Computer-Assisted Instruction (CAI) is surveyed in terms of both the extent of research progress as well as the degree of utilization for this new technological approach to education. After a brief review of some of the critical terminology used to describe research progress within CAI, a conceptual framework by which to consider current investigatory efforts is developed. The psychological nature of the CAI situation, concepts of how CAI provides for individualization of instruction, and the procedures and research findings for the use of instructional strategies are examined in detail in the major part of the paper. A discussion of learner strategies and their growing importance within CAI in learning investigations concludes the paper. (Author/SP)
CURRENT RESEARCH DEVELOPMENT IN COMPUTER-ASSISTED INSTRUCTION

Duncan N. Hansen
Tech Memo No. 17
February 15, 1970

Project NR 154-280
Sponsored by
Personnel & Training Research Programs
Psychological Sciences Division
Office of Naval Research
Washington, D. C.
Contract No. N00014-68-A-0494

This document has been approved for public release and sale;
its distribution is unlimited.

Reproduction in Whole or in Part is Permitted for any Purpose
of the United States Government.

FLORIDA STATE UNIVERSITY
CURRENT RESEARCH DEVELOPMENT IN COMPUTER-ASSISTED INSTRUCTION

Duncan N. Hansen

Tech Memo No. 17
February 15, 1970

Project NR 154-280
Sponsored by
Personnel & Training Research Programs
Psychological Sciences Division
Office of Naval Research
Washington, D.C.
Contract No. N00014-68-A-0494

This document has been approved for public release and sale; its distribution is unlimited.

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government.
ABSTRACT

Computer-Assisted Instruction (CAI) is surveyed in terms of both the extent of research progress as well as the degree of utilization for this new technological approach to education. After a brief review of some of the critical terminology used to describe research progress within CAI, the paper develops a conceptual framework by which to consider current investigatory efforts. The first section deals with the psychological nature of the CAI situation. The second introduces concepts of how CAI provides for individualization of instruction. Third, it introduces the procedures and research findings for the use of instructional strategies. The paper concludes with a discussion of learner strategies and their growing importance within CAI in learning investigations.
CURRENT RESEARCH DEVELOPMENT IN COMPUTER-ASSISTED INSTRUCTION

Introduction

Computer-assisted instruction (CAI) is now more than a decade old. Having moved from a conceptual idea, CAI is starting to prove its operational feasibility in the United States. Moreover, CAI has started to document an impressive array of increased instructional effectiveness for such curricular areas as elementary school mathematics, reading, junior high science, college physical science, computer science, and teacher training. In the United States, it is estimated that in excess of 50 percent of the colleges and universities are actively exploring the utilization of CAI. On the other hand, it is estimated that less than 10 percent of our public schools has some active research project in the CAI area. Given the short period with which computers have been utilized for this type of instruction, these developmental statistics indicate the speed with which computer technology is spreading, at least in the United States. As a major thesis of this paper, it will be contended that the conceptual framework for CAI development has not progressed rapidly beyond the initial conjectures made during the late 1950's.

As is true for any new developing field, the initial conceptualizations about CAI were formulated at a simplistic or relatively crude level. The use of computers for instruction have tended to become known by the nature of their application. When CAI is considered,

the following kinds of applications have tended to evolve: (1) drill and practice that provides a potential automation of the problem-solving routines or homework to be mastered by a student; (2) tutorial approaches that attempt to replace the teacher in as complete a manner as possible; (3) problem-solving tasks that use the computer both as a problem-structuring device and as a calculational tool for generating answers; (4) simulation problems that attempt to replace many of the empirical activities such as found in our science laboratory with symbolic representations provided by the logical and stochastic capabilities of computers; and (5) evaluation tasks via computer that result both in sequential testing and more sophisticated forms of data analysis. In essence, these applications represent a match between the computer as a tool and a specific educational problem.

This paper will attempt to illustrate that it is possible to develop a conceptual framework by which to consider the significant research problems within CAI. The substance of this paper will be divided in four sections: (1) the psychological nature of CAI, (2) individualization of instruction, (3) the concept of instructional strategies, and (4) the concept of learner strategies. These topics have been selected because they are most commonly discussed and studied by investigators in the CAI world. The presentation will focus on both ambiguities as well as conceptions for formulating reasonable propositions worthy of investigation. By focusing on the topics of the nature of CAI, individualization, instructional strategies, and learning strategies, it is hoped that CAI research in the future will become more coherent in nature.
Nature of Computer-Assisted Instruction

CAI can be defined as a form of human machine interaction whose goal is the efficient learning of the desired curriculum. In terms of the computing system, the pedagogical alternatives open to the CAI designer are as follows: (1) selection of an appropriate media device for presentation of the curriculum; (2) control of the rate of presentation; (3) control of the sequence of items within the curriculum; (4) concurrent recording of all learning behaviors, and most importantly; (5) a decision mechanism by which the rate and sequence of curriculum elements are presented to the student. This decision mechanism is commonly referred to as an instructional strategy although the consideration of the selection of media is also commonly included under this rubric. Optimization refers to the increase in efficiency found for one instructional strategy as opposed to another instructional strategy.

