \(-10 \)

63
Simplify by finding the absolute value and performing the indicated operation.

53) \(|-4| - |-2|\) \(= 2\)

54) \(|6 - 2| - |-5|\) \(= 1\)

55) \(|1 - 3| - |4 - 7|\) \(= 7\)

56) \(|-3 - 8| - 6\) \(= 5\)

57) \(|8 - |5 + 9|\) \(= -6\)

58) \(|0 - 2| - (4 - 2)\) \(= 4\)

59) \(|6 - 3| - |4 + 2|\) \(= 3\)

60) \(|(2 - 3)| + (6 + 4)|\) \(= 9\)

61) \(|6 - 3| + |10 + 5|\) \(= 12\)

62) \(|6 + 4| - |6 - 2|\) \(= 6\)

63) \(-10 - 12| + |6 + 3|\) \(= 1\)

64) \(|5 + 6| - |6 + 3|\) \(= 8\)

65) \(|4 + 2| + |4 - 2|\) \(= 12\)
MULTIPLICATION OF SIGNED NUMBERS

In Algebra, multiplication is indicated differently than in arithmetic.

In arithmetic the x symbol is used to indicate multiplication. Ex. The product of 3 and 4 would be
\[3 \times 4 \]

In Algebra, the x symbol is very seldom used, instead we use:
- a raised dot \(3 \cdot 4 \)
- or parentheses \(3(4) = (3)(4) \)

When multiplying a number by a variable (letter) or a variable by a variable, the raised dot or parentheses are omitted.

Ex:
- 3 times y = 3y
- r times s = rs

Multiplication can be thought of as Repeated Addition.

Consider:
\[(-3)(+4) = (+4) + (+4) + (+4) = +12 \]

The product of two positive numbers is positive.

Similarly,
\[(+3)(-4) = (-4) + (-4) + (-4) = -12 \]

The product of a positive number and a negative number is negative.
What do you think the product of \((-3)(-4)\) is?

(Two negative numbers)

Since \(-3\) means the opposite of \(+3\)

\(-3(-4)\) means to take the opposite of \(+3(-4)\), or \(-[+3(-4)]\)

We know that

\(+3(-4) = -12\)

and that the opposite of \(-12\) is \(+12\)

i.e. \(-(-12) = +12\)

therefore

\((-3)(-4) = +12\)

The product of a negative number and a negative number is a positive

A Find each indicated product:

1) \(+5\)

\[\begin{array}{c}
+9 \\
\hline
45
\end{array}\]

2) \(+6\)

\[\begin{array}{c}
+8 \\
\hline
16
\end{array}\]

3) \(+7\)

\[\begin{array}{c}
+7 \\
\hline
21
\end{array}\]

4) \(-2\)

\[\begin{array}{c}
-3 \\
\hline
-6
\end{array}\]

5) \(-9\)

\[\begin{array}{c}
-4 \\
\hline
-36
\end{array}\]

6) \(-6\)

\[\begin{array}{c}
-7 \\
\hline
-63
\end{array}\]

7) \(-8\)

\[\begin{array}{c}
-5 \\
\hline
-40
\end{array}\]

8) \(-7\)

\[\begin{array}{c}
+8 \\
\hline
+64
\end{array}\]

9) \(-5\)

\[\begin{array}{c}
0 \\
\hline
0
\end{array}\]

10) \(0\)

\[\begin{array}{c}
-8 \\
\hline
-8
\end{array}\]

11) \(+6\)

\[\begin{array}{c}
-6 \\
\hline
-36
\end{array}\]

12) \(+12\)

\[\begin{array}{c}
-8 \\
\hline
-96
\end{array}\]

13) \(+4\)

\[\begin{array}{c}
-5 \\
\hline
-20
\end{array}\]

14) \(-4\)

\[\begin{array}{c}
-12 \\
\hline
-12
\end{array}\]

15) \(+2,5\)

\[\begin{array}{c}
-1,4 \\
\hline
-3,5
\end{array}\]

16) \(-3\frac{1}{2}\)

\[\begin{array}{c}
+2\frac{1}{4} \\
\hline
+2,6
\end{array}\]

17) \(-12\)

\[\begin{array}{c}
-1\frac{2}{3} \\
\hline
-1\frac{2}{3}
\end{array}\]

18) \((-3)(-7)\)

\[\begin{array}{c}
(21)
\end{array}\]

19) \((-1)(1)(-1)\)

\[\begin{array}{c}
(1)
\end{array}\]

20) \(\frac{3}{2}(-2)\)

\[\begin{array}{c}
-1
\end{array}\]

21) \((-3)(-\frac{1}{3})\)

\[\begin{array}{c}
(1)
\end{array}\]
B. 22) \((-3)(-9)\) 23) \((+4)(-7)\) 24) \((11)(-14)\) 25) \(-8(-7-5)\) 26) \((+6 \times -2)(-4)\) 27) \((\frac{1}{2})(\frac{-3}{4})(\frac{-2}{3})\) 28) \((-6)(-3)(-2 \times -5)\) 29) \((-2)(+3)(-1)(-4)\) 30) \(-5(3-8)-(1-4)\)

C. Simplify by performing the indicated operation, and then find the absolute value.

31) \(|-1(-5)|\) 32) \(-10-6\) 33) \(|-4|-7|\) 34) \(|12-3|\) 35) \(|-6(-2)(-9)(-1)|\) 36) \(|-5(-4)(-11)(-1)|\) 37) \(|(5)(-7)|\) 38) \(-6|15|\) 39) \(|15|-10|\) 40) \(-5|(3)(-9)(-7)|\) 41) \(|(-4)(7)|\) 42) \(|1.2 - 2|\) 13 + 3
DIVISION OF SIGNED NUMBERS

As in arithmetic, division in algebra may be indicated in several ways:

Ex: \(t \) divided by 3

a) \(\frac{t}{3} \)
b) \(\frac{1}{3} t \)
c) \(\frac{t}{3} \)

The first method is \((t+3)\) is very seldom used in algebra.

Division is often thought of as the "Inverse" operation of multiplication.

\[
\frac{+15}{+3} = +5 \text{ because } (+3)(+5) = +15
\]

\[
\frac{-15}{-3} = +5 \text{ because } (-3)(+5) = -15
\]

If the signs are alike, both positive or both negative (dividend and divisor) the quotient is positive

\[
\frac{+15}{-3} = -5 \text{ because } (-3)(-5) = +15
\]

\[
\frac{-15}{+3} = -5 \text{ because } (+3)(-5) = -15
\]

If the signs are unlike, one positive and one negative (dividend and divisor) the quotient is negative
B. 22) \((-3)(-9)\) 25) \((-8(-3-5))\) 28) \((-6)(-3)(-2 \times -5)\)
 23) \((+4)(-7)\) 26) \((+6 \times -2)(-4)\) 29) \((-2)(+3)(-1)(-4)\)
 24) \((3-14)\) 27) \((\frac{1}{2})(-\frac{1}{4})(\frac{-2}{5})\)

C. Simplify by performing the indicated operation, and then find the absolute value.

 31) \(|(-1)(-5)|\) 34) \(|12-3|\) 6-8\) 18\)
 32) \(-10 \div -6\) 35) \((-6)(-2)(-9)(-1)\) -105\)
 33) \(|-4| |-7|\) 36) \(|-5|-4)(-11)(-1)\) 220\)

 37) \(|(5)(-7)|\) 40) \(-5 \div (-3)(-9)(-7)\) -145\)
 38) \(-6 \div 15\) 41) \(|(-4)(7)|\) 42) \(|(-3)(-2)|\) -168\)
 39) \(15 \div (-10)\) 42) \(|12 - 2|\) 13 + 3\) -168\)
DIVISION OF SIGNED NUMBERS

As in arithmetic, division in algebra may be indicated in several ways:

Ex: \(t \) divided by 3
 a) \(t + 3 \)
 b) \(\frac{1}{3} t \)
 c) \(\frac{5}{3} \)

The first method is \((t+3)\) is very seldom used in algebra.

Division is often thought of as the "Inverse" operation of multiplication.

\[
\frac{+15}{+3} = +5 \text{ because } (+3)(+5) = +15
\]

\[
\frac{-15}{-3} = +5 \text{ because } (-3)(+5) = -15
\]

If the signs are alike, both positive or both negative (dividend and divisor) the quotient is positive

\[
\frac{+15}{-3} = -5 \text{ because } (-3)(-5) = +15
\]

\[
\frac{-15}{+3} = -5 \text{ because } (+3)(-5) = -15
\]

If the signs are unlike, one positive and one negative (dividend and divisor) the quotient is negative
Find the indicated quotients

A. 1) \(\frac{30}{5} \) 2) \(\frac{16}{4} \) 3) \(\frac{54}{9} \) 4) \(\frac{56}{-7} \) 5) \(\frac{18}{-3} \) 6) \(\frac{45}{-5} \) 7) \(\frac{-9}{9} \) 8) \(\frac{7}{7} \) 9) \(\frac{-15}{-1} \) 10) \(\frac{60}{10} \) 11) \(\frac{36}{-6} \) 12) \(\frac{40}{1} \) 13) \(\frac{-8}{-2} \) 14) \(\frac{-15}{3} \) 15) \(\frac{0}{6} \) 16) \(\frac{-63}{7} \) 17) \(\frac{0}{-3} \) 18) \(\frac{90}{18} \) 19) \(\frac{-80}{10} \) 20) \(\frac{0}{15} \) 21) \(\frac{-72}{-2} \) 22) \(\frac{-144}{16} \) 23) \(\frac{0}{-20} \) 24) \(-\frac{3}{7} + 3\)

B. 25) \(36 + (-\frac{1}{2}) \) 26) \(15 + 6 \) 27) \(18 \) 28) \(16 + (-\frac{1}{4}) \) 29) \(21 + 14 \) 30) \(-8\) 31) \(3 \) 32) \(-5 + 50 \) 33) \(-4 + 3.2 \) 34) \(-7 + 21 \)

Simplify:

35) \(\frac{-8}{3} \) 36) \(\frac{-10}{4} \) 37) \(\frac{12 - 3}{4} \) 38) \(\frac{8(-1)+7(-6)}{-5(5)} \) 39) \(\frac{6(4-7)-5(6-12)}{-3(1-5)} \)

49
C. Simplify by performing the indicated operation.

Ex: \(\frac{-16}{8} = \frac{16}{8} = +2 \)

40) \(\frac{-80}{-5} \)

41) \(\frac{-241}{-2} \)

42) \(\frac{-81}{-9} - \frac{61}{-9} \)

43) \(\frac{(-12)(+7)}{|8-9| - |1-5|} \)

44) \(\frac{-3}{|(-6)+(-7)|} \)

45) \(\frac{-2}{7 + 3} \)

46) \(\frac{-30}{-5} \)

47) \(\frac{-3}{5 - 7} \)

48) \(\frac{(-17)(+6)}{|7 + 4| - |1 - 4|} \)

49) \(\frac{-14}{-7} \)

50) \(\frac{14 + 6}{14 + 7} \)
Exponents

You are familiar with the formula for finding the area of a square.

\[A = s^2 \] (in this formula \(s \) represents the length of the side)

Evaluate

\[A = s^2 \]
\[A = 3^2 \]
\[A = 3 \times 3 \]
\[A = 9 \text{ square units} \]

In the expression of the form \(b^n \),
the number \(b \) is called the "Base" and
the number \(n \) is called the "Exponent"
The Exponent Tells You How Many
Times To Use The Base as a Factor

3^1 = 3 = (3 is a factor 1 time) = 3
3^2 = 3 \cdot 3 = (3 is a factor 2 times) = 9
3^3 = 3 \cdot 3 \cdot 3 = (3 is a factor 3 times) = 27
3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = (3 is a factor 4 times) = 81

3^2 is read "3 squared.
3^3 is read "3 cubed.
3^4 is read "3 to the fourth.
3^5 is read "3 to the fifth.

Rewrite each of the following expressions in shorter form.

Ex. \(b \cdot b = b^2 \)

A. 1) c \cdot c \cdot c \quad 12) \text{Five times the cube of } y \quad 21) \text{The cube of } (2-a)
2) a cubed \quad 13) \text{Eight times the square of } p \quad 22) \text{The cube of the sum of } r \text{ and } 3
3) d squared \quad 14) 6 \cdot 6 \cdot 6 \cdot 6 \quad 21) \text{The cube of } (a-2)
4) 7 n \cdot n \cdot n \quad 15) \text{One-fourth cubed} \quad 22) \text{The cube of the sum of } r \text{ and } 3
5) 14 m \cdot m \cdot m \quad 16) \text{The square of } 3 t \quad 23) \text{The cube of the sum of } r \text{ and } 3
6) n \cdot n \cdot n \quad 17) \text{The square of } 8 i \quad 24) \text{The cube of the sum of } r \text{ and } 3
7) 8 n \cdot n \cdot n \quad 18) \text{The cube of } x y \quad 25) \text{The cube of } (a-2)
8) E fourth \quad 19) \text{The cube of } r s \quad 26) \text{The cube of } (a-2)
9) F cubed \quad 20) \text{The cube of } (a-2) \quad 27) \text{The cube of } (2-a)
10) R used as a factor 5 times \quad 21) \text{The cube of } (2-a) \quad 28) \text{The cube of the sum of } r \text{ and } 3
B. Evaluate:

23) 2^2
24) 3^4
25) 27
26) 6^4
27) -3^2
28) -2^5
29) 5^2
30) $(\frac{1}{2})^3$
31) $(\frac{1}{3})^4$
32) $\left(\frac{2}{3}\right)^3$
33) $\left(\frac{1}{8}\right)^3$
34) $\left(\frac{3}{4}\right)^2$
35) 1^{75}
36) 0^5
37) 0.3^2
38) 0.03^2
39) -0.1^3
40) -0.14
41) 1.2^2
42) 1.4^1
43) 0.1
44) 0.03
45) 0.001
46) 0.003
47) If $m = 3$, then $m^2 = (9)$.
48) If $n = 4$, then $n^3 = (64)$.
49) If $p = 3$, then $4p^2 = (36)$.
50) If $x = \frac{1}{3}$, then $(9x)^3 = (\frac{27}{9})$.
51) If $y = \frac{1}{4}$, then $(8y)^3 = (\frac{8}{4})$.
52) If $t = -\frac{1}{4}$, then $(2t)^2 = (\frac{1}{16})$.
53) 73
Punctuation Marks in Algebra

What is the answer to the following statement?

\[3 \times 3 \div 3 \]

Is it 12 or is it 18?

In order to decide we must punctuate the statement.

If we write it as:

\[(3 \times 3) \div 3\]

the answer is 12

If we write it as:

\[3 \times (3+3)\]

the answer is 18

A pair of parentheses is called a symbol of inclusion, because it is used to enclose or group two or more symbols (numbers and or letters) to represent one number.

Look at 3 \((2, 4)\) are parentheses tell you to add before you multiply.

There are other symbols of inclusion:

<table>
<thead>
<tr>
<th>Parentheses</th>
<th>Brackets</th>
<th>Braces</th>
<th>Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>((2, 4))</td>
<td>([2+4])</td>
<td>{2, 3}</td>
<td>(\overline{2+4})</td>
</tr>
</tbody>
</table>

When you see a group inside of another group such as:

\[2[4 + (7 - 2)]\] you simplify from the inside out

\[2[4 + (7 - 2)] = 2[4 + 5]\]

\[= 2[9]\]

\[= 18\]

\[74\]
A Copy and simplify:

Ex: \(\frac{4}{-2} + (7+3) = -2 + 10\)
\[= 8\]

1) \(-4 + (2 \times 3)\)
2) \((7-3) + 5\)
3) \((5+3)(-1)\)
4) \(8 \div (3-5)\)
5) \(\frac{15 \div 4}{6 \div 4}\)
6) \(\frac{10 + 1}{1 - 2}\)
7) \(3 \cdot 2 + (4-2)\)

8) \(\frac{20}{-5}\)
9) \(\frac{64}{8}\)
10) \(\frac{7}{21}\)
11) \(\frac{17 + 1}{8 - 2}\)

12) \(2 \{6 \div 5 + 2\}\)

13) \(5[2 + 1 - 2] - 6\)
14) \(\frac{4}{-2} \div (7-3)\)
15) \(\frac{6(2)}{12 - 4}\)
16) \(\frac{5 - 2}{5 - 2}\)
17) \(\frac{13 - 10}{5 \cdot 2}\)
18) \(\frac{15 - 5}{2(-10)}\)

B 19) \([\{\frac{100 - 36}{1 + 7} - 8\} \times 3] + 5\) \(\times 200\)
20) \([\{50 + 5\} + 5]\) \(+ 1\)

21) \([\{\frac{579 + 682}{39} \times 27\} + \frac{9}{3}\times 3\]

22) \([2\{\frac{52 - 100}{-3} + 80\} + 16]\) \(\times 1\)

23) \([3\{4(2) + (6)(10)\} + 56\] \(- 8 \div 2\)
Order of Operations

Parentheses and other symbols of inclusion are used to make the meaning of numerical expressions clear. However, there are standard rules you may use when punctuation marks are omitted in a numerical expression. The rules give the order to follow when performing the operations indicated in the expression.

Consider:

\[
\begin{align*}
2 + 4 + 5 & \text{ means } (2 + 4) + 5 = 6 + 5 = 11 \\
8 - 3 - 2 & \text{ means } (8 - 3) - 2 = 5 - 2 = 3 \\
2 + 3 \times 4 & \text{ means } 2 + (3 \times 4) = 2 + 12 = 14 \\
24 \div 6 - 1 & \text{ means } (24 \div 6) - 1 = 4 - 1 = 3 \\
12 \times 4 - 7 \times 2 & \text{ means } (12 \times 4) - (7 \times 2) = 48 - 14 = 34 \\
35 \div 5 \times 2 & \text{ means } (35 \div 5) \times 2 = 7 \times 2 = 14 \\
3 \times 5 \times 2 & \text{ means } (3 \times 5) \times 2 = 15 \times 2 = 30 \\
3 + 2 (5 - 2) & \text{ means } 3 + 2 (3) = 3 + 6 = 90
\end{align*}
\]

When a numerical expression contains a series of numerals joined by symbols of operation, we:

1. Remove symbols of inclusion working from the inner most symbol out;
2. Raise to a power;
3. Do the multiplication and division in order from left to right;
4. Finally, do the addition & subtraction in order from left to right.
A. Copy and simplify:

1) \(12 - 0 - 1\)
2) \(5 - 3 - 2\)
3) \(4(3) + 7\)
4) \(7 + 7 \times \frac{1}{3}\)
5) \(20 + 5 + 2\)
6) \(12 + 6 \times 4\)
7) \(10 + 9 + 3\)
8) \(48 + 5 \times 0\)
9) \(21 + 1 \times 7\)
10) \(21 + 7 \times 1\)
11) \(80 + 8 - 80 + 10\)
12) \(12(4) - 16 + 2\)
13) \(7 \times 5 \times 4\)
14) \(\frac{1}{5} \times 12 - \frac{1}{2} \times 2\)

B. 15) \(6 \times 2 - 2 + 2\)
16) \(7 \div 7 + 2 \times 7\)
17) \(16 - 2(4) + 5\)
18) \(5 - 2 + 4 \times 3\)
19) \(12 \times 6 + 12 \times 4\)

C. 25) \(\frac{5(3) + 20}{5 + 2}\)
26) \(\frac{2 \times 3 + 21}{2 + 1}\)
27) \(27 + 10 - (11 + 3)\)
28) \(-7 \times 2 + 3 - 15\)
29) \(7(-2) + 4 - \frac{14}{2}\)
30) \(3^2 + 4 \times 2 - 7\)

D. 31) \(30 - 3(7 - 2)\)
32) \(\frac{4(3+1) - 1}{4 + 1}\)
33) \(2 + 4 - 5 \times 1 + 3\)
34) \(4^2 - 3^3 + 2 \times 4\)
35) \(16 + (-2) + 2^3 - 7 \times 2\)
36) \(4^2 + 1^{16} - 15 + \frac{2 \times 3}{3}\)

77
Copy and simplify each of the following expressions:

Ex: 10 + 2(3+7) - 4 (1-5)
 10 + 2(10) - 4(-4)
 10 + 20 - 16
 30 - 16
 14

A 1) (7+3) + 3 + 1
 2) (7+3+2) + 3 + 1
 3) 5(7-9) + 4 + 3
 4) 21 + 5(7+3) - 20
 5) 6(7+2) - 15 + 5
 6) \frac{9 - 5(3-2)}{3 + 5}

B 13) \frac{1}{2} \left[8 + 2(-4) + (8 \times 4 +2) \right]
 14) \frac{4 \times 5 \times 20 - 6 + 2}{13 + 3 \times 1 \times 5}
 15) \frac{\frac{2}{3} - \frac{4}{3}}{7 - 15}

16) \frac{1 + 44 + 4 + 12 \times 44}{3 \times 3 - 3 + 3 + 2}
 17) 3 + 48 - 16 - 35 + 7
 18) \frac{32 - \left(\frac{1}{2}\right)^2}{2} (6)
LANGUAGE OF ALGEBRA

Algebra, as all branches of mathematics, has its own language and symbols. Symbols previously used in arithmetic are also used in algebra with some additional ones.

Operational symbols

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>+</td>
</tr>
<tr>
<td>Subtraction</td>
<td>-</td>
</tr>
<tr>
<td>Multiplication</td>
<td>x, *, () , ab</td>
</tr>
<tr>
<td>Division</td>
<td>÷, (\frac{a}{b})</td>
</tr>
</tbody>
</table>

Others

<table>
<thead>
<tr>
<th>Equality</th>
<th>Inequalities</th>
<th>Inclusion</th>
<th>Square Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td><, ></td>
<td>(), [], { }</td>
<td>(\sqrt{\quad})</td>
</tr>
</tbody>
</table>

Absolute Value

\[| | \]

Pi

\[\pi \]

Words and Phrases

- **Constant** - a variable with just one value
- **Variable** - a symbol used to hold the place of a numeral
- **Numerical Expression** - consist of one or more numerals, with or without operational symbols
- **Variable Expression** - an expression that contains at least one variable
- **Algebraic Expression** - Any variable expression or numerical expression
Term - an algebraic expression written as a product or quotient of numerals or variables or both
Factor - each of the numbers multiplied to find a product
Coefficient - each factor of a product
Evaluating an Algebraic Expression - Performing indicated operation to determine the number an algebraic expression represents

One must be able to translate verbal statements into algebraic statements and vice-versa. Different words in a phrase or sentence tell you which operation and what symbols to use in order to make a translation.

WORDS THAT IMPLY

<table>
<thead>
<tr>
<th>Addition</th>
<th>Subtraction</th>
<th>Multiplication</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)</td>
<td>(-)</td>
<td>(·)</td>
<td>(÷)</td>
</tr>
<tr>
<td>Plus</td>
<td>Subtract</td>
<td>Multiply</td>
<td>Divide</td>
</tr>
<tr>
<td>Sum</td>
<td>Minus</td>
<td>Times</td>
<td>Quotient</td>
</tr>
<tr>
<td>Add</td>
<td>Decrease</td>
<td>Product</td>
<td>Ratio</td>
</tr>
<tr>
<td>More than</td>
<td>Less than</td>
<td>Twice</td>
<td>What Part Of</td>
</tr>
<tr>
<td>Greater than</td>
<td>Difference</td>
<td>Double</td>
<td>Half</td>
</tr>
<tr>
<td>Increase</td>
<td>Remainder</td>
<td>Square</td>
<td>Fourth, etc.</td>
</tr>
<tr>
<td></td>
<td>Diminish</td>
<td>Cube</td>
<td></td>
</tr>
</tbody>
</table>
Algebra and Mind-Reading

Mind-reading stunt 1.
Think of a number less than 10. Add 4 to this number. Multiply what you now have by 2. Subtract 5 from this product and from this difference take away the original number.
If you will tell me the answer you now have, I will tell you the number you chose in the first place.

Mind-reading stunt 2.
Think of any number. Multiply the number by 3. Add 2. Subtract the original number. Subtract 2.
You now have a number which is exactly twice the number you started with.

Something to think about: How do I know these mysterious facts?

Mind-reading stunt 3.
1. Make up your own set of direction.
2. Take a number and follow your own directions.
3. Give me your set of directions and you final answer, and I will tell you your original number.

<table>
<thead>
<tr>
<th>Stunt 1</th>
<th>Stunt 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2(n + 4) - 5] - n</td>
<td>[3(n) + 2 - n - 2]</td>
</tr>
<tr>
<td>[2n + 8 - 5 - n]</td>
<td>[3n + 2 - n - 2]</td>
</tr>
<tr>
<td>[n + 3]</td>
<td>[2n]</td>
</tr>
</tbody>
</table>
Look at the following:

The sum of five and seven
\[5 + 7 \]

The difference between \(x \) and four
\[x - 4 \]

The area \((A) \) divided by the length \((l) \)
\[\frac{A}{l} \]

The square of the velocity \((v) \)
\[v^2 \]

Six diminished by 3
\[6 - 3 \]

Two times \(p \)
\[2p \]

To write algebraic expressions, write numerals, variables, and operational symbols in proper order as required.

A. Copy and express algebraically:

1) \(x \) added to \(y \)
 \[x + y \]

2) \(a \) plus 7
 \[a + 7 \]

3) Five increased by three
 \[5 + 3 \]

4) Take 4 from \(m \)
 \[m - 4 \]

5) 4 less \(d \)
 \[4 - d \]

6) \(m \) minus \(n \)
 \[m - n \]

7) the sum of \(d \) and twelve
 \[d + 12 \]

8) 13 more than \(t \)
 \[t + 13 \]

9) 9 times \(y \)
 \[9y \]

10) Two times \(\pi \) times the radius
 \(\pi r \)

11) Twice seven
 \[2(7) \]

12) One-fifth \(x \)
 \[\frac{1}{5} x \]

13) The square of the side \((s) \)
 \[s^2 \]

14) The square of \(M \)
 \[M^2 \]

15) The cube of \(n \)
 \[n^3 \]

16) \(b \) increased by 5
 \[b + 5 \]

17) From \(a \) subtract \(b \)
 \[a - b \]

18) the sum of \(a, b, \) and \(c \)
 \[a + b + c \]
3. 19) 4 times m
20) \(a^2\) multiplied by d
21) \(s\) divided by \(y\)
22) the ratio of \(d\) to 12
23) the quotient of \(c\) and \(3\)
24) What part of \(k\) is \(y\)
25) \(v^2\) divided by 3

26) Double \(x\)
27) Triple \(y\)
28) \(p\) squared
29) One-half \(q\) multiplied by \(r\)
30) The product of 13 and \(s\)
31) Divide \(v\) by \(w\)
32) Twice \(p\) divided by three

C. 33) Twice the radius \(r\)
34) Three times the side \(s\)
35) The principal \(p\) plus the interest \(i\)
36) The circumference \(c\) divided by pi \(\pi\)
37) The length \(l\) times the width \(w\) times the height \(h\)
38) The profit \(p\) added to the cost \(c\)
39) One-half the product of the altitude \(a\) and base \(b\)
40) The sum of twice length \(l\) and twice the width \(w\)
41) The cube of the edge \(e\)
42) Twice \(\pi\) \(\pi\) times the radius \(r\) times the sum of the height \(h\) and radius
43) The square root of the difference between the square of the hypothesis \(h\) and square of the base \(b\)
Use the correct operational symbol to express each statement, then perform the operation.

Example: Seven plus three divided by 2 is what?

$$\frac{7+3}{2} = \frac{10}{2} = 5$$

1) Multiply 15 by 6
 \[90\]

2) Divide 27 by 3
 \[9\]

3) Add 26 and 30
 \[56\]

4) 15 is how many times as large as 3?
 \[5\]

5) What is the remainder of 90 minus 34?
 \[56\]

6) How many sevens are in 168?
 \[24\]

7) Give the product of 15 and 17.
 \[(15)(17)\]

8) If 21 is increased by 29, what is the total?
 \[50\]

9) What does one thousand diminished by nine equal?
 \[991\]

10) Increase 5 by four, less two.
 \[7\]

11) What does eleven more than 30 equal?
 \[41\]

12) What does 99 decreased by 10 equal?
 \[89\]

13) When six is multiplied by three, what is the result?
 \[18\]

14) Subtract 21 from 90.
 \[69\]

15) Find the sum of 18 and 16.
 \[34\]

16) What is the product of 18 and 16?
 \[(18)(16)\]

17) 2 plus 8 divided by 4 times 12.
 \[4\]

18) What is the product when the sum of 4 and 6 is multiplied by eight?
 \[(6)(10)\]

19) What is the cube of 10?
 \[1000\]

20) The product of 2 and 4, decreased by 3 is what?
 \[5\]
Evaluating Algebraic Expressions

The value of an algebraic expression depends on the numerical value given to each variable of the expression. Usually, if these values change, the value of the expression changes.

How To
Evaluate an Algebraic Expression

<table>
<thead>
<tr>
<th>Copy the expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitute the given numerical value for each variable</td>
</tr>
<tr>
<td>Perform the indicated operations</td>
</tr>
</tbody>
</table>

Example:

Evaluate \(c^2 + d^2 \) if \(c = 8 \) and \(d = 4 \)

Copy and substitute \(c^2 + d^2 = 8^2 + 4^2 \)
Perform indicated operation \(= 64 + 16 \)
\(= 80 \)

Evaluate \(\frac{x}{y} - 3 \) if \(x = 4 \) and \(y = 2 \)

\(\frac{x}{y} - 3 = \frac{4}{2} - 3 \)
\(= 2 - 3 \)
\(= -1 \)

Evaluate \(2p^2 t^3 \) if \(p = 4 \) and \(t = -3 \)

\(2p^2 t^3 = 2 (4)^2 (-3)^3 \)
\(= 2 (16) (-27) \)
\(= 32 (-27) \)
\(= -768 \)
Evaluate each Expression

When \(a = 12 \) and \(b = 6 \)

1) \(a + b \) \(\square \)
2) \(a - b \) \(\square \)
3) \(ab \) \(\square \)
4) \(\frac{a}{b} \) \(\square \)
5) \(a^2 \) \(\square \)
6) \(7a \) \(\square \)
7) \(4(a - b) \) \(\square \)
8) \(a^2 - b^2 \) \(\square \)

When \(x = 4 \) and \(y = 3 \)

9) \(x + 6y \) \(\square \)
10) \(5xy \) \(\square \)
11) \(4x - 8y \) \(\square \)
12) \(x(x - y) \) \(\square \)
13) \(9x^2y \) \(\square \)
14) \(9xy^2 \) \(\square \)
15) \((9x + y)^2 \) \(\square \)
16) \(x^2 - y^2 \) \(\square \)
17) \((x + y)^2 \) \(\square \)
18) \(\frac{x + y}{2x - y} \) \(\square \)

When \(m = 8 \), \(n = -2 \) and \(x = 4 \)

19) \(3mnx \) \(\square \)
20) \(10mn - 7mx \) \(\square \)
21) \((m + n)(m - n) \) \(\square \)
22) \(m - n(m + n) \) \(\square \)
23) \(5m^2 + 2mx - 3x^2 \) \(\square \)
24) \(\frac{(n - x)^2}{n^2 - x^2} \) \(\square \)

When \(a = 4 \), \(b = 2 \) and \(c = 3 \)

25) \(a^2 + b^2 + c^2 \) \(\square \)
26) \(a - b + c^2 \) \(\square \)
27) \(a^2 + b - 2c^2 \) \(\square \)
28) \(a^2 + b - c^2 \) \(\square \)
29) \(a^2 + 2b + 3c \) \(\square \)
30) \((a + b + c)^2 \) \(\square \)
31) \((ac)^3 + b \) \(\square \)
32) \(\frac{6b + 3a^2}{c} \) \(\square \)
33) \(\frac{c^2 - 27}{ab} \) \(\square \)
34) \(\frac{(2b - c)^3 + b^3}{(2a - c + b)^3} \) \(\square \)
Evaluate each expression:

When \(r = 1, s = 3, t = 12, u = 0, v = 5 \) and \(w = \frac{1}{2} \)

35) \((v \cdot v - v) - v\) \(= \sqrt{5}\)

36) \((2w - r)(2w + r)\) \(= 0\)

37) \((3r + t)(3r + t)\) \(= 225\)

38) \(\frac{4w + 3r}{7}\) \(= \frac{5}{7}\)

39) \(\frac{6w + 5}{7v}\) \(= \frac{\sqrt{7}}{\sqrt{10}}\)

40) \(\frac{3v + t}{5s - t}\) \(= \frac{3}{4}\)

41) \(\frac{16s \cdot w}{(4s)(2r)}\) \(= 1\)

42) \(\frac{t(2s + v)}{t(2s - v)}\) \(= \frac{1}{2}\)

43) \(\frac{2w(s + r)}{2w(s - r)}\) \(= \frac{3}{4}\)

44) \(\frac{st - u}{5t + u}\) \(= \frac{3}{5}\)

45) \(\frac{2r + st}{v + uw}\) \(= 1\frac{1}{2}\)

46) \(\frac{2r + 2s + t}{u + s}\) \(= 3\)

47) \(\frac{5 + r + 6s}{t(u + 2u)}\) \(= \frac{5}{3}\)

48) \(\frac{2s + 27}{uv + 2w}\) \(= \frac{1}{3}\)

49) \(\frac{rst}{tw}\) \(= 3\)

50) \(\frac{4(w + t)}{s(rt + 1)}\) \(= \frac{2}{3}\)
The following algebraic expressions are found in geometry, physics, and machine shop. Evaluate each by replacing the variable as indicated.

1) Area of a trapezoid: \(h \left(\frac{b + B}{2} \right) \)
 Let \(h = 4" \), \(b = 6" \) and \(B = 7" \)

2) Distance traveled in a given second under acceleration: \(\frac{a}{2} (at - 1) \)
 Let \(a = 20 \text{ ft/sec/sec} \), \(t = 6 \text{ sec} \)

3) Length of an open belt over pulleys of equal diameter: \(2L + \pi D \)
 Let \(L = 12.250 \), \(D = 3.000 \), \(\pi = 3.142 \)

4) Degrees centigrade to degrees Fahrenheit: \(\frac{5}{9} (\text{F} - 32) \)
 Let \(\text{F} = 77 \)

5) Area of a circular cross section: \(\pi (R - r)(R + r) \)
 \(R = 24" \)
 \(r = 20" \)
 \(\pi = \frac{22}{7} \)
A. Evaluate each:

1) \(2x^2 + 4x + 5; \ x = 3\)

2) \(5y^2 - 3y + 4; \ y = 1\)

3) \(7t^3 + t^2 - t; \ t = 2\)

4) \(a^3 - 2a^2 + a + 4; a = 5\)

5) \(v^5 + 3v^4 - v^3 + v; v = 0\)

6) \(w^{10} + w^5 + w + 9; w = 0\)

B. Let \(x = 5, \ y = 2\) and \(t = 3\)

7) \(x^2 + y^2 + t^2\)

8) \(x - y^2 - t^2\)

9) \(x^2 + y + t^2\)

10) \(x - y + t^2\)

11) \(x^2 + y^2 - 2t^2\)

12) \(x^2 - y^2 + t^2\)

13) \(x^2 + y - t^2\)

14) \(\frac{2x^2 + xy}{20t}\)

15) \(\frac{t^3 - 27}{xy}\)

16) \(\frac{7y^2t - 2x^2}{xy}\)

17) \((xt)^3 + y^6\)

18) \(-\frac{6y}{2} + 3 \times 2\)

19) \(\frac{(x-t)^3 - y^4}{x - y^2}\)

20) \(\frac{(2y - t)^3 + y^3}{(2x - t + y)^3}\)
C. Evaluate:

21) Area of a square: \(s^2 \);
let \(s = 15 \text{ cm} \)
[Image: 225.92 cm]

Volume of a cube: \(s^3 \);
let \(s = 15 \text{ cm} \)
[Image: 371.55 cm³]

22) Volume of a circular cylinder:
\(\pi r^2 h \), let \(\pi = 3.14 \)
\(r = 1.25\)''
[Image: 4.68 cm]
\(h = 12.0\)''

23) Law of gravitation: \(\frac{G m n}{r^2} \)
let \(G = 0.00000000667 \)
\(m = 100,000\)g
\(M = 900,000\)g
\(r = 1000 \text{ cm} \)
[Image: m - M - r - \(\frac{6.03 \times 10^{-8}}{1000000} \) - M]
Earlier, we defined a term as "an algebraic expression written as product or quotient of numerals or variables or both."

Terms can be classified as Like or Unlike. We are particularly interested in being able to Identify, Group, Add, and Subtract like terms.

Like terms - are numerical or variable terms whose variable factors are the same (i.e., contain the same variable with the same exponents.

7a, -8a and a are like terms
\(-14t^2, \frac{1}{4}t^2\) and \(y^2t^2\) are like terms
\(4x^2yt^3, -13x^2yt^3\) and \(x^2yt^3\) are like terms

7a and 14n are unlike terms because the variables are different
\(2x^3\) and \(3x^2\) are unlike terms because the exponents are different

Name the Like terms in each group:

\[
\begin{array}{cccccc}
(a) & (b) & (c) & (d) & (e) \\
2a & 7b & 5xy & .25c & 2mn \\
3a^2 & 8 & 5x^2y & -4c & 2(mn)^2 \\
14ab & 9b & 4x & \frac{1}{2}c & mn \\
\frac{a}{4} & 4ab & yx & \frac{1}{2}c & n^2n^2 \\
\end{array}
\]
Algebraic expressions can be simplified by **combining** similar terms.

Examples:

1) \(8x + 3y + 2x - 3y\)
 \[(8x + 2x) + (3y - 3y) = 10x + 0\]
 \[= 10x\]

2) \(5a + 4a - 2a + 3\)
 \[(5a + 4a - 2a) + 3 = (9a - 2a) + 3\]
 \[= 7a + 3\]

3) \(4ab^2 + 4ab^2 - 3(2ab^2 - ab^2)\)
 \[4ab^2 + 4ab^2 - 3(ab^2)\]
 \[8ab^2 - 3ab^2\]
 \[5ab^2\]

We group similar terms before doing the indicated operation.

A. Copy and simplify (combine like terms)

1) \(7x + 9x\)
 \[16x\]
2) \(15ab + 37ab\)
 \[52ab\]
3) \(100a - 35\)
 \[65a\]
4) \(75b - 52b\)
 \[23b\]
5) \(13a + n + 16\)
 \[n + 35a\]
6) \(15x - x - 7x\)
 \[7x\]
7) \(5x + 7x + 6\)
 \[12x + 6\]
8) \(9n + 6n + 3\)
 \[15n + 3\]
9) \(2s + 3r + s + r\)
 \[3s + 4r\]

91
\[3xy + xy + 4x^2y - 2xy - x^2y = (3xy + xy - 2xy) + (4x^2y - x^2y) = 4xy - 2xy + 3x^2y = 2xy + 3x^2y\]

B. Combine similar terms:

21) \(2a - 3 + 5a - 10a + 8\) 22) \(4r - 7 + 3r + 9 - 8r = -\infty\) 23) \(-6x + 5 - 2x + 12 = 7x - 7\) 24) \(-8y + 8 - 6y - y + 14\)

25) \(-4nt + 8 - 6 - nt = 3nt\) 26) \(-9hk + 5hk = 8 + hk + 5\) 27) \(4r + 5s - r + s - 6r\) 28) \(16a - 9b - r + s = 6r\)

29) \(16a - 9b - a + b = 7\) 30) \(5n - 8 = 3.5n + 5\) 31) \(\frac{1}{3}y - \frac{1}{2} - \frac{2}{3}y + 1 + y\)

32) \(-3a + b + 4a + a - b\) 33) \(9u - a + 5 = 6u - 6 + 2u\) 34) \(33k^2 - k^3 + 4k^3 - 40k^3\)

35) \(xyt - 8xyt - 2xyt\) 36) \(-13y + 2y^2 - 4y^2 + 6y\) 37) \(4x^2 - 5x - 6x^2 + 7x\)

38) \(-7y - 2y^2\) 39) \(m^2 - 2u^2 - 3 - m^2 - 4m\) 40) \(u^3 - 2u^2 + 4u + 3u^2 - 4u\)

41) \(2p^3 + 2p - 3p^3\) 42) \((rs)^2 + r^2s^2 - 5 + 6\)
Distributive Property

Can you simplify the following?

10 \((3w + v) + 6 (3w - v)\)

Problems of this type are not difficult if one understands the "Distributive Property."

Let's take a good look at the Distributive Property and see how it works.

The 3 is distributive throughout the two parts.
The Distributive Property relates to **Multiplication and Addition** and **Multiplication and Subtraction**.

Back to our problem:

\[
10 (3w + v) + 6 (3w - v) \\
10 (3w) + 10 \cdot v + 6 (3w) - 6 \cdot v \\
30w + 10v + 18w - 6v \\
(30w + 18w) + 10v - 6v \\
48w + 4v
\]
Generally:
\[a (b + c) = ab + ac \]
\[a (b - c) = ab - ac \]

Use the Distributive Property to simplify the following:

Example: \[9 (6 + 7) = 9 \cdot 6 + 9 \cdot 7 \]
\[= 54 + 63 \]
\[= 117 \]

A 1) \(6 (3 + 4) \)
2) \(2 (8 - 4) \)
3) \(4 (7 - 2) \)
4) \(12 (13 - 2) \)
5) \(8 (2 + 3 + 4) \)
6) \((3 + 4) 7 \)

Write these products as a sum: Example: \[5 (a + b) = 5a + 5b \]

7) \(4 (2 + 3) \)
8) \(3 (a + b - c) \)
9) \((6 - 2) 33 \)
10) \(c (4 + 2) \)
11) \(k (7a + 4b) \)
12) \(y (y + 3) \)

B Write these sums as a product: Example: \[4a + 3a = a (4 + 3) \]

13) \(3b + 2b \)
14) \(9 (8) + 9 (6) \)
15) \(7k - 3k \)
16) \(5y + 8y - 9y \)
17) \(12x + 3x \)
18) \(3y + 3 \)
19) \(3nx - x \)
20) \(xy2 - x^2y \)
A. Combine similar terms:

\[3(a + b) + 7(a + b) \]
\[3a + 3b + 7a + 7b \]
\[(3a + 7a) + (3b + 7b) \]
\[10a + 10b \]

1) \[9(m + n) + 7(2m + n) \]
2) \[8(3 + a) + 4(3 + a) \]
3) \[2(a + 5) + 3(a - 2) \]
4) \[4(d + 5) + 3(2d - 1) \]
5) \[7(6e + 3) + 5(4e - 3) \]
6) \[10(3w + v) + 6(3w - v) \]
7) \[9(2r + 8t) + 4(2r - 8t) \]
8) \[3(a + 2b + 1) + 2(a - 1) \]
9) \[4(r + 3s + 2) + 7(s - 1 + 3r) \]

B 10) \[-2(c + 3a) + 5(-r - s) \]
11) \[-7(a - 3b) + 9(-b + a) \]
12) \[3(p - 2q) - (5q - 2p) \]
13) \[-4(-7v + t) - (-t - 3v) \]
14) \[3[8a + 5(3-a)] - 17 \]
15) \[6(2r + s) + 2[5r + 3(4s - r + 1)] \]
16) \[19 + 2[4b + 3(5b - 2)] \]
17) \[5[4(2m + n + 3) - 6m - 1] + 2(5m - n) \]
18) \[3[-6 + 2(a - 4)] + 26 \]
19) \[-7n - 5[2(1 + 2n) - 3] \]
20) \[-10h - 4[-1 - 3(3h - 2)] \]
Can you solve this problem?

"Five more than three times a number is 35. What is the number?"

We could do it very easily algebraically.

In order to solve the above problem algebraically we first must know how to solve an "Equation in One Variable."

What is an equation?

An equation is an algebraic sentence composed of algebraic expressions related by the symbol = (is equal to).

The above problem may be expressed algebraically:

\[3n + 5 = 35 \]

Where:

N represents "the number to be found"

3N represents "3 times the number"

5 represents "5 more than"

=35 represents "is 35"
3n + 5 = 35

Solution:

\[
\begin{align*}
3n + 5 &= 35 \\
3n + 5 - 5 &= 35 - 5 \\
3n &= 30 \\
\frac{3n}{3} &= \frac{30}{3} \\
N &= 10
\end{align*}
\]

The solution or root of \(3n + 5 = 35\) is 10, since \(3 \cdot 10 + 5 = 35\) (i.e. when 10 is substituted for the variable and each member is evaluated, they are equal.

To solve an equation, change the given equation to a simpler equation which has only the variable by itself as one member and a constant or numeral as the other. These changes are based on four properties.

Properties of Equality

If \(a = b\), then \(a + c = b + c\) (Addition)

If \(a = b\), then \(a - c = b - c\) (Subtraction)

If \(a = b\), then \(ac = bc\) (Multiplication)

If \(a = b\), then \(\frac{a}{c} = \frac{b}{c}\) (Division)
An equation may be thought of as a "Balance". To keep the equation balanced, any change on one side of the equality sign must be balanced by equal change on the other side.

