The topics covered by 47 booklets in the series are indexed. Page references are not given, but the booklet covering each topic is indicated by a code explained in the first two pages of the index. A brief account of the educational services program of the Atomic Energy Commission describing the booklets, films, and other services provided for secondary school students and teachers is appended. Topics covered by the series include applications of radioisotopes in industry, aerospace, agriculture, medicine, and scientific research; effects and sources of natural and artificial radiation; descriptions of nuclear facilities and reactors and their operations; and the chemistry of radioactive elements of other substances studied by Atomic Energy Commission scientists. A booklet on careers and a glossary are included in the series. (AL)
INDEX TO THE UNDERSTANDING THE ATOM SERIES
Nuclear Energy is playing a vital role in the life of every man, woman, and child in the United States today. In the years ahead it will affect increasingly all the peoples of the earth. It is essential that all Americans gain an understanding of this vital force if they are to discharge thoughtfully their responsibilities as citizens and if they are to realize fully the myriad benefits that nuclear energy offers them.

The United States Atomic Energy Commission provides this booklet to help you achieve such understanding.

Edward J. Brunenkant, Director
Division of Technical Information

UNITED STATES ATOMIC ENERGY COMMISSION
Dr. Glenn T. Seaborg, Chairman
James T. Ramey
Wilfrid E. Johnson
Francesco Costagliola
Introduction to the Index

Nuclear science comprises many categories of knowledge, many distinct scientific disciplines, and many experimental approaches. Its theories reinforce, complement, and supplement much other theory. Its basic technology is interwoven with the techniques and equipment common to all science. Applications of nuclear energy are found in industrial, governmental, medical, engineering, agricultural, and business enterprises.

This index has been prepared to provide a key to these many doors, by introducing users of the Understanding the Atom booklets to the complete subject matter embraced in the series. It is intended to help students and teachers locate points of their specific interests, and to provide a means for correlating the various principles and uses of atomic energy. In this endeavor it also may help to supply insight.

The index covers all booklets in the Understanding the Atom series. Titles of these are arranged alphabetically on the pages following, together with the codes used for identification of the booklets in the body of the index.