Before proceeding, it may be useful to characterize the instructional paradigm for CAI more explicitly. First, the curriculum to be taught can be conceptualized as a set of presentation elements, P_i, which includes both presentation information as well as a question. For each of these P_i elements there should exist one or more correct responses, R_i. These $P-R$ pairs may be as simple as the pronunciation of the word "fun" with the requirement to spell it, or as complex as answering the question "How did the astronauts reach the moon?" after reading a thousand word passage on the topic. Referring to Figure 1, an instructional session is started by initializing the prior learning history for a given student and determining which curriculum element...
Fig. 1.--The instructional paradigm for CAI
to present to him. Once the curriculum element has been presented to the student, a response is requested and recorded within the CAI system. This response can be evaluated via a pre-stored set of answers and symbolic matching techniques. This in turn allows the system to update the learning history of the student. If the terminal element in the curriculum has not been reached, the system then branches back to the instructional strategy which determines the next curriculum element to be presented. If the instructional strategy bases its selection contingent on the previous learning history, the system can be referred to as dynamic (response sensitive in Groen and Atkinson's terms, 1966). On the other hand, if the selection is independent of the learning history of the student, then it can be characterized as static. The distinction between dynamic and static instructional strategies is highly important, in that optimal solutions can be derived for either, but the best evidence to date indicates that dynamic instructional strategies ultimately will provide for the individualization hoped for by CAI.

In terms of the human learner, it is always assumed that the student has an expressed goal or purpose in mind. While alterations in the selection of curriculum elements may be based on the student's prior knowledge and aptitudes, it is commonly assumed the student strives to reach the terminal element in the curriculum sequence as fast and efficiently as possible. We have come to recognize that students develop learning strategies for both varying learning contexts as well as different instructional strategies found explicitly within CAI. These learning strategies relate to the adaptation processes
of the student as to how he allocates his mental energy in regard to
the encoding, storing, and consolidation of the curriculum elements.
The concept of a student learning strategy is stressed in that it will
be contended that optimization ultimately will be defined as an isomorphic
match between the instructional strategy of the CAI system as developed
by its creators with the learning strategies evolved by the students.
This intuitive optimization can be quantified in terms such as reduced
learning times for fixed amounts of curriculum elements, or reduced
errors given that the terminal goal is based on some performance
criterion level. We turn now to a consideration of individualization
of instruction within CAI in order to better illuminate this match
between instructional strategies and learning strategies.

Individualization

The major justification for CAI has been the individualization
of the instructional process possible through this technological approach.
In conceiving of individualization, most investigators have tended to
define the process as one of supplying the appropriate instruction to
satisfy the student's educational needs. This definition of individualiza-
tion has obvious ambiguities. For example, are the educational needs to
be defined from the student's frame of reference, especially in terms
of his wants? Or is it to be defined by some benevolent power who pre-
scribes what the child ought to have? The concept of needs is an
internal behavioral construct within learning psychology. The problems
of its definition can be witnessed within the research literature on
human motivation and personality processes (Cofer and Appley, 1964).
An alternative theoretic approach would be to utilize a simplified input-output behavioral model and to assess the operational progress made via CAI within the model's conception of individualization.

Turning now to this simplified model, individualization can be thought of as a process by which the student maximizes his informational input, processing, storage, and output. In psychological terms, this conception of individualization specifies the stimulus curriculum array, the cognitive processes, and the response requirements. Breaking the behavioral processes of learning into these three components will allow us to view what research progress has been made via individualization within CAI.

In regard to stimulus input, investigators such as Briggs (1967) and Gagné (1965) assert that great learning gains can be achieved by appropriate assignment of the instructional media. Matching appropriate films, audio lectures, or printed materials to individual characteristics should, it is claimed, lead to better learning results. Currently, the Pittsburgh and the Duluth Public Schools are providing for student choices via computer scheduling among instructional media alternatives to nearly 4,000 elementary school students. Given a learning contract to achieve a certain performance objective, the student chooses among the listed available educational resources which can be books, audio records, films, etc. A similar research project at Florida State University that involves teacher candidates indicates that: (1) there are considerable individual differences in these media choices, (2) the selection criteria seems to be based on a match between the characteristics of the objectives of the instructors and the
response requirements of the learning task, and (3) media alternatives do lead to improved performance.

More specific to CAI, our own experience in three replications of an autonomous computer-based multi-media physics course at Florida State University (Hansen et al., 1969) indicated that CAI interactive problems presented over a CRT-light pen terminal lead to the greatest learning gains in comparison with the audio lectures or text reading assignments which in turn were superior to 16 mm films. Noting that the students in the CAI version of the physics course performed 20 percent better than a matched sample of students attending a conventional lecture-discussion course, Table 1 presents the mean performance on CAI questions associated with the four CAI media types and Table 2 presents the multiple regression coefficients found for each media type by lesson with the dependent measures of the mid-term and final examinations.

<table>
<thead>
<tr>
<th>CONCEPTS</th>
<th>AUDIO</th>
<th>TEXTBOOK</th>
<th>FILMS</th>
<th>CAI CONCEPTION EXERCISES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Measure</td>
<td>.632</td>
<td>.698</td>
<td>.611</td>
<td>.586</td>
</tr>
<tr>
<td>Optics and Light</td>
<td>.670</td>
<td>.733</td>
<td>.675</td>
<td>.673</td>
</tr>
<tr>
<td>Force and Energy</td>
<td>.703</td>
<td>.706</td>
<td>.547</td>
<td>.666</td>
</tr>
<tr>
<td>Electricity</td>
<td>.675</td>
<td>.703</td>
<td>.476</td>
<td>.653</td>
</tr>
<tr>
<td>Modern Physics</td>
<td>.666</td>
<td>.703</td>
<td>.486</td>
<td>.605</td>
</tr>
</tbody>
</table>
TABLE 2.—Multiple Correlations of Media Type Categories with Examination Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Mid-Term Examination</th>
<th>Final Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>.733</td>
<td>.798</td>
</tr>
<tr>
<td>Textbook</td>
<td>.605</td>
<td>.694</td>
</tr>
<tr>
<td>Films</td>
<td>.587</td>
<td>.445</td>
</tr>
<tr>
<td>CAI Conceptual Exercises</td>
<td>.870</td>
<td>.901</td>
</tr>
</tbody>
</table>