Addition

\[
\begin{array}{c}
\frac{a}{\Delta} = \frac{a + c}{\Delta}
\end{array}
\]

Subtraction

\[
\begin{array}{c}
\frac{a}{\Delta} = \frac{a - c}{\Delta}
\end{array}
\]

Multiplication

\[
\begin{array}{c}
\frac{a}{\Delta} = \frac{a \cdot c}{\Delta}
\end{array}
\]

Division

\[
\begin{array}{c}
\frac{a}{\Delta} = \frac{a}{b}
\end{array}
\]

- **Solving by use of Addition Property**
 \[
 x - 3 = 15
 \]
 \[
 x - 3 + 3 = 15 + 3
 \]
 \[
 x = 18
 \]

- **Solving by use of Subtraction Property**
 \[
 x + 5 = 13
 \]
 \[
 x + 5 - 5 = 13 - 5
 \]
 \[
 x = 8
 \]

- **Solving by use of Division Property**
 \[
 2x = 17
 \]
 \[
 \frac{2}{2} = \frac{17}{2}
 \]
 \[
 x = 8\frac{1}{2}
 \]

- **Solving by use of Multiplication Property**
 \[
 \frac{X}{4} = 3
 \]
 \[
 (4) \frac{X}{4} = 3 (4)
 \]
 \[
 x = 12
 \]
Solve using the Addition and Subtraction Properties of Equality:

Example:

The inverse of Addition is Subtraction

\[y + 4 = 16 \]
\[y + 4 - 4 = 16 - 4 \]
\[y = 12 \]

The inverse of Subtraction is Addition

\[p - 7 = 23 \]
\[p - 7 + 7 = 23 + 7 \]
\[p = 30 \]

A. 1) \(x + 2 = 6 \) 2) \(x - 1 = 8 \) 3) \(y - 6 = 7 \) 4) \(c + 18 = 31 \) 5) \(48 + w = 75 \) 6) \(n - 9 = 11 \) 7) \(h - 18 = 6 \) 8) \(k + 3 = 15 \) 9) \(t - 4 = 25 \) 10) \(r + 5 = 36 \)

B. 21) \(p + .8 = 1.1 \) 22) \(1 - .5 = 3.2 \) 23) \(t + .2 = .7 \) 24) \(h - .78 = 9.2 \) 25) \(k - .37 = 4.1 \) 26) \(.8 = n - 75.7 \) 27) \(51 = t - 51 \) 28) \(c + .09 = .23 \) 29) \($50 = i + $42.50 \) 30) \(6.5 = 4.8 + n \) 31) \(9.6 = n - 7 \) 32) \(b - 6 = -6 \) 33) \(y - 1 = -9 \) 34) \(a + $.08 = $.75 \)

When the operation is Addition we solve by subtracting.

When the operation is Subtraction we solve by adding.
35) \(t + \frac{3}{4} = 4 \)
36) \(1 \frac{1}{2} + x = 3 \frac{5}{8} \)
37) \(8 \frac{1}{3} = 4 \frac{1}{4} + d \)
38) \(1 - \frac{3}{4} = \frac{1}{4} \)
39) \(\frac{3}{10} = T - \frac{13}{10} \)
40) \(p - \frac{5}{6} = 3 \frac{1}{6} \)
41) \(\frac{3}{8} = \frac{1}{4} + x \)
42) \(\frac{1}{2} = d - 1 \frac{3}{4} \)
43) \(x - 2 \frac{1}{2} = 2 \frac{1}{2} \)
44) \(\frac{2}{3} = 0 - \frac{5}{8} \)
45) \(h - \frac{2}{3} = 3 \frac{2}{3} \)
46) \(\frac{17}{11} = s + \frac{5}{11} \)
47) \(x + 4 = 12 \)
48) \(\frac{1}{3} + > = 4 \)
49) \(d + 4 = \frac{1}{2} + 6 \frac{1}{2} \)
50) \(s + \frac{1}{4} = \frac{1}{12} \)
Solve using the Multiplication and Division Properties of Equality:

Example:

<table>
<thead>
<tr>
<th>The inverse of Multiplication is Division</th>
<th>$5a = 45$</th>
<th>$\frac{d}{z} = 19$</th>
<th>The inverse of Division is Multiplication</th>
</tr>
</thead>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1) $9c = 54$</td>
<td>2) $14n = 42$</td>
<td>3) $8y = 0$</td>
</tr>
<tr>
<td></td>
<td>4) $2r = 18$</td>
<td>5) $10w = 10$</td>
<td>6) $5c = 8$</td>
</tr>
<tr>
<td></td>
<td>7) $4y = 1$</td>
<td>8) $\frac{s}{14} = 24$</td>
<td>9) $\frac{b}{7} = 3$</td>
</tr>
<tr>
<td></td>
<td>10) $\frac{n}{5} = 0$</td>
<td>11) $\frac{t^2}{8} = 8$</td>
<td></td>
</tr>
</tbody>
</table>

When the operation is Multiplication we solve by Dividing
When the operation is Division we solve by Multiplying
B 23) \(8x = -32\)
\[\square\]
24) \(-5m = 40\)
\[\square\]
25) \(-7y = 56\)
\[\square\]
26) \(-x = -10\)
\[\square\]
27) \(-64 = -4c\)
\[\square\]
28) \(\frac{y}{-3} = 12\)
\[\square\]
29) \(\frac{8}{-6} = -18\)
\[\square\]
30) \(-8 = \frac{d}{-11}\)
\[\square\]
31) \(-5 = \frac{t}{7}\)
\[\square\]
32) \(-5 = -x\)
\[\square\]

C 33) \(\frac{1}{4} c = 20\)
\[\square\]
34) \(3.2(t) = 12.8\)
\[\square\]
35) \(\frac{x}{1.8} = 1.9\)
\[\square\]
36) \(.36y = 4.8\)
\[\square\]
37) \(.14(y) = 14\)
\[\square\]
38) \(1.6 = \frac{h}{1.5}\)
\[\square\]
How would you solve $\frac{7}{8}n = 42$?

The term $\frac{7}{8}n$ tells you to multiply n by 7 and then divide the results by 8. If we think of Inverse Operations, we would proceed like so:

Steps:
1) $\frac{7}{8}n = 42$

2) $8 \left(\frac{7}{8}n \right) = 42 (8)$

3) $7n = 336$

4) $\frac{7n}{7} = \frac{336}{7}$

5) $n = 48$

We can combine steps 2 and 4, thus eliminating step 3 by multiplying $\frac{7}{8}n$ by its "Reciprocal".

Reciprocals —— is a pair of numbers who's product is 1.

Let a be any number, then the reciprocal of a is $\frac{1}{a}$, because,

$$a \times \frac{1}{a} = 1$$
If $a = 2$, then $\frac{1}{a} = \frac{1}{2}$

$$2 \cdot \frac{1}{2} = 1$$

If $\frac{1}{a} = \frac{1}{3}$, then $a = 3$

$$\frac{1}{3} \cdot 3 = 1$$

Note: Zero does not have a reciprocal.

<table>
<thead>
<tr>
<th>Number</th>
<th>Reciprocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>$\frac{1}{7}$</td>
</tr>
<tr>
<td>-5</td>
<td>$-\frac{1}{5}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Reciprocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{4}$</td>
<td>4</td>
</tr>
<tr>
<td>$-\frac{3}{8}$</td>
<td>$-\frac{8}{3}$</td>
</tr>
<tr>
<td>$\frac{5}{6}$</td>
<td>$\frac{6}{5}$</td>
</tr>
<tr>
<td>$\frac{3}{4}$</td>
<td>$\frac{4}{3}$</td>
</tr>
</tbody>
</table>
Thus the solution of \(\frac{7}{8} n = 42 \)
becomes \(\frac{7}{8} n = 42 \)

Multiply by the \(\frac{8}{7} \):
\(\frac{8}{7} \left(\frac{7}{8} n \right) = 42 \left(\frac{8}{7} \right) \)

\(n = 48 \)

Solve using the idea of Reciprocal:
(Multiplicative Inverse)

\(A \)
1. \(\frac{3}{4} p = 24 \)
2. \(\frac{1}{8} t = 7 \)
3. \(\frac{4}{5} y = 24 \)
4. \(\frac{8}{9} = 6 \)
5. \(4 = \frac{3}{4} y \)
6. \(5 = \frac{5}{9} t \)
7. \(24 = \frac{2}{3} r \)
8. \(9 = \frac{3}{5} k \)

\(B \)
9. \(\frac{5}{3} = \frac{1}{12} x \)
10. \(\frac{3}{8} = \frac{1}{24} y \)
11. \(\frac{5}{4} w = 20 \)
12. \(\frac{1}{2} r = 3 \frac{1}{2} \)
13. \(\frac{1}{3} v = 4 \frac{2}{3} \)
14. \(3 \frac{1}{2} y = 14 \)
15. \(2 \frac{1}{4} n = 13 \frac{1}{2} \)
16. \(\frac{2}{3} = 3 \frac{1}{4} p \)

106
Let's use our algebra skill to solve some word problems.

Example:
Multiply a number by 2 and you get 6. What is the number?

Step (1) Translate the problem into an algebraic equation.

Step (2) Solve

\[2n = 6 \]

\[\frac{2n}{2} = \frac{6}{2} \]

\[n = 3 \]

The number is 3

Write an equation for each and solve:

1) Multiply a number by 9, and you get 45. \(9 \alpha = 45; \alpha = 5 \)
2) Double a number, and you get 52. \(2 \alpha = 52; \alpha = 26 \)
3) Add 5 to a number, and you get 11. \(\alpha + 5 = 11; \alpha = 6 \)
4) Subtract 4 from a number, and you get 15. \(\alpha - 4 = 11; \alpha = 19 \)
5) Add 20 to a number, and you get 39. \(\alpha + 20 = 39; \alpha = 19 \)
6) Subtract 2 from a number, and you get 5. \(\alpha - 2 = 3; \alpha = 5 \)
7) Multiply a number by 1, and you get 8. \(1 \alpha = 8; \alpha = 8 \)
8) Multiply a number, by \(\frac{1}{3} \), then multiply this product by 2, and you get 30. \(2 \left(\frac{1}{3} \alpha \right) = 30; \alpha = 45 \)
9) Multiply a number by 5, then multiply the product by \(\frac{1}{5} \), and you get 13. \(\frac{1}{5} (5 \alpha) = 13; \alpha = 13 \)
10) Add 4 to a number, subtract 4 from the sum, and you get 39. \((\alpha - 4) - 4 = 39; \alpha = 47 \)
11) Add 7 to a number, then subtract 4 from the sum, and you get 5. \((\alpha + 7) - 4 = 5; \alpha = 6 \)
12) Double a number, add 2 to the product, and you get 15. \(2 \alpha + 2 = 15; \alpha = \frac{13}{2} \)
Combining Terms and Using Transformation Principles

The solution of more difficult equations may involve using more than one Property of Equality and combining similar terms.

Consider:

\[7x + 2 = 72 \]
\[7x + 2 - 2 = 72 - 2 \quad \text{Subtraction Property of Equality} \]
\[7x = 70 \]
\[\frac{7x}{7} = \frac{70}{7} \quad \text{Division Property of Equality} \]
\[x = 10 \]

\[7y + 3y = 90 \]
\[10y = 90 \quad \text{Combining Similar terms} \]
\[\frac{10y}{10} = \frac{90}{10} \quad \text{Division Property of Equality} \]
\[y = 9 \]

\[7x + 3x - 4 = 12 - 39 \]
\[10x - 4 = 51 \quad \text{Combining Similar Terms} \]
\[10x - 4 + 4 = 51 + 4 \quad \text{Addition Property of Equality} \]
\[10x = 55 \quad \text{Combining Similar Terms} \]
\[\frac{10x}{10} = \frac{55}{10} \quad \text{Division Property of Equality} \]
\[x = 5.5 \]
A Solve:

1) \(2b + 18 = 46\)
2) \(3 + 5n = 62\)
3) \(51 = 9y + 6\)
4) \(120 = 76 + 2w\)
5) \(22h + 154 = 374\)
6) \(p + .06p = 689\)

7) \(6a - 7 = 29\)
8) \(37 = 14b - 19\)
9) \(n + n = 50\)
10) \(9x + 3x = 84\)
11) \(0 = 10n - 30\)
12) \(7y - y = 18\)

B 13) \(3x + 5x = 34 - 10\)
14) \(7n - 3n = 40 + 16\)
15) \(28 = 8x + 10x + 10\)
16) \(45 = 7x + 8x + 30\)
17) \(x - \frac{1}{2} - 10 = 0\)
18) \(\frac{6}{5}v - v - 5 = 0\)
19) \(13a + 2a + 5a + 85 = 95\)
20) \(8b + 2b + 7b + 173 = 176\)
21) \(5.6x + 2.4x + 176 = 176\)
22) \(8.3y + 2.7y + 154 = 154\)
23) \(57 = 8y + 25\)
24) \(127 = 45t + 37\)
25) \(0 = 17h - 102\)
26) \(0 = 19n - 57\)
27) \(26 = 14 + 4n\)
28) \(36 = 17 + 6r\)
29) \(\frac{2}{3}p + \frac{1}{8} = 2\)
30) \(\frac{5}{8}m + \frac{3}{4} = 7\)
31) \(\frac{2}{3}z - \frac{2}{3} = 12\)
32) \(\frac{3}{4}k - \frac{3}{4} = 24\)
33) \(23.6x - x = 45.2\)
34) \(4.5a - a = 70\)
35) \(\frac{1}{4}t + \frac{1}{4}t = 3.4\)
36) \(\frac{k}{2} - \frac{k}{6} = 2.9\)
37) \(\frac{17}{6}m - \frac{5}{6}m = 1\)
38) \[t + 14 + 2t + 5 \div 4t = 51 \]
39) \[5a + 6 - 2a + 2 - a = 56 \]
40) \[11 + 4b - 2b = 73 - 6 \]
41) \[25 + 6a + a + 7 = 32 \]
42) \[7n + 5 - 3 - n = 8 \]
43) \[25s - .5 - 5s = 0 \]
44) \[x + 2 \div 4x = 6x - 8 \]
45) \[s + 4 \div 7s - 2 = 6s \div 14 \]
46) \[r \div 2r = 10 - 4 \div r \]
47) \[n \div 16 - 12 - 4n = 2n - 24 \]
48) \[16 \div 14t = 12t \div 12 \]
49) \[17 \div 16s = 12 \div 20s \]
50) \[x \div 14 = 25x + 2 \]
Consider:

What properties are used in each case?

7v = 45 + 2v

7v - 2v = 45

5v = 45

\[
\frac{5v}{5} = \frac{45}{5}
\]

v = 9

\(x + 4x - 8 = 5 + 2x + 1\)

5x - 8 = 7 + 2x

\(\frac{5x}{5} = \frac{7 + 2x}{5}\)

3x = 15

\[\frac{3x}{3} = \frac{15}{3}\]

\(x = 5\)

\[1 + 3 \cdot (3s + 4) = 15 + 6s\]

\[1 + 3 \cdot 3s + 3 \cdot 4 = 15 + 6s\]

\(1 + 6s = 12 = 15 + (3 \cdot s)\)

9s + 13 = 15 + 6s

\(9s - (6s) = 15 - 13\)

3s = 2

\[\frac{3s}{3} = \frac{2}{3}\]

s = \(\frac{2}{3}\)

Property

Adding and Subtracting two terms at the same time

Distributive Property
Example:
\[9d + 3 (5 + d) = 2 (2d + 1)\]
\[3d + 3 \cdot 5 + 3d = 2 \cdot 2d + 2 \cdot 1\]
\[9d + 15 + 3d = 4d + 2\]
\[12d + 15 = 4d + 2\]
\[12d - 4d = 2 - 15\]
\[8d = -13\]
\[\frac{8d}{8} = \frac{-13}{8}\]
\[d = -1 \frac{5}{8}\]

A Solve:
1) \[7v = 45 + 2v\]
2) \[9u = 6u + 39\]
3) \[6L = 18 - 3L\]
4) \[5b = 23 - 2b\]
5) \[11x = 8 + 5x\]
6) \[4y = 8 + 2y\]
7) \[12 - 3r = 3r\]
8) \[9h - 35 = 0\]
9) \[5 + 2b = 7b\]
10) \[8a = 5a + 18\]
11) \[12 - y = 5y\]
12) \[b + 28 = 6b\]

B 13) \[4t + 2 = 2t + 8\]
14) \[5w + 2 = w + 7\]
15) \[7c - 7 = 15 - c\]
16) \[12a - 3 = 4 - 2a\]
17) \[4r + 2 = 2r + 2\]
18) \[16 + 4y = 10y - 20\]
19) \[24x - 24 = 12 + 2x\]
20) \[10w + 6 = 504 + 8w\]
21) \[12n + 8 = 18 - 6n\]
22) \[19r + 4 = 19 + 14r\]
23) \[7f - 1 = 29 + f\]
24) \[8u + 2 = 13 - 3u\]
Solve:

25) \(6 + 4(2 - t) = 3t\)
28) \(4(b + 1) + 9 = 2(3b - 4) + b\)

26) \(7m + 5(3 - m) = 19\)
29) \(5(2y + 3) - 4y = 3(2 + y) + 3\)

27) \(10 + 18x - 2 = 2x + 12 + 4x\)
30) \(3(t + 4) - 3 = \frac{1}{2}(10 + 4t)\)

31) \(12 \left(\frac{x}{3} - \frac{1}{2}\right) = x + 21\)
Formulas

The word formula in algebra means, a mathematical sentence stating the equality of two quantities. A general knowledge of formulas and how they work can be very useful in everyday life. When you go to the store and buy more than one item that is market 20¢ each, the total cost \(c \) is equal to the number of items purchased \(n \) times 20¢

\[c = .20n \]

This formula will give you the cost no matter how many of the items you buy.

ORAL

Complete the following:

<table>
<thead>
<tr>
<th>Cost per Item</th>
<th>Number of Item</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>20¢</td>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>5¢</td>
<td>8</td>
<td>?</td>
</tr>
<tr>
<td>4¢</td>
<td>7</td>
<td>?</td>
</tr>
<tr>
<td>$2.00</td>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>.50</td>
<td>6</td>
<td>?</td>
</tr>
<tr>
<td>$1.25</td>
<td>4</td>
<td>?</td>
</tr>
</tbody>
</table>
Write each formula algebraically:

Perimeter

1) **Rectangle:**
 - Perimeter is equal to twice the length \(L \) plus twice the width \(w \).

 \[P = 2L + 2w \]

2) **Triangle:**
 - Perimeter is equal to the length of a side \(s \) plus the length of side \(b \) plus the length of side \(c \).

 \[P = s + b + c \]

3) **Square:**
 - Perimeter is equal to four times the length \(L \) of a side \(s \).

 \[P = 4s \]

4) **Circle:**
 a) Circumference is equal to Pi times the diameter \(d \).

 \[C = \pi d \]
 b) Circumference is equal to two times Pi times the radius \(r \).

 \[C = 2\pi r \]
Area

5) Circle: Area is equal to \(\pi \) times the square of the radius \(r \)

\[A = \pi r^2 \]

6) Parallelogram: Area is equal to the altitude \(a \) times the base \(b \)

\[A = a \cdot b \]

7) Rectangle: Area is equal to the length \(L \) times the width \(W \)

\[A = L \cdot W \]

8) Square: Area is equal to the length of a side \(s \) squared

\[A = s^2 \]

9) Triangle: Area is equal to one-half the altitude \(a \) times the base \(b \)

\[A = \frac{1}{2} a \cdot b \]

10) Trapezoid: Area is equal to the height \(h \) times the sum of the two bases \(b_1 + b_2 \)

\[A = h \cdot \left(b_1 + b_2 \right) \]
To determine the value of any variable in a formula when the value of the other variables are known:

1) Copy the formula.
2) Substitute the given values for the variables.
3) Solve the resulting equation.

Formula: \(P = 4s \) (perimeter of a square). Find the value of \(s \) when \(s = 16 \)

\[
P = 4s \\
P = 4 \cdot 16 \\
P = 64
\]

Formula: \(A = Lw \) (area of a rectangle). Find the value of \(w \) when \(A = 54 \) and \(L = 9 \)

\[
1) \quad A = Lw \\
2) \quad 54 = 9w \\
3) \frac{54}{9} = \frac{9w}{9} \\
6 = w \\
w = 6
\]
Solve each of the following for the "Unknown" variable.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Known Variables</th>
<th>Unknown variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) (d = 2r)</td>
<td>(r = 85)</td>
<td>(d)</td>
</tr>
<tr>
<td>2) (A = bh)</td>
<td>(b = 32, h = 49)</td>
<td>(A)</td>
</tr>
<tr>
<td>3) (C = \pi nd)</td>
<td>(\pi = \frac{22}{7}, d = 84)</td>
<td>(C)</td>
</tr>
<tr>
<td>4) (A = p + 1)</td>
<td>(p = 620, i = 53)</td>
<td>(A)</td>
</tr>
<tr>
<td>5) (P = 2l + 2w)</td>
<td>(l = 73, w = 28)</td>
<td>(P)</td>
</tr>
<tr>
<td>6) (A = 90 - B)</td>
<td>(B = 47)</td>
<td>(A)</td>
</tr>
<tr>
<td>7) (i = prt)</td>
<td>(p = 650, r = .04, t = 2)</td>
<td>(i)</td>
</tr>
<tr>
<td>8) (V = lwh)</td>
<td>(l = 41, w = 27, h = 75)</td>
<td>(V)</td>
</tr>
<tr>
<td>9) (A = 2\pi rh)</td>
<td>(\pi = 3.14, r = 48, h = 75)</td>
<td>(A)</td>
</tr>
<tr>
<td>10) (A = s)</td>
<td>(s = 50)</td>
<td>(A)</td>
</tr>
<tr>
<td>11) (V = e)</td>
<td>(e = 8)</td>
<td>(V)</td>
</tr>
<tr>
<td>12) (V = \pi r^2 h)</td>
<td>(\pi = 3.14, r = 40, h = 65)</td>
<td>(V)</td>
</tr>
<tr>
<td>13) (A = \frac{1}{4} \pi d^2 h)</td>
<td>(\pi = \frac{22}{7}, d = 56, h = 100)</td>
<td>(A)</td>
</tr>
<tr>
<td>14) (d = \frac{c}{\pi})</td>
<td>(c = 282.6, \pi = 3.14)</td>
<td>(d)</td>
</tr>
<tr>
<td>15) (P = 2l + 2w)</td>
<td>(l = 427, w = 393)</td>
<td>(P)</td>
</tr>
<tr>
<td>16) (B = 180 - (A + C))</td>
<td>(A = 75, C = 48)</td>
<td>(B)</td>
</tr>
<tr>
<td>17) (l = a + (n-1)d)</td>
<td>(a = 6, n = 12, d = 5)</td>
<td>(l)</td>
</tr>
<tr>
<td>18) (I = \frac{E}{R + Fd})</td>
<td>(E = 220, R = 11)</td>
<td>(I)</td>
</tr>
<tr>
<td>19) (P = \frac{Fd}{t})</td>
<td>(F = 90, d = 10, t = 3)</td>
<td>(P)</td>
</tr>
<tr>
<td>20) (C = \frac{5}{9} (F-32))</td>
<td>(F = -22)</td>
<td>(C)</td>
</tr>
</tbody>
</table>
Solve each of the following for the "Unknown" variable.

<table>
<thead>
<tr>
<th>A</th>
<th>Formula</th>
<th>Known Variables</th>
<th>Unknown Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>21)</td>
<td>(p = 3s)</td>
<td>(p = 18)</td>
<td>(s)</td>
</tr>
<tr>
<td>22)</td>
<td>(d = 2r)</td>
<td>(d = 56)</td>
<td>(r)</td>
</tr>
<tr>
<td>23)</td>
<td>(A = lw)</td>
<td>(A = 96, \ l = 6)</td>
<td>(w)</td>
</tr>
<tr>
<td>24)</td>
<td>(c = \pi d)</td>
<td>(c = 15.7, \ \pi = 3.14)</td>
<td>(d)</td>
</tr>
<tr>
<td>25)</td>
<td>(i = prt)</td>
<td>(i = 140, \ p = 400, \ r = .05)</td>
<td>(t)</td>
</tr>
<tr>
<td>26)</td>
<td>(V = \pi r^2 h)</td>
<td>(V = 6,280, \ \pi = 3.14, \ r = 10)</td>
<td>(h)</td>
</tr>
<tr>
<td>27)</td>
<td>(A = bh)</td>
<td>(A = 72, \ h = 18)</td>
<td>(b)</td>
</tr>
<tr>
<td>28)</td>
<td>(A = lw)</td>
<td>(A = 777, \ w = 1)</td>
<td>(l)</td>
</tr>
<tr>
<td>29)</td>
<td>(i = prt)</td>
<td>(i = 108, \ r = 4%, \ t = 9)</td>
<td>(p)</td>
</tr>
<tr>
<td>30)</td>
<td>(V = lwh)</td>
<td>(V = 1,536, \ l = 16, \ h = 12)</td>
<td>(w)</td>
</tr>
<tr>
<td>31)</td>
<td>(A = 2\pi rh)</td>
<td>(A = 660, \ \pi = \frac{22}{7}, \ h = 21)</td>
<td>(r)</td>
</tr>
<tr>
<td>32)</td>
<td>(A = p + i)</td>
<td>(A = 428, \ i = 43)</td>
<td>(p)</td>
</tr>
<tr>
<td>33)</td>
<td>(p = b + 2e)</td>
<td>(p = 91) and (e = 29)</td>
<td>(b)</td>
</tr>
<tr>
<td>34)</td>
<td>(C = A - 273)</td>
<td>(C = 42)</td>
<td>(A)</td>
</tr>
<tr>
<td>35)</td>
<td>(\theta = \frac{C}{2})</td>
<td>(\theta = 3,500, \ C = 9,300)</td>
<td>(A)</td>
</tr>
<tr>
<td>36)</td>
<td>(P = 21 + 2w)</td>
<td>(P = 162, \ w = 34)</td>
<td>(l)</td>
</tr>
<tr>
<td>37)</td>
<td>(P = 21 + 2w)</td>
<td>(P = 266, \ l = 81)</td>
<td>(w)</td>
</tr>
<tr>
<td>38)</td>
<td>(v = V + gt)</td>
<td>(v = 323, \ g = 32, \ t = 9)</td>
<td>(V)</td>
</tr>
</tbody>
</table>
Solve each of the following for the "Unknown" variable.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Known Variables</th>
<th>Unknown Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>39) (d = \frac{c}{\pi})</td>
<td>(d = 15, \pi = 3.14)</td>
<td>(h (47.1))</td>
</tr>
<tr>
<td>40) (V = \frac{Bh}{3})</td>
<td>(V > 56, B = 24)</td>
<td>(h (7))</td>
</tr>
<tr>
<td>41) (A = \frac{ab}{2})</td>
<td>(A = 144, b = 18)</td>
<td>(a (12))</td>
</tr>
<tr>
<td>42) (A = ndh + \frac{1}{2}nd^2)</td>
<td>(A = 572, \pi = \frac{22}{7}, d = 14)</td>
<td>(h (6))</td>
</tr>
<tr>
<td>43) (A = p \cdot Prt)</td>
<td>(A = 640, p = 500, t = 7)</td>
<td>(r (4, 25))</td>
</tr>
<tr>
<td>44) (PV = p^1 V^1)</td>
<td>(P = 75, V^1 = 38, p^1 = 25)</td>
<td>(V (12.3))</td>
</tr>
</tbody>
</table>
BANKING UNIT III

Banks are familiar to all of us, but we would like to become more familiar. This section of work gives us this opportunity.

Many banks publish books to describe the value of the bank to the community. Maybe we could obtain one and bring it to class.

Maybe we could get a man from the bank to speak to us.

Maybe we could talk about some personal or family dealings with the bank.

Maybe we could talk about your needs to be hired to work in a bank.

Let's keep our eyes and ears open for all bank problems during this unit.
DO YOU REMEMBER?

1) Do the indicated operations:
 a) $13.76 + 9.48 = \$23.24$
 b) $3007.29 + 3.64 = \$3000.93$
 c) $15.76 - 3.79 = \$11.97$
 d) $3005.72 - 7.69 = \$3008.13$
 e) $300.65 \times 0.05 = \$15.03$
 f) $240 \times 0.75 = \$180$
 g) $0.06 \times 72 = 4.32$
 h) $0.08 \times 13.84 = 1.1072$

2) Using the formula \(I = prt \)
 a) \(p = \$60, r = 0.06, t = 2 \) find \(I = \$7.20 \)
 b) \(I = \$50, p = \$2000, r = 0.05 \) find \(t = 0.25 \)

3) Change to fractions
 a) 18 months = \(\frac{18}{12} \) years
 b) 3 months = \(\frac{3}{12} \) year
 c) 90 days = \(\frac{90}{365} \) year

4) Take today's date (month, day, year)
 a) What date is 30 days from now? count each calendar day
 b) What date is 1 month from now? count each month
 c) What date is 1 year from now? count each month, each day

5) If you pay \$1.00 for \$100 worth of travelers checks, then you pay
 a) \(\$1.00 \) for \$700 worth of travelers checks
 b) \(\$10.00 \) for \$1000 worth of travelers checks

6) Write as a fraction
 a) 50 \(\text{¢} \) = \(\frac{50}{100} \)
 b) 5 \(\text{¢} \) = \(\frac{5}{100} \)
 c) no cents = \(\frac{0}{100} \)

POOR ORIGINAL COPY - BEST AVAILABLE AT TIME FILMED
LET'S GET SOME PRACTICE

1) Do indicated operations
 a) $27.36 + 9.48 = 36.84
 b) $3029.27 + 4127.75 = 7157.02
 c) $16.06 - 3.79 = 12.27
 d) $4129.73 - 699.76 = 3430.97
 e) $419.72 x .055 = 23.33
 f) $336 x .065 = 21.76
 g) 07/15.05
 h) .6513.85

2) Using formula I = prt
 a) p = $40, n = .065, t = 1/2
 find I
 b) I = $63, p = $1500, r = .042
 find t

3) Change to fractions
 a) 15 months = 1 1/2 years
 b) 4 months = 1/3 years
 c) 270 days = 3 1/4 years

4) Take the date - Aug. 5, 1969
 a) What date is 30 days from above date
 b) What date is 3 months from above date
 c) What date is 1 year from above date

5) If you pay $1.00 for $100 worth of travelers checks, then you pay
 a) $ for $400 dollars worth of travelers checks
 b) $ for $750 dollars worth of travelers checks

6) Write as fractions
 a) 75¢ = $
 b) 90¢ = $
 c) 65¢ = $

/23
LET'S GET SOME PRACTICE

1) Do the indicated operations
 a) $351.76 + 48.94 = $395.96
 b) $4172.79 + 867.58 = $4940.37
 c) $39.00 - .82 = $38.18
 d) $5000.14 - 4.89 = $4995.25
 e) $522.71 x .062 = $32.60
 f) $336 x .407 = $136.80
 g) .023 x 3.059 = .070
 h) .056 x 11.816 = .670

2) Using formula I = prt
 a) p = $505, r = 4%, t = 2 1/4, find I
 b) I = $80, p = $2000, t = 1/2, find r

3) Change to fractions
 a) 16 months = 1 4/12 years
 b) 10 months = 5/6 years
 c) 150 days = 5/4 years

4) Take the date (Feb. 17, 1969 not a leap year)
 a) What date is 30 days from the above date?
 b) What date is 3 months from the above date?
 c) What date is 1 year from the above date?

5) If you pay $1.00 for $100 worth of travelers checks then you pay
 a) $____ for $650 dollars worth of travelers checks
 b) $____ for $565 dollars worth of travelers checks

6) Write as fraction
 a) 45¢ = $____
 b) 6¢ = $____
 c) 95¢ = $____
Let's Check Our Banking Vocabulary

Deposit slip
Withdrawal slip
Check
Check register (or stub)
Face of a check (or note)
Bank statement
Service Charge
Balance
Endorsing
Checking Account
Saving's Account
Travelers Checks
Notes (loans)
Date of Maturity
Maker
Collateral
Interest
Interest Simple
Interest Compound
Principal
Rate
Time
Amount
Bank Discount

We shall go over these now.
As you go through this section on banking try to remember these words.
We will check later to see how many you learned.
BANKING

In our community we have many banks. Can you name a few? What are the main purposes of these banks?

Generally, banks have three main purposes:

1) keeping money safe for people - (savings accounts)
2) making it easy for people to move their money around - (checking accounts)
3) helping people in times of financial needs - (loans).

We shall study all three phases.

CHECKING ACCOUNTS

Most of us will use checks during our lifetime. Checks are used by individuals as well as businesses and the governments. Let us look into the way the individual is involved in opening and using a checking account.

The individual must first fill in a signature card as in the example. This will be signed exactly as all future checks will be signed.

SINGLE ACCOUNT

| I hereby agree to the By-Laws, Rules and Regulations of the ARTISANS' SAVINGS BANK |
|---------------------------------|---------------------------------|
| MR. | MRS. | MISS | DR. |
| SIGNATURE: | M | F |
| ADDRESS: | |
| OCCUPATION: | |
| EMPLOYER: | |
| NEXT OF KIN: | |
| SOCIAL SECURITY NBR: | |
| DATE OPENED: | |
| INITIAL DEPOSIT: | |
| TELLER: | |

126
In order for the person to have money in his account he must fill out a deposit slip as shown in the form. The slip is then given to the bank clerk (teller) with the total deposit.

The teller will return to you a receipt for the amount deposited, plus a check book. You will enter the initial deposit in the check register, as shown. Any future deposits will be added to the check register. Any withdrawals by check will be subtracted from the check register. Balances after deposits or withdrawals should always be checked for accuracy.
<table>
<thead>
<tr>
<th>NAME</th>
<th>ADDRESS</th>
<th>DATE</th>
<th>FOR CREDIT TO ACCOUNT OF</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All checks and drafts credited subject to final verification and payment.

Bank of Delaware

Deposit Slip

Currency

<table>
<thead>
<tr>
<th>CURRENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Coins

<table>
<thead>
<tr>
<th>COINS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Date: 12/7/76
CHECK REGISTER

<table>
<thead>
<tr>
<th>CHECK NO</th>
<th>DATE</th>
<th>CHECK ISSUED TO</th>
<th>AMOUNT OF CHECK</th>
<th>DATE OF DEP</th>
<th>AMOUNT OF DEPOSIT</th>
<th>BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

127 D.
1. Make out the following deposit
 a) deposit on Sept. 1, 1969
 six one dollar bills and two dollars, fifty four cents
 in coins.

2. Make out the following deposit
 a) deposited on Nov. 2, 1969
 2 checks (5 - 724) for twenty five dollars, and
 (3 - 472) for six dollars, seventy five cents.
 3 - ten dollar bills and four one dollar bills.
 2 quarters, and 3 dimes.

3. Make the following deposit slips
 a) deposited December 5, 1969
 3 checks - (7 - 3045) for fifty dollars and fifty
 cents, (9 - 4026) for seventy-two dollars and nineteen
 cents, and (2 - 467) for twenty seven dollars and
 eight cents.
 4 - twenty dollar bills, 3 - ten dollar bills, and 2 -
 five dollar bills.
 5 - half dollars, 3 quarters, 2 dimes, 4 nickels, and
 5 pennies.
1) Make out the following deposit
 a) deposit on September 5, 1969
 fifteen dollar bills and three dollars and thirteen cents in coins.

2) Make out the following deposit
 a) deposit on November 8, 1969
 2 checks - (3 - 104) for seven dollars and fifty cents, and (6 - 4027) for eight dollars.
 2- twenty dollar bills and 3- five dollar bills, 4 quarters, 2 dimes, and 1 nickel.

3) Make out the following deposit slip.
 a) deposited December 7, 1969
 3 checks - (2 - 521) for three dollars and seven cents, (4 - 3210) for thirty seven dollars and seventeen cents, and (2 - 416) for two hundred forty dollars and fifty eight cents.
 2- hundred dollar bills, 1- twenty dollar bill, 3- ten dollar bills, 2- five dollar bills, and 12- one dollar bills.
 3- half dollars, 5- quarters, 4- dimes, 12- nickels and 8 pennies.
1) Make out the following deposit.
 a) deposit on September 9, 1969
 forty five dollars in currency and five dollars and
 twenty seven cents in coins.

2) Make out the following deposit.
 a) deposit on November 8, 1960
 2 checks - (3 - 1274) for thirty seven dollars, and
 (4 - 724) for eight dollars and eighty four cents.
 4 ten dollar bills and 2 five dollar bills.
 3 quarters and 13 pennies.

3) Make the following deposit slips.
 a) deposited December 9, 1969
 4 checks - (3 - 609) for forty dollars, (3 - 1742) for
 twenty eight dollars and eighteen cents, (2 - 476) for
 eighteen dollars and seventy six cents, and (4 - 37)
 for fifty five dollars and thirty six cents.
 1- hundred dollar bill, 3- twenty dollar bills, 6- ten
 dollar bills, 3- five dollar bills, and 14- one dollar
 bills.
 7- half dollars, 3- quarters, 11- dimes, 21- nickels.
 37- pennies.
A withdrawal (taking money out of the bank) is simply done by filling in the proper information on the check example and signing your name as it was signed on your signature card.

A check that is not made out by you, but is to be paid to you by another person should be endorsed on the back exactly as your name is on the front, then passed on to whomever you want to give the money.

The two main types of endorsements are a blank endorsement, and a restrictive endorsement as shown in the examples.
1) You opened your account on 1/3/70 with the amount of $200. Write a check on 1/9/70 for $15 for groceries from John's Super Market. Record information on check register and show balance.

2) You opened your account with the amount of $150 on 2/5/70. On 2/10/70 you wrote a check for $30.17, to Henry's Auto Shop. Write check. Record the information on check register and show balance.

3) You opened your account on 3/3/70 with the amount of $175. On 3/8/70 you make a deposit to your account of $42.18, then on 3/12/70 you withdrew by check the amount of $32.77 for a table bought at Fine Furniture Store. Write check and record all information on check register.
1) You put $75 into an account on 1/11/70. On the thirteenth of January 1970, you wrote a check for $28 to Joe's Sporting Goods Store for a set of golf clubs.

Write the check and all the information on the check register.

2) You put $60 into your checking account on 2/12/70. A check for $8.72 was written on 2/14/70 to Mr. James Hanson for repairing a glass window.

Write the check and record all the information on the check register.

3) You open an account with $95 on 3/13/70. On March the fifteenth you write a check to your TV repair man, Harry Jones, in the amount of $8.59. However, the day before you had deposited $15. Write the check and all the information on the check register.
1) You have $125.70 in your checking account on 4/15/70. On April 17, 1970 you write a check #14 to John Hanson in the amount of $5 for garage rental.

2) On April the thirteenth you make a deposit of $75. You send a check on April 18th for a ticket to a ballgame, to the Phil. Athletic Assoc., costing $3.50.

3) On May 1 a friend of yours pays you money he owes you in the amount of $5.75. You immediately deposit this in your account. The next day in town you see a fishing rod in Bill's Boat Shop and you purchase it for $10.89.

After these transactions (deposits and withdrawals) what is your final checking account balance.
John received a check for $10 from an uncle in Pittsburgh, Pa. John's father said he would take John to the bank to get the check cashed. The check was made out to J. H. Maya.

1) Was it necessary for John's father to go to the bank with him?

2) Bankers will not cash a check for a stranger unless he can identify himself (prove that he is the payee of the check). In what ways may a person identify himself?

3) Where should John endorse the check?

4) How would he make a blank endorsement?

5) What is a disadvantage of a blank endorsement?

John Davis wrote a check to B. M. Stack. The check was later transferred to Ernest White.

6) Show the endorsement which was probable on the check.

Bills Hardware Store received a check from Larry Mills.

7) Show a restrictive endorsement which might be on the check.

Bill Miller of your town wrote a check on Delaware Bank to J. Bye in Millville, Md. J. Bye cashed the check at the City Bank of Maryland.

8) Show Mr. Bye's endorsement.

9) Will the City Bank of Maryland endorse the check?

10) What will the Delaware Bank do with the check?
At the end of a period of time (usually once a month or once every three months) the bank will send you a statement as shown. The statement will show all deposits, withdrawals, or service charges for that period of time. A service charge may be a charge for letting your check account balance go below a minimum amount which has previously been set by the bank, or for writing a check with insufficient funds in the bank.

In the example the top of the form shows the number and total of all transactions during the month of April and the balance in your account at the end of the month.

The lower part of the bank statement shows the individual daily deposits and withdrawals. Note the transactions on 4/12/70. There were two withdrawals in the same day. The total of these two were taken from the balance for that day.

Sometimes there will be a difference in the balance which the bank shows and your check register balance. A bank will not deduct the amount of a check until they have received it while you will deduct it from your check register immediately when you write it. So it is always advisable to check the statement against your register each month.
<table>
<thead>
<tr>
<th>DATE OF</th>
<th>DATE OF</th>
<th>ACCOUNT NO.</th>
<th>ACCOUNT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/31/70 $200.00</td>
<td>2/2/70 $75.00</td>
<td>5/5/70 $54.38</td>
<td>12/26/70 $50.00</td>
</tr>
</tbody>
</table>

BALANCE AS OF

April 30, 70

$220.12

<table>
<thead>
<tr>
<th>CHNO</th>
<th>DATE</th>
<th>Amount</th>
<th>Chk/Dr</th>
<th>Amount</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/2/70</td>
<td>200.00</td>
<td></td>
<td>/2/70</td>
<td>250.00</td>
</tr>
<tr>
<td></td>
<td>/5/70</td>
<td>242.50</td>
<td></td>
<td>/2/70</td>
<td>250.00</td>
</tr>
<tr>
<td></td>
<td>/12/70</td>
<td>235.49</td>
<td></td>
<td>/12/70</td>
<td>235.49</td>
</tr>
<tr>
<td></td>
<td>/26/70</td>
<td>260.49</td>
<td></td>
<td>/26/70</td>
<td>260.49</td>
</tr>
<tr>
<td></td>
<td>/27/70</td>
<td>223.62</td>
<td></td>
<td>/27/70</td>
<td>223.62</td>
</tr>
<tr>
<td></td>
<td>/28/70</td>
<td>220.62</td>
<td></td>
<td>/28/70</td>
<td>220.62</td>
</tr>
<tr>
<td></td>
<td>/30/70</td>
<td>220.12</td>
<td></td>
<td>/30/70</td>
<td>220.12</td>
</tr>
</tbody>
</table>

Balance on hand:

- 7.50
- 4.38
- 36.87
- 3.00
- .50

Verified
Use the forms provided and make a monthly statement for the following deposits and withdrawals.

A 1) In the month of May you start with a balance of $340. During the month you have these withdrawals: May 4 - $40.00, May 9 - $60.00 and May 26 - $8.00. There was one deposit during the month. On May 12 you deposited $24.00.

B 2) Your bank statement in June starts with a balance of $80. On June 8 and 22 respectively, you deposit amounts of $18 and $32. In the same month of June you withdraw by writing checks the amounts of $16.05 on June 7, $15.16 on June 12, and $39.40 on June 20.

Use the forms provided and make a monthly statement for the following deposits and withdrawals.

1) Your balance in your checking account at the end of January was $180. In February you had a deposit of $20.00 on February 9. The three withdrawals for February were $3.00 and February 5, $8.00 and February 16, and $17.00 on February 20.

2) Starting with $340 on the 1st of June, what would be your statement at the end of the month if you had withdrawals of $13.15 on June 5, $87.93 on June 9, and $113.28 on June 20. You did make a deposit of $15.12 on June 12.

3) The month of December had many bills. Your balance left over from November 30 was $315. You wrote and the bank paid checks on December 5 for $27, December 8 for $80, December 15 for $87.24, and December 19 for $8.36. If your bank balance goes below $200 the bank charges you a service charge of $.50. Show monthly statement.
Make parts 1, 2, and 3 continuous statements for May, June, and July.

A. Starting on May 1 you have a balance of $210. During this month you made a deposit of $75 on May 5. There were three withdrawals of $13.00 on May 2, $45.00 on May 16, and $30 on May 25.

B. You start with the balance from May's statement and have debits (withdrawals) of $17.00 on June 5, $8.32 on June 8, $17.32 on June 20 and $10.04 on June 22. One deposit of $100 is made on June 17.

C. Make statement for July with these withdrawals (debits) and these deposits (credits) (Note the dates and put in order)

<table>
<thead>
<tr>
<th>Debits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 6 - $8.40</td>
<td>July 17 - $26.50</td>
</tr>
<tr>
<td>July 15 - $32.70</td>
<td>July 20 - $68.42</td>
</tr>
<tr>
<td>July 4 - $2.13</td>
<td></td>
</tr>
<tr>
<td>July 25 - $4.72</td>
<td></td>
</tr>
<tr>
<td>July 17 - $15.07</td>
<td></td>
</tr>
</tbody>
</table>

140
SAVING ACCOUNTS

The savings account, as its name indicates, is a method of savings or keeping money on hand for an emergency or for your convenience.

Three main differences between the savings account and the checking accounts are:

1) the savings account draws interest while generally, the checking account does not.
2) the savings account limits the amount of money which can be withdrawn at one time, usually without previously having notified the bank of your intentions.
3) the savings account has a passbook in which the bank records all transactions, while in the checking account you keep your own record on the check stubs.

To open a savings account, you are again required to fill in a signature card.