This publication was prepared to aid students and teachers who have several volumes or complete sets of the Understanding the Atom booklets available. As the series is enlarged or modified, new versions of this index are prepared.
<table>
<thead>
<tr>
<th>Abbreviation Listing by Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCELERATORS</td>
</tr>
<tr>
<td>ANIMALS IN ATOMIC RESEARCH</td>
</tr>
<tr>
<td>ATOMIC FUEL</td>
</tr>
<tr>
<td>ATOMIC POWER SAFETY</td>
</tr>
<tr>
<td>ATOMS AT THE SCIENCE FAIR</td>
</tr>
<tr>
<td>ATOMS IN AGRICULTURE</td>
</tr>
<tr>
<td>ATOMS, NATURE, AND MAN</td>
</tr>
<tr>
<td>CAREERS IN ATOMIC ENERGY</td>
</tr>
<tr>
<td>COMPUTERS</td>
</tr>
<tr>
<td>CONTROLLED NUCLEAR FUSION</td>
</tr>
<tr>
<td>CRYOGENICS</td>
</tr>
<tr>
<td>DIRECT CONVERSION OF ENERGY</td>
</tr>
<tr>
<td>FALLOUT FROM NUCLEAR TESTS</td>
</tr>
<tr>
<td>FOOD PRESERVATION BY IRRADIATION</td>
</tr>
<tr>
<td>GENETIC EFFECTS OF RADIATION</td>
</tr>
<tr>
<td>LASERS</td>
</tr>
<tr>
<td>MICROSTRUCTURE OF MATTER</td>
</tr>
<tr>
<td>NEUTRON ACTIVATION ANALYSIS</td>
</tr>
<tr>
<td>NONDESTRUCTIVE TESTING</td>
</tr>
<tr>
<td>NUCLEAR CLOCKS</td>
</tr>
<tr>
<td>NUCLEAR ENERGY FOR DESALTING</td>
</tr>
<tr>
<td>NUCLEAR POWER AND MERCHANT SHIP-INO</td>
</tr>
<tr>
<td>NUCLEAR POWER PLANTS</td>
</tr>
<tr>
<td>NUCLEAR PROPULSION FOR SPACE</td>
</tr>
<tr>
<td>NUCLEAR REACTORS</td>
</tr>
<tr>
<td>NUCLEAR TERMS, A BRIEF GLOSSARY</td>
</tr>
<tr>
<td>OUR ATOMIC WORLD</td>
</tr>
<tr>
<td>PLOWSHARE</td>
</tr>
<tr>
<td>PLUTONIUM</td>
</tr>
<tr>
<td>POWER FROM RADIOISOTOPES</td>
</tr>
<tr>
<td>POWER REACTIONS IN SMALL PACKAGES</td>
</tr>
<tr>
<td>RADIOACTIVE WASTES</td>
</tr>
<tr>
<td>RADIOISOTOPES AND LIFE PROCESSES</td>
</tr>
<tr>
<td>RADIOISOTOPES IN INDUSTRY</td>
</tr>
<tr>
<td>RADIOISOTOPES IN MEDICINE</td>
</tr>
<tr>
<td>RARE EARTHS, THE FRATERNAL FIFTEEN</td>
</tr>
<tr>
<td>READING RESOURCES IN ATOMIC ENERGY</td>
</tr>
<tr>
<td>RESEARCH REACTORS</td>
</tr>
<tr>
<td>SNAP: NUCLEAR SPACE REACTORS</td>
</tr>
<tr>
<td>SOURCES OF NUCLEAR FUEL</td>
</tr>
<tr>
<td>SPACE RADIATION</td>
</tr>
<tr>
<td>SYNTHETIC TRANSPURANUM ELEMENTS</td>
</tr>
<tr>
<td>THE ATOM AND THE OCEAN</td>
</tr>
<tr>
<td>THE CHEMISTRY OF THE NOBLE GASES</td>
</tr>
<tr>
<td>THE FIRST REACTOR</td>
</tr>
<tr>
<td>WHOLE BODY COUNTERS</td>
</tr>
<tr>
<td>YOUR BODY AND RADIATION</td>
</tr>
<tr>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>AAO</td>
</tr>
<tr>
<td>AAR</td>
</tr>
<tr>
<td>ACC</td>
</tr>
<tr>
<td>AIA</td>
</tr>
<tr>
<td>ANM</td>
</tr>
<tr>
<td>APS</td>
</tr>
<tr>
<td>ASF</td>
</tr>
<tr>
<td>ATF</td>
</tr>
<tr>
<td>CAE</td>
</tr>
<tr>
<td>CNF</td>
</tr>
<tr>
<td>COM</td>
</tr>
<tr>
<td>CRY</td>
</tr>
<tr>
<td>DCE</td>
</tr>
<tr>
<td>FNT</td>
</tr>
<tr>
<td>FPI</td>
</tr>
<tr>
<td>GER</td>
</tr>
<tr>
<td>LAS</td>
</tr>
<tr>
<td>MSM</td>
</tr>
<tr>
<td>NAA</td>
</tr>
<tr>
<td>NCL</td>
</tr>
<tr>
<td>NDT</td>
</tr>
<tr>
<td>NED</td>
</tr>
<tr>
<td>NPP</td>
</tr>
<tr>
<td>NPS</td>
</tr>
<tr>
<td>NRC</td>
</tr>
<tr>
<td>NTG</td>
</tr>
<tr>
<td>OAW</td>
</tr>
<tr>
<td>PFR</td>
</tr>
<tr>
<td>PLU</td>
</tr>
<tr>
<td>PRP</td>
</tr>
<tr>
<td>PSH</td>
</tr>
<tr>
<td>RAE</td>
</tr>
<tr>
<td>RAW</td>
</tr>
<tr>
<td>REA</td>
</tr>
<tr>
<td>RER</td>
</tr>
<tr>
<td>RII</td>
</tr>
<tr>
<td>RIM</td>
</tr>
<tr>
<td>RLP</td>
</tr>
<tr>
<td>SNF</td>
</tr>
<tr>
<td>SNP</td>
</tr>
<tr>
<td>SPR</td>
</tr>
<tr>
<td>STE</td>
</tr>
<tr>
<td>TFR</td>
</tr>
<tr>
<td>TNG</td>
</tr>
<tr>
<td>WBC</td>
</tr>
<tr>
<td>YBR</td>
</tr>
</tbody>
</table>
INDEX TO THE UNDERSTANDING THE ATOM SERIES