It should be noted that the terminal objectives of the course stressed physics problem solving. Consequently, it is no surprise that the CAI-CRT media instruction (CAI conceptual exercises) proved superior to the other media alternatives. It is interesting though that the audio lectures were superior to films, given the large difference in information load. Using multi-media research designs, one can, in fact, separate out the various contributions of input media within CAI. As an added complexity, our last replication indicates that the individual difference factors of mathematics aptitude, state anxiety (a personality process), and attitudes toward theoretical conceptions were significant determiners of the learning outcomes and interacted with the various media utilized. Thus, the appropriate individualized assignment of media within CAI appears to be a highly complex problem.

Perhaps a more insightful example of this complexity is a recently completed study by Dick and Latta (1969) which assessed the presentation of the concepts of significant figures to two non-overlapping sampled groups of low and high mathematics ability students.
at the junior high level. The media contrast was that of paper and pencil programmed instruction in comparison with CAI-CRT presentation. To illustrate the learning gains, the pretest to the posttest comparison indicated a fourfold gain in performance (see Table 3).

TABLE 3.—Mean Scores on Pretest, Posttest and Retention Test for High and Low Ability Students on PI and CAI Curriculum Presentations

<table>
<thead>
<tr>
<th></th>
<th>LOW ABILITY</th>
<th></th>
<th>HIGH ABILITY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PI</td>
<td>CAI</td>
<td>PI</td>
<td>CAI</td>
</tr>
<tr>
<td>Pretest</td>
<td>7.2</td>
<td>7.3</td>
<td>8.1</td>
<td>7.9</td>
</tr>
<tr>
<td>Posttest</td>
<td>28.4</td>
<td>18.8</td>
<td>34.1</td>
<td>34.8</td>
</tr>
<tr>
<td>Retention Test</td>
<td>24.7</td>
<td>16.3</td>
<td>24.1</td>
<td>26.4</td>
</tr>
</tbody>
</table>

The major finding was the nearly identical posttest and retention means for media contrast within the high ability groups, the CAI version being slightly superior, whereas there was a significantly lowered improvement for the low ability students if presented via CAI. The large learning gains for the low ability PI group were replicated in the three-week follow-up retention test. One explanation for the low ability CAI group's decreased performance could be the heightened memory load required by CRT presentations. Thus, one can see that the assignment of appropriate media on the stimulus input side will have to be conditionalized according to at least the aptitude of a student.

In regard to internal processes, the middle component in the model, the manipulation of the level of difficulty of the learning curriculum elements has been successfully pursued, especially at Stanford University (Suppes and Morningstar, 1969). In a project
presently operating in a rural county near Tallahassee, we are providing daily CAI reading instruction to an array of students spanning from primary grades up through high school. It is clear that providing for appropriate levels of difficulty within CAI reading comprehension provides for an accumulative positive outcome over a span of an instructional year. To be more specific, Table 4 presents the Fall and Spring testing results. As indicated by the IQ outcomes, these are low aptitude students. For the early grade level students, approximately one year in reading and mathematics achievement was gained while the upper grade students yielded a less substantial gain. These results are equivalent to those found in six other elementary school level CAI projects in the U. S. Clearly, adjusting the difficulty level of the CAI curriculum elements according to concurrent learning histories of the student yields positive results especially for disadvantaged or low-aptitude students.

In terms of a more specific type of individualization for mental processing, a recently completed study (Gay, 1969) indicates that sex differences in learning strategies can be important determiners. In this case, students from an eighth grade class were provided differential numbers of examples or practice on mathematics problems that represented the essential concepts of polynomials. Three conditions were contrasted: one, a fixed number of assigned exercises based on a prediction from the child's IQ score; second, an assignment based on a memory retention index; and third, student controlled or self-assignment. In this particular study, the boys under the self-assignment condition achieved superior results,
TABLE 4.--Means and Standard Deviations for Fall, 1968, and Spring, 1969, Test Results for IQ, Reading, and Arithmetic Grade Level Measures