Deposit slips are similar to those used for the checking accounts. Withdrawal slips, as shown, are necessary to get money out of the bank. Also, you will have a passbook as shown, which has to be presented with the deposit or withdrawal slip. The teller will then make the proper entry in it.
WITHDRAWAL SLIP

WITHDRAWN FROM
ARTISANS' SAVINGS BANK
WILMINGTON, DELAWARE

DATE: ___________________ ACCT. NO.: ___________________

ACCT. TITLE: __

AMOUNT OF WITHDRAWAL: $__________________________ (FIGURES)

(DOLLARS)

(WRITE AMOUNT OF WITHDRAWAL)

AND CHARGE TO ACCOUNT OF:

SIGNATURE: __

PAYMENT BY:

CASH □ CHECK #_________________; TRANSFER TO A/C

PAY TO: __

WITNESS TO ABOVE SIGNATURE(S): ___________________________

TOTAL WITHDRAWAL: $__________________________

Passbook Must Be Presented With Each Transaction
DEPOSIT SLIP

DEPOSITED IN

ARTISANS' SAVINGS BANK
WILMINGTON, DELAWARE

<table>
<thead>
<tr>
<th>DATE:</th>
<th>ACCT. NO.:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ACCT. TITLE:</th>
</tr>
</thead>
</table>

PLEASE SEE THAT ALL CHECKS ARE PROPERLY ENDORSED
DEPOSITS OTHER THAN CASH ARE CREDITED SUBJECT TO FINAL PAYMENT IN CASH

<table>
<thead>
<tr>
<th>CURRENCY</th>
<th>Dollars</th>
<th>Cents</th>
</tr>
</thead>
<tbody>
<tr>
<td>COIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. O. MONEY ORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKS (List Each Separately)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL:</th>
</tr>
</thead>
</table>

Passbook Must Be Presented With Each Transaction

143
DEPOSIT SLIP

DEPOSITED IN
ARTISANS' SAVINGS BANK
WILMINGTON, DELAWARE

DATE: ___________________________ ACCT. NO.: ___________________________

ACCT. TITLE: ____________________________

CURRENCY

COIN

P. O. MONEY ORDERS

CHECKS (list each separately)

Dollars	Cents

TOTAL: | |

Passbook must be presented with each transaction.
DEPOSIT BOOK

DEPOTOR'S NAME ON PAGE ONE

<table>
<thead>
<tr>
<th></th>
<th>DATE</th>
<th>WITHDRAWAL</th>
<th>DEPOSIT</th>
<th>DIVIDEND</th>
<th>BALANCE</th>
<th>TRANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARTISANS' SAVINGS BANK
WILMINGTON, DELAWARE
<table>
<thead>
<tr>
<th>DEPOSITOR'S NAME ON PAGE ONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

14D.cU.
A 1) Show passbook entries starting with balance of $120. Record in passbook a deposit on May 6 of $30.00. Then fill a withdrawal slip dated May 12 for $10.00 and record this transaction in the passbook.

B 2) Start in your passbook with a balance of $180 as of April 1, 1970. The dividend (interest) received for the first three months of the year is $1.80. Enter dividend in passbook. Three deposits are made on April 5 for $8.00, April 16 for $17.32, and April 20 for $10.04. On April 14 you make a withdrawal of $30.47. Make out a withdrawal slip for this amount and make all entries in the passbook.

C 3) In July, your passbook starts with a balance of $240. You immediately enter your dividend (interest) on this balance, if the bank gives 4% compounded quarterly. On the 5th of July you deposit $12.00. On the 16th of July you make a withdrawal of $8.32. Make out a withdrawal slip and all entries in the passbook.
A 1) Show passbook entries starting with balance of $3.00. Record in passbook a deposit of $12.00 on June 5. Then fill in a withdrawal slip dated June 15 for $8.00 and record the transactions in the passbook.

B 2) Start your passbook for August with a balance of $187.64. Dividends (interest) is to be added to your account on August 6 for $.93. Two deposits are made of August 7 and August 10 for $9.00 and $15.76 respectively. On August 14 you withdraw $9.42. Make the withdrawal slip and all entries in the passbook.

C 3) October 1 the bank figures your quarterly interest at 4% compounded quarterly on your balance of $300 and makes a prompt entry of this amount in the passbook. You then withdraw $11.96 on October 6. Make the withdrawal slip and proper entry in the passbook. Two deposits in the amounts of $30.00 and $45.16 are made on the 16th and 18th of October respectively. Make all proper entries in your passbook.
LET'S TRY THESE

1) 25% means \(\frac{25}{100} \) \(\text{(a)} \) 15) 1% of 316.2 is \(\) \(\text{(b)} \)

2) 65% means \(\frac{65}{100} \) \(\text{(c)} \) 16) 8% of 64 is \(\) \(\text{(d)} \)

3) 32% means \(\frac{32}{100} \) \(\text{(c)} \) 17) .25% = \(\) ? decimal \(\text{(e)} \)

4) 4.5% means \(\frac{4.5}{100} \) \(\text{(e)} \) 18) \(\frac{1}{4} \)% = \(\) ? decimal \(\text{(f)} \)

5) .16 means \(\) ? fraction \(\text{(g)} \) 19) \(\frac{1}{2} \)% = \(\) ? decimal \(\text{(h)} \)

6) .25 means \(\) ? fraction \(\text{(i)} \) 20) \(\frac{3}{4} \)% = \(\) ? decimal \(\text{(j)} \)

7) .04 means \(\) ? fraction \(\text{(k)} \) 21) .5 \(\frac{1}{2} \)% = \(\) ? decimal \(\text{(l)} \)

8) .32 is \(\) ? percent \(\text{(m)} \) 22) 5 \(\frac{1}{2} \)% of 90 is \(\) \(\text{(n)} \)

9) .07 is \(\) ? percent \(\text{(o)} \) 23) 4 \(\frac{3}{4} \)% of 60 is \(\) \(\text{(p)} \)

10) .94 is \(\) ? percent \(\text{(q)} \) 24) 6 \(\frac{1}{4} \)% of 80 is \(\) \(\text{(r)} \)

11) \(\frac{5}{20} = \) \(\) ? \(\text{(s)} \) 25) What % of 24 is 6 \(\) \(\text{(t)} \)

12) \(\frac{3}{4} = \) \(\) ? \(\text{(u)} \) 26) 7 is what % of 28 \(\) \(\text{(v)} \)

13) \(\frac{3}{8} = \) \(\) ? \(\text{(w)} \) 27) What % of 90 if 9 \(\) \(\text{(x)} \)

14) 5% of 100 is \(\) \(\text{(y)} \) 28) 8 is what % of 26 \(\) \(\text{(z)} \)
LET'S TRY AGAIN?

1) 50% means __?__ fraction ___________ (5, 0)
2) .03 is __?__ percent ___________ (3, 0)
3) .21 is __?__ percent ___________ (21, 0)
4) 16% means __?__ fraction ___________ (0.16)
5) .02 means __?__ fraction ___________ (0.02)
6) 12% means __?__ fraction ___________ (0.12)
7) \(\frac{5}{3} = \frac{?}{100} \) ___________ (16.67)
8) \(\frac{5}{10} = \frac{?}{100} \) ___________ (50)
9) \(\frac{5}{20} = \frac{?}{100} \) ___________ (25)
10) .05 means __?__ fraction ___________ (0.05)
11) 21% is __?__ fraction ___________ (0.21)
12) \(\frac{2}{5} = \frac{?}{100} \) ___________ (40)
13) 10% of 100 is __?__ ___________ (10)
14) 23% of 60 is __?__ ___________ (13.8)
15) 9% of 36 is __?__ ___________ (3.24)
16) \(\frac{1}{4} = \frac{?}{100} \) decimal ___________ (25)
17) \(\frac{1}{5} = \frac{?}{100} \) decimal ___________ (20)
18) .5% = __?__ decimal ___________ (0.005)
19) 3\(\frac{2}{5} \)% of 30 = __?__ ___________ (6.6)
20) 6\(\frac{1}{2} \)% of 90 = __?__ ___________ (5.4)
21) 5\(\frac{1}{4} \)% of 20 = __?__ ___________ (5.375)
22) What % of 50 is 5? ___________ (10)
23) What % of 20 is 5? ___________ (25)
24) What % of 12 is 3? ___________ (25)
25) 9 is what percent of 18? ___________ (50)

148
LET'S TRY AGAIN

1) 29% means _____ fraction \(\frac{29}{100} \)

2) .04 is ____ percent \(\frac{4}{100} \)

3) .04 is ____ fraction \(\frac{4}{100} \)

4) \(\frac{4}{25} = \frac{?}{100} \)

5) \(\frac{3}{10} = \frac{?}{100} \)

6) \(\frac{6}{20} = \frac{?}{100} \)

7) \(\frac{2}{50} = \frac{?}{100} \)

8) 93% is ____ fraction \(\frac{93}{100} \)

9) 16% is ____ fraction \(\frac{16}{100} \)

10) 47% is ____ fraction \(\frac{47}{100} \)

11) 10% of 1000 is ____ \(\frac{100}{1000} \)

12) 15% of 44 is ____ \(\frac{66}{100} \)

13) 16% of 12 is ____ \(\frac{192}{100} \)

14) 9% of 6 is ____ \(\frac{54}{100} \)

15) \(\frac{1}{10} = \frac{?}{100} \) decimal \(.0 \)

16) \(\frac{4}{5} = \frac{?}{100} \) decimal \(.8 \)

17) \(\frac{2}{5} = \frac{?}{100} \) decimal \(.4 \)

18) 5 is what percent of 25 \(\frac{5}{25} \)

19) What percent of 16 is 8 \(\frac{8}{16} \)

20) \(1 \frac{3}{5} = \frac{?}{100} \) decimal \(150 \)

21) What percent of 90 if 9 \(\frac{9}{90} \)

22) \(\frac{3}{5} = \frac{?}{100} \) decimal \(.6 \)

23) 15 is what percent of 30 \(\frac{15}{30} \)

24) 5.5% of 90 = ____ \(\frac{99}{100} \)

25) 6% of 36 is ____ \(\frac{216}{100} \)
Interest which your money earns may be either simple interest or compound interest.

Simple interest is figured by formula and uses one value for the principal. This differs from compound interest where the principal is always increasing.

Simple interest is figured by taking your principal (in dollars and cents) times your rate (as a decimal) times the time (in years). The general formula is $I = prt$.

- **Principal** - money on which you're figuring your interest.
- **Rate** - yearly rate (7%) changed to a decimal (.07)
- **Time** - is always in years. If given in days put $\frac{\text{no. of days}}{365}$, if given in months put $\frac{\text{no. of days}}{12}$

Example: What interest would you receive on $1000 at 4% for 2 years?

For 2 years:

<table>
<thead>
<tr>
<th>$\frac{\text{days}}{2}$</th>
<th>$\frac{\text{years}}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I = prt$</td>
<td>$I = \frac{1}{2} * .04 \cdot \frac{\text{no. of days}}{365}$</td>
</tr>
<tr>
<td>$I = 1000 \cdot .04 \cdot \frac{\text{no. of days}}{365}$</td>
<td>$I = 1000 \cdot .04 \cdot 2$</td>
</tr>
<tr>
<td>$I = 10</td>
<td>$I = 20</td>
</tr>
</tbody>
</table>
A 1) \(I = 600 \times 0.04 \times 2 \)
 \(\text{Answer: } 48 \)

2) \(I = 400 \times 0.06 \times \frac{1}{2} \)
 \(\text{Answer: } 12 \)

3) Find \(I \) when \(p = 800, n = 0.05 \) and \(t = \frac{1}{4} \) yr.
 \(\text{Answer: } 10 \)

4) Find \(I \) when \(p = 300, n = 7\% \) and \(t = \frac{1}{3} \) yr.
 \(\text{Answer: } 7 \)

5) Find \(I \) when \(p = 416, n = 3\%, t = 3 \) months
 \(\text{Answer: } 2.17 \)

B 6) Find \(I \) when \(p = 320, n = 4\%, t = 1\frac{1}{4} \) yr.
 \(\text{Answer: } 16 \)

7) Find \(I \) when \(p = 214, n = 3.5\%, t = 6 \) months
 \(\text{Answer: } 3.745 \)

8) Find \(I \) when \(p = 300, n = 6\frac{1}{2}% \), \(t = 180 \) days
 \(\text{Answer: } 9.75 \)

9) Find \(t \) when \(I = 24, p = 240, n = 5\% \)
 \(\text{Answer: } 2.4 \)

C 10) Find \(I \) when \(p = 1214, n = 4\frac{1}{4}\% \), \(t = 2 \) years
 \(\text{Answer: } 103.19 \)

11) Find \(t \) when \(I = 36, p = 500, n = 4\% \)
 \(\text{Answer: } 4 \)

12) Find \(n \) when \(I = 48, p = 3600, t = 6 \) months
 \(\text{Answer: } 0.6 \) (rounded to 2 decimal places)
A 1) \(I = 500 \times 0.06 \times 1 \)
2) \(I = 400 \times 0.04 \times \frac{1}{2} \)
3) Find \(I \) when \(p = 800, n = 0.07, t = \frac{1}{4} \)
4) Find \(I \) when \(p = 200, n = 6\%, t = \frac{1}{3} \)
5) Find \(I \) when \(p = 456, n = 3\%, t = \frac{1}{4} \)

B 6) Find \(I \) when \(p = 240, n = 5\%, t = 1\frac{1}{4} \)
7) Find \(I \) when \(p = 414, n = 4.5\%, t = \frac{1}{2} \)
8) Find \(I \) when \(p = 400, n = 5\frac{1}{2}\%, t = \frac{1}{2} \)
9) Find \(t \) when \(I = 36, p = 600, n = 5\% \)

C 10) Find \(I \) when \(p = 2042, n = 3\frac{1}{4}\%, t = 2 \)
11) Find \(n \) when \(I = 6, p = 100, t = \frac{3}{4} \)
12) How much money would you have to bank at a simple interest rate of 6\% if you want to receive $30 interest at the end of 6 months?
A 1) $I = 500 \times 0.03 \times 3$

2) $I = 300 \times 0.06 \times \frac{1}{3}$

3) Find I when $p = 900, n = 0.03$ and $t = \frac{1}{3}$

4) Find I when $p = 250, n = 0.07, t = \frac{1}{5}$

5) Find I when $p = 18, n = 0.035, t = \frac{1}{3}$

B 6) Find I when $p = 480, n = 4\%$, $t = \frac{1}{2}$

7) Find I when $p = 158, n = 4.5\%, t = \frac{1}{2}$

8) Find I when $p = 500, n = 7\frac{1}{2}\%, t = \frac{1}{4}$

9) Find t when $I = 36, p = 320, n = 5\%$

C 10) Find I when $p = 836, n = 3\frac{1}{4}\%, t = 3$

11) Find t when $I = 48, p = 1000, n = 4\frac{1}{2}\%$

12) What percent of interest would you need to get if you expect to get 60 interest on your investment, if you invest 1600 for $1\frac{1}{4}$ years at simple interest rates?
Compound interest which is common to all savings accounts is figured periodically as a simple interest problem. The next period that the interest is to be figured will be based on a new principal which is obtained by adding the interest to the previous principal. (New Amount = p + I)

Example: what interest would you receive on $1000 at 4% compounded semi-annually for 2 years.

(1st half year)
I = prt
I = 1000 \cdot .04 \cdot \frac{1}{2}
I = $20

(2nd half year)
I = prt
I = 1020 \cdot .04 \cdot \frac{1}{2}
I = $20.40

(3rd half year)
I = prt
I = 1040.40 \cdot .04 \cdot \frac{1}{2}
I = $20.82 (nearest cent)

(4th half year)
I = prt
I = 1061.21 \cdot .04 \cdot \frac{1}{2}
I = $21.22

Amount (or new principal) in bank now is old principal + interest.

\[
\begin{array}{cccc}
\text{Amount} & \text{Interest} \\
$1000 & $20 \\
$1020 & $20.40 \\
$1040.40 & $20.82 \\
$1061.21 & $21.22 \\
\end{array}
\]

You see when you had the simple interest at the same rate for the same period of time the I = $32, in compound interest the total received was $2.43.
1) $400 banked at 6% compounded annually for 4 years.

2) $120 banked at 4% compounded semiannually for 2 years.

3) $40 banked at 2% compounded semiannually for 2 years.

4) $1000 banked at 4% compounded quarterly for 1 year.

5) $80 invested at 8% compounded semiannually for 2 years.

6) $240 banked at 8% compounded quarterly for 2 years.

7) $1000 invested at 8% compounded semiannually for 2 $\frac{1}{2}$ years.

8) $300 invested at 6% compounded quarterly for 1 $\frac{1}{4}$ years.

9) $315 invested at 5% compounded quarterly for $\frac{3}{4}$ year.

10) $400 invested at 2% compounded quarterly for $\frac{1}{2}$ year.

11) $128 invested at 7% compounded semiannually for 2 years.
1) $200 banked at 4% compounded annually for 3 years.

2) $400 invested at 2% compounded semiannually for 2 years.

3) $300 banked at 6% compounded semiannually for 2 years.

4) $600 banked at 3% compounded quarterly for 1 year.

5) $500 banked at 5% compounded semiannually for 2 years.

6) $300 banked at 4% compounded quarterly for 2 years.

7) $400 invested at 4% compounded semiannually for 1 $\frac{1}{2}$ year.

8) $312 invested at 4% compounded quarterly for 1 year.

9) $500 banked at 7% compounded quarterly for $\frac{1}{4}$ year.

10) $1200 invested at 5% compounded semiannually for 1 $\frac{1}{4}$ years.

11) $8000 invested at 6% compounded quarterly for $\frac{3}{4}$ year.
1) $2000 banked at 8% compounded semiannually for 1 year

2) $180 banked at 2% compounded semiannually for 2 years

3) $60 banked at 4% compounded quarterly for 1 year

4) $500 banked at 3% compounded annually for 3 years

5) $90 invested at 6% compounded semiannually for $1 \frac{1}{2}$ years

6) $360 banked at 3% compounded semiannually for $1 \frac{1}{2}$ years

7) $450 invested at 8% compounded semiannually for $1 \frac{1}{2}$ years

8) $875 invested at 6% compounded quarterly for $\frac{3}{4}$ years

9) $800 invested at 6% compounded quarterly for $\frac{3}{4}$ years

10) If you put $600 in the bank, left it in for $1 \frac{1}{4}$ years at 5 %, and it was compounded quarterly, how much money would be in your account at the end of this time?

11) $600 at 5% compounded quarterly for $\frac{3}{4}$ year
NOTES (LOANS)

The third purpose of the bank was to loan money to people in need of it.

Banks find why the person needs the money. They also find if the borrower will be able to repay the amount borrowed. This is necessary because the bank will be holding other depositors' money. In every case, they try to take a very small risk when making a loan. The bank reduces their risk by requiring a co-signer or some form of collateral as a guarantee that the loan will be repaid.

Co-signer is a person who signs the note in addition to the borrower. In the event the borrower defaults or does not complete payment, the co-signer would have to pay off the loan.

Collateral is some sort of security which the bank will hold until the loan is paid off. If the borrower cannot complete payment the collateral will be used to cover the amount still due. Collateral might be in the form of a title to a car, deed to a house, stocks, bonds, etc.

Most notes will be interest-bearing. This means that the borrower will pay back the face (amount of the note) plus any interest.
WILMINGTON, DELAWARE
February 16, 1969

$600.00

Six months

after date, for value received, the undersigned promises to pay to the order of

ARTISANS' SAVINGS BANK
(HEREBINAFTER CALLED THE BANK)
505 MARKET STREET
WILMINGTON, DELAWARE

Six hundred and 00/100 Dollars,
with interest at the rate of 8% per centum, per annum, having deposited with the Bank the following property, viz:

Title to Bush, Special 1963, Tax #2416839

John M. Harris
Address: 2416 Charles Rd.
Wilmington, Delaware

Address: ________________________
A What date was the note in figure? (Jul. 12, 1844)

Who was the maker? (Joseph C. Marvin)

What is collateral? (Personal guarantee and property security)

What is the collateral of this note? (Property of Marvin)

What is the face of this note? ($240)

What is the time of this note? (1 year)

What is the rate? (6%)

What interest will be paid on this note? ($14)

What is the date of maturity? (Jul. 12, 1845)

How much must be paid back at the date of maturity? ($244)

What is meant by "per-annum"? (per year)
The date of maturity is the date when the note must be completely paid. This is figured by counting the number of actual days, months, or years from the date the note was made.

Example: What is the date of maturity of a note made on July 15, 1969 for 60 days? 1 month? 1 year?

--- for 60 days:

July 15 to July 31 = 16 days
August 1 to August 31 = 31 days
Sept. 1 to Sept. 13 = \underline{13 \text{ days}}

September 13, 1969 would be the date of maturity.

--- for 1 month: to the same day of next month

August 15, would be the date of maturity.

--- for 1 year: to the same day and month of next year.

July 15, 1970 would be the date of maturity.
Figure date of maturity of these notes

<table>
<thead>
<tr>
<th>Date made</th>
<th>Time of note</th>
<th>Date of Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) November 15, 1970</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>3) February 4, 1970</td>
<td>4 months</td>
<td></td>
</tr>
<tr>
<td>4) January 15, 1970</td>
<td>20 days</td>
<td></td>
</tr>
<tr>
<td>B 5) March 15, 1970</td>
<td>45 days</td>
<td></td>
</tr>
<tr>
<td>6) January 15, 1970</td>
<td>9 months</td>
<td></td>
</tr>
<tr>
<td>7) January 24, 1970</td>
<td>45 days</td>
<td></td>
</tr>
<tr>
<td>8) April 16, 1970</td>
<td>3 years</td>
<td></td>
</tr>
<tr>
<td>C 9) February 23, 1970</td>
<td>45 days</td>
<td></td>
</tr>
<tr>
<td>10) August 14, 1970</td>
<td>2 yrs. 6 months</td>
<td></td>
</tr>
<tr>
<td>11) September 29, 1970</td>
<td>9 months</td>
<td></td>
</tr>
<tr>
<td>12) July 18, 1970</td>
<td>4 yrs. 9 months</td>
<td></td>
</tr>
</tbody>
</table>
Figure date of maturity of these notes

<table>
<thead>
<tr>
<th>Date made</th>
<th>Time of Note</th>
<th>Date of Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) February 5, 1970</td>
<td>15 days</td>
<td></td>
</tr>
<tr>
<td>2) December 19, 1970</td>
<td>10 days</td>
<td></td>
</tr>
<tr>
<td>3) September 18, 1970</td>
<td>2 yrs.</td>
<td></td>
</tr>
<tr>
<td>4) May 22, 1970</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) January 22, 1970</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>6) February 18, 1970</td>
<td>45 days</td>
<td></td>
</tr>
<tr>
<td>7) December 20, 1970</td>
<td>1 month</td>
<td></td>
</tr>
<tr>
<td>8) October 9, 1970</td>
<td>4 months</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9) February 20, 1970</td>
<td>45 days</td>
<td></td>
</tr>
<tr>
<td>10) December 14, 1970</td>
<td>1 yr. 3 months</td>
<td></td>
</tr>
<tr>
<td>11) July 8, 1970</td>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>12) July 14, 1970</td>
<td>3 yrs. 4 months</td>
<td></td>
</tr>
</tbody>
</table>

/63
Figure date of maturity of these notes

<table>
<thead>
<tr>
<th>Date made</th>
<th>Time of Note</th>
<th>Date of Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) January 4, 1970</td>
<td>1 year</td>
<td></td>
</tr>
<tr>
<td>2) February 9, 1970</td>
<td>15 days</td>
<td></td>
</tr>
<tr>
<td>3) November 6, 1970</td>
<td>1 month</td>
<td></td>
</tr>
<tr>
<td>4) April 14, 1970</td>
<td>10 days</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) January 8, 1970</td>
<td>45 days</td>
<td></td>
</tr>
<tr>
<td>6) February 15, 1970</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>7) February 15, 1970</td>
<td>1 month</td>
<td></td>
</tr>
<tr>
<td>8) March 20, 1970</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9) January 8, 1970</td>
<td>45 days</td>
<td></td>
</tr>
<tr>
<td>10) February 25, 1970</td>
<td>45 days</td>
<td></td>
</tr>
<tr>
<td>11) April 20, 1970</td>
<td>1 yr. 30 days</td>
<td></td>
</tr>
<tr>
<td>12) June 4, 1970</td>
<td>2 yrs. 6 months</td>
<td></td>
</tr>
</tbody>
</table>
There are three general ways a loan may be paid:

1) At the date of maturity the borrower will repay the face of the note (amount borrowed), plus any interest.

Example: A person borrows $2000 at 7% for 2 years.

\[I = 2000 \times 0.07 \times 2 \]

$280 he will repay in one payment $2000 + $280 or $2280

2) The interest may be taken out from the face of the note before the borrower receives the money. This is a bank discount note. The interest when it is taken out at the time of the loan is called the bank discount.

Example: A person borrows $2000 at 7% for 2 yrs.

\[I = \text{prc} \times \text{I} = 2000 \times 0.07 \times 2 \]

The bank will then take the $280 from $2000 ($2000 - $280 = $1720). Borrower receives $1720. He pays back $2000 at the date of maturity.

3) The payments may be divided into monthly payments.

Example: A person borrows $2000 at 7% for 2 yrs.

\[I = 2000 \times 0.07 \times 2 \text{ or } $280 \]

Total amount to be paid back = $2280

\[\text{monthly payments} = \frac{2280}{24} \text{ a month} \]

\[\frac{2280}{24} = 95 \]

(2yr) \[\frac{120}{120} \]

If it comes out uneven, the last (24th) payment can be increased or decreased.

/65
1) A person borrows $2000 at 8% for 2 years. If he pays it all back at the end of the two years, what will the amount be?

2) Henry signs a bank discount loan for $800 at 6% for 3 years. How much is the bank discount? How much does Henry receive at the time he makes the note?

3) Mr. Hanson borrowed $200 to purchase storm windows. He arranged a loan at 8% for 1 year. This was to be paid back in monthly payments during the year. How much would he pay each month?

1) How much would you pay at the end of a year and half. If you borrowed $550 at 7.5% for that period of time?

2) What is the bank discount on a loan of $450 at \(4\frac{1}{2}\)% for 90 days?

3) If you bought a refrigerator for $200 and the company charged you 8%. How much would you have to pay each month if you paid it off in 18 months?
A 1) Mary Wilson owns a fashion shop. She needs to borrow $750. The bank will lend it to her for 60 days at 6% interest. How much will she return to the bank at the end of the 60 days? $757.50

2) On a bank discount note for $1800. How much money would you expect to receive if the loan is at 8% for six months? $1728

3) You buy a car for $400. The dealer charges you 8% interest. You are going to pay for the car in 24 months (2 years). How much will your monthly payments be?

B 1) What is total paid back on a loan of $450 at 7% for 45 days: $453.94

2) What is the bank discount on a loan of $720 for 9 months at a rate of 6%?

3) You purchase a TV set for $380. You intend to pay it off in 18 months. The dealer charges you 5 1/2%. What would your monthly payments be?
CREDIT UNIONS

When you start your first job and have a reason to borrow money, you will probably find that your company or trade union headquarters will have a credit union. This is for the good of the workers.

You may save money in a credit union account and your money will get interest as money in a bank.

You may also take out a loan. Loans up to a certain amount may be received with just your signature. Larger loans must be backed with some form of collateral.

In the Wilmington Teachers Credit Union, loans are repaid monthly. The rate is three-quarters of one percent \(-\frac{3}{4} \% \) or \(.075\% \) of the unpaid balance.

An example of a loan of $300 for 12 months at $25 a month is shown on the next page. Notice that the monthly interest is always \(-\frac{3}{4} \% \) of the balance due.

In the example you find the interest as \(-\frac{3}{4} \% \) of unpaid balance or

\[
\frac{3}{4} \% \text{ of } 300 = .075 \times 300 = \$22.50
\]

To figure the interest for the second month you take \(-\frac{3}{4} \% \) of unpaid balance or

\[
\frac{3}{4} \% \text{ of } 275 = .075 \times 275 = \$20.625
\]
Small Loan For

- Appliance
- Hi Fi
- Wardrobes
- Car Repairs
- Air Conditioner
- Furniture

Wilmington Teachers Federal Credit Union

Health and Guidance Center

625 East 10th Street

Wilmington, Delaware

Telephone: 0L 4-3101, extension 309

Office Hours: 11 A.M. to 4:30 P.M.

Monday through Friday

Monthly payments for $300 loan for 12 months

<table>
<thead>
<tr>
<th></th>
<th>Total Monthly Payment</th>
<th>Payment on Principal</th>
<th>Monthly Interest</th>
<th>Balance Due on Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st month</td>
<td>$27.25</td>
<td>$25.00</td>
<td>$2.25</td>
<td>$275.00</td>
</tr>
<tr>
<td>2nd month</td>
<td>27.06</td>
<td>25.00</td>
<td>2.06</td>
<td>250.00</td>
</tr>
<tr>
<td>3rd month</td>
<td>26.83</td>
<td>25.00</td>
<td>1.83</td>
<td>225.00</td>
</tr>
<tr>
<td>4th month</td>
<td>26.69</td>
<td>25.00</td>
<td>1.69</td>
<td>200.00</td>
</tr>
<tr>
<td>5th month</td>
<td>26.56</td>
<td>25.00</td>
<td>1.59</td>
<td>175.00</td>
</tr>
<tr>
<td>6th month</td>
<td>26.43</td>
<td>25.00</td>
<td>1.43</td>
<td>150.00</td>
</tr>
<tr>
<td>7th month</td>
<td>26.31</td>
<td>25.00</td>
<td>1.31</td>
<td>125.00</td>
</tr>
<tr>
<td>8th month</td>
<td>26.13</td>
<td>25.00</td>
<td>1.13</td>
<td>100.00</td>
</tr>
<tr>
<td>9th month</td>
<td>25.94</td>
<td>25.00</td>
<td>.94</td>
<td>75.00</td>
</tr>
<tr>
<td>10th month</td>
<td>25.75</td>
<td>25.00</td>
<td>.75</td>
<td>50.00</td>
</tr>
<tr>
<td>11th month</td>
<td>25.56</td>
<td>25.00</td>
<td>.56</td>
<td>25.00</td>
</tr>
<tr>
<td>12th month</td>
<td>25.38</td>
<td>25.00</td>
<td>.38</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Total $146.63

Borrowers' Insurance

This insurance covers the amount of the loan made. It is paid for by the Credit Union. There is no upper limit on borrowers' insurance.

ALL TRANSACTIONS ARE CONFIDENTIAL.
In all these Credit Union problems, assume that the interest rate is \(\frac{3}{4} \) of 1\% of the unpaid balance.

1) If you borrowed $90 from a credit union and decided to pay them $12 a month, what interest would be taken out the first month? What amount would be credited against the principal? What would remain to be paid?

2) You borrow $200 from the credit union, you decide to pay $20 a month. How much would you have left to pay at the end of 3 months? What interest was paid?

3) You buy a car for $1200 and finance it through the credit union. How much would you have paid back at the end of 6 months if you paid $60 a month? What interest was paid?

In the problems use this form when necessary

<table>
<thead>
<tr>
<th>Number of payment</th>
<th>Total Monthly payment</th>
<th>Payment on Principal</th>
<th>Monthly Interest (\left(\frac{3}{4} \right)) of 1%</th>
<th>Balance of Principal due</th>
</tr>
</thead>
</table>

170
A 1) If you borrowed $100 from a Credit Union and paid them $10 a month. After the payment of your interest, what will be the balance of principal due at the end of 3 payments.

B 2) The credit union has loaned you $600 for a year. You said you want to pay $50 a month. How much would you have left to pay on this loan after three months.

C 3) A loan of $400 is paid back to the credit union in 1 year. You decide to pay $33.35 month. Show each months interest, credit, and the balance for 4 months.

Use this form when necessary

<table>
<thead>
<tr>
<th>Number of payment</th>
<th>Total Monthly payment</th>
<th>Payment on Principal</th>
<th>Monthly Interest</th>
<th>Balance of principal due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$36.50</td>
<td>$33.35</td>
<td>$2.15</td>
<td>$366.50</td>
</tr>
<tr>
<td>2</td>
<td>$36.50</td>
<td>$33.35</td>
<td>$2.15</td>
<td>$369.65</td>
</tr>
<tr>
<td>3</td>
<td>$36.88</td>
<td>$33.35</td>
<td>$2.50</td>
<td>$372.15</td>
</tr>
<tr>
<td>4</td>
<td>$36.88</td>
<td>$33.35</td>
<td>$2.50</td>
<td>$369.65</td>
</tr>
</tbody>
</table>
A 1) A $150 loan for one year through a Credit Union will require monthly payments of approximately $16 a month. Find the balance to be paid at the end of 3 months.

B 2) You are going to pay off a loan of $84 in six months. You are figuring in paying $14 a month. Show the work for three months payment and interest paid.

C 3) A credit union loans $300 to you. You are to pay it off in six months. Your monthly payment will be $50. Show how they figure all six months interest and balance credits each month.

Use this form when necessary

<table>
<thead>
<tr>
<th>Number of payment</th>
<th>Total Monthly payment</th>
<th>Payment on Principal</th>
<th>Monthly Interest ((\frac{2}{4}) of 1%)</th>
<th>Balance of principal due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.63</td>
<td>14</td>
<td>14.63</td>
<td>14.63</td>
</tr>
<tr>
<td>2</td>
<td>14.53</td>
<td>14</td>
<td>14.53</td>
<td>14.53</td>
</tr>
<tr>
<td>3</td>
<td>14.42</td>
<td>14</td>
<td>14.42</td>
<td>14.42</td>
</tr>
<tr>
<td>4</td>
<td>14.32</td>
<td>14</td>
<td>14.32</td>
<td>14.32</td>
</tr>
<tr>
<td>5</td>
<td>14.23</td>
<td>14</td>
<td>14.23</td>
<td>14.23</td>
</tr>
</tbody>
</table>

\[172\]
PURCHASE OF A CAR

You are going to buy a new car. It is a "souped-up" 1970 Cougar. You are trading in your 1968 Chev. Impala S.S.

Let's follow the steps in this purchase to see how you, the dealer, and the bank arrive at the final agreement. Use the next three forms.

Let's look at the Dealer's Work Sheet

This is the form used for the mathematics of the deal. The top of the form explains what type of car is being purchased and what special equipment goes with it.

The Cash Sale Delivered Price is gross (total) cost of car $4130.70
Total Down Payment (Trade-in + cash down payment) $2180.70
Unpaid Cash Price Balance (Remainder to be financed) $2039.97
Charge for Creditor Life Insurance (Look at finance table under unpaid balance of $2000 for 36 months) $36.74
Principal Balance (Total of unpaid bal. + life insurance) $2003.23
Finance Charge (Look at finance table at $2000 for 36 mo.) $427.59
Ant. of Contract (Look at finance table at $2000 for 36 mo. under payment $68.46 for each month) or $2462.18
Total Time Price (Total down payment + amount of contract) $4645.48
DEALER'S WORK SHEET

DATE 9-29 10:46

Car Sold [X] New [] Used — Year 1970 No. Cyl. 8 Make Cougar Body Type Coupe Model No. XR7

Check following equipment included in the Cash Sale Delivered Price.

- [X] Redic
- [] Automatic Trans.
- [] Power Steering
- [X] Power Windows
- [X] High H/P Engine (Describe) 428 C.I.
- [X] Heater
- [] E-Z Eye Glass
- [X] Power Brakes
- [] Power Seats
- [] Air Conditioning

Cash Sale Delivered Price (including Sales Tax, accessories or extra equipment, if any) $4180.70

Gro Trade-in allowance $2965.70
Pay-off on open account $286.00

Total Down Payment — Net Trade-in allowance $1280.76 + $300.50 + $2180.70

Total — Make Chevrolet Model Impala 4-5 Year (Cash) $2000.00

Unpaid Cash Price Balance (Difference between Items 1 and 2) $36.97

Other Costs — Describe

Unpaid Balance (Sum of Items 3, 4A and 5)

Charge for Creditor Life Insurance, if any

Charge for Creditor Disability Insurance, if any

Principal Balance (Sum of Items 5A, 4B and 4C)

Finance Charge (Difference between Items 6 & 8)

Amount of Contract (Time Balance) Obtained from Payment Chart No. 7%

Payable in 96 INSTALMENTS OF $68.46 + OR AS INDICATED IN SPACE BELOW

Total Time Price (Add Items 2 and 8) $4645.26

Cars for Hire

Will Car be used as: [] Taxi Cab [] U Drive [] Livery [] Other — Explain

Commercial Cars and Trucks

(To be completed ONLY when MIC insurance is included)

Contract Covers:

- [] Chassis
- [] Cab
- [] Body
- [] TRUCK TYPE TRACTOR — Cost $ 1. SEMI TRAILER — Cost $ 2. CAPACITY
- [] TONS
- [] Distance of Operation — [] Up to 50 miles [] Over 150 miles
- [] Use of Truck

Used Commercial Cars Only — Cost of car insurance based on (check which):

- [] List Price of Chassis only $
- [] Original Cost New (Complete Truck) $

Comments

Dealer's Name
What's in the Order Form?

This order form shows all the details of the information from the Dealer's Work Sheet. It tells exactly what you are getting, what you are trading in, and a breakdown of the financing. This order when signed becomes legally binding on your purchase.

You can see the breakdown of the $4180.70 Cash Sale Delivered Price which was listed on your Dealers Work Sheet.

Under "Credits" you see the balance which you still owe GMAC (General Motors Acceptance Corporation) for $325.

You will see your yearly interest rate is 7%

You will also know who is handling the financing. In this case it is the Farmers Bank.

Before signing this Order you should have it explained to you and should understand exactly what you are signing.

Payment Table

This is based on the amount of money you are financing. First, look to see if you want the 30 or the 36 month chart. Secondly, you look at the column which represents your unpaid balance (amount to be financed). Reading from left to right you will find:

1) The monthly payment

2) The face of the note (or loan)

3) Cost of the insurance required

4) Interest charged.
Order Form

Purchaser's Name: John R. Maston Jr.

Date: Sept. 29 1969

STOCK NO. M 593

HOLIDAY LINCOLN MERCURY

WILMINGTON, DELAWARE 19899

Order Form

PLEASE ENTER MY ORDER FOR ONE:

<table>
<thead>
<tr>
<th>MAKE</th>
<th>MERCURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
<td>Cougar</td>
</tr>
<tr>
<td>COLOR</td>
<td>Kelly Red</td>
</tr>
<tr>
<td>TYPE</td>
<td>XR7 Coupe</td>
</tr>
<tr>
<td>YEAR</td>
<td>1970</td>
</tr>
</tbody>
</table>

CASH PRICE OF CAR

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Price</td>
<td>$3315</td>
</tr>
<tr>
<td>TRANSPORTATION CHARGE</td>
<td>$200</td>
</tr>
<tr>
<td>Four Speed Transmission</td>
<td>$335</td>
</tr>
<tr>
<td>Competition Handling Package</td>
<td>$110</td>
</tr>
<tr>
<td>Sports Console</td>
<td>$57</td>
</tr>
<tr>
<td>Outside Racing Mirrors</td>
<td>$12</td>
</tr>
<tr>
<td>Power Disk Brakes</td>
<td>$6</td>
</tr>
<tr>
<td>AM Radio</td>
<td>$60</td>
</tr>
<tr>
<td>RAM Air Induction</td>
<td>$180</td>
</tr>
<tr>
<td>Wire Wheel Cover</td>
<td>$51</td>
</tr>
</tbody>
</table>

TOTAL

$4150 70

REGISTRATION & TITLE FEE

$30 00

TOTAL CASH DELIVERED PRICE

$4180 70

CASH DEPOSIT SUBMITTED WITH ORDER

$300 00

ALLOWANCE FOR USED CAR TRADE IN AS APPRAISED

$2205 70

LESS BALANCE OWING TO

G. M. A. C. Corp.

$315 00

CASH TO BE PAID AT TIME OF DELIVERY

$190 70

DESCRIPTION OF TRADE IN

<table>
<thead>
<tr>
<th>Make</th>
<th>Impala S.S. Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1968</td>
</tr>
</tbody>
</table>

CAR DESCRIPTION

- **License Number:** 68 F 230 971
- **Ownership:** Del. 1968
- **Term:** 24 months
- **Rate:** 7%
- **PTO:** 12 months
- **Amount of Contract:** $36 00
- **Balance Due:** $200 00
- **AMOUNT OF CONTRACT:** $246 56
- **AMOUNT OF CASH DUE:** $200 00
- **AMOUNT OF INSTALLMENT:** $6 95

SIGNATURES

Cheif Fishe

Franzus G. Talansky

John R. Maston Jr.

APPROVED

C T. Millions

PROOFED

C T. Millions
Payment Table 7%

<table>
<thead>
<tr>
<th>LMo</th>
<th>30 MONTHS</th>
<th>36 MONTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PAYT</td>
<td>MONT</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>21.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>21.1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>21.1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>21.1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>21.1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>21.1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>21.1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>21.1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>21.1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>21.1</td>
</tr>
</tbody>
</table>

177
'66 PLYMOUTH
$1055

'68 MUSTANG
$2088

'66 MERCURY
$1474

'65 COMET
$999

'67 CHEVROLET
$1944

'67 CHEVROLET
$1899

'68 LINCOLN
$555

'66 MERCURY
$1589

'66 BUICK
$1858

HOLIDAY
$3500

LINCOLN-MERCURY
38th and MARKET 515
764-3900

DELTA
Use the table given:

1) Upon purchase of a car your Amount of Contract (Amount left to be financed) is given. Fill in all the following information: the monthly payment, the face of the note, the life insurance charge, and the interest charge on your note.

<table>
<thead>
<tr>
<th>Amount of Contract</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $200</td>
<td>30 months</td>
</tr>
<tr>
<td></td>
<td>7.95, 3.28, 2.69, 2.65</td>
</tr>
<tr>
<td></td>
<td>35.50</td>
</tr>
<tr>
<td>b) $2000</td>
<td>30 months</td>
</tr>
<tr>
<td></td>
<td>7.93, 3.26, 2.63, 2.60</td>
</tr>
<tr>
<td></td>
<td>35.35</td>
</tr>
<tr>
<td>c) $700</td>
<td>36 months</td>
</tr>
<tr>
<td></td>
<td>7.85, 3.22, 2.59, 2.56</td>
</tr>
<tr>
<td></td>
<td>35.20</td>
</tr>
<tr>
<td>d) $2700</td>
<td>36 months</td>
</tr>
<tr>
<td></td>
<td>7.82, 3.20, 2.57, 2.54</td>
</tr>
<tr>
<td></td>
<td>35.15</td>
</tr>
<tr>
<td>e) $3400</td>
<td>30 months</td>
</tr>
<tr>
<td></td>
<td>7.80, 3.20, 2.56, 2.54</td>
</tr>
<tr>
<td></td>
<td>35.10</td>
</tr>
<tr>
<td></td>
<td>30 months</td>
</tr>
<tr>
<td></td>
<td>7.79, 3.20, 2.56, 2.54</td>
</tr>
<tr>
<td></td>
<td>35.05</td>
</tr>
<tr>
<td></td>
<td>36 months</td>
</tr>
<tr>
<td></td>
<td>7.78, 3.20, 2.56, 2.54</td>
</tr>
<tr>
<td></td>
<td>35.00</td>
</tr>
</tbody>
</table>

2) If you could afford to pay about the given number of dollars per month, then approximately what price car could you purchase if you have no trade-in or down payment.

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $43.72</td>
<td>30 months</td>
</tr>
<tr>
<td>b) $61.61</td>
<td>36 months</td>
</tr>
<tr>
<td>c) $103.35</td>
<td>30 months</td>
</tr>
<tr>
<td>d) $47.92</td>
<td>36 months</td>
</tr>
</tbody>
</table>

3) Using the idea of the Dealers Work Sheet and the 7% Table, show the financing in this deal.

a) From the previous page you bought the 1966 Plymouth from Holiday Lincoln Mercury. You had no trade-in, but gave them $155 in cash. Figure the financing for 30 months.
A Use the table given:

1) Upon purchase of a car your amount of contract (amount left to be financed) is given. Fill in all the following information: the monthly payment, the face of the note, the life insurance charge, and the interest charge on your note.

<table>
<thead>
<tr>
<th>Amount of Contract</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $700</td>
<td>30 months</td>
</tr>
<tr>
<td>b) $2700</td>
<td>36 months</td>
</tr>
<tr>
<td>c) $800</td>
<td>30 months</td>
</tr>
<tr>
<td>d) $2400</td>
<td>36 months</td>
</tr>
<tr>
<td>e) $3500</td>
<td>30 months</td>
</tr>
</tbody>
</table>

2) If you could afford to pay about the given number of dollars per month then approximately what price car could you purchase if you have no trade-in or down payment.

<table>
<thead>
<tr>
<th>Approximate Monthly Payment</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $47.70</td>
<td>30 months</td>
</tr>
<tr>
<td>b) $71.88</td>
<td>36 months</td>
</tr>
<tr>
<td>c) $123.22</td>
<td>30 months</td>
</tr>
<tr>
<td>d) $58.19</td>
<td>36 months</td>
</tr>
</tbody>
</table>

B 3) Use the idea of the Dealers Work Sheet and the 7% Table.

a) Courtesy Ford has a sale on a 2-door Cortina. You intend to trade-in your car for $349 and give them $100 in cash. Figure all the financing for 30 months.

b) You are going to buy the 1966 Oldsmobile Dynamic 88 as advertised by Delaware Olds. You are going to give them $300 in cash and your old car, worth $260 in trade in. Figure all financing for 36 months.
Use the table given:

1) Upon purchase of a car, your Amount of Contract (amount left to be financed) is given. Fill in all the following information: the monthly payment, the face of the note, the life insurance charge, and the interest charge on your note.