Accelerators
development, ACC
uses, ACC, MSM
Accidents
(see Safety)
Activation analysis, NAA
use in oceanographic studies, AAO
Age
determination by measurement of radioisotopes, NCL
Agriculture
radioisotope uses in, AIA
Air
liquidification, CRY
Americium
discovery, STE
Amino acids
studies using radioisotopes, RLP
Analysis (activation), NAA
use in oceanographic studies, AAO
Animals
studies of metabolism and nutrition using radioisotopes, AAO
use in atomic research, AAR
Antiferromagnet
description, CRY
Antiparticles
description, MSM
Argon
discovery, properties, and uses, TNO
Occurrence and production, TNO
Argon-18
use in brain-tumor diagnosis, RDM
Atmosphere
description, CNF
Atomic bomb
(see Nuclear explosions and explosives)
Atomic energy
(see Nuclear energy)
Atomic Energy Commission activities, OAW
Atomic pile
(see Reactors)
Atoms
photon emission, LAS
radioactivity, OAW
structure, MSM, OAW
Auroras
origin and properties of, SPR
Baryons
properties, MSM
Batteries
principles and uses of chemical and nuclear, DCE
Beacons
power for, AAO, PPR
Berkeley
discovery, STE
Bicycles
development, ACC
Bikini Atoll
effects of nuclear explosions, ANM
Biology
fossil effects on man, FNT
studies of life processes using radioisotopes, RLP
studies involving man-made radioactivity in environments, ANM
Biotas
collection of radioisotopes by marine, AAO
Bombs
(see Nuclear explosions and explosives)
Books
on atomic energy, RAE
Boron-10
use in treatment of brain tumors, RDM

1
Bosons
properties, MSM
Buoys
development of taut-moored instrumented for deep ocean research, AAO
power for, AAO, PFR

California
discovery, STE
Carbon-14
measurement in age determination, NCL
uptake by man, FNT
Careers
in atomic energy, CAE
Carnot efficiency
definition, DCE
Cells
radiation effects on human, YBR
studies using radioisotopes, RIM, RLP
Cesium-137
uptake by man from fallout, FNT
whole body counting in man, WBC
Chromium-51
use in tests involving red blood cells, RIM
Cloud chambers
uses, MSM
Coal
reserves, ATF
Cobalt radioisotopes
use in diagnosis of pernicious anemia, RIM
College:
preparation for careers in atomic energy, CAE
Computers, COM
Conservation
laws of, MSM
Cosmic radiation, EPR
Coulomb barrier
magnitude in atomic nuclei, STE
Cryogenic
Uses also Temperature, technology and uses, CRY
Curium
discovery, STE
Cyclotrons
development, ACC
Dating
by measurement of radioisotopes, NCL
Deep submergence research vehicle
development of NR-1, AAO

Deoxyribonucleic acid
studies using radioisotopes, RLP
Design
reactors, NRC
Deuterium
fusion, CNF
Diagnosis
radioisotope uses in medical, RIM
Diseases
radiation uses in treating, AAR
radioisotope uses in medicine, RIM
radioisotope uses in studies of plants, AIA
DNA
studies using radioisotopes, RLP
Dyes
uses of rhodamine-B in oceanographic studies, AAO