<table>
<thead>
<tr>
<th>Grade</th>
<th>N</th>
<th>IQ</th>
<th>SD</th>
<th>Reading</th>
<th>SD</th>
<th>Arithmetic</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td></td>
<td>Mean</td>
<td></td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POST</td>
<td>32</td>
<td>95.314</td>
<td>15.911</td>
<td>2.009</td>
<td>1.275</td>
<td>2.354</td>
<td>.740</td>
</tr>
<tr>
<td>Grade 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE</td>
<td>44</td>
<td>86.727</td>
<td>11.679</td>
<td>1.993</td>
<td>1.350</td>
<td>2.555</td>
<td>.745</td>
</tr>
<tr>
<td>POST</td>
<td>44</td>
<td>89.318</td>
<td>12.400</td>
<td>2.921</td>
<td>1.607</td>
<td>3.248</td>
<td>.832</td>
</tr>
<tr>
<td>Grade 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE</td>
<td>10</td>
<td>96.100</td>
<td>15.723</td>
<td>3.290</td>
<td>1.753</td>
<td>3.450</td>
<td>.871</td>
</tr>
<tr>
<td>POST</td>
<td>10</td>
<td>98.900</td>
<td>22.063</td>
<td>4.050</td>
<td>2.004</td>
<td>4.020</td>
<td>1.188</td>
</tr>
<tr>
<td>Grade 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE</td>
<td>10</td>
<td>81.100</td>
<td>8.672</td>
<td>2.840</td>
<td>1.284</td>
<td>3.160</td>
<td>.788</td>
</tr>
<tr>
<td>POST</td>
<td>10</td>
<td>83.100</td>
<td>10.376</td>
<td>3.210</td>
<td>1.245</td>
<td>3.450</td>
<td>.903</td>
</tr>
<tr>
<td>Grade 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE</td>
<td>10</td>
<td>79.800</td>
<td>10.922</td>
<td>4.280</td>
<td>1.959</td>
<td>3.890</td>
<td>.553</td>
</tr>
<tr>
<td>Grade 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE</td>
<td>9</td>
<td>93.222</td>
<td>17.145</td>
<td>6.344</td>
<td>1.651</td>
<td>5.300</td>
<td>1.063</td>
</tr>
<tr>
<td>POST</td>
<td>9</td>
<td>97.667</td>
<td>20.341</td>
<td>6.922</td>
<td>2.052</td>
<td>5.511</td>
<td>.979</td>
</tr>
</tbody>
</table>
whereas the girls achieved superior performance levels when assigned amount of practice according to the memory retention index. While skipping over many of the details, it is clear that the measure of IQ did not provide a good predictor for the assignment of examples and practice. The important point is that the sex variable significantly differentiates the appropriate approach to utilize within individualizing the amount of practice within CAI mathematics instruction.

Turning now to the response side, the third component in the model, it seems relatively clear that very little CAI research has taken place. While we do have Rand Tablets, touch sensitive response panels, and speech analyzers available, most of the experimentation has focused on automated typewriters or CRT's with light pens. Perhaps of even more concern is the fact that all of the individualized response approaches have been symbolic in nature, i.e., these assume that the student is capable of handling some symbolic language system. As any school teacher will inform you, mastery of many concepts can be demonstrated via such responses as drawings, acting or dramatization, or constructing concrete models. Moreover, multiple responses like confidence about one's ability, trust of the situation, and concurrent anxiety can dramatically influence the CAI learning outcomes. It seems clear that a greater effort should be made on the technological side to allow for a richer array of response capabilities, and the employment for a wider variety of responses to each instructional problem.

While acknowledging that this input/output model for individualization is extremely simplified, it becomes clear that CAI research efforts have explored only a few of the individualizing alternatives
that have been suggested. Moreover, our exploration of how individualization interacts with different academic curricula has received a meager start at best. The field needs a matrix of investigations by which various curricular disciplines are intersected with student populations of varying age levels. When one constructs such a matrix, one observes the preponderance of omissions or blanks. Such a simple exercise leads one to identify a compelling need for much more empirical investigation of CAI applications in varying disciplines such as art, music, English, as well as the sciences.

Speaking as a psychologist we obviously need longitudinal studies of students who are daily involved with CAI. Thus, a decade of serious empirical studies seems needed in order to build a sound research basis for our understanding of an outcome cube that represents academic curriculum, by educational levels, by CAI individualization procedures so that optimal assignments can be made for each student.

Instructional Strategy

Currently in the "CAI In-Group," one hears continuing reference to the investigation of instructional strategies. This topic was first described by Stolurow (1961) in terms of the logical flow of the instruction, that is, the branching structures utilized within the context of correcting error responses or applying remedial procedure within the flow of the curriculum elements. As a contrasting conceptual frame of reference, Smallwood (1962) proposed a quantitative model by which to define instructional strategies that lead to optimal solutions using dynamic programming techniques. As defined earlier, an instructional
strategy is one that allows for a selection among the alternative rates and sequences of curriculum elements in order, hopefully, to lead to an optimal outcome. These alternatives involve the characteristics of the learner, the structure of the curriculum materials being considered, and the developmental representation of the learning processes utilized by the student in order to minimize his effort and maximize his rewards. Thus, the student from my point of view will always look to maximize his rewards and minimize his effort in terms of either playing an "interesting game" or contending with the problems posed by an educational system.

The primary issue concerns who controls the instructional strategy. At one end of the continuum, Stolurow, Smallwood, and Suppes would suggest that we prescribe the optimal selection of learning events for the student. These investigators claim that once having understood the student's basic learning processes that the educator, as an outside decision-making mechanism, can best decide this prescription for instruction. At the other end of the continuum, Grubbs (1968) has suggested that a student, given his better self-awareness of all of his internal mental processes and immediate states of awareness, can best select his own strategy for acquiring a set of complex concepts. From the framework presented in the earlier section on the nature of CAI, it is clear that Stolurow and Suppes are referring to the proposed definition of an instructional strategy, while Grubbs is referring to the proposed definition of a student's learning strategy. Each strategy is important to consider for ultimate optimization, even though each can make its own contribution. This can be documented by the beginning empirical experimentation on optimization within CAI.
Turning now to an empirical study of two learning models which considered the efficacy of dynamic instructional strategies in terms of their optimality, a group of sixty eight-year olds were presented with a spelling task via CAI. The task consisted of: (1) an auditory presentation of the targeted word, (2) an opportunity to type it, and (3) an auditory and correct orthographic presentation for student study (this is commonly referred to as the paired associate learning paradigm). The students were divided up into six groups of ten each in order to study two types of optimization. First, Smallwood (1962), and Groen and Atkinson (1966) have provided models indicating that if the learning can be characterized as an incremental process to be specified by a linear operator model of the form, the probability of an incorrect response, \(q_{i,n+1} = aq_{i,n} \), then a uniform distribution sequence rule for the curriculum elements will lead to optimal results. On the other hand, if the learning can be characterized as a Markoff process involving a learned and unlearned state, then the trial-to-trial independence of the Markoff process implies a drop-out sequencing strategy, that is, the instructional strategy drops out correct items because of their being absorbed into the learned state and repeats the instruction on the current error or unlearned words. Obviously a CAI system is ideally suited for keeping track of the student's spelling performance on each word and composing each practice list according to either the uniform or drop-out sequencing strategy.