<table>
<thead>
<tr>
<th>Amount of Contract</th>
<th>Time</th>
<th>Payment</th>
<th>Face of Note</th>
<th>Life Insurance</th>
<th>Interest Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $400</td>
<td>30 months</td>
<td>15.90</td>
<td>15.21</td>
<td>5.47</td>
<td>7.06</td>
</tr>
<tr>
<td>b) $2200</td>
<td>30 months</td>
<td>22.74</td>
<td>20.42</td>
<td>8.55</td>
<td>3.28</td>
</tr>
<tr>
<td>c) $600</td>
<td>36 months</td>
<td>6.80</td>
<td>6.39</td>
<td>1.14</td>
<td>1.27</td>
</tr>
<tr>
<td>d) $2500</td>
<td>30 months</td>
<td>25.37</td>
<td>23.77</td>
<td>10.37</td>
<td>11.38</td>
</tr>
<tr>
<td>e) $3300</td>
<td>36 months</td>
<td>9.72</td>
<td>8.60</td>
<td>1.46</td>
<td>2.64</td>
</tr>
</tbody>
</table>

Use table:

2) If you could afford to pay about the given number of dollars per month then approximately what price car could you purchase if you have no trade-in or down payment.

<table>
<thead>
<tr>
<th>Amount</th>
<th>Time</th>
<th>Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $35.77</td>
<td>30 months</td>
<td>6.65</td>
</tr>
<tr>
<td>b) $68.46</td>
<td>36 months</td>
<td>2.67</td>
</tr>
<tr>
<td>c) $111.30</td>
<td>30 months</td>
<td>3.80</td>
</tr>
<tr>
<td>d) $51.34</td>
<td>36 months</td>
<td>1.50</td>
</tr>
</tbody>
</table>

3) Use the idea of the Dealers Work Sheet and the 7% table.

a) You purchase the Buick as advertised by Liberty Buick. They accept your car in trade for $1178. You make no cash deposit. Show the financing for 30 months.

b) Holiday has a '68 Mustang for sale. You have no trade-in but put down $388 in cash. Show financing for 30 months.
Geometry — one of the oldest subjects in mathematics — and one of the newest. From the time of the ancient mathematician Euclid, to the design of future space vehicles, geometry is important. Wherever physical objects have been under consideration, there geometry has been called in to help with the understanding.
Geometry

Geometry is concerned with the size, shape, and position of objects. Size has to do with measurement. Shape has to do with figures. Position has to do with distance.

See if you can understand the diagrams well enough to relate one (or more) of these words — size, shape, position. Write the word after the diagram.

1. position, size
2. size
3. shape
4. position
5. size
6. shape
7. position
8. size
9. shape
10. M

Students will have to discuss the idea of size, shape, and position before starting this exercise. Look for the thing that is different in each drawing. If size and shape are the same, position is the answer. Or, shape and position may not be as important as size, and so on. Find some physical objects to demonstrate this lesson.
Points, Lines, and Planes

If a Point is a reference mark, tell in a few words how each of the following can be regarded as points. Name some more.

1) a pencil dot
2) the earth in space
3) an ant
4) a person
5) a cottage on a lake shore
6) the stars in the Big Dipper

A Line has been described as a series of points. A straight line is described as the shortest path of points between two points. Tell why these objects might represent straight lines.

1) a stretched rubber band
2) the path of a bullet
3) a crease
4) the edge of a ruler
5) folded edge of a piece of paper
6) trail of jet in the sky

A plane, or flat surface, may be described as determined by straight lines through three different points. Tell why each of the following can be regarded as a plane.

1) one face of a cube
2) the classroom floor
3) a wall
4) a lake
5) the desk top
6) the black board
Learning To Use The Compass

We draw circles with compasses, but the compass is an instrument for measuring. The distance between the "needle" of a compass and the lead pencil point, is called the radius. Thus we make circles of different size according to the measure of this radius.

Do not open the compass on the edge of a ruler to get a radius. Use the ruler to draw a line segment the length of the radius you wish. Draw six circles using the following line segments as radii.

1) _______ 4) _______
2) _______ 5) _______
3) _______ 6) _______

Find the radius of each of these circles. Do this by using your ruler to get the largest width (diameter) of the circle. Take one half of the diameter to get the radius.
Parts of a Circle

Using the above drawing, try identifying as many of these parts as you can. Write the letters after the words.

1) Center
2) Circumference
3) Radius (plural, radii)
4) Diameter (twice the radius)
5) Semi-circle
6) Arc
7) Interior point
8) Exterior point
9) Chord
10) Inscribed angle
Multiply:

1) \(90^\circ \times 2\)

\[180^\circ\]

2) \(90^\circ \times 3\)

\[270^\circ\]

3) \(270^\circ \times 4\)

\[1080^\circ\]

4) \(170^\circ \times 2\)

\[340^\circ\]

5) \(16^\circ \times 6\)

\[96^\circ\]

6) \(198^\circ 10' \times 4\)

\[792^\circ 40'\]

7) \(199^\circ 30' \times 2\)

\[399^\circ\]

8) \(121^\circ 45' \times 4\)

\[487^\circ\]

9) \(166^\circ 5' \times 3\)

\[498^\circ 15'\]

10) \(127^\circ 55' \times 8\)

\[1023^\circ 20'\]

11) \(90^\circ 15' \times 5\)

\[451^\circ 15'\]

12) \(180^\circ 30' \times 3\)

\[541^\circ 30'\]
Drill

Subtract:

1) \[178^\circ \]
 \[- 42^\circ \]
 \[136^\circ \]

2) \[236^\circ \]
 \[- 188^\circ \]
 \[48^\circ \]

3) \[197^\circ \]
 \[- 114^\circ \]
 \[83^\circ \]

4) \[167^\circ \]
 \[- 14^\circ \]
 \[153^\circ \]

5) \[78^\circ \]
 \[- 10^\circ \]
 \[68^\circ \]

6) \[30^\circ \, 15' \]
 \[- 12^\circ \, 6' \]
 \[18^\circ \, 9' \]

7) \[40^\circ \, 15' \]
 \[- 16^\circ \, 19' \]
 \[23^\circ \, 56' \]

8) \[60^\circ \, 14' \]
 \[- 15^\circ \, 21' \]
 \[44^\circ \, 53' \]

9) \[60^\circ \, 12' \]
 \[- 14^\circ \, 32' \]
 \[45^\circ \, 40' \]

10) \[69^\circ \, 12' \]
 \[- 14^\circ \, 57' \]
 \[55^\circ \, 15' \]

11) \[70^\circ \, 15' \]
 \[- 30^\circ \, 45' \]
 \[39^\circ \, 30' \]

12) \[180^\circ \, 00' \]
 \[- 65^\circ \, 30' \]
 \[114^\circ \, 30' \]

\[\times \, Y \]
If we look at the moon as we do at a globe of the earth, the central east-west line is the "equator". Parallels of latitude are marked from 0° at the equator north to 90° and south to 90° at the "south pole". From zero, at the very center of the moon, meridians go to the right (Eastward) to 90°, and westward (left) to 90°.

Example: Find Latitude and Longitude of Point A
Answer: Latitude 20° North
Longitude 40° East

Find the Latitude and Longitude of these points on the Moon.
1) B, Lat 10° S, Long 10° W
2) C, Lat 20° S, Long 20° E
3) D, Lat 30° S, Long 30° E
4) E, Lat 40° N, Long 20° E
5) F, Lat 30° N, Long 20° W
6) G, Lat 40° S, Long 50° W
LANDMARKS FOR THE ASTRONAUT.

Find the latitude and longitude of these places:

A Landing Place, Lat 1° N, Long 23° E. B Copernicus, Lat 10° N, Long 10° W.

B Sea of Tranquility, Lat 16° N, Long 30° E. C Central Bay, Lat 6°, Long 0°.

C Sabine, Lat 3° N, Long 10° E. D Ptolemaeus, Lat 3° S, Long 3° W.

1893
Constructions Basic To Designs

If a student can construct a perpendicular (90° angle) at a point on a line, he can easily divide a circle into four equal parts.

On the diameter of the circle find point C, the center. Use any radius to draw arcs a and b. Use any larger radius and with the needle at point C, draw intersecting arcs at d and e. Draw a long straight line through d and e. This line divides the circle into four equal parts called quadrants.

To divide a circle into 8, 16, 32, etc., equal parts, a student must know how to bisect an angle.

Draw an arc of any radius using point B for the needle, and intersecting the sides of the angle at A and C. Now put the needle at A and C and draw intersecting arcs at D. The line BD divides angle ABC into 2 equal parts.
Some Designs

Good designs are not made by accident. Care must be exercised in measuring and using compass and ruler. Here is an experiment in dividing a circle into 12 equal parts.

You must know, first, that the radius of any circle can be used to mark off the circle into 6 equal arcs. From points A and B on the diameter, find intersections at C, D, E, and F. Draw lines CE and DF. By the construction method, see previous page, bisect angle CMB, and draw line OH. In like manner, bisect the next two angles and draw lines JK and LN. Try coloring each of the 12 parts with water-color or crayon.
SUGGESTED DESIGNS

Diagram of suggested designs:
1. Circle with diagonal lines
2. Circle with semi-circle
3. Circle with intersecting lines
4. Square with curved patterns
5. Spiral with square
6. Spiral with concentric circles
Special Pairs of Angles

When two angles are measured and their sum is 90° we call them Complementary angles. List as many pairs of Complementary angles as you can find in this drawing. Use the symbol (\(\angle\)) for angle. The number of degrees are marked in the angles of the given figure. For example: \(\angle EAD\) and \(\angle EAB\)

Supplementary angles are those two angles whose measure in degrees add up to 180°. Name as many pairs of Supplementary angles as you can from this drawing. For example: \(\angle DBC\) and \(\angle DBA\)
Angles

Study this diagram and see if you can complete the sentences below. Use letters from the diagram.

1) Angle DBC which is 90° is also called a __right__ angle.

2) Angle ABC is also called by a __interior__ angle.

3) An acute angle in the drawing is $\angle ABC$.

4) Another name for a line like BA is __segment__.

5) 90° makes line DB __perpendicular__ to line BC (also, at right angles).

6) Because angles DBA plus angle ABC equal 90° the pair of angles are said to be __complementary__.

7) Angle DBC could be measured with a __protractor__.

8) Angle DBC plus angle DBE must equal __180°__.

9) The pair of angles in problem 8 are __supplementary__.

10) Name 3 angles which add up to 180° $\angle ABC, \angle DBA, \angle DBE$.
Using a Protractor

If a circle is divided into 360 equal parts, we can call any one part a degree. Protractors are usually shaped as half a circle, or 180°. It is very important to have the vertex of the angle (the point of intersection of the 2 sides of the angle), at the correct point on the protractor.

Measure the number of degrees in each angle. Take the results and lay out the same 6 angles on a separate piece of paper. When finished, cut your 6 angles out with scissors and match them with these.
Practice Work

Add:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>52°</td>
<td>58°</td>
</tr>
<tr>
<td>2)</td>
<td>47°</td>
<td>19°</td>
</tr>
<tr>
<td>3)</td>
<td>16°</td>
<td>58°</td>
</tr>
<tr>
<td>4)</td>
<td>15°</td>
<td>31°</td>
</tr>
<tr>
<td>5)</td>
<td>15°</td>
<td>99°</td>
</tr>
<tr>
<td>6)</td>
<td>200°</td>
<td>14°</td>
</tr>
<tr>
<td>7)</td>
<td>62°</td>
<td>136°</td>
</tr>
<tr>
<td>8)</td>
<td>98°</td>
<td>172°</td>
</tr>
<tr>
<td>9)</td>
<td>14°</td>
<td>188°</td>
</tr>
<tr>
<td>10)</td>
<td>14°</td>
<td>210°</td>
</tr>
<tr>
<td>11)</td>
<td>136°</td>
<td>310°</td>
</tr>
<tr>
<td>12)</td>
<td>218°</td>
<td>312°</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>98°</td>
<td>15°</td>
</tr>
<tr>
<td>2)</td>
<td>42°</td>
<td>16°</td>
</tr>
<tr>
<td>3)</td>
<td>42°</td>
<td>58°</td>
</tr>
<tr>
<td>4)</td>
<td>120°</td>
<td>15°</td>
</tr>
<tr>
<td>5)</td>
<td>22°</td>
<td>31°</td>
</tr>
<tr>
<td>6)</td>
<td>98°</td>
<td>14°</td>
</tr>
<tr>
<td>7)</td>
<td>21°</td>
<td>136°</td>
</tr>
<tr>
<td>8)</td>
<td>172°</td>
<td>136°</td>
</tr>
<tr>
<td>9)</td>
<td>188°</td>
<td>136°</td>
</tr>
<tr>
<td>10)</td>
<td>79°</td>
<td>14°</td>
</tr>
<tr>
<td>11)</td>
<td>121°</td>
<td>210°</td>
</tr>
<tr>
<td>12)</td>
<td>310°</td>
<td>312°</td>
</tr>
</tbody>
</table>
All about us are right angles. Squares and rectangles each have four right angles. Squares have four equal sides; only the opposite sides of rectangles are equal.

In the above drawing see if you can find at least seven squares. Some may overlap. List them like this: AKML, KBNM, etc.

List at least ten rectangles which can be found in the drawing.
Testing To See If Lines Are Parallel

One way to see if any two lines are parallel is to see if certain angles are equal. It is a fact that if two lines are parallel, then certain angles are equal. In the drawing, line AB and CD are parallel. EF is any intersecting line.

\[\angle a = \angle b, \quad \angle c = \angle d \]

Therefore, \(\angle a \) must equal \(\angle b \), and \(\angle c \) must equal \(\angle d \). To test to see if any two lines are parallel we measure these angles and compare them. Remember measurement is approximate and our conclusion is based on careful work.

In the above drawing the angles measure equal, so we conclude that MN and OP are parallel.

Here the angles measure unequally, so we conclude that RS and TU are not parallel.
Practice With Testing Parallel Lines

See the previous page for instruction on how to test to see if lines are parallel. Measure the angles with a protractor. Write under each drawing either Parallel, or Not Parallel.

1) 4)

2) 5)

3) 6)
Parallelograms are four sided figures with opposite sides equal and parallel. Use a ruler and a protractor on this drawing and "prove" by measurement if the sentences are True or False. Measurement is approximate, so work carefully.

1) DC = AD True
2) \(\angle BAD = \angle BCD\) True
3) \(\angle ADC = \angle BCD\) False
4) BE = ED True
5) CD = BA True
6) \(\angle 5 = \angle 6\) False
7) \(\angle ABC = \angle ADC\) True
8) \(\angle 9 = \angle 10\) True
9) \(\angle 11 = 15\) False
10) \(\angle 10 + \angle 11 = 180^\circ\) True
Polygons

A polygon is a flat figure with many sides. Triangles, squares, hexagons, are examples of polygons. The drawing shows a pentagon, one of its diagonals, and the same diagonal extended to point F. Most of these answers you can guess; also use a dictionary for difficult words.

1) Name the sides of this polygon. (such as AE, ED, etc.)
2) Name the polygons five interior angles. \(\angle AEC, \angle AED, \ldots \)
3) Name one exterior angle. \(\angle \text{exterior}, \angle \text{exterior,} \ldots \)
4) Name an exterior point. \(P, E \)
5) Name and interior point. \(C, \ldots \)
6) Name a triangle. \(\triangle ABC \)
7) Name a vertex. \(\ldots \)
8) Name a quadrilateral (four sided figure). \(\ldots \)
9) Name all the angles around point C. \(\angle CBA, \angle BCA, \angle BAC \)
10) Name two supplementary angles. \(\angle BCA, \angle BAC \)
Space Figures

Polyhedrons are solid figures with many faces. Study the drawing of the first figure in this series and see if you can explain why polyhedrons must have at least four sides.

Can you draw the next one?

Prisms are polyhedrons with two faces parallel such as the rectangular solid (second figure in this series)

Can you draw the next one?

Some space figures with curved surfaces are drawn here.

Can you draw some more?
Area Problems In Reverse

With scissors cut out 9 pieces of paper exactly one inch square. How many rectangular figures can you make with some or all of these nine pieces? Here are some suggested.

![Rectangles Diagram]

(The student should see that if he builds a figure with 4 square inches the area regardless of shape will be 4 square inches.) Make a drawing of each figure you "invent". The number of squares you use will be the area, in square inches, of that figure.

Now cut each of these nine squares diagonally. Each one now is one half square inch instead of one whole square inch. How many different triangles can you make with these 18 pieces? Make a drawing of each figure in "invent" and put the area in square inches under it. Check your results with the formula: Area of a triangle is one half the base times the altitude.

![Triangles Diagram]
Adding Whole Numbers and Decimals

1) 118
 4382
 165
 4998
 315
 9778

2) 679
 4836
 298
 4362
 8741
 18716

3) 482
 3146
 609
 6483
 10926

4) 672
 4376
 802
 5550

5) 698
 437
 1628
 1403

6) 168.34
 25.61
 49.87
 632.84
 19.08
 595.14

7) 19,805
 4,632
 19,803
 216
 3,811

8) 26.25
 2.09
 24.90
 6.03

9) 6.032
 7.604
 18.032

10) 8.04
 12.08

Practice With Subtraction

1) 638452 - 52007 = 584,445

2) 654378 - 62904 = 591,474

3) 57604 - 38910 = 18694

4) 64387 - 21096 = 43291

5) 819805 - 198032 = 621773

6) 634.003 - 5.009 = 628.994

7) 63.097 - 41.803 = 21.294

8) 986.62 - 63.84 = 922.78

9) 9087.60 - 8541.02 = 546.58

10) 8017.6 - 2071.8 = 5945.8
Whole Number and Decimal Multiplication

1) 236
 \[\times 6 \]
 \[1,416 \]

2) 207
 \[\times 415 \]
 \[85,905 \]

3) 362
 \[\times 801 \]
 \[289,942 \]

4) 763
 \[\times 208 \]
 \[158,704 \]

5) 614
 \[\times 392 \]
 \[240,688 \]

6) 1.05
 \[\times 3.2 \]
 \[3.36 \]

7) 2.34
 \[\times 1.14 \]
 \[2.6676 \]

8) 6.32
 \[\times 2.1 \]
 \[13.272 \]

9) 7.09
 \[\times 8.2 \]
 \[54.138 \]

10) 6.72
 \[\times 5.6 \]
 \[37.632 \]
Divide and Reduce Remainder

1) $23|4156$
\[\begin{array}{c|c}
18 & 16 \\
--- & --- \\
23 & 23 \\
--- & --- \\
0 & \\
\end{array}\]

2) $62|8724$
\[\begin{array}{c|c}
4 & 22 \\
--- & --- \\
31 & 31 \\
--- & --- \\
0 & \\
\end{array}\]

3) $16|1783$
\[\begin{array}{c|c}
11 & 7 \\
--- & --- \\
16 & 16 \\
--- & --- \\
3 & 3 \\
--- & --- \\
0 & \\
\end{array}\]

4) $12|980$
\[\begin{array}{c|c}
81 & 2 \\
--- & --- \\
3 & 3 \\
--- & --- \\
0 & \\
\end{array}\]

5) $18|3608$
\[\begin{array}{c|c}
2 & 4 \\
--- & --- \\
9 & 9 \\
--- & --- \\
0 & \\
\end{array}\]

6) $3|19803$
\[\begin{array}{c|c}
6 & 6 \\
--- & --- \\
0 & \\
\end{array}\]

7) $15|16070$
\[\begin{array}{c|c}
10 & 7 \\
--- & --- \\
3 & 3 \\
--- & --- \\
1 & 1 \\
--- & --- \\
0 & \\
\end{array}\]

8) $12|14080$
\[\begin{array}{c|c}
11 & 7 \\
--- & --- \\
3 & 3 \\
--- & --- \\
3 & 3 \\
--- & --- \\
0 & \\
\end{array}\]

9) $16|19845$
\[\begin{array}{c|c}
12 & 4 \\
--- & --- \\
16 & 16 \\
--- & --- \\
5 & 5 \\
--- & --- \\
0 & \\
\end{array}\]

10) $30|663062$
\[\begin{array}{c|c}
22 & 1 \\
--- & --- \\
10 & 1 \\
--- & --- \\
2 & 2 \\
--- & --- \\
15 & 15 \\
--- & --- \\
2 & 2 \\
--- & --- \\
0 & \\
\end{array}\]
A Fact About Triangles

Draw several triangles of different shape. Place numbers from one to nine in the nine angles. Now cut off three angles of each triangle. Spread out angles 1, 2, and 3, adjacent to each other. What do you notice when you put together 4, 5, 6, and 7, 8, 9?

Illustration.

Use your protractor and measure the number of degrees in each of these triangles. Find the sum of these angles for each triangle. Can you establish the fact that this sum for any triangle should be 180°?
Angle, Side, Angle

Sometimes it is necessary to construct a triangle when two angles and the side between them is given. For example, let us construct a triangle given the information in this way: 40°, 3", 70°. Draw a line, AB, which measures 3". Next, with the protractor construct angles of 40° and 70° at points A and B. Extend these sides until they meet at point C.

A check to see if you have done it correctly is to measure the degrees in angle C. Adding 40° and 70° gives 110°. Subtract 110° from 180° to get 70°. Thus angle C should measure 70°.

Try constructing and checking the following triangles.

1) 30°, 4", 75°
2) 65°, 2", 45°
3) 82°, 2", 48°
4) 50°, 2½", 70°
5) 80°, 4", 30°
6) 65°, 3½", 20°
7) 90°, 3", 30°
8) 130°, 2°, 20°
Division of Degrees and Minutes

1) \(5 \degree 45' \)
2) \(4 \degree 90' \)
3) \(7 \degree 99' \)
4) \(6 \degree 39' \)
5) \(16 \degree 262' \)
6) \(4 \degree 60' \ 30'' \)

7) \(5 \degree 75' \ 15'' \)
8) \(4 \degree 65' \ 30'' \)
9) \(6 \degree 37' \ 15'' \)

10) \(9 \degree 100' \ 26'' \)
11) \(3 \degree 90' \ 30'' \)
12) \(12 \degree 350' \ 30'' \)
A compass is essential if one is going to construct a triangle when only the lengths of the three sides are given. Suppose we wish to construct a triangle with the lengths of sides given as: 2', 3', 3\frac{1}{4}'.

Lay out a long base line MN. Choose some point A and measure the three lengths on the base line with a ruler. Thus, AD = 2', AC = 3', and AE = 3\frac{1}{4}'. Put the compass needle at A and swing a 2' arc from point D. Place the compass needle at C and swing a 3\frac{1}{4}' arc until it intersects the other arc. Call the point of intersection B, and draw BA and BC. Check you work by measuring the angles with a Protractor and comparing results with the work of the teacher, or another student.

Construct the following triangles for practice:

1) 3\frac{1}{2}', 3', 2\frac{1}{2}'
2) 5'', 4'', 3''
3) 4'', 2'', 3''
4) 4'', 8'', 6''
5) 3'', 3'', 3''
6) 4'', 4'', 2''
Rule of Pythagoras

The wise men Pythagoras lived more than 2000 years ago but his theorem has affected mathematics to this day. The theorem states that square on the hypotenuse of a right triangle is equal in area to the sum of the area of the squares on the other two legs. You can see this fact by figuring the area of these squares on a triangle the sides of which are 3\". 4\", and 5\".

Not only does $16 + 9 = 25$, but a relationship between the sides of a right triangle is established, $a^2 + b^2 = c^2$. Knowing any two of these variables it is possible to find the third one.

For example, in the above triangle a and c might be 6 and 10.

\[
6^2 + b^2 = 10^2 \\
36 + b^2 = 100
\]

If the side b, squared, is 64, then b itself must be 8. It may be necessary for you to review squares and square root. Try these problems.

1) $a = 5$, $b = 12$, Find c
3) $a = 15$, $b = 20$, Find c
2) Find a, $b = 15$, $c = 17$
4) $a = 30$, Find b, $c = 50$
A PUZZLE FOR GEOMETERS

The above puzzle is related to the Pythagorean theorem. Cut out the pieces carefully, and try forming a new square with a rearrangement of the pieces. If the square shown above is the square on one leg of a right triangle, and the new square is the square on the hypotenuse, what relationship appears between the new square and the other leg?
CUT OUT THESE PIECES.
THEM DO MAKE A SQUARE!
Taxes must be paid in some form by all people. It would be to your advantage to learn the workings of our tax structure. Our intent is to introduce you to some of the basic terms and simpler tax problems to keep your understanding.

In the picture above, you will see many things which are supported by your tax dollars.
DO YOU REMEMBER?

1) Do the indicated operations:

a) \[\frac{\$4070}{937} \]

\[\frac{(\$4070 + 937)}{(4507.78)} \]

b) \[\frac{\$6024.75}{297.26} \]

\[\frac{(6024.75 + 297.26)}{(6322)} \]

c) \[\frac{\$18.73}{6.94} \]

\[\frac{(18.73 - 6.94)}{(11.79)} \]

d) \[\frac{\$4129.72}{238.79} \]

\[\frac{(4129.72 - 238.79)}{(3890.93)} \]

e) \[\frac{\$400.72}{.045} \]

\[\frac{(400.72 \times .045)}{(18.13)} \]

f) \[\frac{\$4000}{6.2} \]

\[\frac{(4000 \times 6.2)}{(24800)} \]

g) \[\frac{.065}{73} \]

\[\frac{(.065 \times 73)}{(4.855)} \]

h) \[\frac{.06}{3.96} \]

\[\frac{(.06 \times 3.96)}{(0.24)} \]

2) a) Change 7\% to \(\frac{.07}{(0.07)} \) (decimal)

b) Change 6.5\% to \(\frac{.065}{(0.065)} \) (decimal)

c) Change .05 to \(\frac{.05}{(0.05)} \) (\%)

d) Change .124 to \(\frac{.124}{(0.124)} \) (\%)

3) What is 8\% of 240?

4) Using \(p = r \times b \)

a) What is \(p \), if \(r = 7\% \), and \(b = \$2400 \)

\[\frac{(.07 \times 2400)}{168} \]

b) What is \(b \), if \(p = 240 \), and \(r = 6\% \)

\[\frac{(240 \div .06)}{(4000)} \]

c) What is \(r \), if \(p = \$300 \), and \(b = 750 \)

\[\frac{(\$300 \div 750)}{(0.4)} \]

5) Name one of each kind of tax

a) Federal (U.S.) tax

b) State (Delaware) tax

c) County (New Castle) tax

d) City (Wilmington) tax
LET'S GET SOME PRACTICE

1) Do the indicated operations:
 a) $7047 + 394 = $7441
 b) $8049.69 + 254.37 = $8304.06
 c) $19.84 - 6.75 = $13.09
 d) $6129.43 - 554.97 = $5574.46
 e) $300.24 x .065 = $195.15
 f) $3000 x 5.4 = $16,200
 g) $6129.43 + $554.97 = $6684.40
 h) $300.24 x .0561 = 16.752
 i) $300.24 x .09 = 27.018

2) a) Change 8% to 0.08 (decimal)
 b) Change .037 to 3.7% (%)
 c) Change 6.5% to 0.065 (decimal)
 d) Change .124 to 12.4% (%)

3) What is 7.5% of 240?
4) Using p = rb
 a) What is p, if r = 5%, and b = $2400
 b) What is b, if p = $360, and r = 5.5%
 c) What is r, if p = $400, and b = $2000

5) What is the purpose of taxation?

6) Change to nearest cents
 a) $4067.823 = $4067.82
 b) $337.964 = $338.00
 c) $499.996 = $500.00
 d) $30.62499 = $30.62
LET'S GET SOME PRACTICE

1) Do indicated operations:

a) $54.18 + 172.5 = 226.68$

b) $921.73 + 40.88 = 962.61$

c) $22.34 - 5.62 = 16.72$

d) $8135.86 - 6085.29 = 2050.57$

e) $500.76 \times 0.47 = 235.31$

f) $6000 \times 7.5 = 45000$

g) $0.043 \times 1.404 = 0.0602$

h) $0.09 \times 7.253 = 0.65277$

2) a) Change 6.4\% to \(\frac{0.064}{100} \) decimal

b) Change 8 \(\frac{1}{2} \)\% to \(\frac{0.0835}{100} \) decimal

c) Change .043 to \(\frac{0.0043}{100} \) (\%)

d) Change .125 to \(\frac{0.0125}{100} \) (\%)

3) What is 6.8\% of 924?

4) Using \(p = rb \)

a) What is \(p \), if \(r = 6.7\% \) and \(b = \$2143 \)

b) What is \(b \), if \(p = \$134 \) and \(r = 5\% \)

c) What is \(r \) if \(p = \$328 \) and \(b = 14.760 \)

5) Change these to nearest cent

a) $3172.546 = \$3172.55$

b) $3.045 = \$3.05$

c) $79.998 = \$80.00$

d) $40.6345 = \$40.63$
LET'S CHECK OUR TAX VOCABULARY

Taxes

Direct tax

Property tax

Real property

Personal property

Income tax

State tax

Federal tax

Indirect tax

Market value

Assessed value

Assessor

Rate
TAXES

Taxes are a source of income for a certain government - federal, state, county, or city. They provide money for services to you. These services may be sidewalks, parks, police and fire protection, schools, and many others.

Indirect Taxes

Indirect taxes, sometimes called "hidden" taxes, are included in the purchase price of the article. It is a certain percent of the purchase price. This percent is called the tax rate.

A few of the indirect taxes are a sales tax, a gas tax, a cigarette tax, etc. Can you name other indirect taxes?

Delaware does not have a sales tax. Most states do have this tax. If you travel at all, you will have to pay the sales tax. To figure the tax, you take the rate (%) times the total purchase price and round off to the nearest cent.
1) The electric used in one month in a home costs $7.30. The utilities tax in the city is 15%. Find the total bill?

2) Mrs. Smith went to the store and bought flour sugar and cocoa. Her groceries cost $2.40. The sales tax is 3%. What was her bill?

3) Mr. Billings buys oilcloth which costs him $29.90. The sales tax is 3%. How much did he pay?

4) Bill bought $240 worth of tools. If the sales tax is 4%, what is the total price of the tools?

5) A car sells for $4356.00. The sales tax is 3%. How much tax was paid?

6) A car sells for $5654. There is a sales tax of 3%. How much will the car cost?

7) Pennsylvania has a sales tax of 6%. If you buy a car in Pa. and it is delivered to a Pennsylvania address, you pay the tax. If it is delivered to a Delaware address you do not pay the tax. How much would a man living in Pennsylvania pay for a $3000 car. How much would a man living in Delaware pay for the same car?

8) During a month a family has the following bills: water, $4.50; telephone, $2.75; gas, $4.25; electricity, $7.40. The utility tax in the town is 25%. What is the total cost of utilities for the month?

9) Some accessories are bought totaling $54.95. There is a state tax of 4% and a luxury tax of 10%. How much tax is placed on the purchase?
1) Mr. Jones buys some sports equipment totaling $54. The sales tax is 3%. How much did he pay?

2) The water bill for a home for a month is $5.40. What is the utility tax at the rate of 15%?

3) A bicycle costs $55. To this cost must be added a sales tax of 3%. How much must be paid in all?

4) The cost of a season football ticket in a certain community is $8.25, plus 10% amusement tax. What will season tickets for a family of four cost including the tax?

5) John buys fishing equipment totaling $59.60. There is a 4% sales tax. What is his total purchase?

6) Mr. Brown buys a season ticket to basketball games. This cost is $9.85. There is a 10% amusement tax. How much will it cost him?

7) Mrs. Smith buys a dress for $28.95, a pair of shoes for $11.98, and a pocketbook for $6.95. The sales tax is 4%. What was her bill?

8) The utility tax in a town is 20%. In one month a family ran the following bills: telephone, $2.50; gas, $3.75; water, $4.30; electricity, $7.10. Find the total cost of the utilities including the tax for that month.

9) Roger bought a place setting of sterling silver for a wedding gift. There was a federal tax of 10% and a sales tax of 3% on the cost of the silver. If the place setting was priced at $22.50, what was the total paid including taxes?
1) John bought a suit for $54. The sales tax is 4%. How much must John pay for his suit?

2) Mary Scott buys a dress priced at $18.95, a pair of shoes priced at $12.95, and a hat priced at $7.50. The sales tax is 3%. Find the total amount of her bill.

3) Mrs. Jones bought a dress priced at $19.95 in a state having a 3% sales tax. Mrs. Smith bought the same dress in a state with no sales tax. How much more did Mrs. Jones pay than Mrs. Smith?

4) The year's water bill in a home was $75. The utility tax is 15%. What was the total water bill for the year?

5) The Jones family have a grocery bill of $54.95. The sales tax is 3%. What is the total amount paid at the grocery store?

6) Mrs. Larkin bought some accessories totaling $25.99. The luxury tax is 10% and the sales tax is 3%. How much tax must she pay?

7) Mrs. Barrett bought some jewelry totaling $59.63. The federal government has a luxury tax of 10% and the state tax is 3%. What was the total bill?

8) In a town the utility tax is 15%. The Jones family has the following bills for one month: telephone, $2.10; gas, $3.50; water, $4.20; electricity, $6.73. Find the total cost of the tax and the utilities during the month.

9) Roger buys four place settings of sterling silver. It costs $22.50 a setting. There is a federal tax of 10% and a sales tax of 3% on the cost of the silver. How much must Roger pay?
Direct Taxes.

Direct taxes are paid directly to the federal, state, county, or city government. The most common direct taxes are the property and income taxes.

Property taxes are aid on both real and personal property. The real property is lands and buildings—generally it is what you refer to as real estate. The personal property is all other property. Generally it is all moveable property. Examples are jewelry, cars, etc.

In the direct tax we must know the ways to write a tax rate. This rate may be written in several different ways:

a) it might be a percent, as 2.34%

b) it might be based on $1000, $100, or $1 of taxable value (assessed value)

1) $23.40 per $1000, $2.34 per $100, or $.0234 per $1

Can you change these tax rates to each of the other forms?
A Change to indicated form:

1) 5% to $____ per $100 (5%) 5) $1.50 per $100 = ____% (1.5%)
2) 8% to $____ per $1 (8%) 6) $.06 per $1 = ____% (6%)
3) 4% to $____ per $100 (4%) 7) 7 per $1 = ____ (7%)
4) $3 per $100 to ____ (3%) 8) $2.5 per $100 = ____% (2.5%)

B Change to indicated form:

9) 3.6% to ____ per $1 (3.6%) 13) 8.25% to ____ per $100 (8.25%)
10) $.05 per $1 to ____% (5%) 14) 3.24% to ____ per $1 (3.24%)
11) $3.64 per $100 to ____% (3.64%) 15) $34.50 per $1000 to ____% (3.45%)
12) $3.50 per $100 to ____% (3.5%) 16) $.005 per $1 to ____% (0.5%)

C Fill in the other three:

<table>
<thead>
<tr>
<th>#</th>
<th>$ per $1</th>
<th>$ per $100</th>
<th>$ per $1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>3.24%</td>
<td>(3.24%)</td>
<td>(3.24%)</td>
</tr>
<tr>
<td>18</td>
<td>(1.25%)</td>
<td>(1.25%)</td>
<td>(1.25%)</td>
</tr>
<tr>
<td>19</td>
<td>(2.97%)</td>
<td>(2.97%)</td>
<td>(2.97%)</td>
</tr>
<tr>
<td>20</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>21</td>
<td>4.85%</td>
<td>(4.85%)</td>
<td>(4.85%)</td>
</tr>
<tr>
<td>22</td>
<td>(1.375%)</td>
<td>(1.375%)</td>
<td>(1.375%)</td>
</tr>
</tbody>
</table>
A Change as indicated:

1. 6% to $ _?_ _ per $100
2. 4% to $ _?_ _ per $1
3. 3% to $ _?_ _ per $100
4. $6 per $100 to _?_ _
5. $.07 per $1 = _?_ _%
6. $1.20 per $100 = _?_ _%
7. $6 per $100 = _?_ _%
8. 5% to $ _?_ _ per $100

B Change as indicated:

9. 10% to $ _?_ _ per $100
10. $10 per $100 = _?_ _%
11. $5 per $100 = _?_ _%
12. $29 per $100 = _?_ _%
13. $540 per $1000 = _?_ _%
14. $60 per $100 = _?_ _%
15. $15 per $100 = _?_ _%

C Fill in other three blanks:

<table>
<thead>
<tr>
<th>%</th>
<th>$___per $1</th>
<th>$___per $100</th>
<th>$___per $1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>6.5%</td>
<td>$0.60</td>
<td>$6.50</td>
</tr>
<tr>
<td>17</td>
<td>3%</td>
<td>$0.10</td>
<td>$1.00</td>
</tr>
<tr>
<td>18</td>
<td>1.2%</td>
<td>$0.12</td>
<td>$1.20</td>
</tr>
<tr>
<td>19</td>
<td>9.3%</td>
<td>$0.93</td>
<td>$9.30</td>
</tr>
<tr>
<td>20</td>
<td>3%</td>
<td>$0.03</td>
<td>$0.30</td>
</tr>
<tr>
<td>21</td>
<td>15%</td>
<td>$0.15</td>
<td>$1.50</td>
</tr>
<tr>
<td>22</td>
<td>6.4%</td>
<td>$0.64</td>
<td>$6.40</td>
</tr>
<tr>
<td>23</td>
<td>4.7%</td>
<td>$0.47</td>
<td>$4.70</td>
</tr>
<tr>
<td>24</td>
<td>19%</td>
<td>$1.19</td>
<td>$11.90</td>
</tr>
<tr>
<td>25</td>
<td>6%</td>
<td>$0.06</td>
<td>$0.60</td>
</tr>
</tbody>
</table>
A Change to indicated form:
1) 12\% to $_______\% per $100
2) 5\% to $5 per $________\%
3) 6\% to $.06 per $______\%
4) ___\% to $17 per $100
5) ___\% to $1,90 per $10

B Change as indicated:
6) $18 per $100 = ___\% __\%
7) $29 per $1000 = ___\% 2.9\%
8) $64 per $___ = 64\%
9) $.07 per $1 = ___\% ___\%
10) $___ per $1 = 15\%

C Fill in other three blanks:

11) 0.04\%	___	___ per $1	___ per $100	___ per $1000
12) ___	03	___	___	___
13) ___	___	1.5	___	___
14) ___	___	___	1.6	___
15) 16\%	___	___	16	___
16) ___	___	___	___	2.9
17) ___	___	1.6	1.6	___
18) ___	___	___	___	___
19) ___	___	___	___	
20) ___	___	___	___	67
We now know how to figure the tax rate. We shall continue and discuss one of Delaware's main direct taxes which is the property tax.

A building or land has a market value. This is the price which you might receive if you were to sell the property. Can you find some market values of houses in the different parts of the city?

Buildings or lands also have an assessed value. This is the value put on the property by a government employee (tax assessor) for tax purposes. It is usually a certain percent of the market value. Can you find the assessed value of some houses in the city?

To see how much you are going to pay in property tax, you must multiply the rate times the assessed value.

In Wilmington houses are assessed at 70% of their market value. You must pay a tax rate of $3.706 per $100 based on the assessed value.

Example: If a house has a market value of $9000 in Wilmington how much property tax will you pay?

Assessed value = 70% of $9000
Assessed value = .70 x $9000
Assessed value = $6300

taxes = $3.706 x (number of hundreds)
taxes = $3.706 x 63
taxes $233,478 or $233.48
ALL A-1 BUYS

A. BUYER'S LIST

B. ALL BETTER BUYS
NO SETTLEMENT

C. ALL A-1 BUYS
PLEASANT HILLS
BUNKER HILL
BELLEFONTE
GLENDALE
ELMERE
OAKMONT

Homes Priced From

$21,990
A In the following problems assume that the assessed value is 70% of the market value (use preceding page)

1) What would be the assessed value of:
 a) the house in list A at 423-425 New Castle Ave
 b) the house in list A at 2411 Jessup St.
 c) the house in list A at 202 W. 37th St.

2) What would be the property tax on the house in list A at 423-425 New Castle Ave, if the tax rate for the city is $3.076 per $100?

B Use 70% of the market value as the assessed value and a tax rate of $3.076 per $100

3) Find the property tax on the house at 203 W. 37th Street
4) Find the property tax on the house in list B in Elsmere
5) The house in Oakmont in list C would require what yearly tax?

C If houses in the city paid the city property tax as used in section B above plus a New Castle county tax of $.67 per $100

6) What would be the total property taxes paid on the house at 3626 Washington St.

7) What is total property tax on the house on Woodlawn Ave.
A In the following problems, assume that the assessed value is 70% of the market value.

1) What would be the assessed value of:
 a) The house in list A at 1406 N. Union St.
 b) The house in list A at 304 W. 24th St.
 c) The house in list A at 1423 Woodlawn Ave.

2) What would be the property tax on the house in list A at 1406 N. Union St. if the tax rate for the city is $3.076 per $100?

3) Use 70% of the market value as the assessed value and a tax rate of $3.076 per $100.

3) Find the property tax on the house at 1423 Woodlawn Ave.

4) Find the property tax on the house in list B in Oakmont.

5) The house in Bellefonte in list C would require what yearly tax?

C If houses in the city paid the city property tax as used in section B above, plus a New Castle county tax of $.67 per $100.

6) What would be the total property taxes paid on the house at 2715 Speakman Place?

7) What is the total property tax on the house on W. 19th St?
In the following problems, assume that the assessed value is 70% of the market value.

1) What would be the assessed value of:
 a) The house in list B on E. 35th St.
 b) The house in list A 203 W. 37th St.
 c) The house in list B in Pleasant Hills.

2) What would be the property tax on the house in list B on E. 35th St. if the tax rate for the city is $3.076 per $100.

B Use 70% of the market value as the assessed value and a tax rate of $3.076 per $100.

3) Find the property tax on the house at 203 W. 37th St.
4) Find the property tax on the house in list B in Simonds Gds.
5) The house in Pleasant Hills in list C would require what yearly tax.

C If houses in the city paid the city property tax as used in section B above, plus a New Castle county tax of $.67 for $100.

6) What would be the total property taxes paid on the house at Simonds Gds.

7) What is the total property tax on the house at 1505 W. 7th St.
In other sections of the country the tax rate might be expressed in one of the other forms which we have studied. Let's take an example and work through each rate. To figure the taxes you will always multiply the rate times the assessed value.

Taxes (to be paid) = Tax rate x Assessed value

Example: How much in taxes will you pay for a house assessed at $8000

a) with tax rate 4%

Taxes = rate x assessed value

= .04 x 8000

= $320

b) with tax rate $.04 per $1

Taxes = $.04 x (number of $1's)

= $.04 x 8000

= $320

c) with tax rate $4 per $100

Taxes = $4 x (number of $100's)

= $4 x 80

= $320

d) with tax rate $40 per $1000

Taxes = $40 x (number of $1000's)

= $40 x 3

= $320
A 1) Mr. Williams owns some property assessed at $7500. The tax rate is $.025 per $1. What is the tax?

2) John Jones owns a piece of property assessed at $8500. His tax rate is $3.75 per $100. What is his tax?

3) Mr. Curry has a house and lot assessed at $6200. His tax rate is $4.50 per $100.
 a) Without paper and pencil estimate his tax
 b) Find the tax with paper and pencil
 c) What is the difference?

B 4) Mr. Gray lives in a community where they assess property at 75% of its market value. Mr. Gray's home has a market value of $12000. If the tax rate is 2.5% of the assessed value, what should his tax be?

5) Mr. Strong has to pay real estate tax. His property is assessed at $7800. The tax rate is $2.845 per $100. What tax must he pay?

6) Mildred's father said their home was assessed at $13500. She learned that the community's tax rate was $2.36 per $100. What will the father pay in taxes?

C 7) Mr. Thomson owns property with a market value of $11500. If the tax rate is $.0324 per $1 assessed on 80% of the market value. What is his tax?

8) Can you figure this? All the property in a community has an assessed value of $4860000. The money needed (taxes) for the budget is $132500. What tax rate will this community have to charge?
1) Mr. Reese owns some property assessed at $9500. The tax rate is $4.75 per $100. What is his tax?

2) A piece of property is assessed at $8500. The tax rate is $3.54 per $100. What is the tax?

3) The DiMaio's property is assessed at $5258. The tax rate is $.036 per $1.

4) In the neighborhood where Mr. Jones lives, property is assessed at 73% of its market value. If Mr. Jones' home has a market value of $15300 and the tax rate is 3.2% of the assessed value, what will his tax be?

5) If a property is assessed at $3900, and the tax rate is $98.72 per $1000. What is the tax?

6) If a home is assessed at $12900 and the community's tax rate is $4.31 per $100 how much tax must be paid?

7) If property is owned with a market value of $11579 and the tax rate is $.0573 per $1 and is assessed at 60% of the market value, find the tax.