Earth
age determination, NCL
Ecology
studies involving man-made radioactivity in environs, ANM
Economics
nuclear power, NPP
reactor fuels, ATF
Education
for careers in atomic energy, CAE
Einsteinium
discovery, STE
Electricity
production by direct energy conversion, DCE
production using radioisotopes, EPR
production by reactors, NPP, NRC, PRP
Electromagnetic waves
spectrum, IAS
Electromagnetism
definition, MSM
Electron synchrotrons
development, ACC
Electrons
acceleration, ACC
Element 101
discovery, STE
Elementary particles
decay, stability, and tracking, MSM
Elements
nuclear transmutation, GAW, STE
rare earths, REA
transuranium, synthetic, STE
Energy
(see also Fusion and Nuclear energy)
conservation, MSM
direct conversion, DCE
role in refrigeration, CRY
entropy
studies of man-made radioactivity in, ANM
exhibits
preparation for science fairs, ASF
Explosions and explosives
use in nondestructive testing, NDT
Fission
development of first self-sustained reaction, TFR
description, OAW
presence as rocket fuel, CRY
Fluorescence (X-ray)
description, AAO
use in oceanographic studies, AAO
Fruit
preservation using radiation, FPI
industrial uses, DCE
for reactors and reserves of fossil, ATF
Fusion
controlled nuclear, CNF
Gas (natural)
reserves, ATF
Gauging
radioisotope uses in, RII
Genetics
radiation effects, GER
Geomagnetic field
description, CRY
properties of earth and gases, CRY
Hydrogen
properties as rocket fuel, CRY
Hyperons
properties, SMH
Industry
use in, LAS
Ferromagnets
description, CRY
Fertilizers
studies using radioisotopes, AAO
Fish
concentration of radioisotopes by, AAO
Fusion
controlled nuclear, CNF
Gamma radiation
(see Radiation (gamma))
GaAs
use in reduction of fluids in body, RIN
Gravitational
description of, MSM
Half-life
elementary particles, MSM
Heat engines
description and uses, DCE
Helium
occurrence and production, VGO
Helium (liquid)
use in reduction of fluids in body, RIN
Hydroelectric energy conversion
principles and uses, DCE
Hydrogen
properties as rocket fuel, CRY
nondestructive testing methods
in, NDT
radiation and radiotopes
uses in, RII
Inert gases
(see Noble gases)
Insects
destruction and studies using radio-
topes, AAR, AIA
Instruments
detection of space radiation by, SPR
development for oceanographic
studies, AAG
Insulating materials
use in maintaining low tempera-
tures, CRY
International Atomic Energy
Agency
establishment, OAW
isotope-131
uptake by man from fallout, FNT
use in medical diagnosis, RIM
isotope-133
use in thyroid studies, RIM
ionosphere
radiation environment of, SPR
Iron-59
use in tests involving red
blood cells, RIM
Isotopes
(see also Radiotopes)
discovery, OAW
Krypton
discovery, properties, and uses, TNO
occurrence and production, TNO
Krypton difluoride (KrF)
preparation and properties, TNO
reacts with metal fluorides to
form addition compounds, TNO
Laboratories
animal care in, AAR
Lasers
development and application, LAS
Lawrencium
discovery, STE
Leptons
properties, MSM
Licensing and regulation
nuclear power plants, APS
Light (coherent)
(see Lasers)
Lighthouses
power for, AAO, PFR
Linear accelerators
development, ACC
Magnetic mirror systems
description, CRY
Magnetohydrodynamic energy
description and uses, DCE
Magnetosphere
trapping of radiation by, SPR
Magnetometers
discovery, OAW
Man
fallout effects on, and pro-
tection from, FNT
radiation effects, somatic, YBR
whole body counters for, WBC
Manhattan District
formation, FFR
Masers (optical)
(see Lasers)
Mass
(see also Matter)
conservation and relation to
energy, MSM
Materials (radioactive)
control in nuclear power
plants, APS
Materials testing
nondestructive techniques, NDT, RII
Matter
(see also Knees)
occur in the solar system, OAW
conservation and relation to
energy, MSM
properties at low temperatures,
CRY
states of, solid, liquid, gas,
plasma, CRY
structure theory, OAW
Medicine
radiation and radiotopes uses in,
AAR, RIM
use of cryosurgery, CRY
use of lasers as surgical tools,
LAS
Mendelevium
discovery, STE
Merchant vessels
propulsion using nuclear
power, NPS
Meteors
properties, MSM
Metals
electrical conductivity, effects
of low temperatures on, CRY
Minerals
age determination, NCL
Natural gas
reserves, ATR
Navigational Devices
use of ENAP generators in,
PFR
Neon
discovery, properties, and uses,
TNO
Neptunium
 discovery, STE
 Neutron activation analysis, NAA
 use in oceanographic studies, AAO
 Neutron imaging
 use in nondestructive testing, NDT
Neutron sources
 description and use, NAA
Neutrons
 discovery, OAW
 production in research reactors, RER
 time-of-flight measurement, RER
 use in research reactors, RER
Nitrogen
 preparation, CRY
Nitrogen (liquid)
 properties and uses as cryogenic materials, CRY
Noble gases