Secondly, Suppes (1964) has proposed for language material that a double linear operator model (one operator characterizing the learning process and one operator characterizing the forgetting process)
can imply one of two optimal approaches to forming the block size or list length of the words to be studied. Quite simply, if the learning is greater than the forgetting, the Suppes model implies that a whole list approach is more optimal. While if the converse is true for the learning and forgetting parameters, then a highly segmented block or part approach is optimal. Given the individual differences within learning and forgetting processes for eight year olds, it was hypothesized that students could be more optimally assigned an appropriate block size or length of their spelling list depending on both their learning and forgetting rates. Thus the assignment of the list size or block structure should be made dynamically from session to session.

Using thirty pseudo English words as the content for the spelling task, the six groups were assigned daily sessions according to the following instructional strategies: (1) **Part--Drop-Out Strategy**: the list size was five in length and within each inter-list interval, correct words were dropped and new words from the total list were inserted; (2) **Part--Uniform Strategy**: a list size of five words was practiced for six repetitions on each day with appropriate randomization; (3) **Optimal Block Size--Drop-Out Strategy**: list sizes of five, fifteen, or thirty were utilized according to the estimated learning rates of the student and correct items were removed during repetition; (4) **Optimal Block Size--Uniform Strategy**: list sizes of five, fifteen, and thirty were applied according to the estimated learning rates of the students while sequencing was uniformly distributed throughout the words; (5) **Whole--Drop-Out Strategy**: students studied the full list of thirty words once per session with correct words being removed on a session-to-session basis, and (6) **Whole--
Uniform Strategy: students studied the total list once per session with appropriate randomization of the serial presentation. Thus, each student received six training sessions and a twenty-four hour retention test. The results are presented in Table 5.

TABLE 5.--Mean Proportion of Correct Spelling Responses for Six Instructional Strategies

<table>
<thead>
<tr>
<th>SESSIONS</th>
<th>PART DROP-OUT STRATEGY</th>
<th>PART UNIFORM STRATEGY</th>
<th>OPTIMAL DROP-OUT STRATEGY</th>
<th>OPTIMAL UNIFORM STRATEGY</th>
<th>WHOLE DROP-OUT STRATEGY</th>
<th>WHOLE UNIFORM STRATEGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.43</td>
<td>.63</td>
<td>.23</td>
<td>.31</td>
<td>.08</td>
<td>.09</td>
</tr>
<tr>
<td>2</td>
<td>.45</td>
<td>.66</td>
<td>.39</td>
<td>.46</td>
<td>.09</td>
<td>.13</td>
</tr>
<tr>
<td>3</td>
<td>.43</td>
<td>.71</td>
<td>.51</td>
<td>.58</td>
<td>.17</td>
<td>.28</td>
</tr>
<tr>
<td>4</td>
<td>.55</td>
<td>.75</td>
<td>.67</td>
<td>.63</td>
<td>.39</td>
<td>.47</td>
</tr>
<tr>
<td>5</td>
<td>.61</td>
<td>.85</td>
<td>.87</td>
<td>.77</td>
<td>.63</td>
<td>.57</td>
</tr>
<tr>
<td>6</td>
<td>.75</td>
<td>.89</td>
<td>.96</td>
<td>.84</td>
<td>.79</td>
<td>.61</td>
</tr>
</tbody>
</table>

Retention Test

.57 .43 .93 .73 .77 .55

A repeated measure analysis of variance indicated that the optimal block-drop-out strategy provided both the best learning as well as final retention performance outcome. As consistent with prior research (Dear et al., 1965), the drop-out strategy led to better retention results although the acquisition tended to interact with the block size, that is, better learning under the drop-out strategy occurred with larger block sizes. Thus, these results illustrate how the application of two learning models and their implied instructional strategy sequencing rules can lead to more optimal results.
confirmation of the approach, the students under the optimal block drop-out strategy had mean correct latencies of approximately 13 percent less than any of the other groups. Thus for classes of curriculum elements that tend to be learned in unitary or All-or-None fashion the use of CAI optimization techniques can have substantial payoff. The application of optimal instructional strategies via CAI can lead to maximizing on the desired criterion performance level as well as increased efficiency due to decreased learning time requirements.

Learning Strategies

Student learning strategies are important in that the psychological memory and concept formation processes reflect individual variation within encoding, consolidation, confidence, and affect reactions like anxiety. Offering a student control over rate or sequence can lead to increased performance given a high degree of prior competence. Thus consideration of student learning strategies within CAI can be approached as an interactive negotiation process: the better the performance by the student, the more self-selection and initiative should be offered concerning learning topics, alternative media, or amounts of practice.