8) Jim has property with a market value of $12700. If the tax rate is $.0543 per $1 assessed at 83% of the market value find the tax.
A 1) Mr. Johnson owns some property assessed at $8760. The tax rate is $.032 per $1. What is the tax? [8.280.32]

2) Mr. Joslin owns a piece of property assessed at $8754. His tax rate is $4.92 per $100. What is his tax? [4.92]

3) If the tax rate is $4.63 per $100, and a piece of land is assessed at $6743 what is the tax? [3.12]

B 4) Property in an area is assessed at 63% of its market value. The home has a market value of $15000. If the tax rate is 3.6% of the assessed value, what is the tax? [5.412.20]

5) Some property is assessed at $8700. The tax rate is $32.53 per $1000. What tax must be paid on the land? [2.38]

6) A house is assessed at $14600. The community tax rate is $2.36 per $100. How much tax must be paid? [3.44]

C 7) Some property has a market value of $12700. If the tax rate is $.0472 per $1 assessed at 72% of the market value, what is the tax? [6.13]

8) All the property in a community has an assessed value of $57,500. The money needed (taxes) for the budget is $201,900. What tax rate will this community have to charge? [3.54]
Federal
Income Tax

Income tax, as its name states, is based on your annual earnings. It is paid once a year. Those persons earning over $600 must file a return. It is wise to complete the form if you did not earn $600 a year, but had money deducted for taxes during the year. This is the only way to have that money refunded (returned) to you.

The tax department has a simplified form which is shown on the following pages. This is for people earning under $10,000 a year and whose deductions are not greater than 10% of their earnings.

Income - all money coming in to you from wages, interest, dividends, bonuses, etc.

Deductions - all money going out for certain approved things as contributions, interest paid out, etc. You may use 10% of your total salary, or list all deductions.

Dependents - are persons to whom you give at least half of their support—generally yourself, your wife, children, etc. The amount allowed for dependents is $600 x the number of dependents.

Taxable income - gross (total) income less your deductions and dependents allowance.

Taxes due - this amount can be found by using tax "table A" or by using the "Tax Computation Table" at bottom of Form 1040 A.

The forms which follow are to be gone over in class carefully before doing the following problems.
Taxable income = Total income - (deductions and dependents, at $600 each)

1) Compute the taxable income of Mr. Tyler if
 a) His gross income was $5000
 b) He has 3 dependents (including self)
 c) He takes the 10% standard deduction.

2) Compute Mr. Martins taxable income if
 a) His gross income consisted of $6250 in salary, $500 in commissions, and $200 in bonuses
 b) He is married and has 3 dependent children plus wife
 c) He itemizes deductions of $500 for charity, $700 for interest, and $400 for non-Federal taxes.

3) Find taxable income for each person
 a) John Locke $7215.00 Wife- (no income) 10% standard
 b) Frank Jones $16751.75 Wife- (no income) & 4 children Itemized total of $1683.15
 c) Mr. and Mrs. Grey $7152 and $843 3 children 10% standard

238
4) Mr. White had a gross income of $5622.15. His wife had a gross income of $3421.02. They had 2 dependent children and will take the 10% standard deduction. Compute taxable income.

5) Mr. Arkette's income consisted of the following: wages, $6115.17; profit from auto sale $200; bonus $175. Mrs. Arkette's income consisted of the following: wages, $2139; tips, $951.15. They have 3 dependent children. Mr. Arkette's father and Mrs. Arkette's mother and father are also dependents. They will itemize the following deductions; contributions $75.25; interest (paid out) $617.52; taxes $515.03; medical expenses deductible $319. Find taxable income on joint return.
Compute the taxable income of Mr. Forman if:
a) His gross income is $4500
b) He has 4 dependents (including himself)
c) He takes the 10% standard deduction.

Compute Mr. Bennett's taxable income if:
a) His gross income consists of $6,420 in salary, $490 in commissions, and $150 in bonuses.
b) He has 2 dependent children and his wife
c) He itemizes deductions of $300 for charity, $600 for interest, and $400 for non-Federal taxes.

Find the taxable income for each of the following people:

<table>
<thead>
<tr>
<th>Taxpayer</th>
<th>Gross Income</th>
<th>Dependents</th>
<th>Deductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Smith</td>
<td>$7325.00</td>
<td>3 children & wife (no income)</td>
<td>Itemised total $1473.64</td>
</tr>
<tr>
<td>Charles Brown</td>
<td>$12749.00</td>
<td>wife (no income) & 2 children</td>
<td>10% standard $974.10</td>
</tr>
<tr>
<td>Mr. & Mrs. Place</td>
<td>$7229.00</td>
<td>2 children</td>
<td>10% standard $736.90</td>
</tr>
</tbody>
</table>
4) Mr. Thomas had a gross income of $5429.29. His wife had a gross income of $3242.21. They had 2 dependent children and will take the 10% standard deduction. Compute the taxable income.

5) Mr. Kent's income consisted of the following: wages, $6023; bonus, $215. Mrs. Kent's income consisted of the following: wages, $2051; tips $872. They have 5 dependent children. Mr. Kent's mother lives with them and is a dependent. They will itemize the following deductions: contributions, $73.22; interest (paid out) $612.78; taxes $511; medical expenses deductible $315. Find the taxable income on joint returns.
1) Compute the taxable income of Mr. Jones if:
 a) His gross income is $9500
 b) He has 3 dependents (including himself)
 c) He takes the 10% standard deduction

2) Compute Mr. Smith's taxable income if:
 a) His gross income is $7,525
 b) He has 3 dependent children and his wife
 c) He takes the 10% standard deduction

3) Find the taxable income for each of the following people:

<table>
<thead>
<tr>
<th>Taxpayer</th>
<th>Gross Income</th>
<th>Dependents</th>
<th>Deductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Nichols</td>
<td>$7252</td>
<td>wife (no income)</td>
<td>10% standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 children</td>
<td></td>
</tr>
<tr>
<td>Mr. & Mrs.</td>
<td>$11,527 and</td>
<td>3 children</td>
<td>itemized total of $1476</td>
</tr>
<tr>
<td>Chrzanowski</td>
<td>$6,724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jim Hansen</td>
<td>$6,724</td>
<td>2 children &</td>
<td>10% standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wife (no income)</td>
<td></td>
</tr>
</tbody>
</table>

4) Mr. Dominick had a gross income of $4234. His wife had a gross income of $2322. They had 2 dependent children and will take the 10% standard deduction. Compute the taxable income.
To figure the tax due and the surtax (also called tax surcharge), which is due as a single person, you use Federal Tax Table A and the Tax Surcharge Tables.

To read Tax Table A you locate the yearly pay in the left column. You then read to the right to the column with the correct number of dependents. The amount that appears in this place is the tax due from your income.

Example: You earn $3005, are single and have a total of two dependents. You look for $3005 in the total income columns (it is between $300 and $3050). You then go right to the column marked 2 at the top and read the number 213. This means $213 is the tax on your income.

The surtax is an additional tax which is figured at 10% or less based on your basic tax due figure. Tax surcharge tables will be with your tax form each year.

To figure the surtax you should look at the Tax Surcharge Table, Table 1. Look at the amount of tax due and to the right you will find the surtax which is due.

Example: You look in the Surtax table to Table 1 for single persons. You look for $213 (which is between 213 and 215). To the right of that line you will find the number 10, meaning the surtax is $10.

These figures are put on line 8 of the form 1040 A in a. and b. places and added.

Example: 8 a. Tax $213 + b. Surcharge $10 c. Total $223
Tax Tables for Incomes Under $5,000

If your total income (Item 7 of your return) is $5,000 or more, use Tax Computation Schedule on page 4.

Tax Table A

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1,000</td>
<td>1,100</td>
<td>1,200</td>
<td>1,300</td>
<td>1,400</td>
<td>1,500</td>
<td>1,600</td>
<td>1,700</td>
</tr>
<tr>
<td></td>
<td>$0</td>
</tr>
</tbody>
</table>

Instructions
- If you checked any of Item 7 of your return, use Tax Computation Schedule on page 4.
- If you have more than one income, use the appropriate schedule for each income.
- If you have multiple incomes, use the schedule with the highest income.
- Use the appropriate schedule for each income type.

To find your tax, read down income columns until you find the line covering the total income shown as Item 7. Then read across to the appropriate column headed by the bracket corresponding to the number of exemptions claimed on Item 11B. Enter tax in Item 12. Also see page 8 for further tax deductions.

Note: The tables reflect the lowest tax after considering both the 10 percent standard deduction and the personal deduction. Table C shows the tax based on either the 10 percent or the minimum standard deduction.
TABLE 1.

<table>
<thead>
<tr>
<th>Wages On</th>
<th>Ded</th>
<th>Enter</th>
<th>Wages On</th>
<th>Ded</th>
<th>Enter</th>
<th>Wages On</th>
<th>Ded</th>
<th>Enter</th>
<th>Wages On</th>
<th>Ded</th>
<th>Enter</th>
</tr>
</thead>
<tbody>
<tr>
<td>At</td>
<td>Least</td>
<td>Date</td>
<td>At</td>
<td>Least</td>
<td>Date</td>
<td>At</td>
<td>Least</td>
<td>Date</td>
<td>At</td>
<td>Least</td>
<td>Date</td>
</tr>
<tr>
<td>90</td>
<td>$145</td>
<td>6</td>
<td>90</td>
<td>$145</td>
<td>6</td>
<td>90</td>
<td>$145</td>
<td>6</td>
<td>90</td>
<td>$145</td>
<td>6</td>
</tr>
<tr>
<td>148</td>
<td>158</td>
<td>1</td>
<td>148</td>
<td>158</td>
<td>1</td>
<td>148</td>
<td>158</td>
<td>1</td>
<td>148</td>
<td>158</td>
<td>1</td>
</tr>
<tr>
<td>155</td>
<td>167</td>
<td>9</td>
<td>155</td>
<td>167</td>
<td>9</td>
<td>155</td>
<td>167</td>
<td>9</td>
<td>155</td>
<td>167</td>
<td>9</td>
</tr>
<tr>
<td>162</td>
<td>185</td>
<td>3</td>
<td>162</td>
<td>185</td>
<td>3</td>
<td>162</td>
<td>185</td>
<td>3</td>
<td>162</td>
<td>185</td>
<td>3</td>
</tr>
<tr>
<td>168</td>
<td>173</td>
<td>4</td>
<td>168</td>
<td>173</td>
<td>4</td>
<td>168</td>
<td>173</td>
<td>4</td>
<td>168</td>
<td>173</td>
<td>4</td>
</tr>
<tr>
<td>178</td>
<td>182</td>
<td>5</td>
<td>178</td>
<td>182</td>
<td>5</td>
<td>178</td>
<td>182</td>
<td>5</td>
<td>178</td>
<td>182</td>
<td>5</td>
</tr>
<tr>
<td>182</td>
<td>188</td>
<td>6</td>
<td>182</td>
<td>188</td>
<td>6</td>
<td>182</td>
<td>188</td>
<td>6</td>
<td>182</td>
<td>188</td>
<td>6</td>
</tr>
<tr>
<td>193</td>
<td>202</td>
<td>6</td>
<td>193</td>
<td>202</td>
<td>6</td>
<td>193</td>
<td>202</td>
<td>6</td>
<td>193</td>
<td>202</td>
<td>6</td>
</tr>
<tr>
<td>202</td>
<td>211</td>
<td>8</td>
<td>202</td>
<td>211</td>
<td>8</td>
<td>202</td>
<td>211</td>
<td>8</td>
<td>202</td>
<td>211</td>
<td>8</td>
</tr>
<tr>
<td>219</td>
<td>222</td>
<td>11</td>
<td>219</td>
<td>222</td>
<td>11</td>
<td>219</td>
<td>222</td>
<td>11</td>
<td>219</td>
<td>222</td>
<td>11</td>
</tr>
</tbody>
</table>

TABLE 2.

<table>
<thead>
<tr>
<th>Wages On</th>
<th>Ded</th>
<th>Enter</th>
<th>Wages On</th>
<th>Ded</th>
<th>Enter</th>
<th>Wages On</th>
<th>Ded</th>
<th>Enter</th>
</tr>
</thead>
<tbody>
<tr>
<td>At</td>
<td>Least</td>
<td>Date</td>
<td>At</td>
<td>Least</td>
<td>Date</td>
<td>At</td>
<td>Least</td>
<td>Date</td>
</tr>
<tr>
<td>90</td>
<td>$293</td>
<td>60</td>
<td>90</td>
<td>$293</td>
<td>60</td>
<td>90</td>
<td>$293</td>
<td>60</td>
</tr>
<tr>
<td>253</td>
<td>305</td>
<td>1</td>
<td>253</td>
<td>305</td>
<td>1</td>
<td>253</td>
<td>305</td>
<td>1</td>
</tr>
<tr>
<td>267</td>
<td>311</td>
<td>2</td>
<td>267</td>
<td>311</td>
<td>2</td>
<td>267</td>
<td>311</td>
<td>2</td>
</tr>
<tr>
<td>312</td>
<td>326</td>
<td>4</td>
<td>312</td>
<td>326</td>
<td>4</td>
<td>312</td>
<td>326</td>
<td>4</td>
</tr>
<tr>
<td>320</td>
<td>327</td>
<td>5</td>
<td>320</td>
<td>327</td>
<td>5</td>
<td>320</td>
<td>327</td>
<td>5</td>
</tr>
<tr>
<td>327</td>
<td>333</td>
<td>6</td>
<td>327</td>
<td>333</td>
<td>6</td>
<td>327</td>
<td>333</td>
<td>6</td>
</tr>
<tr>
<td>333</td>
<td>346</td>
<td>7</td>
<td>333</td>
<td>346</td>
<td>7</td>
<td>333</td>
<td>346</td>
<td>7</td>
</tr>
<tr>
<td>342</td>
<td>347</td>
<td>8</td>
<td>342</td>
<td>347</td>
<td>8</td>
<td>342</td>
<td>347</td>
<td>8</td>
</tr>
<tr>
<td>352</td>
<td>360</td>
<td>9</td>
<td>352</td>
<td>360</td>
<td>9</td>
<td>352</td>
<td>360</td>
<td>9</td>
</tr>
<tr>
<td>368</td>
<td>371</td>
<td>11</td>
<td>368</td>
<td>371</td>
<td>11</td>
<td>368</td>
<td>371</td>
<td>11</td>
</tr>
</tbody>
</table>

Note: Multiply amount on line 1 by 0.075 and enter result on line 2.
Find the answers from Federal tax table A and the surtax table.

A 1) Tax for a single person making $625.
 2) Surtax for a single person making $625.
 3) Tax for a single person making $1720.
 4) Surtax for a single person making $1720.
 5) Tax for a single person with a total of 2 dependents earning $3949.
 6) Surtax for person in problem 5.
 7) Tax for a single person with a total of 2 dependents making $3102.
 8) Surtax for person in problem 7.
 9) Tax for a single person with a total of 3 dependents earning $4329.

B 11) Tax and surtax for a single man earning $3247 a year.
 12) Tax and surtax for a single man earning $4731 a year.
 13) Tax and surtax for a single man earning $4287 a year.
 14) Tax and surtax for a single man with a total of 3 dependents earning $3698 a year.
Find the answers from Federal tax table A and the surtax table.

1) Tax for single person making $660.
2) Surtax for single person making $660.
3) Tax for single person making $1025.
4) Surtax for single person making $1025.
5) Tax for a single person with total of 2 dependents earning $325.
6) Surtax for person in problem 5.
7) Tax for a single person with total of 4 dependents making $2888.
8) Surtax for person in problem 7.
9) Tax for a single man with total of 3 dependents earning $4750.
11) Tax and Surtax for single man earning $3296 a year.
12) Tax and Surtax for a single man with a total of 2 dependents earning $4119 a year.
13) Tax and Surtax for a single man earning $2120 per year.
14) Tax and surtax for a single man with a total of 3 dependents earning $4999 a year.
Find the answers from Federal tax table A and the surtax table.

1) Tax for a single person making $750.
2) Surtax for a single person making $750.
3) Tax for a single person making $1,278.
4) Surtax for a single person making $1,278.
5) Tax for a single person with a total of 2 dependents earning $3,924.
6) Surtax for person in problem 5.
7) Tax for a single person with a total of 2 dependents making $2,819.
8) Surtax for person in problem 7.
9) Tax for a single person with a total of 3 dependents earning $4,012.
11) Tax and surtax for a single man earning $3,229 a year.
12) Tax and surtax for a single man with a total of 4 dependents earning $4,327 a year.
13) Tax and surtax for a single man earning $2,324 per year.
14) Tax and surtax for a single man earning $3,457 a year.
To fill out a tax form 1040 A completely:

1) Read the form carefully.

2) Start at step 1 and go in order until you complete the form.

3) Draw a dash (- - -) where you have no information to put in form.

4) Check your arithmetic after each step.

5) Use "Tax Computation Schedule", instead of Tax Table 2, if total income is over $5000.

6) Figure your surcharge carefully by reading from the table.

7) Sign form correctly.

8) Recheck all information, especially the arithmetic.

9) It is wise to make a duplicate copy for your own future information.
Figure tax due on paper (not on the forms). Use tax Table A, find tax due.

1) You are single. Your salary is $1500. You use standard 10% deduction.

2) You are single. Your salary is $3300. Your deductions are standard.

3) You are single, have a total of 2 dependents. Your income is $4500. Use standard deductions.

4) You are single and earn $4000. You have standard deductions.

5) You are single and earn $3000. Your deductions are standard for the year.

6) Using your name and "making-up" the rest of the information not given, fill in completely form #1040A. Assume you are single and earning $1840 a year. You are going to take the standard 10% deduction.

Fill out complete form 1040A using your name. (you may make-up dependents names, social security number, etc.) Assume you are single, have 2 dependents (a mother and an aunt) and deductions are standard 10%. Your salary is $5310 for the year. Use "Tax Computation Schedule".
Figure tax due on paper (Not on the forms) Use tax table A find tax due.

1) You are single. Your salary is $1900. You use standard 10% deduction. ($147)

2) You are single. Your salary is $3293. Your deductions are standard. ($276)

3) You are married, have a wife and 1 child. Your income is $5200 with standard deductions. Use "Tax Computation Schedule" ($430, 80)

4) Using your name and "making-up" the rest of the information not given, fill in completely form #1040A. Assume you are single and earning $1765 a year. You are going to take the standard 10% deduction. ($1, 24)

5) Use "Tax Computation Schedule" if your deductions are over 10% of your income.

5) You are single and earn $3421. Your deductions are standard for the year. ($402)

6) Fill out complete form using your name (You may make up dependents name, social security number, etc.) Assume you are single, have 1 dependent (your mother), and standard deductions. Your salary is $5212 for the year. Use "Tax Computation Schedule." ($593, 25)
Figure tax due on paper (not on the forms). Use tax table A, find tax due.

1) You are single. Your salary is $1432. You use standard 10% deduction. □ 76

2) You are single. Your salary is $3765. Your deductions are standard. □ 62

3) You are married, have a wife and no children, but your mother is a dependent. Your income is $5672. You figure your deductions are standard. Use "Tax Computation Schedule". □ 71.91

4) Using your name and "making-up" the rest of the information not given, fill in completely form #1040A. Assume you are single and earning $1648 a year. You are going to take the standard 10% deductions. □ 106

5) You are single and earn $3672. Your deductions are standard. □ 614

Fill out completely form using your name. (You may make up dependents' name, social security number, etc.) Assume you are single, have a total of 2 dependents, and deductions are standard. Your salary is $283 for the year. □ 740.03
City of Wilmington Wage Tax

The City of Wilmington has a wage tax. This tax is \(\frac{1}{2} \% \) of your gross (total) salary. Everyone will pay this tax. Employers will take it out of the workers wages. At the end of the year, if you have made less than $4000 for the year you will not have to pay the City Wage Tax. You will get a refund at the time you file your state income tax.

Example:

You earn $7874 this year. How much wage tax will you pay.

\[
\text{wage tax} = \frac{1}{2} \% \text{ of } $7874
\]

\[
= 0.005 \times 7874
\]

\[
= 39.37
\]
A Figure the Wilmington wage tax which will be taken from the pay.

1) You earn $5021 this year.
2) You earn $3271 this year.
3) You earn $2198 this year.
4) You earn $4632 this year.

B Find total Wilmington wage tax.

5) You earn $2972 the first 6 months of the year, and $2742 the second 6 months.
6) You earn $2572 a year from one employer. On a second job you earn $2329.
7) How much tax would you pay each of these 3 months when you earn $298, $327, $248.

C §) During the year your earnings for the 12 months are $128, $163, $99, $272, $327, $297, $263, $198, $120, $98, $299, $187

How much wage tax did you have taken from your pay each month?

How much wage tax did you pay for the year?
A Figure the Wilmington wage tax which will be taken from the pay.

1) You earn $5016 this year.
2) You earn $3286 this year.
3) You earn $2078 this year.
4) You earn $4631 this year.

B Find the total Wilmington wage tax:

5) You earn $2786 the first 6 months of the year and $2964 the second 6 months.
6) You earn $3678 a year from one employer. On a second job you earn $2989.
7) How much tax would you pay each of these 4 months when you earn $262, $344, $372, $298

C During the year your earnings for the 12 months are $207, $300, $198, $272, $187, $98, $186, $144, $206, $213, $219, $184.

How much wage tax was taken from your pay each month?

How much wage tax did you pay for the year?
A Figure the Wilmington Wage Tax which will be taken from the pay:

1) You earn $6012 this year. $300.60
2) You earn $3294 this year. $164.70
3) You earn $3962 this year. $198.10
4) You earn $2792 this year. $139.60

B Find total Wilmington Wage Tax:

5) You earn $3000 the first 6 months of the year and $2596 the second 6 months. $275.88
6) You earn $2500 a year from one employer. On a second job you earn $2515. $55.08
7) How much tax would you pay each of the 3 months when your earnings are $274, $307, $257. $13.70, $5.35, $12.85

C During the year your earnings for the 12 months are:

$137, $300, $98, $210, $170, $170, $170, $200, $170, $200, $176, $205, $114.

How much wage tax did you have taken from your pay each month? $69, $50, $49, $50, $55, $50, $50, $50, $50, $50, $50, $50.

How much wage tax did you pay for the year? $1075.
State Tax Problems

The State Tax short form #200A - 6B is shown on the following page. It is filled-in like the Federal Form 1040A. It explains itself if you go slowly step by step.

The State Tax Tables for incomes under $10,000 are also shown on the following pages. They are read as the Federal Tax Tables were read.

Examine the forms.

Discuss them.

If you wish to do problems, you may continue with any of those used in the Federal Tax section. Use the same information.
Delaware Individual Resident Income Tax Return

Form 204A-66

1. Name
- Enter name and address of principal taxpayer.

2. Your Social Security Number or
- Enter Social Security number.

3. Year ended December 31, 1966
- Enter year end date.

4. Amount of tax on this return
- Enter tax amount.

5. Exemptions for Yourself and Your Spouse

<table>
<thead>
<tr>
<th>Block</th>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Regular $600 exemption</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Additional $600 exemption if 65 or over and 1966</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>Additional $600 exemption if blind at end of 1966</td>
<td></td>
</tr>
</tbody>
</table>

6. Exemptions for Your Children and Other Dependents

<table>
<thead>
<tr>
<th>Name</th>
<th>Relationship</th>
<th>Age</th>
<th>Exempted Only for Dependents Other Than Your Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Total Exemptions from Items 5 and 6 Above

8. Income Subject to Tax

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-2 Wages</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

9. Total Delaware Tax Withheld

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Adjusted Gross Income

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deductions 10% Line 11</td>
<td></td>
</tr>
<tr>
<td>Federal Income Tax Paid</td>
<td></td>
</tr>
<tr>
<td>Social Security Tax Paid</td>
<td></td>
</tr>
<tr>
<td>State Tax Paid</td>
<td></td>
</tr>
</tbody>
</table>

11. Total

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 12, 13, 14</td>
<td></td>
</tr>
<tr>
<td>Line 15</td>
<td></td>
</tr>
</tbody>
</table>

12. Enter Tax from Tax Table

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. If more than $500, Use Form 204B

Signature

Signature

Signature

Taxpayers must sign this return and indicate that all information has been verified to the best of their knowledge and belief is true, correct, and complete.
STATE OF DELAWARE
1968 TAX TABLE FOR INCOMES UNDER $10,000

To find your tax, locate the amount shown on Line 19, Page 1, Form 200, or on Line 15, Form 200A, in the Tax Table. Then read across to the appropriate column headed by number corresponding to the number of exemptions claimed. This is your total tax. Enter on Line 20A, Page 1, Form 200, or on Line 16, Form 200A.

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>And the number of exemptions is</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Least</td>
<td>But Less Than</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.650</td>
<td>0</td>
</tr>
<tr>
<td>0.700</td>
<td>1</td>
</tr>
<tr>
<td>0.750</td>
<td>2</td>
</tr>
<tr>
<td>0.800</td>
<td>3</td>
</tr>
<tr>
<td>0.850</td>
<td>4</td>
</tr>
<tr>
<td>0.900</td>
<td>5</td>
</tr>
<tr>
<td>0.950</td>
<td>6</td>
</tr>
<tr>
<td>1.000</td>
<td>7</td>
</tr>
<tr>
<td>1.050</td>
<td>8</td>
</tr>
<tr>
<td>1.100</td>
<td>9</td>
</tr>
<tr>
<td>1.150</td>
<td>10</td>
</tr>
<tr>
<td>1.200</td>
<td>11</td>
</tr>
<tr>
<td>1.250</td>
<td>12</td>
</tr>
<tr>
<td>1.300</td>
<td>13</td>
</tr>
<tr>
<td>1.350</td>
<td>14</td>
</tr>
<tr>
<td>1.400</td>
<td>15</td>
</tr>
<tr>
<td>1.450</td>
<td>16</td>
</tr>
<tr>
<td>1.500</td>
<td>17</td>
</tr>
<tr>
<td>1.550</td>
<td>18</td>
</tr>
<tr>
<td>1.600</td>
<td>19</td>
</tr>
<tr>
<td>1.650</td>
<td>20</td>
</tr>
<tr>
<td>1.700</td>
<td>21</td>
</tr>
<tr>
<td>1.750</td>
<td>22</td>
</tr>
<tr>
<td>1.800</td>
<td>23</td>
</tr>
<tr>
<td>1.850</td>
<td>24</td>
</tr>
<tr>
<td>1.900</td>
<td>25</td>
</tr>
<tr>
<td>2.000</td>
<td>26</td>
</tr>
<tr>
<td>2.100</td>
<td>27</td>
</tr>
<tr>
<td>2.200</td>
<td>28</td>
</tr>
<tr>
<td>2.300</td>
<td>29</td>
</tr>
<tr>
<td>2.400</td>
<td>30</td>
</tr>
<tr>
<td>2.500</td>
<td>31</td>
</tr>
<tr>
<td>2.600</td>
<td>32</td>
</tr>
<tr>
<td>2.700</td>
<td>33</td>
</tr>
<tr>
<td>2.800</td>
<td>34</td>
</tr>
<tr>
<td>2.900</td>
<td>35</td>
</tr>
<tr>
<td>3.000</td>
<td>36</td>
</tr>
<tr>
<td>3.100</td>
<td>37</td>
</tr>
<tr>
<td>3.200</td>
<td>38</td>
</tr>
<tr>
<td>3.300</td>
<td>39</td>
</tr>
<tr>
<td>3.400</td>
<td>40</td>
</tr>
<tr>
<td>3.500</td>
<td>41</td>
</tr>
<tr>
<td>3.600</td>
<td>42</td>
</tr>
<tr>
<td>3.700</td>
<td>43</td>
</tr>
<tr>
<td>3.800</td>
<td>44</td>
</tr>
<tr>
<td>3.900</td>
<td>45</td>
</tr>
<tr>
<td>4.000</td>
<td>46</td>
</tr>
<tr>
<td>4.100</td>
<td>47</td>
</tr>
<tr>
<td>4.200</td>
<td>48</td>
</tr>
<tr>
<td>4.300</td>
<td>49</td>
</tr>
<tr>
<td>4.400</td>
<td>50</td>
</tr>
</tbody>
</table>

Explanation

- **AMOUNT** represents the taxable income range.
- **But Less Than** denotes the upper limit of the income range.
- The table lists the tax rates for each income bracket, corresponding to the number of exemptions claimed.
<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>And the number of exemptions is</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$4,000 - $4,450</td>
<td>98 74 54 36 24 12 3 0 0 0</td>
</tr>
<tr>
<td>$4,450 - $4,500</td>
<td>100 76 55 37 25 13 4 0 0 0</td>
</tr>
<tr>
<td>$4,500 - $4,600</td>
<td>106 82 60 42 28 16 6 0 0 0</td>
</tr>
<tr>
<td>$4,600 - $4,650</td>
<td>109 82 60 43 29 17 0 0 0 0</td>
</tr>
<tr>
<td>$4,650 - $4,700</td>
<td>111 86 63 45 30 18 8 0 0 0</td>
</tr>
<tr>
<td>$4,700 - $4,750</td>
<td>114 88 64 46 31 19 9 0 0 0</td>
</tr>
<tr>
<td>$4,750 - $4,800</td>
<td>116 90 66 48 32 20 9 0 0 0</td>
</tr>
<tr>
<td>$4,800 - $4,850</td>
<td>119 92 68 49 33 21 10 1 0 0</td>
</tr>
<tr>
<td>$4,850 - $4,900</td>
<td>121 94 70 51 34 22 11 2 0 0</td>
</tr>
<tr>
<td>$4,900 - $4,950</td>
<td>124 97 72 53 35 23 12 2 0 0</td>
</tr>
<tr>
<td>$4,950 - $5,000</td>
<td>127 99 75 54 36 24 13 0 0 0</td>
</tr>
<tr>
<td>$5,000 - $5,100</td>
<td>132 103 79 57 39 26 14 5 0 0</td>
</tr>
<tr>
<td>$5,100 - $5,200</td>
<td>137 107 83 60 42 28 16 7 0 0</td>
</tr>
<tr>
<td>$5,200 - $5,300</td>
<td>142 112 87 63 45 30 18 8 0 0</td>
</tr>
<tr>
<td>$5,300 - $5,400</td>
<td>147 117 91 67 48 32 20 10 1 0</td>
</tr>
<tr>
<td>$5,400 - $5,500</td>
<td>152 122 95 71 51 34 22 11 2 0</td>
</tr>
<tr>
<td>$5,500 - $5,600</td>
<td>158 127 99 75 54 36 24 13 0 0</td>
</tr>
<tr>
<td>$5,600 - $5,700</td>
<td>164 132 103 79 57 39 26 14 5 0</td>
</tr>
<tr>
<td>$5,700 - $5,800</td>
<td>170 137 107 83 60 42 28 16 7 0</td>
</tr>
<tr>
<td>$5,800 - $5,900</td>
<td>176 142 112 86 63 45 36 28 10 1</td>
</tr>
<tr>
<td>$5,900 - $6,000</td>
<td>182 147 117 91 67 48 32 20 10 1</td>
</tr>
<tr>
<td>$6,000 - $6,100</td>
<td>188 152 122 95 71 51 34 22 11 2</td>
</tr>
<tr>
<td>$6,100 - $6,200</td>
<td>194 158 127 99 75 54 36 24 13 0</td>
</tr>
<tr>
<td>$6,200 - $6,300</td>
<td>200 164 132 103 79 57 39 26 14 5</td>
</tr>
<tr>
<td>$6,300 - $6,400</td>
<td>206 170 137 107 83 60 42 28 16 7</td>
</tr>
<tr>
<td>$6,400 - $6,500</td>
<td>212 176 142 112 87 63 45 30 18 8</td>
</tr>
<tr>
<td>$6,500 - $6,600</td>
<td>218 182 147 117 91 67 48 32 20 10 1</td>
</tr>
<tr>
<td>$6,600 - $6,700</td>
<td>224 188 152 122 95 71 51 34 22 11 2</td>
</tr>
<tr>
<td>$6,700 - $6,800</td>
<td>230 194 158 127 99 75 54 36 24 13 0</td>
</tr>
<tr>
<td>$6,800 - $6,900</td>
<td>236 200 164 132 103 79 57 39 26 14 5</td>
</tr>
<tr>
<td>$6,900 - $7,000</td>
<td>242 206 170 137 107 83 60 42 28 16 7</td>
</tr>
<tr>
<td>$7,000 - $7,100</td>
<td>248 212 176 142 112 87 63 45 30 18 8</td>
</tr>
<tr>
<td>$7,100 - $7,200</td>
<td>254 218 182 147 117 91 67 48 32 20 10 1</td>
</tr>
<tr>
<td>$7,200 - $7,300</td>
<td>260 222 188 152 122 95 71 51 34 22 11 2</td>
</tr>
<tr>
<td>$7,300 - $7,400</td>
<td>266 228 194 158 127 99 75 54 36 24 13 0</td>
</tr>
<tr>
<td>$7,400 - $7,500</td>
<td>272 234 200 164 132 103 79 57 39 26 14 5</td>
</tr>
<tr>
<td>$7,500 - $7,600</td>
<td>278 240 206 170 137 107 83 60 42 28 16 7</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$8,000 - $8,200</td>
<td>316 274 232 194 158 127 99 75 54 36 24 13 0</td>
</tr>
<tr>
<td>$8,200 - $8,400</td>
<td>322 281 239 200 164 132 103 79 57 39 26 14 5</td>
</tr>
<tr>
<td>$8,400 - $8,600</td>
<td>328 288 246 206 170 137 107 83 60 42 28 16 7</td>
</tr>
<tr>
<td>$8,600 - $8,800</td>
<td>334 295 253 212 176 142 112 87 63 45 30 18 8</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$9,000 - $9,200</td>
<td>391 344 302 260 218 182 147 117 91 67 48 32 20 10 1</td>
</tr>
<tr>
<td>$9,200 - $9,400</td>
<td>397 350 310 267 225 192 154 125 97 71 51 34 22 11 2</td>
</tr>
<tr>
<td>$9,400 - $9,600</td>
<td>403 357 318 273 232 194 158 127 99 75 54 36 24 13 0</td>
</tr>
<tr>
<td>$9,600 - $9,800</td>
<td>409 365 326 281 240 202 164 132 103 79 57 39 26 14 5</td>
</tr>
<tr>
<td>$9,800 - $10,000</td>
<td>415 373 333 290 249 210 176 142 112 87 63 45 30 18 8</td>
</tr>
</tbody>
</table>

To find your tax, locate the amount shown on Line 19, Page 1, Form 200, or on Line 15, Form 200A, in the Tax Table. Then read across to the appropriate column headed by number corresponding to the number of exemptions claimed.

This is your total tax. Enter on Line 20A, Page 1, Form 200, or on Line 16, Form 200A.

10,000 and over, use Computation Schedule
Complete These

1) Wilmington wage tax is ____%

2) Tax paid on a home is called ____ tax

3) $3.40 per $100 is the same as ____%

4) A ____ tax is used in almost all states except Delaware.

5) The tax that everyone in the U.S. should pay the first of each year is the ____ tax.

6) You are allowed $____ for each dependent.

7) Six percent of 4.50 is ____.

8) The price you get when you sell your house is the ____ value.

9) The surtax is about ____%.

10) Your total income from all places is your ____ income.

11) The standard deduction is ____% in income taxes.

12) A dependent is a person who receives over ____ of their support from you.

13) A gasoline tax is an ____ tax.

14) The value put on property for tax purposes is the ____ value.

15) Persons earning under $____ do not have to pay income tax.
To the nearest hundred feet, tell the height of

a Empire State Building e Chrysler Building
b New York Central f Waldorf Astoria
c Bank of Manhattan g RCA Building
d Chanin Building h 500 Fifth Avenue

What does this picture tell you:

This is a graph. It shows by a picture some number facts we have to know. In this unit we will learn how to construct, read, and interpret different kinds of graphs.

"ONE PICTURE IS WORTH A THOUSAND WORDS"
GRAPHS

There are many different kinds of graphs. They all do the same things. They allow us to assemble a lot of information in one place, thus, enabling us at a glance to make a comparison of two or more quantities and to evaluate what is happening in a given situation.

One may think of graphs as pictorial representations of numerical data. Below are examples of various kinds of graphs:

Bar Graph

Broken Line Graph

Circle Graph

Line Graph

Normal Monthly Precipitation

Duluth, Minnesota

Miami, Florida
Graph of a Number

The graph of a number is a point on the number line.

The Graph of \(\frac{3}{4} \)

Graph of a number

To mark a point on the number line is to graph the number that corresponds to that point and the number is called the coordinate of the point.

Thus,

The graph of a number is a point on the number line whose coordinate is the number.

We can graph a set of numbers by marking a point on the number line for each number.

Example:

Graph the set of whole numbers less than ten

\[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

Graph of the set of whole numbers less than 10
Draw a number line for each and graph each:

1) The whole numbers between 8 and 10.
2) The set of even numbers less than 14 and greater than -6.
3) The set of whole numbers greater than 0 and less than 9.
4) The set of odd numbers less than 0 and greater than -10.

Name the coordinate of the point given. Refer to the number line.

5) The point R. (-1)
6) The point K. (3)
7) The point halfway from J to L. (1.5)
8) The point halfway from P to W. (Kero3)
9) The point 2 units to the right of P. (Lova2)
10) The point one-third of the distance from P to W. (Lova2)
11) The whole numbers greater than 2 and less than 4 1/2. (Hand4 and Hand4)
12) The whole numbers between P and M. (1,2,3 ou J, K, L)
13) The point two-thirds of the distance from L to N. (HauM)
14) The whole numbers between -5 and -12. (Hand5)
15) The directed numbers between X and W that are exactly divisible by 4. (empty set)
The set of Rational Numbers is made up of the set of positive and negative integers and the set of positive and negative fractions, and zero.

Positive Integers

Negative Integers

Positive Fractions

Negative Fractions
How would you graph the set of rational numbers between \(-3 \) and \(\frac{3}{4} \)?

\[
\begin{array}{cccccccc}
-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

This graph consists of all points between \(-3 \) and \(\frac{3}{4} \), meaning not to include \(-3 \) and \(\frac{3}{4} \).

ORAL

a) Is \(\frac{+3 \times 2}{7} \) included in this graph?

b) How about \(-2.3 \)?

c) Can you name some other numbers that are a part of this graph?

Note:

An open circle (0) indicates points not on the graph. A thick line indicates that all points on it belong to the graph.

How would you graph the set of rational numbers greater than or equal to 3.

\[
\begin{array}{cccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

This graph consists of all points greater than 3 and includes 3.

a) Can you name some numbers that are close to 3 and on this graph?

Note:

A darker arrow indicates that the graph continues indefinitely.
A Copy column I and Match column II with it:

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) {0, 1}</td>
<td>a) {Whole number between 1 and 2}</td>
</tr>
<tr>
<td>2) {1, 4, 25...}</td>
<td>b) {Odd number between 1 and 7, inclusive}</td>
</tr>
<tr>
<td>3) {0}</td>
<td>c) {Squares of odd numbers}</td>
</tr>
<tr>
<td>4) {1, 3, 5, 7}</td>
<td>d) {Even numbers between 2 and 8, inclusive}</td>
</tr>
<tr>
<td>5) {2, 4, 6, 8}</td>
<td>e) {The product of 15 and 3}</td>
</tr>
<tr>
<td>6) {45}</td>
<td>f) {zero}</td>
</tr>
</tbody>
</table>

B Draw a graph of each:

7) \{0, 1\}
8) \{\frac{1}{2}, \frac{3}{2}\}

9) The whole numbers between 2 and 8 inclusive.
10) The whole numbers less than 5.
11) The whole numbers less than or equal to 5.
12) The set of Rational numbers greater than 3
13) The set of Rational numbers between -2 and 3, including 3

C Draw a number line and locate the following points.

14) a) \(\frac{12}{8}\) b) -1.5c c) 3.5 d) 2.75
 e) \(-\frac{76}{6}\) f) \(-\frac{3}{2}\) g) \(\frac{18}{4}\) h) \(\frac{56}{9}\)
Comparing Numbers

Signs of Inequality:

\[7 = 6 - 3 \]

is a false statement. To change it to a true statement, we may use the symbol \(\neq \), "is not equal to."

\[7 \neq 6 - 3 \]

Can you think of another inequality symbol we may use?

\[7 > 6 - 3 \] read "7 is greater than 6 - 3"

Another, inequality symbol is \(<\), read, "is less than."

\[7 > 6 - 3 \text{ and } 6 - 3 < 7 \]

They are both true statements and both give the same information.

Consider:

7 is greater than 4, written \(7 > 4 \)

The graph of 4 is to the left of the graph of 7

\[\begin{array}{c}
0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \\
\end{array} \]

Likewise, -3 is greater than -5, written \(-3 > -5 \)

The graph of -5 is to the left of the graph of -3

\[\begin{array}{c}
-7 \quad -6 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \\
\end{array} \]
Consider this statement: y is between 1 and 7, where y represents some number. It means y is greater than 1 and also y is less than 7.

\[
y > 1 \quad \text{and} \quad y < 7
\]

y is greater than 1

This pair of statements can be put together

\[
1 < y < 7
\]

or graph it

A true statement by replacing each blank space with the sign = , <, or >.

1) \(4 + 5 \quad 10 - 1\)

2) \(13 \times 0 \quad 10 + 0\)

3) \(7 \quad 7\)

4) \(5 \quad 6\)

5) \(0 \quad 0\)

6) \(\frac{15}{3} \quad 2 + 3\)

7) \(8 - 3 \quad 2 \times 6\)

8) \(5 - 8 \quad 8 - 5\)

9) \(6 \times 6 \quad 0\)

10) \(5 \times 1 \quad 5 \times 0\)

11) \(2 \frac{1}{3} \quad 1 + 1 \frac{2}{4}\)

12) \(\frac{1}{3} \quad \frac{1}{6}\)

13) \(\frac{1}{5} + \frac{3}{4} \quad \frac{6}{8} + \frac{1}{2}\)

14) \(65 - 1 \quad 66\)

15) \(\frac{1}{3} + \frac{1}{6} \quad \frac{5}{9}\)

16) \(3 \quad 3 \times 0\)
Copy each statement. Replace each blank space by any numeral that makes the resulting statement true.

Example:

1 < ___ < 3

1 < ___ < 3

17) 2 < ___ < 4 (3)
18) 10 < ___ < 13 (11, 12)
19) 12 < ___ < 13 (12)
20) -1 < ___ < -3 (-2)
21) 0 > ___ > 2 (empty set)
22) 1.54327 > ___ > 1.53327 (1.533827)
23) $\sqrt{7} > ___ > \sqrt{6}$
24) ___ x0 = 0 (0)
25) \[
\frac{1.4867}{2.3764} < ___ < \frac{1.4857}{2.3814}
\]
Graphing Inequalities on the Number Line

- $x > 3$ read "x is greater than 3"

Graph:

- $x < 0$ read "x is less than zero"

Graph:

- $x \geq 3$ read "x is greater than or equal to 3"

Graph:

- $x \neq 2$ read "x does not equal 2"

Graph:

- $-2 < x \leq 4$ read "x is greater than -2 and less than or equal to 4"

Graph:
Draw a number line and graph for each:

1) \(x > 1 \)
2) \(y < -3 \)
3) \(a \geq -2 \)
4) \(1 < x < 3 \)
5) \(1 \leq x < 3 \)
6) \(1 \leq x \leq 3 \)

7) \(\text{Numbers greater than } 3\frac{1}{3} \text{ but less than 10} \)
8) \(\text{The number between } 4\frac{1}{2} \text{ and 5, including } 4\frac{1}{2} \)
9) \(\text{The whole number less than or equal to 5} \)
10) \(\text{The numbers less than 6 and greater than or equal to 2} \)

Write a corresponding inequality which is pictured by each of the following graphs.

11)
12)
13)
14)
15)
16)

274
Below is a "Grid" which can be used to graph (plot) points.

When graphing a point designated by one number we used only one number line. How many number lines would you need to graph a point whose coordinates consists of two numbers?

Consider the coordinates, (2,3) and (4,6). Since coordinates of this type consists of two numbers, its only natural that we would need two number lines.

Note: We draw the second number line perpendicular to the first number line. Also, we picked the point of intersection of the lines to be the 0 points of the two lines.

Do you think the coordinates (3,2) names the same point as coordinates (2,3)?
You see pt. (2,3) and pt. (3,2) have two different graphs. So, the order in which we write the numbers for the coordinate of a point is important. Consequently, they are called "Ordered Pairs" of numbers.

Copy the above intersecting number lines on a piece of paper and be careful to make the distance between integers points the same on both lines.

Now, draw the graph of the following points.

1) (4,2)
2) (2,4)
3) (4,5)
4) (-2,3)
5) (3,-2)
6) (4,5)
7) (4,C)
8) (2,\(\frac{1}{2}\))
9) (0,0)
10) \((\frac{1}{2}, \frac{1}{4})\)
11) \((-4, \frac{3}{4})\)
12) (1,1)
13) (0,3)
14) (-2, -3)
EVERYTHING HAS A NAME

y - AXIS

Quadrant II
x - negative
y - positive

Quadrant I
x - positive
y - positive

Quadrant III
x - negative
y - negative

Quadrant IV
x - positive
y - negative

Note: In an ordered pair, such as
(2,3)
2 is the x value and 3 is the y value.
(abscissa and ordinate respectively)
1) Plot the points associated with the ordered pairs given below. If
the points are plotted correctly, the collection of dots that you
get will suggest a familiar pattern to you.

(5,5), (7,3), (7,11), (3,5), (7,12-1/2)
(12,5), (11,3), (3-1/2,4), (7,9-1/2), (10,5)
(13-1/2,5), (7,5), (12,3-1/2), (8,5), (7,6-1/2)
(8,3), (5,3), (7,8), (9,3), (13,4)

b) List the ordered pairs of
numbers that are associated with
the points indicated by dots
on the grid.