 (see also specific gases, e.g., Argon, Xenon, etc.)
 discovery, properties, and uses, TNG
 Nondestructive testing, NDT, RII
Northern lights
 (see Aurora)
 N. S. Savannah
 development, NPS
Nuclear energy, OAW
 (see also Energy and Reactors)
 books, RAE
 careers in, CAE
 direct conversion, DCE
Nuclear explosions and explosives
 development of fissile bombs, OAW
 effects on environment, ANM
 fallout from, FNT
 peaceful uses, AAO, PSH
Nuclear fission
 description, OAW
 Nuclear fusion, CNF
 controlled, CNF
Nuclear power and power plants
 (see Reactors and Systems for Nuclear Auxiliary Power)
Nuclear reactors
 (see Reactors)
Nuclear safety
 radioscope power generators, PFR
 reactors, APS, NRC
Nuclear science
 books, RAE
 careers in, CAE
 protect preparation and exhibition, ASF
Nuclear terms
 glossary, NTG
Nuclear transmutation, OAW, STE
 Nuclei
 energy in, OAW
Oceans
 characteristics, AAO
 desalting of water using nuclear energy, AAO, NED
 radioactive contamination, AAO
 research, uses of radioisotopes in, AAO
Oil
 reserves, ATF
 Oxygen (liquid)
 preparation, CRY
 properties and uses as cryogenic material, CRY
 use as rocket fuel, CRY
Parity
 concept for particles, MSM
 Particle accelerators
 development, ACC
 uses, ACC, MSM
 Particles (elementary)
 decay, stability, and tracking, MSM
Penetrants
 use in nondestructive testing, NDT
Petroleum
 reserves, ATF
 Phosphorus-32
 use in cancer diagnosis and in treatment of polycystinemia
 versa, RIM
Pinch systems
 description, CNF
Plants
 concentration of radioisotopes by marine, AAO
 radiation effects, AIA
 studies using radioisotopes, AIA
 Plasmas, CNF
 use in magnetohydrodynamic energy conversion, DCE
Plowshare program, PSH
 excavation of canals and harbors, AAO
Plutonium, PLC
 discovery and production, STE
Potassium-40
 whole body counting of, in man, WBC
Power
 (see also Energy and Reactors)
 direct energy conversion in generators, DCE
 production of electrical, using radioisotopes, PFR
Propulsion
use of nuclear power, AAO, NPR, NPS, NRC
Proteins
studies using radioisotopes, RLP
Proton synchrotrons
development, ACC
Protons, OAW
Radiation
(see also Radioactivity)
origin and detection in space, SPR
use to destroy germs, AIA
use to destroy insects, AAR, AIA
use to determine soil density
and moisture, AIA
use to preserve food, AAO, AIA, RLP
use in veterinary medicine, AAR
Radiation (gamma)
use for nondestructive testing, NDT
use for radiography in industry, RII
use for radiography in medicine, RIM
Radiation belts
detection and nature of, SPR
Radiation biology
(see also Radiobiology)
fallop effects on man, FNT
studies involving man-made radioactivity in environs, ANM
Radiation detection instruments
development and use of whole body, WBC
use in space, SPR
Radiation effects
on animals, AAR
on genetics, GER
on man, somatic, YBR
on plants, AIA
Radiation protection
from fallout, FNT
in nuclear power plants, APS
Radioactivity, OAW
(see also Radiation)
decay, MSM
early experiments, JCC
man-made, in environs, ANM
Radiobiology
(see also Radiation biology)
studies of life processes using radioisotopes, RLP
Radioecology
studies involving man-made radioactivity in environs, ANM
Radiography
use in industry, RII
use in medicine, RIM
use in nondestructive testing, NDT
Radioisotopes
(see also isotopes)
concentration by marine biota, AAO
contamination of oceans by, AAO
measurement in age determination, NCL
uptake by animals, AAR
uptake by man from fallout, FNT
uses of, OAW
uses in agriculture, AIA
uses in industry, RII
uses in medicine, AAR, RIM
uses in nuclear batteries, DCE
uses in oceanographic research, AAO
uses for production of electricity, AAO, PFR
uses for production of heat, AAO
uses in studies of life processes, RLP
Radio waves
characteristics, LAS
Radium-226
whole body counting in man, WBC
discovery, properties, and uses, TNG
occurrence and production, TNG
reaction with fluorine, TNG
Rare earths, REA
Reactor fuels, ATF
sources of, SNF
Reactor safety, APS, NRC
Reactor wastes, APS, RAW
Reactors, NRC
development of first, TFR
Reactors (breeder)
fuel utilization, ATF
Reactors (dual purpose)
use for water desalting, NED
Reactors (graphite moderated)
as type of research reactor,
development of first, TFR
Reactors (heavy water)
as type of research reactor, RER
Reactors (high flux)
as type of research reactor, RER
Reactors (materials testing), NRC
Reactors (package power), PRP
Reactors (pool)
as type of research reactor, RER
Reactors (power), NPP, NRC,
PRP
safety, APS
use in space, NPR, NRC, SNP
use in submarines, AAO
use for water desalting, AAO, NED
Reactors (process heat), NRC
Reactors (production), NRC
Reactors (propulsion), AAO, NPR,
NPS, NRC
Reactors (pulse)
as type of research reactor,