One approach to applying learning strategies within CAI would be to consider the developmental stages and patterns of the students. The previously reviewed study by Gay (1969) on student control of the amount of practice on polynomial concepts indicated that the boys who were provided an opportunity for self-selection of examples performed better. In the United States, adolescent males are found to
have more advanced autonomy indices and self-conceptions of higher confidence in comparison with females. Thus this heightened level of personality processes can influence their learning strategies and indicate how broader psychological variables should be considered within CAI sequencing strategies.

Perhaps more persuasively, a study by Proctor (1968) indicated that teacher candidates, when given the opportunity to explore the concepts representing current curriculum theory, perform approximately twenty percent better than a group who had a prescribed, logical route through the CAI materials. It is important to understand that the self-selection process has to be offered primarily to the better students. When offered to this group, it will lead to a stronger commitment by the brighter students to achieve the behavioral objectives typically found within CAI curriculum.

Turning to the issue of anonymity within instructional strategies, it appears based on the results from our laboratory that students find an anonymous role to be self-satisfying and allows for greater curiosity. Self-exploration without the typical negative social detriments found in a peer group can be facilitated via CAI. In a recent study (Lawler and Hansen, in preparation) investigating understanding of the concepts of the physiology of reproduction, birth control, and social morals concerning sex, the college students found the anonymous role to be both self-satisfying and self-adapting. By employing the technique of confidence ratings, we increase the reliability of the test outcome from .40 to .70 plus having superior performance levels. Moreover, self-report measures clearly indicate
that the students felt that interacting with the CAI terminal was far less threatening and far less alienating in terms of its punishing remarks than a human interviewer, be he either a peer or an adult.

Continuing this topic of students' natural proclivity for anonymous interaction and individualized student control, a study by Smith (1968) performed a little over a year ago indicated that college students, when offered computer-based counseling, considered that the CAI system was vastly superior in terms of accuracy as well as conveying a heightened trust for the academic recommendations presented via the terminal. More surprisingly, the faculty counselors at the local junior college indicated that the computer system not only was more accurate, more knowledgeable, but made equivalent academic recommendations as they would offer, given that they had been thoroughly trained as to the multitude of alternatives found within their academic institutions. Thus, CAI may offer a very promising way to resolve some of the tensions and ambiguities commonly found when human beings in our society interact about high risk or critical valued problems as career selection and preparation.

As a final example of the application of student learning strategy, an investigation into the efficacy of CAI based learning games with the accompanying utilization of a CAI information retrieval system (Adair et al., 1969) indicate that such higher order behaviors as the ability to provide valid and powerful explanations based upon social science generalizations can be brought about via CAI. Using an information retrieval system having in excess of five thousand social science generalizations and accompanying background source documents,
forty college students revealed growing ability to generate more sophisticated explanations based upon the information searched within and retrieved from the CAI based IR system. Accompanying attitudinal data indicates that the students find this form of man-machine interaction far more intellectually challenging and involving than that typically found in a college discussion section. The game aspect of the experiment which involved having students work on similar puzzling case studies also indicates multi-person approaches to the utilization of CAI interaction can have great learning payoff. This inquiry into the broader utilization of CAI and information retrieval, while still early in its development, offers a promising approach to small group interaction; a feature desired within many pedagogical situations.

Conclusions

This broad survey of the current research in CAI indicates both the growing efficacy of this form of man-machine interaction as well as the minimum range of investigations in terms of curriculum content and potential configurations of students and pedagogical routines. One would predict that the next decade forecasts a growing endeavor to develop more quantitative models representing both instructional strategies as well as student learning strategies. As we gain greater insight into the potential role of these quantitative approaches to instructional theory, one can anticipate greater benefits to our attempts to individualize instruction. With the growing commitment to expanding the educational enterprise in many countries, the use of computer
technology offers great promise as one technique by which to retain the flavor of the master scholar interacting with his student.
REFERENCES

Computer-Assisted Instruction (CAI) is surveyed in terms of both the extent of research progress as well as the degree of utilization for this new technological approach to education. After a brief review of some of the critical terminology used to describe research progress within CAI, the paper develops a conceptual framework by which to consider current investigatory efforts. The first section deals with the psychological nature of the CAI situation. The second introduces concepts of how CAI provides for individualization of instruction. Third, it introduces the procedures and research findings for the use of instructional strategies. The paper concludes with a discussion of learner strategies and their growing importance within CAI in learning investigations.
MILITARY

Chief of Naval Research
Code 458
Department of the Navy
Washington, D.C. 20360

Director
ONR Branch Office
495 Summer Street
Boston, Massachusetts 02210

Director ONR Branch Office
219 South Dearborn Street
Chicago, Illinois 60604

Director
ONR Branch Office
1030 East Green Street
Pasadena, California 91101

Director, Naval Research Laboratory
ATTN: Library, Code 2029 (ONRL)
Washington, D.C. 20390

Office of Naval Research
Area Office
207 West Summer Street
New York, New York 10011

Office of Naval Research
Area Office
1076 Mission Street
San Francisco, California 94103

Director Naval Research Laboratory
Washington, D.C. 20390
ATTN: Technical Information Division

Defense Documentation Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, Virginia 22314

Commanding Officer
Service School Command
U.S. Naval Training Center
San Diego, California 92133

Commanding Officer
Naval Personnel & Training Research Laboratory
San Diego, California 92152