What pattern is suggested by the
points that are indicated.

c) Give the coordinates of some
additional points that fit this
pattern.

3) Draw the graph of each of these sets on separate grids.
 a) { (1.5,3.0), (-3/4,2), (0,2.5), (6, -1/2) }
 b) { (-3/4,2), (-4,2), (1.5,2), (-1/2,2), (0,2) }
 c) { (-3,-3), (-1,-1), (0,0), (-1/2,1/2), (1,1), (-3/2,-3/2), (2,2) }
 d) { (-1,-4), (-1,5), (-1,-1/2), (-1,0), (-1,2) }
Broken Line Graph

The line graph is used to show changes and the relationship between quantities.

Questions:

1) How many pupils late does the side of one small square indicate?

2) During what month does the lateness the greatest?

3) How many pupils were late each month?

Note:

Quantity (horizontal scale) — months of the year
Quantity (vertical scale) — number of pupils late

4) What are the various parts of the above line graph:

We can look at this graph and in a glance get a "total picture" of "Lateness" at the Wilmington school.

5) What are some relationships that you see?
Construction procedures (Broken Line Graph)

1) Draw a horizontal guide line near the bottom of the grid and a vertical guide line near the left.

2) Select a convenient scale for the related numbers. Look at the largest and smallest number you will use.
 a) Round off large numbers
 b) Write the number scale along one of the guide lines.
 c) Label the scale.

3) Print names of the items below the other guide line, using a separate line for each item
 a) Label the items.

4) Draw line graphs showing the following data:
 1) In twelve arithmetic tests, each containing 20 problems, John solved 8, 10, 13, 15, 12, 11, 14, 17, 16, 16, 13, and 20 correctly:

3) Show on a broken-line graph beginning with January the average monthly temperature in Wilmington:

 54°, 56°, 65°, 69°, 75°, 81°, 83°, 83°, 80°, 73°, 63°, 56°
Bar Graph

Study the graph and answer these questions:

Percent of 18-year old high school graduates - U.S.

1) To the nearest percent, what percent of 18-year olds graduated from high school in the years shown?

2) In which year was the percent the greatest?

3) In which year was the percent the smallest?

4) Does a given distance on the horizontal axis represent a certain number of years?

5) Does a given distance on the vertical axis represent a certain percent?

6) Would the graph be just as effective if it were arranged so that the bars were horizontal instead of vertical?

7) Do you have any questions?
Construction procedure: (Bar Graph)

1) Round off each number to at least the nearest hundreds.
2) Decide whether the bars should be vertical or horizontal.
3) Choose a convenient scale so that the largest quantity can be represented easily.
4) Make the distance between the bars at least equal to the width of a bar. (All bars should be the same width.)
5) Select appropriate labels and title.

Construct a bar graph for each set of data:

1) A recent report indicated that we spend the following amounts of time in recreation per year.
 Sightseeing - 6 days Walks and hikes - 17 days
 Swimming - $6\frac{1}{2}$ days Pleasure driving - 21 days
 Outdoor sports and recreation - 13 days.

2) The length of time for a person on an average salary to earn enough to pay for certain commodities is indicated for 1955 and 1965.

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Earning time required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1955</td>
</tr>
<tr>
<td>1 quart of milk</td>
<td>9 minutes</td>
</tr>
<tr>
<td>1 loaf of bread</td>
<td>6 minutes</td>
</tr>
<tr>
<td>1 dozen eggs</td>
<td>26 minutes</td>
</tr>
<tr>
<td>1 haircut (men)</td>
<td>43 minutes</td>
</tr>
<tr>
<td>1 house dress</td>
<td>1 hr. 48 min.</td>
</tr>
<tr>
<td>1 pair shoes</td>
<td>5 hrs. 43 min.</td>
</tr>
<tr>
<td>1 man's suit</td>
<td>27 hrs. 35 min.</td>
</tr>
</tbody>
</table>
Circle Graph

A circle graph is used to compare the parts of a whole with each other and with the total. The size of each section depends on the angle at the center of the circle. This angle is called a Central Angle.

Percent of Drivers According to Age

This graph shows that 10% of the drivers are under 20 years of age, the central angle of this sector contains 10% of the 360 degrees around the center of the circle, or

\[
\text{Since } 10\% = \frac{10}{100} \quad \text{or} \quad \frac{10}{100} \times 360 = 36°
\]

Compute the number of degrees in each of the remaining sectors.
Tommy is planning to go to a private vocational technical school after graduation from high school. The cost of the school is estimated at $2200 per year. Tommy prepared this graph

Cost of Voc. Tech. Sch.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Board</td>
<td>800</td>
<td>36%</td>
</tr>
<tr>
<td>Tuition</td>
<td>1100</td>
<td>60%</td>
</tr>
<tr>
<td>Other Expenses</td>
<td>300</td>
<td>14%</td>
</tr>
<tr>
<td>Total</td>
<td>2200</td>
<td>100%</td>
</tr>
</tbody>
</table>

Each sector of the graph must be equal to the same percent of the total area as the item is of the total cost. Then the angle of the sector representing room and board is 30° of 360°.
Note:

The sum of the three sector (degrees) should add up to 36° before the measures are rounded.

Copy and complete this chart:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Percent</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room and board</td>
<td>800</td>
<td>36%</td>
<td>135°</td>
</tr>
<tr>
<td>Tuition</td>
<td>1100</td>
<td>36%</td>
<td>135°</td>
</tr>
<tr>
<td>Other expenses</td>
<td>300</td>
<td>10%</td>
<td>5°</td>
</tr>
</tbody>
</table>

Draw a circle and use a protractor to determine the angles at the center.

Draw in the radii to define the sectors.

Check your graph with Tommy's.

A census report showed the following information with regard to money income and the school of the head of the family.

Construct three circle graphs to show these facts:

<table>
<thead>
<tr>
<th>Schooling, head of Family</th>
<th>Under $5000</th>
<th>$5000-$9999</th>
<th>Over $10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 years, or less</td>
<td>59%</td>
<td>35%</td>
<td>5%</td>
</tr>
<tr>
<td>High school graduates</td>
<td>32%</td>
<td>52%</td>
<td>1%</td>
</tr>
<tr>
<td>College, 4 or more years</td>
<td>16%</td>
<td>52%</td>
<td>3%</td>
</tr>
</tbody>
</table>
3 b) Collect some data about your class or school that can be shown on a circle graph.

For example: (Pick one or make up one)

a) Results of a recent test or marking period.
b) Favorite hobbies among members of your class.
c) How students spend a typical school day.
d) Enrollment by grades.
e) Favorite Female vocalist (3 choices)

(Make a chart of data collected)
Reading and Interpreting Graphs

Often, a person will read into graph information that is not there.

Women Workers as a Percent of all Workers

Consider the following statement:

1) Between 1870 and 1960 the percent of employed women steadily increased. (This statement is true because the percent value can actually be read from the graph: 1970 - % = 15%; 1660 - % = 2)

2) The percent of women workers will be greater in 1970 than was in 1960. ("Probably True"

The person should have said "the percent will probably be greater, although the % has been steadily rising over the last 90 years something unforeseen may occur causing a dip in the graph.

3) The percent of women workers in 1945 was less than that in 1940. ("Was probably less" - The person is trying to determine what happened during a year that fell between points).

4) A woman's place is in the home, not at work. (A statement such as this is purely a matter of personal opinion and should not be drawn on the basis of this graph).
Use the above graph to answer the following:

1) Write three statements that are true.
2) Write three statements that are false.
3) Write three statements that probably are true.
4) Write three statements that probably are false.
5) Write three statements relating men and women that could not be based on the graph.
How 70 million Americans were Employed

Answer each question using the graph as a source of information.

1) What does the horizontal scale show?

2) What does the vertical scale show?

3) What does each small unit on the horizontal scale represent?

4) If the graph represents 70 million employed people,
 a) How many are engaged in farm work?
 b) How many are engaged as craftsmen?

5) What percent of those employed are services?

6) Which field would you like to be employed in?

Teacher: The teacher can collect the answer to No. 6 and have the students graph the data.
Graphing Formulas

A formula containing only two variables can be represented in the form of a line graph.

Consider the formula for finding the: Perimeter of a Square

\[p = 4s \]

where \(s \) represents the length of a side

When \(s \) is equal to 0, \(p \) is equal to 4 times 0 or 0.
When \(s \) is equal to 10, \(p \) is equal to 4 times 10 or 40.
When \(s \) is equal to 20, \(p \) is equal to 4 times 20 or 80.

Here is a convenient way of representing this data:

<table>
<thead>
<tr>
<th>(s)</th>
<th>0</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>40</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

This is called a Table of Values.
On the grid we let the y-axis represent the perimeter and the x-axis represent the length of a side and points representing the number pairs in the table, (0,0), (10,40) and (20,80) are located on the grid.

The graph of the formula \(P = 4s \) is a straight line.

From this graph we can find the perimeter of any square whose side is equal in length to a number on the x-axis.

Also, we can find the length of a side of any square whose perimeter is one of the numbers on the y-axis.
From the graph on page 291, find the perimeter of a square whose side is: (in some cases approximate the answer)

1) 15 in.
5) 17 in.
9) 30 in.
13) 77 in.
2) 5 in.
6) 1 ft.
10) 64 in.
14) 20 ft.
3) 10 in.
7) 1 1/2 ft.
11) 64 in.
15) 6 2/3 ft.
4) 14 in.
8) 1 1/4 ft.
12) 40 in.
16) 5 2/6 ft.

From the graph on page 291, find the side of a square whose perimeter is: (in some cases approximate the answer)

9) 30 in.
13) 77 in.
15) 6 2/3 ft.
16) 5 2/6 ft.
10) 64 in.
14) 20 ft.
11) 64 in.
15) 6 2/3 ft.
12) 40 in.

The price of a certain grade of gasoline is 25¢ a gallon. The cost (c) in dollars of any number (n) of gallons at this price is expressed by the formula c = .25n

a) Make a table of value, using n = 0, 5, and 15;

b) Draw a graph representing this formula.

Let each division on the x-axis represent 1 gallon

and each division of the y-axis represent 25¢.
From the graph (problem 17, page 292) find the cost of:
18) 9 gal. \(\boxed{2.5} \) 19) 13 gal. \(\boxed{17} \) 20) 7 gal. \(\boxed{3} \)

From the same graph, find how many gallons can be purchased for:
21) $1.50 \(\boxed{7} \) 22) $3.50 \(\boxed{14} \) 23) $2.75 \(\boxed{1} \)

24) If a car is traveling at an average speed of 60 miles an hour, the distance in miles that is covered in any number of hours is expressed by the formula \(d = 60t \) where \(d \) represents distance and \(t \) represents time in hours.

a) Make a table of values, using \(t = 0, 2 \frac{1}{2} \) and 5
b) Draw a graph representing the formula \(d = 60t \)

Let each division on the x-axis represent \(\frac{1}{4} \) hr. and each division of the y-axis represent 10 miles.

From the graph what is the distance traveled in:
25) 2 hr. \(\boxed{120} \) 26) 1 \(\frac{1}{2} \) hr. \(\boxed{90} \) 27) 3 \(\frac{1}{2} \) hr. \(\boxed{210} \) 28) 3 hr. \(\boxed{180} \) 29) 1 \(\frac{3}{4} \) hr. \(\boxed{105} \)

From the graph what is the number of hours required to go:
30) 120 mi. \(\boxed{2} \) 31) 40 mi. \(\boxed{\frac{4}{5}} \)
32) 50 mi. \(\boxed{\frac{5}{6}} \) 33) 80 mi. \(\boxed{\frac{3}{4}} \)
Data-processing means putting information into usable form. The machine at the heart of the process is the Computer. The circular parts are tapes for storing information. The girl is carrying an armful of facts put together as Output from the Computer.

Little can be seen when a Computer is working. Most of the action is in the movement of the tapes, the cards going into the machine, or the typewriter printing the paper which comes out of the Computer.

Computers are located in large companies where the volume of scientific problems, business or industrial work, is large.
Using Abbreviations

Just as in Algebra, single letters are used to stand for numbers, so in Data-Processing abbreviations are used to stand for numbers.

After solving the following problems, write the answers with your own 3-letter abbreviations. For example:

Paycheck = 500 + 200 - 310
PYK = 390

1) Bill = BIL = 112.46
2) Credit = CREDIT = 13.36
3) Inventory = INV = 119
4) Number = NUM = 253
5) Score = SCORE = 21
6) Result = RCS = 35.25
7) Volume = VOL = 5540.2
8) Net Price = NPR = 43.14.0

Sometimes, the first three letters are used. Thus, Paycheck would be PAY. Credit can be credited which may be the work on CHK for Checks.

1) Bill = 1782 + 8123 + 415 + 926
2) Credit = 8.25 + 10.50 - 5.45
3) Inventory = 16 + 17 + 13 + 21 + 65 - 13
4) Number = 68 + 31 + 92 + 45 + 16
5) Score = 13 + 7 + 19 + 5 - 6 - 10 - 2 - 5
6) Result = (28 x 42) + (29 x 81)
7) Volume = 3.1412 x 15 x 15 x 6
8) Net Price = $18735.00 - $13921.00
DATA-PROCESSING

Data-Processing has to do with putting a large amount of information into a small, usable form. Even abbreviations are made compact.

Make a guess as to what these abbreviations mean.

1) OUTPT Output
2) INPT Input
3) CHK Check
4) DAT-PRO Data-Processing
5) EMP Employees
6) OVTIM Overtime
7) FEDTX Federal Tax
8) BLUCRS Blue Cross
9) TOTDED Total Deduction
10) STATX State Tax

Think of ten objects such as desk, school, building, and telephone. Write down the ten words and invent your own abbreviations. For example: School - SCH.
COLLECTING DATA

Often when you hear someone say, "there is a lot of work to do", it means he is involved in going over a lot of material used in his job. There are many jobs Computers can do where there is a great volume of number facts, and the handling of such facts is repetitious and tedious.

Note the following health records on High School students.

<table>
<thead>
<tr>
<th>NAME</th>
<th>NUMBER</th>
<th>HEIGHT</th>
<th>WEIGHT</th>
<th>GRADE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Jones</td>
<td>1238</td>
<td>61</td>
<td>100</td>
<td>9</td>
<td>110669</td>
</tr>
<tr>
<td>M. Hayfield</td>
<td>4716</td>
<td>64</td>
<td>125</td>
<td>10</td>
<td>110669</td>
</tr>
<tr>
<td>A. Fisher</td>
<td>2091</td>
<td>68</td>
<td>119</td>
<td>9</td>
<td>072368</td>
</tr>
<tr>
<td>N. Brown</td>
<td>1234</td>
<td>60</td>
<td>117</td>
<td>11</td>
<td>082068</td>
</tr>
<tr>
<td>T. Thomas</td>
<td>4681</td>
<td>59</td>
<td>200</td>
<td>12</td>
<td>022369</td>
</tr>
<tr>
<td>S. Sant</td>
<td>4225</td>
<td>69</td>
<td>183</td>
<td>11</td>
<td>042468</td>
</tr>
<tr>
<td>L. Joy</td>
<td>6117</td>
<td>70</td>
<td>191</td>
<td>10</td>
<td>071668</td>
</tr>
<tr>
<td>A. Arles</td>
<td>8000</td>
<td>71</td>
<td>134</td>
<td>9</td>
<td>022369</td>
</tr>
</tbody>
</table>

Write each line of information above on a single card. The 3" x 5" cards, generally used in filing, are ideal for this purpose.

Do the following jobs with the cards: (The sorting here is being done by hand. Machines do this with great speed and accuracy.)

1) Sort alphabetically. Sort numerically by number.
2) Find the average height in inches. 65".
3) Find the average weight. 131 lb.
5) Sort the cards in order of dates of physicals, from oldest to latest.
HANDLING DATA

Sorting and classifying data is important in modern business and industry. Computers can do their jobs involving hundreds of numbers. Try sorting the following problems into an order from the smallest to the largest.

A 1) 1, 5, 7, 2, 11, 3, 4, 8, 9, 13
 2) 10, 20, 14, 21, 19, 36, 41, 18, 24, 16
 3) 1.2, 3.5, 3.4, 7.1, 3.6, 1.1, 3.6, 7.0, 5.3, 3.5
 4) .11, .17, .13, .14, .10, .21, .19, .22, .23, .12
 5) $\frac{1}{2}, \frac{2}{3}, \frac{1}{4}, \frac{1}{5}, \frac{3}{4}, \frac{1}{3}, \frac{3}{8}$

B 6) AB, BC, CD, EA, AA, BA, CA, BD, EC,
 A E, A B, B A, B C, B D, C A, C D, E A, E C
7) B1, C3, A4, B5, A3, C2, B2, A1
 A1, A3, A4, B1, B2, B5, C2, C3
8) .03, .09, .11, .12, .06, .41, .40, .25
 .03, .09, .11, .12, .06, .40, .25
9) These dates: 021469; 091168; 032369
 011169, 021469, 031169
WORKING WITH NUMBERS

Many times it is convenient to use certain words and diagrams in doing math problems.

A set of numbers might be written as:

\[
\{ 7, 10, 15, 16, 20 \}
\]

And each of the set is called an element. Do the following problems using the above set of elements.

1) Find the sum of all the elements.

2) Find the result of multiplying all the elements.

3) Select the elements which are greater than 7, and less than 20. Write these as a set of numbers. This problem might be written: \(7 < x < 20 \), where \(x \) is an element of the set.

4) List the odd numbers. List the even numbers. Add each of these sets and find the sum.

5) Square each element and write the square as an element in a new set.

\[
\{ 49, 100, 225, 256, 400 \}
\]
Can You Do These Problems?

1) Add: 1309.62, 403.74, 5000.29, 618.93
 7332.55

2) Add the squares of the numbers in the set \{2,4,6,8,10\}.
 \(206\)

3) These are the grades of five students. Find the average of each student's grades.

<table>
<thead>
<tr>
<th>Student</th>
<th>80</th>
<th>75</th>
<th>85</th>
<th>92</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
<td>70</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson</td>
<td>80</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>90</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ross</td>
<td>70</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4) Multiply each element of the set \{2,4,6,8,10\} by the corresponding element of set \{5,10,15,20,25\} and show the result as a set of new elements.
 \(\{10,40,90,160,250\}\)

5) Select the numbers between 15 and 20 from this set of numbers and add them.

 3 6 16 18 20
 17 12 10 7 19
 9 6 5 18 7
 15 10 18 16 20
 19 13 3 17 17

175
CODING INFORMATION

Coding means letting numbers, or letters, or both together, stand for facts. A large Department Store might code price-tags for its shoes in this way.

M, or W, = Men's Shoes, Women's Shoes
6 - 14, = Sizes
BL, WH, TN, BR, RD, = Colors
032169, = month, day, year
$14.50, = price of shoes

A tag on a pair of shoes might look like this:

M10B1012369

$9.95

When the shoes are sold, the code could be copied on the Sales Slip. All this information, or data, is available.

Men's shoes, Size 10, Black color, Sales Price of $9.95, attached Jan. 23, 1969
WHAT DO YOU ALREADY KNOW?

1) What do you think "Data" means?
 (Students can use a dictionary.)

2) How can you "process" data?

3) What is a Computer?

4) Can you say how Data-Processing may affect your life?

5) Teachers are involved with Data-Processing. All over the city, school teachers mark grades of students on cards. These cards are sent to a central Computer. In no time at all, the Computer produces Report Cards for the students. Describe what you think might be good in this system.

6) The Electric Power and Light Co. sends bills to each of its thousands of customers each month. How does the company get information for charging its customers? What information is sent to the customer on the bill?

7) The Telephone Co. sends bills to customers. Each bill is really a card from a Computer. What information would a customer want to have in addition to the amount due?

8) Perhaps you have been paid by a check from a Computer. List the things you might learn by carefully examining a pay-check.

9) How far away from this school do you think the nearest Computer equipment is located?
Study the following tags from shoes, and write a description of the shoes based on the previous Code.

1) M9BLO52068 6) W8L/2WH020669
2) W7TN103068 7) W7L/2TN063068
3) M10BR103068 8) M1ORD051568
4) W7BR052069 9) M8BI112168
5) W6L/2TN101068 10) W8BL031469

Also answer the following questions based on the above tags. Assume the tags were copied onto Sales Slips.

1) How many women's shoes were sold? 6
2) How many men's shoes, size ten, were sold? 2
3) How many black shoes were sold? 3
4) What tag has been on the shoes the longest time? May 18, 1968
5) Which tag is the newest? May 20, 1969
6) How many tags were placed on shoes before June 30, 1968? 3
7) How many tan shoes were sold? 3
8) In what year were most tags put on shoes? 1968
9) How many tags were attached after October 10, 1968? 6
10) How many tags indicate sizes larger than size 9? 2
A Computer cannot read odd-shaped tags and Sales Slips. Such information has to be punched on cards of special size. The Computer can read such a card as this:

With such cards placed in the Computer it is possible to sort hundreds of such cards. Names can be put in alphabetical order; customer's numbers can be put in numerical order; all cards of a certain date, or item, can be selected. The Computer can add the charges of a hundred customers with lightning speed.

Using 3'' x 5'' cards, try designing some Computer cards. Make up information such as appears in the sample above. Try sorting your cards in different ways.
Punching IBM Cards

The teacher may wish to follow up a study of the card on the previous page with a more careful look at how letters and numbers are punched.

The card has 80 columns across its face, and these are numbered from left to right. There are ten rows on the card from top to bottom. The first row is zero; the bottom row is nine. Numbers are easy to read because a hole is punched right on the number row.

Letters are punched with two holes. Letters A to I are punched with one hole in the "12 punch" row and one hole in a number hole. J to R letters have one hole in the "11 punch" and one hole in the number row. S to Z has one hole in the 10, or zero, row and one in a number row.
1) 292
 356
 429
 + 584
 1661

2) 403.25
 + 293.21
 696.46

3) 543491
 - 298430
 245061

4) 43852
 + 76431
 130283

5) 443
 x 16
 7088

6) 56432
 - 32874
 23558

7) 98.5642
 x 31
 3055.4902

8) 65298
 - 32980
 32318

9) 643.50
 x 4.2
 2703.7

10) 32) 6464
 202

11) 52) 1040
 20

12) 3.2) 64128
 20040

13) 6952.4
 x 3.3
 22942.92

14) 60) 12030
 200.5

15) 6492
 + 7983
 20099

Practice
1) 10% as a decimal = ?
2) 50% of 200 = ?
3) 1.6 is what fraction?
4) 5% of 50 = ?
5) 50% as a decimal = ?
6) 29% as a decimal = ?
7) 15% of 300 = ?
8) 6.5% as a decimal = ?
9) 3% of 39 = ?
10) 25% is what fraction?
Flow-Charting is simply a way of showing the steps in doing some problem. Certain symbols have come to mean certain things in Flow-Charting.

A oval can indicate a starting, or stopping place.

A rectangle indicates an operation. The way to read this is, "add 2 to whatever number B stands for, and let this result equal A."

A diamond indicates a decision. The points may indicate "Yes," or "No".

Arrows indicate the flow of ideas through the Flow-Chart.
Flow-Charts can be used to show the flow of ideas, as well as to trace mathematical operations. Here are the stages and decisions involved in making a telephone call.

Try Flow-Charting some other thing such as: putting on a sweater, tying your shoes, catching a bus, making a sandwich, getting a book at the library.
A KEY IDEA IN PROGRAMMING

In Flow-Charting, programming and Computer Operation, the value of a variable may change during the process of solving a problem. Notice in the following lines that "M" changes the value. The following lines could be regarded as a Flow-Chart, or program.

\[M = 10 \]
\[A = M + 5 \]
\[M = A + M \]
\[B = 3 \times M \]
\[M = B \]

The symbol of \(= \), equals, should be read "is".

\[M \text{ is } 10 \]
\[A \text{ is } 10 + 5, \text{ which is } 15 \]
\[M \text{ is } 15 + 10, \text{ which is } 25 \]
\[B \text{ is } 3 \times 25, \text{ which is } 75 \]
\[M \text{ is } 75 \]

Work these problems using these values for M. Determine the final value for M in each problem.

1) \(M = 100 \)
2) \(M = 123.4 \)
3) \(M = 0.182 \)
4) \(M = \frac{1}{2} \)
5) \(M = $68245 \)
To make a Flow-Chart showing how a math problem is done is different. To be able to make a workable Flow-Chart is to be a Programmer. The Programmer is the real brains running the Computer. There is only a step between writing a Flow-Chart and actually solving problems on a Computer.

Here is a simple problem in addition. Add 4 numbers: 500, 600, 700, and 800. Name the numbers with letters. \(A = 500 \), \(B = 600 \), \(C = 700 \), \(D = 800 \). Let \(S \) be the sum which you want.

The first rectangle is "input". The Computer is told what the numbers are.

The second rectangle is addition of the first two numbers. The third rectangle uses this sum to add to \(C \), the third number. This "process" is repeated until the final sum is arrived at, and printed.
Practice With Percent

1) 4 is what percent of 100? 40%
2) 10 is what percent of 50? 20%
3) 5 is what percent of 25? 20%
4) 4 is what percent of 16? 20%
5) 6 is what percent of 12? 50%
6) 2 is what percent of 10? 20%
7) 15 is what percent of 60? 25%
8) 24 is what percent of 96? 25%
9) 7 is what percent of 28? 25%
10) 12 is what percent of 24? 50%
A VARIETY OF PROBLEMS

Here are some problems which can be run through the Flow-Chart very much like solving problems in a real Computer. The first problem is given as an example:

1) Add: 1000, 2000, 3000, 5000. Let A = 1000, B = 2000, C = 3000, D = 5000. Follow the Flow-Chart outline as a guide, or else draw a new one and write the numbers in each rectangle as you go through.

\[S = A + B, \quad S = 1000 + 2000, \quad S = 3000 \]
\[S = S + C, \quad S = 3000 + 3000, \quad S = 6000 \]
\[S = S + D, \quad S = 6000 + 5000, \quad S = 11000 \]
Print S = 11000

2) Add: 187, 432, 113, 781

3) Add: \(\frac{1}{2}, \ \frac{3}{4}, \ \frac{1}{3}, \ 1 \frac{1}{2} \)

4) Add: 1.35, 2.37, 4.80, 6.23

5) Add: 0.008, 0.062, 0.113, 0.703

6) Add: 11856, 2340, 4400, 55120

Make up some problems for yourself. If necessary, change the Flow-Chart to include more, or fewer numbers.
Each problem demands a different Flow-Chart. Suppose your problem required you to add two different sets of numbers, subtracting the second sum from the first sum? Here is the problem:

Add 300, 100, 1200, and subtract the sum of 200, 150, and 980.

Solution. Let \(A = 300 \), \(B = 100 \), \(C = 1200 \), \(D = 200 \), \(E = 150 \), and \(F = 980 \).

The first and second numbers are added.

This sum is added to the third number.

Another letter, \(L \) is the sum of the 4th and 5th numbers.

This sum is added to the last number.

The second sum is subtracted from the first.

The desired result is printed out.

Note how easy it is to think of a Class being a Computer, each student handling one operation.
A 1) \[\begin{align*}
653 \\
281 \\
465 \\
218 \end{align*} \]
\[\frac{16}{17} \]

2) \[\frac{402.05}{\frac{613.07}{321841}} + 0.63 \]
\[\frac{16}{4.3} \]

3) \[\begin{align*}
419607 \\
-321841 \\
97766 \\
\end{align*} \]

4) \[\begin{align*}
618 \\
x 21 \end{align*} \]
\[29.78 \]

5) \[\begin{align*}
3.15 \\
x 3.1 \end{align*} \]
\[9.765 \]

6) \[\begin{align*}
1.0035 \\
x 21 \end{align*} \]
\[21.0735 \]

7) \[\begin{align*}
21 \end{align*} \]
\[4242 \]

8) \[\begin{align*}
487 \end{align*} \]
\[243.5 \]

9) \[\begin{align*}
\cdot .8) \end{align*} \]
\[6.972 \]

B 10) \[12\% \text{ is what decimal fraction?} \]
\[.12 \]

11) \[40\% \text{ as a decimal?} \]
\[.40 \]

12) \[8.8\% \text{ as a decimal?} \]
\[.088 \]

13) \[.04 \text{ is what fraction?} \]
\[\frac{1}{25} \]

14) \[1.50 \text{ is what fraction?} \]
\[\frac{1}{2} \]

15) \[20\% \text{ of 800} = ? \]
\[160 \]

16) \[150\% \text{ of 500} = ? \]
\[750 \]

17) \[2\% \text{ of } \$100.00 = ? \]
\[2 \]

18) \[3.5\% \text{ of 180} = ? \]
\[6.3 \]

19) \[2\% \text{ of 36} = ? \]
\[1.2 \]

C 20) \[25 \text{ is what percent of 100?} \]
\[25\% \]

21) \[20 \text{ is what percent of 100?} \]
\[20\% \]

22) \[15 \text{ is what percent of 90?} \]
\[16\frac{2}{3}\% \]

23) \[10 \text{ is what percent of 80?} \]
\[12.5\% \]

24) \[7 \text{ is what percent of 35?} \]
\[20\% \]

25) \[9 \text{ is what percent of 27?} \]
\[33\frac{1}{3}\% \]
Try making a Flow-Chart for solving each of the following problems. After a Flow-Chart is made it is necessary to run the problem through it, just as if it were a Computer, to see if it works.

Answers to these first four problems are on the next pages:

1) Add: 40, 62, 35, and subtract 77.

2) Multiply: 80, 65, 34, and add 1000.

3) Add: 10% of 60 to 25% of 80.

4) Find \(\frac{1}{2} \) of 350, \(\frac{1}{4} \) of 1200, \(\frac{2}{3} \) of 2700, and add the results.

5) Find the Average of the following grades: 75, 85, 80, 95, 80.

6) Add the elements of set A = \{ 1.3, 2.4, 4.8 \}, and subtract the sum of the elements in set B = \{ 0.5, 1.9, 3.5 \}

\[2.6 \]
Start

\(A = 46 \)
\(B = 62 \)
\(C = 35 \)
\(D = 77 \)

\(S : A + B \)

\(S : S + C \)

\(M : S \times 77 \)

PRINT M

Stop

Start

\(A = 50 \)
\(B = 65 \)
\(C = 34 \)
\(D = 1000 \)

\(P : A \times B \)

\(P : C \times P \)

\(S : P + D \)

PRINT S

Stop

315 71
Start

A = 60
B = 80

C = 10% x 60

D = 25% x 80

E = C + D

PRINT E

STOP

Start

A = 350
B = 1200
C = 2700

D = \frac{1}{3} A

E = \frac{1}{4} B

F = \frac{2}{3} C

G = D + E + F

PRINT G

STOP
Some Flow-Charts, just as the actual Computers, involve other features. For example, here is a problem, and the Flow-Chart with which to solve it.

"Add 5 numbers. The first is 500, and the difference between each number is 100. Find the sum".

The above problem would be "solved" like this. $B = 500, A = 600, B = 1100, A = 700, $ is $A = 1000$? No, $B = 1800, A = 800, $ is $A = 1000$? No, $B = 2600, A = 900, $ is $A = 1000$? No, $B = 3500, A = 1000, $ is $A = 1000$? Yes, print $B = 3500$.

Can you find what is call a "LOOP" and a "DECISION" in the Flow-Chart?
Refer to the Flow-Chart on the previous page. But notice that some changes must be made in order to do the following problems.

1) Add 3 numbers. The first is 700. The difference between the numbers is 100. Find the sum.

2) Add 8 numbers. The first is 200. The difference between each number is 100. Find the sum.

3) Add 6 numbers. The first is 400. The difference between each number is 100. Find the sum.

4) Add 4 numbers. The first is 50. The difference between each number is 20. (Change "Is A = 1000?" to "Is A = 130?" Also, of course, change "100" to "20".) Find the sum.

5) Add 7 numbers. The first is 50. The difference between each number is 20. Find the sum. (Correct the Flow-Chart)

6) Add 6 numbers beginning with 40. The next 5 numbers are consecutive, that is, increased by 1. Correct the Flow-Chart, and find the sum.
Problem 1)

[Flowchart diagram]

Notice the value of B is made 700 for this problem.

Here is how the variables change as they cycle around:

\[B = 700 \]
\[A = B + 100 = 800 \]
\[B = A + B = 1500 \]
\[A = B + 100 = 1600 \]
\[A = A + 100 = 1700 \]
\[Is \ A = 1000? \]
\[No \]

\[B = 900 + 1500 = 2400 \] \[PRINT \ B = 2400 \]
\[A = 900 + 100 = 1000 \]
\[Is \ A = 1000? \]
\[Yes \]

Check:
\[
\begin{array}{c}
700 \\
800 \\
900 \\
\hline
2400
\end{array}
\]

317 T
Here is a problem which can involve activity on the part of every member of the class. Each student is given a 3" x 5" card with the "operation" which is his particular job. This card corresponds to a rectangle, or operation, in the Flow-Chart. After the class has been programmed with these cards, a single sheet of paper with this information is started through the Computer.

Date, June 18, 1969
Name of Employee, Art Jones
Time Card showing regular hours, 40
and overtime hours, 4

The problem is to have the Computer calculate the Net Pay for Art Jones. The Flow-Chart, which appears on the next page, shows how this is done. A sheet of paper with the above heading is passed from student to student, guided by the Flow-Chart. Each student writes on this paper, on it comes to him, his specific operation. If each student does his math correctly, the sheet will finally come out with the Net Pay amount printed as a last line.

The Computer may remain "programmed", and other "employees" be put through. That is, another sheet of paper bearing different names and hours worked, would be used.
See the following page for explanation and check.
Final Problem

RG P = REG X 2.00 = 40 X 2.00 = 80.00
OVP = OVM X 3.00 = 4 x 3.00 = 12.00
GRO = RG P + OVP = 80 + 12 = 92.00
FTX = 10% X GRO = 10% X 92.00 = 9.20
STX = 1.3% X GRO = 1.3% X 92.00 = 1.19
SOC = 4.4% X GRO = 4.4% X 92.00 = 4.05
BCR = 6.50
TOT = FTX + STX + SOC + BCR
 = 9.20 + 1.19 + 4.05 + 6.50
 = 20.95
NET = GRO - TOT = 92.00 - 20.95
 $
 NET = 71.15

319T
Probability is a subject for modern times. Everyone wonders at times, about the chance of something happening. He may be only tossing a coin or drawing a ball out of a box. As a scientist he could be performing an experiment in which Sample Space is required. As a business man he may be keeping records of facts. Some understanding of Probability is essential for our new world.
PROBABILITY

This subject has interested mankind from early times. The Bible records the disciples "drawing lots" to replace Judas Iscariot. Apart from the mystery of the way things happen in life, there is the lure of taking a chance with Fate, with one's money, with one's luck, and doing or not doing a certain thing.

We say things like, "What are the odds?", "What are my chances?", "How possible is it?", and "How probable is it?" Generally we are satisfied to say of some event that it happen "often", "not often", "never", or "sometimes."

Let's make a Probability Scale. It will be useful in working the problems on the next page. See if you know the meaning of all the words. Perhaps you can add some words.
Look at the many interesting subjects for study.

A Write down the word from the Probability Scale which comes to mind as a guess.

1) Finding a dollar bill ——— a student may answer
2) Making a telephone call today "almost never"
3) Taking a boat ride
4) Going to school today
5) Sharpening a pencil
6) Chatting with your best friend
7) Getting mad
8) Running away from home
9) Not getting paid for your work
10) Getting an A grade in math

B Match these ten situations, in the same order, with the ten items above, but change the probability to suit these specific situations.

For example: If you work in a bank, you are "more likely" to find a dollar bill.

1) You work in a bank Compared to "almost never" a student
2) You are a telephone operator "might now, in a banking situation, answer "unlikely."
3) You are camping in a desert
4) The first day of school in September
5) There are 20 students in your classroom
6) School is closed for a holiday
7) Your locker will not always open easily
8) You enjoy being home
9) You have known these people who hire you for a long time
10) You are not taking math this year
Going From Fractions To Decimals

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{10})</td>
<td>.1</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{7}{10})</td>
<td>.7</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{9}{10})</td>
<td>.9</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{1}{2})</td>
<td>.5</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{2}{5})</td>
<td>.4</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{3}{5})</td>
<td>.6</td>
</tr>
<tr>
<td>7</td>
<td>(\frac{3}{4})</td>
<td>.75</td>
</tr>
<tr>
<td>8</td>
<td>(\frac{15}{25})</td>
<td>.6</td>
</tr>
<tr>
<td>9</td>
<td>(\frac{26}{50})</td>
<td>.52</td>
</tr>
<tr>
<td>10</td>
<td>(\frac{9}{36})</td>
<td>.25</td>
</tr>
<tr>
<td>11</td>
<td>(\frac{1}{8})</td>
<td>.125</td>
</tr>
<tr>
<td>12</td>
<td>(\frac{30}{100})</td>
<td>.3</td>
</tr>
<tr>
<td>13</td>
<td>(\frac{4}{50})</td>
<td>.08</td>
</tr>
<tr>
<td>14</td>
<td>(\frac{24}{25})</td>
<td>.96</td>
</tr>
<tr>
<td>15</td>
<td>(\frac{7}{8})</td>
<td>.875</td>
</tr>
<tr>
<td>16</td>
<td>2 (\frac{1}{4})</td>
<td>2.25</td>
</tr>
<tr>
<td>17</td>
<td>3 (\frac{3}{8})</td>
<td>3.375</td>
</tr>
<tr>
<td>18</td>
<td>(\frac{10}{30})</td>
<td>.33 (\frac{1}{3})</td>
</tr>
<tr>
<td>19</td>
<td>(\frac{375}{1000})</td>
<td>.375</td>
</tr>
<tr>
<td>20</td>
<td>(\frac{3}{27})</td>
<td>.11 (\frac{1}{9})</td>
</tr>
</tbody>
</table>
From Decimals to Percents

The symbol % means \(\frac{1}{100} \). Notice how easy it is to go from:

\[
.25 \text{ to } 25\% \\
.25 = \frac{25}{100} = 25 \times \frac{1}{100}
\]

Now \(\frac{1}{100} \) is \(\% \)

So why not \(.25 = 25\% \)?

There is an old rule that goes "move the decimal point to the right 2 places, and add the % symbol."

Change the following decimal fractions to percents.

1) \(.50 \) \(50\% \)
2) \(.72 \) \(72\% \)
3) \(.35 \) \(35\% \)
4) \(.05 \) \(5\% \)
5) \(1.50 \) \(150\% \)
6) \(.33 \frac{1}{3} \) \(33\frac{1}{3}\% \)
7) \(.01 \frac{1}{2} \) \(1\frac{1}{2}\% \)
8) \(.155 \) \(15.5\% \)
9) \(2.75 \) \(275\% \)
10) \(.005 \) \(.5\% \)
Rounding To Tenths Place

If the digit in the hundredths place is 5 or more, increase the digit in the tenths place by one.

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Tenths Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.25</td>
<td>.3</td>
</tr>
<tr>
<td>2</td>
<td>.37</td>
<td>.4</td>
</tr>
<tr>
<td>3</td>
<td>.71</td>
<td>.7</td>
</tr>
<tr>
<td>4</td>
<td>.90</td>
<td>.9</td>
</tr>
<tr>
<td>5</td>
<td>.38</td>
<td>.4</td>
</tr>
<tr>
<td>6</td>
<td>.62</td>
<td>.6</td>
</tr>
<tr>
<td>7</td>
<td>.46</td>
<td>.5</td>
</tr>
<tr>
<td>8</td>
<td>.32</td>
<td>.3</td>
</tr>
<tr>
<td>9</td>
<td>.54</td>
<td>.5</td>
</tr>
<tr>
<td>10</td>
<td>.85</td>
<td>.9</td>
</tr>
</tbody>
</table>
Put down after each a guess using the above Scale.

1) That the sun rises tomorrow, clouds, or no clouds. 1.0
2) That the baby is a boy.
3) That tomorrow is Christmas Day. 0.5
4) Of getting a six by tossing a die. 1/365
5) Of getting a Head by tossing a coin.
6) That today is Tuesday.
7) That this is the month of June.
8) Of drawing a Heart from a pack of playing cards. 5/12
9) There is school today.
10) That the teacher will call on a boy to answer the question. 1/2

Now after guessing what ratings to give the above items, try putting each on a mathematical basis. Item 3 might be 1/365. Why?
Using a Metric Ruler

The great value of a metric scale is that the divisions are in tenths. This is a useful number system — using tenths and not sixteenths, as on the English ruler. The metric system is used in other countries more than in the United States. The smallest divisions on a metric ruler are millimeters; numbers may be placed at each centimeter.

Give the lengths of the following lines, first in centimeters, and then in millimeters.

Example: _________________________ 9.7 cm, 97 mm

1) ____________________________ 8.0 cm, 8.8 mm

2) ________________________________ 10 cm, 100 mm

3) ________________ 5.7 cm, 57 mm

4) ________________________________ 11.5 cm, 115 mm

5) ________________ 0.3 cm, 23 mm

6) ________________________________ 9.2 cm, 92 mm

7) ________________ 6.4 cm, 64 mm

8) ________________________________ 10.5 cm, 105 mm

9) ________________ 4.9 cm, 49 mm

10) ______________________________ 7.5 cm, 75 mm
Nomographs Do Everything

A nomograph is a lazy man's way of doing a mathematical problem. Here, for example, is a way to figure the percent of a number with no effort at all. The answers may be approximate, however.

The student can draw this nomograph larger, or use this one shown here. The idea is to lay a metric scale across the graph as in lines AB and CD. 32 and 80 are millimeters on the scale. 40% of 80 is a problem done by finding where the 40% line crosses under the scale. Answer: 32. Problem: 75% of 32. Exercise care in finding 75%. Answer: 24.
Problems to Solve on the Nomograph

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60% of 90</td>
<td>54</td>
<td>11</td>
<td>15% of 14</td>
</tr>
<tr>
<td>2</td>
<td>90% of 45</td>
<td>40.5</td>
<td>12</td>
<td>5% of 20</td>
</tr>
<tr>
<td>3</td>
<td>50% of 50</td>
<td>25</td>
<td>13</td>
<td>20% of 44</td>
</tr>
<tr>
<td>4</td>
<td>10% of 80</td>
<td>8</td>
<td>14</td>
<td>99% of 57</td>
</tr>
<tr>
<td>5</td>
<td>50% of 70</td>
<td>35</td>
<td>15</td>
<td>2% of 56</td>
</tr>
<tr>
<td>6</td>
<td>37% of 100</td>
<td>37</td>
<td>16</td>
<td>59% of 44</td>
</tr>
<tr>
<td>7</td>
<td>15% of 90</td>
<td>3</td>
<td>17</td>
<td>27% of 45</td>
</tr>
<tr>
<td>8</td>
<td>25% of 15</td>
<td>3.75</td>
<td>18</td>
<td>15% of 19</td>
</tr>
<tr>
<td>9</td>
<td>72% of 90</td>
<td>64.8</td>
<td>19</td>
<td>59% of 55</td>
</tr>
<tr>
<td>10</td>
<td>12% of 20</td>
<td>2.4</td>
<td>20</td>
<td>67% of 97</td>
</tr>
</tbody>
</table>

| Note: Available |
Add and reduce the sum to lowest terms:

1) $\frac{1}{2}$
 $\frac{3}{4}$
 $\frac{5}{6}$
 $\frac{11}{12}$
 $\frac{11}{20}$

2) $\frac{1}{4}$
 $\frac{2}{3}$
 $\frac{4}{5}$
 $\frac{5}{6}$
 $\frac{3}{14}$

3) $\frac{3}{4}$
 $\frac{8}{10}$
 $\frac{17}{25}$
 $\frac{5}{12}$
 $\frac{13}{14}$

4) $\frac{3}{5}$
 $\frac{5}{6}$
 $\frac{7}{9}$
 $\frac{8}{9}$
 $\frac{5}{6}$

5) $\frac{1}{7}$
 $\frac{5}{7}$
 $\frac{6}{7}$
 $\frac{5}{7}$
 $\frac{1}{7}$

6) $\frac{1}{2}$
 $\frac{1}{3}$
 $\frac{1}{8}$
 $\frac{1}{3}$
 $\frac{1}{2}$

7) $\frac{1}{4}$
 $\frac{1}{3}$
 $\frac{1}{6}$
 $\frac{1}{3}$
 $\frac{1}{2}$

8) $\frac{1}{2}$
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{3}$

9) $\frac{1}{6}$
 $\frac{1}{6}$
 $\frac{1}{6}$
 $\frac{1}{6}$
 $\frac{1}{6}$

10) $\frac{5}{9}$
 $\frac{5}{9}$
 $\frac{5}{9}$
 $\frac{5}{9}$
 $\frac{5}{9}$

11) $\frac{5}{6}$
 $\frac{7}{12}$
 $\frac{5}{6}$
 $\frac{7}{14}$
 $\frac{5}{7}$

12) $\frac{1}{5}$
 $\frac{1}{2}$
 $\frac{1}{6}$
 $\frac{1}{2}$
 $\frac{1}{2}$

13) $\frac{2}{25}$
 $\frac{5}{25}$
 $\frac{5}{25}$
 $\frac{5}{25}$
 $\frac{12}{25}$

14) $\frac{1}{4}$
 $\frac{6}{14}$
 $\frac{5}{12}$
 $\frac{12}{14}$
 $\frac{5}{14}$

15) $\frac{6}{7}$
 $\frac{8}{7}$
 $\frac{13}{14}$
 $\frac{14}{14}$
 $\frac{14}{14}$

16) $\frac{1}{5}$
 $\frac{1}{2}$
 $\frac{1}{3}$
 $\frac{1}{4}$
 $\frac{1}{5}$

17) $\frac{4}{5}$
 $\frac{5}{10}$
 $\frac{9}{10}$
 $\frac{9}{10}$
 $\frac{5}{6}$

18) $\frac{1}{2}$
 $\frac{5}{10}$
 $\frac{9}{10}$
 $\frac{9}{10}$
 $\frac{5}{6}$

19) $\frac{4}{5}$
 $\frac{10}{10}$
 $\frac{9}{10}$
 $\frac{9}{10}$
 $\frac{5}{6}$

20) $\frac{1}{3}$
 $\frac{1}{6}$
 $\frac{1}{6}$
 $\frac{1}{6}$
 $\frac{1}{6}$

21) $\frac{1}{12}$
 $\frac{1}{12}$
 $\frac{1}{12}$
 $\frac{1}{12}$
 $\frac{1}{12}$

22) $\frac{1}{6}$
 $\frac{1}{6}$
 $\frac{1}{6}$
 $\frac{1}{6}$
 $\frac{1}{6}$

23) $\frac{1}{18}$
 $\frac{6}{18}$
 $\frac{8}{18}$
 $\frac{4}{18}$
 $\frac{4}{18}$

24) $\frac{1}{3}$
 $\frac{1}{9}$
 $\frac{1}{9}$
 $\frac{1}{9}$
 $\frac{1}{9}$

25) $\frac{1}{2}$
 $\frac{3}{10}$
 $\frac{3}{10}$
 $\frac{3}{10}$
 $\frac{3}{10}$
Multiply and reduce the product to lowest terms

1) \(\frac{1}{3} \times \frac{2}{5} \) \(\frac{2}{15} \)

2) \(\frac{1}{4} \times \frac{1}{3} \) \(\frac{1}{12} \)

3) \(\frac{2}{3} \times \frac{1}{6} \) \(\frac{1}{9} \)

4) \(\frac{1}{9} \times \frac{3}{5} \) \(\frac{1}{15} \)

5) \(\frac{4}{7} \times \frac{5}{9} \) \(\frac{20}{63} \)

6) \(\frac{1}{3} \times \frac{5}{6} \) \(\frac{5}{18} \)

7) \(\frac{1}{5} \times \frac{2}{3} \) \(\frac{2}{15} \)

8) \(\frac{2}{3} \times \frac{2}{5} \) \(\frac{2}{5} \)

9) \(\frac{3}{5} \times \frac{1}{6} \) \(\frac{1}{10} \)

10) \(\frac{1}{9} \times \frac{10}{11} \) \(\frac{10}{99} \)

11) \(\frac{1}{3} \times \frac{1}{7} \) \(\frac{1}{21} \)

12) \(\frac{1}{8} \times \frac{3}{4} \) \(\frac{3}{32} \)

13) \(\frac{1}{12} \times \frac{2}{4} \) \(\frac{1}{16} \)

14) \(\frac{5}{6} \times \frac{7}{9} \) \(\frac{35}{54} \)

15) \(\frac{6}{7} \times \frac{1}{5} \) \(\frac{6}{35} \)

16) \(\frac{4}{5} \times \frac{3}{5} \) \(\frac{12}{25} \)

17) \(\frac{9}{10} \times \frac{15}{16} \) \(\frac{27}{32} \)

18) \(\frac{5}{6} \times \frac{2}{9} \) \(\frac{35}{54} \)

19) \(\frac{4}{5} \times \frac{1}{3} \) \(\frac{4}{15} \)

20) \(\frac{1}{7} \times \frac{4}{5} \) \(\frac{4}{35} \)
Fraction Practice

Probability problems often involve adding or multiplying fractions. Reduce the results to lowest terms.