RER
Reactors (research), NPR, RER
development of first, TFR
Reactors (space), NPR, NRC, SNP
Reactors (tank)
as type of research reactor,
RER
Reactors (teaching), NRC
Reactors (water boiler)
as type of research reactor,
RER
Refrigeration
description of cryogenic, CRY
Relativity
theory of, OAW
Research
use of animals in atomic, AAR
Rhodamine-B dye
use in oceanographic studies, AAO
Ribonucleic acid
studies using radioisotopes,
RLP
RNA
studies using radioisotopes,
RLP
Rockets
development of nuclear, NPR
Rocks
age determination, NCL
Safety
radioisotope power generators,
PRP
radioisotope power generators in
oceanic environment, AAO
reactors, APS, NRC
space travel, SPR
uranium processing, SNF
Science (nuclear)
books, RAE
careers in, CAE
project preparation and exhibi-
tion, ASF
Screwworm fly
destruction using radiation, AAR,
AIA
Sea water
(see Oceans)
Sodium project, PSH
Seals
propulsion of, using nuclear power,
AAO, NPS, NRC
SNAP
(see Systems for Nuclear
Auxiliary Power)
Sodium-24
use in tests of body fluids,
RM
Soils
density and moisture deter-
mination using radiation,
AIA
Solar cells
principles and uses, DCE
Solar wind
origin and properties of, SPR
Space
radiation environment, SPR
use of nuclear power in, NPR, NRC, SNP
Space travel
safety of, SPR
Space vehicles
radiation detection by, SPR
Space chambers
uses, MSM
Specific heat
definition, CRY
Stellarator systems
description, CNF
Sterilization
radiation-induction of, in
Insects, AIA
Strange particles
definition, MSM
Strontium-87
measurement in age deter-
mination, NCL
Strontium-89
uptake by man from fallout,
FNT
Strontium-90
uptake by man from fallout,
FNT
Submarines
(see also Deep submergence
research vehicle)
development of nuclear-powered, AAO
Sun
radiation emission by, SPR
Superconductivity
role of cryogenics in, CRY
Superfluidity
role of cryogenics in, CRY
Surfaces
heat radiation from, CRY
Synchronocyclotron
development, ACC
Synchronrons
development, ACC
Systems for Nuclear Auxiliary
Power
direct energy conversion in,
DCE
radioisotope use in, PFR
reactor use in, SNP
use for underwater power sources, AAO
Technetium-99m
use for tumor diagnosis, RIM
Temperature
(see also Refrigeration)
absolute zero, CRY
creation of low, CRY
maintaining of low, CRY
measuring devices, CRY
scales for measurement, CRY
Testing (nondestructive), NDT, RII
Thermography
Therapeutic uses in, RIM
Thermionic energy conversion
description and uses, DCE, PFR
Thermodynamics
applications, CRY
Thermoelectric energy conversion
description and uses, DCE, PFR
Thermomagnetic energy conversion
principles and uses, DCE
Thermometers
description, CRY
Thermoelectric reactions
controlled, OAW
uses of, OAW
Thermos bottles
design and principles, CRY
Thorium
discovery, SNF
Thallium-170
use in medical radiography, RIM
Thyroid
study of using radiodine, RIM
Tracers
uses in agriculture, AIA
uses in industry, RII
uses in medicine, RIM
uses in studies of life processes, RLP
Transmutation (nuclear), OAW, STE
Transuranium elements
production, STE
Transuranium elements
synthetic, STE
Tritium
fusion, CNF
use in determination of total
body water, RIM
Ultrasonics
use in nondestructive testing, NDT
Uranium
discovery, SNF
production, ATF
Uranium-233
fission-track counting in age
determination, RCL
Uranium ores
mining, milling, and refining, SNF
occurrences, SNF
prospecting for, SNF
reserve estimates, SNF
Vacuum
use in maintaining low tempera-
tures, CRY
Van Allen Radiation Belt
(see Radiation belts)
Van de Graf generators
development, ACC
Veterinary medicine
uses of radiation and radioisotopes in,
AAR
Wasps
radiation effects on, AAR
Wastes (radioactive), APE, RAW
contamination of oceans by, AAO
uptake by animals, AAR
Water
(see Oceans)
Weather stations
use of SNAP generators in,
PFR
Weeds
studies of herbicides using
radioisotopes, AIA
Whole body counters
development and use, WBC
X radiation
(see Radiation DO)
Xenon
discovery, properties, and uses,
occurance and production, TNO
Xenon difluoride (XeF2)
atomic structure, TNO
crystal structure, TNO
preparation and properties, TNO
reaction with metal fluorides to
form addition compounds, TNO
Xenon fluorides
applications, TNO
Xenon hexafluoride (XeF6)
atomic structure, TNO
crystal structure, TNO
preparation and properties, TNO
reaction with metal fluorides to
form addition compounds, TNO
Xenon oxide tetrafluoride (XeOF4)
atomic structure, TNO
crystal structure, TNO
preparation and properties, TNO
reaction with metal fluorides to
form addition compounds, TNO
Xenon tetrafluoride (XeF4)
atomic structure, TNO
crystal structure, TNO
preparation and properties, TNO
reaction with metal fluorides to form addition compounds, TNG
Xenon tetraoxide (XeO₄)
atomics structure, TNG