Officer in Charge
Naval Medical Neuropsychiatric Research Unit
San Diego, California 92152

Commanding Officer
Naval Air Technical Training Center
Jacksonville, Florida 32213

Dr. James J. Regan
Naval Training Device Center
Orlando, Florida 32813

Chief, Aviation Psychology Division
Naval Aerospace Medical Institute
Naval Aerospace Medical Center
Pensacola, Florida 32512

Chief, Naval Air Reserve Training
Naval Air Station
Box 1
Glenview, Illinois 60026

Technical Library
U.S. Naval Weapons Laboratory
Dahlgren, Virginia 22448

Chairman
Leadership/Management Committee
Naval Sciences Department
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps (Code AX)
Washington, D.C. 20380

Behavioral Sciences Department
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014

Commanding Officer
Naval Medical Field Research Laboratory
Camp Lejeune, North Carolina 28542

Chief, Naval Air Technical Training
Naval Air Station
Memphis, Tennessee 38115
Technical Library
Naval Training Device Center
Orlando, Florida 32813

Technical Library
Naval Ship Systems Command
Main Navy Building, Rm. 1532
Washington, D. C. 20360

Technical Library
Naval Ordnance Station
Indian Head, Maryland 20640

Naval Ship Engineering Center
Philadelphia Division
Technical Library
Philadelphia, Pennsylvania 19112

Library, Code 0212
Naval Postgraduate School
Monterey, California 93940

Technical Reference Library
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014

Technical Library
Naval Ordnance Station
Louisville, Kentucky 40214

Library
Naval Electronics Laboratory Center
San Diego, California 92152

Technical Library
Naval Undersea Warfare Center
3202 E. Foothill Boulevard
Pasadena, California 91107

AFHRL (HRTT/Dr. Ross L. Morgan)
Wright-Patterson Air Force Base
Ohio 45433

AFHRL (HRO/Dr. Meyer)
Brooks Air Force Base
Texas 78235

Mr. Michael Macdonald-Ross
Instructional Systems Associates
West One
49 Welbeck Street
London W1M 7HE
ENGLAND

Commanding Officer
U. S. Naval Schools Command
Mare Island
Vallejo, California 94592

Dr. Don C. Coombs, Assistant Director
ERIC Clearinghouse
Stanford University Palo Alto, California 94305

Scientific Advisory Team (Code 71)
Staff, COMASWFORLANT
Norfolk, Virginia 23511

ERIC Clearinghouse
Educational Media and Technology
Stanford University
Stanford, California

ERIC Clearinghouse
Vocational and Technical Education
Ohio State University
Columbus, Ohio 43212

Education & Training Developments Staff
Personnel Research & Development Lab.
Building 200, Washington Navy Yard
Washington, D. C. 20390

LCDR J. C. Meredith, USN (Ret.)
Institute of Library Research
University of California, Berkeley
Berkeley, California 94720

Mr. Joseph B. Blankenheim
NAVELEX 0474
Munitions Building, Rm. 3721
Washington, D. C. 20360

Commander
Operational Test & Evaluation Force
U. S. Naval Base
Norfolk, Virginia 23511

Office of Civilian Manpower Management
Department of the Navy
Washington, D. C. 20350
ATTN: Code 023

Chief of Naval Operations, Op-07TL
Department of the Navy
Washington, D. C. 20350

Chief of Naval Material (MAT 031M)
Room 1323, Main Navy Building
Washington, D. C. 20360
Naval Ship Systems Command, Code 03H
Department of the Navy
Main Navy Building
Washington, D. C. 20360

Chief
Bureau of Medicine and Surgery
Code 513
Washington, D. C. 20390

Technical Library
Bureau of Naval Personnel (Pers-lib)
Department of the Navy
Washington, D. C. 20370

Director
Personnel Research & Development Lab.
Washington Navy Yard, Building 200
Washington, D. C. 20390

Commander, Naval Air Systems Command
Navy Department, AIR-4133
Washington, D. C. 20360

Commandant of the Marine Corps
Headquarters, U. S. Marine Corps
Code A01B
Washington, D. C. 20380

Human Resources Research Office
Division #6, Aviation
Post Office Box 428
Fort Rucker, Alabama 36360

Human Resources Research Office
Division #3, Recruit Training
Post Office Box 5787
Presidio of Monterey,
California 93940
ATTN: Library

Human Resources Research Office
Division #4, Infantry
Post Office Box 2086
Fort Benning, Georgia 31905

Department of the Army
U. S. Army Adjutant General School
Fort Benjamin Harrison, Ind. 46216
ATTN: AGCS-EA

Director of Research
U. S. Army Armor Human Research Unit
Fort Knox, Kentucky 40121
ATTN: Library

Research Analysis Corporation
McLean, Virginia 22101
ATTN: Library

Human Resources Research Office
Division #5, Air Defense
Post Office Box 6021
Fort Bliss, Texas 79916

Human Resources Research Office
Division #1, Systems Operations
300 North Washington Street
Alexandria, Virginia 22314

Director
Human Resources Research Office
The George Washington University
300 North Washington Street
Alexandria, Virginia 22314

Armed Forces Staff College
Norfolk, Virginia 23511
ATTN: Library

Chief
Training and Development Division
Office of Civilian Personnel
Department of the Army
Washington, D. C. 20310

U. S. Army Behavioral Science Research Laboratory
Washington, D. C. 20315

Walter Reed Army Institute of Research
Walter Reed Army Medical Center
Washington, D. C. 20012