A Add the following:

1) \(\frac{1}{2} \)
2) \(\frac{1}{2} \)
3) \(\frac{3}{4} \)
4) \(\frac{1}{6} \)

- \(\frac{1}{2} \)
- \(\frac{2}{3} \)
- \(\frac{1}{4} \)
- \(\frac{1}{8} \)

\(\frac{1}{2} \)
\(\frac{5}{6} \)
\(\frac{1}{3} \)
\(\frac{1}{3} \)

5) \(\frac{2}{3} \)
6) \(\frac{1}{2} \)
7) \(\frac{2}{5} \)
8) \(\frac{1}{4} \)

- \(\frac{2}{3} \)
- \(\frac{3}{4} \)
- \(\frac{24}{25} \)
- \(\frac{3}{8} \)

\(\frac{1}{6} \)
\(\frac{1}{3} \)
\(\frac{1}{5} \)
\(\frac{1}{2} \)

B Multiply the following:

9) \(\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \)
10) \(\frac{2}{5} \times \frac{1}{3} \times \frac{1}{4} \)
11) \(\frac{1}{6} \times \frac{1}{6} \times \frac{1}{3} \)
12) \(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{6} \)
13) \(\frac{1}{9} \times \frac{1}{3} \times \frac{1}{4} \)
14) \(\frac{1}{4} \times \frac{1}{3} \times \frac{2}{3} \)
15) \(\frac{2}{3} \times \frac{1}{7} \times \frac{7}{9} \)
16) \(\frac{4}{5} \times \frac{1}{10} \times \frac{1}{3} \)
17) \(\frac{3}{4} \times \frac{1}{9} \times \frac{1}{2} \)
18) \(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{2} \)

\(\frac{1}{27} \)
\(\frac{1}{30} \)
\(\frac{1}{108} \)
\(\frac{1}{18} \)
\(\frac{1}{36} \)
\(\frac{1}{6} \)
\(\frac{2}{75} \)
\(\frac{1}{24} \)
\(\frac{1}{60} \)

3 3 2
Handling Decimal Fractions

Change these simple fractions to decimal fractions:

Example: \(\frac{1}{2} = .5 \), \(2\frac{1}{8} = .125 \)

1) \(\frac{1}{2} \) \(.5 \)
2) \(\frac{1}{4} \) \(.25 \)
3) \(\frac{1}{5} \) \(.2 \)
4) \(\frac{1}{8} \) \(.125 \)
5) \(\frac{3}{4} \) \(.75 \)
6) \(\frac{3}{8} \) \(.375 \)
7) \(\frac{5}{8} \) \(.625 \)
8) \(\frac{1}{16} \) \(.0625 \)
9) \(\frac{1}{10} \) \(.1 \)
10) \(\frac{1}{20} \) \(.05 \)

Change these decimal fractions to percents. Think of % as \(\frac{1}{100} \).
Thus \(.50 = \frac{50}{100} = 50 \times \frac{1}{100} = 50\% \)

11) \(.10 \) \(10\% \)
12) \(.80 \) \(80\% \)
13) \(.50 \) \(50\% \)
14) \(.20 \) \(20\% \)
15) \(.25 \) \(25\% \)
16) \(.75 \) \(75\% \)
17) \(.90 \) \(90\% \)
18) \(.32 \) \(32\% \)
19) \(.08 \) \(8\% \)
20) \(.33\frac{1}{3} \) \(33\frac{1}{3}\% \)

\(3.3 \)
Recording Heads and Tails

Is there really a "50-50 chance", or a "one in two" probability of getting a Head when a coin is tossed? Only by many trials does this mathematical prediction prove correct. Make a chart and keep the record of 20 tosses.

<table>
<thead>
<tr>
<th>Toss Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Heads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Tails</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative Number of Heads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of Heads to Toss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Cent Heads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the final percent in the lower right hand corner? Is it near 50%? How do you explain this? Let's make a graph of what is happening to the percent of Heads as more tosses are made.
Probability and Sample Spaces

Probability is concerned with the number successes out of the total number of possibilities. All the possible combinations of numbers from two dice can be shown in a Sample Space. The first line of the Sample Space would look like this:

\[(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)\]

This means that 1 showing up on one die, might be matched with any one of the six numbers on the other die. There follows a problem in completing this Sample Space.

A pair of dice affords many interesting problems. See the following pages. To find all the possible sums that might appear in tossing two dice the first line of a Sample Space might look like this:

\[(2), (3), (4), (5), (6), (7)\]

Another problem might be to study all the possible products of the numbers on a pair of dice. Here again the first line of the Sample Space would look like this:

\[(1), (2), (3), (4), (5), (6)\]
Sample Spaces

"Sample spaces" are pictures of the various ways in which an event may occur. The set of results when a coin is tossed is written like this: \([H,T]\). If there are two colored balls, \(R\) (red) and \(G\) (green), which can roll out of a machine, they might roll out in this order: \([RG, OR]\). But if a third \(B\) (blue) ball is added, the Sample Space, or list of possibilities is: \([RGB, RBO, ORB, OBR, BRG, BGR]\). The Probability of rolling \(ORB\), in that order is \(\frac{1}{6}\).

All the possible combinations of numbers from the faces of two dice can be worked out and displayed in a Sample Space. Complete the following.

\[
\begin{array}{ccc}
1,1 & 1,2 & 1,3 \\
2,1 & & 3,3 \\
\end{array}
\]

(You may not need all the spaces.)
Sample Spaces

A Complete the following. This is an Addition Table:

```
  1 2 3 4 5 6 7 8 9 10
1  .  .  .  .  .  .  .  .  .  .
2  .  .  .  .  .  .  .  .  .  5
3  .  .  .  .  .  .  .  .  .  10
4  .  .  .  .  .  .  .  .  .  
```

Complete this one. It is a Multiplication Table:

```
  1 2 3 4 5 6 7 8 9 10 11 12
1  .  .  .  .  .  .  .  .  .  .  .  .
2  .  .  .  .  .  .  .  .  .  8  .  .
3  .  .  .  .  .  .  .  .  .  28 .  .
4  .  .  .  .  .  .  .  .  .  44 .  .
5  .  .  .  .  .  .  .  .  .  .  .  .
6  .  .  .  .  .  .  .  .  .  .  .  .
```

Projects:

Try making two more Sample Spaces, or Tables, extending the numbers from 6 to 10 in each case.
Think of two piles of slips of paper. Each pile has ten slips of paper in it. Each slip of paper has a fraction written on it. If you were to take one slip from each pile, and multiply the fraction, all the possible products might look like this:

<table>
<thead>
<tr>
<th>1/1</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>1/5</th>
<th>1/6</th>
<th>1/7</th>
<th>1/8</th>
<th>1/9</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/5</td>
<td></td>
<td>1/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/10</td>
</tr>
</tbody>
</table>

Complete the above Sample Space. What would be the Probability of drawing a slip from each pile and getting a product of \(\frac{1}{6} \)?
A variation of what is described on the previous page is to use decimal fractions, and not just simple fraction. A game can be made out of this idea also. Complete the following Sample Space.
Finding Probability Through Experience

Sometimes the mathematical probability is not easy to find. But by keeping records, one can figure the probability on the basis of actual experience.

Draw up forms like those on the preceding page. Examine a thumbtack: Call these positions H and T.

`HEADS` `TAILS`

The actual physical construction of the thumbtack will determine whether it falls heads or tails. Before you run the experiment, write down a guess as to which way your thumbtack will fall most frequently.

A fat checker is an interesting subject. It can fall on either side, or on its edge. Make a chart like this and determine P (H), P (T), P (E), for 20 tosses.

<table>
<thead>
<tr>
<th>Toss Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tails</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20
Probability Tree

A "tree" is sometimes valuable for showing all the possible results of some events. For example, to toss a single coin three times looks like this.

Now you can ask the question, what is the probability of getting 3H in 3 tosses of a coin? Tracing it out above, you see that is is $\frac{1}{8}$. To get an exact order such as HTT, is also $\frac{1}{8}$. Simply to get two tails and one head is $\frac{3}{8}$. (Try keeping a record of tossing three coins eight times.)

<table>
<thead>
<tr>
<th>Toss Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>H H H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H H T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T T H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T T T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

341
Which Is More Probable?

Which is more likely, or probable? One success out of two possibilities, or one success out of four possibilities? It is easy to decide if we convert the fractions to percent, and choose the largest. For example: \(\frac{1}{2} \) or \(\frac{1}{4} \) ? means 50\% or 25\%? Thus an event \(\frac{1}{2} \) is more probable than \(\frac{1}{4} \).

1) \(\frac{1}{4} \) or \(\frac{1}{8} \)?
2) \(\frac{2}{3} \) or \(\frac{3}{4} \)?
3) \(\frac{1}{2} \) or \(\frac{3}{5} \)?
4) \(\frac{1}{6} \) or \(\frac{3}{4} \)?
5) \(\frac{1}{16} \) or \(\frac{3}{8} \)?
6) \(\frac{1}{4} \) or \(\frac{3}{4} \)?
7) \(\frac{1}{2} \) or \(\frac{1}{8} \)?
8) \(\frac{1}{10} \) or \(\frac{1}{5} \)?
9) \(\frac{1}{6} \) or \(\frac{1}{3} \)?
10) \(\frac{2}{3} \) or \(\frac{5}{6} \)?
11) \(\frac{1}{8} \) or \(\frac{1}{5} \)?
12) \(\frac{1}{6} \) or \(\frac{1}{10} \)?
13) \(\frac{1}{4} \) or \(\frac{1}{3} \)?
14) \(\frac{1}{10} \) or \(\frac{3}{5} \)?
15) \(\frac{1}{3} \) or \(\frac{1}{6} \)?
16) \(\frac{1}{4} \) or \(\frac{1}{4} \)?
17) \(\frac{1}{12} \) or \(\frac{3}{4} \)?
18) \(\frac{3}{4} \) or \(\frac{1}{3} \)?
19) \(\frac{1}{8} \) or \(\frac{3}{10} \)?
20) \(\frac{1}{6} \) or \(\frac{1}{5} \)?

342
EVERYBODY WINS

$2.00 FOR 25¢ ON ANY ONE NUMBER
50¢ FOR 25¢ ON ANY COLOR
35¢ FOR 25¢ WHEN YOU PLAY
FOR EVEN NUMBERS

Figure out the mathematical probability for each of the above propositions. Why does the player not receive $3.00 instead of $2.00; $1.00 instead of 50¢ of 50¢ instead of 35¢? (A pencil balanced on a thumbtack makes a good spinner to place right on this drawing.) Keep records of all your trials.
How A Spinner Works

Everybody likes to watch the "Wheel of Fortune" spin at the Amusement Park. Some people place their money to see if they can win something. Note the "wheel" on the following page. If you play a quarter, what chance do you have of winning $3.00? If you play a single number, you have one chance in twelve of winning $3.00. But you need to play a number 12 times to expect to win once. $3.00 is the figure chosen because it represents 12 x $.25

Answer the following questions on the "Wheel of Fortune"

1) What are the chances of winning on an even number?
2) What are the chances of winning on an odd number?
3) What is the Probability of winning in area A?
4) What is the Probability of winning in area B or D?
5) What is the Probability of getting an "8"?

Use a sheet of paper to record the actual results of each spin of the pencil-pointer. (A lead pencil balanced on a thumbtack will spin easily on the flattened page.)

<table>
<thead>
<tr>
<th>Spin</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td></td>
</tr>
</tbody>
</table>
A Random Walk

A Here is a walk you can take without leaving your desk. All you need is a coin, pencil, and paper.

Some Experiments in "walking".

a) Let Heads be 5 steps forward; Tails be one step backward. How soon can you get from start to goal by tossing a coin and moving accordingly?

b) Let H = 2 steps forward; T = 1 step backward.

c) Let H = 1 step forward; T = 1 step backward.

Will you ever get from start to goal?

B Try walking to get out of the Square.

Draw a grid like this one. Observe the following rules.

Toss a dime and a quarter.

Dime: H, Take one step, Face left
T, Take one step, Face right

Quarter: H, take two steps, Face left
T, take two steps, Face right

"get out" at any point
An Important Use Of Probability

A Mortality Table is most important to the Insurance business. This Table predicts the life expectancy of individuals living in the United States. When you buy life insurance the company can tell about how long you will live "probably."

<table>
<thead>
<tr>
<th>Age</th>
<th>Number Living</th>
<th>Deaths Each Year</th>
<th>Deaths Per 1,000</th>
<th>Age</th>
<th>Number Living</th>
<th>Deaths Each Year</th>
<th>Deaths Per 1,000</th>
<th>Age</th>
<th>Number Living</th>
<th>Deaths Each Year</th>
<th>Deaths Per 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13,000,000</td>
<td>30,000</td>
<td>2.31</td>
<td>67</td>
<td>6,100,000</td>
<td>241,777</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9,925,000</td>
<td>17,473</td>
<td>1.74</td>
<td>68</td>
<td>6,114,488</td>
<td>243,833</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9,011,712</td>
<td>16,642</td>
<td>1.85</td>
<td>69</td>
<td>5,889,283</td>
<td>247,341</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8,095,150</td>
<td>15,867</td>
<td>1.94</td>
<td>70</td>
<td>5,692,977</td>
<td>252,421</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7,179,000</td>
<td>15,121</td>
<td>2.06</td>
<td>71</td>
<td>5,413,554</td>
<td>257,731</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6,255,000</td>
<td>14,395</td>
<td>2.20</td>
<td>72</td>
<td>5,158,833</td>
<td>262,567</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5,322,000</td>
<td>13,706</td>
<td>2.40</td>
<td>73</td>
<td>4,918,899</td>
<td>267,400</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4,383,000</td>
<td>13,036</td>
<td>2.57</td>
<td>74</td>
<td>4,694,500</td>
<td>272,280</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3,448,000</td>
<td>12,392</td>
<td>2.72</td>
<td>75</td>
<td>4,484,500</td>
<td>277,150</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2,519,000</td>
<td>11,767</td>
<td>2.88</td>
<td>76</td>
<td>4,288,500</td>
<td>282,000</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,604,000</td>
<td>11,158</td>
<td>3.01</td>
<td>77</td>
<td>4,106,500</td>
<td>286,800</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>897,000</td>
<td>10,569</td>
<td>3.12</td>
<td>78</td>
<td>3,939,500</td>
<td>291,580</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>538,000</td>
<td>9,998</td>
<td>3.22</td>
<td>79</td>
<td>3,787,500</td>
<td>296,300</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>329,000</td>
<td>9,451</td>
<td>3.33</td>
<td>80</td>
<td>3,649,500</td>
<td>301,000</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>206,000</td>
<td>8,919</td>
<td>3.44</td>
<td>81</td>
<td>3,525,500</td>
<td>305,600</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>128,000</td>
<td>8,403</td>
<td>3.55</td>
<td>82</td>
<td>3,415,500</td>
<td>310,000</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>81,000</td>
<td>7,904</td>
<td>3.67</td>
<td>83</td>
<td>3,319,500</td>
<td>314,200</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>50,000</td>
<td>7,420</td>
<td>3.79</td>
<td>84</td>
<td>3,237,500</td>
<td>318,200</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>32,000</td>
<td>6,950</td>
<td>3.91</td>
<td>85</td>
<td>3,169,500</td>
<td>322,000</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>21,000</td>
<td>6,503</td>
<td>4.04</td>
<td>86</td>
<td>3,104,500</td>
<td>325,600</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>14,000</td>
<td>6,076</td>
<td>4.17</td>
<td>87</td>
<td>2,943,500</td>
<td>329,000</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9,000</td>
<td>5,666</td>
<td>4.30</td>
<td>88</td>
<td>2,796,500</td>
<td>332,000</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6,000</td>
<td>5,271</td>
<td>4.44</td>
<td>89</td>
<td>2,652,500</td>
<td>334,700</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4,000</td>
<td>4,889</td>
<td>4.58</td>
<td>90</td>
<td>2,511,500</td>
<td>337,100</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2,700</td>
<td>4,518</td>
<td>4.73</td>
<td>91</td>
<td>2,373,500</td>
<td>339,200</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1,800</td>
<td>4,155</td>
<td>4.89</td>
<td>92</td>
<td>2,240,500</td>
<td>341,000</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1,200</td>
<td>3,801</td>
<td>5.05</td>
<td>93</td>
<td>2,110,500</td>
<td>342,400</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>800</td>
<td>3,455</td>
<td>5.21</td>
<td>94</td>
<td>1,982,500</td>
<td>343,400</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>560</td>
<td>3,121</td>
<td>5.38</td>
<td>95</td>
<td>1,856,500</td>
<td>344,100</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>392</td>
<td>2,801</td>
<td>5.55</td>
<td>96</td>
<td>1,733,500</td>
<td>344,600</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>274</td>
<td>2,501</td>
<td>5.73</td>
<td>97</td>
<td>1,613,500</td>
<td>344,800</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>195</td>
<td>2,215</td>
<td>5.91</td>
<td>98</td>
<td>1,496,500</td>
<td>344,800</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>137</td>
<td>1,943</td>
<td>6.10</td>
<td>99</td>
<td>1,382,500</td>
<td>344,500</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the Probability of a student, age 15, living until he is 16? From the Table, 1.46 over 1000 gives .146% deaths. Subtracting this from 100% we get the Probability of living as 99.854%. Figure out answers for people of ages 30, 50, 80, and 99.
Some Uses Of Probability

When Probability provides a way of "predicting" an event, it is most valuable. Insurance companies could not operate at all if they were not able to "predict" accidents, or deaths. For example, the amount of the charge for the insurance policy is determined by the probability of the accident, or death, happening to the one insured.

Science uses volumes of recorded facts in trying to determine what causes a certain thing to happen. On the basis of many records kept on patients who smoked, and patients who got lung cancer, a "link" was established.

People who follow sports keep records on their favorite players. They may only memorize the records and not write them down. But by doing this, a sports fan might have a very good idea of the probability that a certain baseball player will get a hit.

A new thing one hears on the radio is, "the probability of rain is 60%," or some other per cent. This means that many factors in weather conditions are considered, and fed into a Computer which comes up with such a per cent as a forecast.
Conclusion

One of the most important and immediate use of Probability has to do with the personal safety of human beings. Since we are students attending school, we need to think seriously sometimes of what might happen in any week of school.

Refer back to the "Probability Scale" at the beginning of this unit. Place a word from the Scale, which you think is a good guess, after each sentence. A survey of the class experiences with each sentence during the last week would make these guesses realistic.

1) getting sick and needing to go home
2) getting sick and needing to go to the hospital
3) falling and needing to see the nurse
4) being struck by a thrown object
5) getting injured in a fight
6) blowing up the chemistry laboratory
7) getting an electrical shock in the radio shop
8) eating "bad" food in the cafeteria
9) falling out of a window
10) getting struck by a car on the way to school

Insurance companies consider these things very carefully. In almost every case there are safety measures and precautions students can take to avoid these difficulties. Obey the rules; this is basic.
Most of you are looking forward to driving a car someday. With this driving comes a certain financial responsibility.

Car insurance is part of the financial picture. You should know the types of car insurances and how they protect you. You should also know the cost to you. To know these things and to be properly insured should make your driving experiences better. Without proper coverage a mishap can be costly and upsetting experience.
Do You Remember

Add:
1) $35.68
 \[\underline{3.73} \]
 $39.41
2) $20.46
 \[\underline{27.86} \]
 $48.32
3) $39.46
 \[\underline{7.72} \]
 $47.18
4) $104.76
 \[\underline{57.2} \]
 $161.96

Subtract:
5) $36.79
 \[\underline{-3.29} \]
 $33.50
 \[\underline{22.57} \]
 $56.07
6) $32.47
 \[\underline{-6.56} \]
 $25.91
 \[\underline{26.69} \]
 $53.30
7) $304.62
 \[\underline{-37.93} \]
 $266.69
 \[\underline{19.89} \]
 $286.58
8) $24.71
 \[\underline{-4.61} \]
 $19.10
 \[\underline{19.62} \]
 $38.72

Multiply:
5) $46.70
 \[\underline{220} \]
 $10.40
 \[\underline{119.48} \]
 $22.89
10) $54.40
 \[\underline{220} \]
 $11.80
 \[\underline{82.45} \]
 $185.30
11) $43.50
 \[\underline{170} \]
 $7.40
 \[\underline{101.52} \]
 $71.97
12) $2.31
 \[\underline{2.51} \]
 $5.78
 \[\underline{5.40} \]
 $10.20

Division:
13) 36.60
 \[\underline{1.32} \]
14) 24.50
 \[\underline{1.45} \]
 36.70
14) 37.40
 \[\underline{14.70} \]
 6.80
 3.40
 \[\underline{1.46} \]
15) 42.60
 \[\underline{12.50} \]
 6.80
 5.40
 \[\underline{67.30} \]
16) 32.60
 \[\underline{14.24} \]
 2.40
 5.40
 \[\underline{54.64} \]
 then multiply this answer by 1.40 = \(\underline{76.496} \)
17) 18.40
 \[\underline{32.10} \]
 5.40
 \[\underline{55.90} \]
 then multiply by 2.40 = \(\underline{134.16} \)
18) One person pays $54.40 while a second pays $46.80. The first is what percent larger than the second? \(\underline{10.62%} \)
Let's Try Again

Add:
1) $52.32) 2) 3) 4) 5) $40.19
 4.21 30.25 7.63 87.74
 $57.10 51.97 117.82 147.76

Subtract:
5) $37.46
 - 16.27
 $21.19

Multiply:
9) $47.1
 x 1.4
 $66.0066
10) $52.15
 x 2.30
 $119.9450
11) $49.61
 x 1.66
 $82.3766
12) $43.04
 x 2.91
 $125.3840

Division:
13) \frac{36.70}{73.46} 14) \frac{24.30}{3.42}
15) 37.2 \div 14.67 = 2.54 \div 3.29 = (61.79)
16) 6.2 \div 13.12 \div 12.15 = (62.05)
17) 33.40 \div 14.27 \div 2.70 \div 5.12 = (56.49)
then multiply this answer by 1.30 = (73.437)
18) 13.73 \div 33.09 \div 5.67 = (57.49)
then multiply by 2.20 = (126.478)

351
Again

Add:

1) $37.92
 2) $20.47
 3) $38.43
 4) $107.38
 5) $37.93
 6) $37.43
 7) $309.62
 8) $27.94
 9) $46.60
 10) $56.72
 11) $48.49
 12) $62.45

Subtract:

5) $37.93
 6) $37.43
 7) $309.62
 8) $27.94
 9) $46.60
 10) $56.72
 11) $48.49
 12) $62.45

Multiply:

9) $46.60
 10) $56.72
 11) $48.49
 12) $62.45

Division:

13) \(\frac{37 \times 113.70}{3} \)
 14) \(\frac{25.40 \times 15.24}{3} \)
 15) \(\frac{37.40 \times 16.29 + 14.32 + 6.70}{3} \)
 16) \(\frac{7.32 \times 18.21 + 16 \times 93 + 5.43}{3} \)
 17) \(\frac{32.67 \times 19.21 + 71.18}{3} \)
 18) \(\frac{16.72 \times 19.21 + 43.66}{3} \)

352
Insurance Vocabulary

Insurance

Property damage

Public Liability

Collision

Comprehensive

Medical Payment

Premium

Deductible

Semi-annual

Factor

Trained driver

Untrained driver

Good Student

These words are common to insurance. Let's see how many you know now. Make special note of these as we go through the unit. We shall check later to see if your vocabulary has increased.
There are five main types of car insurance. **Property damage** and **bodily injury** help to pay the other person. **Collision, Comprehensive, and medical payment** help you.

Property Damage - pays for damages done by your car.

Example - if you hit another person's car, his porch, drive across his lawn, it will help to pay the cost of repairs.

Bodily Injury - pays for damages or injuries to the other person.

Example - if you hit another person's car and injure a person or person's it helps pay for medical care and claims.

The types are 10/20, 15/30, 25/50, 50/100, and 100/300.

Example - 25/50 means an allowance of $25,000 per person and $50,000 allowance per accident.

Collision - pays for damages to your own car. This policy is usually written as $50 or $100 deductible. It means that if damage is done to your car you will pay the first $50 or $100 and the balance will be paid by the insurance company.

There is also a 80/20 policy which means the company pays 80% while you pay 20%, up to $50.

Comprehensive - pays for damages from fire, theft, wind, hail, flood and other causes.

Medical payment - pays for medical expenses of passengers in your car up to specified amount.
For class discussion

1) Property Damage insurance:
 a) Do you think this insurance should be required by law?
 b) Besides those listed, what other properties are commonly damaged.
 c) If you hit another person's car and no one is in it, what would you do?
 d) What might happen if you didn't have this insurance.

2) Public liability insurance:
 a) Do you think this insurance should be required by law?
 b) Besides striking another car, what other times would you use this insurance?
 c) What might happen if you didn't have this insurance?
 d) In Delaware are you responsible for persons riding in your car?

3) Collision insurance:
 a) Should this insurance be required by law?
 b) If a person in another car hits you and he is at fault would you use your collision insurance? If yes, when?
 c) Which collision insurance will cost the most - $50 deductible? $100 deductible?

4) Comprehensive insurance:
 a) Should this insurance be required by law?
 b) What other things, besides those mentioned, could be included?
 c) Suppose you had many little claims (payments to you) on the insurance, what might happen?
In the following Semi-Annual Base Premium table we shall use sub-class 0. This is used for persons who have no driving points (accidents) against their record. You are put in a higher sub-class if you have drivers points against your record. Your premiums will be higher.

Age Group - refers to the age or year of the car
1 - (new car), 2 - (car 1 to 2 yrs. old), 3 - (car more than 2 yrs. old)

Cost Classification - refers to the size of the car and horse power. Larger cars with more horsepower have the higher classification

Example:
Cadillacs are generally class 8 while Chevrolets are class 6.

The recommended amounts of property damage, bodily injury, and medical payment is darkened on the table.
NATIONWIDE AGENTS PORTFOLIO

SEMI-ANNUAL BASE PREMIUMS FOR NON-FARM

<table>
<thead>
<tr>
<th>SUB-CLASS</th>
<th>COV.</th>
<th>LIMITS</th>
<th>AGE GROUP</th>
<th>COST CLASSIFICATION (MP and 1/2 MP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6 7 8 9</td>
</tr>
<tr>
<td>COMP.</td>
<td>FULL</td>
<td>1</td>
<td>4.00 5.00</td>
<td>6.40 7.40 9.00 11.00 13.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3.30 4.20</td>
<td>5.30 6.10 7.50 9.10 10.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2.80 3.50</td>
<td>4.50 5.70 6.30 7.70 9.10</td>
</tr>
<tr>
<td></td>
<td>80/20</td>
<td>1</td>
<td>19.30 22.70</td>
<td>26.10 27.70 29.50 31.80 34.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>16.00 18.80</td>
<td>21.70 23.00 24.50 26.40 28.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>13.50 15.90</td>
<td>18.30 19.40 20.70 22.30 23.90</td>
</tr>
<tr>
<td>COLL.</td>
<td>50</td>
<td>1</td>
<td>12.80 17.10</td>
<td>20.50 22.60 24.30 25.70 27.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10.60 14.20</td>
<td>17.00 18.80 20.20 21.30 22.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9.00 12.00</td>
<td>14.60 15.80 17.00 18.00 18.90</td>
</tr>
<tr>
<td></td>
<td>DEC.</td>
<td>1</td>
<td>7.20 11.00</td>
<td>13.80 16.00 17.10 17.80 18.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6.00 9.10</td>
<td>11.50 13.30 14.20 14.80 15.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5.00 7.70</td>
<td>9.70 11.20 12.50 13.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPERTY DAMAGE</th>
<th>BODILY INJURY</th>
<th>MED. PAY. & FAM. COMP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000</td>
<td>13.50</td>
<td>10/20</td>
</tr>
<tr>
<td>10,000</td>
<td>14.80</td>
<td>15/30</td>
</tr>
<tr>
<td>25,000</td>
<td>16.10</td>
<td>25/50</td>
</tr>
<tr>
<td>50,000</td>
<td>16.90</td>
<td>50/100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MED. PAY. & FAM. COMP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 MP</td>
</tr>
<tr>
<td>1,000 MP</td>
</tr>
<tr>
<td>2,000 MP</td>
</tr>
<tr>
<td>5,000 MP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MED. PAY. & FAM. COMP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
</tr>
<tr>
<td>2.70</td>
</tr>
<tr>
<td>3.30</td>
</tr>
<tr>
<td>4.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MED. PAY. & FAM. COMP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.60</td>
</tr>
</tbody>
</table>

Age 1 - (New)
Age 2 - (1-2 yrs. old)
Age 3 - (over 2 yrs.)
Base Rate and Age

Rates go down as young drivers grow older.

* Based on a driver classification plan developed on behalf of a large segment of the business and effective in many states beginning in 1965. These comparisons are for private passenger cars used for pleasure where all operators have "clean" driving records. Adjustments in premiums are made for cars used to drive to work, used for business, or used at a farm. Adjustments are also made for youthful operators with driver training credit, drivers with "unclean" driving records, and owners of more than one car.

Now take time to compare these graphs with the proper rating tables.

Below are some statistics on the number of deaths on the Delaware roads from 1955 - 1968. Make a bar graph then discuss these in relation to car insurance.

1955 - 110
1956 - 87
1957 - 91
1958 - 84
1959 - 83

1960 - 87
1961 - 65
1962 - 94
1963 - 96
1963 - 96

1964 - 118
1965 - 112
1966 - 131
1967 - 136
1968 - 153

358
Example of Semi-Annual Premium for Different Cars

<table>
<thead>
<tr>
<th>1969 Malibu SS 396</th>
<th>1969 Volkswagen - Bug</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Door Hardtop</td>
<td>2 Door Sedan</td>
</tr>
<tr>
<td>325 Horsepower</td>
<td>91cc/53HP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class 6 Age Group 1</th>
<th>Class 4 Age Group 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive - 7.40</td>
<td>5.00</td>
</tr>
<tr>
<td>(actual Cash value)</td>
<td></td>
</tr>
<tr>
<td>Collision - 16.00</td>
<td>11.00</td>
</tr>
<tr>
<td>($100 Deductible)</td>
<td></td>
</tr>
<tr>
<td>Property Damage - 16.10</td>
<td>16.10</td>
</tr>
<tr>
<td>($25000)</td>
<td></td>
</tr>
<tr>
<td>Bodily Injury - 11.40</td>
<td>11.40</td>
</tr>
<tr>
<td>(25/50)</td>
<td></td>
</tr>
<tr>
<td>Medical Payment - 4.50</td>
<td>4.50</td>
</tr>
<tr>
<td>(5000 per person)</td>
<td></td>
</tr>
<tr>
<td>6 months premium - 55.40</td>
<td></td>
</tr>
</tbody>
</table>
A Figure semi-annual (6 month) premiums.

<table>
<thead>
<tr>
<th>Class</th>
<th>Age Group</th>
<th>Comp.</th>
<th>Coll.</th>
<th>P.D.</th>
<th>B.I.</th>
<th>Medical Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>6</td>
<td>1</td>
<td>Yes</td>
<td>$50</td>
<td>$10000</td>
<td>25/50</td>
</tr>
<tr>
<td>2)</td>
<td>4</td>
<td>3</td>
<td>No</td>
<td>No</td>
<td>$10000</td>
<td>10/20</td>
</tr>
<tr>
<td>3)</td>
<td>3</td>
<td>3</td>
<td>No</td>
<td>$100</td>
<td>$10000</td>
<td>10/20</td>
</tr>
<tr>
<td>4)</td>
<td>8</td>
<td>1</td>
<td>Yes</td>
<td>80/20</td>
<td>$5000</td>
<td>50/100</td>
</tr>
<tr>
<td>5)</td>
<td>4</td>
<td>2</td>
<td>Yes</td>
<td>$100</td>
<td>$5000</td>
<td>15/30</td>
</tr>
</tbody>
</table>

6) You bought a 1965 Cadillac (Class 8). You are not going to carry comprehensive or collision insurance. You are going to purchase $2000 medical payment, 10/20 bodily injury, and $10000 property damage. What is your semi-annual premium?

7) What is the semi-annual premium for a small foreign car (Class 3), 1968. The insurance carried will be $50 ded., $10000 property damage, 15/30 bodily injury, $5000 medical payment, and comprehensive.

127.90

843.80
Figure semi-annual (6 month) premiums in each case.

<table>
<thead>
<tr>
<th>Class</th>
<th>Age Group</th>
<th>Comp.</th>
<th>Coll.</th>
<th>P.D.</th>
<th>B.I.</th>
<th>Medical Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>5</td>
<td>2</td>
<td>Yes</td>
<td>$100</td>
<td>$1000</td>
<td>15/30</td>
</tr>
<tr>
<td>2)</td>
<td>4</td>
<td>3</td>
<td>No</td>
<td>No</td>
<td>$5000</td>
<td>10/20</td>
</tr>
<tr>
<td>3)</td>
<td>6</td>
<td>1</td>
<td>Yes</td>
<td>$50</td>
<td>$10000</td>
<td>25/50</td>
</tr>
<tr>
<td>4)</td>
<td>8</td>
<td>2</td>
<td>Yes</td>
<td>80/20</td>
<td>$25000</td>
<td>25/50</td>
</tr>
<tr>
<td>5)</td>
<td>6</td>
<td>1</td>
<td>Yes</td>
<td>$50</td>
<td>$10000</td>
<td>25/50</td>
</tr>
</tbody>
</table>

6) You have a Volkswagon 1968 (Class 4). You want the following insurance: comprehensive, $50 deductible, Collision, $10000 property damage, 25/50 bodily injury, and $500 medical payment. What is premium?

7) You bought a second-hand 1962 Chevrolet (Class 6) and are going to insure it. No collision or comprehensive, but $45000 (P.D.), 10/20 (B.I.) and $5000 medical payment were purchased. How much will you pay every six months?

8) You buy a new Ford (Class 5). What would it cost to insure it with top coverage for all except comprehensive (none).
A Figure semi-annual (6 month) premiums in each case.

<table>
<thead>
<tr>
<th>Class</th>
<th>Age Group</th>
<th>Comp.</th>
<th>Coll.</th>
<th>P.D.</th>
<th>B.I.</th>
<th>Medical Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>6</td>
<td>Yes</td>
<td>500</td>
<td>10000</td>
<td>10/20</td>
<td>5000 $800 $400</td>
</tr>
<tr>
<td>2)</td>
<td>8</td>
<td>Yes</td>
<td>No</td>
<td>10000</td>
<td>25/50</td>
<td>2000 $700 $300</td>
</tr>
<tr>
<td>3)</td>
<td>4</td>
<td>Yes</td>
<td>100</td>
<td>5000</td>
<td>15/30</td>
<td>2000 $600 $400</td>
</tr>
<tr>
<td>4)</td>
<td>3</td>
<td>Yes</td>
<td>80/20</td>
<td>10000</td>
<td>50/100</td>
<td>5000 $700 $300</td>
</tr>
<tr>
<td>5)</td>
<td>6</td>
<td>No</td>
<td>No</td>
<td>25000</td>
<td>50/100</td>
<td>25000 $600 $400</td>
</tr>
</tbody>
</table>

6) You have a 1967 Buick (Class 6). You want the following insurance coverage: full comprehensive coverage, $50 deductible, $2500 property damage coverage, 25/50 bodily injury, and $2000 medical payment. What is the semi-annual premium? $55.70

7) You bought a 1965 used Custom Ford (Class 5) and went to take out insurance. How much will you pay semi-annually for $1000 property damage and 25/50 bodily injury? Why do you think he might not take the other insurances? $26.80

8) You are going to give your new Mercury (Class 6) top coverage in all the insurances. How much would it cost you for 6 months? $109.30

362
The Base Premium chart we have just studied applies to adults. There is a different premium paid if a younger person drives the car. This premium is figured by using the Classification Rating Factor Table which follows. It takes into account the age and also whether the individual is trained (passed Drivers Education) or untrained (has not taken Drivers Training). The trained person get cheaper rates.

To figure the rates you read from left to right under the columns showing male or female, unmarried or married, untrained or trained, then to the age. The number to right of this age is the factor. You multiply this times your base premiums figured from the adults table.

Example: Suppose your base premiums amounted to $55.40 from the base adult table and you were a male, unmarried, not owner of car, no Drivers Education, and age 18. You would find the factor to be 2.20

The premiums would be $2.20 \times 55.40 = 121.88

Example: A girl under these same conditions would have a factor of 1.50.

The premiums $1.50 \times 55.40 = 83.10
Classification Rating Factor Table

NOT Applicable to Cars Owned by Corporations, Co-Partnerships or Unincorporated Associations

<table>
<thead>
<tr>
<th>SEX</th>
<th>FAMILY STATUS</th>
<th>DRIVER TRAINING</th>
<th>AGE OF YOUNGEST OPERATOR</th>
<th>PLEASURE USE OR FARM USE</th>
<th>WORK LESS THAN 20 MILES</th>
<th>BUSINESS USE OR WORK 20 OR MORE MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male & Female</td>
<td>Married or Unmarried (No Youthful Operators)</td>
<td>Trained or Untrained Adults</td>
<td>1.00</td>
<td>1.10</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17*</td>
<td>1.60</td>
<td>1.70</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>1.40</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.30</td>
<td>1.40</td>
</tr>
<tr>
<td>Female</td>
<td>Unmarried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17*</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.20</td>
</tr>
<tr>
<td>Male</td>
<td>Unmarried (Not owner or principal operator)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17*</td>
<td>2.40</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>2.20</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>2.10</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>2.00</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>1.80</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>1.40</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>1.30</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17*</td>
<td>4.10</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>3.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>3.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>3.30</td>
</tr>
<tr>
<td>Male</td>
<td>Unmarried (Owner or principal operator)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>2.90</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>2.70</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>2.40</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>2.20</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>2.00</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>1.80</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>1.40</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>1.30</td>
<td>1.40</td>
</tr>
</tbody>
</table>
A 1) What factor would you use in each case. Use car for pleasure:
 a) male, unmarried, untrained, not owner, 18 years old 2.20
 b) female, unmarried, trained, owner, 19 years old 1.30
 c) male, unmarried, trained, owner, 21 years old 2.90
 d) female, unmarried, trained, not owner, 18 years old 1.40
 e) male, unmarried, untrained, not owner, 17 years old 2.40

8) Find semi-annual premiums of cars used for pleasure;

<table>
<thead>
<tr>
<th>Case</th>
<th>Prem.</th>
<th>Sex</th>
<th>Family Status</th>
<th>Driver Training</th>
<th>Age</th>
<th>Owner or not</th>
</tr>
</thead>
<tbody>
<tr>
<td>2)</td>
<td>$63.40</td>
<td>F</td>
<td>Single</td>
<td>Trained</td>
<td>19</td>
<td>owner 2.42</td>
</tr>
<tr>
<td>3)</td>
<td>$40.50</td>
<td>F</td>
<td>Single</td>
<td>Untrained</td>
<td>18</td>
<td>owner 2.95</td>
</tr>
<tr>
<td>4)</td>
<td>$48.60</td>
<td>M</td>
<td>Single</td>
<td>Untrained</td>
<td>19</td>
<td>owner 2.24</td>
</tr>
<tr>
<td>5)</td>
<td>$38.80</td>
<td>F</td>
<td>Single</td>
<td>Untrained</td>
<td>18</td>
<td>not 3.20</td>
</tr>
<tr>
<td>6)</td>
<td>$50.20</td>
<td>M</td>
<td>Single</td>
<td>Trained</td>
<td>20</td>
<td>owner 6.00</td>
</tr>
</tbody>
</table>

C 7) Assume you are 18 years old, unmarried, and took drivers training. Suppose you bought a small 1969 car (Class 3) and took out $5000 property damage, 10/20 bodily injury, and $5000 medical payment. If you use the car for pleasure, how much semi-annual premium will you pay?

male $58.34
female $34.92
A 1) What factor would you use for a car used for pleasure for:

a) female, unmarried, untrained, 18 years old, not owner

 b) male, unmarried, not owner, 19 years old, untrained

 c) male, unmarried, owner, trained, 18 years old

 d) male, unmarried, not owner, trained, 20 yrs. old

 e) male, unmarried, owner, untrained, 23 years old

2) Find semi-annual premium:

<table>
<thead>
<tr>
<th>Base Prem.</th>
<th>Sex</th>
<th>Family Status</th>
<th>Driver Training</th>
<th>Age</th>
<th>Use</th>
<th>Owner or not</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) $48.00</td>
<td>F</td>
<td>Single</td>
<td>Trained</td>
<td>18</td>
<td>Pleasure</td>
<td>owner (60)</td>
</tr>
<tr>
<td>3) $48.00</td>
<td>M</td>
<td>Single</td>
<td>Trained</td>
<td>18</td>
<td>Pleasure</td>
<td>owner (60)</td>
</tr>
<tr>
<td>4) $60.50</td>
<td>M</td>
<td>Single</td>
<td>Untrained</td>
<td>19</td>
<td>Pleasure</td>
<td>not (60)</td>
</tr>
<tr>
<td>5) $46.40</td>
<td>M</td>
<td>Single</td>
<td>Untrained</td>
<td>17</td>
<td>Pleasure</td>
<td>not (60)</td>
</tr>
<tr>
<td>6) $54.60</td>
<td>F</td>
<td>Single</td>
<td>Untrained</td>
<td>19</td>
<td>Pleasure</td>
<td>owner (60)</td>
</tr>
<tr>
<td>7) $50.00</td>
<td>M</td>
<td>Single</td>
<td>Untrained</td>
<td>21</td>
<td>Pleasure</td>
<td>owner (60)</td>
</tr>
</tbody>
</table>

C c) You own a 1967 Chevrolet (Class 6). You are going to insure it for comprehensive, $50 deductible, P.D., B.I., and medical payment. You are 19 years old, not married, and took Drivers Training in school. What would you expect to pay in premium each 6 months: male $113.40, female $70.90

366
A 1) What factor would you use for a car used for pleasure:
 a) female, unmarried, trained, 19 years old, not owner.
 b) male, unmarried, not owner, 18 years old, untrained.
 c) male, unmarried, owner, trained, 19 years old.
 d) male, untrained, owner, unmarried, 24 years old.
 e) female, unmarried, untrained, owner, 20 years old.