Xenon trioxide (XeO₃)
atomic structure, TNG
preparation and properties, TNG
The U. S. Atomic Energy Commission provides free educational materials and teaching aids for the use of students, teachers, and others. As part of this activity to disseminate knowledge about atomic energy, the AEC publishes the Understanding the Atom series, a group of booklets devoted to many aspects of nuclear science and technology. This volume is an index to and a part of the series. Titles of other booklets are listed on the inside back cover.

Booklets in the series treat the subject matter at several levels of complexity and in various depths. Some cover broad areas, some are limited to narrower fields. For example, "Our Atomic World" is a moderately technical general introduction to atomic science, emphasizing the historical development or present knowledge. The booklet "Plutonium" is a fairly comprehensive and specific treatment of this nuclear-age metal. "Nuclear Reactors" is an easy-reading, less technical description of the basic machine of the nuclear age.

Understanding the Atom booklets typically are useful for high school students who have completed one year of science, are now taking a science course, or have a particular interest in nuclear topics. Most are suitable as supplementary reading resources for pre-college level chemistry, physics, biology, or earth science. A few encompass materials not found in detail in beginning college texts, and so may interest undergraduates; among these, for instance, is "Rare Earths: the Fraternal Fifteen". Several are usable by junior high school pupils (particularly "Animals in Atomic Research") or, in whole or part, by elementary school pupils (for example, "Nuclear Power and Merchant Shipping").