Behavioral Sciences Division
Office of Chief of Research and Development
Department of the Army
Washington, D. C. 20310

Director
Air University Library
Maxwell Air Force Base
Alabama 36112
ATTN: AUL-8110

Cadet Registrar
U. S. Air Force Academy
Colorado 80840

(C)
Headquarters, ESD
ESVPT
L. G. Hanscom Field
Bedford, Massachusetts 01731
ATTN: Dr. Mayer

AFRL (HRT/Dr. G. A. Eckstrand)
Wright-Patterson Air Force Base
Ohio 45433

Commandant
U. S. Air Force School of Aerospace Medicine
Brooks Air Force Base, Texas 78235
ATTN: Aeromedical Library
(SMSDL)

6570th Personnel Research Laboratory
Aerospace Medical Division
Lackland Air Force Base
San Antonio, Texas 78236

AFOSR (SRLB)
1400 Wilson Boulevard
Arlington, Virginia 22209

Research Psychologist
SCBB, Headquarters
Air Force Systems Command
Andrews Air Force Base
Washington, D. C. 20331

Headquarters, U. S. Air Force
Chief, Analysis Division (AFPDPL)
Washington, D. C. 20330

Headquarters, U. S. Air Force
ATTN: AFPTTRTB
Washington, D. C. 20330

Headquarters, U. S. Air Force
AFRDDC
Room 1D373, The Pentagon
Washington, D. C. 20330

Headquarters, USAF (AFTRD)
Training Devices and Instructional Technology Division
Washington, D. C. 20330

Dr. Alvin E. Goins, Executive Secy.
Personality & Cognition Research Review Committee
Behavioral sciences Research Branch
National Institute of Mental Health
5454 Wisconsin Avenue, Room 10All
Chevy Chase, Maryland 20203

(D)

Dr. Mats Bjorkman
University of Umea
Department of Psychology
Umea 6, Sweden

Technical Information Exchange
Center for Computer Sciences and Technology
National Bureau of Standards
Washington, D. C. 20234

Director
Defense Atomic Support Agency
Washington, D. C. 20305
ATTN: Technical Library

Executive Secretariat
Interagency Committee on Manpower Research
Room 515
1738 "M" Street, N. W.
Washington, D. C. 20036
(ATTN: Mrs. Ruth Ralyea)

Mr. Joseph J. Cowan
Chief, Personnel Research Branch
U. S. Coast Guard Headquarters
PO-1, Station 3-12
1300 "E" Street, N. W.
Washington, D. C. 20226

Executive Officer
American Psychological Association
1200 Seventeenth Street, N. W.
Washington, D. C. 20036

Mr. Edmund C. Berkeley
Information International, Inc.
545 Technology Square
Cambridge, Massachusetts 02139

Dr. Donald L. Bitzer
Computer-Based Education Research Laboratory
University of Illinois
Urbana, Illinois 61801

Dr. C. Victor Bunderson
Computer-Assisted Instruction Lab.
University of Texas
Austin, Texas 78712

Dr. F. J. DiVesta
Education & Psychology Center
Pennsylvania State University
University Park, Pennsylvania 16802
NON-MILITARY

Dr. F. R. Abbatt
Research Officer
The University of Leeds
Leeds, ENGLAND

Dr. William F. Atchison
Director, Computer Science Center
University of Maryland
College Park, Maryland 20742

Dennis O. Barnes
Instructional Technology Department
University of Southern California
801 Phillips Hall
Los Angeles, California 90007

Dr. Ernest Burkman, Jr.
Associate Professor
Science Education
FSU, Kellum Hall Basement
Tallahassee, Florida 32306

Dr. Thomas C. Capraro
33 Dining Hall
Florida State University
Tallahassee, Florida 32306

Dr. Sylvia Charp
School District of Philadelphia
21st and the Parkway
Philadelphia, Pennsylvania 19103

Mr. John E. Coulson
Education Systems Department
Public Systems Division
System Development Corporation
2500 Colorado Avenue
Santa Monica, California 90406

John F. Feldhusen
Educational Psychology Section
Purdue University
Lafayette, Indiana 47907

William F. Fitzgerald
The Department of Education
University of Chicago
5835 S. Kimbark Avenue
Chicago, Illinois 60637

Dr. John C. Flanagan
American Institutes for Research
P. O. Box 1113
Palo Alto, California 94302

Dr. E. N. Adams, Director
Computer-Assisted Instruction
IBM Instructional Systems
Development Department
Watson Research Center
Box 218
Yorktown Heights, New York 10598

Dr. Richard Atkinson
Institute of Mathematics
Ventura Hall
Stanford University
Stanford, California 94305

Dr. Victor Bunderson
Director of Computer-Assisted Instruction Laboratory
The University of Texas
College of Education
Austin, Texas 78712

Donald D. Bushnell
Associate Director
Brooks Foundation
2020 Alameda Padre Serra
Santa Barbara, California 93103

Dr. Vincent Cieri
CAI Project
Bldg. 641
U. S. Army Signal Center & School
Ft. Monmouth, New Jersey 07703

Dave Dasenbrock
CREI--McGraw Hill
3225 Sixteenth Street, N. W.
Washington, D. C. 20010

Dr. James Duva
Code 554
Naval Training Device Center
Orlando, Florida 32813

Dr. Victor Fields
Personnel & Training
Office of Naval Research
Code 458
Main Navy Building
Washington, D. C. 20360

Dr. John Ford
U. S. Naval Personnel Research Activity
San Diego, California