B Find semi-annual premiums:

<table>
<thead>
<tr>
<th>Base Prem.</th>
<th>Sex</th>
<th>Status</th>
<th>Drivers Training</th>
<th>Age</th>
<th>Use</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) $50.00</td>
<td>F</td>
<td>Single</td>
<td>Trained</td>
<td>19</td>
<td>Pleasure</td>
<td>owner</td>
</tr>
<tr>
<td>3) $55.40</td>
<td>M</td>
<td>Single</td>
<td>Trained</td>
<td>19</td>
<td>Pleasure</td>
<td>not</td>
</tr>
<tr>
<td>4) $46.10</td>
<td>M</td>
<td>Single</td>
<td>Untrained</td>
<td>18</td>
<td>Pleasure</td>
<td>not</td>
</tr>
<tr>
<td>5) $35.60</td>
<td>F</td>
<td>Single</td>
<td>Untrained</td>
<td>20</td>
<td>Pleasure</td>
<td>owner</td>
</tr>
<tr>
<td>6) $65.40</td>
<td>M</td>
<td>Single</td>
<td>Trained</td>
<td>24</td>
<td>Pleasure</td>
<td>owner</td>
</tr>
</tbody>
</table>

C 7) You buy a new Chevrolet (Class 6) and intend to insure it for comprehensive, $100 ded, $5000 property damage, 10/20 bodily injury, and $5000 medical payment. For this problem use your age, your sex, single, untrained, and use the car for pleasure. What premiums would you expect to pay every six months?"
Car insurances, in addition to giving lower rates to the trained drivers, also give lower rates to the "good student"

Persons eligible for the "Good Student Discount" must meet the qualifications on the next page. The driver who meets these qualifications will be rated from the following table (Good Student Classification Rating Factor Table)

Example: In the previous work we found that an unmarried male age 18, untrained, not an owner had a factor of 2.20. If this same person was classified as a "good student" his factor from the following table would be 1.80

\[\text{Base Premium} \times 1.80 = 99.72 \]

In this case you can see that he would save $22.16 on each semi-annual premium.
A. The Good Student Classification Rating Factor is applicable provided:

1. The owner or operator is at least 16 years of age and is a junior (11th grade) or senior (12th grade) full-time high school student or enrolled as a full-time student in a college or university; and

2. Prior to the effective date of the policy or a renewal thereof, the Company is furnished a statement certified by a school official indicating that the student has met one of the following requirements for the immediately preceding school semester or quarter (or comparable period):

 a. ranked among the upper 20 percent of his class scholastically, or

 b. in schools using letter grades, had a grade average of "B" or its equivalent or, if the system of letter grading cannot be averaged, no grade is below "B", or

 c. in schools using numerical grade points, such as 4, 3, 2 and 1 points, had an average of at least 3 points for all subjects combined, or

 d. was included in "Dean's List" "Honor Roll" or comparable list indicating scholastic achievement.

3. If the owner or operator is a full-time graduate student in a college or university, the Good Student Classification Rating Factor is applicable without the requirement for certification under A-2.

B. No policy is changed in term to effect a change in classification as a result of a change in the scholastic standing of any individual. Such change may be made only at the next renewal date.
Good Student Classification Rating Factor Table

<table>
<thead>
<tr>
<th>Sex</th>
<th>Family Status</th>
<th>Driver Training</th>
<th>Age of Youngest Operator</th>
<th>Pleasure Use or Farm Use</th>
<th>Work Less Than 20 Miles</th>
<th>Business Use or Work 20 or More Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>Unmarried</td>
<td>Untrained</td>
<td>17*</td>
<td>1.40</td>
<td>1.50</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.30</td>
<td>1.40</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>1.20</td>
<td>1.30</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.10</td>
<td>1.20</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trained</td>
<td>17*</td>
<td>1.30</td>
<td>1.40</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.20</td>
<td>1.30</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>1.10</td>
<td>1.20</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.00</td>
<td>1.10</td>
<td>1.50</td>
</tr>
<tr>
<td>Male</td>
<td>Unmarried</td>
<td>Untrained</td>
<td>17*</td>
<td>1.90</td>
<td>2.00</td>
<td>2.40</td>
</tr>
<tr>
<td>(Not Owner or Principal Operator)</td>
<td>Training</td>
<td></td>
<td>18</td>
<td>1.80</td>
<td>1.90</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>1.70</td>
<td>1.80</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.60</td>
<td>1.70</td>
<td>2.10</td>
</tr>
<tr>
<td>Male</td>
<td>(Owner or Principal Operator)</td>
<td>Training</td>
<td>17*</td>
<td>1.70</td>
<td>1.80</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.60</td>
<td>1.70</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>1.50</td>
<td>1.60</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.40</td>
<td>1.50</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>Trained</td>
<td></td>
<td>21</td>
<td>1.30</td>
<td>1.40</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td>Untrained</td>
<td></td>
<td>22</td>
<td>1.20</td>
<td>1.30</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>Trained</td>
<td></td>
<td>23</td>
<td>1.10</td>
<td>1.20</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>Untrained</td>
<td></td>
<td>24</td>
<td>1.00</td>
<td>1.10</td>
<td>1.50</td>
</tr>
<tr>
<td>Male</td>
<td>Married</td>
<td>Untrained</td>
<td>17*</td>
<td>3.30</td>
<td>3.40</td>
<td>3.80</td>
</tr>
<tr>
<td>(No Youthful Unmarried Male Operator)</td>
<td>Training</td>
<td></td>
<td>18</td>
<td>3.10</td>
<td>3.20</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>2.70</td>
<td>2.80</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>2.50</td>
<td>2.60</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>Trained</td>
<td></td>
<td>21</td>
<td>2.80</td>
<td>2.90</td>
<td>3.30</td>
</tr>
<tr>
<td></td>
<td>Untrained</td>
<td></td>
<td>22</td>
<td>2.70</td>
<td>2.80</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>Trained</td>
<td></td>
<td>23</td>
<td>2.40</td>
<td>2.50</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>Untrained</td>
<td></td>
<td>24</td>
<td>2.30</td>
<td>2.40</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>Trained</td>
<td>(With or Without Children)</td>
<td>17*</td>
<td>2.00</td>
<td>2.10</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.90</td>
<td>2.00</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>1.50</td>
<td>1.60</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.40</td>
<td>1.50</td>
<td>1.90</td>
</tr>
<tr>
<td>Married</td>
<td>Trained</td>
<td>(With or Without Children)</td>
<td>17*</td>
<td>1.80</td>
<td>1.90</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>1.70</td>
<td>1.80</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>1.40</td>
<td>1.50</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.30</td>
<td>1.40</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td>Trained</td>
<td>(With or Without Children)</td>
<td>21</td>
<td>1.20</td>
<td>1.30</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>1.10</td>
<td>1.20</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>1.00</td>
<td>1.10</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>1.00</td>
<td>1.10</td>
<td>1.50</td>
</tr>
</tbody>
</table>

*Age 17 or less.
A What factor would you use if you were a "good student". Pleasure Drive

<table>
<thead>
<tr>
<th>Sex</th>
<th>Family Status</th>
<th>Driver Training</th>
<th>Age</th>
<th>Owner or not</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Unmarried</td>
<td>Trained</td>
<td>18</td>
<td>owner 2.70</td>
</tr>
<tr>
<td>M</td>
<td>Unmarried</td>
<td>Untrained</td>
<td>17</td>
<td>not 1.90</td>
</tr>
<tr>
<td>M</td>
<td>Unmarried</td>
<td>Untrained</td>
<td>19</td>
<td>not 1.70</td>
</tr>
<tr>
<td>F</td>
<td>Unmarried</td>
<td>Trained</td>
<td>19</td>
<td>not 1.50</td>
</tr>
<tr>
<td>M</td>
<td>Unmarried</td>
<td>Trained</td>
<td>21</td>
<td>owner 2.20</td>
</tr>
</tbody>
</table>

Find semi-annual premiums of car for pleasure:

<table>
<thead>
<tr>
<th>Case</th>
<th>Prem.</th>
<th>Sex</th>
<th>Family Status</th>
<th>Driver Training</th>
<th>Age</th>
<th>Owner or not</th>
</tr>
</thead>
<tbody>
<tr>
<td>6)</td>
<td>$50.50</td>
<td>M</td>
<td>Unmarried</td>
<td>Trained</td>
<td>21</td>
<td>owner 111.10</td>
</tr>
<tr>
<td>7)</td>
<td>$48.00</td>
<td>M</td>
<td>Unmarried</td>
<td>Trained</td>
<td>20</td>
<td>owner 110.00</td>
</tr>
<tr>
<td>8)</td>
<td>$36.00</td>
<td>F</td>
<td>Unmarried</td>
<td>Untrained</td>
<td>18</td>
<td>not 46.00</td>
</tr>
<tr>
<td>9)</td>
<td>$64.00</td>
<td>M</td>
<td>Unmarried</td>
<td>Untrained</td>
<td>19</td>
<td>not 103.00</td>
</tr>
<tr>
<td>10)</td>
<td>$72.00</td>
<td>M</td>
<td>Unmarried</td>
<td>Trained</td>
<td>17</td>
<td>not 122.00</td>
</tr>
</tbody>
</table>

C 11) You are a girl and a "good student" who owns a (Class 8) car for pleasure. You put the top insurance on it. You are 21 years old and have had drivers training. How much would your premiums be.
A What factor would you use if you were a "good student" Pleasure driving:

<table>
<thead>
<tr>
<th>Sex</th>
<th>Family Status</th>
<th>Drivers Training</th>
<th>Age</th>
<th>Owner or not</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>M</td>
<td>Unmarried</td>
<td>trained</td>
<td>19</td>
</tr>
<tr>
<td>2)</td>
<td>F</td>
<td>Unmarried</td>
<td>trained</td>
<td>20</td>
</tr>
<tr>
<td>3)</td>
<td>M</td>
<td>Unmarried</td>
<td>untrained</td>
<td>18</td>
</tr>
<tr>
<td>4)</td>
<td>M</td>
<td>Unmarried</td>
<td>untrained</td>
<td>23</td>
</tr>
<tr>
<td>5)</td>
<td>F</td>
<td>Unmarried</td>
<td>trained</td>
<td>18</td>
</tr>
</tbody>
</table>

B Find semi-annual premium of car for pleasure:

<table>
<thead>
<tr>
<th>Base Prem.</th>
<th>Sex</th>
<th>Family Status</th>
<th>Driver Training</th>
<th>Age</th>
<th>Owner or not</th>
</tr>
</thead>
<tbody>
<tr>
<td>5) $30.00</td>
<td>M</td>
<td>Unmarried</td>
<td>Trained</td>
<td>20</td>
<td>owner $64.00</td>
</tr>
<tr>
<td>7) $45.40</td>
<td>M</td>
<td>Unmarried</td>
<td>Untrained</td>
<td>18</td>
<td>not $81.72</td>
</tr>
<tr>
<td>9) $66.50</td>
<td>M</td>
<td>Unmarried</td>
<td>Untrained</td>
<td>17</td>
<td>owner $126.35</td>
</tr>
<tr>
<td>1) $50.80</td>
<td>F</td>
<td>Unmarried</td>
<td>Trained</td>
<td>20</td>
<td>owner $50.80</td>
</tr>
<tr>
<td>10) $43.60</td>
<td>F</td>
<td>Unmarried</td>
<td>Untrained</td>
<td>19</td>
<td>not $60.90</td>
</tr>
</tbody>
</table>

C 11) You bought a second-hand 1964 Plymouth (Class 6). If you are 20 and took drivers training. What premium would you pay if you were a "good student" and took out $5000 property damage, 10/20 bodily injury, and $2000 medical payment.

Make left 1.18
remainder $20.60

372
What factor would you use in each case:

2.10

1) Single
19 yrs.
male
not owner
not a good student
untrained

2) Single
19 yrs.
male
not owner
good student
trained

3) What would be the difference on your semi-annual premiums if the base premium was $54.40:
$32.08

4) Using A 1) above what would be your semi-annual premium if you had a (class 4) car and took $5000 property damage, 10/20 bodily injury, and $5000 medical payment on this pleasure car.
$58.38

5) Under the same circumstances what would a person under A 2) pay every 6 months for the same car and insurance?
$41.70

373
Complete These

1) Semi-annual means every __6__ months

2) A factor is a number which is __multiplied__

3) A trained driver is one who has taken __driver training__

4) $34.70 \times 2.40 = __83.38__

5) All factors are multiplied times the __base__ rate.

6) The premium for __$50__ deductible is less than for __$100__ deductible.

7) A younger person's rate is __more__ than an older person in most cases.

8) Insurance that takes care of other persons property is called __property damage__

9) The amount paid each month is the __premium__

10) Collision insurance comes in three types __50, 100, $50/20__ deductible, and __$50/20__

11) A __good__ student gets a lower rate than the average or low student.

12) The insurance which covers damage by hail stone is called __comprehensive__ insurance.

13) The written contract between the insurer and the insured is called __policy__

14) Medical Payment insurance protects those persons in _an automobile__.

15) Financial protection in case of any mishap is given the name __insurance__

373T
Hospitals usually are in need of the help that both boys and girls can give. Some find employment in the summer time, others work in hospitals part-time during the year. Boys get jobs as orderlies, helpers, or assistants. Girls assist the nurses, do housekeeping jobs, or wait on the patients directly.

The math in this unit is aimed at helping such workers understand their jobs better.
Remember These:

1) Write as decimals
 a) Three hundred five and six hundred four thousandths (305.604)
 b) Four and thirty seven thousandths (4.037)
 c) Seventeen and three hundred forty ten-thousandths (17,340.000)

2) Give the ratio and an equivalent form
 a) Ratio of 8 to 12 \(\frac{8}{12} = \frac{2}{3} \)
 b) What part of 28 is 8? \(\frac{8}{28} = \frac{2}{7} \)
 c) Six is what part of 24? \(\frac{6}{24} = \frac{1}{4} \)

3) Add:
 a) 3.174 + 0.965 = 4.139
 b) 4.01 + 2.64 = 6.65
 c) 56.7 + 34.8 = 91.5
 d) 12.3 + 24.1 = 36.4

4) Multiply or divide:
 a) 3.46 \times 1.2 = 4.152
 b) 46.0 \times 0.24 = 10.64
 c) 3.42 \div 72.6 = 0.047
 d) 14 \div 2.6 = 5.38

5) Place in order from largest to smallest:
 a) \(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{5} \)
 b) \(\frac{5}{12}, \frac{2}{3}, \frac{1}{4}, \frac{1}{2}, \frac{1}{8} \)
 c) \(\frac{3}{4}, \frac{6}{12}, \frac{5}{24}, \frac{1}{2}, \frac{3}{8} \)
 d) 1.6, .02, 2.1, 166, 1
 e) 3.8, 2.9, .66, .42, .5, .654 (1.3, 2.1, .41, .64, .5, .42)
 f) 1, .76, .05, .68, 2.1, 1.5

375
1) Write as decimals
 a) Five and three thousandths
 b) Forty seven and three hundred five ten-thousandths
 c) Four hundred four and two hundredths

2) Give ratio and an equivalent form:
 a) Ratio of 10 to 16
 b) What part of 18 is 8?
 c) Five is what part of 35

3) Add:
 a) 4.109
 b) 704.6
 c) 476.92
 d) 6.729

4) Multiply or divide:
 a) 6.24
 b) 30.08
 c) 4.81
 d) 8.093

5) Place in order from largest to smallest:
 a) \(\frac{1}{3}, \frac{7}{9}, \frac{8}{8}, \frac{2}{3}, \frac{5}{18}\)
 b) \(\frac{2}{1}, \frac{3}{4}, \frac{5}{5}, \frac{7}{12}, \frac{5}{8}\)
 c) \(\frac{1}{12}, \frac{3}{12}, \frac{5}{12}, \frac{1}{6}, \frac{1}{2}\)
 d) \(\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{1}{8}, \frac{1}{10}\)

 e) 7.2, 6.8, .74, .999, 1.3, 2
 f) .096, .87, .39, .562, 34
 g) 3, .9, 1, .82, .0094, 7.2

 e) 7.1, 6.1, 2, 1.3, .918, .79
 f) .34, .31, .564, .19, .016
 g) 7.2, 2, .5, .8, .52, .0044
SPECIAL WORDS IN THIS UNIT

Some of the following words are difficult, that is, it is hard to remember the meaning and it is not easy to spell them correctly. But they are found frequently in use around a hospital. Hospital workers may need to know them.

1) antiseptic
2) alcohol
3) acetic acid
4) beaker
5) cubic centimeter (cc.)
6) diastolic
7) gallon
8) hypodermic
9) insulin
10) hospital
11) liter
12) minum
13) lysol
14) ounce
15) pressure
16) syringe
17) systolic
18) tuberculin
19) temperature
20) thermometer
When the doctor refers to "blood pressure" he is thinking of two different pressures. One, the Systolic, is the pressure of the blood coming out of the heart, the other is the Diastolic, or pressure of the blood returning to the heart. Normal pressures for the Systolic are 140 to 160. Normal pressures for the Diastolic are 80 to 100. Both pressures are taken with the "wrap around the arm" instrument, and recorded in this manner:

140/80	142/80	145/82	150/85	145/90
150/95	148/90	146/90	145/92	150/85
145/85	150/85	148/80	140/80	140/85

Using the above information, make a graph on the following chart. Each of the columns represents a reading made every four hours.

(Example below is only a portion of the entire Blood Pressure Chart)
A. Graph the blood pressures of the following patients:

<table>
<thead>
<tr>
<th>1) Mr. John Green</th>
<th>2) Miss Joan Blue</th>
<th>3) Mr. William Jones</th>
</tr>
</thead>
<tbody>
<tr>
<td>180/112</td>
<td>132/67</td>
<td>225/85</td>
</tr>
<tr>
<td>175/110</td>
<td>130/67</td>
<td>223/90</td>
</tr>
<tr>
<td>182/112</td>
<td>135/70</td>
<td>220/85</td>
</tr>
<tr>
<td>180/112</td>
<td>152/68</td>
<td>210/84</td>
</tr>
<tr>
<td>185/114</td>
<td>130/68</td>
<td>208/82</td>
</tr>
<tr>
<td>182/112</td>
<td>135/71</td>
<td>208/82</td>
</tr>
<tr>
<td>178/110</td>
<td>138/72</td>
<td>200/80</td>
</tr>
<tr>
<td>180/112</td>
<td>133/70</td>
<td>210/83</td>
</tr>
<tr>
<td>183/112</td>
<td>132/68</td>
<td>215/84</td>
</tr>
<tr>
<td>178/110</td>
<td>138/72</td>
<td>200/85</td>
</tr>
<tr>
<td>174/108</td>
<td>140/73</td>
<td>190/83</td>
</tr>
<tr>
<td>170/105</td>
<td>132/70</td>
<td>200/85</td>
</tr>
<tr>
<td>172/107</td>
<td>138/73</td>
<td>195/85</td>
</tr>
<tr>
<td>168/103</td>
<td>140/76</td>
<td>190/85</td>
</tr>
<tr>
<td>165/101</td>
<td>143/80</td>
<td>200/90</td>
</tr>
<tr>
<td>163/99</td>
<td>150/80</td>
<td>200/90</td>
</tr>
<tr>
<td>160/95</td>
<td>151/82</td>
<td>180/85</td>
</tr>
<tr>
<td>158/92</td>
<td>151/82</td>
<td>170/85</td>
</tr>
<tr>
<td>158/92</td>
<td>148/82</td>
<td>165/85</td>
</tr>
<tr>
<td>156/93</td>
<td>151/85</td>
<td>165/85</td>
</tr>
</tbody>
</table>
READING OF DECIMALS

We have already learned to read whole numbers. Whole numbers are on the left of the decimal point and have a value of 0 or greater.

Decimal numbers are always to the right of the decimal point and have a value less than one.

Each decimal place has a value (or name) as below:

<table>
<thead>
<tr>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
<th>10-Thousandths</th>
<th>100-Thousandths</th>
<th>Millionths</th>
</tr>
</thead>
</table>

To read a decimal, you read it as a whole number and give it the name of the place farthest to the right.

Example:

0.04 - four hundredths
0.167 - one hundred sixty seven thousandths
0.4005 - four thousand five ten thousandths

To read a decimal number larger than 1, you read the whole number, read the decimal point as "and", then read the decimal number.

Example:

3.06 - three and six hundredths
6007.0150 - six thousand seven and one hundred fifty ten thousandths
Write in English words:

1) 10.63
2) 1.92
3) .04
4) 6.13
5) 3.07
6) 6.2
7) .007
8) .08
9) .14
10) 1.76
11) 1.16
12) 12.9
13) 104.802
14) 16.4
15) 4.12
16) 9.81
17) 6.3
18) 1.21
19) 2.61
20) 7.82
21) 303.75
22) 5006.070
23) 5.0007
24) 36.7
25) 909.064
26) 3.3
27) 5.03
28) 7.30
29) 94
30) 6.009
BOTTLES AND BEAKERS

Bottles have been used many years for storing medicines. Beakers are open vessels which usually have a kind of spout for pouring. They are used for measuring. Lines marked on the sides of bottles and beakers indicate the volume of liquid they contain. Fill up to the mark the volume indicated by shading the drawing with a pencil.

a) 1 gal
2.75 gal
b) 2 gal
7 qt
c) 1.5 gal
2 qt
d) 10 lt
e) 20 lt

Each beaker has lines which mark 100 cc of liquid. Determine the amount in each as closely as you can.
Shade in the following amounts in the containers named:

<table>
<thead>
<tr>
<th>Amount</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) .25 gal.</td>
<td>a</td>
</tr>
<tr>
<td>2) 5 qt.</td>
<td>b</td>
</tr>
<tr>
<td>3) 6 qt.</td>
<td>c</td>
</tr>
<tr>
<td>4) 9 liters</td>
<td>d</td>
</tr>
<tr>
<td>5) 5000 gm</td>
<td>e</td>
</tr>
<tr>
<td>6) 250 cc</td>
<td>f</td>
</tr>
<tr>
<td>7) 100 cc</td>
<td>g</td>
</tr>
<tr>
<td>8) 350 cc</td>
<td>h</td>
</tr>
<tr>
<td>9) 175 cc</td>
<td>i</td>
</tr>
<tr>
<td>10) 25 cu</td>
<td>j</td>
</tr>
<tr>
<td>11) 1/2 gal.</td>
<td>a</td>
</tr>
<tr>
<td>12) 3 qt.</td>
<td>b</td>
</tr>
<tr>
<td>13) 4 qt.</td>
<td>c</td>
</tr>
<tr>
<td>14) 3.5 liters</td>
<td>d</td>
</tr>
<tr>
<td>15) 7.5 liters</td>
<td>e</td>
</tr>
<tr>
<td>16) 150 cc</td>
<td>f</td>
</tr>
<tr>
<td>17) 80 cc</td>
<td>g</td>
</tr>
<tr>
<td>18) 325 cc</td>
<td>h</td>
</tr>
<tr>
<td>19) 280 cc</td>
<td>i</td>
</tr>
<tr>
<td>20) 20 cc</td>
<td>j</td>
</tr>
</tbody>
</table>

These problems will fill one ditto, for p. 385.
BOTTLES

A

B

2 Gal

C

\(\frac{1}{2} \) Gal

D

10 liters

E

20 liters

BEAKERS

F

500

400

300

200

100

G

100

200

100

H

500

400

300

200

100

I

100

200

100

J

100

Units equal cubic centimeters
NEEDLES

Most people refer to a hypodermic syringe as a "needle". The word "Hypodermic" means "under the skin". Many medicines, or drugs, are given this way. The needle is placed in the drug, the plunger is withdrawn so that the drug is drawn up into the syringe. The doctor can watch the liquid fill the syringe up to the correct mark.

Some diseases, such as Tuberculosis, are treated with small amounts of the drug. Thus a syringe may be marked off so as to measure "drops". In this illustration "M" stands for "Minum".

In the treatment of Diabetes an insulin syringe may be used. Insulin is a very powerful drug. With it doctors have saved many lives. The doses are measured in "units".
Shade in the following volumes of liquid:

1) 1.3 cc
2) 2.5 cc
3) 0.7 cc
4) 2.8 cc
5) 1.7 cc
6) 0.8 cc
Shade in the following volumes of liquid:

1) 4 m. 4) 6 m.
2) 10 m. 5) 11 m.
3) 3 m. 6) 9 m.
Shade in the following volumes of liquid:

1) 120 units
2) 60 units
3) 130 units
4) 10 units
5) 85 units
6) 90 units
Body Temperature

The normal body temperature is 98.6°. The following chart shows a range of temperature from 97.0° to 105.0°. Thermometers can measure accurately to \(\frac{1}{10} \) of a degree. From one horizontal line on the chart to the next is \(\frac{2}{10} \) of a degree.

A graph of the following information from a patient whose temperature was taken every four hours, A.M. and P.M. is below. Times are in parentheses (). (This is only a portion of Temperature Chart.)

<table>
<thead>
<tr>
<th>DATE</th>
<th>AM</th>
<th>PM</th>
<th>AM</th>
<th>PM</th>
<th>AM</th>
<th>PM</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/15</td>
<td>11</td>
<td>100.6</td>
<td>7</td>
<td>100.5</td>
<td>11</td>
<td>101.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/16</td>
<td>3</td>
<td>99.8</td>
<td>7</td>
<td>99.5</td>
<td>11</td>
<td>99.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/17</td>
<td>3</td>
<td>99.3</td>
<td>7</td>
<td>99.0</td>
<td>11</td>
<td>99.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/18</td>
<td>3</td>
<td>100.0</td>
<td>7</td>
<td>100.5</td>
<td>11</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A.M.</th>
<th>(3) 99.5</th>
<th>(7) 99.8</th>
<th>(11) 100.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/18</td>
<td>P.M.</td>
<td>100.0</td>
<td>7</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 98.6</td>
<td>(7) 98.6</td>
<td>(11) 98.6</td>
</tr>
</tbody>
</table>

390
Make a graph of body temperatures. Hour is in parenthesis.

1) Mr. Jones

<table>
<thead>
<tr>
<th>Date</th>
<th>A.M.</th>
<th>P.M.</th>
<th>A.M.</th>
<th>P.M.</th>
<th>A.M.</th>
<th>P.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/12</td>
<td>(6) 100.5</td>
<td>(2) 100.0</td>
<td>(10) 99.9</td>
<td>(10) 101.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/13</td>
<td>(2) 100.0</td>
<td>(2) 99.5</td>
<td>(6) 99.8</td>
<td>(10) 97.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/14</td>
<td>(2) 100.0</td>
<td>(2) 98.2</td>
<td>(6) 98.3</td>
<td>(10) 98.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/15</td>
<td>(2) 98.6</td>
<td>(6) 96.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Mrs. Mary Smith

<table>
<thead>
<tr>
<th>Date</th>
<th>A.M.</th>
<th>P.M.</th>
<th>A.M.</th>
<th>P.M.</th>
<th>A.M.</th>
<th>P.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/15</td>
<td>(1) 104.1</td>
<td>(1) 104.0</td>
<td>(5) 104.0</td>
<td>(4) 103.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/16</td>
<td>(1) 103.9</td>
<td>(1) 104.0</td>
<td>(5) 104.0</td>
<td>(2) 102.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/17</td>
<td>(1) 102.8</td>
<td>(1) 102.0</td>
<td>(5) 100.9</td>
<td>(5) 99.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/18</td>
<td>(1) 100.3</td>
<td>(1) 99.2</td>
<td>(5) 99.2</td>
<td>(5) 99.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/19</td>
<td>(1) 99.5</td>
<td>(1) 93.8</td>
<td>(5) 98.9</td>
<td>(5) 98.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/20</td>
<td>(1) 98.6</td>
<td>(5) 98.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

392
LIQUID MEASURES

One has to be in the hospital only a short time to hear the expressions, "a drop of", "three drops of", and so on. This is the way medicine is measured frequently. The system looks like this (a drop being called a minum).

480 Minums = 1 ounce
16 ounces = 1 pint
2 pints = 1 quart
4 quarts = 1 gallon

The abbreviations for these words are: minum = M.; ounce = oz; pint = pt.; quart = qt.; and gallon = gal. Try completing the following sentences.

1) 1 pint contains \(\frac{7680}{M.}\)
2) 1 qt. contains \(\frac{32}{oz.}\)
3) 2 gal. is \(\frac{16}{pt.}\)
4) 32 oz. is \(\frac{2}{pts.}\)
5) \(\frac{2}{qt.}\) is 64 oz.
6) \(\frac{4}{gal.}\) is 32 pts.
7) 1 qt. = \(\frac{15360}{M.}\)
8) 12 pt. = \(\frac{192}{oz.}\)
9) 16 oz. = \(\frac{1}{2}\) qt.
10) 5 gal. = \(\frac{30720}{M.}\)
11) 240 M. = \(\frac{1}{2}\) oz.
12) 1 pt. = \(\frac{1}{8}\) gal.
13) 4 qt. = \(\frac{8}{pt.}\)
14) 10 gal. = \(\frac{393}{pts.}\)
TRUE or FALSE?

| | |
|---|---|---|
| 1) 32 ounces is 1 quart | True |
| 2) 8 quarts is 2 gallons | True |
| 3) 2 ounces is 960 minums | True |
| 4) 1 minum is 5 drops | False |
| 5) 8 gallons is 18 pints | False |
| 6) 10 pints is 5 quarts | True |
| 7) 1 1/2 quarts is 3 pints | True |
| 8) 8 ounces is 1/2 pint | True |
| 9) 1 ounce is 500 minums | False |
| 10) 7680 drops is 1 pint | True |
| 11) 2 pints is 1/2 gallon | False |
| 12) 16 ounces is 1 pint | True |
Change to Decimal Fractions:

1) \(\frac{1}{4} \) \(.25 \)
2) \(\frac{1}{25} \) \(.04 \)
3) \(\frac{3}{4} \) \(.75 \)
4) \(\frac{1}{5} \) \(.20 \)
5) \(\frac{1}{3} \) \(.33\frac{1}{3} \)
6) \(\frac{1}{2} \) \(.50 \)
7) \(\frac{15}{100} \) \(.15 \)
8) \(\frac{1}{8} \) \(.125 \)
9) \(\frac{2}{3} \) \(.66\frac{2}{3} \)
10) \(\frac{3}{25} \) \(.12 \)

11) \(\frac{3}{100} \) \(.03 \)
12) \(\frac{14}{25} \) \(.56 \)
13) \(\frac{16}{100} \) \(.16 \)
14) \(\frac{99}{100} \) \(.99 \)
15) \(\frac{5}{10} \) \(.5 \)
16) \(\frac{16}{25} \) \(.64 \)
17) \(\frac{9}{10} \) \(.9 \)
18) \(\frac{18}{100} \) \(.18 \)
19) \(\frac{2}{4} \) \(.5 \)
20) \(\frac{3}{6} \) \(.50 \)
Reduce the following fractions:

1) \(\frac{4}{16} \) \(\frac{1}{4} \)
11) \(\frac{70}{630} \) \(\frac{1}{9} \)

2) \(\frac{50}{100} \) \(\frac{1}{2} \)
12) \(\frac{52}{104} \) \(\frac{1}{2} \)

3) \(\frac{42}{420} \) \(\frac{1}{10} \)
13) \(\frac{19}{57} \) \(\frac{1}{3} \)

4) \(\frac{16}{64} \) \(\frac{1}{4} \)
14) \(\frac{40}{120} \) \(\frac{1}{3} \)

5) \(\frac{90}{360} \) \(\frac{1}{4} \)
15) \(\frac{60}{180} \) \(\frac{1}{3} \)

6) \(\frac{15}{45} \) \(\frac{1}{3} \)
16) \(\frac{15}{75} \) \(\frac{1}{5} \)

7) \(\frac{14}{98} \) \(\frac{1}{7} \)
17) \(\frac{41}{205} \) \(\frac{1}{5} \)

8) \(\frac{6}{36} \) \(\frac{1}{6} \)
18) \(\frac{25}{150} \) \(\frac{1}{6} \)

9) \(\frac{15}{120} \) \(\frac{1}{8} \)
19) \(\frac{142}{710} \) \(\frac{1}{5} \)

10) \(\frac{15}{60} \) \(\frac{1}{4} \)
20) \(\frac{14}{70} \) \(\frac{1}{5} \)

396
Changing Units to Other Units

A 1) 4 qts. = \(\frac{128}{64}\) oz.
6) 6 qts. = \(\frac{192}{64}\) oz.
2) 2 pts. = \(\frac{32}{64}\) oz.
7) 4 pts. = \(\frac{3270}{3970}\) m
3) 2 qts. = \(\frac{4}{64}\) pts.
8) 1 gal. = \(\frac{64}{440}\) m
4) 2 gals. = \(\frac{256}{3970}\) oz.
9) 3 qts. = \(\frac{6}{64}\) pts.
5) 4 qts = \(\frac{64}{440}\) m
10) \(3\frac{1}{2}\) qt. = \(\frac{7}{64}\) pts.

Ratios are just Fractions
Example: 20 oz. is what part of 2 qts.
\[
\frac{20\text{ oz.}}{2\text{ qt.}} = \frac{20}{64}\text{ oz.}, \text{ or } \frac{5}{16}
\]

11) 15 oz. is what part of 3 qts? \(\frac{5}{12}\)
12) 4 pts. is what part of 1 gal? \(\frac{1}{4}\)
13) 52 oz. is what part of 6 pts? \(\frac{13}{38}\)
14) 160 m is what part of 2 qts? \(\frac{1}{38}\)
15) 1 oz. is what part of 8 qts? \(\frac{1}{64}\)
16) 272 m is what part of 1 gal? \(\frac{\sqrt{110}}{100}\)
17) 37 oz. is what part of 2 gal? \(\frac{37}{138}\)
18) 1 pt. is what part of 4 gal? \(\frac{1}{2}\)
19) 40 oz. is what part of 2 qt. \(\frac{5}{8}\)
20) 2 qt. is what part of 42 oz. \(\frac{32}{21}\)
A 1) 8 qts. = \frac{256}{6} oz.
2) 3 pts. = \frac{48}{8} oz.
3) 4 qts. = \frac{8}{8} pt.
4) 1 gal. = \frac{128}{2} oz.
5) 3 qts. = \frac{46080}{m}

6) 5 qts. = \frac{160}{oz.}
7) 3 pts. = 23040 m
8) 2 gal = 122880 m
9) 2\frac{1}{2} qt. = \frac{5}{pts.}
10) 4\frac{1}{2} qt. = 9 pt.

To find the ratios, similar units must be compared

Example: 240 minums is what part of a \(\frac{1}{2} \) pt.

\[
\frac{240 \text{ minums}}{\frac{1}{2} \text{ pint}} = \frac{240 \text{ minums}}{3840 \text{ minums}} = \frac{3}{48}, \text{ or } \frac{1}{16}
\]

11) 16 oz. is what part of 2 quarts?

\[
\frac{16 oz.}{2 qt.} : \frac{16 oz.}{4 qt.} = \frac{1}{4}
\]

12) 3 pts. is what part of 1 gallon?

\[
\frac{3 pts.}{1 gal.} : \frac{3 pts.}{8 gal.} = \frac{3}{8}
\]

13) 16 oz. is what part of 2 pts.

\[
\frac{16 oz.}{2 qt.} : \frac{16 oz.}{3 gal.} = \frac{1}{2}
\]

14) 170 m is what part of 4 quarts?

\[
\frac{170 m}{4 qt.} : \frac{170 m}{1 gal.} = \frac{17}{6144}
\]

15) 16 oz. is what part of 7 qts.

\[
\frac{16 oz.}{7 qt.} : \frac{16 oz.}{2.24 gal.} = \frac{1}{14}
\]

16) 299 m is what part of 1 gallon?

\[
\frac{299 m}{1 gal.} : \frac{299 m}{2 gal.} = \frac{299}{2432}
\]

17) 32 oz is what part of 4 gallon?

\[
\frac{32 oz.}{4 qt.} : \frac{32 oz.}{5 gal.} = \frac{3}{2}
\]

18) 12 pts. is what part of 3 gallon?

\[
\frac{12 pts.}{3 gal.} : \frac{12 pts.}{4 gal.} = \frac{1}{2}
\]

19) 42 oz. is what part of 3 qt.

\[
\frac{42 oz.}{3 qt.} : \frac{42 oz.}{9 gal.} = \frac{1}{16}
\]

20) 3 qt. is what part of 38 oz.

\[
\frac{3 qt.}{3 gal.} : \frac{38 oz.}{9 gal.} = \frac{48}{19} \approx 2\frac{10}{19}
\]
METRIC SYSTEM

In the metric system units are divided into tenths which makes the system easy to use. Here are some metric and English units compared.

1 drop of water = $\frac{1}{15}$ cc = $\frac{1}{15}$ gm.
1 cup = 250 cc = 250 gm.
1 pint = 500 cc = 500 gm.
1 quart = 1 liter = 1000 gm.

In the above "cc" stands for cubic centimeter. A "cc" can be pictured as a small cube of wood which measures about $\frac{1}{2}$ inch along each edge. The weight of 1 cc of water is 1 gram. We abbreviate gram as "gm". A liter, abbreviated "L", is approximately one quart.

Try these problems.

1) 1 gm is the weight of _____ drops of water
2) 1 cup contains _____ drops of water
3) 1 liter is _____ cups
4) 1 quart is _____ gm
5) 2000 gm is _____ pt
6) _____ cc = 5 cups
7) _____ cc = 1 liter
8) _____ cc = 1 pint
9) 10,000 gm of water is _____ liters
10) 15 crops of water is _____ gm
Changing Metric System

1) 3 cups = _____ gm \(\frac{750}{3} \)
6) 6 qt. = _____ pt. \(12 \)

2) 2 l = _____ cup \(4 \)
7) 5 pt. = _____ cup \(10 \)

3) 3 pt = _____ cup \(6 \)
8) 5 qt = _____ cup \(20 \)

4) 2 l = _____ pt. \(4 \)
9) \(\frac{1}{2} \) qt. = _____ pt. \(13 \)

5) 4 qt. = _____ cup \(16 \)
10) 4 \(\frac{1}{2} \) qt. = _____ cup \(18 \)

To make ratio you must compare like units

Example: 3 cups is what part of 2 quarts

\[
\frac{3 \text{ cups}}{2 \text{ qts.}} = \frac{3 \text{ cups}}{3 \text{ cups}} = \frac{3}{3} = 1
\]

11) 4 pts. is what part of 4 qts:

\[
\frac{4 \text{ pts}}{4 \text{ qts}} = \frac{4 \text{ pts}}{4 \text{ pts}} = 1
\]

12) 3 cups is what part of 2 qts:

\[
\frac{3 \text{ cups}}{2 \text{ qts}} = \frac{3 \text{ cups}}{3 \text{ cups}} = \frac{1}{3}
\]

13) 10 cups is what part of 3 pints:

\[
\frac{10 \text{ cups}}{3 \text{ pts}} = \frac{10 \text{ cups}}{6 \text{ cups}} = \frac{5}{3}
\]

14) 4 cups is what part of 4 qt.

\[
\frac{4 \text{ cups}}{4 \text{ qts}} = \frac{4 \text{ cups}}{4 \text{ cups}} = 1
\]

15) 8 pts. is what part of 21 qts

\[
\frac{8 \text{ pts}}{21 \text{ qts}} = \frac{8 \text{ pts}}{42 \text{ pts}} = \frac{4}{21}
\]

16) 6 cups is what part of 3 pts.

\[
\frac{6 \text{ cups}}{3 \text{ pts}} = \frac{6 \text{ cups}}{6 \text{ cups}} = 1
\]

17) 3 cups is what part of 4 qts.

\[
\frac{3 \text{ cups}}{4 \text{ qts}} = \frac{3 \text{ cups}}{12 \text{ cups}} = \frac{1}{4}
\]

18) 12 pts. is what part of 8 qts

\[
\frac{12 \text{ pts}}{8 \text{ qts}} = \frac{12 \text{ pts}}{16 \text{ pts}} = \frac{3}{4}
\]

19) 12 qts. is what part of 3 cups

\[
\frac{12 \text{ qts}}{3 \text{ cups}} = \frac{4 \text{ cups}}{3 \text{ cups}} = \frac{4}{3}
\]

20) 16 pts. is what part of 3 cups

\[
\frac{16 \text{ pts}}{3 \text{ cups}} = \frac{16 \text{ pts}}{22 \text{ pts}} = \frac{8}{11}
\]
1) 1 qt. = _____ pt. 6) 3 qt. = _____ cups
2) 2 pt. = _____ cups 7) 2 pt. = _____ gr.
3) 3 qt. = _____ pt. 8) 2 pt. = _____ L
4) 8 qt. = _____ pt. 9) 2½ pt. = _____ cups
5) 3 pt. = _____ gr 10) 3½ qt. = _____ pt.

To make ratio you must compare like units.

Example: 50 drops of water is part of a ½ pt.

$$\frac{50 \text{ drops}}{\frac{1}{2} \text{ pint}} = \frac{50 \text{ drops}}{3750 \text{ drops}} = \frac{1}{75}$$

11) 1 pt. is what part of 2 quarts?

12) 8 cups is what part of 4 quarts?

13) 8 cups is what part of 12 pts?

14) 3 cups is what part of 8 quarts?

15) 5 pts. is what part of 20 quarts?

16) 5 cups is what part of 4 pts?

17) 4 cups is what part of 5 qts?

18) 11 pts. is what part of 16 qts?

19) 21 pts. is what part of 4 cups.

20) 19 pts. is what part of 2 cups.
ANTISEPTIC SOLUTIONS

One job, sometimes given orderlies to do, is the making of solutions used in the hospital. The solutions are of various types. "Type A," for example, is 500 cc. of alcohol in 3000 cc. of water. It is necessary to learn the ratio of "parts of alcohol to parts of water."

\[
\begin{align*}
\text{Parts of alcohol} & = \frac{500}{3000} = \frac{1}{6} \\
\text{Parts of water} &
\end{align*}
\]

Thus for every one part of alcohol there must be six parts of water. Suppose he finds a bottle that contains 250 cc. of alcohol, how much water does he need to add to make a correct solution? He solves the problem like this:

\[
\frac{1}{6} = \frac{250 \text{ cc.}}{(W)} = \frac{250 \text{ cc.}}{1500 \text{ cc.}}
\]

Suppose he is told to prepare at least 12 quarts. How can he make it?

\[
\frac{1}{6} = \frac{2 \text{ quarts of alcohol}}{12 \text{ quarts}}
\]

You see he adds 2 quarts of alcohol to 12 quarts of water to get the correct fraction, or ratio. This also makes the total volume of solution 2 + 12, or 14 quarts.

4008
"Type A" solutions are those in which the ratio of alcohol to water is 500 cc. of alcohol to 3000 cc. of water.

1) How much water should one add to 1000 cc. of alcohol? 600 cc
2) How much water should one add to 1 pint of alcohol? 6 fl
3) How much alcohol should one add to 18 liters of water? 3 liters
4) How much alcohol should one add to 1/2 liter of water? 1/12 liter
5) 50 cc. of alcohol is available. What is the resulting total volume of solution which can be produced? 350 cc

"Type B" solutions are those in which the ratio of acetic acid to water is 50 cc. of acetic acid to 150 cc. of water?

1) How much water should one add to 4000 cc. of acetic acid? 120,000 cc
2) How many liters of water should one add to 1-1/2 liters of acetic acid? 4 1/2 liters
3) How much acid can one add to 6 quarts of water? 2 qts
4) How much acid has been added to 2160 cc. of water? 7 20
5) How can one get at least 3 pints of Type B Solution?
 What is the resulting total volume?
 Add 1 pt of acid to 3 pt of water. Total: 4 pts.
"Type C" solutions are those in which the ratio of lysol to water is 1 liter of lysol to 24 liters of water. Note that one liter is about one quart. Also, one liter equals 1000 cc.

1) 12 liters of water requires how much lysol? \(\frac{1}{2} \) liter

2) 48 liters of water requires how much lysol? 2 liters

3) 1/2 liter of lysol requires how much water? 12 liters

4) 1-1/2 liters of lysol requires how much water? 36 liters

5) 2000 cc. of lysol requires how much water? 48000 cc

6) 100 cc. of lysol requires how much water? 2400 cc

7) 1 pint of lysol requires how much water? 24 pti

8) 6 gallons of water would need how much lysol? \(\frac{1}{4} \) gal.

9) 12000 cc. of water would need how much lysol? 500 cc

10) In each of the above problems find the total resulting volume.
 resulting volume: 12 \(\frac{1}{2} \) liter; 50 liter; 12 \(\frac{1}{2} \) liter;
 37 \(\frac{1}{2} \) liter; 50000 cc; 2500 cc; 25 pti;
 6 \(\frac{1}{4} \) gal; 12500 cc