All the booklets are written in nontechnical language. Mathematical explanations are minimal. All may be sources of information for adult audiences. Such booklets as "Fallout from Nuclear Tests" or "Nuclear Power Plants" are appropriate in this capacity. Still others, for example "Computers" or "Neutron Activation Analysis", supply background information for persons who are about to begin training in a new field.
Each booklet contains a list of references to other sources of information, including books, articles, and motion pictures. There is, additionally, a booklet, "Reading Resources in Atomic Energy", that provides a more complete bibliography.

In addition to this series, the AEC makes available other materials. More than 150 educational motion pictures may be borrowed without charge by schools or other groups from ten film libraries. A free descriptive listing, the "16 mm Film Catalog, Popular Level", gives instructions on how to borrow films.

Other educational materials include guides for experiments, handbooks, and publications prepared by commercial organizations. Special packets of materials are available for teachers of several grade levels. Teachers requesting such materials should state their interests exactly, and the use intended, as well as the grade level.

Questions that cannot be answered by supplying published material are given individual answers, or references are suggested to readily available publications that will do so.

Requests for educational materials and film catalogs should always include the requester's name, address, and zip code.

Requests should be addressed to:

U. S. Atomic Energy Commission
P. O. Box 62
Oak Ridge, Tennessee 37830
This booklet is one of the "Understanding the Atom" Series. Comments are invited on this booklet and others in the series; please send them to the Division of Technical Information, U. S. Atomic Energy Commission, Washington, D. C. 20545.

Published as part of the AEC's educational assistance program, the series includes these titles:

- Accelerators
- Animals in Atomic Research
- Atomic Fuel
- Atomic Power Safety
- Atoms at the Science Fair
- Atoms in Agriculture
- Atoms, Nature, and Man
- Careers in Atomic Energy
- Computers
- Controlled Nuclear Fusion
- Cryogenics, The Uncommon Cold
- Direct Conversion of Energy
- Fallout From Nuclear Tests
- Food Preservation by Irradiation
- Genetic Effects of Radiation
- Index to the UAS Series
- Lasers
- Microstructure of Matter
- Neutron Activation Analysis
- Nondestructive Testing
- Nuclear Clocks
- Nuclear Energy for Desalting
- Nuclear Power and Merchant Shipping
- Nuclear Power Plants
- Nuclear Propulsion for Space
- Nuclear Reactors
- Nuclear Terms, A Brief Glossary
- Our Atomic World
- Plutonium
- Power from Radiosopes
- Power Reactors in Small Packages
- Radiactive Wastes
- Radiosopes and Life Processes
- Radiosopes in Industry
- Radiosopes in Medicine
- Rare Erths
- Reading Resources in Atomic Energy
- Research Reactors
- SNAP, Nuclear Space Reactors
- Sources of Nuclear Fuel
- Space Radiation
- Synthetic Transuranium Elements
- The Atom and the Ocean
- The Chemistry of the Noble Gases
- The First Reactor
- Whole Body Counters
- Your Body and Radiation

A single copy of any one booklet, or of no more than three different booklets, may be obtained free by writing to:

USAEC, P. O. BOX 62, OAK RIDGE, TENNESSEE 37830

Complete sets of the series are available to school and public librarians, and to teachers who can make them available for reference or for use by groups. Requests should be made on school or library letterheads and indicate the proposed use.

Students and teachers who need other material on specific aspects of nuclear science, or references to other reading material, may also write to the Oak Ridge address. Requests should state the topic of interest exactly, and the use intended.

In all requests, include "Zip Code" in return address.

Printed in the United States of America

USAEC Division of Technical Information Extension, Oak Ridge, Tennessee